@fugood/llama.node 0.3.1 → 0.3.3

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (252) hide show
  1. package/CMakeLists.txt +1 -8
  2. package/bin/darwin/arm64/llama-node.node +0 -0
  3. package/bin/darwin/x64/llama-node.node +0 -0
  4. package/bin/linux/arm64/llama-node.node +0 -0
  5. package/bin/linux/x64/llama-node.node +0 -0
  6. package/bin/linux-vulkan/arm64/llama-node.node +0 -0
  7. package/bin/linux-vulkan/x64/llama-node.node +0 -0
  8. package/bin/win32/arm64/llama-node.node +0 -0
  9. package/bin/win32/arm64/node.lib +0 -0
  10. package/bin/win32/x64/llama-node.node +0 -0
  11. package/bin/win32/x64/node.lib +0 -0
  12. package/bin/win32-vulkan/arm64/llama-node.node +0 -0
  13. package/bin/win32-vulkan/arm64/node.lib +0 -0
  14. package/bin/win32-vulkan/x64/llama-node.node +0 -0
  15. package/bin/win32-vulkan/x64/node.lib +0 -0
  16. package/package.json +4 -2
  17. package/src/DetokenizeWorker.cpp +1 -1
  18. package/src/EmbeddingWorker.cpp +2 -2
  19. package/src/LlamaCompletionWorker.cpp +10 -10
  20. package/src/LlamaCompletionWorker.h +2 -2
  21. package/src/LlamaContext.cpp +14 -17
  22. package/src/TokenizeWorker.cpp +1 -1
  23. package/src/common.hpp +5 -4
  24. package/src/llama.cpp/.github/workflows/build.yml +137 -29
  25. package/src/llama.cpp/.github/workflows/close-issue.yml +5 -0
  26. package/src/llama.cpp/.github/workflows/docker.yml +46 -34
  27. package/src/llama.cpp/.github/workflows/nix-ci-aarch64.yml +7 -0
  28. package/src/llama.cpp/.github/workflows/nix-ci.yml +7 -0
  29. package/src/llama.cpp/.github/workflows/python-check-requirements.yml +2 -4
  30. package/src/llama.cpp/.github/workflows/python-type-check.yml +3 -1
  31. package/src/llama.cpp/.github/workflows/server.yml +7 -0
  32. package/src/llama.cpp/CMakeLists.txt +26 -11
  33. package/src/llama.cpp/cmake/arm64-apple-clang.cmake +16 -0
  34. package/src/llama.cpp/common/CMakeLists.txt +10 -10
  35. package/src/llama.cpp/common/arg.cpp +2041 -0
  36. package/src/llama.cpp/common/arg.h +77 -0
  37. package/src/llama.cpp/common/common.cpp +523 -1861
  38. package/src/llama.cpp/common/common.h +234 -106
  39. package/src/llama.cpp/common/console.cpp +3 -0
  40. package/src/llama.cpp/common/json-schema-to-grammar.cpp +1 -1
  41. package/src/llama.cpp/common/log.cpp +401 -0
  42. package/src/llama.cpp/common/log.h +66 -698
  43. package/src/llama.cpp/common/ngram-cache.cpp +39 -36
  44. package/src/llama.cpp/common/ngram-cache.h +19 -19
  45. package/src/llama.cpp/common/sampling.cpp +356 -350
  46. package/src/llama.cpp/common/sampling.h +62 -139
  47. package/src/llama.cpp/common/stb_image.h +5990 -6398
  48. package/src/llama.cpp/docs/build.md +72 -17
  49. package/src/llama.cpp/examples/CMakeLists.txt +1 -2
  50. package/src/llama.cpp/examples/batched/batched.cpp +49 -65
  51. package/src/llama.cpp/examples/batched-bench/batched-bench.cpp +42 -53
  52. package/src/llama.cpp/examples/convert-llama2c-to-ggml/convert-llama2c-to-ggml.cpp +55 -52
  53. package/src/llama.cpp/examples/cvector-generator/cvector-generator.cpp +22 -22
  54. package/src/llama.cpp/examples/cvector-generator/pca.hpp +3 -13
  55. package/src/llama.cpp/examples/embedding/embedding.cpp +147 -91
  56. package/src/llama.cpp/examples/eval-callback/eval-callback.cpp +37 -37
  57. package/src/llama.cpp/examples/export-lora/export-lora.cpp +39 -38
  58. package/src/llama.cpp/examples/gbnf-validator/gbnf-validator.cpp +14 -39
  59. package/src/llama.cpp/examples/{baby-llama → gen-docs}/CMakeLists.txt +2 -2
  60. package/src/llama.cpp/examples/gen-docs/gen-docs.cpp +83 -0
  61. package/src/llama.cpp/examples/gguf-split/gguf-split.cpp +58 -39
  62. package/src/llama.cpp/examples/gritlm/gritlm.cpp +46 -39
  63. package/src/llama.cpp/examples/imatrix/imatrix.cpp +75 -69
  64. package/src/llama.cpp/examples/infill/infill.cpp +131 -192
  65. package/src/llama.cpp/examples/llama-bench/llama-bench.cpp +276 -178
  66. package/src/llama.cpp/examples/llama.android/llama/build.gradle.kts +1 -0
  67. package/src/llama.cpp/examples/llama.android/llama/src/main/cpp/llama-android.cpp +40 -36
  68. package/src/llama.cpp/examples/llava/CMakeLists.txt +7 -0
  69. package/src/llama.cpp/examples/llava/clip.cpp +686 -150
  70. package/src/llama.cpp/examples/llava/clip.h +11 -2
  71. package/src/llama.cpp/examples/llava/llava-cli.cpp +60 -71
  72. package/src/llama.cpp/examples/llava/llava.cpp +146 -26
  73. package/src/llama.cpp/examples/llava/llava.h +2 -3
  74. package/src/llama.cpp/examples/llava/minicpmv-cli.cpp +323 -0
  75. package/src/llama.cpp/examples/llava/requirements.txt +1 -0
  76. package/src/llama.cpp/examples/lookahead/lookahead.cpp +55 -56
  77. package/src/llama.cpp/examples/lookup/lookup-create.cpp +15 -13
  78. package/src/llama.cpp/examples/lookup/lookup-merge.cpp +4 -4
  79. package/src/llama.cpp/examples/lookup/lookup-stats.cpp +34 -33
  80. package/src/llama.cpp/examples/lookup/lookup.cpp +60 -63
  81. package/src/llama.cpp/examples/main/main.cpp +216 -313
  82. package/src/llama.cpp/examples/parallel/parallel.cpp +58 -59
  83. package/src/llama.cpp/examples/passkey/passkey.cpp +53 -61
  84. package/src/llama.cpp/examples/perplexity/perplexity.cpp +277 -311
  85. package/src/llama.cpp/examples/quantize/CMakeLists.txt +1 -1
  86. package/src/llama.cpp/examples/quantize/quantize.cpp +27 -9
  87. package/src/llama.cpp/examples/quantize-stats/quantize-stats.cpp +12 -12
  88. package/src/llama.cpp/examples/retrieval/retrieval.cpp +57 -52
  89. package/src/llama.cpp/examples/rpc/rpc-server.cpp +27 -2
  90. package/src/llama.cpp/examples/save-load-state/save-load-state.cpp +60 -46
  91. package/src/llama.cpp/examples/server/CMakeLists.txt +7 -18
  92. package/src/llama.cpp/examples/server/server.cpp +1347 -1531
  93. package/src/llama.cpp/examples/server/tests/requirements.txt +2 -1
  94. package/src/llama.cpp/examples/server/utils.hpp +396 -107
  95. package/src/llama.cpp/examples/simple/CMakeLists.txt +1 -1
  96. package/src/llama.cpp/examples/simple/simple.cpp +132 -106
  97. package/src/llama.cpp/examples/simple-chat/CMakeLists.txt +5 -0
  98. package/src/llama.cpp/examples/simple-chat/simple-chat.cpp +197 -0
  99. package/src/llama.cpp/examples/speculative/speculative.cpp +153 -124
  100. package/src/llama.cpp/examples/sycl/run-llama2.sh +10 -19
  101. package/src/llama.cpp/examples/sycl/win-run-llama2.bat +1 -1
  102. package/src/llama.cpp/examples/tokenize/tokenize.cpp +27 -29
  103. package/src/llama.cpp/ggml/CMakeLists.txt +29 -12
  104. package/src/llama.cpp/ggml/include/ggml-alloc.h +3 -3
  105. package/src/llama.cpp/ggml/include/ggml-amx.h +25 -0
  106. package/src/llama.cpp/ggml/include/ggml-backend.h +166 -68
  107. package/src/llama.cpp/ggml/include/ggml-blas.h +5 -3
  108. package/src/llama.cpp/ggml/include/ggml-cann.h +17 -19
  109. package/src/llama.cpp/ggml/include/ggml-cpp.h +38 -0
  110. package/src/llama.cpp/ggml/include/ggml-cpu.h +177 -0
  111. package/src/llama.cpp/ggml/include/ggml-cuda.h +17 -17
  112. package/src/llama.cpp/ggml/include/ggml-kompute.h +7 -3
  113. package/src/llama.cpp/ggml/include/ggml-metal.h +13 -12
  114. package/src/llama.cpp/ggml/include/ggml-opt.h +216 -0
  115. package/src/llama.cpp/ggml/include/ggml-rpc.h +9 -5
  116. package/src/llama.cpp/ggml/include/ggml-sycl.h +18 -11
  117. package/src/llama.cpp/ggml/include/ggml-vulkan.h +10 -8
  118. package/src/llama.cpp/ggml/include/ggml.h +272 -505
  119. package/src/llama.cpp/ggml/src/CMakeLists.txt +69 -1110
  120. package/src/llama.cpp/ggml/src/ggml-aarch64.c +52 -2116
  121. package/src/llama.cpp/ggml/src/ggml-aarch64.h +0 -20
  122. package/src/llama.cpp/ggml/src/ggml-alloc.c +29 -27
  123. package/src/llama.cpp/ggml/src/ggml-amx/CMakeLists.txt +107 -0
  124. package/src/llama.cpp/ggml/src/ggml-amx/common.h +94 -0
  125. package/src/llama.cpp/ggml/src/ggml-amx/ggml-amx.cpp +446 -0
  126. package/src/llama.cpp/ggml/src/ggml-amx/mmq.cpp +2510 -0
  127. package/src/llama.cpp/ggml/src/ggml-amx/mmq.h +17 -0
  128. package/src/llama.cpp/ggml/src/ggml-backend-impl.h +144 -81
  129. package/src/llama.cpp/ggml/src/ggml-backend-reg.cpp +195 -0
  130. package/src/llama.cpp/ggml/src/{ggml-backend.c → ggml-backend.cpp} +394 -635
  131. package/src/llama.cpp/ggml/src/ggml-blas/CMakeLists.txt +91 -0
  132. package/src/llama.cpp/ggml/src/{ggml-blas.cpp → ggml-blas/ggml-blas.cpp} +217 -70
  133. package/src/llama.cpp/ggml/src/ggml-cann/CMakeLists.txt +46 -0
  134. package/src/llama.cpp/ggml/src/ggml-cann/acl_tensor.cpp +4 -27
  135. package/src/llama.cpp/ggml/src/ggml-cann/acl_tensor.h +32 -4
  136. package/src/llama.cpp/ggml/src/ggml-cann/aclnn_ops.cpp +179 -41
  137. package/src/llama.cpp/ggml/src/ggml-cann/common.h +1 -0
  138. package/src/llama.cpp/ggml/src/{ggml-cann.cpp → ggml-cann/ggml-cann.cpp} +458 -353
  139. package/src/llama.cpp/ggml/src/ggml-cann/kernels/CMakeLists.txt +2 -1
  140. package/src/llama.cpp/ggml/src/ggml-cann/kernels/ascendc_kernels.h +2 -0
  141. package/src/llama.cpp/ggml/src/ggml-cann/kernels/quantize_float_to_q4_0.cpp +278 -0
  142. package/src/llama.cpp/ggml/src/ggml-common.h +20 -0
  143. package/src/llama.cpp/ggml/src/ggml-cpu/CMakeLists.txt +261 -0
  144. package/src/llama.cpp/ggml/src/ggml-cpu/ggml-cpu-aarch64.c +3560 -0
  145. package/src/llama.cpp/ggml/src/ggml-cpu/ggml-cpu-aarch64.h +30 -0
