@fugood/llama.node 0.3.1 → 0.3.3

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (252) hide show
  1. package/CMakeLists.txt +1 -8
  2. package/bin/darwin/arm64/llama-node.node +0 -0
  3. package/bin/darwin/x64/llama-node.node +0 -0
  4. package/bin/linux/arm64/llama-node.node +0 -0
  5. package/bin/linux/x64/llama-node.node +0 -0
  6. package/bin/linux-vulkan/arm64/llama-node.node +0 -0
  7. package/bin/linux-vulkan/x64/llama-node.node +0 -0
  8. package/bin/win32/arm64/llama-node.node +0 -0
  9. package/bin/win32/arm64/node.lib +0 -0
  10. package/bin/win32/x64/llama-node.node +0 -0
  11. package/bin/win32/x64/node.lib +0 -0
  12. package/bin/win32-vulkan/arm64/llama-node.node +0 -0
  13. package/bin/win32-vulkan/arm64/node.lib +0 -0
  14. package/bin/win32-vulkan/x64/llama-node.node +0 -0
  15. package/bin/win32-vulkan/x64/node.lib +0 -0
  16. package/package.json +4 -2
  17. package/src/DetokenizeWorker.cpp +1 -1
  18. package/src/EmbeddingWorker.cpp +2 -2
  19. package/src/LlamaCompletionWorker.cpp +10 -10
  20. package/src/LlamaCompletionWorker.h +2 -2
  21. package/src/LlamaContext.cpp +14 -17
  22. package/src/TokenizeWorker.cpp +1 -1
  23. package/src/common.hpp +5 -4
  24. package/src/llama.cpp/.github/workflows/build.yml +137 -29
  25. package/src/llama.cpp/.github/workflows/close-issue.yml +5 -0
  26. package/src/llama.cpp/.github/workflows/docker.yml +46 -34
  27. package/src/llama.cpp/.github/workflows/nix-ci-aarch64.yml +7 -0
  28. package/src/llama.cpp/.github/workflows/nix-ci.yml +7 -0
  29. package/src/llama.cpp/.github/workflows/python-check-requirements.yml +2 -4
  30. package/src/llama.cpp/.github/workflows/python-type-check.yml +3 -1
  31. package/src/llama.cpp/.github/workflows/server.yml +7 -0
  32. package/src/llama.cpp/CMakeLists.txt +26 -11
  33. package/src/llama.cpp/cmake/arm64-apple-clang.cmake +16 -0
  34. package/src/llama.cpp/common/CMakeLists.txt +10 -10
  35. package/src/llama.cpp/common/arg.cpp +2041 -0
  36. package/src/llama.cpp/common/arg.h +77 -0
  37. package/src/llama.cpp/common/common.cpp +523 -1861
  38. package/src/llama.cpp/common/common.h +234 -106
  39. package/src/llama.cpp/common/console.cpp +3 -0
  40. package/src/llama.cpp/common/json-schema-to-grammar.cpp +1 -1
  41. package/src/llama.cpp/common/log.cpp +401 -0
  42. package/src/llama.cpp/common/log.h +66 -698
  43. package/src/llama.cpp/common/ngram-cache.cpp +39 -36
  44. package/src/llama.cpp/common/ngram-cache.h +19 -19
  45. package/src/llama.cpp/common/sampling.cpp +356 -350
  46. package/src/llama.cpp/common/sampling.h +62 -139
  47. package/src/llama.cpp/common/stb_image.h +5990 -6398
  48. package/src/llama.cpp/docs/build.md +72 -17
  49. package/src/llama.cpp/examples/CMakeLists.txt +1 -2
  50. package/src/llama.cpp/examples/batched/batched.cpp +49 -65
  51. package/src/llama.cpp/examples/batched-bench/batched-bench.cpp +42 -53
  52. package/src/llama.cpp/examples/convert-llama2c-to-ggml/convert-llama2c-to-ggml.cpp +55 -52
  53. package/src/llama.cpp/examples/cvector-generator/cvector-generator.cpp +22 -22
  54. package/src/llama.cpp/examples/cvector-generator/pca.hpp +3 -13
  55. package/src/llama.cpp/examples/embedding/embedding.cpp +147 -91
  56. package/src/llama.cpp/examples/eval-callback/eval-callback.cpp +37 -37
  57. package/src/llama.cpp/examples/export-lora/export-lora.cpp +39 -38
  58. package/src/llama.cpp/examples/gbnf-validator/gbnf-validator.cpp +14 -39
  59. package/src/llama.cpp/examples/{baby-llama → gen-docs}/CMakeLists.txt +2 -2
  60. package/src/llama.cpp/examples/gen-docs/gen-docs.cpp +83 -0
  61. package/src/llama.cpp/examples/gguf-split/gguf-split.cpp +58 -39
  62. package/src/llama.cpp/examples/gritlm/gritlm.cpp +46 -39
  63. package/src/llama.cpp/examples/imatrix/imatrix.cpp +75 -69
  64. package/src/llama.cpp/examples/infill/infill.cpp +131 -192
  65. package/src/llama.cpp/examples/llama-bench/llama-bench.cpp +276 -178
  66. package/src/llama.cpp/examples/llama.android/llama/build.gradle.kts +1 -0
  67. package/src/llama.cpp/examples/llama.android/llama/src/main/cpp/llama-android.cpp +40 -36
  68. package/src/llama.cpp/examples/llava/CMakeLists.txt +7 -0
  69. package/src/llama.cpp/examples/llava/clip.cpp +686 -150
  70. package/src/llama.cpp/examples/llava/clip.h +11 -2
  71. package/src/llama.cpp/examples/llava/llava-cli.cpp +60 -71
  72. package/src/llama.cpp/examples/llava/llava.cpp +146 -26
  73. package/src/llama.cpp/examples/llava/llava.h +2 -3
  74. package/src/llama.cpp/examples/llava/minicpmv-cli.cpp +323 -0
  75. package/src/llama.cpp/examples/llava/requirements.txt +1 -0
  76. package/src/llama.cpp/examples/lookahead/lookahead.cpp +55 -56
  77. package/src/llama.cpp/examples/lookup/lookup-create.cpp +15 -13
  78. package/src/llama.cpp/examples/lookup/lookup-merge.cpp +4 -4
  79. package/src/llama.cpp/examples/lookup/lookup-stats.cpp +34 -33
  80. package/src/llama.cpp/examples/lookup/lookup.cpp +60 -63
  81. package/src/llama.cpp/examples/main/main.cpp +216 -313
  82. package/src/llama.cpp/examples/parallel/parallel.cpp +58 -59
  83. package/src/llama.cpp/examples/passkey/passkey.cpp +53 -61
  84. package/src/llama.cpp/examples/perplexity/perplexity.cpp +277 -311
  85. package/src/llama.cpp/examples/quantize/CMakeLists.txt +1 -1
  86. package/src/llama.cpp/examples/quantize/quantize.cpp +27 -9
  87. package/src/llama.cpp/examples/quantize-stats/quantize-stats.cpp +12 -12
  88. package/src/llama.cpp/examples/retrieval/retrieval.cpp +57 -52
  89. package/src/llama.cpp/examples/rpc/rpc-server.cpp +27 -2
  90. package/src/llama.cpp/examples/save-load-state/save-load-state.cpp +60 -46
  91. package/src/llama.cpp/examples/server/CMakeLists.txt +7 -18
  92. package/src/llama.cpp/examples/server/server.cpp +1347 -1531
  93. package/src/llama.cpp/examples/server/tests/requirements.txt +2 -1
  94. package/src/llama.cpp/examples/server/utils.hpp +396 -107
  95. package/src/llama.cpp/examples/simple/CMakeLists.txt +1 -1
  96. package/src/llama.cpp/examples/simple/simple.cpp +132 -106
  97. package/src/llama.cpp/examples/simple-chat/CMakeLists.txt +5 -0
  98. package/src/llama.cpp/examples/simple-chat/simple-chat.cpp +197 -0
  99. package/src/llama.cpp/examples/speculative/speculative.cpp +153 -124
  100. package/src/llama.cpp/examples/sycl/run-llama2.sh +10 -19
  101. package/src/llama.cpp/examples/sycl/win-run-llama2.bat +1 -1
  102. package/src/llama.cpp/examples/tokenize/tokenize.cpp +27 -29
  103. package/src/llama.cpp/ggml/CMakeLists.txt +29 -12
  104. package/src/llama.cpp/ggml/include/ggml-alloc.h +3 -3
  105. package/src/llama.cpp/ggml/include/ggml-amx.h +25 -0
  106. package/src/llama.cpp/ggml/include/ggml-backend.h +166 -68
  107. package/src/llama.cpp/ggml/include/ggml-blas.h +5 -3
  108. package/src/llama.cpp/ggml/include/ggml-cann.h +17 -19
  109. package/src/llama.cpp/ggml/include/ggml-cpp.h +38 -0
  110. package/src/llama.cpp/ggml/include/ggml-cpu.h +177 -0
  111. package/src/llama.cpp/ggml/include/ggml-cuda.h +17 -17
  112. package/src/llama.cpp/ggml/include/ggml-kompute.h +7 -3
  113. package/src/llama.cpp/ggml/include/ggml-metal.h +13 -12
  114. package/src/llama.cpp/ggml/include/ggml-opt.h +216 -0
  115. package/src/llama.cpp/ggml/include/ggml-rpc.h +9 -5
  116. package/src/llama.cpp/ggml/include/ggml-sycl.h +18 -11
  117. package/src/llama.cpp/ggml/include/ggml-vulkan.h +10 -8
  118. package/src/llama.cpp/ggml/include/ggml.h +272 -505
  119. package/src/llama.cpp/ggml/src/CMakeLists.txt +69 -1110
  120. package/src/llama.cpp/ggml/src/ggml-aarch64.c +52 -2116
  121. package/src/llama.cpp/ggml/src/ggml-aarch64.h +0 -20
  122. package/src/llama.cpp/ggml/src/ggml-alloc.c +29 -27
  123. package/src/llama.cpp/ggml/src/ggml-amx/CMakeLists.txt +107 -0
  124. package/src/llama.cpp/ggml/src/ggml-amx/common.h +94 -0
  125. package/src/llama.cpp/ggml/src/ggml-amx/ggml-amx.cpp +446 -0
  126. package/src/llama.cpp/ggml/src/ggml-amx/mmq.cpp +2510 -0
  127. package/src/llama.cpp/ggml/src/ggml-amx/mmq.h +17 -0
  128. package/src/llama.cpp/ggml/src/ggml-backend-impl.h +144 -81
  129. package/src/llama.cpp/ggml/src/ggml-backend-reg.cpp +195 -0
  130. package/src/llama.cpp/ggml/src/{ggml-backend.c → ggml-backend.cpp} +394 -635
  131. package/src/llama.cpp/ggml/src/ggml-blas/CMakeLists.txt +91 -0
  132. package/src/llama.cpp/ggml/src/{ggml-blas.cpp → ggml-blas/ggml-blas.cpp} +217 -70
  133. package/src/llama.cpp/ggml/src/ggml-cann/CMakeLists.txt +46 -0
  134. package/src/llama.cpp/ggml/src/ggml-cann/acl_tensor.cpp +4 -27
  135. package/src/llama.cpp/ggml/src/ggml-cann/acl_tensor.h +32 -4
  136. package/src/llama.cpp/ggml/src/ggml-cann/aclnn_ops.cpp +179 -41
  137. package/src/llama.cpp/ggml/src/ggml-cann/common.h +1 -0
  138. package/src/llama.cpp/ggml/src/{ggml-cann.cpp → ggml-cann/ggml-cann.cpp} +458 -353
  139. package/src/llama.cpp/ggml/src/ggml-cann/kernels/CMakeLists.txt +2 -1
  140. package/src/llama.cpp/ggml/src/ggml-cann/kernels/ascendc_kernels.h +2 -0
  141. package/src/llama.cpp/ggml/src/ggml-cann/kernels/quantize_float_to_q4_0.cpp +278 -0
  142. package/src/llama.cpp/ggml/src/ggml-common.h +20 -0
  143. package/src/llama.cpp/ggml/src/ggml-cpu/CMakeLists.txt +261 -0
  144. package/src/llama.cpp/ggml/src/ggml-cpu/ggml-cpu-aarch64.c +3560 -0
  145. package/src/llama.cpp/ggml/src/ggml-cpu/ggml-cpu-aarch64.h +30 -0
  146. package/src/llama.cpp/ggml/src/ggml-cpu/ggml-cpu-impl.h +371 -0
  147. package/src/llama.cpp/ggml/src/ggml-cpu/ggml-cpu-quants.c +10822 -0
  148. package/src/llama.cpp/ggml/src/ggml-cpu/ggml-cpu-quants.h +63 -0
  149. package/src/llama.cpp/ggml/src/ggml-cpu/ggml-cpu.c +13970 -0
  150. package/src/llama.cpp/ggml/src/ggml-cpu/ggml-cpu.cpp +663 -0
  151. package/src/llama.cpp/ggml/src/ggml-cpu/llamafile/sgemm.cpp +1885 -0
  152. package/src/llama.cpp/ggml/src/ggml-cuda/CMakeLists.txt +155 -0
  153. package/src/llama.cpp/ggml/src/ggml-cuda/vendors/cuda.h +14 -0
  154. package/src/llama.cpp/ggml/src/ggml-cuda/vendors/hip.h +178 -0
  155. package/src/llama.cpp/ggml/src/ggml-cuda/vendors/musa.h +134 -0
  156. package/src/llama.cpp/ggml/src/ggml-hip/CMakeLists.txt +106 -0
  157. package/src/llama.cpp/ggml/src/ggml-impl.h +380 -584
  158. package/src/llama.cpp/ggml/src/ggml-kompute/CMakeLists.txt +162 -0
  159. package/src/llama.cpp/ggml/src/{ggml-kompute.cpp → ggml-kompute/ggml-kompute.cpp} +233 -87
  160. package/src/llama.cpp/ggml/src/ggml-metal/CMakeLists.txt +108 -0
  161. package/src/llama.cpp/ggml/src/ggml-metal/ggml-metal-impl.h +249 -0
  162. package/src/llama.cpp/ggml/src/ggml-musa/CMakeLists.txt +100 -0
  163. package/src/llama.cpp/ggml/src/ggml-opt.cpp +867 -0
  164. package/src/llama.cpp/ggml/src/ggml-quants.c +369 -9994
  165. package/src/llama.cpp/ggml/src/ggml-quants.h +78 -110
  166. package/src/llama.cpp/ggml/src/ggml-rpc/CMakeLists.txt +11 -0
  167. package/src/llama.cpp/ggml/src/{ggml-rpc.cpp → ggml-rpc/ggml-rpc.cpp} +560 -335
  168. package/src/llama.cpp/ggml/src/ggml-sycl/CMakeLists.txt +81 -0
  169. package/src/llama.cpp/ggml/src/ggml-sycl/backend.hpp +6 -0
  170. package/src/llama.cpp/ggml/src/ggml-sycl/common.cpp +51 -0
  171. package/src/llama.cpp/ggml/src/ggml-sycl/common.hpp +310 -0
  172. package/src/llama.cpp/ggml/src/ggml-sycl/concat.cpp +1 -0
  173. package/src/llama.cpp/ggml/src/ggml-sycl/conv.cpp +99 -0
  174. package/src/llama.cpp/ggml/src/ggml-sycl/conv.hpp +21 -0
  175. package/src/llama.cpp/ggml/src/ggml-sycl/convert.cpp +57 -57
  176. package/src/llama.cpp/ggml/src/ggml-sycl/convert.hpp +1 -1
  177. package/src/llama.cpp/ggml/src/ggml-sycl/dequantize.hpp +106 -106
  178. package/src/llama.cpp/ggml/src/ggml-sycl/dmmv.cpp +4 -4
  179. package/src/llama.cpp/ggml/src/ggml-sycl/dpct/helper.hpp +18 -25
  180. package/src/llama.cpp/ggml/src/ggml-sycl/element_wise.cpp +1011 -0
  181. package/src/llama.cpp/ggml/src/ggml-sycl/element_wise.hpp +76 -0
  182. package/src/llama.cpp/ggml/src/ggml-sycl/gemm.hpp +101 -0
  183. package/src/llama.cpp/ggml/src/{ggml-sycl.cpp → ggml-sycl/ggml-sycl.cpp} +3350 -3980
  184. package/src/llama.cpp/ggml/src/ggml-sycl/im2col.cpp +125 -0
  185. package/src/llama.cpp/ggml/src/ggml-sycl/im2col.hpp +23 -0
  186. package/src/llama.cpp/ggml/src/ggml-sycl/mmvq.cpp +70 -68
  187. package/src/llama.cpp/ggml/src/ggml-sycl/norm.cpp +9 -6
  188. package/src/llama.cpp/ggml/src/ggml-sycl/outprod.cpp +56 -0
  189. package/src/llama.cpp/ggml/src/ggml-sycl/outprod.hpp +11 -0
  190. package/src/llama.cpp/ggml/src/ggml-sycl/presets.hpp +8 -0
  191. package/src/llama.cpp/ggml/src/ggml-sycl/rope.cpp +1 -1
  192. package/src/llama.cpp/ggml/src/ggml-sycl/tsembd.cpp +71 -0
  193. package/src/llama.cpp/ggml/src/ggml-sycl/tsembd.hpp +21 -0
  194. package/src/llama.cpp/ggml/src/ggml-sycl/vecdotq.hpp +4 -4
  195. package/src/llama.cpp/ggml/src/ggml-sycl/wkv6.cpp +138 -0
  196. package/src/llama.cpp/ggml/src/ggml-sycl/wkv6.hpp +10 -0
  197. package/src/llama.cpp/ggml/src/ggml-threading.cpp +12 -0
  198. package/src/llama.cpp/ggml/src/ggml-threading.h +12 -0
  199. package/src/llama.cpp/ggml/src/ggml-vulkan/CMakeLists.txt +78 -0
  200. package/src/llama.cpp/ggml/src/{ggml-vulkan.cpp → ggml-vulkan/ggml-vulkan.cpp} +2034 -1718
  201. package/src/llama.cpp/ggml/src/{vulkan-shaders → ggml-vulkan/vulkan-shaders}/CMakeLists.txt +2 -0
  202. package/src/llama.cpp/ggml/src/{vulkan-shaders → ggml-vulkan/vulkan-shaders}/vulkan-shaders-gen.cpp +152 -185
  203. package/src/llama.cpp/ggml/src/ggml.c +2075 -16579
  204. package/src/llama.cpp/include/llama.h +296 -285
  205. package/src/llama.cpp/models/ggml-vocab-chameleon.gguf.inp +112 -0
  206. package/src/llama.cpp/models/ggml-vocab-chameleon.gguf.out +46 -0
  207. package/src/llama.cpp/pocs/vdot/q8dot.cpp +4 -3
  208. package/src/llama.cpp/pocs/vdot/vdot.cpp +8 -7
  209. package/src/llama.cpp/requirements/requirements-convert_legacy_llama.txt +1 -1
  210. package/src/llama.cpp/src/CMakeLists.txt +2 -1
  211. package/src/llama.cpp/src/llama-grammar.cpp +721 -122
  212. package/src/llama.cpp/src/llama-grammar.h +120 -15
  213. package/src/llama.cpp/src/llama-impl.h +156 -1
  214. package/src/llama.cpp/src/llama-sampling.cpp +2058 -346
  215. package/src/llama.cpp/src/llama-sampling.h +39 -47
  216. package/src/llama.cpp/src/llama-vocab.cpp +390 -127
  217. package/src/llama.cpp/src/llama-vocab.h +60 -20
  218. package/src/llama.cpp/src/llama.cpp +6215 -3263
  219. package/src/llama.cpp/src/unicode-data.cpp +6 -4
  220. package/src/llama.cpp/src/unicode-data.h +4 -4
  221. package/src/llama.cpp/src/unicode.cpp +15 -7
  222. package/src/llama.cpp/tests/CMakeLists.txt +4 -2
  223. package/src/llama.cpp/tests/test-arg-parser.cpp +131 -0
  224. package/src/llama.cpp/tests/test-backend-ops.cpp +1725 -297
  225. package/src/llama.cpp/tests/test-barrier.cpp +94 -0
  226. package/src/llama.cpp/tests/test-chat-template.cpp +9 -5
  227. package/src/llama.cpp/tests/test-grammar-integration.cpp +23 -38
  228. package/src/llama.cpp/tests/test-grammar-parser.cpp +6 -4
  229. package/src/llama.cpp/tests/test-json-schema-to-grammar.cpp +23 -8
  230. package/src/llama.cpp/tests/test-llama-grammar.cpp +9 -8
  231. package/src/llama.cpp/tests/test-log.cpp +39 -0
  232. package/src/llama.cpp/tests/test-opt.cpp +853 -142
  233. package/src/llama.cpp/tests/test-quantize-fns.cpp +28 -19
  234. package/src/llama.cpp/tests/test-quantize-perf.cpp +16 -14
  235. package/src/llama.cpp/tests/test-rope.cpp +2 -1
  236. package/src/llama.cpp/tests/test-sampling.cpp +226 -142
  237. package/src/llama.cpp/tests/test-tokenizer-0.cpp +56 -36
  238. package/src/llama.cpp/tests/test-tokenizer-1-bpe.cpp +5 -5
  239. package/src/llama.cpp/tests/test-tokenizer-1-spm.cpp +5 -5
  240. package/patches/llama.patch +0 -22
  241. package/src/llama.cpp/.github/workflows/bench.yml +0 -310
  242. package/src/llama.cpp/common/grammar-parser.cpp +0 -536
  243. package/src/llama.cpp/common/grammar-parser.h +0 -29
  244. package/src/llama.cpp/common/train.cpp +0 -1513
  245. package/src/llama.cpp/common/train.h +0 -233
  246. package/src/llama.cpp/examples/baby-llama/baby-llama.cpp +0 -1640
  247. package/src/llama.cpp/examples/benchmark/CMakeLists.txt +0 -6
  248. package/src/llama.cpp/examples/benchmark/benchmark-matmult.cpp +0 -275
  249. package/src/llama.cpp/ggml/src/llamafile/sgemm.cpp +0 -1027
  250. package/src/llama.cpp/tests/test-grad0.cpp +0 -1566
  251. /package/src/llama.cpp/ggml/{cmake → src/ggml-cpu/cmake}/FindSIMD.cmake +0 -0
  252. /package/src/llama.cpp/ggml/src/{llamafile → ggml-cpu/llamafile}/sgemm.h +0 -0
@@ -3,6 +3,7 @@
3
3
  #endif
4
4
 
