@genai-fi/nanogpt 0.10.2 → 0.10.3
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/dist/Generator.js +11761 -171
- package/dist/{RealDiv-zz7FpkKX.js → RealDiv-KAPDe8zB.js} +23 -25
- package/dist/Reshape-BYkmUnAv.js +14 -0
- package/dist/{Reshape-CHdUjC72.js → Reshape-Zt6eb7yh.js} +18 -20
- package/dist/TeachableLLM.js +10 -11
- package/dist/{axis_util-BsIr9ZNu.js → axis_util-BaG7mf5A.js} +3 -3
- package/dist/backend.js +2 -2
- package/dist/{backend_util-B1XRLuq9.js → backend_util-RCe-rHaj.js} +72 -73
- package/dist/{backend_webgpu-CqpfEImu.js → backend_webgpu-DE3ACOLx.js} +45 -47
- package/dist/broadcast_to-B3eYlZm7.js +28 -0
- package/dist/checks/appendCache.js +2 -2
- package/dist/checks/attentionMask.js +3 -3
- package/dist/checks/gelu.js +2 -2
- package/dist/checks/matMulGelu.js +7 -11
- package/dist/checks/normRMS.js +9 -9
- package/dist/checks/normRMSGrad.js +3 -3
- package/dist/checks/packUnpack.js +2 -2
- package/dist/checks/qkv.js +12 -13
- package/dist/checks/rope.js +2 -2
- package/dist/clip_by_value-BnO7-a88.js +12 -0
- package/dist/complex-DjxcVmoX.js +11 -0
- package/dist/concat-BV8bt5H-.js +17 -0
- package/dist/{concat_util-iBYIyuQe.js → concat_util-DpW8mL_l.js} +1 -1
- package/dist/{dataset-D2P7rHAw.js → dataset-BcwmTGYc.js} +137 -139
- package/dist/dropout-BcvN9JYi.js +92 -0
- package/dist/expand_dims-DT4tEPwA.js +11 -0
- package/dist/{exports_initializers-CZSUJoVE.js → exports_initializers-Hta_rEnm.js} +1 -1
- package/dist/floor-D5QdR_le.js +9 -0
- package/dist/gather-D3JcZUaI.js +9 -0
- package/dist/{gelu-Bmhopi0J.js → gelu-CjNPL4OH.js} +10 -11
- package/dist/{gpgpu_math-DsCcikas.js → gpgpu_math-DAOmgtXR.js} +841 -1015
- package/dist/{index-DRyE072i.js → index-BwexR4lA.js} +262 -263
- package/dist/index-DOvlwCh-.js +3520 -0
- package/dist/{kernel_funcs_utils-CWfOAPGO.js → kernel_funcs_utils-CCzYdUZg.js} +130 -132
- package/dist/layers/BaseLayer.js +15 -16
- package/dist/layers/CausalSelfAttention.js +6 -6
- package/dist/layers/MLP.js +4 -4
- package/dist/layers/PositionEmbedding.js +7 -7
- package/dist/layers/RMSNorm.js +3 -3
- package/dist/layers/RoPECache.js +9 -9
- package/dist/layers/TiedEmbedding.js +6 -6
- package/dist/layers/TransformerBlock.js +1 -1
- package/dist/loader/loadTransformers.js +1 -1
- package/dist/loader/oldZipLoad.js +13 -14
- package/dist/log_sum_exp-ngO0-4pK.js +39 -0
- package/dist/main.js +49 -50
- package/dist/{matMul16-fEAJ4smh.js → matMul16-BWRSOCWB.js} +14 -15
- package/dist/matMulGelu-CzfgT6Wq.js +163 -0
- package/dist/mat_mul-SjpJRLyL.js +11 -0
- package/dist/mod-AnXEvvpo.js +11 -0
- package/dist/models/NanoGPTV1.js +2 -2
- package/dist/models/model.js +13 -14
- package/dist/ones-D2rT0xk2.js +14 -0
- package/dist/ops/adamAdjust.js +1 -1
- package/dist/ops/adamMoments.js +1 -1
- package/dist/ops/add16.js +1 -1
- package/dist/ops/appendCache.js +3 -3
- package/dist/ops/attentionMask.js +1 -1
- package/dist/ops/concat16.js +2 -2
- package/dist/ops/cpu/adamAdjust.js +13 -14
- package/dist/ops/cpu/adamMoments.js +6 -7
- package/dist/ops/cpu/appendCache.js +7 -8
- package/dist/ops/cpu/attentionMask.js +7 -7
- package/dist/ops/cpu/fusedSoftmax.js +10 -11
- package/dist/ops/cpu/gatherSub.js +9 -10
- package/dist/ops/cpu/gelu.js +9 -10
- package/dist/ops/cpu/matMul16.js +6 -7
- package/dist/ops/cpu/matMulGelu.js +5 -6
- package/dist/ops/cpu/matMulMul.js +3 -4
- package/dist/ops/cpu/mulDropout.js +3 -4
- package/dist/ops/cpu/normRMS.js +10 -11
- package/dist/ops/cpu/qkv.js +8 -9
- package/dist/ops/cpu/rope.js +5 -6
- package/dist/ops/cpu/scatterSub.js +17 -19
- package/dist/ops/dot16.js +2 -2
- package/dist/ops/gatherSub.js +1 -1
- package/dist/ops/gelu.js +2 -2
- package/dist/ops/grads/add16.js +11 -12
- package/dist/ops/grads/attentionMask.js +5 -6
- package/dist/ops/grads/gelu.js +3 -4
- package/dist/ops/grads/matMul16.js +4 -5
- package/dist/ops/grads/matMulGelu.js +9 -10
- package/dist/ops/grads/normRMS.js +7 -8
- package/dist/ops/grads/pack16.js +4 -5
- package/dist/ops/grads/qkv.js +17 -19
- package/dist/ops/grads/rope.js +3 -5
- package/dist/ops/grads/softmax16.js +3 -4
- package/dist/ops/grads/unpack16.js +3 -4
- package/dist/ops/grads/utils.d.ts +1 -0
- package/dist/ops/grads/utils.js +8 -4
- package/dist/ops/matMul16.js +3 -3
- package/dist/ops/matMulGelu.js +2 -2
- package/dist/ops/matMulMul.js +1 -1
- package/dist/ops/mul16.js +1 -1
- package/dist/ops/mulDrop.js +1 -1
- package/dist/ops/normRMS.js +1 -1
- package/dist/ops/pack16.js +3 -4
- package/dist/ops/qkv.js +4 -8
- package/dist/ops/reshape16.js +14 -16
- package/dist/ops/rope.d.ts +1 -1
- package/dist/ops/rope.js +3 -8
- package/dist/ops/scatterSub.js +1 -1
- package/dist/ops/slice16.js +2 -2
- package/dist/ops/softmax16.js +5 -8
- package/dist/ops/sub16.js +1 -1
- package/dist/ops/sum16.js +2 -2
- package/dist/ops/transpose16.js +23 -24
- package/dist/ops/unpack16.js +2 -2
- package/dist/ops/webgl/adamAdjust.js +2 -3
- package/dist/ops/webgl/adamMoments.js +1 -2
- package/dist/ops/webgl/appendCache.js +1 -2
- package/dist/ops/webgl/attentionMask.js +4 -5
- package/dist/ops/webgl/fusedSoftmax.js +4 -6
- package/dist/ops/webgl/gatherSub.js +6 -7
- package/dist/ops/webgl/gelu.js +2 -3
- package/dist/ops/webgl/log.js +11 -12
- package/dist/ops/webgl/matMul16.js +10 -11
- package/dist/ops/webgl/matMulGelu.js +7 -111
- package/dist/ops/webgl/matMulMul.js +9 -10
- package/dist/ops/webgl/mulDropout.js +8 -9
- package/dist/ops/webgl/normRMS.js +2 -3
- package/dist/ops/webgl/qkv.js +5 -6
- package/dist/ops/webgl/rope.js +7 -8
- package/dist/ops/webgl/scatterSub.js +5 -6
- package/dist/ops/webgpu/adamAdjust.js +10 -12
- package/dist/ops/webgpu/adamMoments.js +8 -10
- package/dist/ops/webgpu/add16.js +8 -9
- package/dist/ops/webgpu/appendCache.js +23 -25
- package/dist/ops/webgpu/attentionMask.js +8 -10
- package/dist/ops/webgpu/attentionMask32_program.js +2 -2
- package/dist/ops/webgpu/concat16.js +12 -14