  146. package/src/llama.cpp/ggml/src/ggml-cpu/ggml-cpu-impl.h +371 -0
  147. package/src/llama.cpp/ggml/src/ggml-cpu/ggml-cpu-quants.c +10822 -0
  148. package/src/llama.cpp/ggml/src/ggml-cpu/ggml-cpu-quants.h +63 -0
  149. package/src/llama.cpp/ggml/src/ggml-cpu/ggml-cpu.c +13970 -0
  150. package/src/llama.cpp/ggml/src/ggml-cpu/ggml-cpu.cpp +663 -0
  151. package/src/llama.cpp/ggml/src/ggml-cpu/llamafile/sgemm.cpp +1885 -0
  152. package/src/llama.cpp/ggml/src/ggml-cuda/CMakeLists.txt +155 -0
  153. package/src/llama.cpp/ggml/src/ggml-cuda/vendors/cuda.h +14 -0
  154. package/src/llama.cpp/ggml/src/ggml-cuda/vendors/hip.h +178 -0
  155. package/src/llama.cpp/ggml/src/ggml-cuda/vendors/musa.h +134 -0
  156. package/src/llama.cpp/ggml/src/ggml-hip/CMakeLists.txt +106 -0
  157. package/src/llama.cpp/ggml/src/ggml-impl.h +380 -584
  158. package/src/llama.cpp/ggml/src/ggml-kompute/CMakeLists.txt +162 -0
  159. package/src/llama.cpp/ggml/src/{ggml-kompute.cpp → ggml-kompute/ggml-kompute.cpp} +233 -87
  160. package/src/llama.cpp/ggml/src/ggml-metal/CMakeLists.txt +108 -0
  161. package/src/llama.cpp/ggml/src/ggml-metal/ggml-metal-impl.h +249 -0
  162. package/src/llama.cpp/ggml/src/ggml-musa/CMakeLists.txt +100 -0
  163. package/src/llama.cpp/ggml/src/ggml-opt.cpp +867 -0
  164. package/src/llama.cpp/ggml/src/ggml-quants.c +369 -9994
  165. package/src/llama.cpp/ggml/src/ggml-quants.h +78 -110
  166. package/src/llama.cpp/ggml/src/ggml-rpc/CMakeLists.txt +11 -0
  167. package/src/llama.cpp/ggml/src/{ggml-rpc.cpp → ggml-rpc/ggml-rpc.cpp} +560 -335
  168. package/src/llama.cpp/ggml/src/ggml-sycl/CMakeLists.txt +81 -0
  169. package/src/llama.cpp/ggml/src/ggml-sycl/backend.hpp +6 -0
  170. package/src/llama.cpp/ggml/src/ggml-sycl/common.cpp +51 -0
  171. package/src/llama.cpp/ggml/src/ggml-sycl/common.hpp +310 -0
  172. package/src/llama.cpp/ggml/src/ggml-sycl/concat.cpp +1 -0
  173. package/src/llama.cpp/ggml/src/ggml-sycl/conv.cpp +99 -0
  174. package/src/llama.cpp/ggml/src/ggml-sycl/conv.hpp +21 -0
  175. package/src/llama.cpp/ggml/src/ggml-sycl/convert.cpp +57 -57
  176. package/src/llama.cpp/ggml/src/ggml-sycl/convert.hpp +1 -1
  177. package/src/llama.cpp/ggml/src/ggml-sycl/dequantize.hpp +106 -106
  178. package/src/llama.cpp/ggml/src/ggml-sycl/dmmv.cpp +4 -4
  179. package/src/llama.cpp/ggml/src/ggml-sycl/dpct/helper.hpp +18 -25
  180. package/src/llama.cpp/ggml/src/ggml-sycl/element_wise.cpp +1011 -0
  181. package/src/llama.cpp/ggml/src/ggml-sycl/element_wise.hpp +76 -0
  182. package/src/llama.cpp/ggml/src/ggml-sycl/gemm.hpp +101 -0
  183. package/src/llama.cpp/ggml/src/{ggml-sycl.cpp → ggml-sycl/ggml-sycl.cpp} +3350 -3980
  184. package/src/llama.cpp/ggml/src/ggml-sycl/im2col.cpp +125 -0
  185. package/src/llama.cpp/ggml/src/ggml-sycl/im2col.hpp +23 -0
  186. package/src/llama.cpp/ggml/src/ggml-sycl/mmvq.cpp +70 -68
  187. package/src/llama.cpp/ggml/src/ggml-sycl/norm.cpp +9 -6
  188. package/src/llama.cpp/ggml/src/ggml-sycl/outprod.cpp +56 -0
  189. package/src/llama.cpp/ggml/src/ggml-sycl/outprod.hpp +11 -0
  190. package/src/llama.cpp/ggml/src/ggml-sycl/presets.hpp +8 -0
  191. package/src/llama.cpp/ggml/src/ggml-sycl/rope.cpp +1 -1
  192. package/src/llama.cpp/ggml/src/ggml-sycl/tsembd.cpp +71 -0
  193. package/src/llama.cpp/ggml/src/ggml-sycl/tsembd.hpp +21 -0
  194. package/src/llama.cpp/ggml/src/ggml-sycl/vecdotq.hpp +4 -4
  195. package/src/llama.cpp/ggml/src/ggml-sycl/wkv6.cpp +138 -0
  196. package/src/llama.cpp/ggml/src/ggml-sycl/wkv6.hpp +10 -0
  197. package/src/llama.cpp/ggml/src/ggml-threading.cpp +12 -0
  198. package/src/llama.cpp/ggml/src/ggml-threading.h +12 -0
  199. package/src/llama.cpp/ggml/src/ggml-vulkan/CMakeLists.txt +78 -0
  200. package/src/llama.cpp/ggml/src/{ggml-vulkan.cpp → ggml-vulkan/ggml-vulkan.cpp} +2034 -1718
  201. package/src/llama.cpp/ggml/src/{vulkan-shaders → ggml-vulkan/vulkan-shaders}/CMakeLists.txt +2 -0
  202. package/src/llama.cpp/ggml/src/{vulkan-shaders → ggml-vulkan/vulkan-shaders}/vulkan-shaders-gen.cpp +152 -185
  203. package/src/llama.cpp/ggml/src/ggml.c +2075 -16579
  204. package/src/llama.cpp/include/llama.h +296 -285
  205. package/src/llama.cpp/models/ggml-vocab-chameleon.gguf.inp +112 -0
  206. package/src/llama.cpp/models/ggml-vocab-chameleon.gguf.out +46 -0
  207. package/src/llama.cpp/pocs/vdot/q8dot.cpp +4 -3
  208. package/src/llama.cpp/pocs/vdot/vdot.cpp +8 -7
  209. package/src/llama.cpp/requirements/requirements-convert_legacy_llama.txt +1 -1
  210. package/src/llama.cpp/src/CMakeLists.txt +2 -1
  211. package/src/llama.cpp/src/llama-grammar.cpp +721 -122
  212. package/src/llama.cpp/src/llama-grammar.h +120 -15
  213. package/src/llama.cpp/src/llama-impl.h +156 -1
  214. package/src/llama.cpp/src/llama-sampling.cpp +2058 -346
  215. package/src/llama.cpp/src/llama-sampling.h +39 -47
  216. package/src/llama.cpp/src/llama-vocab.cpp +390 -127
  217. package/src/llama.cpp/src/llama-vocab.h +60 -20
  218. package/src/llama.cpp/src/llama.cpp +6215 -3263
  219. package/src/llama.cpp/src/unicode-data.cpp +6 -4
  220. package/src/llama.cpp/src/unicode-data.h +4 -4
  221. package/src/llama.cpp/src/unicode.cpp +15 -7
  222. package/src/llama.cpp/tests/CMakeLists.txt +4 -2
  223. package/src/llama.cpp/tests/test-arg-parser.cpp +131 -0
  224. package/src/llama.cpp/tests/test-backend-ops.cpp +1725 -297
  225. package/src/llama.cpp/tests/test-barrier.cpp +94 -0
  226. package/src/llama.cpp/tests/test-chat-template.cpp +9 -5
  227. package/src/llama.cpp/tests/test-grammar-integration.cpp +23 -38
  228. package/src/llama.cpp/tests/test-grammar-parser.cpp +6 -4
  229. package/src/llama.cpp/tests/test-json-schema-to-grammar.cpp +23 -8
  230. package/src/llama.cpp/tests/test-llama-grammar.cpp +9 -8
  231. package/src/llama.cpp/tests/test-log.cpp +39 -0
  232. package/src/llama.cpp/tests/test-opt.cpp +853 -142
  233. package/src/llama.cpp/tests/test-quantize-fns.cpp +28 -19
  234. package/src/llama.cpp/tests/test-quantize-perf.cpp +16 -14
  235. package/src/llama.cpp/tests/test-rope.cpp +2 -1
  236. package/src/llama.cpp/tests/test-sampling.cpp +226 -142
  237. package/src/llama.cpp/tests/test-tokenizer-0.cpp +56 -36
  238. package/src/llama.cpp/tests/test-tokenizer-1-bpe.cpp +5 -5
  239. package/src/llama.cpp/tests/test-tokenizer-1-spm.cpp +5 -5
  240. package/patches/llama.patch +0 -22
  241. package/src/llama.cpp/.github/workflows/bench.yml +0 -310
  242. package/src/llama.cpp/common/grammar-parser.cpp +0 -536
  243. package/src/llama.cpp/common/grammar-parser.h +0 -29
  244. package/src/llama.cpp/common/train.cpp +0 -1513
  245. package/src/llama.cpp/common/train.h +0 -233
  246. package/src/llama.cpp/examples/baby-llama/baby-llama.cpp +0 -1640
  247. package/src/llama.cpp/examples/benchmark/CMakeLists.txt +0 -6
  248. package/src/llama.cpp/examples/benchmark/benchmark-matmult.cpp +0 -275
  249. package/src/llama.cpp/ggml/src/llamafile/sgemm.cpp +0 -1027
  250. package/src/llama.cpp/tests/test-grad0.cpp +0 -1566
  251. /package/src/llama.cpp/ggml/{cmake → src/ggml-cpu/cmake}/FindSIMD.cmake +0 -0
  252. /package/src/llama.cpp/ggml/src/{llamafile → ggml-cpu/llamafile}/sgemm.h +0 -0
@@ -0,0 +1,1885 @@
1
+ // Copyright 2024 Mozilla Foundation
2
+ //
3
+ // Permission is hereby granted, free of charge, to any person obtaining
4
+ // a copy of this software and associated documentation files (the
5
+ // "Software"), to deal in the Software without restriction, including
6
+ // without limitation the rights to use, copy, modify, merge, publish,
7
+ // distribute, sublicense, and/or sell copies of the Software, and to
8
+ // permit persons to whom the Software is furnished to do so, subject to
9
+ // the following conditions:
10
+ //
11
+ // The above copyright notice and this permission notice shall be
12
+ // included in all copies or substantial portions of the Software.
13
+ //
14
+ // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
15
+ // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
16
+ // MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
17
+ // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
18
+ // BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
19
+ // ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
20
+ // CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ // SOFTWARE.
22
+
23
+ //
24
+ // _ _ ___ _ _ ___
25
+ // | |_(_)_ _ _ _| _ ) | /_\ / __|
26
+ // | _| | ' \ || | _ \ |__ / _ \\__ \.
27
+ // \__|_|_||_\_, |___/____/_/ \_\___/
28
+ // |__/
29
+ //
30
+ // BASIC LINEAR ALGEBRA SUBPROGRAMS
31
+ //
32
+ //
33
+ // This file implements multithreaded CPU matrix multiplication for the
34
+ // common contiguous use case C = Aᵀ * B. These kernels are designed to
35
+ // have excellent performance[1] for matrices that fit in the CPU cache
36
+ // without imposing any overhead such as cache filling or malloc calls.
37
+ //
38
+ // This implementation does not guarantee any upper bound with rounding
39
+ // errors, which grow along with k. Our goal's to maximally exploit the
40
+ // hardware for performance, and then use whatever resources remain for
41
+ // improving numerical accuracy.
42
+ //
43
+ // [1] J. Tunney, ‘LLaMA Now Goes Faster on CPUs’, Mar. 2024. [Online].
44
+ // Available: https://justine.lol/matmul/. [Accessed: 29-Mar-2024].