5
5
  #include "common.h"
6
+ #include "log.h"
6
7
  // Change JSON_ASSERT from assert() to GGML_ASSERT:
7
8
  #define JSON_ASSERT GGML_ASSERT
8
9
  #include "json.hpp"
@@ -11,6 +12,7 @@
11
12
 
12
13
  #include <algorithm>
13
14
  #include <cinttypes>
15
+ #include <climits>
14
16
  #include <cmath>
15
17
  #include <codecvt>
16
18
  #include <cstdarg>
@@ -22,6 +24,7 @@
22
24
  #include <regex>
23
25
  #include <sstream>
24
26
  #include <string>
27
+ #include <thread>
25
28
  #include <unordered_map>
26
29
  #include <unordered_set>
27
30
  #include <vector>
@@ -48,7 +51,6 @@
48
51
  #if defined(LLAMA_USE_CURL)
49
52
  #include <curl/curl.h>
50
53
  #include <curl/easy.h>
51
- #include <thread>
52
54
  #include <future>
53
55
  #endif
54
56
 
@@ -56,14 +58,6 @@
56
58
  #pragma warning(disable: 4244 4267) // possible loss of data
57
59
  #endif
58
60
 
59
- #if (defined(GGML_USE_CUDA) || defined(GGML_USE_SYCL))
60
- #define GGML_USE_CUDA_SYCL
61
- #endif
62
-
63
- #if (defined(GGML_USE_CUDA) || defined(GGML_USE_SYCL)) || defined(GGML_USE_VULKAN)
64
- #define GGML_USE_CUDA_SYCL_VULKAN
65
- #endif
66
-
67
61
  #if defined(LLAMA_USE_CURL)
68
62
  #ifdef __linux__
69
63
  #include <linux/limits.h>
@@ -110,8 +104,34 @@ int32_t cpu_get_num_physical_cores() {
110
104
  if (result == 0) {
111
105
  return num_physical_cores;
112
106
  }
113
- #elif defined(_WIN32)
114
- //TODO: Implement
107
+ #elif defined(_WIN32) && (_WIN32_WINNT >= 0x0601) && !defined(__MINGW64__) // windows 7 and later
108
+ // TODO: windows + arm64 + mingw64
109
+ unsigned int n_threads_win = std::thread::hardware_concurrency();
110
+ unsigned int default_threads = n_threads_win > 0 ? (n_threads_win <= 4 ? n_threads_win : n_threads_win / 2) : 4;
111
+
112
+ DWORD buffer_size = 0;
113
+ if (!GetLogicalProcessorInformationEx(RelationProcessorCore, nullptr, &buffer_size)) {
114
+ if (GetLastError() != ERROR_INSUFFICIENT_BUFFER) {
115
+ return default_threads;
116
+ }
117
+ }
118
+
119
+ std::vector<char> buffer(buffer_size);
120
+ if (!GetLogicalProcessorInformationEx(RelationProcessorCore, reinterpret_cast<PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX>(buffer.data()), &buffer_size)) {
121
+ return default_threads;
122
+ }
123
+
124
+ int32_t num_physical_cores = 0;
125
+ PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX info = reinterpret_cast<PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX>(buffer.data());
126
+ while (buffer_size > 0) {
127
+ if (info->Relationship == RelationProcessorCore) {
128
+ num_physical_cores += info->Processor.GroupCount;
129
+ }
130
+ buffer_size -= info->Size;
131
+ info = reinterpret_cast<PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX>(reinterpret_cast<char*>(info) + info->Size);
132
+ }
133
+
134
+ return num_physical_cores > 0 ? num_physical_cores : default_threads;
115
135
  #endif
116
136
  unsigned int n_threads = std::thread::hardware_concurrency();
117
137
  return n_threads > 0 ? (n_threads <= 4 ? n_threads : n_threads / 2) : 4;
@@ -186,1537 +206,193 @@ int32_t cpu_get_num_math() {
186
206
  }
187
207
  }
188
208
  }
189
- #endif
190
- return cpu_get_num_physical_cores();
191
- }
192
-
193
- //
194
- // CLI argument parsing
195
- //
196
-
197
- void gpt_params_handle_hf_token(gpt_params & params) {
198
- if (params.hf_token.empty() && std::getenv("HF_TOKEN")) {
199
- params.hf_token = std::getenv("HF_TOKEN");
200
- }
201
- }
202
-
203
- void gpt_params_handle_model_default(gpt_params & params) {
204
- if (!params.hf_repo.empty()) {
205
- // short-hand to avoid specifying --hf-file -> default it to --model
206
- if (params.hf_file.empty()) {
207
- if (params.model.empty()) {
208
- throw std::invalid_argument("error: --hf-repo requires either --hf-file or --model\n");
209
- }
210
- params.hf_file = params.model;
211
- } else if (params.model.empty()) {
212
- params.model = fs_get_cache_file(string_split(params.hf_file, '/').back());
213
- }
214
- } else if (!params.model_url.empty()) {
215
- if (params.model.empty()) {
216
- auto f = string_split(params.model_url, '#').front();
217
- f = string_split(f, '?').front();
218
- params.model = fs_get_cache_file(string_split(f, '/').back());
219
- }
220
- } else if (params.model.empty()) {
221
- params.model = DEFAULT_MODEL_PATH;
222
- }
223
- }
224
-
225
- bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
226
- bool invalid_param = false;
227
- std::string arg;
228
- const std::string arg_prefix = "--";
229
- llama_sampling_params & sparams = params.sparams;
230
-
231
- for (int i = 1; i < argc; i++) {
232
- arg = argv[i];
233
- if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
234
- std::replace(arg.begin(), arg.end(), '_', '-');
235
- }
236
- if (!gpt_params_find_arg(argc, argv, arg, params, i, invalid_param)) {
237
- throw std::invalid_argument("error: unknown argument: " + arg);
238
- }
239
- if (invalid_param) {
240
- throw std::invalid_argument("error: invalid parameter for argument: " + arg);
241
- }
242
- }
243
-
244
- if (params.prompt_cache_all && (params.interactive || params.interactive_first)) {
245
- throw std::invalid_argument("error: --prompt-cache-all not supported in interactive mode yet\n");
246
- }
247
-
248
- gpt_params_handle_model_default(params);
249
-
250
- gpt_params_handle_hf_token(params);
251
-
252
- if (params.escape) {
253
- string_process_escapes(params.prompt);
254
- string_process_escapes(params.input_prefix);
255
- string_process_escapes(params.input_suffix);
256
- string_process_escapes(sparams.cfg_negative_prompt);
257
- for (auto & antiprompt : params.antiprompt) {
258
- string_process_escapes(antiprompt);
259
- }
260
- }
261
-
262
- if (!params.kv_overrides.empty()) {
263
- params.kv_overrides.emplace_back();
264
- params.kv_overrides.back().key[0] = 0;
265
- }
266
-
267
- return true;
268
- }
269
-
270
- bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
271
- const auto params_org = params; // the example can modify the default params
272
-
273
- try {
274
- if (!gpt_params_parse_ex(argc, argv, params) || params.usage) {
275
- params = params_org;
276
- params.usage = true;
277
- return false;
278
- }
279
- } catch (const std::invalid_argument & ex) {
280
- fprintf(stderr, "%s\n", ex.what());
281
- params = params_org;
282
- return false;
283
- }
284
-
285
- return true;
286
- }
287
-
288
- #define CHECK_ARG if (++i >= argc) { invalid_param = true; return true; }
289
-
290
- bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_params & params, int & i, bool & invalid_param) {
291
- const char split_delim = ',';
292
-
293
- llama_sampling_params & sparams = params.sparams;
294
-
295
- if (arg == "-s" || arg == "--seed") {
296
- CHECK_ARG
297
- // TODO: this is temporary, in the future the sampling state will be moved fully to llama_sampling_context.
298
- params.seed = std::stoul(argv[i]);
299
- sparams.seed = std::stoul(argv[i]);
300
- return true;
301
- }
302
- if (arg == "-t" || arg == "--threads") {
303
- CHECK_ARG
304
- params.n_threads = std::stoi(argv[i]);
305
- if (params.n_threads <= 0) {
306
- params.n_threads = std::thread::hardware_concurrency();
307
- }
308
- return true;
309
- }
310
- if (arg == "-tb" || arg == "--threads-batch") {
311
- CHECK_ARG
312
- params.n_threads_batch = std::stoi(argv[i]);
313
- if (params.n_threads_batch <= 0) {
314
- params.n_threads_batch = std::thread::hardware_concurrency();
315
- }
316
- return true;
317
- }
318
- if (arg == "-td" || arg == "--threads-draft") {
319
- CHECK_ARG
320
- params.n_threads_draft = std::stoi(argv[i]);
321
- if (params.n_threads_draft <= 0) {
322
- params.n_threads_draft = std::thread::hardware_concurrency();
323
- }
324
- return true;
325
- }
326
- if (arg == "-tbd" || arg == "--threads-batch-draft") {
327
- CHECK_ARG
328
- params.n_threads_batch_draft = std::stoi(argv[i]);
329
- if (params.n_threads_batch_draft <= 0) {
330
- params.n_threads_batch_draft = std::thread::hardware_concurrency();
331
- }
332
- return true;
333
- }
334
- if (arg == "-p" || arg == "--prompt") {
335
- CHECK_ARG
336
- params.prompt = argv[i];
337
- return true;
338
- }
339
- if (arg == "-e" || arg == "--escape") {
340
- params.escape = true;
341
- return true;
342
- }
343
- if (arg == "--no-escape") {
344
- params.escape = false;
345
- return true;
346
- }
347
- if (arg == "--prompt-cache") {
348
- CHECK_ARG
349
- params.path_prompt_cache = argv[i];
350
- return true;
351
- }
352
- if (arg == "--prompt-cache-all") {
353
- params.prompt_cache_all = true;
354
- return true;
355
- }
356
- if (arg == "--prompt-cache-ro") {
357
- params.prompt_cache_ro = true;
358
- return true;
359
- }
360
- if (arg == "-bf" || arg == "--binary-file") {
361
- CHECK_ARG
362
- std::ifstream file(argv[i], std::ios::binary);
363
- if (!file) {
364
- fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
365
- invalid_param = true;
366
- return true;
367
- }
368
- // store the external file name in params
369
- params.prompt_file = argv[i];
370
- std::ostringstream ss;
371
- ss << file.rdbuf();
372
- params.prompt = ss.str();
373
- fprintf(stderr, "Read %zu bytes from binary file %s\n", params.prompt.size(), argv[i]);
374
- return true;
375
- }
376
- if (arg == "-f" || arg == "--file") {
377
- CHECK_ARG
378
- std::ifstream file(argv[i]);
379
- if (!file) {
380
- fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
381
- invalid_param = true;
382
- return true;
383
- }
384
- // store the external file name in params
385
- params.prompt_file = argv[i];
386
- std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(params.prompt));
387
- if (!params.prompt.empty() && params.prompt.back() == '\n') {
388
- params.prompt.pop_back();
389
- }
390
- return true;
391
- }
392
- if (arg == "--in-file") {
393
- CHECK_ARG
394
- std::ifstream file(argv[i]);
395
- if (!file) {
396
- fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
397
- invalid_param = true;
398
- return true;
399
- }
400
- params.in_files.push_back(argv[i]);
401
- return true;
402
- }
403
- if (arg == "-n" || arg == "--predict" || arg == "--n-predict") {
404
- CHECK_ARG
405
- params.n_predict = std::stoi(argv[i]);
406
- return true;
407
- }
408
- if (arg == "--top-k") {
409
- CHECK_ARG
410
- sparams.top_k = std::stoi(argv[i]);
411
- return true;
412
- }
413
- if (arg == "-c" || arg == "--ctx-size") {
414
- CHECK_ARG
415
- params.n_ctx = std::stoi(argv[i]);
416
- return true;
417
- }
418
- if (arg == "--grp-attn-n" || arg == "-gan") {
419
- CHECK_ARG
420
- params.grp_attn_n = std::stoi(argv[i]);
421
- return true;
422
- }
423
- if (arg == "--grp-attn-w" || arg == "-gaw") {
424
- CHECK_ARG
425
- params.grp_attn_w = std::stoi(argv[i]);
426
- return true;
427
- }
428
- if (arg == "--rope-freq-base") {
429
- CHECK_ARG
430
- params.rope_freq_base = std::stof(argv[i]);
431
- return true;
432
- }
433
- if (arg == "--rope-freq-scale") {
434
- CHECK_ARG
435
- params.rope_freq_scale = std::stof(argv[i]);
436
- return true;
437
- }
438
- if (arg == "--rope-scaling") {
439
- CHECK_ARG
440
- std::string value(argv[i]);
441
- /**/ if (value == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_NONE; }
442
- else if (value == "linear") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_LINEAR; }
443
- else if (value == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_YARN; }
444
- else { invalid_param = true; }
445
- return true;
446
- }
447
- if (arg == "--rope-scale") {
448
- CHECK_ARG
449
- params.rope_freq_scale = 1.0f / std::stof(argv[i]);
450
- return true;
451
- }
452
- if (arg == "--yarn-orig-ctx") {
453
- CHECK_ARG
454
- params.yarn_orig_ctx = std::stoi(argv[i]);
455
- return true;
456
- }
457
- if (arg == "--yarn-ext-factor") {
458
- CHECK_ARG
459
- params.yarn_ext_factor = std::stof(argv[i]);
460
- return true;
461
- }
462
- if (arg == "--yarn-attn-factor") {
463
- CHECK_ARG
464
- params.yarn_attn_factor = std::stof(argv[i]);
465
- return true;
466
- }
467
- if (arg == "--yarn-beta-fast") {
468
- CHECK_ARG
469
- params.yarn_beta_fast = std::stof(argv[i]);
470
- return true;
471
- }
472
- if (arg == "--yarn-beta-slow") {
473
- CHECK_ARG
474
- params.yarn_beta_slow = std::stof(argv[i]);
475
- return true;
476
- }
477
- if (arg == "--pooling") {
478
- CHECK_ARG
479
- std::string value(argv[i]);
480
- /**/ if (value == "none") { params.pooling_type = LLAMA_POOLING_TYPE_NONE; }
481
- else if (value == "mean") { params.pooling_type = LLAMA_POOLING_TYPE_MEAN; }
482
- else if (value == "cls") { params.pooling_type = LLAMA_POOLING_TYPE_CLS; }
483
- else if (value == "last") { params.pooling_type = LLAMA_POOLING_TYPE_LAST; }
484
- else { invalid_param = true; }
485
- return true;
486
- }
487
- if (arg == "--attention") {
488
- CHECK_ARG
489
- std::string value(argv[i]);
490
- /**/ if (value == "causal") { params.attention_type = LLAMA_ATTENTION_TYPE_CAUSAL; }
491
- else if (value == "non-causal") { params.attention_type = LLAMA_ATTENTION_TYPE_NON_CAUSAL; }
492
- else { invalid_param = true; }
493
- return true;
494
- }
495
- if (arg == "--defrag-thold" || arg == "-dt") {
496
- CHECK_ARG
497
- params.defrag_thold = std::stof(argv[i]);
498
- return true;
499
- }
500
- if (arg == "--samplers") {
501
- CHECK_ARG
502
- const auto sampler_names = string_split(argv[i], ';');
503
- sparams.samplers_sequence = llama_sampling_types_from_names(sampler_names, true);
504
- return true;
505
- }
506
- if (arg == "--sampling-seq") {
507
- CHECK_ARG
508
- sparams.samplers_sequence = llama_sampling_types_from_chars(argv[i]);
509
- return true;
510
- }
511
- if (arg == "--top-p") {
512
- CHECK_ARG
513
- sparams.top_p = std::stof(argv[i]);
514
- return true;
515
- }
516
- if (arg == "--min-p") {
517
- CHECK_ARG
518
- sparams.min_p = std::stof(argv[i]);
519
- return true;
520
- }
521
- if (arg == "--temp") {
522
- CHECK_ARG
523
- sparams.temp = std::stof(argv[i]);
524
- sparams.temp = std::max(sparams.temp, 0.0f);
525
- return true;
526
- }
527
- if (arg == "--tfs") {
528
- CHECK_ARG
529
- sparams.tfs_z = std::stof(argv[i]);
530
- return true;
531
- }
532
- if (arg == "--typical") {
533
- CHECK_ARG
534
- sparams.typical_p = std::stof(argv[i]);
535
- return true;
536
- }
537
- if (arg == "--repeat-last-n") {
538
- CHECK_ARG
539
- sparams.penalty_last_n = std::stoi(argv[i]);
540
- sparams.n_prev = std::max(sparams.n_prev, sparams.penalty_last_n);
541
- return true;
542
- }
543
- if (arg == "--repeat-penalty") {
544
- CHECK_ARG
545
- sparams.penalty_repeat = std::stof(argv[i]);
546
- return true;
547
- }
548
- if (arg == "--frequency-penalty") {
549
- CHECK_ARG
550
- sparams.penalty_freq = std::stof(argv[i]);
551
- return true;
552
- }
553
- if (arg == "--presence-penalty") {
554
- CHECK_ARG
555
- sparams.penalty_present = std::stof(argv[i]);
556
- return true;
557
- }
558
- if (arg == "--dynatemp-range") {
559
- CHECK_ARG
560
- sparams.dynatemp_range = std::stof(argv[i]);
561
- return true;
562
- }
563
- if (arg == "--dynatemp-exp") {
564
- CHECK_ARG
565
- sparams.dynatemp_exponent = std::stof(argv[i]);
566
- return true;
567
- }
568
- if (arg == "--mirostat") {
569
- CHECK_ARG
570
- sparams.mirostat = std::stoi(argv[i]);
571
- return true;
572
- }
573
- if (arg == "--mirostat-lr") {
574
- CHECK_ARG
575
- sparams.mirostat_eta = std::stof(argv[i]);
576
- return true;
577
- }
578
- if (arg == "--mirostat-ent") {
579
- CHECK_ARG
580
- sparams.mirostat_tau = std::stof(argv[i]);
581
- return true;
582
- }
583
- if (arg == "--cfg-negative-prompt") {
584
- CHECK_ARG
585
- sparams.cfg_negative_prompt = argv[i];
586
- return true;
587
- }
588
- if (arg == "--cfg-negative-prompt-file") {
589
- CHECK_ARG
590
- std::ifstream file(argv[i]);
591
- if (!file) {
592
- fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
593
- invalid_param = true;
594
- return true;
595
- }
596
- std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(sparams.cfg_negative_prompt));
597
- if (!sparams.cfg_negative_prompt.empty() && sparams.cfg_negative_prompt.back() == '\n') {
598
- sparams.cfg_negative_prompt.pop_back();
599
- }
600
- return true;
601
- }
602
- if (arg == "--cfg-scale") {
603
- CHECK_ARG
604
- sparams.cfg_scale = std::stof(argv[i]);
605
- return true;
606
- }
607
- if (arg == "-b" || arg == "--batch-size") {
608
- CHECK_ARG
609
- params.n_batch = std::stoi(argv[i]);
610
- return true;
611
- }
612
- if (arg == "-ub" || arg == "--ubatch-size") {
613
- CHECK_ARG
614
- params.n_ubatch = std::stoi(argv[i]);
615
- return true;
616
- }
617
- if (arg == "--keep") {
618
- CHECK_ARG
619
- params.n_keep = std::stoi(argv[i]);
620
- return true;
621
- }
622
- if (arg == "--draft") {
623
- CHECK_ARG
624
- params.n_draft = std::stoi(argv[i]);
625
- return true;
626
- }
627
- if (arg == "--chunks") {
628
- CHECK_ARG
629
- params.n_chunks = std::stoi(argv[i]);
630
- return true;
631
- }
632
- if (arg == "-np" || arg == "--parallel") {
633
- CHECK_ARG
634
- params.n_parallel = std::stoi(argv[i]);
635
- return true;
636
- }
637
- if (arg == "-ns" || arg == "--sequences") {
638
- CHECK_ARG
639
- params.n_sequences = std::stoi(argv[i]);
640
- return true;
641
- }
642
- if (arg == "--p-split" || arg == "-ps") {
643
- CHECK_ARG
644
- params.p_split = std::stof(argv[i]);
645
- return true;
646
- }
647
- if (arg == "-m" || arg == "--model") {
648
- CHECK_ARG
649
- params.model = argv[i];
650
- return true;
651
- }
652
- if (arg == "-md" || arg == "--model-draft") {
653
- CHECK_ARG
654
- params.model_draft = argv[i];
655
- return true;
656
- }
657
- if (arg == "-a" || arg == "--alias") {
658
- CHECK_ARG
659
- params.model_alias = argv[i];
660
- return true;
661
- }
662
- if (arg == "-mu" || arg == "--model-url") {
663
- CHECK_ARG
664
- params.model_url = argv[i];
665
- return true;
666
- }
667
- if (arg == "-hft" || arg == "--hf-token") {
668
- if (++i >= argc) {
669
- invalid_param = true;
670
- return true;
671
- }
672
- params.hf_token = argv[i];
673
- return true;
674
- }
675
- if (arg == "-hfr" || arg == "--hf-repo") {
676
- CHECK_ARG
677
- params.hf_repo = argv[i];
678
- return true;
679
- }
680
- if (arg == "-hff" || arg == "--hf-file") {
681
- CHECK_ARG
682
- params.hf_file = argv[i];
683
- return true;
684
- }
685
- if (arg == "--lora") {
686
- CHECK_ARG
687
- params.lora_adapter.emplace_back(argv[i], 1.0f);
688
- return true;
689
- }
690
- if (arg == "--lora-scaled") {
691
- CHECK_ARG
692
- const char* lora_adapter = argv[i];
693
- CHECK_ARG
694
- params.lora_adapter.emplace_back(lora_adapter, std::stof(argv[i]));
695
- return true;
696
- }
697
- if (arg == "--control-vector") {
698
- CHECK_ARG
699
- params.control_vectors.push_back({ 1.0f, argv[i], });
700
- return true;
701
- }
702
- if (arg == "--control-vector-scaled") {
703
- CHECK_ARG
704
- const char* fname = argv[i];
705
- CHECK_ARG
706
- params.control_vectors.push_back({ std::stof(argv[i]), fname, });
707
- return true;
708
- }
709
- if (arg == "--control-vector-layer-range") {
710
- CHECK_ARG
711
- params.control_vector_layer_start = std::stoi(argv[i]);
712
- CHECK_ARG
713
- params.control_vector_layer_end = std::stoi(argv[i]);
714
- return true;
715
- }
716
- if (arg == "--mmproj") {
717
- CHECK_ARG
718
- params.mmproj = argv[i];
719
- return true;
720
- }
721
- if (arg == "--image") {
722
- CHECK_ARG
723
- params.image.emplace_back(argv[i]);
724
- return true;
725
- }
726
- if (arg == "-i" || arg == "--interactive") {
727
- params.interactive = true;
728
- return true;
729
- }
730
- if (arg == "-sp" || arg == "--special") {
731
- params.special = true;
732
- return true;
733
- }
734
- if (arg == "--embedding" || arg == "--embeddings") {
735
- params.embedding = true;
736
- return true;
737
- }
738
- if (arg == "--embd-normalize") {
739
- CHECK_ARG
740
- params.embd_normalize = std::stoi(argv[i]);
741
- return true;
742
- }
743
- if (arg == "--embd-output-format") {
744
- CHECK_ARG
745
- params.embd_out = argv[i];
746
- return true;
747
- }
748
- if (arg == "--embd-separator") {
749
- CHECK_ARG
750
- params.embd_sep = argv[i];
751
- return true;
752
- }
753
- if (arg == "-if" || arg == "--interactive-first") {
754
- params.interactive_first = true;
755
- return true;
756
- }
757
- if (arg == "-cnv" || arg == "--conversation") {
758
- params.conversation = true;
759
- return true;
760
- }
761
- if (arg == "--infill") {
762
- params.infill = true;
763
- return true;
764
- }
765
- if (arg == "-dkvc" || arg == "--dump-kv-cache") {
766
- params.dump_kv_cache = true;
767
- return true;
768
- }
769
- if (arg == "-nkvo" || arg == "--no-kv-offload") {
770
- params.no_kv_offload = true;
771
- return true;
772
- }
773
- if (arg == "-ctk" || arg == "--cache-type-k") {
774
- params.cache_type_k = argv[++i];
775
- return true;
776