- package/dist/ops/webgpu/gatherSub.js +11 -13
- package/dist/ops/webgpu/gelu.js +28 -29
- package/dist/ops/webgpu/matMul16.js +26 -28
- package/dist/ops/webgpu/matMul16_program.js +4 -5
- package/dist/ops/webgpu/mul16.js +9 -10
- package/dist/ops/webgpu/normRMS.js +15 -17
- package/dist/ops/webgpu/normRMSGrad.js +21 -28
- package/dist/ops/webgpu/pack16.js +12 -13
- package/dist/ops/webgpu/pack16_program.js +2 -2
- package/dist/ops/webgpu/qkv.js +16 -18
- package/dist/ops/webgpu/rope.js +25 -27
- package/dist/ops/webgpu/scatterSub.js +7 -9
- package/dist/ops/webgpu/slice16.js +21 -23
- package/dist/ops/webgpu/softmax16.js +17 -19
- package/dist/ops/webgpu/softmax16_program.js +2 -2
- package/dist/ops/webgpu/softmax16_subgroup_program.js +2 -2
- package/dist/ops/webgpu/softmax16grad.js +7 -8
- package/dist/ops/webgpu/sub16.js +7 -8
- package/dist/ops/webgpu/sum16.js +18 -20
- package/dist/ops/webgpu/transpose16.js +19 -20
- package/dist/ops/webgpu/transpose16_program.js +2 -2
- package/dist/ops/webgpu/transpose16_shared_program.js +11 -12
- package/dist/ops/webgpu/unpack16.js +3 -4
- package/dist/ops/webgpu/utils/binary_op.js +7 -8
- package/dist/ops/webgpu/utils/reductions.js +14 -22
- package/dist/ops-B5yanEdW.js +476 -0
- package/dist/pack16-nQ6JaLo-.js +39 -0
- package/dist/patches/webgpu_backend.js +19 -20
- package/dist/patches/webgpu_base.js +1 -1
- package/dist/patches/webgpu_program.js +21 -22
- package/dist/{random_width-BVV9HveY.js → random_width-or-CEftb.js} +2506 -2761
- package/dist/range-BklejeeW.js +10 -0
- package/dist/relu-CP0ZcxWO.js +9 -0
- package/dist/reshape-ByE68wS9.js +9 -0
- package/dist/resize_nearest_neighbor-B19mCEg2.js +175 -0
- package/dist/rope-Ir4mTyD1.js +24 -0
- package/dist/{scatter_nd_util-C7zXRT_h.js → scatter_nd_util-lvSiX8q4.js} +1 -1
- package/dist/selu_util-kbhpTdYD.js +44 -0
- package/dist/{shared-CHhxz-O5.js → shared-DT1TkE6w.js} +1 -1
- package/dist/{shared-D2NP_CpY.js → shared-dntlHIDQ.js} +343 -345
- package/dist/slice-BfEGSH82.js +12 -0
- package/dist/{slice_util-DyjSAD0u.js → slice_util-uTKwiEpW.js} +1 -1
- package/dist/{softmax-C9JQEtnO.js → softmax-CA5jFsLR.js} +4 -5
- package/dist/split-CVLc0w--.js +9 -0
- package/dist/squeeze-C7Z2srUo.js +10 -0
- package/dist/stack-Cf4n9h0N.js +11 -0
- package/dist/step-CINUs5QB.js +261 -0
- package/dist/sum-DWAtNGez.js +11 -0
- package/dist/tensor-DJoc7gJU.js +8 -0
- package/dist/tensor1d-D11P_7Dp.js +11 -0
- package/dist/{tensor2d-CSB4KOb0.js → tensor2d-Bs9wZRc7.js} +6 -7
- package/dist/{tensor4d-D7bLqGqz.js → tensor4d-BARPdTaS.js} +6 -7
- package/dist/{tfjs_backend-CNkSTL0c.js → tfjs_backend-y1cvNhLA.js} +255 -264
- package/dist/tile-mbfagpsB.js +11 -0
- package/dist/training/Adam.js +2 -2
- package/dist/training/AdamExt.js +1 -1
- package/dist/training/DatasetBuilder.js +2 -2
- package/dist/training/FullTrainer.js +1 -1
- package/dist/training/Trainer.js +2 -2
- package/dist/training/sparseCrossEntropy.js +5 -5
- package/dist/transpose-ClWiBS_b.js +36 -0
- package/dist/unsorted_segment_sum-BDDhB_E6.js +277 -0
- package/dist/utilities/dummy.js +3 -3
- package/dist/utilities/multinomialCPU.js +2 -2
- package/dist/utilities/packed.d.ts +1 -4
- package/dist/utilities/packed.js +10 -745
- package/dist/utilities/performance.js +1 -1
- package/dist/utilities/profile.js +1 -1
- package/dist/utilities/safetensors.js +2 -2
- package/dist/utilities/sentences.js +5 -5
- package/dist/utilities/weights.js +2 -2
- package/dist/{variable-DzfrwYuP.js → variable-WawDEaAb.js} +1 -1
- package/dist/{webgpu_program-DzaQiqel.js → webgpu_program-DuOXPQol.js} +178 -172
- package/dist/{webgpu_util-0_ubCEHJ.js → webgpu_util-RxEF33Rj.js} +34 -35
- package/dist/zeros-KnWaWf-X.js +13 -0
- package/dist/zeros_like-DvE73F4e.js +721 -0
- package/package.json +4 -2
- package/dist/Reshape-CDVLyVfz.js +0 -16
- package/dist/broadcast_to-B0ChcDaz.js +0 -30
- package/dist/complex-BBiRlsVq.js +0 -13
- package/dist/concat-DmBLPVGC.js +0 -19
- package/dist/dropout-B1x1kYMa.js +0 -99
- package/dist/expand_dims-ouvfxQ1n.js +0 -13
- package/dist/gather-CH9sdacz.js +0 -10
- package/dist/index-D6Q1lPZO.js +0 -2157
- package/dist/log_sum_exp-D3ftBNY5.js +0 -41
- package/dist/mat_mul-C59XWcJd.js +0 -12
- package/dist/mod-DESSvHIU.js +0 -12
- package/dist/mulmat_packed_gpu-Coh6qbJk.js +0 -55
- package/dist/ones-jU9jlQvM.js +0 -15
- package/dist/ops-BFDtP6th.js +0 -645
- package/dist/pack16-CmVZs6af.js +0 -41
- package/dist/patches/PackedTensor.d.ts +0 -12
- package/dist/patches/PackedTensor.js +0 -11
- package/dist/patches/engine.d.ts +0 -261
- package/dist/patches/engine.js +0 -12
- package/dist/patches/tape.d.ts +0 -12
- package/dist/patches/tape.js +0 -5
- package/dist/range-ZZZD60Fx.js +0 -11
- package/dist/reciprocal-CrYlsAGD.js +0 -10
- package/dist/register_all_kernels-nvj2k7OC.js +0 -12307
- package/dist/relu-BYDneVPn.js +0 -10
- package/dist/reshape-CaPQzFvz.js +0 -10
- package/dist/rope-s4W2XO9B.js +0 -32
- package/dist/selu_util-BGPXmd4B.js +0 -303
- package/dist/sin-Djs4aQiu.js +0 -16
- package/dist/slice-DvovR5wq.js +0 -13
- package/dist/split-DBck65sX.js +0 -10
- package/dist/squeeze-C00Ipm_7.js +0 -11
- package/dist/stack-ChnHwRpX.js +0 -13
- package/dist/sum-ywRJj3Zr.js +0 -12
- package/dist/tensor-0r5yOo2R.js +0 -8
- package/dist/tensor-CzmOBsdf.js +0 -909
- package/dist/tensor1d-BlUT89BP.js +0 -12
- package/dist/tensor_util-DfwaWayG.js +0 -523
- package/dist/tile-CR074jmp.js +0 -13
- package/dist/transpose-DH4gmHvu.js +0 -38
- package/dist/zeros-DBFVbpv5.js +0 -14
package/dist/ops-BFDtP6th.js
DELETED
|
@@ -1,645 +0,0 @@
|
|
|
1
|
-
import { A as f, B as c, E as d, j as B, S as A, o as ls, p as Ns, b as y, T as bs, J as Is, G as D, m as b, n as O, l as S, i as Ss, c as g, D as Q, d as Ts, w as Ms } from "./index-D6Q1lPZO.js";
|
|
2
|
-