45
+
46
+ #if defined(__GNUC__)
47
+ #pragma GCC diagnostic ignored "-Wpedantic"
48
+ #pragma GCC diagnostic ignored "-Wignored-attributes"
49
+ #endif
50
+
51
+ #include "sgemm.h"
52
+ #include "ggml-impl.h"
53
+ // hack until moved into the CPU backend
54
+ #include "../ggml-cpu-impl.h"
55
+ #include "ggml-quants.h"
56
+
57
+ #ifdef _MSC_VER
58
+ #define NOINLINE __declspec(noinline)
59
+ #else
60
+ #define NOINLINE __attribute__((__noinline__))
61
+ #endif
62
+
63
+ #if defined(__ARM_NEON) || defined(__AVX512F__)
64
+ #define VECTOR_REGISTERS 32
65
+ #else
66
+ #define VECTOR_REGISTERS 16
67
+ #endif
68
+
69
+ #define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
70
+
71
+ namespace {
72
+
73
+ inline float unhalf(ggml_fp16_t d) {
74
+ return GGML_FP16_TO_FP32(d);
75
+ }
76
+
77
+ ////////////////////////////////////////////////////////////////////////////////////////////////////
78
+ // VECTORIZED ARITHMETIC OPERATIONS
79
+
80
+ #if defined(__SSE__) || defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
81
+ inline __m128 add(__m128 x, __m128 y) { return _mm_add_ps(x, y); }
82
+ inline __m128 sub(__m128 x, __m128 y) { return _mm_sub_ps(x, y); }
83
+ inline __m128 mul(__m128 x, __m128 y) { return _mm_mul_ps(x, y); }
84
+ #endif // __SSE__
85
+
86
+ #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
87
+ inline __m256 add(__m256 x, __m256 y) { return _mm256_add_ps(x, y); }
88
+ inline __m256 sub(__m256 x, __m256 y) { return _mm256_sub_ps(x, y); }
89
+ inline __m256 mul(__m256 x, __m256 y) { return _mm256_mul_ps(x, y); }
90
+ #endif // __AVX__
91
+
92
+ #if defined(__AVX512F__)
93
+ inline __m512 add(__m512 x, __m512 y) { return _mm512_add_ps(x, y); }
94
+ inline __m512 sub(__m512 x, __m512 y) { return _mm512_sub_ps(x, y); }
95
+ inline __m512 mul(__m512 x, __m512 y) { return _mm512_mul_ps(x, y); }
96
+ #endif // __AVX512F__
97
+
98
+ #if defined(__ARM_NEON)
99
+ inline float32x4_t add(float32x4_t x, float32x4_t y) { return vaddq_f32(x, y); }
100
+ inline float32x4_t sub(float32x4_t x, float32x4_t y) { return vsubq_f32(x, y); }
101
+ inline float32x4_t mul(float32x4_t x, float32x4_t y) { return vmulq_f32(x, y); }
102
+ #endif // __ARM_NEON
103
+
104
+ #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
105
+ inline float16x8_t add(float16x8_t x, float16x8_t y) { return vaddq_f16(x, y); }
106
+ inline float16x8_t sub(float16x8_t x, float16x8_t y) { return vsubq_f16(x, y); }
107
+ inline float16x8_t mul(float16x8_t x, float16x8_t y) { return vmulq_f16(x, y); }
108
+ #endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
109
+
110
+ #if defined(__MMA__)
111
+ typedef vector unsigned char vec_t;
112
+ typedef __vector_quad acc_t;
113
+ #endif
114
+ ////////////////////////////////////////////////////////////////////////////////////////////////////
115
+ // VECTORIZED FUSED MULTIPLY ADD
116
+
117
+ /**
118
+ * Computes a * b + c.
119
+ */
120
+ template <typename T, typename U>
121
+ inline U madd(T a, T b, U c) {
122
+ return add(mul(a, b), c);
123
+ }
124
+
125
+ #if defined(__FMA__)
126
+ #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
127
+ template <>
128
+ inline __m256 madd(__m256 a, __m256 b, __m256 c) {
129
+ return _mm256_fmadd_ps(a, b, c);
130
+ }
131
+ #endif
132
+ #if defined(__AVX512F__)
133
+ template <>
134
+ inline __m512 madd(__m512 a, __m512 b, __m512 c) {
135
+ return _mm512_fmadd_ps(a, b, c);
136
+ }
137
+ #endif
138
+ #endif
139
+
140
+ #if defined(__ARM_FEATURE_FMA)
141
+ template <>
142
+ inline float32x4_t madd(float32x4_t a, float32x4_t b, float32x4_t c) {
143
+ return vfmaq_f32(c, b, a);
144
+ }
145
+ #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && !defined(_MSC_VER)
146
+ template <>
147
+ inline float16x8_t madd(float16x8_t a, float16x8_t b, float16x8_t c) {
148
+ return vfmaq_f16(c, b, a);
149
+ }
150
+ #endif
151
+ #endif
152
+
153
+ ////////////////////////////////////////////////////////////////////////////////////////////////////
154
+ // VECTORIZED HORIZONTAL SUM
155
+
156
+ #if defined(__ARM_NEON)
157
+ inline float hsum(float32x4_t x) {
158
+ return vaddvq_f32(x);
159
+ }
160
+ #endif // __ARM_NEON
161
+
162
+ #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && !defined(_MSC_VER)
163
+ inline float hsum(float16x8_t x) {
164
+ return vaddvq_f32(vaddq_f32(vcvt_f32_f16(vget_low_f16(x)),
165
+ vcvt_f32_f16(vget_high_f16(x))));
166
+ }
167
+ #endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
168
+
169
+ #if defined(__SSE__) || defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
170
+ inline float hsum(__m128 x) {
171
+ #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
172
+ x = _mm_add_ps(x, _mm_movehl_ps(x, x));
173
+ x = _mm_add_ss(x, _mm_movehdup_ps(x));
174
+ #else
175
+ __m128 t;
176
+ t = _mm_shuffle_ps(x, x, _MM_SHUFFLE(2, 3, 0, 1));
177
+ x = _mm_add_ps(x, t);
178
+ t = _mm_movehl_ps(t, x);
179
+ x = _mm_add_ss(x, t);
180
+ #endif
181
+ return _mm_cvtss_f32(x);
182
+ }
183
+ #endif
184
+
185
+ #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
186
+ inline float hsum(__m256 x) {
187
+ return hsum(_mm_add_ps(_mm256_extractf128_ps(x, 1),
188
+ _mm256_castps256_ps128(x)));
189
+ }
190
+ #endif // __AVX__
191
+
192
+ #if defined(__AVX512F__)
193
+ inline float hsum(__m512 x) {
194
+ return _mm512_reduce_add_ps(x);
195
+ }
196
+ #endif // __AVX512F__
197
+
198
+ ////////////////////////////////////////////////////////////////////////////////////////////////////
199
+ // VECTORIZED MEMORY LOADING
200
+
201
+ template <typename T, typename U> T load(const U *);
202
+
203
+ #if defined(__ARM_NEON)
204
+ template <> inline float32x4_t load(const float *p) {
205
+ return vld1q_f32(p);
206
+ }
207
+ #if !defined(_MSC_VER)
208
+ template <> inline float16x8_t load(const ggml_fp16_t *p) {
209
+ return vld1q_f16((const float16_t *)p);
210
+ }
211
+ template <> inline float32x4_t load(const ggml_fp16_t *p) {
212
+ return vcvt_f32_f16(vld1_f16((const float16_t *)p));
213
+ }
214
+ #endif // _MSC_VER
215
+ #endif // __ARM_NEON
216
+
217
+ #if defined(__SSE__) || defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
218
+ template <> inline __m128 load(const float *p) {
219
+ return _mm_loadu_ps(p);
220
+ }
221
+ #endif // __SSE__
222
+
223
+ #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
224
+ template <> inline __m256 load(const float *p) {
225
+ return _mm256_loadu_ps(p);
226
+ }
227
+ #endif // __AVX__
228
+
229
+ #if defined(__F16C__)
230
+ template <> inline __m256 load(const ggml_fp16_t *p) {
231
+ return _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)p));
232
+ }
233
+ #endif // __F16C__
234
+
235
+ #if defined(__AVX512F__)
236
+ template <> inline __m512 load(const float *p) {
237
+ return _mm512_loadu_ps(p);
238
+ }
239
+ template <> inline __m512 load(const ggml_fp16_t *p) {
240
+ return _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)p));
241
+ }
242
+ #endif // __AVX512F__
243
+
244
+ ////////////////////////////////////////////////////////////////////////////////////////////////////
245
+ // CONSTANTS
246
+
247
+ #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
248
+ static const int8_t kvalues_iq4nl[16] = {-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113};
249
+ static const __m128i iq4nlt = _mm_loadu_si128((const __m128i *) kvalues_iq4nl);
250
+ #endif
251
+
252
+ ////////////////////////////////////////////////////////////////////////////////////////////////////
253
+ // FLOATING POINT MATRIX MULTIPLICATION
254
+
255
+ template <int KN, typename D, typename V, typename TA, typename TB, typename TC>
256
+ class tinyBLAS {
257
+ public:
258
+ tinyBLAS(int64_t k,
259
+ const TA *A, int64_t lda,
260
+ const TB *B, int64_t ldb,
261
+ TC *C, int64_t ldc,
262
+ int ith, int nth)
263
+ : A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) {
264
+ }
265
+
266
+ void matmul(int64_t m, int64_t n) {
267
+ mnpack(0, m, 0, n);
268
+ }
269
+
270
+ private:
271
+ NOINLINE void mnpack(int64_t m0, int64_t m, int64_t n0, int64_t n) {
272
+ int64_t mc, nc, mp, np;
273
+ switch ((MIN(m - m0, 5) << 4) | MIN(n - n0, 5)) {
274