- }
777
- if (arg == "-ctv" || arg == "--cache-type-v") {
778
- params.cache_type_v = argv[++i];
779
- return true;
780
- }
781
- if (arg == "-mli" || arg == "--multiline-input") {
782
- params.multiline_input = true;
783
- return true;
784
- }
785
- if (arg == "--simple-io") {
786
- params.simple_io = true;
787
- return true;
788
- }
789
- if (arg == "-cb" || arg == "--cont-batching") {
790
- params.cont_batching = true;
791
- return true;
792
- }
793
- if (arg == "-nocb" || arg == "--no-cont-batching") {
794
- params.cont_batching = false;
795
- return true;
796
- }
797
- if (arg == "-fa" || arg == "--flash-attn") {
798
- params.flash_attn = true;
799
- return true;
800
- }
801
- if (arg == "-co" || arg == "--color") {
802
- params.use_color = true;
803
- return true;
804
- }
805
- if (arg == "--mlock") {
806
- params.use_mlock = true;
807
- return true;
808
- }
809
- if (arg == "-ngl" || arg == "--gpu-layers" || arg == "--n-gpu-layers") {
810
- CHECK_ARG
811
- params.n_gpu_layers = std::stoi(argv[i]);
812
- if (!llama_supports_gpu_offload()) {
813
- fprintf(stderr, "warning: not compiled with GPU offload support, --gpu-layers option will be ignored\n");
814
- fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
815
- }
816
- return true;
817
- }
818
- if (arg == "-ngld" || arg == "--gpu-layers-draft" || arg == "--gpu-layers-draft") {
819
- CHECK_ARG
820
- params.n_gpu_layers_draft = std::stoi(argv[i]);
821
- if (!llama_supports_gpu_offload()) {
822
- fprintf(stderr, "warning: not compiled with GPU offload support, --gpu-layers-draft option will be ignored\n");
823
- fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
824
- }
825
- return true;
826
- }
827
- if (arg == "--main-gpu" || arg == "-mg") {
828
- CHECK_ARG
829
- params.main_gpu = std::stoi(argv[i]);
830
- #ifndef GGML_USE_CUDA_SYCL_VULKAN
831
- fprintf(stderr, "warning: llama.cpp was compiled without CUDA/SYCL/Vulkan. Setting the main GPU has no effect.\n");
832
- #endif // GGML_USE_CUDA_SYCL_VULKAN
833
- return true;
834
- }
835
- if (arg == "--split-mode" || arg == "-sm") {
836
- CHECK_ARG
837
- std::string arg_next = argv[i];
838
- if (arg_next == "none") {
839
- params.split_mode = LLAMA_SPLIT_MODE_NONE;
840
- }
841
- else if (arg_next == "layer") {
842
- params.split_mode = LLAMA_SPLIT_MODE_LAYER;
843
- }
844
- else if (arg_next == "row") {
845
- #ifdef GGML_USE_SYCL
846
- fprintf(stderr, "warning: The split mode value:[row] is not supported by llama.cpp with SYCL. It's developing.\nExit!\n");
847
- exit(1);
848
- #endif // GGML_USE_SYCL
849
- params.split_mode = LLAMA_SPLIT_MODE_ROW;
850
- }
851
- else {
852
- invalid_param = true;
853
- return true;
854
- }
855
- #ifndef GGML_USE_CUDA_SYCL_VULKAN
856
- fprintf(stderr, "warning: llama.cpp was compiled without CUDA/SYCL/Vulkan. Setting the split mode has no effect.\n");
857
- #endif // GGML_USE_CUDA_SYCL_VULKAN
858
- return true;
859
- }
860
- if (arg == "--tensor-split" || arg == "-ts") {
861
- CHECK_ARG
862
- std::string arg_next = argv[i];
863
-
864
- // split string by , and /
865
- const std::regex regex{ R"([,/]+)" };
866
- std::sregex_token_iterator it{ arg_next.begin(), arg_next.end(), regex, -1 };
867
- std::vector<std::string> split_arg{ it, {} };
868
- if (split_arg.size() >= llama_max_devices()) {
869
- invalid_param = true;
870
- return true;
871
- }
872
- for (size_t i = 0; i < llama_max_devices(); ++i) {
873
- if (i < split_arg.size()) {
874
- params.tensor_split[i] = std::stof(split_arg[i]);
875
- }
876
- else {
877
- params.tensor_split[i] = 0.0f;
878
- }
879
- }
880
- #ifndef GGML_USE_CUDA_SYCL_VULKAN
881
- fprintf(stderr, "warning: llama.cpp was compiled without CUDA/SYCL/Vulkan. Setting a tensor split has no effect.\n");
882
- #endif // GGML_USE_CUDA_SYCL_VULKAN
883
- return true;
884
- }
885
- if (arg == "--rpc") {
886
- CHECK_ARG
887
- params.rpc_servers = argv[i];
888
- return true;
889
- }
890
- if (arg == "--no-mmap") {
891
- params.use_mmap = false;
892
- return true;
893
- }
894
- if (arg == "--numa") {
895
- CHECK_ARG
896
- std::string value(argv[i]);
897
- /**/ if (value == "distribute" || value == "") { params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE; }
898
- else if (value == "isolate") { params.numa = GGML_NUMA_STRATEGY_ISOLATE; }
899
- else if (value == "numactl") { params.numa = GGML_NUMA_STRATEGY_NUMACTL; }
900
- else { invalid_param = true; }
901
- return true;
902
- }
903
- if (arg == "-v" || arg == "--verbose") {
904
- params.verbosity = 1;
905
- return true;
906
- }
907
- if (arg == "--verbosity") {
908
- CHECK_ARG
909
- params.verbosity = std::stoi(argv[i]);
910
- return true;
911
- }
912
- if (arg == "--verbose-prompt") {
913
- params.verbose_prompt = true;
914
- return true;
915
- }
916
- if (arg == "--no-display-prompt") {
917
- params.display_prompt = false;
918
- return true;
919
- }
920
- if (arg == "-r" || arg == "--reverse-prompt") {
921
- CHECK_ARG
922
- params.antiprompt.emplace_back(argv[i]);
923
- return true;
924
- }
925
- if (arg == "-ld" || arg == "--logdir") {
926
- CHECK_ARG
927
- params.logdir = argv[i];
928
-
929
- if (params.logdir.back() != DIRECTORY_SEPARATOR) {
930
- params.logdir += DIRECTORY_SEPARATOR;
931
- }
932
- return true;
933
- }
934
- if (arg == "-lcs" || arg == "--lookup-cache-static") {
935
- CHECK_ARG
936
- params.lookup_cache_static = argv[i];
937
- return true;
938
- }
939
- if (arg == "-lcd" || arg == "--lookup-cache-dynamic") {
940
- CHECK_ARG
941
- params.lookup_cache_dynamic = argv[i];
942
- return true;
943
- }
944
- if (arg == "--save-all-logits" || arg == "--kl-divergence-base") {
945
- CHECK_ARG
946
- params.logits_file = argv[i];
947
- return true;
948
- }
949
- if (arg == "--perplexity" || arg == "--all-logits") {
950
- params.logits_all = true;
951
- return true;
952
- }
953
- if (arg == "--ppl-stride") {
954
- CHECK_ARG
955
- params.ppl_stride = std::stoi(argv[i]);
956
- return true;
957
- }
958
- if (arg == "--ppl-output-type") {
959
- CHECK_ARG
960
- params.ppl_output_type = std::stoi(argv[i]);
961
- return true;
962
- }
963
- if (arg == "-ptc" || arg == "--print-token-count") {
964
- CHECK_ARG
965
- params.n_print = std::stoi(argv[i]);
966
- return true;
967
- }
968
- if (arg == "--check-tensors") {
969
- params.check_tensors = true;
970
- return true;
971
- }
972
- if (arg == "--hellaswag") {
973
- params.hellaswag = true;
974
- return true;
975
- }
976
- if (arg == "--hellaswag-tasks") {
977
- CHECK_ARG
978
- params.hellaswag_tasks = std::stoi(argv[i]);
979
- return true;
980
- }
981
- if (arg == "--winogrande") {
982
- params.winogrande = true;
983
- return true;
984
- }
985
- if (arg == "--winogrande-tasks") {
986
- CHECK_ARG
987
- params.winogrande_tasks = std::stoi(argv[i]);
988
- return true;
989
- }
990
- if (arg == "--multiple-choice") {
991
- params.multiple_choice = true;
992
- return true;
993
- }
994
- if (arg == "--multiple-choice-tasks") {
995
- CHECK_ARG
996
- params.multiple_choice_tasks = std::stoi(argv[i]);
997
- return true;
998
- }
999
- if (arg == "--kl-divergence") {
1000
- params.kl_divergence = true;
1001
- return true;
1002
- }
1003
- if (arg == "--ignore-eos") {
1004
- params.ignore_eos = true;
1005
- return true;
1006
- }
1007
- if (arg == "--penalize-nl") {
1008
- sparams.penalize_nl = true;
1009
- return true;
1010
- }
1011
- if (arg == "-l" || arg == "--logit-bias") {
1012
- CHECK_ARG
1013
- std::stringstream ss(argv[i]);
1014
- llama_token key;
1015
- char sign;
1016
- std::string value_str;
1017
- try {
1018
- if (ss >> key && ss >> sign && std::getline(ss, value_str) && (sign == '+' || sign == '-')) {
1019
- sparams.logit_bias[key] = std::stof(value_str) * ((sign == '-') ? -1.0f : 1.0f);
1020
- }
1021
- else {
1022
- throw std::exception();
1023
- }
1024
- }
1025
- catch (const std::exception&) {
1026
- invalid_param = true;
1027
- return true;
1028
- }
1029
- return true;
1030
- }
1031
- if (arg == "-h" || arg == "--help" || arg == "--usage" ) {
1032
- params.usage = true;
1033
- return true;
1034
- }
1035
- if (arg == "--version") {
1036
- fprintf(stderr, "version: %d (%s)\n", LLAMA_BUILD_NUMBER, LLAMA_COMMIT);
1037
- fprintf(stderr, "built with %s for %s\n", LLAMA_COMPILER, LLAMA_BUILD_TARGET);
1038
- exit(0);
1039
- }
1040
- if (arg == "--in-prefix-bos") {
1041
- params.input_prefix_bos = true;
1042
- params.enable_chat_template = false;
1043
- return true;
1044
- }
1045
- if (arg == "--in-prefix") {
1046
- CHECK_ARG
1047
- params.input_prefix = argv[i];
1048
- params.enable_chat_template = false;
1049
- return true;
1050
- }
1051
- if (arg == "--in-suffix") {
1052
- CHECK_ARG
1053
- params.input_suffix = argv[i];
1054
- params.enable_chat_template = false;
1055
- return true;
1056
- }
1057
- if (arg == "--spm-infill") {
1058
- params.spm_infill = true;
1059
- return true;
1060
- }
1061
- if (arg == "--grammar") {
1062
- CHECK_ARG
1063
- sparams.grammar = argv[i];
1064
- return true;
1065
- }
1066
- if (arg == "--grammar-file") {
1067
- CHECK_ARG
1068
- std::ifstream file(argv[i]);
1069
- if (!file) {
1070
- fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
1071
- invalid_param = true;
1072
- return true;
1073
- }
1074
- std::copy(
1075
- std::istreambuf_iterator<char>(file),
1076
- std::istreambuf_iterator<char>(),
1077
- std::back_inserter(sparams.grammar)
1078
- );
1079
- return true;
1080
- }
1081
- if (arg == "-j" || arg == "--json-schema") {
1082
- CHECK_ARG
1083
- sparams.grammar = json_schema_to_grammar(json::parse(argv[i]));
1084
- return true;
1085
- }
1086
- if (arg == "--override-kv") {
1087
- CHECK_ARG
1088
- if (!string_parse_kv_override(argv[i], params.kv_overrides)) {
1089
- fprintf(stderr, "error: Invalid type for KV override: %s\n", argv[i]);
1090
- invalid_param = true;
1091
- return true;
1092
- }
1093
- return true;
1094
- }
1095
- if (arg == "--host") {
1096
- CHECK_ARG
1097
- params.hostname = argv[i];
1098
- return true;
1099
- }
1100
- if (arg == "--port") {
1101
- CHECK_ARG
1102
- params.port = std::stoi(argv[i]);
1103
- return true;
1104
- }
1105
- if (arg == "--path") {
1106
- CHECK_ARG
1107
- params.public_path = argv[i];
1108
- return true;
1109
- }
1110
- if (arg == "--api-key") {
1111
- CHECK_ARG
1112
- params.api_keys.push_back(argv[i]);
1113
- return true;
1114
- }
1115
- if (arg == "--api-key-file") {
1116
- CHECK_ARG
1117
- std::ifstream key_file(argv[i]);
1118
- if (!key_file) {
1119
- fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
1120
- invalid_param = true;
1121
- return true;
1122
- }
1123
- std::string key;
1124
- while (std::getline(key_file, key)) {
1125
- if (!key.empty()) {
1126
- params.api_keys.push_back(key);
1127
- }
1128
- }
1129
- key_file.close();
1130
- return true;
1131
- }
1132
- if (arg == "--ssl-key-file") {
1133
- CHECK_ARG
1134
- params.ssl_file_key = argv[i];
1135
- return true;
1136
- }
1137
- if (arg == "--ssl-cert-file") {
1138
- CHECK_ARG
1139
- params.ssl_file_cert = argv[i];
1140
- return true;
1141
- }
1142
- if (arg == "--timeout" || arg == "-to") {
1143
- CHECK_ARG
1144
- params.timeout_read = std::stoi(argv[i]);
1145
- params.timeout_write = std::stoi(argv[i]);
209
+ #endif
210
+ return cpu_get_num_physical_cores();
211
+ }
212
+
213
+ // Helper for setting process priority
214
+
215
+ #if defined(_WIN32)
216
+
217
+ bool set_process_priority(enum ggml_sched_priority prio) {
218
+ if (prio == GGML_SCHED_PRIO_NORMAL) {
1146
219
  return true;
1147
220
  }
1148
- if (arg == "--threads-http") {
1149
- CHECK_ARG
1150
- params.n_threads_http = std::stoi(argv[i]);
1151
- return true;
221
+
222
+ DWORD p = NORMAL_PRIORITY_CLASS;
223
+ switch (prio) {
224
+ case GGML_SCHED_PRIO_NORMAL: p = NORMAL_PRIORITY_CLASS; break;
225
+ case GGML_SCHED_PRIO_MEDIUM: p = ABOVE_NORMAL_PRIORITY_CLASS; break;
226
+ case GGML_SCHED_PRIO_HIGH: p = HIGH_PRIORITY_CLASS; break;
227
+ case GGML_SCHED_PRIO_REALTIME: p = REALTIME_PRIORITY_CLASS; break;
1152
228
  }
1153
- if (arg == "-spf" || arg == "--system-prompt-file") {
1154
- CHECK_ARG
1155
- std::ifstream file(argv[i]);
1156
- if (!file) {
1157
- fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
1158
- invalid_param = true;
1159
- return true;
1160
- }
1161
- std::string system_prompt;
1162
- std::copy(
1163
- std::istreambuf_iterator<char>(file),
1164
- std::istreambuf_iterator<char>(),
1165
- std::back_inserter(system_prompt)
1166
- );
1167
- params.system_prompt = system_prompt;
1168
- return true;
229
+
230
+ if (!SetPriorityClass(GetCurrentProcess(), p)) {
231
+ LOG_WRN("failed to set process priority class %d : (%d)\n", prio, (int) GetLastError());
232
+ return false;
1169
233
  }
1170
- if (arg == "--log-format") {
1171
- CHECK_ARG
1172
- if (std::strcmp(argv[i], "json") == 0) {
1173
- params.log_json = true;
1174
- } else if (std::strcmp(argv[i], "text") == 0) {
1175
- params.log_json = false;
1176
- } else {
1177
- invalid_param = true;
1178
- return true;
1179
- }
234
+
235
+ return true;
236
+ }
237
+
238
+ #else // MacOS and POSIX
239
+ #include <sys/types.h>
240
+ #include <sys/resource.h>
241
+
242
+ bool set_process_priority(enum ggml_sched_priority prio) {
243
+ if (prio == GGML_SCHED_PRIO_NORMAL) {
1180
244
  return true;
1181
245
  }
1182
- if (arg == "--no-slots") {
1183
- params.endpoint_slots = false;
1184
- return true;
246
+
247
+ int p = 0;
248
+ switch (prio) {
249
+ case GGML_SCHED_PRIO_NORMAL: p = 0; break;
250
+ case GGML_SCHED_PRIO_MEDIUM: p = -5; break;
251
+ case GGML_SCHED_PRIO_HIGH: p = -10; break;
252
+ case GGML_SCHED_PRIO_REALTIME: p = -20; break;
1185
253
  }
1186
- if (arg == "--metrics") {
1187
- params.endpoint_metrics = true;
1188
- return true;
254
+
255
+ if (!setpriority(PRIO_PROCESS, 0, p)) {
256
+ LOG_WRN("failed to set process priority %d : %s (%d)\n", prio, strerror(errno), errno);
257
+ return false;
1189
258
  }
1190
- if (arg == "--slot-save-path") {
1191
- CHECK_ARG
1192
- params.slot_save_path = argv[i];
1193
- // if doesn't end with DIRECTORY_SEPARATOR, add it
1194
- if (!params.slot_save_path.empty() && params.slot_save_path[params.slot_save_path.size() - 1] != DIRECTORY_SEPARATOR) {
1195
- params.slot_save_path += DIRECTORY_SEPARATOR;
259
+ return true;
260
+ }
261
+
262
+ #endif
263
+
264
+ //
265
+ // CLI argument parsing
266
+ //
267
+
268
+
269
+ void postprocess_cpu_params(cpu_params& cpuparams, const cpu_params* role_model) {
270
+ int32_t n_set = 0;
271
+
272
+ if (cpuparams.n_threads < 0) {
273
+ // Assuming everything about cpuparams is invalid
274
+ if (role_model != nullptr) {
275
+ cpuparams = *role_model;
276
+ } else {
277
+ cpuparams.n_threads = cpu_get_num_math();
1196
278
  }
1197
- return true;
1198
279
  }
1199
- if (arg == "--chat-template") {
1200
- CHECK_ARG
1201
- if (!llama_chat_verify_template(argv[i])) {
1202
- fprintf(stderr, "error: the supplied chat template is not supported: %s\n", argv[i]);
1203
- fprintf(stderr, "note: llama.cpp does not use jinja parser, we only support commonly used templates\n");
1204
- invalid_param = true;
1205
- return true;
280
+
281
+ for (int32_t i = 0; i < GGML_MAX_N_THREADS; i++) {
282
+ if (cpuparams.cpumask[i]) {
283
+ n_set++;
1206
284
  }
1207
- params.chat_template = argv[i];
1208
- return true;
1209
- }
1210
- if (arg == "--slot-prompt-similarity" || arg == "-sps") {
1211
- CHECK_ARG
1212
- params.slot_prompt_similarity = std::stof(argv[i]);
1213
- return true;
1214
- }
1215
- if (arg == "-pps") {
1216
- params.is_pp_shared = true;
1217
- return true;
1218
- }
1219
- if (arg == "-npp") {
1220
- CHECK_ARG
1221
- auto p = string_split<int>(argv[i], split_delim);
1222
- params.n_pp.insert(params.n_pp.end(), p.begin(), p.end());
1223
- return true;
1224
285
  }
1225
- if (arg == "-ntg") {
1226
- CHECK_ARG
1227
- auto p = string_split<int>(argv[i], split_delim);
1228
- params.n_tg.insert(params.n_tg.end(), p.begin(), p.end());
1229
- return true;
286
+
287
+ if (n_set && n_set < cpuparams.n_threads) {
288
+ // Not enough set bits, may experience performance issues.
289
+ LOG_WRN("Not enough set bits in CPU mask (%d) to satisfy requested thread count: %d\n", n_set, cpuparams.n_threads);
1230
290
  }
1231
- if (arg == "-npl") {
1232
- CHECK_ARG
1233
- auto p = string_split<int>(argv[i], split_delim);
1234
- params.n_pl.insert(params.n_pl.end(), p.begin(), p.end());
1235
- return true;
291
+ }
292
+
293
+ bool parse_cpu_range(const std::string & range, bool (&boolmask)[GGML_MAX_N_THREADS]) {
294
+ size_t dash_loc = range.find('-');
295
+ if (dash_loc == std::string::npos) {
296
+ LOG_ERR("Format of CPU range is invalid! Expected [<start>]-[<end>].\n");
297
+ return false;
1236
298
  }
1237
- if (arg == "--context-file") {
1238
- CHECK_ARG
1239
- std::ifstream file(argv[i], std::ios::binary);
1240
- if (!file) {
1241
- fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
1242
- invalid_param = true;
1243
- return true;
299
+
300
+ size_t start_i;
301
+ size_t end_i;
302
+
303
+ if (dash_loc == 0) {
304
+ start_i = 0;
305
+ } else {
306
+ start_i = std::stoull(range.substr(0, dash_loc));
307
+ if (start_i >= GGML_MAX_N_THREADS) {
308
+ LOG_ERR("Start index out of bounds!\n");
309
+ return false;
1244
310
  }
1245
- params.context_files.push_back(argv[i]);
1246
- return true;
1247
- }
1248
- if (arg == "--chunk-size") {
1249
- CHECK_ARG
1250
- params.chunk_size = std::stoi(argv[i]);
1251
- return true;
1252
- }
1253
- if (arg == "--chunk-separator") {
1254
- CHECK_ARG
1255
- params.chunk_separator = argv[i];
1256
- return true;
1257
- }
1258
- if (arg == "--junk") {
1259
- CHECK_ARG
1260
- params.n_junk = std::stoi(argv[i]);
1261
- return true;
1262
- }
1263
- if (arg == "--pos") {
1264
- CHECK_ARG
1265
- params.i_pos = std::stoi(argv[i]);
1266
- return true;
1267
- }
1268
- if (arg == "-o" || arg == "--output" || arg == "--output-file") {
1269
- CHECK_ARG
1270
- params.out_file = argv[i];
1271
- params.cvector_outfile = argv[i];
1272
- params.lora_outfile = argv[i];
1273
- return true;
1274
- }
1275
- if (arg == "-ofreq" || arg == "--output-frequency") {
1276
- CHECK_ARG
1277
- params.n_out_freq = std::stoi(argv[i]);
1278
- return true;
1279
- }
1280
- if (arg == "--save-frequency") {
1281
- CHECK_ARG
1282
- params.n_save_freq = std::stoi(argv[i]);
1283
- return true;
1284
- }
1285
- if (arg == "--process-output") {
1286
- params.process_output = true;
1287
- return true;
1288
- }
1289
- if (arg == "--no-ppl") {
1290
- params.compute_ppl = false;
1291
- return true;
1292
- }
1293
- if (arg == "--chunk" || arg == "--from-chunk") {
1294
- CHECK_ARG
1295
- params.i_chunk = std::stoi(argv[i]);
1296
- return true;
1297
- }
1298
- // cvector params
1299
- if (arg == "--positive-file") {
1300
- CHECK_ARG
1301
- params.cvector_positive_file = argv[i];
1302
- return true;
1303
- }
1304
- if (arg == "--negative-file") {
1305
- CHECK_ARG
1306
- params.cvector_negative_file = argv[i];
1307
- return true;
1308
- }
1309
- if (arg == "--pca-batch") {
1310
- CHECK_ARG
1311
- params.n_pca_batch = std::stoi(argv[i]);
1312
- return true;
1313
- }
1314
- if (arg == "--pca-iter") {
1315
- CHECK_ARG
1316
- params.n_pca_iterations = std::stoi(argv[i]);
1317
- return true;
1318
- }
1319
- if (arg == "--method") {
1320
- CHECK_ARG
1321
- std::string value(argv[i]);
1322
- /**/ if (value == "pca") { params.cvector_dimre_method = DIMRE_METHOD_PCA; }
1323
- else if (value == "mean") { params.cvector_dimre_method = DIMRE_METHOD_MEAN; }
1324
- else { invalid_param = true; }
1325
- return true;
1326
- }
1327
- if (arg == "--no-warmup") {
1328
- params.warmup = false;
1329
- return true;
1330
- }
1331
- #ifndef LOG_DISABLE_LOGS
1332
- // Parse args for logging parameters
1333
- if (log_param_single_parse(argv[i])) {
1334
- // Do nothing, log_param_single_parse automatically does it's thing
1335
- // and returns if a match was found and parsed.
1336
- return true;
1337
311
  }
1338
- if (log_param_pair_parse( /*check_but_dont_parse*/ true, argv[i])) {
1339
- // We have a matching known parameter requiring an argument,
1340
- // now we need to check if there is anything after this argv
1341
- // and flag invalid_param or parse it.
1342
- CHECK_ARG
1343
- if (!log_param_pair_parse( /*check_but_dont_parse*/ false, argv[i - 1], argv[i])) {
1344
- invalid_param = true;
1345
- return true;
312
+
313
+ if (dash_loc == range.length() - 1) {
314
+ end_i = GGML_MAX_N_THREADS - 1;
315
+ } else {
316
+ end_i = std::stoull(range.substr(dash_loc + 1));
317
+ if (end_i >= GGML_MAX_N_THREADS) {
318
+ LOG_ERR("End index out of bounds!\n");
319
+ return false;
1346
320
  }
1347
- return true;
1348
321
  }
1349
- // End of Parse args for logging parameters
1350
- #endif // LOG_DISABLE_LOGS
1351
322
 