import { ag as As, ah as ws, ai as qs, aj as Ds, m as v, ak as Bs, al as xs, am as Gs, an as Os, ao as Ls, ap as zs, aq as Rs, ar as Ws, as as vs, at as Cs, au as Ks, av as Vs, aw as js, ax as Ps, ay as Ys, az as Fs, aA as Us, aB as Zs, aC as Hs, aD as Js, aE as Xs } from "./tensor_util-DfwaWayG.js";
|
|
3
|
-
import { a as p, p as Qs, j as L } from "./tensor-CzmOBsdf.js";
|
|
4
|
-
import { t as U } from "./tile-CR074jmp.js";
|
|
5
|
-
import { e as W } from "./expand_dims-ouvfxQ1n.js";
|
|
6
|
-
import { t as q } from "./tensor1d-BlUT89BP.js";
|
|
7
|
-
import { n as sn, a as nn, b as en } from "./non_max_suppression_impl-B2W7YjZB.js";
|
|
8
|
-
import { r as I } from "./reshape-CaPQzFvz.js";
|
|
9
|
-
import { s as ds } from "./split-DBck65sX.js";
|
|
10
|
-
import { s as E } from "./sum-ywRJj3Zr.js";
|
|
11
|
-
import { b as ss } from "./broadcast_to-B0ChcDaz.js";
|
|
12
|
-
import { s as M } from "./slice-DvovR5wq.js";
|
|
13
|
-
import { r as Z } from "./range-ZZZD60Fx.js";
|
|
14
|
-
import { t as tn } from "./tensor-0r5yOo2R.js";
|
|
15
|
-
import { n as j, t as us } from "./transpose-DH4gmHvu.js";
|
|
16
|
-
import { s as H } from "./stack-ChnHwRpX.js";
|
|
17
|
-
import { z as rn } from "./zeros-DBFVbpv5.js";
|
|
18
|
-
import { e as gs } from "./axis_util-BsIr9ZNu.js";
|
|
19
|
-
import { m as ns, a as ps, e as rs, l as on } from "./log_sum_exp-D3ftBNY5.js";
|
|
20
|
-
import { s as an } from "./squeeze-C00Ipm_7.js";
|
|
21
|
-
import { c as es } from "./concat-DmBLPVGC.js";
|
|
22
|
-
import { m as G } from "./mat_mul-C59XWcJd.js";
|
|
23
|
-
import { t as ts } from "./tensor2d-CSB4KOb0.js";
|
|
24
|
-
import { o as cn } from "./ones-jU9jlQvM.js";
|
|
25
|
-
import { r as $s } from "./relu-BYDneVPn.js";
|
|
26
|
-
function ln(e, r, s) {
|
|
27
|
-
const t = c(e, "x", "bincount"), n = c(r, "weights", "bincount");
|
|
28
|
-
p(t.dtype === "int32", () => `Error in bincount: input dtype must be int32, but got ${t.dtype}`), p(s >= 0, () => `size must be non-negative, but got ${s}.`), p(n.size === t.size || n.size === 0, () => `Error in bincount: weights must have the same size as input or0-length, but got input shape: ${t.shape}, weights shape: ${n.shape}.`);
|
|
29
|
-
const o = { x: t, weights: n }, a = { size: s };
|
|
30
|
-
return d.runKernel(As, o, a);
|
|
31
|
-
}
|
|
32
|
-
const un = /* @__PURE__ */ f({ bincount_: ln });
|
|
33
|
-
function pn(e, r, s) {
|
|
34
|
-
const t = c(r, "a", "where"), n = c(s, "b", "where"), o = c(e, "condition", "where", "bool"), a = B(B(o.shape, t.shape), n.shape), i = ss(o, a), u = ss(t, a), l = ss(n, a), m = {
|
|
35
|
-
condition: i,
|
|
36
|
-
t: u,
|
|
37
|
-
e: l
|
|
38
|
-
};
|
|
39
|
-
return d.runKernel(ws, m);
|
|
40
|
-
}
|
|
41
|
-
const C = /* @__PURE__ */ f({ where_: pn });
|
|
42
|
-
function fn(e, ...r) {
|
|
43
|
-
const s = r.map((n, o) => c(n, `tensors${o}`, "einsum")), t = { equation: e };
|
|
44
|
-
return d.runKernel(qs, s, t);
|
|
45
|
-
}
|
|
46
|
-
const V = /* @__PURE__ */ f({ einsum_: fn });
|
|
47
|
-
function mn(e, r = null, s = !1) {
|
|
48
|
-
const n = { x: c(e, "x", "min") }, o = { axis: r, keepDims: s };
|
|
49
|
-
return d.runKernel(Ds, n, o);
|
|
50
|
-
}
|
|
51
|
-
const fs = /* @__PURE__ */ f({ min_: mn });
|
|
52
|
-
function hn(e, r = "euclidean", s = null, t = !1) {
|
|
53
|
-
e = c(e, "x", "norm");
|
|
54
|
-
const n = Es(e, r, s);
|
|
55
|
-
let o = n.shape;
|
|
56
|
-
if (t) {
|
|
57
|
-
const a = Qs(s, e.shape);
|
|
58
|
-
o = gs(n.shape, a);
|
|
59
|
-
}
|
|
60
|
-
return I(n, o);
|
|
61
|
-
}
|
|
62
|
-
function Es(e, r, s = null) {
|
|
63
|
-
if (e.rank === 0)
|
|
64
|
-
return A(e);
|
|
65
|
-
if (e.rank !== 1 && s === null)
|
|
66
|
-
return Es(I(e, [-1]), r, s);
|
|
67
|
-
if (e.rank === 1 || typeof s == "number" || Array.isArray(s) && s.length === 1) {
|
|
68
|
-
if (r === 1)
|
|
69
|
-
return E(A(e), s);
|
|
70
|
-
if (r === 1 / 0)
|
|
71
|
-
return ns(A(e), s);
|
|
72
|
-
if (r === -1 / 0)
|
|
73
|
-
return fs(A(e), s);
|
|
74
|
-
if (r === "euclidean" || r === 2)
|
|
75
|
-
return ls(E(Ns(A(e), y(2, "int32")), s));
|
|
76
|
-
throw new Error(`Error in norm: invalid ord value: ${r}`);
|
|
77
|
-
}
|
|
78
|
-
if (Array.isArray(s) && s.length === 2) {
|
|
79
|
-
if (r === 1)
|
|
80
|
-
return ns(E(A(e), s[0]), s[1] - 1);
|
|
81
|
-
if (r === 1 / 0)
|
|
82
|
-
return ns(E(A(e), s[1]), s[0]);
|
|
83
|
-
if (r === -1 / 0)
|
|
84
|
-
return fs(E(A(e), s[1]), s[0]);
|
|
85
|
-
if (r === "fro" || r === "euclidean")
|
|
86
|
-
return ls(E(bs(e), s));
|
|
87
|
-
throw new Error(`Error in norm: invalid ord value: ${r}`);
|
|
88
|
-
}
|
|
89
|
-
throw new Error(`Error in norm: invalid axis: ${s}`);
|
|
90
|
-
}
|
|
91
|
-
const _s = /* @__PURE__ */ f({ norm_: hn });
|
|
92
|
-
function bn(e, r, s, t = "float32") {
|
|
93
|
-
r == null && (r = e);
|
|
94
|
-
const n = Is([e, r], t), o = e <= r ? e : r;
|
|
95
|
-
for (let i = 0; i < o; ++i)
|
|
96
|
-
n.set(1, i, i);
|
|
97
|
-
const a = I(n.toTensor(), [e, r]);
|
|
98
|
-
if (s == null)
|
|
99
|
-
return a;
|
|
100
|
-
if (s.length === 1)
|
|
101
|
-
return U(W(a, 0), [s[0], 1, 1]);
|
|
102
|
-
if (s.length === 2)
|
|
103
|
-
return U(W(W(a, 0), 0), [s[0], s[1], 1, 1]);
|
|
104
|
-
if (s.length === 3)
|
|
105
|
-
return U(W(W(W(a, 0), 0), 0), [
|
|
106
|
-
s[0],
|
|
107
|
-
s[1],
|
|
108
|
-
s[2],
|
|
109
|
-
1,
|
|
110
|
-
1
|
|
111
|
-
]);
|
|
112
|
-
throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${s.length}D.`);
|
|
113
|
-
}
|
|
114
|
-
const dn = /* @__PURE__ */ f({ eye_: bn });
|
|
115
|
-
function gn(e, r) {
|
|
116
|
-
let s = c(e, "a", "greater", "string_or_numeric"), t = c(r, "b", "greater", "string_or_numeric");
|
|
117
|
-
[s, t] = v(s, t), B(s.shape, t.shape);
|
|
118
|
-
const n = { a: s, b: t };
|
|
119
|
-
return d.runKernel(Bs, n);
|
|
120
|
-
}
|
|
121
|
-
const as = /* @__PURE__ */ f({ greater_: gn });
|
|
122
|
-
function $n(e, r) {
|
|
123
|
-
let s = c(e, "a", "greaterEqual", "string_or_numeric"), t = c(r, "b", "greaterEqual", "string_or_numeric");
|
|
124
|
-