+ #if VECTOR_REGISTERS == 32
275
+ case 0x55:
276
+ mc = 5;
277
+ nc = 5;
278
+ gemm<5, 5>(m0, m, n0, n);
279
+ break;
280
+ case 0x45:
281
+ mc = 4;
282
+ nc = 5;
283
+ gemm<4, 5>(m0, m, n0, n);
284
+ break;
285
+ case 0x54:
286
+ mc = 5;
287
+ nc = 4;
288
+ gemm<5, 4>(m0, m, n0, n);
289
+ break;
290
+ case 0x44:
291
+ mc = 4;
292
+ nc = 4;
293
+ gemm<4, 4>(m0, m, n0, n);
294
+ break;
295
+ case 0x53:
296
+ mc = 5;
297
+ nc = 3;
298
+ gemm<5, 3>(m0, m, n0, n);
299
+ break;
300
+ case 0x35:
301
+ mc = 3;
302
+ nc = 5;
303
+ gemm<3, 5>(m0, m, n0, n);
304
+ break;
305
+ case 0x43:
306
+ mc = 4;
307
+ nc = 3;
308
+ gemm<4, 3>(m0, m, n0, n);
309
+ break;
310
+ #else
311
+ case 0x55:
312
+ case 0x54:
313
+ case 0x53:
314
+ case 0x45:
315
+ case 0x44:
316
+ case 0x43:
317
+ mc = 4;
318
+ nc = 3;
319
+ gemm<4, 3>(m0, m, n0, n);
320
+ break;
321
+ case 0x35:
322
+ #endif
323
+ case 0x34:
324
+ mc = 3;
325
+ nc = 4;
326
+ gemm<3, 4>(m0, m, n0, n);
327
+ break;
328
+ case 0x52:
329
+ mc = 5;
330
+ nc = 2;
331
+ gemm<5, 2>(m0, m, n0, n);
332
+ break;
333
+ case 0x33:
334
+ mc = 3;
335
+ nc = 3;
336
+ gemm<3, 3>(m0, m, n0, n);
337
+ break;
338
+ case 0x25:
339
+ mc = 2;
340
+ nc = 5;
341
+ gemm<2, 5>(m0, m, n0, n);
342
+ break;
343
+ case 0x42:
344
+ mc = 4;
345
+ nc = 2;
346
+ gemm<4, 2>(m0, m, n0, n);
347
+ break;
348
+ case 0x24:
349
+ mc = 2;
350
+ nc = 4;
351
+ gemm<2, 4>(m0, m, n0, n);
352
+ break;
353
+ case 0x32:
354
+ mc = 3;
355
+ nc = 2;
356
+ gemm<3, 2>(m0, m, n0, n);
357
+ break;
358
+ case 0x23:
359
+ mc = 2;
360
+ nc = 3;
361
+ gemm<2, 3>(m0, m, n0, n);
362
+ break;
363
+ case 0x51:
364
+ mc = 5;
365
+ nc = 1;
366
+ gemm<5, 1>(m0, m, n0, n);
367
+ break;
368
+ case 0x41:
369
+ mc = 4;
370
+ nc = 1;
371
+ gemm<4, 1>(m0, m, n0, n);
372
+ break;
373
+ case 0x22:
374
+ mc = 2;
375
+ nc = 2;
376
+ gemm<2, 2>(m0, m, n0, n);
377
+ break;
378
+ case 0x15:
379
+ mc = 1;
380
+ nc = 5;
381
+ gemm<1, 5>(m0, m, n0, n);
382
+ break;
383
+ case 0x14:
384
+ mc = 1;
385
+ nc = 4;
386
+ gemm<1, 4>(m0, m, n0, n);
387
+ break;
388
+ case 0x31:
389
+ mc = 3;
390
+ nc = 1;
391
+ gemm<3, 1>(m0, m, n0, n);
392
+ break;
393
+ case 0x13:
394
+ mc = 1;
395
+ nc = 3;
396
+ gemm<1, 3>(m0, m, n0, n);
397
+ break;
398
+ case 0x21:
399
+ mc = 2;
400
+ nc = 1;
401
+ gemm<2, 1>(m0, m, n0, n);
402
+ break;
403
+ case 0x12:
404
+ mc = 1;
405
+ nc = 2;
406
+ gemm<1, 2>(m0, m, n0, n);
407
+ break;
408
+ case 0x11:
409
+ mc = 1;
410
+ nc = 1;
411
+ gemm<1, 1>(m0, m, n0, n);
412
+ break;
413
+ default:
414
+ return;
415
+ }
416
+ mp = m0 + (m - m0) / mc * mc;
417
+ np = n0 + (n - n0) / nc * nc;
418
+ mnpack(mp, m, n0, np);
419
+ mnpack(m0, m, np, n);
420
+ }
421
+
422
+ template <int RM, int RN>
423
+ NOINLINE void gemm(int64_t m0, int64_t m, int64_t n0, int64_t n) {
424
+ int64_t ytiles = (m - m0) / RM;
425
+ int64_t xtiles = (n - n0) / RN;
426
+ int64_t tiles = xtiles * ytiles;
427
+ int64_t duty = (tiles + nth - 1) / nth;
428
+ int64_t start = duty * ith;
429
+ int64_t end = start + duty;
430
+ if (end > tiles)
431
+ end = tiles;
432
+ for (int64_t job = start; job < end; ++job) {
433
+ int64_t ii = m0 + job / xtiles * RM;
434
+ int64_t jj = n0 + job % xtiles * RN;
435
+ D Cv[RN][RM] = {};
436
+ for (int64_t l = 0; l < k; l += KN)
437
+ for (int64_t j = 0; j < RN; ++j)
438
+ for (int64_t i = 0; i < RM; ++i)
439
+ Cv[j][i] = madd(load<V>(A + lda * (ii + i) + l),
440
+ load<V>(B + ldb * (jj + j) + l),
441
+ Cv[j][i]);
442
+ for (int64_t j = 0; j < RN; ++j)
443
+ for (int64_t i = 0; i < RM; ++i)
444
+ C[ldc * (jj + j) + (ii + i)] = hsum(Cv[j][i]);
445
+ }
446
+ }
447
+
448
+ const TA *const A;
449
+ const TB *const B;
450
+ TC *const C;
451
+ const int64_t k;
452
+ const int64_t lda;
453
+ const int64_t ldb;
454
+ const int64_t ldc;
455
+ const int ith;
456
+ const int nth;
457
+ };
458
+
459
+ //////////////////////////////////////////////////////////////////////////////////////////
460
+ // QUANT ZERO MATRIX MULTIPLICATION
461
+
462
+ #if defined(__ARM_FEATURE_DOTPROD)
463
+ template <typename TA>
464
+ class tinyBLAS_Q0_ARM {
465
+ public:
466
+ tinyBLAS_Q0_ARM(int64_t k,
467
+ const TA *A, int64_t lda,
468
+ const block_q8_0 *B, int64_t ldb,
469
+ float *C, int64_t ldc,
470
+ int ith, int nth)
471
+ : A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) {
472
+ }
473
+
474
+ void matmul(int64_t m, int64_t n) {
475
+ mnpack(0, m, 0, n);
476
+ }
477
+
478
+ private:
479
+ NOINLINE void mnpack(int64_t m0, int64_t m, int64_t n0, int64_t n) {
480
+ int64_t mc, nc, mp, np;
481
+ switch ((MIN(m - m0, 3) << 4) | MIN(n - n0, 3ll)) {
482
+ case 0x33:
483
+ mc = 3;
484
+ nc = 3;
485
+ gemm<3, 3>(m0, m, n0, n);
486
+ break;
487
+ case 0x32:
488
+ mc = 3;
489
+ nc = 2;
490
+ gemm<3, 2>(m0, m, n0, n);
491
+ break;
492
+ case 0x23:
493
+ mc = 2;
494
+ nc = 3;
495
+ gemm<2, 3>(m0, m, n0, n);
496
+ break;
497
+ case 0x22:
498
+ mc = 2;
499
+ nc = 2;
500
+ gemm<2, 2>(m0, m, n0, n);
501
+ break;
502
+ case 0x31:
503
+ mc = 3;
504
+ nc = 1;
505
+ gemm<3, 1>(m0, m, n0, n);
506
+ break;
507
+ case 0x13:
508
+ mc = 1;
509
+ nc = 3;
510
+ gemm<1, 3>(m0, m, n0, n);
511
+ break;
512
+ case 0x21:
513
+ mc = 2;
514
+ nc = 1;
515
+ gemm<2, 1>(m0, m, n0, n);
516
+ break;
517
+ case 0x12:
518
+ mc = 1;
519
+ nc = 2;
520
+ gemm<1, 2>(m0, m, n0, n);
521
+ break;
522
+ case 0x11:
523
+ mc = 1;
524
+ nc = 1;
525
+ gemm<1, 1>(m0, m, n0, n);
526
+ break;
527
+ default:
528
+ return;
529
+ }
530
+ mp = m0 + (m - m0) / mc * mc;
531
+ np = n0 + (n - n0) / nc * nc;
532
+ mnpack(mp, m, n0, np);
533
+ mnpack(m0, m, np, n);
534
+ }
535
+
536
+ template <int RM, int RN>
537
+ NOINLINE void gemm(int64_t m0, int64_t m, int64_t n0, int64_t n) {
538
+ int64_t ytiles = (m - m0) / RM;
539
+ int64_t xtiles = (n - n0) / RN;
540
+ int64_t tiles = xtiles * ytiles;
541
+ int64_t duty = (tiles + nth - 1) / nth;
542
+ int64_t start = duty * ith;
543
+ int64_t end = start + duty;
544
+ if (end > tiles)
545
+ end = tiles;
546
+ for (int64_t job = start; job < end; ++job) {
547
+ int64_t ii = m0 + job / xtiles * RM;
548
+ int64_t jj = n0 + job % xtiles * RN;
549
+ float32x4_t Cv[RN][RM] = {};
550
+ for (int64_t l = 0; l < k; ++l)
551
+ for (int64_t j = 0; j < RN; ++j)
552
+ for (int64_t i = 0; i < RM; ++i)
553
+ Cv[j][i] = vmlaq_n_f32(Cv[j][i],
554
+ vcvtq_f32_s32(vdotq_s32(
555
+ vdotq_s32(vdupq_n_s32(0),
556
+ load_lo(A + lda * (ii + i) + l),
557
+ load_lo(B + ldb * (jj + j) + l)),
558
+ load_hi(A + lda * (ii + i) + l),
559
+ load_hi(B + ldb * (jj + j) + l))),
560
+ unhalf(A[lda * (ii + i) + l].d) *
561
+ unhalf(B[ldb * (jj + j) + l].d));
562
+ for (int64_t j = 0; j < RN; ++j)
563
+ for (int64_t i = 0; i < RM; ++i)
564
+ C[ldc * (jj + j) + (ii + i)] = hsum(Cv[j][i]);
565
+ }
566
+ }
567
+
568
+ inline int8x16_t load_lo(const block_q8_0 *b) {
569
+ return vld1q_s8(b->qs);
570
+ }
571
+
572
+ inline int8x16_t load_hi(const block_q8_0 *b) {
573
+ return vld1q_s8(b->qs + 16);
574
+ }
575
+
576
+ inline int8x16_t load_lo(const block_q4_0 *b) {
577
+ return vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vld1q_u8(b->qs),
578
+ vdupq_n_u8(0x0f))),
579
+ vdupq_n_s8(0x8));
580
+ }
581
+
582
+ inline int8x16_t load_hi(const block_q4_0 *b) {
583
+ return vsubq_s8(vreinterpretq_s8_u8(vshrq_n_u8(vld1q_u8(b->qs), 4)),
584
+ vdupq_n_s8(0x8));
585
+ }
586
+
587
+ const TA *const A;
588
+ const block_q8_0 *const B;
589
+ float *const C;
590
+ const int64_t k;
591
+ const int64_t lda;
592
+ const int64_t ldb;
593
+ const int64_t ldc;
594
+ const int ith;
595
+ const int nth;
596
+ };
597
+ #endif // __ARM_FEATURE_DOTPROD
598
+
599
+ #if defined(__AVX2__) || defined(__AVX512F__) || defined(__AVX__)
600
+ template <typename TA, typename TB, typename TC>
601
+ class tinyBLAS_Q0_AVX {
602
+ public:
603
+ tinyBLAS_Q0_AVX(int64_t k,
604
+ const TA *A, int64_t lda,
605
+ const TB *B, int64_t ldb,
606
+ TC *C, int64_t ldc,
607
+ int ith, int nth)
608
+ : A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) {
609
+ }
610
+
611
+ void matmul(int64_t m, int64_t n) {
612
+ mnpack(0, m, 0, n);
613
+ }
614
+
615
+ private:
616
+ void mnpack(int64_t m0, int64_t m, int64_t n0, int64_t n) {