1352
- return false;
323
+ for (size_t i = start_i; i <= end_i; i++) {
324
+ boolmask[i] = true;
325
+ }
326
+
327
+ return true;
1353
328
  }
1354
329
 
1355
- #ifdef __GNUC__
1356
- #ifdef __MINGW32__
1357
- #define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
1358
- #else
1359
- #define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
1360
- #endif
1361
- #else
1362
- #define LLAMA_COMMON_ATTRIBUTE_FORMAT(...)
1363
- #endif
330
+ bool parse_cpu_mask(const std::string & mask, bool (&boolmask)[GGML_MAX_N_THREADS]) {
331
+ // Discard potential 0x prefix
332
+ size_t start_i = 0;
333
+ if (mask.length() >= 2 && mask.substr(0, 2) == "0x") {
334
+ start_i = 2;
335
+ }
1364
336
 
1365
- void gpt_params_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
1366
- const llama_sampling_params & sparams = params.sparams;
337
+ size_t num_digits = mask.length() - start_i;
338
+ if (num_digits > 128) num_digits = 128;
1367
339
 
1368
- std::string sampler_type_chars;
1369
- std::string sampler_type_names;
1370
- for (const auto sampler_type : sparams.samplers_sequence) {
1371
- sampler_type_chars += static_cast<char>(sampler_type);
1372
- sampler_type_names += llama_sampling_type_to_str(sampler_type) + ";";
1373
- }
1374
- sampler_type_names.pop_back();
340
+ size_t end_i = num_digits + start_i;
1375
341
 
1376
- struct option_info {
1377
- LLAMA_COMMON_ATTRIBUTE_FORMAT(4, 5)
1378
- option_info(const std::string & tags, const char * args, const char * desc, ...) : tags(tags), args(args), desc(desc) {
1379
- va_list args_list;
1380
- va_start(args_list, desc);
1381
- char buffer[1024];
1382
- vsnprintf(buffer, sizeof(buffer), desc, args_list);
1383
- va_end(args_list);
1384
- this->desc = buffer;
342
+ for (size_t i = start_i, n = (num_digits*4 - 1); i < end_i; i++, n-=4) {
343
+ char c = mask.at(i);
344
+ int8_t id = c;
345
+
346
+ if ((c >= '0' && c <= '9')) {
347
+ id -= '0';
348
+ } else if (c >= 'a' && c <= 'f') {
349
+ id -= 'a' - 10;
350
+ } else if (c >= 'A' && c <= 'F') {
351
+ id -= 'A' - 10;
352
+ } else {
353
+ LOG_ERR("Invalid hex character '%c' at position %d\n", c, int32_t(i));
354
+ return false;
1385
355
  }
1386
356
 
1387
- option_info(const std::string & grp) : grp(grp) {}
357
+ boolmask[ n ] = boolmask[ n ] || ((id & 8) != 0);
358
+ boolmask[n - 1] = boolmask[n - 1] || ((id & 4) != 0);
359
+ boolmask[n - 2] = boolmask[n - 2] || ((id & 2) != 0);
360
+ boolmask[n - 3] = boolmask[n - 3] || ((id & 1) != 0);
361
+ }
362
+
363
+ return true;
364
+ }
1388
365
 
1389
- std::string tags;
1390
- std::string args;
1391
- std::string desc;
1392
- std::string grp;
1393
- };
366
+ void common_init() {
367
+ llama_log_set([](ggml_log_level level, const char * text, void * /*user_data*/) {
368
+ if (LOG_DEFAULT_LLAMA <= common_log_verbosity_thold) {
369
+ common_log_add(common_log_main(), level, "%s", text);
370
+ }
371
+ }, NULL);
372
+
373
+ #ifdef NDEBUG
374
+ const char * build_type = "";
375
+ #else
376
+ const char * build_type = " (debug)";
377
+ #endif
1394
378
 