[s, t] = v(s, t), B(s.shape, t.shape);
|
|
125
|
-
const n = { a: s, b: t };
|
|
126
|
-
return d.runKernel(xs, n);
|
|
127
|
-
}
|
|
128
|
-
const En = /* @__PURE__ */ f({ greaterEqual_: $n });
|
|
129
|
-
function _n(e, r) {
|
|
130
|
-
let s = c(e, "a", "less", "string_or_numeric"), t = c(r, "b", "less", "string_or_numeric");
|
|
131
|
-
[s, t] = v(s, t), B(s.shape, t.shape);
|
|
132
|
-
const n = { a: s, b: t };
|
|
133
|
-
return d.runKernel(Gs, n);
|
|
134
|
-
}
|
|
135
|
-
const ms = /* @__PURE__ */ f({ less_: _n });
|
|
136
|
-
function yn(e, r) {
|
|
137
|
-
let s = c(e, "a", "lessEqual", "string_or_numeric"), t = c(r, "b", "lessEqual", "string_or_numeric");
|
|
138
|
-
[s, t] = v(s, t), B(s.shape, t.shape);
|
|
139
|
-
const n = { a: s, b: t };
|
|
140
|
-
return d.runKernel(Os, n);
|
|
141
|
-
}
|
|
142
|
-
const ys = /* @__PURE__ */ f({ lessEqual_: yn });
|
|
143
|
-
function kn(e) {
|
|
144
|
-
const s = { x: c(e, "x", "log1p") };
|
|
145
|
-
return d.runKernel(Ls, s);
|
|
146
|
-
}
|
|
147
|
-
const Nn = /* @__PURE__ */ f({ log1p_: kn });
|
|
148
|
-
function In(e, r) {
|
|
149
|
-
const s = c(e, "a", "logicalAnd", "bool"), t = c(r, "b", "logicalAnd", "bool");
|
|
150
|
-
B(s.shape, t.shape);
|
|
151
|
-
const n = { a: s, b: t };
|
|
152
|
-
return d.runKernel(zs, n);
|
|
153
|
-
}
|
|
154
|
-
const Sn = /* @__PURE__ */ f({ logicalAnd_: In });
|
|
155
|
-
function Tn(e, r = null, s = !1) {
|
|
156
|
-
const n = { x: c(e, "x", "mean") }, o = { axis: r, keepDims: s };
|
|
157
|
-
return d.runKernel(Rs, n, o);
|
|
158
|
-
}
|
|
159
|
-
const Mn = /* @__PURE__ */ f({ mean_: Tn });
|
|
160
|
-
function An(e, r) {
|
|
161
|
-
let s = c(e, "a", "minimum"), t = c(r, "b", "minimum");
|
|
162
|
-
[s, t] = v(s, t), s.dtype === "bool" && (s = D(s, "int32"), t = D(t, "int32")), B(s.shape, t.shape);
|
|
163
|
-
const n = { a: s, b: t };
|
|
164
|
-
return d.runKernel(Ws, n);
|
|
165
|
-
}
|
|
166
|
-
const os = /* @__PURE__ */ f({ minimum_: An });
|
|
167
|
-
function wn(e, r) {
|
|
168
|
-
let s = c(e, "a", "notEqual", "string_or_numeric"), t = c(r, "b", "notEqual", "string_or_numeric");
|
|
169
|
-
[s, t] = v(s, t), B(s.shape, t.shape);
|
|
170
|
-
const n = { a: s, b: t };
|
|
171
|
-
return d.runKernel(vs, n);
|
|
172
|
-
}
|
|
173
|
-
const qn = /* @__PURE__ */ f({ notEqual_: wn });
|
|
174
|
-
function Dn(e) {
|
|
175
|
-
const s = { x: c(e, "x", "round") };
|
|
176
|
-
return d.runKernel(Cs, s);
|
|
177
|
-
}
|
|
178
|
-
const Bn = /* @__PURE__ */ f({ round_: Dn });
|
|
179
|
-
function xn(e, r) {
|
|
180
|
-
let s = c(e, "a", "squaredDifference"), t = c(r, "b", "squaredDifference");
|
|
181
|
-
[s, t] = v(s, t), B(s.shape, t.shape);
|
|
182
|
-
const n = { a: s, b: t }, o = {};
|
|
183
|
-
return d.runKernel(Ks, n, o);
|
|
184
|
-
}
|
|
185
|
-
const Gn = /* @__PURE__ */ f({ squaredDifference_: xn });
|
|
186
|
-
function On(e, r = 0) {
|
|
187
|
-
const s = c(e, "x", "unstack", "string_or_numeric");
|
|
188
|
-
p(r >= -s.shape.length && r < s.shape.length, () => `Axis = ${r} is not in [-${s.shape.length}, ${s.shape.length})`);
|
|
189
|
-
const t = { value: s }, n = { axis: r };
|
|
190
|
-
return d.runKernel(Vs, t, n);
|
|
191
|
-
}
|
|
192
|
-
const ks = /* @__PURE__ */ f({ unstack_: On });
|
|
193
|
-
function Ln(e, r, s, t, n = "bilinear", o = 0) {
|
|
194
|
-
const a = c(e, "image", "cropAndResize"), i = c(r, "boxes", "cropAndResize", "float32"), u = c(s, "boxInd", "cropAndResize", "int32"), l = i.shape[0];
|
|
195
|
-
p(a.rank === 4, () => `Error in cropAndResize: image must be rank 4,but got rank ${a.rank}.`), p(i.rank === 2 && i.shape[1] === 4, () => `Error in cropAndResize: boxes must be have size [${l},4] but had shape ${i.shape}.`), p(u.rank === 1 && u.shape[0] === l, () => `Error in cropAndResize: boxInd must be have size [${l}] but had shape ${i.shape}.`), p(t.length === 2, () => `Error in cropAndResize: cropSize must be of length 2, but got length ${t.length}.`), p(t[0] >= 1 && t[1] >= 1, () => `cropSize must be atleast [1,1], but was ${t}`), p(n === "bilinear" || n === "nearest", () => `method must be bilinear or nearest, but was ${n}`);
|
|
196
|
-
const m = { image: a, boxes: i, boxInd: u }, h = { method: n, extrapolationValue: o, cropSize: t };
|
|
197
|
-
return d.runKernel(js, m, h);
|
|
198
|
-
}
|
|
199
|
-
const zn = /* @__PURE__ */ f({ cropAndResize_: Ln });
|
|
200
|
-
function Rn(e) {
|
|
201
|
-
const r = c(e, "image", "flipLeftRight", "float32");
|
|
202
|
-
p(r.rank === 4, () => `Error in flipLeftRight: image must be rank 4,but got rank ${r.rank}.`);
|
|
203
|
-
const s = { image: r };
|
|
204
|
-
return d.runKernel(Ps, s, {});
|
|
205
|
-
}
|
|
206
|
-
const Wn = /* @__PURE__ */ f({ flipLeftRight_: Rn });
|
|
207
|
-
function vn(e) {
|
|
208
|
-
const r = c(e, "image", "grayscaleToRGB"), s = r.rank - 1, t = r.shape[s];
|
|
209
|
-
p(r.rank >= 2, () => `Error in grayscaleToRGB: images must be at least rank 2, but got rank ${r.rank}.`), p(t === 1, () => `Error in grayscaleToRGB: last dimension of a grayscale image should be size 1, but got size ${t}.`);
|
|
210
|
-
const n = new Array(r.rank);
|
|
211
|
-
return n.fill(1, 0, s), n[s] = 3, U(r, n);
|
|
212
|
-
}
|
|
213
|
-
const Cn = /* @__PURE__ */ f({ grayscaleToRGB_: vn });
|
|
214
|
-
function Kn(e) {
|
|
215
|
-
const r = c(e, "image", "RGBToGrayscale"), s = r.rank - 1, t = r.shape[s];
|
|
216
|
-
p(r.rank >= 2, () => `Error in RGBToGrayscale: images must be at least rank 2, but got rank ${r.rank}.`), p(t === 3, () => `Error in RGBToGrayscale: last dimension of an RGB image should be size 3, but got size ${t}.`);
|
|
217
|
-
const n = r.dtype, o = D(r, "float32"), a = q([0.2989, 0.587, 0.114]);
|
|
218
|
-
let i;
|
|
219
|
-
switch (r.rank) {
|
|
220
|
-
case 2:
|
|
221
|
-
i = V("ij,j->i", o, a);
|
|
222
|
-
break;
|
|
223
|
-
case 3:
|
|
224
|
-
i = V("ijk,k->ij", o, a);
|
|
225
|
-
break;
|
|
226
|
-
case 4:
|
|
227