617
+ int64_t mc, nc, mp, np;
618
+ switch ((MIN(m - m0, 4) << 4) | MIN(n - n0, 4)) {
619
+ #if VECTOR_REGISTERS == 32
620
+ case 0x44:
621
+ mc = 4;
622
+ nc = 4;
623
+ #if defined(__AVX2__) && defined(__F16C__)
624
+ gemm4xN<4>(m0, m, n0, n);
625
+ #else
626
+ gemm<4, 4>(m0, m, n0, n);
627
+ #endif
628
+ break;
629
+ case 0x43:
630
+ mc = 4;
631
+ nc = 3;
632
+ #if defined(__AVX2__) && defined(__F16C__)
633
+ gemm4xN<3>(m0, m, n0, n);
634
+ #else
635
+ gemm<4, 3>(m0, m, n0, n);
636
+ #endif
637
+ break;
638
+ case 0x34:
639
+ mc = 3;
640
+ nc = 4;
641
+ #if defined(__AVX2__) && defined(__F16C__)
642
+ gemmMx4<3>(m0, m, n0, n);
643
+ #else
644
+ gemm<3, 4>(m0, m, n0, n);
645
+ #endif
646
+ break;
647
+ case 0x33:
648
+ mc = 3;
649
+ nc = 3;
650
+ gemm<3, 3>(m0, m, n0, n);
651
+ break;
652
+ case 0x42:
653
+ mc = 4;
654
+ nc = 2;
655
+ #if defined(__AVX2__) && defined(__F16C__)
656
+ gemm4xN<2>(m0, m, n0, n);
657
+ #else
658
+ gemm<4, 2>(m0, m, n0, n);
659
+ #endif
660
+ break;
661
+ case 0x24:
662
+ mc = 2;
663
+ nc = 4;
664
+ #if defined(__AVX2__) && defined(__F16C__)
665
+ gemmMx4<2>(m0, m, n0, n);
666
+ #else
667
+ gemm<2, 4>(m0, m, n0, n);
668
+ #endif
669
+ break;
670
+ #else
671
+ case 0x44:
672
+ case 0x43:
673
+ case 0x42:
674
+ mc = 4;
675
+ nc = 2;
676
+ #if defined(__AVX2__) && defined(__F16C__)
677
+ gemm4xN<2>(m0, m, n0, n);
678
+ #else
679
+ gemm<4, 2>(m0, m, n0, n);
680
+ #endif
681
+ break;
682
+ case 0x34:
683
+ case 0x24:
684
+ mc = 2;
685
+ nc = 4;
686
+ #if defined(__AVX2__) && defined(__F16C__)
687
+ gemmMx4<2>(m0, m, n0, n);
688
+ #else
689
+ gemm<2, 4>(m0, m, n0, n);
690
+ #endif
691
+ break;
692
+ case 0x33:
693
+ #endif
694
+ case 0x32:
695
+ mc = 3;
696
+ nc = 2;
697
+ gemm<3, 2>(m0, m, n0, n);
698
+ break;
699
+ case 0x23:
700
+ mc = 2;
701
+ nc = 3;
702
+ gemm<2, 3>(m0, m, n0, n);
703
+ break;
704
+ case 0x41:
705
+ mc = 4;
706
+ nc = 1;
707
+ #if defined(__AVX2__) && defined(__F16C__)
708
+ gemm4xN<1>(m0, m, n0, n);
709
+ #else
710
+ gemm<4, 1>(m0, m, n0, n);
711
+ #endif
712
+ break;
713
+ case 0x22:
714
+ mc = 2;
715
+ nc = 2;
716
+ gemm<2, 2>(m0, m, n0, n);
717
+ break;
718
+ case 0x14:
719
+ mc = 1;
720
+ nc = 4;
721
+ #if defined(__AVX2__) && defined(__F16C__)
722
+ gemmMx4<1>(m0, m, n0, n);
723
+ #else
724
+ gemm<1, 4>(m0, m, n0, n);
725
+ #endif
726
+ break;
727
+ case 0x31:
728
+ mc = 3;
729
+ nc = 1;
730
+ gemm<3, 1>(m0, m, n0, n);
731
+ break;
732
+ case 0x13:
733
+ mc = 1;
734
+ nc = 3;
735
+ gemm<1, 3>(m0, m, n0, n);
736
+ break;
737
+ case 0x21:
738
+ mc = 2;
739
+ nc = 1;
740
+ gemm<2, 1>(m0, m, n0, n);
741
+ break;
742
+ case 0x12:
743
+ mc = 1;
744
+ nc = 2;
745
+ gemm<1, 2>(m0, m, n0, n);
746
+ break;
747
+ case 0x11:
748
+ mc = 1;
749
+ nc = 1;
750
+ gemm<1, 1>(m0, m, n0, n);
751
+ break;
752
+ default:
753
+ return;
754
+ }
755
+ mp = m0 + (m - m0) / mc * mc;
756
+ np = n0 + (n - n0) / nc * nc;
757
+ mnpack(mp, m, n0, np);
758
+ mnpack(m0, m, np, n);
759
+ }
760
+
761
+ #if defined(__AVX2__) && defined(__F16C__)
762
+ // Templated functions for gemm of dimensions 4xN
763
+ template <int RN>
764
+ NOINLINE void gemm4xN(int64_t m0, int64_t m, int64_t n0, int64_t n) {
765
+ int64_t ytiles = (m - m0) / 4;
766
+ int64_t xtiles = (n - n0) / RN;
767
+ int64_t tiles = xtiles * ytiles;
768
+ int64_t duty = (tiles + nth - 1) / nth;
769
+ int64_t start = duty * ith;
770
+ int64_t end = start + duty;
771
+ if (end > tiles)
772
+ end = tiles;
773
+ for (int64_t job = start; job < end; ++job) {
774
+ int64_t ii = m0 + job / xtiles * 4;
775
+ int64_t jj = n0 + job % xtiles * RN;
776
+ __m256 Cv[RN][4] = {};
777
+ for (int64_t l = 0; l < k; ++l) {
778
+ uint64_t a_delta = ((uint64_t)A[lda * (ii + 3) + l].d << 48) | ((uint64_t)A[lda * (ii + 2) + l].d << 32) | ((uint64_t)A[lda * (ii + 1) + l].d << 16) | (A[lda * (ii + 0) + l].d);
779
+ // Convert delta values for four blocks to float values
780
+ __m128 da = _mm_cvtph_ps(_mm_set_epi64x(0, a_delta));
781
+ __m256i avec0 = load(A + lda * (ii + 0) + l);
782
+ __m256i avec1 = load(A + lda * (ii + 1) + l);
783
+ __m256i avec2 = load(A + lda * (ii + 2) + l);
784
+ __m256i avec3 = load(A + lda * (ii + 3) + l);
785
+ for (int64_t j = 0; j < RN; ++j) {
786
+ __m128 db = _mm_set1_ps(unhalf(B[ldb * (jj + j) + l].d));
787
+ // Computation of product of delta values for four blocks and replicate it across 256 bit lane
788
+ __m256 dvec = _mm256_castps128_ps256(_mm_mul_ps(da, db));
789
+ dvec = _mm256_permute2f128_ps(dvec ,dvec, 0);
790
+ // Computation of dot product and multiplication with appropriate delta value products
791
+ Cv[j][0] = madd(_mm256_shuffle_ps(dvec, dvec, 0),
792
+ updot(_mm256_sign_epi8(avec0, avec0),
793
+ _mm256_sign_epi8(load(B + ldb * (jj + j) + l), avec0)),
794
+ Cv[j][0]);
795
+ Cv[j][1] = madd(_mm256_shuffle_ps(dvec, dvec, 85),
796
+ updot(_mm256_sign_epi8(avec1, avec1),
797
+ _mm256_sign_epi8(load(B + ldb * (jj + j) + l), avec1)),
798
+ Cv[j][1]);
799
+ Cv[j][2] = madd(_mm256_shuffle_ps(dvec, dvec, 170),
800
+ updot(_mm256_sign_epi8(avec2, avec2),
801
+ _mm256_sign_epi8(load(B + ldb * (jj + j) + l), avec2)),
802
+ Cv[j][2]);
803
+ Cv[j][3] = madd(_mm256_shuffle_ps(dvec, dvec, 255),
804
+ updot(_mm256_sign_epi8(avec3, avec3),
805
+ _mm256_sign_epi8(load(B + ldb * (jj + j) + l), avec3)),
806
+ Cv[j][3]);
807
+ }
808
+ }
809
+
810
+ for (int64_t j = 0; j < RN; ++j)
811
+ for (int64_t i = 0; i < 4; ++i)
812
+ C[ldc * (jj + j) + (ii + i)] = hsum(Cv[j][i]);
813
+ }
814
+ }
815
+
816
+ // Templated functions for gemm of dimensions Mx4
817
+ template <int RM>
818
+ NOINLINE void gemmMx4(int64_t m0, int64_t m, int64_t n0, int64_t n) {
819
+ int64_t ytiles = (m - m0) / RM;
820
+ int64_t xtiles = (n - n0) / 4;
821
+ int64_t tiles = xtiles * ytiles;
822
+ int64_t duty = (tiles + nth - 1) / nth;
823
+ int64_t start = duty * ith;
824
+ int64_t end = start + duty;
825
+ if (end > tiles)
826
+ end = tiles;
827
+ for (int64_t job = start; job < end; ++job) {
828
+ int64_t ii = m0 + job / xtiles * RM;
829
+ int64_t jj = n0 + job % xtiles * 4;
830
+ __m256 Cv[4][RM] = {};
831
+ for (int64_t l = 0; l < k; ++l) {
832
+ uint64_t b_delta = ((uint64_t)B[ldb * (jj + 3) + l].d << 48) | ((uint64_t)B[ldb * (jj + 2) + l].d << 32) | ((uint64_t)B[ldb * (jj + 1) + l].d << 16) | (B[ldb * (jj + 0) + l].d);
833
+ // Convert delta values for four blocks to float values
834
+ __m128 db = _mm_cvtph_ps(_mm_set_epi64x(0, b_delta));
835
+ __m256i bvec0 = load(B + ldb * (jj + 0) + l);
836
+ __m256i bvec1 = load(B + ldb * (jj + 1) + l);
837
+ __m256i bvec2 = load(B + ldb * (jj + 2) + l);
838
+ __m256i bvec3 = load(B + ldb * (jj + 3) + l);
839
+ for (int64_t i = 0; i < RM; ++i) {
840
+ __m128 da = _mm_set1_ps(unhalf((A[lda * (ii + i) + l].d)));
841
+ // Computation of product of delta values for four blocks and replicate it across 256 bit lane
842
+ __m256 dvec = _mm256_castps128_ps256(_mm_mul_ps(da, db));
843
+ dvec = _mm256_permute2f128_ps(dvec ,dvec, 0);
844
+ // Computation of dot product and multiplication with appropriate delta value products
845
+ Cv[0][i] = madd(_mm256_shuffle_ps(dvec, dvec, 0),
846
+ updot(_mm256_sign_epi8(load(A + lda * (ii + i) + l),
847
+ load(A + lda * (ii + i) + l)),
848
+ _mm256_sign_epi8(bvec0, load(A + lda * (ii + i) + l))),
849
+ Cv[0][i]);
850
+ Cv[1][i] = madd(_mm256_shuffle_ps(dvec, dvec, 85),
851
+ updot(_mm256_sign_epi8(load(A + lda * (ii + i) + l),
852
+ load(A + lda * (ii + i) + l)),
853
+ _mm256_sign_epi8(bvec1, load(A + lda * (ii + i) + l))),
854
+ Cv[1][i]);
855
+ Cv[2][i] = madd(_mm256_shuffle_ps(dvec, dvec, 170),
856
+ updot(_mm256_sign_epi8(load(A + lda * (ii + i) + l),
857
+ load(A + lda * (ii + i) + l)),
858
+ _mm256_sign_epi8(bvec2, load(A + lda * (ii + i) + l))),
859
+ Cv[2][i]);
860
+ Cv[3][i] = madd(_mm256_shuffle_ps(dvec, dvec, 255),
861
+ updot(_mm256_sign_epi8(load(A + lda * (ii + i) + l),
862
+ load(A + lda * (ii + i) + l)),
863
+ _mm256_sign_epi8(bvec3, load(A + lda * (ii + i) + l))),
864
+ Cv[3][i]);
865
+ }
866
+ }
867
+ for (int64_t j = 0; j < 4; ++j)
868
+ for (int64_t i = 0; i < RM; ++i)
869