1395
- std::vector<option_info> options;
1396
-
1397
- // TODO: filter by tags
1398
-
1399
- options.push_back({ "general" });
1400
- options.push_back({ "*", "-h, --help, --usage", "print usage and exit" });
1401
- options.push_back({ "*", " --version", "show version and build info" });
1402
- options.push_back({ "*", "-v, --verbose", "print verbose information" });
1403
- options.push_back({ "*", " --verbosity N", "set specific verbosity level (default: %d)", params.verbosity });
1404
- options.push_back({ "*", " --verbose-prompt", "print a verbose prompt before generation (default: %s)", params.verbose_prompt ? "true" : "false" });
1405
- options.push_back({ "*", " --no-display-prompt", "don't print prompt at generation (default: %s)", !params.display_prompt ? "true" : "false" });
1406
- options.push_back({ "*", "-co, --color", "colorise output to distinguish prompt and user input from generations (default: %s)", params.use_color ? "true" : "false" });
1407
- options.push_back({ "*", "-s, --seed SEED", "RNG seed (default: %d, use random seed for < 0)", params.seed });
1408
- options.push_back({ "*", "-t, --threads N", "number of threads to use during generation (default: %d)", params.n_threads });
1409
- options.push_back({ "*", "-tb, --threads-batch N", "number of threads to use during batch and prompt processing (default: same as --threads)" });
1410
- options.push_back({ "speculative", "-td, --threads-draft N", "number of threads to use during generation (default: same as --threads)" });
1411
- options.push_back({ "speculative", "-tbd, --threads-batch-draft N",
1412
- "number of threads to use during batch and prompt processing (default: same as --threads-draft)" });
1413
- options.push_back({ "speculative", " --draft N", "number of tokens to draft for speculative decoding (default: %d)", params.n_draft });
1414
- options.push_back({ "speculative", "-ps, --p-split N", "speculative decoding split probability (default: %.1f)", (double)params.p_split });
1415
- options.push_back({ "*", "-lcs, --lookup-cache-static FNAME",
1416
- "path to static lookup cache to use for lookup decoding (not updated by generation)" });
1417
- options.push_back({ "*", "-lcd, --lookup-cache-dynamic FNAME",
1418
- "path to dynamic lookup cache to use for lookup decoding (updated by generation)" });
1419
-
1420
- options.push_back({ "*", "-c, --ctx-size N", "size of the prompt context (default: %d, 0 = loaded from model)", params.n_ctx });
1421
- options.push_back({ "*", "-n, --predict N", "number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)", params.n_predict });
1422
- options.push_back({ "*", "-b, --batch-size N", "logical maximum batch size (default: %d)", params.n_batch });
1423
- options.push_back({ "*", "-ub, --ubatch-size N", "physical maximum batch size (default: %d)", params.n_ubatch });
1424
- options.push_back({ "*", " --keep N", "number of tokens to keep from the initial prompt (default: %d, -1 = all)", params.n_keep });
1425
- options.push_back({ "*", " --chunks N", "max number of chunks to process (default: %d, -1 = all)", params.n_chunks });
1426
- options.push_back({ "*", "-fa, --flash-attn", "enable Flash Attention (default: %s)", params.flash_attn ? "enabled" : "disabled" });
1427
- options.push_back({ "*", "-p, --prompt PROMPT", "prompt to start generation with\n"
1428
- "in conversation mode, this will be used as system prompt\n"
1429
- "(default: '%s')", params.prompt.c_str() });
1430
- options.push_back({ "*", "-f, --file FNAME", "a file containing the prompt (default: none)" });
1431
- options.push_back({ "*", " --in-file FNAME", "an input file (repeat to specify multiple files)" });
1432
- options.push_back({ "*", "-bf, --binary-file FNAME", "binary file containing the prompt (default: none)" });
1433
- options.push_back({ "*", "-e, --escape", "process escapes sequences (\\n, \\r, \\t, \\', \\\", \\\\) (default: %s)", params.escape ? "true" : "false" });
1434
- options.push_back({ "*", " --no-escape", "do not process escape sequences" });
1435
- options.push_back({ "main", "-ptc, --print-token-count N", "print token count every N tokens (default: %d)", params.n_print });
1436
- options.push_back({ "main", " --prompt-cache FNAME", "file to cache prompt state for faster startup (default: none)" });
1437
- options.push_back({ "main", " --prompt-cache-all", "if specified, saves user input and generations to cache as well\n"
1438
- "not supported with --interactive or other interactive options" });
1439
- options.push_back({ "main", " --prompt-cache-ro", "if specified, uses the prompt cache but does not update it" });
1440
- options.push_back({ "main", "-r, --reverse-prompt PROMPT",
1441
- "halt generation at PROMPT, return control in interactive mode\n"
1442
- "can be specified more than once for multiple prompts" });
1443
- options.push_back({ "main", "-sp, --special", "special tokens output enabled (default: %s)", params.special ? "true" : "false" });
1444
- options.push_back({ "main", "-cnv, --conversation", "run in conversation mode, does not print special tokens and suffix/prefix\n"
1445
- "if suffix/prefix are not specified, default chat template will be used\n"
1446
- "(default: %s)", params.conversation ? "true" : "false" });
1447
- options.push_back({ "main infill", "-i, --interactive", "run in interactive mode (default: %s)", params.interactive ? "true" : "false" });
1448
- options.push_back({ "main infill", "-if, --interactive-first", "run in interactive mode and wait for input right away (default: %s)", params.interactive_first ? "true" : "false" });
1449
- options.push_back({ "main infill", "-mli, --multiline-input", "allows you to write or paste multiple lines without ending each in '\\'" });
1450
- options.push_back({ "main infill", " --in-prefix-bos", "prefix BOS to user inputs, preceding the `--in-prefix` string" });
1451
- options.push_back({ "main infill", " --in-prefix STRING", "string to prefix user inputs with (default: empty)" });
1452
- options.push_back({ "main infill", " --in-suffix STRING", "string to suffix after user inputs with (default: empty)" });
1453
- options.push_back({ "main", " --no-warmup", "skip warming up the model with an empty run" });
1454
- options.push_back({ "server infill",
1455
- " --spm-infill", "use Suffix/Prefix/Middle pattern for infill (instead of Prefix/Suffix/Middle) as some models prefer this. (default: %s)", params.spm_infill ? "enabled" : "disabled" });
1456
-
1457
- options.push_back({ "sampling" });
1458
- options.push_back({ "*", " --samplers SAMPLERS", "samplers that will be used for generation in the order, separated by \';\'\n"
1459
- "(default: %s)", sampler_type_names.c_str() });
1460
- options.push_back({ "*", " --sampling-seq SEQUENCE",
1461
- "simplified sequence for samplers that will be used (default: %s)", sampler_type_chars.c_str() });
1462
- options.push_back({ "*", " --ignore-eos", "ignore end of stream token and continue generating (implies --logit-bias EOS-inf)" });
1463
- options.push_back({ "*", " --penalize-nl", "penalize newline tokens (default: %s)", sparams.penalize_nl ? "true" : "false" });
1464
- options.push_back({ "*", " --temp N", "temperature (default: %.1f)", (double)sparams.temp });
1465
- options.push_back({ "*", " --top-k N", "top-k sampling (default: %d, 0 = disabled)", sparams.top_k });
1466
- options.push_back({ "*", " --top-p N", "top-p sampling (default: %.1f, 1.0 = disabled)", (double)sparams.top_p });
1467
- options.push_back({ "*", " --min-p N", "min-p sampling (default: %.1f, 0.0 = disabled)", (double)sparams.min_p });
1468
- options.push_back({ "*", " --tfs N", "tail free sampling, parameter z (default: %.1f, 1.0 = disabled)", (double)sparams.tfs_z });
1469
- options.push_back({ "*", " --typical N", "locally typical sampling, parameter p (default: %.1f, 1.0 = disabled)", (double)sparams.typical_p });
1470
- options.push_back({ "*", " --repeat-last-n N", "last n tokens to consider for penalize (default: %d, 0 = disabled, -1 = ctx_size)", sparams.penalty_last_n });
1471
- options.push_back({ "*", " --repeat-penalty N", "penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)", (double)sparams.penalty_repeat });
1472
- options.push_back({ "*", " --presence-penalty N", "repeat alpha presence penalty (default: %.1f, 0.0 = disabled)", (double)sparams.penalty_present });
1473
- options.push_back({ "*", " --frequency-penalty N", "repeat alpha frequency penalty (default: %.1f, 0.0 = disabled)", (double)sparams.penalty_freq });
1474
- options.push_back({ "*", " --dynatemp-range N", "dynamic temperature range (default: %.1f, 0.0 = disabled)", (double)sparams.dynatemp_range });
1475
- options.push_back({ "*", " --dynatemp-exp N", "dynamic temperature exponent (default: %.1f)", (double)sparams.dynatemp_exponent });
1476
- options.push_back({ "*", " --mirostat N", "use Mirostat sampling.\n"
1477
- "Top K, Nucleus, Tail Free and Locally Typical samplers are ignored if used.\n"
1478
- "(default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)", sparams.mirostat });
1479
- options.push_back({ "*", " --mirostat-lr N", "Mirostat learning rate, parameter eta (default: %.1f)", (double)sparams.mirostat_eta });
1480
- options.push_back({ "*", " --mirostat-ent N", "Mirostat target entropy, parameter tau (default: %.1f)", (double)sparams.mirostat_tau });
1481
- options.push_back({ "*", " -l TOKEN_ID(+/-)BIAS", "modifies the likelihood of token appearing in the completion,\n"
1482
- "i.e. `--logit-bias 15043+1` to increase likelihood of token ' Hello',\n"
1483
- "or `--logit-bias 15043-1` to decrease likelihood of token ' Hello'" });
1484
- options.push_back({ "main", " --cfg-negative-prompt PROMPT",
1485
- "negative prompt to use for guidance (default: '%s')", sparams.cfg_negative_prompt.c_str() });
1486
- options.push_back({ "main", " --cfg-negative-prompt-file FNAME",
1487
- "negative prompt file to use for guidance" });
1488
- options.push_back({ "main", " --cfg-scale N", "strength of guidance (default: %.1f, 1.0 = disable)", (double)sparams.cfg_scale });
1489
- options.push_back({ "main", " --chat-template JINJA_TEMPLATE",
1490
- "set custom jinja chat template (default: template taken from model's metadata)\n"
1491
- "if suffix/prefix are specified, template will be disabled\n"
1492
- "only commonly used templates are accepted:\n"
1493
- "https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template" });
1494
- options.push_back({ "grammar" });
1495
- options.push_back({ "*", " --grammar GRAMMAR", "BNF-like grammar to constrain generations (see samples in grammars/ dir) (default: '%s')", sparams.grammar.c_str() });
1496
- options.push_back({ "*", " --grammar-file FNAME", "file to read grammar from" });
1497
- options.push_back({ "*", "-j, --json-schema SCHEMA",
1498
- "JSON schema to constrain generations (https://json-schema.org/), e.g. `{}` for any JSON object\n"
1499
- "For schemas w/ external $refs, use --grammar + example/json_schema_to_grammar.py instead" });
1500
-
1501
- options.push_back({ "embedding" });
1502
- options.push_back({ "embedding", " --pooling {none,mean,cls,last}",
1503
- "pooling type for embeddings, use model default if unspecified" });
1504
- options.push_back({ "embedding", " --attention {causal,non-causal}",
1505
- "attention type for embeddings, use model default if unspecified" });
1506
-
1507
- options.push_back({ "context hacking" });
1508
- options.push_back({ "*", " --rope-scaling {none,linear,yarn}",
1509
- "RoPE frequency scaling method, defaults to linear unless specified by the model" });
1510
- options.push_back({ "*", " --rope-scale N", "RoPE context scaling factor, expands context by a factor of N" });
1511
- options.push_back({ "*", " --rope-freq-base N", "RoPE base frequency, used by NTK-aware scaling (default: loaded from model)" });
1512
- options.push_back({ "*", " --rope-freq-scale N", "RoPE frequency scaling factor, expands context by a factor of 1/N" });
1513
- options.push_back({ "*", " --yarn-orig-ctx N", "YaRN: original context size of model (default: %d = model training context size)", params.yarn_orig_ctx });
1514
- options.push_back({ "*", " --yarn-ext-factor N", "YaRN: extrapolation mix factor (default: %.1f, 0.0 = full interpolation)", (double)params.yarn_ext_factor });
1515
- options.push_back({ "*", " --yarn-attn-factor N", "YaRN: scale sqrt(t) or attention magnitude (default: %.1f)", (double)params.yarn_attn_factor });
1516
- options.push_back({ "*", " --yarn-beta-slow N", "YaRN: high correction dim or alpha (default: %.1f)", (double)params.yarn_beta_slow });
1517
- options.push_back({ "*", " --yarn-beta-fast N", "YaRN: low correction dim or beta (default: %.1f)", (double)params.yarn_beta_fast });
1518
- options.push_back({ "*", "-gan, --grp-attn-n N", "group-attention factor (default: %d)", params.grp_attn_n });
1519
- options.push_back({ "*", "-gaw, --grp-attn-w N", "group-attention width (default: %.1f)", (double)params.grp_attn_w });
1520
- options.push_back({ "*", "-dkvc, --dump-kv-cache", "verbose print of the KV cache" });
1521
- options.push_back({ "*", "-nkvo, --no-kv-offload", "disable KV offload" });
1522
- options.push_back({ "*", "-ctk, --cache-type-k TYPE", "KV cache data type for K (default: %s)", params.cache_type_k.c_str() });
1523
- options.push_back({ "*", "-ctv, --cache-type-v TYPE", "KV cache data type for V (default: %s)", params.cache_type_v.c_str() });
1524
-
1525
- options.push_back({ "perplexity" });
1526
- options.push_back({ "perplexity", " --all-logits", "return logits for all tokens in the batch (default: %s)", params.logits_all ? "true" : "false" });
1527
- options.push_back({ "perplexity", " --hellaswag", "compute HellaSwag score over random tasks from datafile supplied with -f" });
1528
- options.push_back({ "perplexity", " --hellaswag-tasks N", "number of tasks to use when computing the HellaSwag score (default: %zu)", params.hellaswag_tasks });
1529
- options.push_back({ "perplexity", " --winogrande", "compute Winogrande score over random tasks from datafile supplied with -f" });
1530
- options.push_back({ "perplexity", " --winogrande-tasks N", "number of tasks to use when computing the Winogrande score (default: %zu)", params.winogrande_tasks });
1531
- options.push_back({ "perplexity", " --multiple-choice", "compute multiple choice score over random tasks from datafile supplied with -f" });
1532
- options.push_back({ "perplexity", " --multiple-choice-tasks N",
1533
- "number of tasks to use when computing the multiple choice score (default: %zu)", params.multiple_choice_tasks });
1534
- options.push_back({ "perplexity", " --kl-divergence", "computes KL-divergence to logits provided via --kl-divergence-base" });
1535
- options.push_back({ "perplexity", " --ppl-stride N", "stride for perplexity calculation (default: %d)", params.ppl_stride });
1536
- options.push_back({ "perplexity", " --ppl-output-type {0,1}",
1537
- "output type for perplexity calculation (default: %d)", params.ppl_output_type });
1538
-
1539
- options.push_back({ "parallel" });
1540
- options.push_back({ "*", "-dt, --defrag-thold N", "KV cache defragmentation threshold (default: %.1f, < 0 - disabled)", (double)params.defrag_thold });
1541
- options.push_back({ "*", "-np, --parallel N", "number of parallel sequences to decode (default: %d)", params.n_parallel });
1542
- options.push_back({ "*", "-ns, --sequences N", "number of sequences to decode (default: %d)", params.n_sequences });
1543
- options.push_back({ "*", "-cb, --cont-batching", "enable continuous batching (a.k.a dynamic batching) (default: %s)", params.cont_batching ? "enabled" : "disabled" });
1544
- options.push_back({ "*", "-nocb, --no-cont-batching", "disable continuous batching" });
1545
-
1546
- options.push_back({ "multi-modality" });
1547
- options.push_back({ "*", " --mmproj FILE", "path to a multimodal projector file for LLaVA. see examples/llava/README.md" });
1548
- options.push_back({ "*", " --image FILE", "path to an image file. use with multimodal models. Specify multiple times for batching" });
1549
-
1550
- options.push_back({ "backend" });
1551
- options.push_back({ "*", " --rpc SERVERS", "comma separated list of RPC servers" });
1552
-
1553
- if (llama_supports_mlock()) {
1554
- options.push_back({ "*", " --mlock", "force system to keep model in RAM rather than swapping or compressing" });
1555
- }
1556
- if (llama_supports_mmap()) {
1557
- options.push_back({ "*", " --no-mmap", "do not memory-map model (slower load but may reduce pageouts if not using mlock)" });
1558
- }
1559
- options.push_back({ "*", " --numa TYPE", "attempt optimizations that help on some NUMA systems\n"
1560
- " - distribute: spread execution evenly over all nodes\n"
1561
- " - isolate: only spawn threads on CPUs on the node that execution started on\n"
1562
- " - numactl: use the CPU map provided by numactl\n"
1563
- "if run without this previously, it is recommended to drop the system page cache before using this\n"
1564
- "see https://github.com/ggerganov/llama.cpp/issues/1437" });
1565
-
1566
- if (llama_supports_gpu_offload()) {
1567
- options.push_back({ "*", "-ngl, --gpu-layers N",
1568
- "number of layers to store in VRAM" });
1569
- options.push_back({ "*", "-ngld, --gpu-layers-draft N",
1570
- "number of layers to store in VRAM for the draft model" });
1571
- options.push_back({ "*", "-sm, --split-mode SPLIT_MODE",
1572
- "how to split the model across multiple GPUs, one of:\n"
1573
- " - none: use one GPU only\n"
1574
- " - layer (default): split layers and KV across GPUs\n"
1575
- " - row: split rows across GPUs" });
1576
- options.push_back({ "*", "-ts, --tensor-split SPLIT",
1577
- "fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1" });
1578
- options.push_back({ "*", "-mg, --main-gpu i", "the GPU to use for the model (with split-mode = none),\n"
1579
- "or for intermediate results and KV (with split-mode = row) (default: %d)", params.main_gpu });
1580
- }
1581
-
1582
- options.push_back({ "model" });
1583
- options.push_back({ "*", " --check-tensors", "check model tensor data for invalid values (default: %s)", params.check_tensors ? "true" : "false" });
1584
- options.push_back({ "*", " --override-kv KEY=TYPE:VALUE",
1585
- "advanced option to override model metadata by key. may be specified multiple times.\n"
1586
- "types: int, float, bool, str. example: --override-kv tokenizer.ggml.add_bos_token=bool:false" });
1587
- options.push_back({ "*", " --lora FNAME", "apply LoRA adapter (can be repeated to use multiple adapters)" });
1588
- options.push_back({ "*", " --lora-scaled FNAME S", "apply LoRA adapter with user defined scaling S (can be repeated to use multiple adapters)" });
1589
- options.push_back({ "*", " --control-vector FNAME", "add a control vector\n"
1590
- "note: this argument can be repeated to add multiple control vectors" });
1591
- options.push_back({ "*", " --control-vector-scaled FNAME SCALE",
1592
- "add a control vector with user defined scaling SCALE\n"
1593
- "note: this argument can be repeated to add multiple scaled control vectors" });
1594
- options.push_back({ "*", " --control-vector-layer-range START END",
1595
- "layer range to apply the control vector(s) to, start and end inclusive" });
1596
- options.push_back({ "*", "-m, --model FNAME", "model path (default: models/$filename with filename from --hf-file\n"
1597
- "or --model-url if set, otherwise %s)", DEFAULT_MODEL_PATH });
1598
- options.push_back({ "*", "-md, --model-draft FNAME", "draft model for speculative decoding (default: unused)" });
1599
- options.push_back({ "*", "-mu, --model-url MODEL_URL", "model download url (default: unused)" });
1600
- options.push_back({ "*", "-hfr, --hf-repo REPO", "Hugging Face model repository (default: unused)" });
1601
- options.push_back({ "*", "-hff, --hf-file FILE", "Hugging Face model file (default: unused)" });
1602
- options.push_back({ "*", "-hft, --hf-token TOKEN", "Hugging Face access token (default: value from HF_TOKEN environment variable)" });
1603
-
1604
- options.push_back({ "retrieval" });
1605
- options.push_back({ "retrieval", " --context-file FNAME", "file to load context from (repeat to specify multiple files)" });
1606
- options.push_back({ "retrieval", " --chunk-size N", "minimum length of embedded text chunks (default: %d)", params.chunk_size });
1607
- options.push_back({ "retrieval", " --chunk-separator STRING",
1608
- "separator between chunks (default: '%s')", params.chunk_separator.c_str() });
1609
-
1610
- options.push_back({ "passkey" });
1611
- options.push_back({ "passkey", " --junk N", "number of times to repeat the junk text (default: %d)", params.n_junk });
1612
- options.push_back({ "passkey", " --pos N", "position of the passkey in the junk text (default: %d)", params.i_pos });
1613
-
1614
- options.push_back({ "imatrix" });
1615
- options.push_back({ "imatrix", "-o, --output FNAME", "output file (default: '%s')", params.out_file.c_str() });
1616
- options.push_back({ "imatrix", " --output-frequency N", "output the imatrix every N iterations (default: %d)", params.n_out_freq });
1617
- options.push_back({ "imatrix", " --save-frequency N", "save an imatrix copy every N iterations (default: %d)", params.n_save_freq });
1618
- options.push_back({ "imatrix", " --process-output", "collect data for the output tensor (default: %s)", params.process_output ? "true" : "false" });
1619
- options.push_back({ "imatrix", " --no-ppl", "do not compute perplexity (default: %s)", params.compute_ppl ? "true" : "false" });
1620
- options.push_back({ "imatrix", " --chunk N", "start processing the input from chunk N (default: %d)", params.i_chunk });
1621
-
1622
- options.push_back({ "bench" });
1623
- options.push_back({ "bench", "-pps", "is the prompt shared across parallel sequences (default: %s)", params.is_pp_shared ? "true" : "false" });
1624
- options.push_back({ "bench", "-npp n0,n1,...", "number of prompt tokens" });
1625
- options.push_back({ "bench", "-ntg n0,n1,...", "number of text generation tokens" });
1626
- options.push_back({ "bench", "-npl n0,n1,...", "number of parallel prompts" });
1627
-
1628
- options.push_back({ "embedding" });
1629
- options.push_back({ "embedding", " --embd-normalize", "normalisation for embendings (default: %d) (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm)", params.embd_normalize });
1630
- options.push_back({ "embedding", " --embd-output-format", "empty = default, \"array\" = [[],[]...], \"json\" = openai style, \"json+\" = same \"json\" + cosine similarity matrix" });
1631
- options.push_back({ "embedding", " --embd-separator", "separator of embendings (default \\n) for example \"<#sep#>\"" });
1632
-
1633
- options.push_back({ "server" });
1634
- options.push_back({ "server", " --host HOST", "ip address to listen (default: %s)", params.hostname.c_str() });
1635
- options.push_back({ "server", " --port PORT", "port to listen (default: %d)", params.port });
1636
- options.push_back({ "server", " --path PATH", "path to serve static files from (default: %s)", params.public_path.c_str() });
1637
- options.push_back({ "server", " --embedding(s)", "enable embedding endpoint (default: %s)", params.embedding ? "enabled" : "disabled" });
1638
- options.push_back({ "server", " --api-key KEY", "API key to use for authentication (default: none)" });
1639
- options.push_back({ "server", " --api-key-file FNAME", "path to file containing API keys (default: none)" });
1640
- options.push_back({ "server", " --ssl-key-file FNAME", "path to file a PEM-encoded SSL private key" });
1641
- options.push_back({ "server", " --ssl-cert-file FNAME", "path to file a PEM-encoded SSL certificate" });
1642
- options.push_back({ "server", " --timeout N", "server read/write timeout in seconds (default: %d)", params.timeout_read });
1643
- options.push_back({ "server", " --threads-http N", "number of threads used to process HTTP requests (default: %d)", params.n_threads_http });
1644
- options.push_back({ "server", " --system-prompt-file FNAME",
1645
- "set a file to load a system prompt (initial prompt of all slots), this is useful for chat applications" });
1646
- options.push_back({ "server", " --log-format {text,json}",
1647
- "log output format: json or text (default: json)" });
1648
- options.push_back({ "server", " --metrics", "enable prometheus compatible metrics endpoint (default: %s)", params.endpoint_metrics ? "enabled" : "disabled" });
1649
- options.push_back({ "server", " --no-slots", "disables slots monitoring endpoint (default: %s)", params.endpoint_slots ? "enabled" : "disabled" });
1650
- options.push_back({ "server", " --slot-save-path PATH", "path to save slot kv cache (default: disabled)" });
1651
- options.push_back({ "server", " --chat-template JINJA_TEMPLATE",
1652
- "set custom jinja chat template (default: template taken from model's metadata)\n"
1653
- "only commonly used templates are accepted:\n"
1654
- "https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template" });
1655
- options.push_back({ "server", "-sps, --slot-prompt-similarity SIMILARITY",
1656
- "how much the prompt of a request must match the prompt of a slot in order to use that slot (default: %.2f, 0.0 = disabled)\n", params.slot_prompt_similarity });
1657
-
1658
- #ifndef LOG_DISABLE_LOGS
1659
- options.push_back({ "logging" });
1660
- options.push_back({ "*", " --simple-io", "use basic IO for better compatibility in subprocesses and limited consoles" });
1661
- options.push_back({ "*", "-ld, --logdir LOGDIR", "path under which to save YAML logs (no logging if unset)" });
1662
- options.push_back({ "logging", " --log-test", "Run simple logging test" });
1663
- options.push_back({ "logging", " --log-disable", "Disable trace logs" });
1664
- options.push_back({ "logging", " --log-enable", "Enable trace logs" });
1665
- options.push_back({ "logging", " --log-file FNAME", "Specify a log filename (without extension)" });
1666
- options.push_back({ "logging", " --log-new", "Create a separate new log file on start. "
1667
- "Each log file will have unique name: \"<name>.<ID>.log\"" });
1668
- options.push_back({ "logging", " --log-append", "Don't truncate the old log file." });
1669
- #endif // LOG_DISABLE_LOGS
1670
-
1671
- options.push_back({ "cvector" });
1672
- options.push_back({ "cvector", "-o, --output FNAME", "output file (default: '%s')", params.cvector_outfile.c_str() });
1673
- options.push_back({ "cvector", " --positive-file FNAME", "positive prompts file, one prompt per line (default: '%s')", params.cvector_positive_file.c_str() });
1674
- options.push_back({ "cvector", " --negative-file FNAME", "negative prompts file, one prompt per line (default: '%s')", params.cvector_negative_file.c_str() });
1675
- options.push_back({ "cvector", " --pca-batch N", "batch size used for PCA. Larger batch runs faster, but uses more memory (default: %d)", params.n_pca_batch });
1676
- options.push_back({ "cvector", " --pca-iter N", "number of iterations used for PCA (default: %d)", params.n_pca_iterations });
1677
- options.push_back({ "cvector", " --method {pca,mean}", "dimensionality reduction method to be used (default: pca)" });
1678
-
1679
- options.push_back({ "export-lora" });
1680
- options.push_back({ "export-lora", "-m, --model", "model path from which to load base model (default '%s')", params.model.c_str() });
1681
- options.push_back({ "export-lora", " --lora FNAME", "path to LoRA adapter (can be repeated to use multiple adapters)" });
1682
- options.push_back({ "export-lora", " --lora-scaled FNAME S", "path to LoRA adapter with user defined scaling S (can be repeated to use multiple adapters)" });
1683
- options.push_back({ "*", "-t, --threads N", "number of threads to use during computation (default: %d)", params.n_threads });
1684
- options.push_back({ "export-lora", "-o, --output FNAME", "output file (default: '%s')", params.lora_outfile.c_str() });
1685
-
1686
- printf("usage: %s [options]\n", argv[0]);
1687
-
1688
- for (const auto & o : options) {
1689
- if (!o.grp.empty()) {
1690
- printf("\n%s:\n\n", o.grp.c_str());
1691
- continue;
1692
- }
1693
- printf(" %-32s", o.args.c_str());
1694
- if (o.args.length() > 30) {
1695
- printf("\n%34s", "");
1696
- }
1697
-
1698
- const auto desc = o.desc;
1699
- size_t start = 0;
1700
- size_t end = desc.find('\n');
1701
- while (end != std::string::npos) {
1702
- printf("%s\n%34s", desc.substr(start, end - start).c_str(), "");
1703
- start = end + 1;
1704
- end = desc.find('\n', start);
1705
- }
1706
-
1707
- printf("%s\n", desc.substr(start).c_str());
1708
- }
1709
- printf("\n");
379
+ LOG_INF("build: %d (%s) with %s for %s%s\n", LLAMA_BUILD_NUMBER, LLAMA_COMMIT, LLAMA_COMPILER, LLAMA_BUILD_TARGET, build_type);
1710
380
  }
1711
381
 
1712
- std::string gpt_params_get_system_info(const gpt_params & params) {
382
+ std::string common_params_get_system_info(const common_params & params) {
1713
383
  std::ostringstream os;
1714
384
 
1715
- os << "system_info: n_threads = " << params.n_threads;
1716
- if (params.n_threads_batch != -1) {
1717
- os << " (n_threads_batch = " << params.n_threads_batch << ")";
385
+ os << "system_info: n_threads = " << params.cpuparams.n_threads;
386
+ if (params.cpuparams_batch.n_threads != -1) {
387
+ os << " (n_threads_batch = " << params.cpuparams_batch.n_threads << ")";
1718
388
  }
389
+ #if defined(_WIN32) && (_WIN32_WINNT >= 0x0601) && !defined(__MINGW64__) // windows 7 and later
390
+ // TODO: windows + arm64 + mingw64
391
+ DWORD logicalProcessorCount = GetActiveProcessorCount(ALL_PROCESSOR_GROUPS);
392
+ os << " / " << logicalProcessorCount << " | " << llama_print_system_info();
393
+ #else
1719
394
  os << " / " << std::thread::hardware_concurrency() << " | " << llama_print_system_info();
395
+ #endif
1720
396
 
1721
397
  return os.str();
1722
398
  }
@@ -1725,17 +401,19 @@ std::string gpt_params_get_system_info(const gpt_params & params) {
1725
401
  // String utils
1726
402
  //
1727
403
 
1728
- std::vector<std::string> string_split(std::string input, char separator) {
1729
- std::vector<std::string> parts;
1730
- size_t separator_pos = input.find(separator);
1731
- while (separator_pos != std::string::npos) {
1732
- std::string part = input.substr(0, separator_pos);
1733
- parts.emplace_back(part);
1734
- input = input.substr(separator_pos + 1);
1735
- separator_pos = input.find(separator);
1736
- }
1737
- parts.emplace_back(input);
1738
- return parts;
404
+ std::string string_format(const char * fmt, ...) {
405
+ va_list ap;
406
+ va_list ap2;
407
+ va_start(ap, fmt);
408
+ va_copy(ap2, ap);
409
+ int size = vsnprintf(NULL, 0, fmt, ap);
410
+ GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
411
+ std::vector<char> buf(size + 1);
412
+ int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
413
+ GGML_ASSERT(size2 == size);
414
+ va_end(ap2);
415
+ va_end(ap);
416
+ return std::string(buf.data(), size);
1739
417
  }
1740
418
 
1741
419
  std::string string_strip(const std::string & str) {
@@ -1766,6 +444,111 @@ std::string string_get_sortable_timestamp() {
1766
444
  return std::string(timestamp_no_ns) + "." + std::string(timestamp_ns);
1767
445
  }
1768
446
 