|
-
i = V("ijkl,l->ijk", o, a);
|
|
228
|
-
break;
|
|
229
|
-
case 5:
|
|
230
|
-
i = V("ijklm,m->ijkl", o, a);
|
|
231
|
-
break;
|
|
232
|
-
case 6:
|
|
233
|
-
i = V("ijklmn,n->ijklm", o, a);
|
|
234
|
-
break;
|
|
235
|
-
default:
|
|
236
|
-
throw new Error("Not a valid tensor rank.");
|
|
237
|
-
}
|
|
238
|
-
return i = W(i, -1), D(i, n);
|
|
239
|
-
}
|
|
240
|
-
const Vn = /* @__PURE__ */ f({ rgbToGrayscale_: Kn });
|
|
241
|
-
function jn(e, r, s = 0, t = 0.5) {
|
|
242
|
-
const n = c(e, "image", "rotateWithOffset", "float32");
|
|
243
|
-
p(n.rank === 4, () => `Error in rotateWithOffset: image must be rank 4,but got rank ${n.rank}.`);
|
|
244
|
-
const o = { image: n }, a = { radians: r, fillValue: s, center: t };
|
|
245
|
-
return d.runKernel(Ys, o, a);
|
|
246
|
-
}
|
|
247
|
-
const Pn = /* @__PURE__ */ f({ rotateWithOffset_: jn });
|
|
248
|
-
function K(e, r, s, t, n, o) {
|
|
249
|
-
t == null && (t = 0.5), n == null && (n = Number.NEGATIVE_INFINITY), o == null && (o = 0);
|
|
250
|
-
const a = e.shape[0];
|
|
251
|
-
return s = Math.min(s, a), p(0 <= t && t <= 1, () => `iouThreshold must be in [0, 1], but was '${t}'`), p(e.rank === 2, () => `boxes must be a 2D tensor, but was of rank '${e.rank}'`), p(e.shape[1] === 4, () => `boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`), p(r.rank === 1, () => "scores must be a 1D tensor"), p(r.shape[0] === a, () => `scores has incompatible shape with boxes. Expected ${a}, but was ${r.shape[0]}`), p(0 <= o && o <= 1, () => `softNmsSigma must be in [0, 1], but was '${o}'`), { maxOutputSize: s, iouThreshold: t, scoreThreshold: n, softNmsSigma: o };
|
|
252
|
-
}
|
|
253
|
-
function Yn(e, r, s, t = 0.5, n = Number.NEGATIVE_INFINITY) {
|
|
254
|
-
const o = c(e, "boxes", "nonMaxSuppression", "float32"), a = c(r, "scores", "nonMaxSuppression", "float32"), i = K(o, a, s, t, n);
|
|
255
|
-
s = i.maxOutputSize, t = i.iouThreshold, n = i.scoreThreshold;
|
|
256
|
-
const u = { maxOutputSize: s, iouThreshold: t, scoreThreshold: n };
|
|
257
|
-
return d.runKernel(Fs, { boxes: o, scores: a }, u);
|
|
258
|
-
}
|
|
259
|
-
const Fn = /* @__PURE__ */ f({ nonMaxSuppression_: Yn });
|
|
260
|
-
async function Un(e, r, s, t = 0.5, n = Number.NEGATIVE_INFINITY) {
|
|
261
|
-
const o = c(e, "boxes", "nonMaxSuppressionAsync"), a = c(r, "scores", "nonMaxSuppressionAsync"), i = K(o, a, s, t, n);
|
|
262
|
-
s = i.maxOutputSize, t = i.iouThreshold, n = i.scoreThreshold;
|
|
263
|
-
const u = await Promise.all([o.data(), a.data()]), l = u[0], m = u[1], { selectedIndices: h } = sn(l, m, s, t, n);
|
|
264
|
-
return o !== e && o.dispose(), a !== r && a.dispose(), q(h, "int32");
|
|
265
|
-
}
|
|
266
|
-
const Zn = Un;
|
|
267
|
-
function Hn(e, r, s, t = 0.5, n = Number.NEGATIVE_INFINITY, o = 0) {
|
|
268
|
-
const a = c(e, "boxes", "nonMaxSuppression"), i = c(r, "scores", "nonMaxSuppression"), u = K(a, i, s, t, n, o);
|
|
269
|
-
s = u.maxOutputSize, t = u.iouThreshold, n = u.scoreThreshold, o = u.softNmsSigma;
|
|
270
|
-
const l = { boxes: a, scores: i }, m = { maxOutputSize: s, iouThreshold: t, scoreThreshold: n, softNmsSigma: o }, h = d.runKernel(Us, l, m);
|
|
271
|
-
return { selectedIndices: h[0], selectedScores: h[1] };
|
|
272
|
-
}
|
|
273
|
-
const Jn = /* @__PURE__ */ f({ nonMaxSuppressionWithScore_: Hn });
|
|
274
|
-
async function Xn(e, r, s, t = 0.5, n = Number.NEGATIVE_INFINITY, o = 0) {
|
|
275
|
-
const a = c(e, "boxes", "nonMaxSuppressionAsync"), i = c(r, "scores", "nonMaxSuppressionAsync"), u = K(a, i, s, t, n, o);
|
|
276
|
-
s = u.maxOutputSize, t = u.iouThreshold, n = u.scoreThreshold, o = u.softNmsSigma;
|
|
277
|
-
const l = await Promise.all([a.data(), i.data()]), m = l[0], h = l[1], { selectedIndices: _, selectedScores: $ } = nn(m, h, s, t, n, o);
|
|
278
|
-
return a !== e && a.dispose(), i !== r && i.dispose(), {
|
|
279
|
-
selectedIndices: q(_, "int32"),
|
|
280
|
-
selectedScores: q($)
|
|
281
|
-
};
|
|
282
|
-
}
|
|
283
|
-
const Qn = Xn;
|
|
284
|
-
function se(e, r, s, t = 0.5, n = Number.NEGATIVE_INFINITY, o = !1) {
|
|
285
|
-
const a = c(e, "boxes", "nonMaxSuppression"), i = c(r, "scores", "nonMaxSuppression"), u = K(
|
|
286
|
-
a,
|
|
287
|
-
i,
|
|
288
|
-
s,
|
|
289
|
-
t,
|
|
290
|
-
n,
|
|
291
|
-
null
|
|
292
|
-
/* softNmsSigma */
|
|
293
|
-
), l = u.maxOutputSize, m = u.iouThreshold, h = u.scoreThreshold, _ = { boxes: a, scores: i }, $ = {
|
|
294
|
-
maxOutputSize: l,
|
|
295
|
-
iouThreshold: m,
|
|
296
|
-
scoreThreshold: h,
|
|
297
|
-
padToMaxOutputSize: o
|
|
298
|
-
}, k = d.runKernel(Zs, _, $);
|
|
299
|
-
return { selectedIndices: k[0], validOutputs: k[1] };
|
|
300
|
-
}
|
|
301
|
-
const ne = /* @__PURE__ */ f({ nonMaxSuppressionPadded_: se });
|
|
302
|
-
async function ee(e, r, s, t = 0.5, n = Number.NEGATIVE_INFINITY, o = !1) {
|
|
303
|
-
const a = c(e, "boxes", "nonMaxSuppressionAsync"), i = c(r, "scores", "nonMaxSuppressionAsync"), u = K(
|
|
304
|
-
a,
|
|
305
|
-
i,
|
|
306
|
-
s,
|
|
307
|
-
t,
|
|
308
|
-
n,
|
|
309
|
-
null
|
|
310
|
-
/* softNmsSigma */
|
|
311
|
-
), l = u.maxOutputSize, m = u.iouThreshold, h = u.scoreThreshold, [_, $] = await Promise.all([a.data(), i.data()]), { selectedIndices: k, validOutputs: w } = en(_, $, l, m, h, o);
|
|
312
|
-
return a !== e && a.dispose(), i !== r && i.dispose(), {
|
|
313
|
-
selectedIndices: q(k, "int32"),
|
|
314
|
-
validOutputs: y(w, "int32")
|
|
315
|
-
};
|
|
316
|
-
}
|
|
317
|
-
const te = ee;
|
|
318
|
-
function re(e, r, s = !1, t = !1) {
|
|
319
|
-
const n = c(e, "images", "resizeBilinear");
|
|
320
|
-
p(n.rank === 3 || n.rank === 4, () => `Error in resizeBilinear: x must be rank 3 or 4, but got rank ${n.rank}.`), p(r.length === 2, () => `Error in resizeBilinear: new shape must 2D, but got shape ${r}.`), p(t === !1 || s === !1, () => "Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");
|
|
321
|
-
let o = n, a = !1;
|
|
322
|
-