+ C[ldc * (jj + j) + (ii + i)] = hsum(Cv[j][i]);
870
+ }
871
+ }
872
+ #endif
873
+
874
+ template <int RM, int RN>
875
+ NOINLINE void gemm(int64_t m0, int64_t m, int64_t n0, int64_t n) {
876
+ int64_t ytiles = (m - m0) / RM;
877
+ int64_t xtiles = (n - n0) / RN;
878
+ int64_t tiles = xtiles * ytiles;
879
+ int64_t duty = (tiles + nth - 1) / nth;
880
+ int64_t start = duty * ith;
881
+ int64_t end = start + duty;
882
+ if (end > tiles)
883
+ end = tiles;
884
+ for (int64_t job = start; job < end; ++job) {
885
+ int64_t ii = m0 + job / xtiles * RM;
886
+ int64_t jj = n0 + job % xtiles * RN;
887
+ __m256 Cv[RN][RM] = {};
888
+ for (int64_t l = 0; l < k; ++l)
889
+ for (int64_t j = 0; j < RN; ++j)
890
+ for (int64_t i = 0; i < RM; ++i) {
891
+ #if defined(__AVX2__)
892
+ __m256 udTmp = updot(_mm256_sign_epi8(load(A + lda * (ii + i) + l),
893
+ load(A + lda * (ii + i) + l)),
894
+ _mm256_sign_epi8(load(B + ldb * (jj + j) + l),
895
+ load(A + lda * (ii + i) + l)));
896
+ #else
897
+ __m128i ali0 = load0(A + lda * (ii + i) + l);
898
+ __m128i ali1 = load1(A + lda * (ii + i) + l);
899
+ __m128i blj0 = load0(B + ldb * (jj + j) + l);
900
+ __m128i blj1 = load1(B + ldb * (jj + j) + l);
901
+
902
+ __m128i sepAA0 = _mm_sign_epi8(ali0, ali0);
903
+ __m128i sepAA1 = _mm_sign_epi8(ali1, ali1);
904
+ __m128i sepBA0 = _mm_sign_epi8(blj0, ali0);
905
+ __m128i sepBA1 = _mm_sign_epi8(blj1, ali1);
906
+
907
+ // updot
908
+ const __m128i oneFill = _mm_set1_epi16(1);
909
+ __m128i mad0 = _mm_maddubs_epi16(sepAA0, sepBA0);
910
+ __m128i mad1 = _mm_maddubs_epi16(sepAA1, sepBA1);
911
+ __m256 udTmp = _mm256_cvtepi32_ps(MM256_SET_M128I(_mm_madd_epi16(oneFill, mad1), _mm_madd_epi16(oneFill, mad0)));
912
+ #endif
913
+ Cv[j][i] = madd(_mm256_set1_ps(unhalf(A[lda * (ii + i) + l].d) *
914
+ unhalf(B[ldb * (jj + j) + l].d)),
915
+ udTmp,
916
+ Cv[j][i]);
917
+ }
918
+ for (int64_t j = 0; j < RN; ++j)
919
+ for (int64_t i = 0; i < RM; ++i)
920
+ C[ldc * (jj + j) + (ii + i)] = hsum(Cv[j][i]);
921
+ }
922
+ }
923
+
924
+ inline __m256i load(const block_q8_0 *b) {
925
+ return _mm256_loadu_si256((const __m256i *)b->qs);
926
+ }
927
+
928
+ inline __m128i load0(const block_q8_0 *b) {
929
+ return _mm_loadu_si128((const __m128i *)b->qs);
930
+ }
931
+
932
+ inline __m128i load1(const block_q8_0 *b) {
933
+ return _mm_loadu_si128(((const __m128i *)b->qs) + 1);
934
+ }
935
+
936
+ inline __m256i load(const block_q4_0 *b) {
937
+ return _mm256_sub_epi8(denibble(b->qs), _mm256_set1_epi8(8));
938
+ }
939
+
940
+ inline __m128i load0(const block_q4_0 *b) {
941
+ const __m128i x = _mm_loadu_si128((const __m128i *)(b->qs));
942
+ return _mm_sub_epi8(_mm_and_si128(_mm_set1_epi8(15), x), _mm_set1_epi8(8));
943
+ }
944
+
945
+ inline __m128i load1(const block_q4_0 *b) {
946
+ const __m128i x = _mm_loadu_si128((const __m128i *)(b->qs));
947
+ return _mm_sub_epi8(_mm_and_si128(_mm_set1_epi8(15), _mm_srli_epi16(x, 4)), _mm_set1_epi8(8));
948
+ }
949
+
950
+ inline __m256i load(const block_q5_0 *b) {
951
+ return _mm256_or_si256(denibble(b->qs), bittobyte(b->qh));
952
+ }
953
+
954
+ inline __m128i load0(const block_q5_0* b) {
955
+ const __m128i x = _mm_loadu_si128((const __m128i *)(b->qs));
956
+ uint32_t x32;
957
+ memcpy(&x32, b->qh, sizeof(uint32_t));
958
+ __m128i qxl = _mm_and_si128(_mm_set1_epi8(15), x);
959
+ __m128i bytesl = _mm_cmpeq_epi8(_mm_set1_epi64x(-1),
960
+ _mm_or_si128(_mm_set1_epi64x(0x7fbfdfeff7fbfdfe),
961
+ _mm_shuffle_epi8(_mm_set1_epi32(x32),
962
+ _mm_set_epi64x(0x0101010101010101, 0x0000000000000000))));
963
+ bytesl = _mm_andnot_si128(bytesl, _mm_set1_epi8((char)0xF0));
964
+ return _mm_or_si128(qxl, bytesl);
965
+ }
966
+
967
+ inline __m128i load1(const block_q5_0* b) {
968
+ const __m128i x = _mm_loadu_si128((const __m128i *)(b->qs));
969
+ uint32_t x32;
970
+ memcpy(&x32, b->qh, sizeof(uint32_t));
971
+ __m128i qxh = _mm_and_si128(_mm_set1_epi8(15), _mm_srli_epi16(x, 4));
972
+ __m128i bytesh = _mm_cmpeq_epi8(_mm_set1_epi64x(-1),
973
+ _mm_or_si128(_mm_set1_epi64x(0x7fbfdfeff7fbfdfe),
974
+ _mm_shuffle_epi8(_mm_set1_epi32(x32),
975
+ _mm_set_epi64x(0x0303030303030303, 0x0202020202020202))));
976
+ bytesh = _mm_andnot_si128(bytesh, _mm_set1_epi8((char)0xF0));
977
+ return _mm_or_si128(qxh, bytesh);
978
+ }
979
+
980
+ inline __m256i load(const block_iq4_nl *b) {
981
+ return MM256_SET_M128I(load1(b), load0(b));
982
+ }
983
+
984
+ inline __m128i load0(const block_iq4_nl *b) {
985
+ const __m128i x = _mm_loadu_si128((const __m128i *)(b->qs));
986
+ return _mm_shuffle_epi8(iq4nlt, _mm_and_si128(_mm_set1_epi8(15), x));
987
+ }
988
+
989
+ inline __m128i load1(const block_iq4_nl *b) {
990
+ const __m128i x = _mm_loadu_si128((const __m128i *)(b->qs));
991
+ return _mm_shuffle_epi8(iq4nlt, _mm_and_si128(_mm_set1_epi8(15), _mm_srli_epi16(x, 4)));
992
+ }
993
+
994
+ inline __m256 updot(__m256i u, __m256i s) {
995
+ __m256i res;
996
+ #if defined(__AVXVNNI__) || (defined(__AVX512VNNI__) && defined(__AVX512VL__))
997
+ res = _mm256_dpbusd_epi32(_mm256_setzero_si256(), u, s);
998
+ #else
999
+ res = _mm256_madd_epi16(_mm256_set1_epi16(1), _mm256_maddubs_epi16(u, s));
1000
+ #endif
1001
+ return _mm256_cvtepi32_ps(res);
1002
+ }
1003
+
1004
+ static inline __m256i denibble(const uint8_t *p) {
1005
+ __m128i x = _mm_loadu_si128((const __m128i *)p);
1006
+ return _mm256_and_si256(_mm256_set1_epi8(15),
1007
+ _mm256_insertf128_si256(_mm256_castsi128_si256(x),
1008
+ _mm_srli_epi16(x, 4), 1));
1009
+ }
1010
+
1011
+ static inline __m256i bittobyte(const uint8_t *p) {
1012
+ uint32_t x32;
1013
+ memcpy(&x32, p, sizeof(uint32_t));
1014
+ __m256i bytes = _mm256_cmpeq_epi8(_mm256_set1_epi64x(-1),
1015
+ _mm256_or_si256(_mm256_set1_epi64x(0x7fbfdfeff7fbfdfe),
1016
+ _mm256_shuffle_epi8(_mm256_set1_epi32(x32),
1017
+ _mm256_set_epi64x(0x0303030303030303, 0x0202020202020202,
1018
+ 0x0101010101010101, 0x0000000000000000))));
1019
+ return _mm256_andnot_si256(bytes, _mm256_set1_epi8((char)0xF0));
1020
+ }
1021
+
1022
+ const TA *const A;
1023
+ const TB *const B;
1024
+ TC *const C;
1025
+ const int64_t k;
1026
+ const int64_t lda;
1027
+ const int64_t ldb;
1028
+ const int64_t ldc;
1029
+ const int ith;
1030
+ const int nth;
1031
+ };
1032
+ #endif // __AVX__
1033
+
1034
+ //PPC Implementation
1035
+ #if defined(__MMA__)
1036
+
1037
+ #define SAVE_ACC(ACC, ii, jj) \
1038
+ __builtin_mma_disassemble_acc(vec_C, ACC); \
1039
+ for (int I = 0; I < 4; I++) { \
1040
+ for (int J = 0; J < 4; J++) { \
1041
+ *((float*)(C+ii+((jj+J)*ldc)+I)) = *((float*)&vec_C[I]+J); \
1042
+ } \
1043
+ } \
1044
+
1045
+ template <typename TA, typename TB, typename TC>
1046
+ class tinyBLAS_PPC {
1047
+ public:
1048
+ tinyBLAS_PPC(int64_t k,
1049
+ const TA *A, int64_t lda,
1050
+ const TB *B, int64_t ldb,
1051
+ TC *C, int64_t ldc,
1052
+ int ith, int nth)
1053
+ : A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) {
1054
+ }
1055
+
1056
+ void matmul(int64_t m, int64_t n) {
1057
+ mnpack(0, m, 0, n);
1058
+ }
1059
+
1060
+ private:
1061
+
1062
+ void (tinyBLAS_PPC::*kernel)(int64_t, int64_t);
1063
+
1064
+ void READ_BLOCK(const float* a, int64_t lda, int rows, int cols, float* vec) {
1065
+ int64_t i, j;
1066
+ float *aoffset = NULL, *boffset = NULL;
1067
+ float *aoffset1 = NULL, *aoffset2 = NULL, *aoffset3 = NULL, *aoffset4 = NULL;
1068
+ float *aoffset5 = NULL, *aoffset6 = NULL, *aoffset7 = NULL, *aoffset8 = NULL;
1069
+
1070
+ aoffset = const_cast<float*>(a);
1071
+ boffset = vec;
1072
+ j = (rows >> 3);
1073
+ if (j > 0) {
1074
+ do {
1075
+ aoffset1 = aoffset;
1076
+ aoffset2 = aoffset1 + lda;
1077
+ aoffset3 = aoffset2 + lda;
1078
+ aoffset4 = aoffset3 + lda;
1079
+ aoffset5 = aoffset4 + lda;
1080
+ aoffset6 = aoffset5 + lda;
1081
+ aoffset7 = aoffset6 + lda;
1082
+ aoffset8 = aoffset7 + lda;
1083
+ aoffset += 8 * lda;
1084
+ i = (cols >> 3);
1085
+ if (i > 0) {
1086
+ __vector_pair C1, C2, C3, C4, C5, C6, C7, C8;
1087
+ vector float c1[2], c2[2], c3[2], c4[2], c5[2], c6[2], c7[2], c8[2];
1088
+ vector float t1, t2, t3, t4, t5, t6, t7, t8;
1089
+ do {
1090
+ C1 = __builtin_vsx_lxvp(0, (__vector_pair*)aoffset1);
1091