447
+ void string_replace_all(std::string & s, const std::string & search, const std::string & replace) {
448
+ if (search.empty()) {
449
+ return;
450
+ }
451
+ std::string builder;
452
+ builder.reserve(s.length());
453
+ size_t pos = 0;
454
+ size_t last_pos = 0;
455
+ while ((pos = s.find(search, last_pos)) != std::string::npos) {
456
+ builder.append(s, last_pos, pos - last_pos);
457
+ builder.append(replace);
458
+ last_pos = pos + search.length();
459
+ }
460
+ builder.append(s, last_pos, std::string::npos);
461
+ s = std::move(builder);
462
+ }
463
+
464
+ std::string string_from(bool value) {
465
+ return value ? "true" : "false";
466
+ }
467
+
468
+ std::string string_from(const std::vector<int> & values) {
469
+ std::stringstream buf;
470
+
471
+ buf << "[ ";
472
+ bool first = true;
473
+ for (auto e : values) {
474
+ if (first) {
475
+ first = false;
476
+ } else {
477
+ buf << ", ";
478
+ }
479
+ buf << std::to_string(e);
480
+ }
481
+ buf << " ]";
482
+
483
+ return buf.str();
484
+ }
485
+
486
+ std::string string_from(const struct llama_context * ctx, const std::vector<llama_token> & tokens) {
487
+ std::stringstream buf;
488
+
489
+ buf << "[ ";
490
+
491
+ bool first = true;
492
+ for (const auto & token : tokens) {
493
+ if (!first) {
494
+ buf << ", ";
495
+ } else {
496
+ first = false;
497
+ }
498
+
499
+ auto detokenized = common_token_to_piece(ctx, token);
500
+
501
+ detokenized.erase(
502
+ std::remove_if(
503
+ detokenized.begin(),
504
+ detokenized.end(),
505
+ [](const unsigned char c) { return !std::isprint(c); }),
506
+ detokenized.end());
507
+
508
+ buf << "'" << detokenized << "'"
509
+ << ":" << std::to_string(token);
510
+ }
511
+
512
+ buf << " ]";
513
+
514
+ return buf.str();
515
+ }
516
+
517
+ std::string string_from(const struct llama_context * ctx, const struct llama_batch & batch) {
518
+ std::stringstream buf;
519
+
520
+ buf << "[ ";
521
+
522
+ bool first = true;
523
+ for (int i = 0; i < batch.n_tokens; ++i) {
524
+ if (!first) {
525
+ buf << ", ";
526
+ } else {
527
+ first = false;
528
+ }
529
+
530
+ auto detokenized = common_token_to_piece(ctx, batch.token[i]);
531
+
532
+ detokenized.erase(
533
+ std::remove_if(
534
+ detokenized.begin(),
535
+ detokenized.end(),
536
+ [](const unsigned char c) { return !std::isprint(c); }),
537
+ detokenized.end());
538
+
539
+ buf << "\n" << std::to_string(i)
540
+ << ":token '" << detokenized << "'"
541
+ << ":pos " << std::to_string(batch.pos[i])
542
+ << ":n_seq_id " << std::to_string(batch.n_seq_id[i])
543
+ << ":seq_id " << std::to_string(batch.seq_id[i][0])
544
+ << ":logits " << std::to_string(batch.logits[i]);
545
+ }
546
+
547
+ buf << " ]";
548
+
549
+ return buf.str();
550
+ }
551
+
1769
552
  void string_process_escapes(std::string & input) {
1770
553
  std::size_t input_len = input.length();
1771
554
  std::size_t output_idx = 0;
@@ -1806,7 +589,7 @@ void string_process_escapes(std::string & input) {
1806
589
  bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides) {
1807
590
  const char * sep = strchr(data, '=');
1808
591
  if (sep == nullptr || sep - data >= 128) {
1809
- fprintf(stderr, "%s: malformed KV override '%s'\n", __func__, data);
592
+ LOG_ERR("%s: malformed KV override '%s'\n", __func__, data);
1810
593
  return false;
1811
594
  }
1812
595
  llama_model_kv_override kvo;
@@ -1829,20 +612,20 @@ bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_over
1829
612
  } else if (std::strcmp(sep, "false") == 0) {
1830
613
  kvo.val_bool = false;
1831
614
  } else {
1832
- fprintf(stderr, "%s: invalid boolean value for KV override '%s'\n", __func__, data);
615
+ LOG_ERR("%s: invalid boolean value for KV override '%s'\n", __func__, data);
1833
616
  return false;
1834
617
  }
1835
618
  } else if (strncmp(sep, "str:", 4) == 0) {
1836
619
  sep += 4;
1837
620
  kvo.tag = LLAMA_KV_OVERRIDE_TYPE_STR;
1838
621
  if (strlen(sep) > 127) {
1839
- fprintf(stderr, "%s: malformed KV override '%s', value cannot exceed 127 chars\n", __func__, data);
622
+ LOG_ERR("%s: malformed KV override '%s', value cannot exceed 127 chars\n", __func__, data);
1840
623
  return false;
1841
624
  }
1842
625
  strncpy(kvo.val_str, sep, 127);
1843
626
  kvo.val_str[127] = '\0';
1844
627
  } else {
1845
- fprintf(stderr, "%s: invalid type for KV override '%s'\n", __func__, data);
628
+ LOG_ERR("%s: invalid type for KV override '%s'\n", __func__, data);
1846
629
  return false;
1847
630
  }
1848
631
  overrides.emplace_back(std::move(kvo));
@@ -2039,43 +822,69 @@ std::string fs_get_cache_file(const std::string & filename) {
2039
822
  //
2040
823
  // Model utils
2041
824
  //
2042
-
2043
- std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(gpt_params & params) {
2044
- auto mparams = llama_model_params_from_gpt_params(params);
825
+ struct common_init_result common_init_from_params(common_params & params) {
826
+ common_init_result iparams;
827
+ auto mparams = common_model_params_to_llama(params);
2045
828
 
2046
829
  llama_model * model = nullptr;
2047
830
 
2048
831
  if (!params.hf_repo.empty() && !params.hf_file.empty()) {
2049
- model = llama_load_model_from_hf(params.hf_repo.c_str(), params.hf_file.c_str(), params.model.c_str(), params.hf_token.c_str(), mparams);
832
+ model = common_load_model_from_hf(params.hf_repo.c_str(), params.hf_file.c_str(), params.model.c_str(), params.hf_token.c_str(), mparams);
2050
833
  } else if (!params.model_url.empty()) {
2051
- model = llama_load_model_from_url(params.model_url.c_str(), params.model.c_str(), params.hf_token.c_str(), mparams);
834
+ model = common_load_model_from_url(params.model_url.c_str(), params.model.c_str(), params.hf_token.c_str(), mparams);
2052
835
  } else {
2053
836
  model = llama_load_model_from_file(params.model.c_str(), mparams);
2054
837
  }
2055
838
 
2056
839
  if (model == NULL) {
2057
- fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str());
2058
- return std::make_tuple(nullptr, nullptr);
840
+ LOG_ERR("%s: failed to load model '%s'\n", __func__, params.model.c_str());
841
+ return iparams;
842
+ }
843
+
844
+ if (params.reranking) {
845
+ bool ok = true;
846
+
847
+ if (llama_token_bos(model) == LLAMA_TOKEN_NULL) {
848
+ LOG_WRN("%s: warning: model does not have a BOS token, reranking will not work\n", __func__);
849
+ ok = false;
850
+ }
851
+
852
+ if (llama_token_eos(model) == LLAMA_TOKEN_NULL) {
853
+ LOG_WRN("%s: warning: model does not have an EOS token, reranking will not work\n", __func__);
854
+ ok = false;
855
+ }
856
+
857
+ if (llama_token_sep(model) == LLAMA_TOKEN_NULL) {
858
+ LOG_WRN("%s: warning: model does not have a SEP token, reranking will not work\n", __func__);
859
+ ok = false;
860
+ }
861
+
862
+ if (!ok) {
863
+ llama_free_model(model);
864
+
865
+ return iparams;
866
+ }
2059
867
  }
2060
868
 
2061
- auto cparams = llama_context_params_from_gpt_params(params);
869
+ auto cparams = common_context_params_to_llama(params);
2062
870
 
2063
871
  llama_context * lctx = llama_new_context_with_model(model, cparams);
2064
872
  if (lctx == NULL) {
2065
- fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, params.model.c_str());
873
+ LOG_ERR("%s: failed to create context with model '%s'\n", __func__, params.model.c_str());
2066
874
  llama_free_model(model);
2067
- return std::make_tuple(nullptr, nullptr);
875
+ return iparams;
2068
876
  }
2069
877
 
2070
878
  if (!params.control_vectors.empty()) {
2071
879
  if (params.control_vector_layer_start <= 0) params.control_vector_layer_start = 1;
2072
880
  if (params.control_vector_layer_end <= 0) params.control_vector_layer_end = llama_n_layer(model);
2073
881
 
2074
- const auto cvec = llama_control_vector_load(params.control_vectors);
882
+ const auto cvec = common_control_vector_load(params.control_vectors);
2075
883
  if (cvec.n_embd == -1) {
2076
884
  llama_free(lctx);
2077
885
  llama_free_model(model);
2078
- return std::make_tuple(nullptr, nullptr);
886
+
887
+ return iparams;
2079
888
  }
2080
889
 
2081
890
  int err = llama_control_vector_apply(lctx,
@@ -2087,41 +896,53 @@ std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_par
2087
896
  if (err) {
2088
897
  llama_free(lctx);
2089
898
  llama_free_model(model);
2090
- return std::make_tuple(nullptr, nullptr);
899
+
900
+ return iparams;
2091
901
  }
2092
902
  }
2093
903
 
2094
- for (unsigned int i = 0; i < params.lora_adapter.size(); ++i) {
2095
- const std::string & lora_adapter = std::get<0>(params.lora_adapter[i]);
2096
- float lora_scale = std::get<1>(params.lora_adapter[i]);
2097
- auto adapter = llama_lora_adapter_init(model, lora_adapter.c_str());
2098
- if (adapter == nullptr) {
2099
- fprintf(stderr, "%s: error: failed to apply lora adapter\n", __func__);
904
+ // load and optionally apply lora adapters
905
+ for (auto & la : params.lora_adapters) {
906
+ common_lora_adapter_container loaded_la;
907
+ loaded_la.path = la.path;
908
+ loaded_la.scale = la.scale;
909
+ loaded_la.adapter = llama_lora_adapter_init(model, la.path.c_str());
910
+ if (loaded_la.adapter == nullptr) {
911
+ LOG_ERR("%s: failed to apply lora adapter '%s'\n", __func__, la.path.c_str());
2100
912
  llama_free(lctx);
2101
913
  llama_free_model(model);
2102
- return std::make_tuple(nullptr, nullptr);
914
+ return iparams;
2103
915
  }
2104
- llama_lora_adapter_set(lctx, adapter, lora_scale);
916
+ iparams.lora_adapters.push_back(loaded_la); // copy to list of loaded adapters
917
+ }
918
+ if (!params.lora_init_without_apply) {
919
+ common_lora_adapters_apply(lctx, iparams.lora_adapters);
2105
920
  }
2106
921
 
2107
- if (params.ignore_eos) {
2108
- params.sparams.logit_bias[llama_token_eos(model)] = -INFINITY;
922
+ if (params.sparams.ignore_eos && llama_token_eos(model) == LLAMA_TOKEN_NULL) {
923
+ LOG_WRN("%s: warning: model does not have an EOS token, ignoring --ignore-eos\n", __func__);
924
+ params.sparams.ignore_eos = false;
2109
925
  }
2110
926
 
2111
927
  if (params.warmup) {
2112
- LOG("warming up the model with an empty run\n");
928
+ LOG_WRN("%s: warming up the model with an empty run - please wait ... (--no-warmup to disable)\n", __func__);
2113
929
 
2114
930
  std::vector<llama_token> tmp;
2115
931
  llama_token bos = llama_token_bos(model);
2116
932
  llama_token eos = llama_token_eos(model);
2117
933
  // some models (e.g. T5) don't have a BOS token
2118
- if (bos != -1) {
934
+ if (bos != LLAMA_TOKEN_NULL) {
2119
935
  tmp.push_back(bos);
2120
936
  }
2121
- tmp.push_back(eos);
937
+ if (eos != LLAMA_TOKEN_NULL) {
938
+ tmp.push_back(eos);
939
+ }
940
+ if (tmp.empty()) {
941
+ tmp.push_back(0);
942
+ }
2122
943
 
2123
944
  if (llama_model_has_encoder(model)) {
2124
- llama_encode(lctx, llama_batch_get_one(tmp.data(), tmp.size(), 0, 0));
945
+ llama_encode(lctx, llama_batch_get_one(tmp.data(), tmp.size()));
2125
946
  llama_token decoder_start_token_id = llama_model_decoder_start_token(model);
2126
947
  if (decoder_start_token_id == -1) {
2127
948
  decoder_start_token_id = bos;
@@ -2129,16 +950,30 @@ std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_par
2129
950
  tmp.clear();
2130
951
  tmp.push_back(decoder_start_token_id);
2131
952
  }
2132
- llama_decode(lctx, llama_batch_get_one(tmp.data(), std::min(tmp.size(), (size_t) params.n_batch), 0, 0));
953
+ if (llama_model_has_decoder(model)) {
954
+ llama_decode(lctx, llama_batch_get_one(tmp.data(), std::min(tmp.size(), (size_t) params.n_batch)));
955
+ }
2133
956
  llama_kv_cache_clear(lctx);
2134
957
  llama_synchronize(lctx);
2135
- llama_reset_timings(lctx);
958
+ llama_perf_context_reset(lctx);
2136
959
  }
2137
960
 
2138
- return std::make_tuple(model, lctx);
961
+ iparams.model = model;
962
+ iparams.context = lctx;
963
+
964
+ return iparams;
965
+ }
966
+
967
+ void common_lora_adapters_apply(struct llama_context * ctx, std::vector<common_lora_adapter_container> & lora_adapters) {
968
+ llama_lora_adapter_clear(ctx);
969
+ for (auto & la : lora_adapters) {
970
+ if (la.scale != 0.0f) {
971
+ llama_lora_adapter_set(ctx, la.adapter, la.scale);
972
+ }
973
+ }
2139
974
  }
2140
975
 
2141
- struct llama_model_params llama_model_params_from_gpt_params(const gpt_params & params) {
976
+ struct llama_model_params common_model_params_to_llama(const common_params & params) {
2142
977
  auto mparams = llama_model_default_params();
2143
978
 
2144
979
  if (params.n_gpu_layers != -1) {
@@ -2168,6 +1003,9 @@ static ggml_type kv_cache_type_from_str(const std::string & s) {
2168
1003
  if (s == "f16") {
2169
1004
  return GGML_TYPE_F16;
2170
1005
  }
1006
+ if (s == "bf16") {
1007
+ return GGML_TYPE_BF16;
1008
+ }
2171
1009
  if (s == "q8_0") {
2172
1010
  return GGML_TYPE_Q8_0;
2173
1011
  }
@@ -2187,19 +1025,19 @@ static ggml_type kv_cache_type_from_str(const std::string & s) {
2187
1025
  return GGML_TYPE_Q5_1;
2188
1026
  }
2189
1027
 
2190
- throw std::runtime_error("Invalid cache type: " + s);
1028
+ throw std::runtime_error("Unsupported cache type: " + s);
2191
1029
  }
2192
1030
 
2193
- struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params) {
1031
+ struct llama_context_params common_context_params_to_llama(const common_params & params) {
2194
1032
  auto cparams = llama_context_default_params();
2195
1033
 
2196
1034
  cparams.n_ctx = params.n_ctx;
2197
1035
  cparams.n_seq_max = params.n_parallel;
2198
1036
  cparams.n_batch = params.n_batch;
2199
1037
  cparams.n_ubatch = params.n_ubatch;
2200
- cparams.n_threads = params.n_threads;
2201
- cparams.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
2202
- cparams.seed = params.seed;
1038
+ cparams.n_threads = params.cpuparams.n_threads;
1039
+ cparams.n_threads_batch = params.cpuparams_batch.n_threads == -1 ?
1040
+ params.cpuparams.n_threads : params.cpuparams_batch.n_threads;
2203
1041
  cparams.logits_all = params.logits_all;
2204
1042
  cparams.embeddings = params.embedding;
2205
1043
  cparams.rope_scaling_type = params.rope_scaling_type;
@@ -2217,6 +1055,12 @@ struct llama_context_params llama_context_params_from_gpt_params(const gpt_param
2217
1055
  cparams.cb_eval_user_data = params.cb_eval_user_data;
2218
1056
  cparams.offload_kqv = !params.no_kv_offload;
2219
1057
  cparams.flash_attn = params.flash_attn;
1058
+ cparams.no_perf = params.no_perf;
1059
+
1060
+ if (params.reranking) {
1061
+ cparams.embeddings = true;
1062
+ cparams.pooling_type = LLAMA_POOLING_TYPE_RANK;
1063
+ }
2220
1064
 
2221
1065
  cparams.type_k = kv_cache_type_from_str(params.cache_type_k);
2222
1066
  cparams.type_v = kv_cache_type_from_str(params.cache_type_v);
@@ -2224,19 +1068,62 @@ struct llama_context_params llama_context_params_from_gpt_params(const gpt_param
2224
1068
  return cparams;
2225
1069
  }
2226
1070
 
1071
+ struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_params & params) {
1072
+ struct ggml_threadpool_params tpp;
1073
+
1074
+ ggml_threadpool_params_init(&tpp, params.n_threads); // setup the defaults
1075
+
1076
+ if (params.mask_valid) {
1077
+ std::memcpy(&tpp.cpumask, &params.cpumask, GGML_MAX_N_THREADS);
1078
+ }
1079
+
1080
+ tpp.prio = params.priority;
1081
+ tpp.poll = params.poll;
1082
+ tpp.strict_cpu = params.strict_cpu;
1083
+
1084
+ return tpp;
1085
+ }
1086
+
2227
1087
  #ifdef LLAMA_USE_CURL
2228
1088
 
1089
+ #define CURL_MAX_RETRY 3
1090
+ #define CURL_RETRY_DELAY_SECONDS 2
1091
+
1092
+
2229
1093
  static bool starts_with(const std::string & str, const std::string & prefix) {
2230
1094
  // While we wait for C++20's std::string::starts_with...
2231
1095
  return str.rfind(prefix, 0) == 0;
2232
1096
  }
2233
1097
 
2234
- static bool llama_download_file(const std::string & url, const std::string & path, const std::string & hf_token) {
1098
+ static bool curl_perform_with_retry(const std::string& url, CURL* curl, int max_attempts, int retry_delay_seconds) {
1099
+ int remaining_attempts = max_attempts;
1100
+
1101
+ while (remaining_attempts > 0) {
1102
+ LOG_INF("%s: Trying to download from %s (attempt %d of %d)...\n", __func__ , url.c_str(), max_attempts - remaining_attempts + 1, max_attempts);
1103
+
1104
+ CURLcode res = curl_easy_perform(curl);
1105
+ if (res == CURLE_OK) {
1106
+ return true;
1107
+ }
1108
+
1109
+ int exponential_backoff_delay = std::pow(retry_delay_seconds, max_attempts - remaining_attempts) * 1000;
1110
+ LOG_WRN("%s: curl_easy_perform() failed: %s, retrying after %d milliseconds...\n", __func__, curl_easy_strerror(res), exponential_backoff_delay);
1111
+
1112
+ remaining_attempts--;
1113
+ std::this_thread::sleep_for(std::chrono::milliseconds(exponential_backoff_delay));
1114
+ }
1115
+
1116
+ LOG_ERR("%s: curl_easy_perform() failed after %d attempts\n", __func__, max_attempts);
1117
+
1118
+ return false;
1119
+ }
1120
+
1121
+ static bool common_download_file(const std::string & url, const std::string & path, const std::string & hf_token) {
2235
1122
 
2236
1123
  // Initialize libcurl
2237
1124
  std::unique_ptr<CURL, decltype(&curl_easy_cleanup)> curl(curl_easy_init(), &curl_easy_cleanup);
2238
1125
  if (!curl) {
2239
- fprintf(stderr, "%s: error initializing libcurl\n", __func__);
1126
+ LOG_ERR("%s: error initializing libcurl\n", __func__);
2240
1127
  return false;
2241
1128
  }
2242
1129
 
@@ -2277,11 +1164,11 @@ static bool llama_download_file(const std::string & url, const std::string & pat
2277
1164
  if (metadata_in.good()) {
2278
1165
  try {
2279
1166
  metadata_in >> metadata;
2280
- fprintf(stderr, "%s: previous metadata file found %s: %s\n", __func__, metadata_path.c_str(), metadata.dump().c_str());
1167
+ LOG_INF("%s: previous metadata file found %s: %s\n", __func__, metadata_path.c_str(), metadata.dump().c_str());
2281
1168
  if (metadata.contains("url") && metadata.at("url").is_string()) {
2282
1169
  auto previous_url = metadata.at("url").get<std::string>();
2283
1170
  if (previous_url != url) {
2284
- fprintf(stderr, "%s: Model URL mismatch: %s != %s\n", __func__, url.c_str(), previous_url.c_str());
1171
+ LOG_ERR("%s: Model URL mismatch: %s != %s\n", __func__, url.c_str(), previous_url.c_str());
2285
1172
  return false;
2286
1173
  }
2287
1174
  }
@@ -2292,24 +1179,24 @@ static bool llama_download_file(const std::string & url, const std::string & pat
2292
1179
  last_modified = metadata.at("lastModified");
2293
1180
  }
2294
1181
  } catch (const nlohmann::json::exception & e) {
2295
- fprintf(stderr, "%s: error reading metadata file %s: %s\n", __func__, metadata_path.c_str(), e.what());
1182
+ LOG_ERR("%s: error reading metadata file %s: %s\n", __func__, metadata_path.c_str(), e.what());
2296
1183
  return false;
2297
1184
  }
2298
1185
  }
2299
1186
  } else {
2300
- fprintf(stderr, "%s: no previous model file found %s\n", __func__, path.c_str());
1187
+ LOG_INF("%s: no previous model file found %s\n", __func__, path.c_str());
2301
1188
  }
2302
1189
 