n.rank === 3 && (a = !0, o = I(n, [1, n.shape[0], n.shape[1], n.shape[2]]));
|
|
323
|
-
const i = { images: o }, u = { alignCorners: s, halfPixelCenters: t, size: r }, l = d.runKernel(Hs, i, u);
|
|
324
|
-
return a ? I(l, [l.shape[1], l.shape[2], l.shape[3]]) : l;
|
|
325
|
-
}
|
|
326
|
-
const oe = /* @__PURE__ */ f({ resizeBilinear_: re });
|
|
327
|
-
function ae(e, r, s = !1, t = !1) {
|
|
328
|
-
const n = c(e, "images", "resizeNearestNeighbor");
|
|
329
|
-
p(n.rank === 3 || n.rank === 4, () => `Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${n.rank}.`), p(r.length === 2, () => `Error in resizeNearestNeighbor: new shape must 2D, but got shape ${r}.`), p(n.dtype === "float32" || n.dtype === "int32", () => "`images` must have `int32` or `float32` as dtype"), p(t === !1 || s === !1, () => "Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");
|
|
330
|
-
let o = n, a = !1;
|
|
331
|
-
n.rank === 3 && (a = !0, o = I(n, [1, n.shape[0], n.shape[1], n.shape[2]]));
|
|
332
|
-
const i = { images: o }, u = { alignCorners: s, halfPixelCenters: t, size: r }, l = d.runKernel(Js, i, u);
|
|
333
|
-
return a ? I(l, [l.shape[1], l.shape[2], l.shape[3]]) : l;
|
|
334
|
-
}
|
|
335
|
-
const ie = /* @__PURE__ */ f({ resizeNearestNeighbor_: ae });
|
|
336
|
-
function ce(e, r = "binary", s = !1, t = 0.5) {
|
|
337
|
-
const n = c(e, "image", "threshold"), o = 0.2989, a = 0.587, i = 0.114, u = n.shape[0] * n.shape[1];
|
|
338
|
-
let l = b(q([t]), 255), m, h, _, $;
|
|
339
|
-
if (p(n.rank === 3, () => `Error in threshold: image must be rank 3,but got rank ${n.rank}.`), p(n.shape[2] === 3 || n.shape[2] === 1, () => `Error in threshold: image color channel must be equal to 3 or 1but got ${n.shape[2]}.`), p(n.dtype === "int32" || n.dtype === "float32", () => `Error in dtype: image dtype must be int32 or float32,but got dtype ${n.dtype}.`), p(r === "otsu" || r === "binary", () => `Method must be binary or otsu, but was ${r}`), n.shape[2] === 3) {
|
|
340
|
-
[m, h, _] = ds(n, [1, 1, 1], -1);
|
|
341
|
-
const T = b(m, o), x = b(h, a), R = b(_, i);
|
|
342
|
-
$ = O(O(T, x), R);
|
|
343
|
-
} else
|
|
344
|
-
$ = e;
|
|
345
|
-
if (r === "otsu") {
|
|
346
|
-
const T = un(D(Bn($), "int32"), tn([]), 256);
|
|
347
|
-
l = le(T, u);
|
|
348
|
-
}
|
|
349
|
-
const k = s ? ys($, l) : as($, l);
|
|
350
|
-
return D(b(k, 255), "int32");
|
|
351
|
-
}
|
|
352
|
-
function le(e, r) {
|
|
353
|
-
let s = q([-1]), t = q([0]), n = q([0]), o, a, i, u, l, m;
|
|
354
|
-
for (let h = 0; h < e.size - 1; h++) {
|
|
355
|
-
o = M(e, 0, h + 1), a = M(e, h + 1), l = S(E(o), r), m = S(E(a), r);
|
|
356
|
-
const _ = E(b(o, Z(0, o.size)));
|
|
357
|
-
i = S(_, E(o));
|
|
358
|
-
const $ = Ss(a.shape, o.size), k = O(Z(0, a.size), $), w = b(a, k);
|
|
359
|
-
u = S(E(w), E(a));
|
|
360
|
-
const T = g(i, u), x = g(i, u), R = b(l, m);
|
|
361
|
-
n = b(b(R, T), x);
|
|
362
|
-
const P = as(n, t);
|
|
363
|
-
t = C(P, n, t), s = C(P, q([h]), s);
|
|
364
|
-
}
|
|
365
|
-
return s;
|
|
366
|
-
}
|
|
367
|
-
const ue = /* @__PURE__ */ f({ threshold_: ce });
|
|
368
|
-
function pe(e, r, s = "nearest", t = "constant", n = 0, o) {
|
|
369
|
-
const a = c(e, "image", "transform", "float32"), i = c(r, "transforms", "transform", "float32");
|
|
370
|
-
p(a.rank === 4, () => `Error in transform: image must be rank 4,but got rank ${a.rank}.`), p(i.rank === 2 && (i.shape[0] === a.shape[0] || i.shape[0] === 1) && i.shape[1] === 8, () => "Error in transform: Input transform should be batch x 8 or 1 x 8"), p(o == null || o.length === 2, () => `Error in transform: outputShape must be [height, width] or null, but got ${o}.`);
|
|
371
|
-
const u = { image: a, transforms: i }, l = { interpolation: s, fillMode: t, fillValue: n, outputShape: o };
|
|
372
|
-
return d.runKernel(Xs, u, l);
|
|
373
|
-
}
|
|
374
|
-
const fe = /* @__PURE__ */ f({ transform_: pe });
|
|
375
|
-
function me(e, r, s) {
|
|
376
|
-
const t = c(e, "a", "bandPart");
|
|
377
|
-
p(t.rank >= 2, () => `bandPart(): Rank must be at least 2, got ${t.rank}.`);
|
|
378
|
-
const n = t.shape, [o, a] = t.shape.slice(-2);
|
|
379
|
-
let i, u;
|
|
380
|
-
typeof r == "number" ? (p(r % 1 === 0, () => `bandPart(): numLower must be an integer, got ${r}.`), p(r <= o, () => `bandPart(): numLower (${r}) must not be greater than the number of rows (${o}).`), i = c(r < 0 ? o : r, "numLower", "bandPart")) : (p(r.dtype === "int32", () => "bandPart(): numLower's dtype must be an int32."), i = C(ms(r, 0), o, os(r, o))), typeof s == "number" ? (p(s % 1 === 0, () => `bandPart(): numUpper must be an integer, got ${s}.`), p(s <= a, () => `bandPart(): numUpper (${s}) must not be greater than the number of columns (${a}).`), u = c(s < 0 ? a : s, "numUpper", "bandPart")) : (p(s.dtype === "int32", () => "bandPart(): numUpper's dtype must be an int32."), u = C(ms(s, 0), a, os(s, a)));
|
|
381
|
-
const l = I(Z(0, o, 1, "int32"), [-1, 1]), m = Z(0, a, 1, "int32"), h = g(l, m), _ = Sn(ys(h, i), En(h, j(u))), $ = rn([o, a], t.dtype);
|
|
382
|
-
return I(H(ks(I(t, [-1, o, a])).map((k) => C(_, k, $))), n);
|
|
383
|
-
}
|
|
384
|
-
const he = /* @__PURE__ */ f({ bandPart_: me });
|
|
385
|
-
function be(e) {
|
|
386
|
-
let r;
|
|
387
|
-
if (Array.isArray(e)) {
|
|
388
|
-
r = !1, p(e != null && e.length > 0, () => "Gram-Schmidt process: input must not be null, undefined, or empty");
|
|
389
|
-
const n = e[0].shape[0];
|
|
390
|
-
for (let o = 1; o < e.length; ++o)
|
|
391
|
-
p(e[o].shape[0] === n, () => `Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[o].shape[0]} vs. ${n})`);
|
|
392
|
-
} else
|
|
393
|
-
r = !0, e = ds(e, e.shape[0], 0).map((n) => an(n, [0]));
|
|
394
|
-
p(e.length <= e[0].shape[0], () => `Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);
|
|
395
|
-
const s = [], t = e;
|
|
396
|
-
for (let n = 0; n < e.length; ++n)
|
|
397
|
-
s.push(d.tidy(() => {
|
|
398
|
-
let o = t[n];
|
|
399