+ C2 = __builtin_vsx_lxvp(0, (__vector_pair*)aoffset2);
1092
+ C3 = __builtin_vsx_lxvp(0, (__vector_pair*)aoffset3);
1093
+ C4 = __builtin_vsx_lxvp(0, (__vector_pair*)aoffset4);
1094
+ C5 = __builtin_vsx_lxvp(0, (__vector_pair*)aoffset5);
1095
+ C6 = __builtin_vsx_lxvp(0, (__vector_pair*)aoffset6);
1096
+ C7 = __builtin_vsx_lxvp(0, (__vector_pair*)aoffset7);
1097
+ C8 = __builtin_vsx_lxvp(0, (__vector_pair*)aoffset8);
1098
+ __builtin_vsx_disassemble_pair(c1, &C1);
1099
+ __builtin_vsx_disassemble_pair(c2, &C2);
1100
+ __builtin_vsx_disassemble_pair(c3, &C3);
1101
+ __builtin_vsx_disassemble_pair(c4, &C4);
1102
+ __builtin_vsx_disassemble_pair(c5, &C5);
1103
+ __builtin_vsx_disassemble_pair(c6, &C6);
1104
+ __builtin_vsx_disassemble_pair(c7, &C7);
1105
+ __builtin_vsx_disassemble_pair(c8, &C8);
1106
+
1107
+ t1 = vec_mergeh(c1[0], c2[0]);
1108
+ t2 = vec_mergeh(c3[0], c4[0]);
1109
+ t3 = vec_mergeh(c5[0], c6[0]);
1110
+ t4 = vec_mergeh(c7[0], c8[0]);
1111
+ t5 = vec_xxpermdi(t1, t2, 0);
1112
+ t6 = vec_xxpermdi(t3, t4, 0);
1113
+ t7 = vec_xxpermdi(t1, t2, 3);
1114
+ t8 = vec_xxpermdi(t3, t4, 3);
1115
+ vec_xst(t5, 0, boffset);
1116
+ vec_xst(t6, 0, boffset+4);
1117
+ vec_xst(t7, 0, boffset+8);
1118
+ vec_xst(t8, 0, boffset+12);
1119
+
1120
+ t1 = vec_mergel(c1[0], c2[0]);
1121
+ t2 = vec_mergel(c3[0], c4[0]);
1122
+ t3 = vec_mergel(c5[0], c6[0]);
1123
+ t4 = vec_mergel(c7[0], c8[0]);
1124
+ t5 = vec_xxpermdi(t1, t2, 0);
1125
+ t6 = vec_xxpermdi(t3, t4, 0);
1126
+ t7 = vec_xxpermdi(t1, t2, 3);
1127
+ t8 = vec_xxpermdi(t3, t4, 3);
1128
+ vec_xst(t5, 0, boffset+16);
1129
+ vec_xst(t6, 0, boffset+20);
1130
+ vec_xst(t7, 0, boffset+24);
1131
+ vec_xst(t8, 0, boffset+28);
1132
+
1133
+ t1 = vec_mergeh(c1[1], c2[1]);
1134
+ t2 = vec_mergeh(c3[1], c4[1]);
1135
+ t3 = vec_mergeh(c5[1], c6[1]);
1136
+ t4 = vec_mergeh(c7[1], c8[1]);
1137
+ t5 = vec_xxpermdi(t1, t2, 0);
1138
+ t6 = vec_xxpermdi(t3, t4, 0);
1139
+ t7 = vec_xxpermdi(t1, t2, 3);
1140
+ t8 = vec_xxpermdi(t3, t4, 3);
1141
+ vec_xst(t5, 0, boffset+32);
1142
+ vec_xst(t6, 0, boffset+36);
1143
+ vec_xst(t7, 0, boffset+40);
1144
+ vec_xst(t8, 0, boffset+44);
1145
+
1146
+ t1 = vec_mergel(c1[1], c2[1]);
1147
+ t2 = vec_mergel(c3[1], c4[1]);
1148
+ t3 = vec_mergel(c5[1], c6[1]);
1149
+ t4 = vec_mergel(c7[1], c8[1]);
1150
+ t5 = vec_xxpermdi(t1, t2, 0);
1151
+ t6 = vec_xxpermdi(t3, t4, 0);
1152
+ t7 = vec_xxpermdi(t1, t2, 3);
1153
+ t8 = vec_xxpermdi(t3, t4, 3);
1154
+ vec_xst(t5, 0, boffset+48);
1155
+ vec_xst(t6, 0, boffset+52);
1156
+ vec_xst(t7, 0, boffset+56);
1157
+ vec_xst(t8, 0, boffset+60);
1158
+
1159
+ aoffset1 += 8*lda;
1160
+ aoffset2 += 8*lda;
1161
+ aoffset3 += 8*lda;
1162
+ aoffset4 += 8*lda;
1163
+ boffset += 64;
1164
+ i--;
1165
+ } while(i > 0);
1166
+ }
1167
+ if (cols & 4) {
1168
+ vector float c1, c2, c3, c4, c5, c6, c7, c8;
1169
+ vector float t1, t2, t3, t4, t5, t6, t7, t8;
1170
+ c1 = vec_xl(0, aoffset1);
1171
+ c2 = vec_xl(0, aoffset2);
1172
+ c3 = vec_xl(0, aoffset3);
1173
+ c4 = vec_xl(0, aoffset4);
1174
+ c5 = vec_xl(0, aoffset5);
1175
+ c6 = vec_xl(0, aoffset6);
1176
+ c7 = vec_xl(0, aoffset7);
1177
+ c8 = vec_xl(0, aoffset8);
1178
+
1179
+ t1 = vec_mergeh(c1, c2);
1180
+ t2 = vec_mergeh(c3, c4);
1181
+ t3 = vec_mergeh(c5, c6);
1182
+ t4 = vec_mergeh(c7, c8);
1183
+ t5 = vec_xxpermdi(t1, t2, 0);
1184
+ t6 = vec_xxpermdi(t3, t4, 0);
1185
+ t7 = vec_xxpermdi(t1, t2, 3);
1186
+ t8 = vec_xxpermdi(t3, t4, 3);
1187
+ vec_xst(t5, 0, boffset);
1188
+ vec_xst(t6, 0, boffset+4);
1189
+ vec_xst(t7, 0, boffset+8);
1190
+ vec_xst(t8, 0, boffset+12);
1191
+
1192
+ t1 = vec_mergel(c1, c2);
1193
+ t2 = vec_mergel(c3, c4);
1194
+ t3 = vec_mergel(c5, c6);
1195
+ t4 = vec_mergel(c7, c8);
1196
+ t5 = vec_xxpermdi(t1, t2, 0);
1197
+ t6 = vec_xxpermdi(t3, t4, 0);
1198
+ t7 = vec_xxpermdi(t1, t2, 3);
1199
+ t8 = vec_xxpermdi(t3, t4, 3);
1200
+ vec_xst(t5, 0, boffset+16);
1201
+ vec_xst(t6, 0, boffset+20);
1202
+ vec_xst(t7, 0, boffset+24);
1203
+ vec_xst(t8, 0, boffset+28);
1204
+ }
1205
+ j--;
1206
+ } while(j > 0);
1207
+ }
1208
+
1209
+ if (rows & 4) {
1210
+ aoffset1 = aoffset;
1211
+ aoffset2 = aoffset1 + lda;
1212
+ aoffset3 = aoffset2 + lda;
1213
+ aoffset4 = aoffset3 + lda;
1214
+ aoffset += 4 * lda;
1215
+ i = (cols >> 3);
1216
+ if (i > 0) {
1217
+ __vector_pair C1, C2, C3, C4;
1218
+ vector float c1[2], c2[2], c3[2], c4[2];
1219
+ vector float t1, t2, t3, t4, t5, t6, t7, t8;
1220
+ do {
1221
+ C1 = __builtin_vsx_lxvp(0, (__vector_pair*)aoffset1);
1222
+ C2 = __builtin_vsx_lxvp(0, (__vector_pair*)aoffset2);
1223
+ C3 = __builtin_vsx_lxvp(0, (__vector_pair*)aoffset3);
1224
+ C4 = __builtin_vsx_lxvp(0, (__vector_pair*)aoffset4);
1225
+ __builtin_vsx_disassemble_pair(c1, &C1);
1226
+ __builtin_vsx_disassemble_pair(c2, &C2);
1227
+ __builtin_vsx_disassemble_pair(c3, &C3);
1228
+ __builtin_vsx_disassemble_pair(c4, &C4);
1229
+
1230
+ t1 = vec_mergeh(c1[0], c2[0]);
1231
+ t2 = vec_mergeh(c3[0], c4[0]);
1232
+ t3 = vec_mergel(c1[0], c2[0]);
1233
+ t4 = vec_mergel(c3[0], c4[0]);
1234
+ t5 = vec_xxpermdi(t1, t2, 0);
1235
+ t6 = vec_xxpermdi(t1, t2, 3);
1236
+ t7 = vec_xxpermdi(t3, t4, 0);
1237
+ t8 = vec_xxpermdi(t3, t4, 3);
1238
+ vec_xst(t5, 0, boffset);
1239
+ vec_xst(t6, 0, boffset+4);
1240
+ vec_xst(t7, 0, boffset+8);
1241
+ vec_xst(t8, 0, boffset+12);
1242
+
1243
+ t1 = vec_mergeh(c1[1], c2[1]);
1244
+ t2 = vec_mergeh(c3[1], c4[1]);
1245
+ t3 = vec_mergel(c1[1], c2[1]);
1246
+ t4 = vec_mergel(c3[1], c4[1]);
1247
+ t5 = vec_xxpermdi(t1, t2, 0);
1248
+ t6 = vec_xxpermdi(t1, t2, 3);
1249
+ t7 = vec_xxpermdi(t3, t4, 0);
1250
+ t8 = vec_xxpermdi(t3, t4, 3);
1251
+ vec_xst(t5, 0, boffset+16);
1252
+ vec_xst(t6, 0, boffset+20);
1253
+ vec_xst(t7, 0, boffset+24);
1254
+ vec_xst(t8, 0, boffset+28);
1255
+
1256
+ aoffset1 += 8*lda;
1257
+ aoffset2 += 8*lda;
1258
+ aoffset3 += 8*lda;
1259
+ aoffset4 += 8*lda;
1260
+ boffset += 32;
1261
+ i--;
1262
+ } while(i > 0);
1263
+ }
1264
+
1265
+ if (cols & 4) {
1266
+ vector float c1, c2, c3, c4;
1267
+ vector float t1, t2, t3, t4;
1268
+ c1 = vec_xl(0, aoffset1);
1269
+ c2 = vec_xl(0, aoffset2);
1270
+ c3 = vec_xl(0, aoffset3);
1271
+ c4 = vec_xl(0, aoffset4);
1272
+
1273
+ t1 = vec_mergeh(c1, c2);
1274
+ t2 = vec_mergeh(c3, c4);
1275
+ t3 = vec_xxpermdi(t1, t2, 0);
1276
+ t4 = vec_xxpermdi(t1, t2, 3);
1277
+ vec_xst(t3, 0, boffset);
1278
+ vec_xst(t4, 0, boffset+4);
1279
+
1280
+ t1 = vec_mergel(c1, c2);
1281
+ t2 = vec_mergel(c3, c4);
1282
+ t3 = vec_xxpermdi(t1, t2, 0);
1283
+ t4 = vec_xxpermdi(t1, t2, 3);
1284
+ vec_xst(t3, 0, boffset+8);
1285
+ vec_xst(t4, 0, boffset+12);
1286
+ }
1287
+ }
1288
+ if (rows & 3) {
1289
+ aoffset1 = aoffset;
1290
+ aoffset2 = aoffset1 + lda;
1291
+ aoffset3 = aoffset2 + lda;
1292
+ if (cols & 4) {
1293
+ vector float c1, c2, c3, c4 = {0};
1294
+ vector float t1, t2, t3, t4;
1295
+ c1 = vec_xl(0, aoffset1);
1296
+ c2 = vec_xl(0, aoffset2);
1297
+ c3 = vec_xl(0, aoffset3);
1298
+
1299
+ t1 = vec_mergeh(c1, c2);
1300
+ t2 = vec_mergeh(c3, c4);
1301
+ t3 = vec_xxpermdi(t1, t2, 0);
1302
+ t4 = vec_xxpermdi(t1, t2, 3);
1303
+ vec_xst(t3, 0, boffset);
1304
+ vec_xst(t4, 0, boffset+4);
1305
+
1306
+ t1 = vec_mergel(c1, c2);
1307
+ t2 = vec_mergel(c3, c4);
1308
+ t3 = vec_xxpermdi(t1, t2, 0);
1309
+ t4 = vec_xxpermdi(t1, t2, 3);
1310
+ vec_xst(t3, 0, boffset+8);
1311
+ vec_xst(t4, 0, boffset+12);
1312
+ }
1313
+ }
1314
+ }
1315
+
1316
+ void KERNEL_4x4(int64_t ii, int64_t jj) {
1317
+ vec_t vec_A[4], vec_B[4], vec_C[4];
1318
+ acc_t acc_0;
1319
+ __builtin_mma_xxsetaccz(&acc_0);
1320
+ for (int l = 0; l < k; l+=4) {
1321
+ READ_BLOCK(A+(ii*lda)+l, lda, 4, 4, (float*)vec_A);
1322
+ READ_BLOCK(B+(jj*ldb)+l, ldb, 4, 4, (float*)vec_B);
1323
+ __builtin_mma_xvf32gerpp(&acc_0, vec_A[0], vec_B[0]);
1324
+ __builtin_mma_xvf32gerpp(&acc_0, vec_A[1], vec_B[1]);
1325
+ __builtin_mma_xvf32gerpp(&acc_0, vec_A[2], vec_B[2]);
1326
+ __builtin_mma_xvf32gerpp(&acc_0, vec_A[3], vec_B[3]);
1327
+ }
1328
+ SAVE_ACC(&acc_0, ii, jj);
1329
+ }
1330
+
1331
+ void KERNEL_4x8(int64_t ii, int64_t jj) {
1332
+ vec_t vec_A[4], vec_B[8], vec_C[4];
1333
+ acc_t acc_0, acc_1;