2303
1190
  // Send a HEAD request to retrieve the etag and last-modified headers
2304
- struct llama_load_model_from_url_headers {
1191
+ struct common_load_model_from_url_headers {
2305
1192
  std::string etag;
2306
1193
  std::string last_modified;
2307
1194
  };
2308
- llama_load_model_from_url_headers headers;
1195
+ common_load_model_from_url_headers headers;
2309
1196
  {
2310
1197
  typedef size_t(*CURLOPT_HEADERFUNCTION_PTR)(char *, size_t, size_t, void *);
2311
1198
  auto header_callback = [](char * buffer, size_t /*size*/, size_t n_items, void * userdata) -> size_t {
2312
- llama_load_model_from_url_headers *headers = (llama_load_model_from_url_headers *) userdata;
1199
+ common_load_model_from_url_headers *headers = (common_load_model_from_url_headers *) userdata;
2313
1200
 
2314
1201
  static std::regex header_regex("([^:]+): (.*)\r\n");
2315
1202
  static std::regex etag_regex("ETag", std::regex_constants::icase);
@@ -2334,9 +1221,8 @@ static bool llama_download_file(const std::string & url, const std::string & pat
2334
1221
  curl_easy_setopt(curl.get(), CURLOPT_HEADERFUNCTION, static_cast<CURLOPT_HEADERFUNCTION_PTR>(header_callback));
2335
1222
  curl_easy_setopt(curl.get(), CURLOPT_HEADERDATA, &headers);
2336
1223
 
2337
- CURLcode res = curl_easy_perform(curl.get());
2338
- if (res != CURLE_OK) {
2339
- fprintf(stderr, "%s: curl_easy_perform() failed: %s\n", __func__, curl_easy_strerror(res));
1224
+ bool was_perform_successful = curl_perform_with_retry(url, curl.get(), CURL_MAX_RETRY, CURL_RETRY_DELAY_SECONDS);
1225
+ if (!was_perform_successful) {
2340
1226
  return false;
2341
1227
  }
2342
1228
 
@@ -2346,26 +1232,26 @@ static bool llama_download_file(const std::string & url, const std::string & pat
2346
1232
  // HEAD not supported, we don't know if the file has changed
2347
1233
  // force trigger downloading
2348
1234
  force_download = true;
2349
- fprintf(stderr, "%s: HEAD invalid http status code received: %ld\n", __func__, http_code);
1235
+ LOG_ERR("%s: HEAD invalid http status code received: %ld\n", __func__, http_code);
2350
1236
  }
2351
1237
  }
2352
1238
 
2353
1239
  bool should_download = !file_exists || force_download;
2354
1240
  if (!should_download) {
2355
1241
  if (!etag.empty() && etag != headers.etag) {
2356
- fprintf(stderr, "%s: ETag header is different (%s != %s): triggering a new download\n", __func__, etag.c_str(), headers.etag.c_str());
1242
+ LOG_WRN("%s: ETag header is different (%s != %s): triggering a new download\n", __func__, etag.c_str(), headers.etag.c_str());
2357
1243
  should_download = true;
2358
1244
  } else if (!last_modified.empty() && last_modified != headers.last_modified) {
2359
- fprintf(stderr, "%s: Last-Modified header is different (%s != %s): triggering a new download\n", __func__, last_modified.c_str(), headers.last_modified.c_str());
1245
+ LOG_WRN("%s: Last-Modified header is different (%s != %s): triggering a new download\n", __func__, last_modified.c_str(), headers.last_modified.c_str());
2360
1246
  should_download = true;
2361
1247
  }
2362
1248
  }
2363
1249
  if (should_download) {
2364
1250
  std::string path_temporary = path + ".downloadInProgress";
2365
1251
  if (file_exists) {
2366
- fprintf(stderr, "%s: deleting previous downloaded file: %s\n", __func__, path.c_str());
1252
+ LOG_WRN("%s: deleting previous downloaded file: %s\n", __func__, path.c_str());
2367
1253
  if (remove(path.c_str()) != 0) {
2368
- fprintf(stderr, "%s: unable to delete file: %s\n", __func__, path.c_str());
1254
+ LOG_ERR("%s: unable to delete file: %s\n", __func__, path.c_str());
2369
1255
  return false;
2370
1256
  }
2371
1257
  }
@@ -2380,7 +1266,7 @@ static bool llama_download_file(const std::string & url, const std::string & pat
2380
1266
 
2381
1267
  std::unique_ptr<FILE, FILE_deleter> outfile(fopen(path_temporary.c_str(), "wb"));
2382
1268
  if (!outfile) {
2383
- fprintf(stderr, "%s: error opening local file for writing: %s\n", __func__, path.c_str());
1269
+ LOG_ERR("%s: error opening local file for writing: %s\n", __func__, path.c_str());
2384
1270
  return false;
2385
1271
  }
2386
1272
 
@@ -2411,18 +1297,17 @@ static bool llama_download_file(const std::string & url, const std::string & pat
2411
1297
  };
2412
1298
 
2413
1299
  // start the download
2414
- fprintf(stderr, "%s: downloading from %s to %s (server_etag:%s, server_last_modified:%s)...\n", __func__,
2415
- llama_download_hide_password_in_url(url).c_str(), path.c_str(), headers.etag.c_str(), headers.last_modified.c_str());
2416
- auto res = curl_easy_perform(curl.get());
2417
- if (res != CURLE_OK) {
2418
- fprintf(stderr, "%s: curl_easy_perform() failed: %s\n", __func__, curl_easy_strerror(res));
1300
+ LOG_INF("%s: trying to download model from %s to %s (server_etag:%s, server_last_modified:%s)...\n", __func__,
1301
+ llama_download_hide_password_in_url(url).c_str(), path.c_str(), headers.etag.c_str(), headers.last_modified.c_str());
1302
+ bool was_perform_successful = curl_perform_with_retry(url, curl.get(), CURL_MAX_RETRY, CURL_RETRY_DELAY_SECONDS);
1303
+ if (!was_perform_successful) {
2419
1304
  return false;
2420
1305
  }
2421
1306
 
2422
1307
  long http_code = 0;
2423
1308
  curl_easy_getinfo (curl.get(), CURLINFO_RESPONSE_CODE, &http_code);
2424
1309
  if (http_code < 200 || http_code >= 400) {
2425
- fprintf(stderr, "%s: invalid http status code received: %ld\n", __func__, http_code);
1310
+ LOG_ERR("%s: invalid http status code received: %ld\n", __func__, http_code);
2426
1311
  return false;
2427
1312
  }
2428
1313
 
@@ -2436,10 +1321,10 @@ static bool llama_download_file(const std::string & url, const std::string & pat
2436
1321
  {"lastModified", headers.last_modified}
2437
1322
  });
2438
1323
  std::ofstream(metadata_path) << metadata.dump(4);
2439
- fprintf(stderr, "%s: file metadata saved: %s\n", __func__, metadata_path.c_str());
1324
+ LOG_INF("%s: file metadata saved: %s\n", __func__, metadata_path.c_str());
2440
1325
 
2441
1326
  if (rename(path_temporary.c_str(), path.c_str()) != 0) {
2442
- fprintf(stderr, "%s: unable to rename file: %s to %s\n", __func__, path_temporary.c_str(), path.c_str());
1327
+ LOG_ERR("%s: unable to rename file: %s to %s\n", __func__, path_temporary.c_str(), path.c_str());
2443
1328
  return false;
2444
1329
  }
2445
1330
  }
@@ -2447,18 +1332,18 @@ static bool llama_download_file(const std::string & url, const std::string & pat
2447
1332
  return true;
2448
1333
  }
2449
1334
 
2450
- struct llama_model * llama_load_model_from_url(
1335
+ struct llama_model * common_load_model_from_url(
2451
1336
  const char * model_url,
2452
1337
  const char * path_model,
2453
1338
  const char * hf_token,
2454
1339
  const struct llama_model_params & params) {
2455
1340
  // Basic validation of the model_url
2456
1341
  if (!model_url || strlen(model_url) == 0) {
2457
- fprintf(stderr, "%s: invalid model_url\n", __func__);
1342
+ LOG_ERR("%s: invalid model_url\n", __func__);
2458
1343
  return NULL;
2459
1344
  }
2460
1345
 
2461
- if (!llama_download_file(model_url, path_model, hf_token)) {
1346
+ if (!common_download_file(model_url, path_model, hf_token)) {
2462
1347
  return NULL;
2463
1348
  }
2464
1349
 
@@ -2471,7 +1356,7 @@ struct llama_model * llama_load_model_from_url(
2471
1356
  };
2472
1357
  auto * ctx_gguf = gguf_init_from_file(path_model, gguf_params);
2473
1358
  if (!ctx_gguf) {
2474
- fprintf(stderr, "\n%s: failed to load input GGUF from %s\n", __func__, path_model);
1359
+ LOG_ERR("\n%s: failed to load input GGUF from %s\n", __func__, path_model);
2475
1360
  return NULL;
2476
1361
  }
2477
1362
 
@@ -2491,14 +1376,12 @@ struct llama_model * llama_load_model_from_url(
2491
1376
  // and extract split URL and PATH prefixes
2492
1377
  {
2493
1378
  if (!llama_split_prefix(split_prefix, sizeof(split_prefix), path_model, 0, n_split)) {
2494
- fprintf(stderr, "\n%s: unexpected model file name: %s"
2495
- " n_split=%d\n", __func__, path_model, n_split);
1379
+ LOG_ERR("\n%s: unexpected model file name: %s n_split=%d\n", __func__, path_model, n_split);
2496
1380
  return NULL;
2497
1381
  }
2498
1382
 
2499
1383
  if (!llama_split_prefix(split_url_prefix, sizeof(split_url_prefix), model_url, 0, n_split)) {
2500
- fprintf(stderr, "\n%s: unexpected model url: %s"
2501
- " n_split=%d\n", __func__, model_url, n_split);
1384
+ LOG_ERR("\n%s: unexpected model url: %s n_split=%d\n", __func__, model_url, n_split);
2502
1385
  return NULL;
2503
1386
  }
2504
1387
  }
@@ -2513,7 +1396,7 @@ struct llama_model * llama_load_model_from_url(
2513
1396
  char split_url[LLAMA_CURL_MAX_URL_LENGTH] = {0};
2514
1397
  llama_split_path(split_url, sizeof(split_url), split_url_prefix, download_idx, n_split);
2515
1398
 
2516
- return llama_download_file(split_url, split_path, hf_token);
1399
+ return common_download_file(split_url, split_path, hf_token);
2517
1400
  }, idx));
2518
1401
  }
2519
1402
 
@@ -2528,7 +1411,7 @@ struct llama_model * llama_load_model_from_url(
2528
1411
  return llama_load_model_from_file(path_model, params);
2529
1412
  }
2530
1413
 
2531
- struct llama_model * llama_load_model_from_hf(
1414
+ struct llama_model * common_load_model_from_hf(
2532
1415
  const char * repo,
2533
1416
  const char * model,
2534
1417
  const char * path_model,
@@ -2548,27 +1431,27 @@ struct llama_model * llama_load_model_from_hf(
2548
1431
  model_url += "/resolve/main/";
2549
1432
  model_url += model;
2550
1433
 
2551
- return llama_load_model_from_url(model_url.c_str(), path_model, hf_token, params);
1434
+ return common_load_model_from_url(model_url.c_str(), path_model, hf_token, params);
2552
1435
  }
2553
1436
 
2554
1437
  #else
2555
1438
 
2556
- struct llama_model * llama_load_model_from_url(
1439
+ struct llama_model * common_load_model_from_url(
2557
1440
  const char * /*model_url*/,
2558
1441
  const char * /*path_model*/,
2559
1442
  const char * /*hf_token*/,
2560
1443
  const struct llama_model_params & /*params*/) {
2561
- fprintf(stderr, "%s: llama.cpp built without libcurl, downloading from an url not supported.\n", __func__);
1444
+ LOG_WRN("%s: llama.cpp built without libcurl, downloading from an url not supported.\n", __func__);
2562
1445
  return nullptr;
2563
1446
  }
2564
1447
 
2565
- struct llama_model * llama_load_model_from_hf(
1448
+ struct llama_model * common_load_model_from_hf(
2566
1449
  const char * /*repo*/,
2567
1450
  const char * /*model*/,
2568
1451
  const char * /*path_model*/,
2569
1452
  const char * /*hf_token*/,
2570
1453
  const struct llama_model_params & /*params*/) {
2571
- fprintf(stderr, "%s: llama.cpp built without libcurl, downloading from Hugging Face not supported.\n", __func__);
1454
+ LOG_WRN("%s: llama.cpp built without libcurl, downloading from Hugging Face not supported.\n", __func__);
2572
1455
  return nullptr;
2573
1456
  }
2574
1457
 
@@ -2578,16 +1461,18 @@ struct llama_model * llama_load_model_from_hf(
2578
1461
  // Batch utils
2579
1462
  //
2580
1463
 
2581
- void llama_batch_clear(struct llama_batch & batch) {
1464
+ void common_batch_clear(struct llama_batch & batch) {
2582
1465
  batch.n_tokens = 0;
2583
1466
  }
2584
1467
 
2585
- void llama_batch_add(
1468
+ void common_batch_add(
2586
1469
  struct llama_batch & batch,
2587
1470
  llama_token id,
2588
1471
  llama_pos pos,
2589
1472
  const std::vector<llama_seq_id> & seq_ids,
2590
1473
  bool logits) {
1474
+ GGML_ASSERT(batch.seq_id[batch.n_tokens] && "llama_batch size exceeded");
1475
+
2591
1476
  batch.token [batch.n_tokens] = id;
2592
1477
  batch.pos [batch.n_tokens] = pos;
2593
1478
  batch.n_seq_id[batch.n_tokens] = seq_ids.size();
@@ -2603,15 +1488,15 @@ void llama_batch_add(
2603
1488
  // Vocab utils
2604
1489
  //
2605
1490
 
2606
- std::vector<llama_token> llama_tokenize(
1491
+ std::vector<llama_token> common_tokenize(
2607
1492
  const struct llama_context * ctx,
2608
1493
  const std::string & text,
2609
1494
  bool add_special,
2610
1495
  bool parse_special) {
2611
- return llama_tokenize(llama_get_model(ctx), text, add_special, parse_special);
1496
+ return common_tokenize(llama_get_model(ctx), text, add_special, parse_special);
2612
1497
  }
2613
1498
 
2614
- std::vector<llama_token> llama_tokenize(
1499
+ std::vector<llama_token> common_tokenize(
2615
1500
  const struct llama_model * model,
2616
1501
  const std::string & text,
2617
1502
  bool add_special,
@@ -2630,7 +1515,7 @@ std::vector<llama_token> llama_tokenize(
2630
1515
  return result;
2631
1516
  }
2632
1517
 
2633
- std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token, bool special) {
1518
+ std::string common_token_to_piece(const struct llama_context * ctx, llama_token token, bool special) {
2634
1519
  std::string piece;
2635
1520
  piece.resize(piece.capacity()); // using string internal cache, 15 bytes + '\n'
2636
1521
  const int n_chars = llama_token_to_piece(llama_get_model(ctx), token, &piece[0], piece.size(), 0, special);
@@ -2646,7 +1531,7 @@ std::string llama_token_to_piece(const struct llama_context * ctx, llama_token t
2646
1531
  return piece;
2647
1532
  }
2648
1533
 
2649
- std::string llama_detokenize(llama_context * ctx, const std::vector<llama_token> & tokens, bool special) {
1534
+ std::string common_detokenize(llama_context * ctx, const std::vector<llama_token> & tokens, bool special) {
2650
1535
  std::string text;
2651
1536
  text.resize(std::max(text.capacity(), tokens.size()));
2652
1537
  int32_t n_chars = llama_detokenize(llama_get_model(ctx), tokens.data(), (int32_t)tokens.size(), &text[0], (int32_t)text.size(), false, special);
@@ -2662,25 +1547,19 @@ std::string llama_detokenize(llama_context * ctx, const std::vector<llama_token>
2662
1547
  return text;
2663
1548
  }
2664
1549
 
2665
- bool llama_should_add_bos_token(const llama_model * model) {
2666
- const int add_bos = llama_add_bos_token(model);
2667
-
2668
- return add_bos != -1 ? bool(add_bos) : (llama_vocab_type(model) == LLAMA_VOCAB_TYPE_SPM);
2669
- }
2670
-
2671
1550
  //
2672
1551
  // Chat template utils
2673
1552
  //
2674
1553
 
2675
- bool llama_chat_verify_template(const std::string & tmpl) {
1554
+ bool common_chat_verify_template(const std::string & tmpl) {
2676
1555
  llama_chat_message chat[] = {{"user", "test"}};
2677
1556
  int res = llama_chat_apply_template(nullptr, tmpl.c_str(), chat, 1, true, nullptr, 0);
2678
1557
  return res >= 0;
2679
1558
  }
2680
1559
 
2681
- std::string llama_chat_apply_template(const struct llama_model * model,
1560
+ std::string common_chat_apply_template(const struct llama_model * model,
2682
1561
  const std::string & tmpl,
2683
- const std::vector<llama_chat_msg> & msgs,
1562
+ const std::vector<common_chat_msg> & msgs,
2684
1563
  bool add_ass) {
2685
1564
  int alloc_size = 0;
2686
1565
  bool fallback = false; // indicate if we must fallback to default chatml
@@ -2722,42 +1601,42 @@ std::string llama_chat_apply_template(const struct llama_model * model,
2722
1601
  return formatted_chat;
2723
1602
  }
2724
1603
 
2725
- std::string llama_chat_format_single(const struct llama_model * model,
1604
+ std::string common_chat_format_single(const struct llama_model * model,
2726
1605
  const std::string & tmpl,
2727
- const std::vector<llama_chat_msg> & past_msg,
2728
- const llama_chat_msg & new_msg,
1606
+ const std::vector<common_chat_msg> & past_msg,
1607
+ const common_chat_msg & new_msg,
2729
1608
  bool add_ass) {
2730
1609
  std::ostringstream ss;
2731
- auto fmt_past_msg = past_msg.empty() ? "" : llama_chat_apply_template(model, tmpl, past_msg, false);
2732
- std::vector<llama_chat_msg> chat_new(past_msg);
1610
+ auto fmt_past_msg = past_msg.empty() ? "" : common_chat_apply_template(model, tmpl, past_msg, false);
1611
+ std::vector<common_chat_msg> chat_new(past_msg);
2733
1612
  // if the past_msg ends with a newline, we must preserve it in the formatted version
2734
1613
  if (add_ass && !fmt_past_msg.empty() && fmt_past_msg.back() == '\n') {
2735
1614
  ss << "\n";
2736
1615
  };
2737
1616
  // format chat with new_msg
2738
1617
  chat_new.push_back(new_msg);
2739
- auto fmt_new_msg = llama_chat_apply_template(model, tmpl, chat_new, add_ass);
1618
+ auto fmt_new_msg = common_chat_apply_template(model, tmpl, chat_new, add_ass);
2740
1619
  // get the diff part
2741
1620
  ss << fmt_new_msg.substr(fmt_past_msg.size(), fmt_new_msg.size() - fmt_past_msg.size());
2742
1621
  return ss.str();
2743
1622
  }
2744
1623
 
2745
- std::string llama_chat_format_example(const struct llama_model * model,
1624
+ std::string common_chat_format_example(const struct llama_model * model,
2746
1625
  const std::string & tmpl) {
2747
- std::vector<llama_chat_msg> msgs = {
1626
+ std::vector<common_chat_msg> msgs = {
2748
1627
  {"system", "You are a helpful assistant"},
2749
1628
  {"user", "Hello"},
2750
1629
  {"assistant", "Hi there"},
2751
1630
  {"user", "How are you?"},
2752
1631
  };
2753
- return llama_chat_apply_template(model, tmpl, msgs, true);
1632
+ return common_chat_apply_template(model, tmpl, msgs, true);
2754
1633
  }
2755
1634
 
2756
1635
  //
2757
1636
  // KV cache utils
2758
1637
  //
2759
1638
 
2760
- void llama_kv_cache_dump_view(const llama_kv_cache_view & view, int row_size) {
1639
+ void common_kv_cache_dump_view(const llama_kv_cache_view & view, int row_size) {
2761
1640
  static const char slot_chars[] = ".123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+";
2762
1641
 
2763
1642
  printf("=== Dumping KV cache. total cells %d, max sequences per cell %d, populated cells %d, total tokens in cache %d, largest empty slot=%d @ %d",
@@ -2780,7 +1659,7 @@ void llama_kv_cache_dump_view(const llama_kv_cache_view & view, int row_size) {
2780
1659
  printf("\n=== Done dumping\n");
2781
1660
  }
2782
1661
 
2783
- void llama_kv_cache_dump_view_seqs(const llama_kv_cache_view & view, int row_size) {
1662
+ void common_kv_cache_dump_view_seqs(const llama_kv_cache_view & view, int row_size) {
2784
1663
  static const char slot_chars[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
2785
1664
 
2786
1665
  printf("=== Dumping KV cache. total cells %d, max sequences per cell %d, populated cells %d, total tokens in cache %d, largest empty slot=%d @ %d\n",
@@ -2832,7 +1711,7 @@ void llama_kv_cache_dump_view_seqs(const llama_kv_cache_view & view, int row_siz
2832
1711
  // Embedding utils
2833
1712
  //
2834
1713
 
2835
- void llama_embd_normalize(const float * inp, float * out, int n, int embd_norm) {
1714
+ void common_embd_normalize(const float * inp, float * out, int n, int embd_norm) {
2836
1715
  double sum = 0.0;
2837
1716
 
2838
1717
  switch (embd_norm) {
@@ -2866,7 +1745,7 @@ void llama_embd_normalize(const float * inp, float * out, int n, int embd_norm)
2866
1745
  }
2867
1746
  }
2868
1747
 
2869
- float llama_embd_similarity_cos(const float * embd1, const float * embd2, int n){
1748
+ float common_embd_similarity_cos(const float * embd1, const float * embd2, int n){
2870
1749
  double sum = 0.0;
2871
1750
  double sum1 = 0.0;
2872
1751
  double sum2 = 0.0;
@@ -2892,8 +1771,8 @@ float llama_embd_similarity_cos(const float * embd1, const float * embd2, int n)
2892
1771
  // Control vector utils
2893
1772
  //
2894
1773
 