|
-
if (n > 0)
|
|
400
|
-
for (let a = 0; a < n; ++a) {
|
|
401
|
-
const i = b(E(b(s[a], o)), s[a]);
|
|
402
|
-
o = g(o, i);
|
|
403
|
-
}
|
|
404
|
-
return S(o, _s(o, "euclidean"));
|
|
405
|
-
}));
|
|
406
|
-
return r ? H(s, 0) : s;
|
|
407
|
-
}
|
|
408
|
-
const de = /* @__PURE__ */ f({ gramSchmidt_: be });
|
|
409
|
-
function ge(e, r = !1) {
|
|
410
|
-
if (p(e.rank >= 2, () => `qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`), e.rank === 2)
|
|
411
|
-
return hs(e, r);
|
|
412
|
-
{
|
|
413
|
-
const s = e.shape.slice(0, e.shape.length - 2).reduce((u, l) => u * l), t = ks(I(e, [
|
|
414
|
-
s,
|
|
415
|
-
e.shape[e.shape.length - 2],
|
|
416
|
-
e.shape[e.shape.length - 1]
|
|
417
|
-
]), 0), n = [], o = [];
|
|
418
|
-
t.forEach((u) => {
|
|
419
|
-
const [l, m] = hs(u, r);
|
|
420
|
-
n.push(l), o.push(m);
|
|
421
|
-
});
|
|
422
|
-
const a = I(H(n, 0), e.shape), i = I(H(o, 0), e.shape);
|
|
423
|
-
return [a, i];
|
|
424
|
-
}
|
|
425
|
-
}
|
|
426
|
-
function hs(e, r = !1) {
|
|
427
|
-
return d.tidy(() => {
|
|
428
|
-
p(e.shape.length === 2, () => `qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);
|
|
429
|
-
const s = e.shape[0], t = e.shape[1];
|
|
430
|
-
let n = dn(s), o = Q(e);
|
|
431
|
-
const a = ts([[1]], [1, 1]);
|
|
432
|
-
let i = Q(a);
|
|
433
|
-
const u = s >= t ? t : s;
|
|
434
|
-
for (let l = 0; l < u; ++l) {
|
|
435
|
-
const m = o, h = i, _ = n;
|
|
436
|
-
[i, o, n] = d.tidy(() => {
|
|
437
|
-
const $ = M(o, [l, l], [s - l, 1]), k = _s($), w = M(o, [l, l], [1, 1]), T = C(as(w, 0), ts([[-1]]), ts([[1]])), x = g(w, b(T, k)), R = S($, x);
|
|
438
|
-
R.shape[0] === 1 ? i = Q(a) : i = es([
|
|
439
|
-
a,
|
|
440
|
-
M(R, [1, 0], [R.shape[0] - 1, R.shape[1]])
|
|
441
|
-
], 0);
|
|
442
|
-
const P = j(S(G(T, x), k)), Y = M(o, [l, 0], [s - l, t]), J = b(P, i), is = us(i);
|
|
443
|
-
if (l === 0)
|
|
444
|
-
o = g(Y, G(J, G(is, Y)));
|
|
445
|
-
else {
|
|
446
|
-
const X = g(Y, G(J, G(is, Y)));
|
|
447
|
-
o = es([M(o, [0, 0], [l, t]), X], 0);
|
|
448
|
-
}
|
|
449
|
-
const cs = us(J), F = M(n, [0, l], [s, n.shape[1] - l]);
|
|
450
|
-
if (l === 0)
|
|
451
|
-
n = g(F, G(G(F, i), cs));
|
|
452
|
-
else {
|
|
453
|
-
const X = g(F, G(G(F, i), cs));
|
|
454
|
-
n = es([M(n, [0, 0], [s, l]), X], 1);
|
|
455
|
-
}
|
|
456
|
-
return [i, o, n];
|
|
457
|
-
}), Ts([m, h, _]);
|
|
458
|
-
}
|
|
459
|
-
return !r && s > t && (n = M(n, [0, 0], [s, t]), o = M(o, [0, 0], [t, t])), [n, o];
|
|
460
|
-
});
|
|
461
|
-
}
|
|
462
|
-
const $e = /* @__PURE__ */ f({ qr_: ge });
|
|
463
|
-
var N;
|
|
464
|
-
(function(e) {
|
|
465
|
-
e[e.NONE = 0] = "NONE", e[e.MEAN = 1] = "MEAN", e[e.SUM = 2] = "SUM", e[e.SUM_BY_NONZERO_WEIGHTS = 3] = "SUM_BY_NONZERO_WEIGHTS";
|
|
466
|
-
})(N || (N = {}));
|
|
467
|
-
function Ee(e, r, s = N.SUM_BY_NONZERO_WEIGHTS) {
|
|
468
|
-
const t = c(e, "losses", "computeWeightedLoss");
|
|
469
|
-
let n = null;
|
|
470
|
-
r != null && (n = c(r, "weights", "computeWeightedLoss"));
|
|
471
|
-
const o = n == null ? t : b(t, n);
|
|
472
|
-
if (s === N.NONE)
|
|
473
|
-
return o;
|
|
474
|
-
if (s === N.SUM)
|
|
475
|
-
return E(o);
|
|
476
|
-
if (s === N.MEAN) {
|
|
477
|
-
if (n == null)
|
|
478
|
-
return Mn(o);
|
|
479
|
-
{
|
|
480
|
-
const a = t.size / n.size, i = S(E(o), E(n));
|
|
481
|
-
return a > 1 ? S(i, y(a)) : i;
|
|
482
|
-
}
|
|
483
|
-
}
|
|
484
|
-
if (s === N.SUM_BY_NONZERO_WEIGHTS) {
|
|
485
|
-
if (n == null)
|
|
486
|
-
return S(E(o), y(t.size));
|
|
487
|
-
{
|
|
488
|
-
const a = b(n, cn(t.shape)), i = D(E(qn(a, y(0))), "float32");
|
|
489
|
-
return S(E(o), i);
|
|
490
|
-
}
|
|
491
|
-
}
|
|
492
|
-
throw Error(`Unknown reduction: ${s}`);
|
|
493
|
-
}
|
|
494
|
-
const z = /* @__PURE__ */ f({ computeWeightedLoss_: Ee });
|
|
495
|
-
function _e(e, r, s, t = N.SUM_BY_NONZERO_WEIGHTS) {
|
|
496
|
-
const n = c(e, "labels", "absoluteDifference"), o = c(r, "predictions", "absoluteDifference");
|
|
497
|
-
let a = null;
|
|
498
|
-
s != null && (a = c(s, "weights", "absoluteDifference")), L(n.shape, o.shape, "Error in absoluteDifference: ");
|
|
499
|
-
const i = A(g(n, o));
|
|
500
|
-
return z(i, a, t);
|
|
501
|
-
}
|
|
502
|
-
const ye = /* @__PURE__ */ f({ absoluteDifference_: _e });
|
|
503
|
-
function ke(e, r, s, t, n = N.SUM_BY_NONZERO_WEIGHTS) {
|
|
504
|
-
const o = c(e, "labels", "cosineDistance"), a = c(r, "predictions", "cosineDistance");
|
|
505
|
-
let i = null;
|
|
506
|
-
t != null && (i = c(t, "weights", "cosineDistance")), L(o.shape, a.shape, "Error in cosineDistance: ");
|
|
507
|
-
const u = y(1), l = g(u, E(b(o, a), s, !0));
|
|
508
|
-
return z(l, i, n);
|
|
509
|
-
}
|
|
510
|
-
const Ne = /* @__PURE__ */ f({ cosineDistance_: ke });
|
|
511
|
-
function Ie(e, r, s, t = N.SUM_BY_NONZERO_WEIGHTS) {
|
|
512
|
-
let n = c(e, "labels", "hingeLoss");
|
|
513
|
-
const o = c(r, "predictions", "hingeLoss");
|
|
514
|
-
let a = null;
|
|
515
|
-
s != null && (a = c(s, "weights", "hingeLoss")), L(n.shape, o.shape, "Error in hingeLoss: ");
|
|
516
|
-
const i = y(1);
|
|
517
|
-
n = g(b(y(2), n), i);
|
|
518
|
-
const u = $s(g(i, b(n, o)));
|
|
519
|
-
return z(u, a, t);
|
|
520
|
-
}
|
|
521
|
-
const Se = /* @__PURE__ */ f({ hingeLoss_: Ie });
|
|
522
|
-
function Te(e, r, s, t = 1, n = N.SUM_BY_NONZERO_WEIGHTS) {
|
|
523
|
-
const o = c(e, "labels", "huberLoss"), a = c(r, "predictions", "huberLoss");
|
|
524
|
-
let i = null;
|
|
525
|
-
s != null && (i = c(s, "weights", "huberLoss")), L(o.shape, a.shape, "Error in huberLoss: ");
|
|
526
|
-
const u = y(t), l = A(g(a, o)), m = os(l, u), h = g(l, m), _ = O(b(y(0.5), bs(m)), b(u, h));
|
|
527
|
-
return z(_, i, n);
|
|
528
|
-
}
|
|
529
|
-
const Me = /* @__PURE__ */ f({ huberLoss_: Te });
|
|
530
|
-
function Ae(e, r, s, t = 1e-7, n = N.SUM_BY_NONZERO_WEIGHTS) {
|
|
531
|
-
const o = c(e, "labels", "logLoss"), a = c(r, "predictions", "logLoss");
|
|
532
|
-