2895
- static llama_control_vector_data llama_control_vector_load_one(const llama_control_vector_load_info & load_info) {
2896
- llama_control_vector_data result = { -1, {} };
1774
+ static common_control_vector_data common_control_vector_load_one(const common_control_vector_load_info & load_info) {
1775
+ common_control_vector_data result = { -1, {} };
2897
1776
 
2898
1777
  ggml_context * ctx = nullptr;
2899
1778
  struct gguf_init_params meta_gguf_params = {
@@ -2902,13 +1781,13 @@ static llama_control_vector_data llama_control_vector_load_one(const llama_contr
2902
1781
  };
2903
1782
  struct gguf_context * ctx_gguf = gguf_init_from_file(load_info.fname.c_str(), meta_gguf_params);
2904
1783
  if (!ctx_gguf) {
2905
- fprintf(stderr, "%s: failed to load control vector file from %s\n", __func__, load_info.fname.c_str());
1784
+ LOG_ERR("%s: failed to load control vector file from %s\n", __func__, load_info.fname.c_str());
2906
1785
  return result;
2907
1786
  }
2908
1787
 
2909
1788
  int32_t n_tensors = gguf_get_n_tensors(ctx_gguf);
2910
1789
  if (n_tensors == 0) {
2911
- fprintf(stderr, "%s: no direction tensors found in %s\n", __func__, load_info.fname.c_str());
1790
+ LOG_WRN("%s: no direction tensors found in %s\n", __func__, load_info.fname.c_str());
2912
1791
  }
2913
1792
 
2914
1793
  for (int i = 0; i < n_tensors; i++) {
@@ -2926,23 +1805,23 @@ static llama_control_vector_data llama_control_vector_load_one(const llama_contr
2926
1805
  }
2927
1806
  }
2928
1807
  if (layer_idx < 0) {
2929
- fprintf(stderr, "%s: invalid/unparsable direction tensor layer index in %s\n", __func__, load_info.fname.c_str());
1808
+ LOG_ERR("%s: invalid/unparsable direction tensor layer index in %s\n", __func__, load_info.fname.c_str());
2930
1809
  result.n_embd = -1;
2931
1810
  break;
2932
1811
  } else if (layer_idx == 0) {
2933
- fprintf(stderr, "%s: invalid (zero) direction tensor layer index in %s\n", __func__, load_info.fname.c_str());
1812
+ LOG_ERR("%s: invalid (zero) direction tensor layer index in %s\n", __func__, load_info.fname.c_str());
2934
1813
  result.n_embd = -1;
2935
1814
  break;
2936
1815
  }
2937
1816
 
2938
1817
  struct ggml_tensor * tensor = ggml_get_tensor(ctx, name.c_str());
2939
1818
  if (tensor->type != GGML_TYPE_F32) {
2940
- fprintf(stderr, "%s: invalid (non-F32) direction tensor type in %s\n", __func__, load_info.fname.c_str());
1819
+ LOG_ERR("%s: invalid (non-F32) direction tensor type in %s\n", __func__, load_info.fname.c_str());
2941
1820
  result.n_embd = -1;
2942
1821
  break;
2943
1822
  }
2944
1823
  if (ggml_n_dims(tensor) != 1) {
2945
- fprintf(stderr, "%s: invalid (non-1D) direction tensor shape in %s\n", __func__, load_info.fname.c_str());
1824
+ LOG_ERR("%s: invalid (non-1D) direction tensor shape in %s\n", __func__, load_info.fname.c_str());
2946
1825
  result.n_embd = -1;
2947
1826
  break;
2948
1827
  }
@@ -2950,7 +1829,7 @@ static llama_control_vector_data llama_control_vector_load_one(const llama_contr
2950
1829
  if (result.n_embd == -1) {
2951
1830
  result.n_embd = ggml_nelements(tensor);
2952
1831
  } else if (ggml_nelements(tensor) != result.n_embd) {
2953
- fprintf(stderr, "%s: direction tensor in %s does not match previous dimensions\n", __func__, load_info.fname.c_str());
1832
+ LOG_ERR("%s: direction tensor in %s does not match previous dimensions\n", __func__, load_info.fname.c_str());
2954
1833
  result.n_embd = -1;
2955
1834
  break;
2956
1835
  }
@@ -2967,7 +1846,7 @@ static llama_control_vector_data llama_control_vector_load_one(const llama_contr
2967
1846
  }
2968
1847
 
2969
1848
  if (result.n_embd == -1) {
2970
- fprintf(stderr, "%s: skipping %s due to invalid direction tensors\n", __func__, load_info.fname.c_str());
1849
+ LOG_WRN("%s: skipping %s due to invalid direction tensors\n", __func__, load_info.fname.c_str());
2971
1850
  result.data.clear();
2972
1851
  }
2973
1852
 
@@ -2977,18 +1856,18 @@ static llama_control_vector_data llama_control_vector_load_one(const llama_contr
2977
1856
  return result;
2978
1857
  }
2979
1858
 
2980
- llama_control_vector_data llama_control_vector_load(const std::vector<llama_control_vector_load_info> & load_infos) {
2981
- llama_control_vector_data result = { -1, {} };
1859
+ common_control_vector_data common_control_vector_load(const std::vector<common_control_vector_load_info> & load_infos) {
1860
+ common_control_vector_data result = { -1, {} };
2982
1861
 
2983
1862
  for (const auto & info : load_infos) {
2984
- auto cur = llama_control_vector_load_one(info);
1863
+ auto cur = common_control_vector_load_one(info);
2985
1864
 
2986
1865
  if (cur.n_embd == -1) {
2987
1866
  result.n_embd = -1;
2988
1867
  break;
2989
1868
  }
2990
1869
  if (result.n_embd != -1 && result.n_embd != cur.n_embd) {
2991
- fprintf(stderr, "%s: control vectors in %s does not match previous dimensions\n", __func__, info.fname.c_str());
1870
+ LOG_ERR("%s: control vectors in %s does not match previous dimensions\n", __func__, info.fname.c_str());
2992
1871
  result.n_embd = -1;
2993
1872
  break;
2994
1873
  }
@@ -3004,227 +1883,10 @@ llama_control_vector_data llama_control_vector_load(const std::vector<llama_cont
3004
1883
  }
3005
1884
 
3006
1885
  if (result.n_embd == -1) {
3007
- fprintf(stderr, "%s: no valid control vector files passed\n", __func__);
1886
+ LOG_ERR("%s: no valid control vector files passed\n", __func__);
3008
1887
  result.data.clear();
3009
1888
  }
3010
1889
 
3011
1890
  return result;
3012
1891
  }
3013
1892
 
3014
- //
3015
- // YAML utils
3016
- //
3017
-
3018
- void yaml_dump_vector_float(FILE * stream, const char * prop_name, const std::vector<float> & data) {
3019
- if (data.empty()) {
3020
- fprintf(stream, "%s:\n", prop_name);
3021
- return;
3022
- }
3023
-
3024
- fprintf(stream, "%s: [", prop_name);
3025
- for (size_t i = 0; i < data.size() - 1; ++i) {
3026
- fprintf(stream, "%e, ", data[i]);
3027
- }
3028
- fprintf(stream, "%e]\n", data.back());
3029
- }
3030
-
3031
- void yaml_dump_vector_int(FILE * stream, const char * prop_name, const std::vector<int> & data) {
3032
- if (data.empty()) {
3033
- fprintf(stream, "%s:\n", prop_name);
3034
- return;
3035
- }
3036
-
3037
- fprintf(stream, "%s: [", prop_name);
3038
- for (size_t i = 0; i < data.size() - 1; ++i) {
3039
- fprintf(stream, "%d, ", data[i]);
3040
- }
3041
- fprintf(stream, "%d]\n", data.back());
3042
- }
3043
-
3044
- void yaml_dump_string_multiline(FILE * stream, const char * prop_name, const char * data) {
3045
- std::string data_str(data == NULL ? "" : data);
3046
-
3047
- if (data_str.empty()) {
3048
- fprintf(stream, "%s:\n", prop_name);
3049
- return;
3050
- }
3051
-
3052
- size_t pos_start = 0;
3053
- size_t pos_found = 0;
3054
-
3055
- if (std::isspace(data_str[0]) || std::isspace(data_str.back())) {
3056
- data_str = std::regex_replace(data_str, std::regex("\n"), "\\n");
3057
- data_str = std::regex_replace(data_str, std::regex("\""), "\\\"");
3058
- data_str = std::regex_replace(data_str, std::regex(R"(\\[^n"])"), R"(\$&)");
3059
- data_str = "\"" + data_str + "\"";
3060
- fprintf(stream, "%s: %s\n", prop_name, data_str.c_str());
3061
- return;
3062
- }
3063
-
3064
- if (data_str.find('\n') == std::string::npos) {
3065
- fprintf(stream, "%s: %s\n", prop_name, data_str.c_str());
3066
- return;
3067
- }
3068
-
3069
- fprintf(stream, "%s: |\n", prop_name);
3070
- while ((pos_found = data_str.find('\n', pos_start)) != std::string::npos) {
3071
- fprintf(stream, " %s\n", data_str.substr(pos_start, pos_found-pos_start).c_str());
3072
- pos_start = pos_found + 1;
3073
- }
3074
- }
3075
-
3076
- void yaml_dump_non_result_info(FILE * stream, const gpt_params & params, const llama_context * lctx,
3077
- const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc) {
3078
- const llama_sampling_params & sparams = params.sparams;
3079
-
3080
- fprintf(stream, "build_commit: %s\n", LLAMA_COMMIT);
3081
- fprintf(stream, "build_number: %d\n", LLAMA_BUILD_NUMBER);
3082
- fprintf(stream, "cpu_has_arm_fma: %s\n", ggml_cpu_has_arm_fma() ? "true" : "false");
3083
- fprintf(stream, "cpu_has_avx: %s\n", ggml_cpu_has_avx() ? "true" : "false");
3084
- fprintf(stream, "cpu_has_avx_vnni: %s\n", ggml_cpu_has_avx_vnni() ? "true" : "false");
3085
- fprintf(stream, "cpu_has_avx2: %s\n", ggml_cpu_has_avx2() ? "true" : "false");
3086
- fprintf(stream, "cpu_has_avx512: %s\n", ggml_cpu_has_avx512() ? "true" : "false");
3087
- fprintf(stream, "cpu_has_avx512_vbmi: %s\n", ggml_cpu_has_avx512_vbmi() ? "true" : "false");
3088
- fprintf(stream, "cpu_has_avx512_vnni: %s\n", ggml_cpu_has_avx512_vnni() ? "true" : "false");
3089
- fprintf(stream, "cpu_has_cuda: %s\n", ggml_cpu_has_cuda() ? "true" : "false");
3090
- fprintf(stream, "cpu_has_vulkan: %s\n", ggml_cpu_has_vulkan() ? "true" : "false");
3091
- fprintf(stream, "cpu_has_kompute: %s\n", ggml_cpu_has_kompute() ? "true" : "false");
3092
- fprintf(stream, "cpu_has_fma: %s\n", ggml_cpu_has_fma() ? "true" : "false");
3093
- fprintf(stream, "cpu_has_gpublas: %s\n", ggml_cpu_has_gpublas() ? "true" : "false");
3094
- fprintf(stream, "cpu_has_neon: %s\n", ggml_cpu_has_neon() ? "true" : "false");
3095
- fprintf(stream, "cpu_has_sve: %s\n", ggml_cpu_has_sve() ? "true" : "false");
3096
- fprintf(stream, "cpu_has_f16c: %s\n", ggml_cpu_has_f16c() ? "true" : "false");
3097
- fprintf(stream, "cpu_has_fp16_va: %s\n", ggml_cpu_has_fp16_va() ? "true" : "false");
3098
- fprintf(stream, "cpu_has_wasm_simd: %s\n", ggml_cpu_has_wasm_simd() ? "true" : "false");
3099
- fprintf(stream, "cpu_has_blas: %s\n", ggml_cpu_has_blas() ? "true" : "false");
3100
- fprintf(stream, "cpu_has_sse3: %s\n", ggml_cpu_has_sse3() ? "true" : "false");
3101
- fprintf(stream, "cpu_has_vsx: %s\n", ggml_cpu_has_vsx() ? "true" : "false");
3102
- fprintf(stream, "cpu_has_matmul_int8: %s\n", ggml_cpu_has_matmul_int8() ? "true" : "false");
3103
-
3104
- #ifdef NDEBUG
3105
- fprintf(stream, "debug: false\n");
3106
- #else
3107
- fprintf(stream, "debug: true\n");
3108
- #endif // NDEBUG
3109
-
3110
- fprintf(stream, "model_desc: %s\n", model_desc);
3111
- fprintf(stream, "n_vocab: %d # output size of the final layer, 32001 for some models\n", llama_n_vocab(llama_get_model(lctx)));
3112
-
3113
- #ifdef __OPTIMIZE__
3114
- fprintf(stream, "optimize: true\n");
3115
- #else
3116
- fprintf(stream, "optimize: false\n");
3117
- #endif // __OPTIMIZE__
3118
-
3119
- fprintf(stream, "time: %s\n", timestamp.c_str());
3120
-
3121
- fprintf(stream, "\n");
3122
- fprintf(stream, "###############\n");
3123
- fprintf(stream, "# User Inputs #\n");
3124
- fprintf(stream, "###############\n");
3125
- fprintf(stream, "\n");
3126
-
3127
- fprintf(stream, "alias: %s # default: unknown\n", params.model_alias.c_str());
3128
- fprintf(stream, "batch_size: %d # default: 512\n", params.n_batch);
3129
- yaml_dump_string_multiline(stream, "cfg_negative_prompt", sparams.cfg_negative_prompt.c_str());
3130
- fprintf(stream, "cfg_scale: %f # default: 1.0\n", sparams.cfg_scale);
3131
- fprintf(stream, "chunks: %d # default: -1 (unlimited)\n", params.n_chunks);
3132
- fprintf(stream, "color: %s # default: false\n", params.use_color ? "true" : "false");
3133
- fprintf(stream, "ctx_size: %d # default: 512\n", params.n_ctx);
3134
- fprintf(stream, "escape: %s # default: false\n", params.escape ? "true" : "false");
3135
- fprintf(stream, "file: # never logged, see prompt instead. Can still be specified for input.\n");
3136
- fprintf(stream, "frequency_penalty: %f # default: 0.0 \n", sparams.penalty_freq);
3137
- yaml_dump_string_multiline(stream, "grammar", sparams.grammar.c_str());
3138
- fprintf(stream, "grammar-file: # never logged, see grammar instead. Can still be specified for input.\n");
3139
- fprintf(stream, "hellaswag: %s # default: false\n", params.hellaswag ? "true" : "false");
3140
- fprintf(stream, "hellaswag_tasks: %zu # default: 400\n", params.hellaswag_tasks);
3141
-
3142
- const auto logit_bias_eos = sparams.logit_bias.find(llama_token_eos(llama_get_model(lctx)));
3143
- const bool ignore_eos = logit_bias_eos != sparams.logit_bias.end() && logit_bias_eos->second == -INFINITY;
3144
- fprintf(stream, "ignore_eos: %s # default: false\n", ignore_eos ? "true" : "false");
3145
-
3146
- yaml_dump_string_multiline(stream, "in_prefix", params.input_prefix.c_str());
3147
- fprintf(stream, "in_prefix_bos: %s # default: false\n", params.input_prefix_bos ? "true" : "false");
3148
- yaml_dump_string_multiline(stream, "in_suffix", params.input_prefix.c_str());
3149
- fprintf(stream, "interactive: %s # default: false\n", params.interactive ? "true" : "false");
3150
- fprintf(stream, "interactive_first: %s # default: false\n", params.interactive_first ? "true" : "false");
3151
- fprintf(stream, "keep: %d # default: 0\n", params.n_keep);
3152
- fprintf(stream, "logdir: %s # default: unset (no logging)\n", params.logdir.c_str());
3153
-
3154
- fprintf(stream, "logit_bias:\n");
3155
- for (std::pair<llama_token, float> lb : sparams.logit_bias) {
3156
- if (ignore_eos && lb.first == logit_bias_eos->first) {
3157
- continue;
3158
- }
3159
- fprintf(stream, " %d: %f", lb.first, lb.second);
3160
- }
3161
-
3162
- fprintf(stream, "lora:\n");
3163
- for (std::tuple<std::string, float> la : params.lora_adapter) {
3164
- if (std::get<1>(la) != 1.0f) {
3165
- continue;
3166
- }
3167
- fprintf(stream, " - %s\n", std::get<0>(la).c_str());
3168
- }
3169
- fprintf(stream, "lora_scaled:\n");
3170
- for (std::tuple<std::string, float> la : params.lora_adapter) {
3171
- if (std::get<1>(la) == 1.0f) {
3172
- continue;
3173
- }
3174
- fprintf(stream, " - %s: %f\n", std::get<0>(la).c_str(), std::get<1>(la));
3175
- }
3176
- fprintf(stream, "main_gpu: %d # default: 0\n", params.main_gpu);
3177
- fprintf(stream, "min_keep: %d # default: 0 (disabled)\n", sparams.min_keep);
3178
- fprintf(stream, "mirostat: %d # default: 0 (disabled)\n", sparams.mirostat);
3179
- fprintf(stream, "mirostat_ent: %f # default: 5.0\n", sparams.mirostat_tau);
3180
- fprintf(stream, "mirostat_lr: %f # default: 0.1\n", sparams.mirostat_eta);
3181
- fprintf(stream, "mlock: %s # default: false\n", params.use_mlock ? "true" : "false");
3182
- fprintf(stream, "model: %s # default: %s\n", params.model.c_str(), DEFAULT_MODEL_PATH);
3183
- fprintf(stream, "model_draft: %s # default:\n", params.model_draft.c_str());
3184
- fprintf(stream, "multiline_input: %s # default: false\n", params.multiline_input ? "true" : "false");
3185
- fprintf(stream, "n_gpu_layers: %d # default: -1\n", params.n_gpu_layers);
3186
- fprintf(stream, "n_predict: %d # default: -1 (unlimited)\n", params.n_predict);
3187
- fprintf(stream, "n_probs: %d # only used by server binary, default: 0\n", sparams.n_probs);
3188
- fprintf(stream, "no_mmap: %s # default: false\n", !params.use_mmap ? "true" : "false");
3189
- fprintf(stream, "penalize_nl: %s # default: false\n", sparams.penalize_nl ? "true" : "false");
3190
- fprintf(stream, "ppl_output_type: %d # default: 0\n", params.ppl_output_type);
3191
- fprintf(stream, "ppl_stride: %d # default: 0\n", params.ppl_stride);
3192
- fprintf(stream, "presence_penalty: %f # default: 0.0\n", sparams.penalty_present);
3193
- yaml_dump_string_multiline(stream, "prompt", params.prompt.c_str());
3194
- fprintf(stream, "prompt_cache: %s\n", params.path_prompt_cache.c_str());
3195
- fprintf(stream, "prompt_cache_all: %s # default: false\n", params.prompt_cache_all ? "true" : "false");
3196
- fprintf(stream, "prompt_cache_ro: %s # default: false\n", params.prompt_cache_ro ? "true" : "false");
3197
- yaml_dump_vector_int(stream, "prompt_tokens", prompt_tokens);
3198
- fprintf(stream, "repeat_penalty: %f # default: 1.1\n", sparams.penalty_repeat);
3199
-
3200
- fprintf(stream, "reverse_prompt:\n");
3201
- for (std::string ap : params.antiprompt) {
3202
- size_t pos = 0;
3203
- while ((pos = ap.find('\n', pos)) != std::string::npos) {
3204
- ap.replace(pos, 1, "\\n");
3205
- pos += 1;
3206
- }
3207
-
3208
- fprintf(stream, " - %s\n", ap.c_str());
3209
- }
3210
-
3211
- fprintf(stream, "rope_freq_base: %f # default: 10000.0\n", params.rope_freq_base);
3212
- fprintf(stream, "rope_freq_scale: %f # default: 1.0\n", params.rope_freq_scale);
3213
- fprintf(stream, "seed: %u # default: -1 (random seed)\n", params.seed);
3214
- fprintf(stream, "simple_io: %s # default: false\n", params.simple_io ? "true" : "false");
3215
- fprintf(stream, "cont_batching: %s # default: false\n", params.cont_batching ? "true" : "false");
3216
- fprintf(stream, "flash_attn: %s # default: false\n", params.flash_attn ? "true" : "false");
3217
- fprintf(stream, "temp: %f # default: 0.8\n", sparams.temp);
3218
-
3219
- const std::vector<float> tensor_split_vector(params.tensor_split, params.tensor_split + llama_max_devices());
3220
- yaml_dump_vector_float(stream, "tensor_split", tensor_split_vector);
3221
-
3222
- fprintf(stream, "tfs: %f # default: 1.0\n", sparams.tfs_z);
3223
- fprintf(stream, "threads: %d # default: %u\n", params.n_threads, std::thread::hardware_concurrency());
3224
- fprintf(stream, "top_k: %d # default: 40\n", sparams.top_k);
3225
- fprintf(stream, "top_p: %f # default: 0.95\n", sparams.top_p);
3226
- fprintf(stream, "min_p: %f # default: 0.0\n", sparams.min_p);
3227
- fprintf(stream, "typical_p: %f # default: 1.0\n", sparams.typical_p);
3228
- fprintf(stream, "verbose_prompt: %s # default: false\n", params.verbose_prompt ? "true" : "false");
3229
- fprintf(stream, "display_prompt: %s # default: true\n", params.display_prompt ? "true" : "false");
3230
- }