let i = null;
|
|
533
|
-
s != null && (i = c(s, "weights", "logLoss")), L(o.shape, a.shape, "Error in logLoss: ");
|
|
534
|
-
const u = y(1), l = y(t), m = j(b(o, ps(O(a, l)))), h = b(g(u, o), ps(O(g(u, a), l))), _ = g(m, h);
|
|
535
|
-
return z(_, i, n);
|
|
536
|
-
}
|
|
537
|
-
const we = /* @__PURE__ */ f({ logLoss_: Ae });
|
|
538
|
-
function qe(e, r, s, t = N.SUM_BY_NONZERO_WEIGHTS) {
|
|
539
|
-
const n = c(e, "labels", "meanSquaredError"), o = c(r, "predictions", "meanSquaredError");
|
|
540
|
-
let a = null;
|
|
541
|
-
s != null && (a = c(s, "weights", "meanSquaredError")), L(n.shape, o.shape, "Error in meanSquaredError: ");
|
|
542
|
-
const i = Gn(n, o);
|
|
543
|
-
return z(i, a, t);
|
|
544
|
-
}
|
|
545
|
-
const De = /* @__PURE__ */ f({ meanSquaredError_: qe });
|
|
546
|
-
function Be(e, r) {
|
|
547
|
-
const s = c(e, "labels", "sigmoidCrossEntropyWithLogits"), t = c(r, "logits", "sigmoidCrossEntropyWithLogits");
|
|
548
|
-
L(s.shape, t.shape, "Error in sigmoidCrossEntropyWithLogits: ");
|
|
549
|
-
const n = $s(t), o = b(t, s), a = Nn(rs(j(A(t))));
|
|
550
|
-
return O(g(n, o), a);
|
|
551
|
-
}
|
|
552
|
-
function xe(e, r, s, t = 0, n = N.SUM_BY_NONZERO_WEIGHTS) {
|
|
553
|
-
let o = c(e, "multiClassLabels", "sigmoidCrossEntropy");
|
|
554
|
-
const a = c(r, "logits", "sigmoidCrossEntropy");
|
|
555
|
-
let i = null;
|
|
556
|
-
if (s != null && (i = c(s, "weights", "sigmoidCrossEntropy")), L(o.shape, a.shape, "Error in sigmoidCrossEntropy: "), t > 0) {
|
|
557
|
-
const l = y(t), m = y(1), h = y(0.5);
|
|
558
|
-
o = O(b(o, g(m, l)), b(h, l));
|
|
559
|
-
}
|
|
560
|
-
const u = Be(o, a);
|
|
561
|
-
return z(u, i, n);
|
|
562
|
-
}
|
|
563
|
-
const Ge = /* @__PURE__ */ f({ sigmoidCrossEntropy_: xe });
|
|
564
|
-
function Oe(e, r, s = -1) {
|
|
565
|
-
if (s === -1 && (s = r.rank - 1), s !== r.rank - 1)
|
|
566
|
-
throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${r.rank} and dim was ${s}`);
|
|
567
|
-
return Ms((n, o, a) => {
|
|
568
|
-
const u = on(o, [s], !0), l = g(D(o, "float32"), u);
|
|
569
|
-
a([n, l]);
|
|
570
|
-
const m = j(b(l, n));
|
|
571
|
-
return { value: E(m, [s]), gradFunc: ($, k) => {
|
|
572
|
-
const [w, T] = k, x = gs($.shape, [s]);
|
|
573
|
-
return [
|
|
574
|
-
b(I($, x), g(D(w, "float32"), rs(T))),
|
|
575
|
-
b(I($, x), g(rs(T), D(w, "float32")))
|
|
576
|
-
];
|
|
577
|
-
} };
|
|
578
|
-
})(e, r);
|
|
579
|
-
}
|
|
580
|
-
function Le(e, r, s, t = 0, n = N.SUM_BY_NONZERO_WEIGHTS) {
|
|
581
|
-
let o = c(e, "onehotLabels", "softmaxCrossEntropy");
|
|
582
|
-
const a = c(r, "logits", "softmaxCrossEntropy");
|
|
583
|
-
let i = null;
|
|
584
|
-
if (s != null && (i = c(s, "weights", "softmaxCrossEntropy")), L(o.shape, a.shape, "Error in softmaxCrossEntropy: "), t > 0) {
|
|
585
|
-
const l = y(t), m = y(1), h = y(o.shape[1]);
|
|
586
|
-
o = O(b(o, g(m, l)), S(l, h));
|
|
587
|
-
}
|
|
588
|
-
const u = Oe(o, a);
|
|
589
|
-
return z(u, i, n);
|
|
590
|
-
}
|
|
591
|
-
const ze = /* @__PURE__ */ f({ softmaxCrossEntropy_: Le });
|
|
592
|
-
const lt = {
|
|
593
|
-
flipLeftRight: Wn,
|
|
594
|
-
grayscaleToRGB: Cn,
|
|
595
|
-
resizeNearestNeighbor: ie,
|
|
596
|
-
resizeBilinear: oe,
|
|
597
|
-
rgbToGrayscale: Vn,
|
|
598
|
-
rotateWithOffset: Pn,
|
|
599
|
-
cropAndResize: zn,
|
|
600
|
-
nonMaxSuppression: Fn,
|
|
601
|
-
nonMaxSuppressionAsync: Zn,
|
|
602
|
-
nonMaxSuppressionWithScore: Jn,
|
|
603
|
-
nonMaxSuppressionWithScoreAsync: Qn,
|
|
604
|
-
nonMaxSuppressionPadded: ne,
|
|
605
|
-
nonMaxSuppressionPaddedAsync: te,
|
|
606
|
-
threshold: ue,
|
|
607
|
-
transform: fe
|
|
608
|
-
}, ut = {
|
|
609
|
-
bandPart: he,
|
|
610
|
-
gramSchmidt: de,
|
|
611
|
-
qr: $e
|
|
612
|
-
}, pt = {
|
|
613
|
-
absoluteDifference: ye,
|
|
614
|
-
computeWeightedLoss: z,
|
|
615
|
-
cosineDistance: Ne,
|
|
616
|
-
hingeLoss: Se,
|
|
617
|
-
huberLoss: Me,
|
|
618
|
-
logLoss: we,
|
|
619
|
-
meanSquaredError: De,
|
|
620
|
-
sigmoidCrossEntropy: Ge,
|
|
621
|
-
softmaxCrossEntropy: ze
|
|
622
|
-
};
|
|
623
|
-
export {
|
|
624
|
-
pt as a,
|
|
625
|
-
Sn as b,
|
|
626
|
-
ys as c,
|
|
627
|
-
as as d,
|
|
628
|
-
ms as e,
|
|
629
|
-
dn as f,
|
|
630
|
-
En as g,
|
|
631
|
-
Nn as h,
|
|
632
|
-
os as i,
|
|
633
|
-
lt as j,
|
|
634
|
-
fs as k,
|
|
635
|
-
ut as l,
|
|
636
|
-
Mn as m,
|
|
637
|
-
qn as n,
|
|
638
|
-
_s as o,
|
|
639
|
-
ie as p,
|
|
640
|
-
Bn as q,
|
|
641
|
-
oe as r,
|
|
642
|
-
Gn as s,
|
|
643
|
-
ks as u,
|
|
644
|
-
C as w
|
|
645
|
-
};
|
package/dist/pack16-CmVZs6af.js
DELETED
|
@@ -1,41 +0,0 @@
|
|
|
1
|
-
import { isPackedTensor as t, packTensor as u } from "./utilities/packed.js";
|
|
2
|
-
import { e as o } from "./index-D6Q1lPZO.js";
|
|
3
|
-
import { a as i } from "./tensor_util-DfwaWayG.js";
|
|
4
|
-
import { s as p } from "./slice-DvovR5wq.js";
|
|
5
|
-
const s = {
|
|
6
|
-
kernelName: "Unpack16",
|
|
7
|
-
inputsToSave: [],
|
|
8
|
-
outputsToSave: [],
|
|
9
|
-
gradFunc: (n) => ({
|
|
10
|
-
x: () => k(n)
|
|
11
|
-
})
|
|
12
|
-
};
|
|
13
|
-
i(s);
|
|
14
|
-
function c(n, a = 1, e = !1) {
|
|
15
|
-
if (!t(n))
|
|
16
|
-
return n;
|
|
17
|
-
const r = o().runKernel("Unpack16", { x: n }, { scaling: a });
|
|
18
|
-
return e && n.dispose(), r;
|
|
19
|
-
}
|
|
20
|
-
const f = {
|
|
21
|
-
kernelName: "Pack16",
|
|
22
|
-
inputsToSave: [],
|
|
23
|
-
outputsToSave: [],
|
|
24
|
-
gradFunc: (n, a, e) => ({
|
|
25
|
-
x: () => {
|
|
26
|
-
const r = c(n);
|
|
27
|
-
return e.originalShape && e.padding && e.padding > 0 ? p(r, new Array(r.shape.length).fill(0), e.originalShape) : r;
|
|
28
|
-
}
|
|
29
|
-
})
|
|
30
|
-
};
|
|
31
|
-
i(f);
|
|
32
|
-
function k(n, a = 1, e = 0) {
|
|
33
|
-
const r = o().runKernel("Pack16", { x: n }, { scaling: a, padding: e });
|
|
34
|
-
return u(r), r;
|
|
35
|
-
}
|
|
36
|
-
export {
|
|
37
|
-
s as a,
|
|
38
|
-
f as b,
|
|
39
|
-
k as p,
|
|
40
|
-
c as u
|
|
41
|
-
};
|