1334
+ __builtin_mma_xxsetaccz(&acc_0);
1335
+ __builtin_mma_xxsetaccz(&acc_1);
1336
+ for (int64_t l = 0; l < k; l+=4) {
1337
+ READ_BLOCK(A+(ii*lda)+l, lda, 4, 4, (float*)vec_A);
1338
+ READ_BLOCK(B+(jj*ldb)+l, ldb, 8, 4, (float*)vec_B);
1339
+ __builtin_mma_xvf32gerpp(&acc_0, vec_A[0], (vec_t)vec_B[0]);
1340
+ __builtin_mma_xvf32gerpp(&acc_1, vec_A[0], (vec_t)vec_B[1]);
1341
+ __builtin_mma_xvf32gerpp(&acc_0, vec_A[1], (vec_t)vec_B[2]);
1342
+ __builtin_mma_xvf32gerpp(&acc_1, vec_A[1], (vec_t)vec_B[3]);
1343
+ __builtin_mma_xvf32gerpp(&acc_0, vec_A[2], (vec_t)vec_B[4]);
1344
+ __builtin_mma_xvf32gerpp(&acc_1, vec_A[2], (vec_t)vec_B[5]);
1345
+ __builtin_mma_xvf32gerpp(&acc_0, vec_A[3], (vec_t)vec_B[6]);
1346
+ __builtin_mma_xvf32gerpp(&acc_1, vec_A[3], (vec_t)vec_B[7]);
1347
+ }
1348
+ SAVE_ACC(&acc_0, ii, jj);
1349
+ SAVE_ACC(&acc_1, ii, jj+4);
1350
+ }
1351
+
1352
+ void KERNEL_8x4(int64_t ii, int64_t jj) {
1353
+ vec_t vec_A[8], vec_B[4], vec_C[4];
1354
+ acc_t acc_0, acc_1;
1355
+ __builtin_mma_xxsetaccz(&acc_0);
1356
+ __builtin_mma_xxsetaccz(&acc_1);
1357
+ for (int64_t l = 0; l < k; l+=4) {
1358
+ READ_BLOCK(A+(ii*lda)+l, lda, 8, 4, (float*)vec_A);
1359
+ READ_BLOCK(B+(jj*ldb)+l, ldb, 4, 4, (float*)vec_B);
1360
+ __builtin_mma_xvf32gerpp(&acc_0, (vec_t)vec_A[0], vec_B[0]);
1361
+ __builtin_mma_xvf32gerpp(&acc_1, (vec_t)vec_A[1], vec_B[0]);
1362
+ __builtin_mma_xvf32gerpp(&acc_0, (vec_t)vec_A[2], vec_B[1]);
1363
+ __builtin_mma_xvf32gerpp(&acc_1, (vec_t)vec_A[3], vec_B[1]);
1364
+ __builtin_mma_xvf32gerpp(&acc_0, (vec_t)vec_A[4], vec_B[2]);
1365
+ __builtin_mma_xvf32gerpp(&acc_1, (vec_t)vec_A[5], vec_B[2]);
1366
+ __builtin_mma_xvf32gerpp(&acc_0, (vec_t)vec_A[6], vec_B[3]);
1367
+ __builtin_mma_xvf32gerpp(&acc_1, (vec_t)vec_A[7], vec_B[3]);
1368
+ }
1369
+ SAVE_ACC(&acc_0, ii, jj);
1370
+ SAVE_ACC(&acc_1, ii+4, jj);
1371
+ }
1372
+
1373
+ void KERNEL_8x8(int64_t ii, int64_t jj) {
1374
+ vec_t vec_A[16], vec_B[16], vec_C[4];
1375
+ acc_t acc_0, acc_1, acc_2, acc_3;
1376
+ __builtin_mma_xxsetaccz(&acc_0);
1377
+ __builtin_mma_xxsetaccz(&acc_1);
1378
+ __builtin_mma_xxsetaccz(&acc_2);
1379
+ __builtin_mma_xxsetaccz(&acc_3);
1380
+ for (int l = 0; l < k; l+=8) {
1381
+ READ_BLOCK(A+(ii*lda)+l, lda, 8, 8, (float*)vec_A);
1382
+ READ_BLOCK(B+(jj*ldb)+l, ldb, 8, 8, (float*)vec_B);
1383
+ for(int x = 0; x < 16; x+=2) {
1384
+ __builtin_mma_xvf32gerpp(&acc_0, (vec_t)vec_A[x], vec_B[x]);
1385
+ __builtin_mma_xvf32gerpp(&acc_1, (vec_t)vec_A[x], vec_B[x+1]);
1386
+ __builtin_mma_xvf32gerpp(&acc_2, (vec_t)vec_A[x+1], vec_B[x]);
1387
+ __builtin_mma_xvf32gerpp(&acc_3, (vec_t)vec_A[x+1], vec_B[x+1]);
1388
+ }
1389
+ }
1390
+ SAVE_ACC(&acc_0, ii, jj);
1391
+ SAVE_ACC(&acc_1, ii, jj+4);
1392
+ SAVE_ACC(&acc_2, ii+4, jj);
1393
+ SAVE_ACC(&acc_3, ii+4, jj+4);
1394
+ }
1395
+
1396
+ void mnpack(int64_t m0, int64_t m, int64_t n0, int64_t n) {
1397
+ int64_t mc, nc, mp, np;
1398
+ int m_rem = MIN(m - m0, 16);
1399
+ int n_rem = MIN(n - n0, 16);
1400
+ if (m_rem >= 16 && n_rem >= 8) {
1401
+ mc = 8;
1402
+ nc = 8;
1403
+ gemm<8,8>(m0, m, n0, n);
1404
+ } else if(m_rem >= 8 && n_rem >= 16) {
1405
+ mc = 8;
1406
+ nc = 8;
1407
+ gemm<8,8>(m0, m, n0, n);
1408
+ } else if (m_rem >= 8 && n_rem >= 8) {
1409
+ mc = 8;
1410
+ nc = 8;
1411
+ gemm<8,8>(m0, m, n0, n);
1412
+ } else if (m_rem >= 4 && n_rem >= 8) {
1413
+ mc = 4;
1414
+ nc = 8;
1415
+ gemm<4,8>(m0, m, n0, n);
1416
+ } else if (m_rem >= 8 && n_rem >= 4) {
1417
+ mc = 8;
1418
+ nc = 4;
1419
+ gemm<8,4>(m0, m, n0, n);
1420
+ } else if (m_rem >= 4 && n_rem >= 4) {
1421
+ mc = 4;
1422
+ nc = 4;
1423
+ gemm<4,4>(m0, m, n0, n);
1424
+ } else if ((m_rem < 4) && (n_rem > 4)) {
1425
+ nc = 4;
1426
+ switch(m_rem) {
1427
+ case 1:
1428
+ mc = 1;
1429
+ gemm_small(m0, m, n0, n, mc, nc);
1430
+ break;
1431
+ case 2:
1432
+ mc = 2;
1433
+ gemm_small(m0, m, n0, n, mc, nc);
1434
+ break;
1435
+ case 3:
1436
+ mc = 3;
1437
+ gemm_small(m0, m, n0, n, mc, nc);
1438
+ break;
1439
+ default:
1440
+ return;
1441
+ }
1442
+ } else if ((m_rem > 4) && (n_rem < 4)) {
1443
+ mc = 4;
1444
+ switch(n_rem) {
1445
+ case 1:
1446
+ nc = 1;
1447
+ gemm_small(m0, m, n0, n, mc, nc);
1448
+ break;
1449
+ case 2:
1450
+ nc = 2;
1451
+ gemm_small(m0, m, n0, n, mc, nc);
1452
+ break;
1453
+ case 3:
1454
+ nc = 3;
1455
+ gemm_small(m0, m, n0, n, mc, nc);
1456
+ break;
1457
+ default:
1458
+ return;
1459
+ }
1460
+ } else {
1461
+ switch((m_rem << 4) | n_rem) {
1462
+ case 0x43:
1463
+ mc = 4;
1464
+ nc = 3;
1465
+ gemm_small(m0, m, n0, n, mc, nc);
1466
+ break;
1467
+ case 0x42:
1468
+ mc = 4;
1469
+ nc = 2;
1470
+ gemm_small(m0, m, n0, n, mc, nc);
1471
+ break;
1472
+ case 0x41:
1473
+ mc = 4;
1474
+ nc = 1;
1475
+ gemm_small(m0, m, n0, n, mc, nc);
1476
+ break;
1477
+ case 0x34:
1478
+ mc = 3;
1479
+ nc = 4;
1480
+ gemm_small(m0, m, n0, n, mc, nc);
1481
+ break;
1482
+ case 0x33:
1483
+ mc = 3;
1484
+ nc = 3;
1485
+ gemm_small(m0, m, n0, n, mc, nc);
1486
+ break;
1487
+ case 0x32:
1488
+ mc = 3;
1489
+ nc = 2;
1490
+ gemm_small(m0, m, n0, n, mc, nc);
1491
+ break;
1492
+ case 0x31:
1493
+ mc = 3;
1494
+ nc = 1;
1495
+ gemm_small(m0, m, n0, n, mc, nc);
1496
+ break;
1497
+ case 0x24:
1498
+ mc = 2;
1499
+ nc = 4;
1500
+ gemm_small(m0, m, n0, n, mc, nc);
1501
+ break;
1502
+ case 0x23:
1503
+ mc = 2;
1504
+ nc = 3;
1505
+ gemm_small(m0, m, n0, n, mc, nc);
1506
+ break;
1507
+ case 0x22:
1508
+ mc = 2;
1509
+ nc = 2;
1510
+ gemm_small(m0, m, n0, n, mc, nc);
1511
+ break;
1512
+ case 0x21:
1513
+ mc = 2;
1514
+ nc = 1;
1515
+ gemm_small(m0, m, n0, n, mc, nc);
1516
+ break;
1517
+ case 0x14:
1518
+ mc = 1;
1519
+ nc = 4;
1520
+ gemm_small(m0, m, n0, n, mc, nc);
1521
+ break;
1522
+ case 0x13:
1523
+ mc = 1;
1524
+ nc = 3;
1525
+ gemm_small(m0, m, n0, n, mc, nc);
1526
+ break;
1527
+ case 0x12:
1528
+ mc = 1;
1529
+ nc = 2;
1530
+ gemm_small(m0, m, n0, n, mc, nc);
1531
+ break;
1532
+ case 0x11:
1533
+ mc = 1;
1534
+ nc = 1;
1535
+ gemm_small(m0, m, n0, n, mc, nc);
1536
+ break;
1537
+ default:
1538
+ return;
1539
+ }
1540
+ }
1541
+ mp = m0 + (m - m0) / mc * mc;
1542
+ np = n0 + (n - n0) / nc * nc;
1543
+ mnpack(mp, m, n0, np);
1544
+ mnpack(m0, m, np, n);
1545
+ }
1546
+
1547
+ void gemm_small(int64_t m0, int64_t m, int64_t n0, int64_t n, int RM, int RN) {
1548
+ int64_t ytiles = (m - m0) / RM;
1549
+ int64_t xtiles = (n - n0) / RN;
1550
+ int64_t tiles = xtiles * ytiles;
1551
+ int64_t duty = (tiles + nth - 1) / nth;
1552
+ int64_t start = duty * ith;
1553
+ int64_t end = start + duty;
1554
+ if (end > tiles)
1555
+ end = tiles;
1556
+ for (int64_t job = start; job < end; ++job) {
1557
+ int64_t ii = m0 + job / xtiles * RM;
1558
+ int64_t jj = n0 + job % xtiles * RN;
1559
+ vec_t vec_C[4];
1560
+ acc_t acc_0;
1561
+ __builtin_mma_xxsetaccz(&acc_0);
1562
+ vec_t vec_A[4], vec_B[4];
1563
+ for (int l=0; l<k; l+=4) {
1564
+ if (RN >= 4 && RM == 1) {
1565
+ float* a = const_cast<float*>(A+(ii)*lda+l);
1566
+ READ_BLOCK(B+(jj*ldb)+l, ldb, 4, 4, (float*)vec_B);
1567
+ vec_A[0] = (vec_t)vec_xl(0,a);
1568
+ vec_A[1] = (vec_t)vec_splats(*((float*)&vec_A+1));
1569
+ vec_A[2] = (vec_t)vec_splats(*((float*)&vec_A+2));
1570
+ vec_A[3] = (vec_t)vec_splats(*((float*)&vec_A+3));
1571
+ } else {
1572
+ READ_BLOCK(A+(ii*lda)+l, lda, RM, 4, (float*)vec_A);
1573
+ READ_BLOCK(B+(jj*ldb)+l, ldb, RN, 4, (float*)vec_B);
1574
+ }
1575
+ __builtin_mma_xvf32gerpp(&acc_0, vec_A[0], vec_B[0]);
1576
+ __builtin_mma_xvf32gerpp(&acc_0, vec_A[1], vec_B[1]);
1577
+ __builtin_mma_xvf32gerpp(&acc_0, vec_A[2], vec_B[2]);
1578
+ __builtin_mma_xvf32gerpp(&acc_0, vec_A[3], vec_B[3]);
1579
+ }
1580
+ __builtin_mma_disassemble_acc(vec_C, &acc_0);
1581
+ for (int I = 0; I < RM; I++) {
1582
+ for (int J = 0; J < RN; J++) {
1583
+ *((float*)(C+ii+((jj+J)*ldc)+I)) = *((float*)&vec_C[I]+J);
1584
+ }
1585
+ }
1586
+ }
1587
+ }
1588
+
1589
+ template <int RM, int RN>
1590
+ NOINLINE void gemm(int64_t m0, int64_t m, int64_t n0, int64_t n) {
1591
+ int64_t ytiles = (m - m0) / RM;
1592
+ int64_t xtiles = (n - n0) / RN;
1593
+ int64_t tiles = xtiles * ytiles;
1594
+ int64_t duty = (tiles + nth - 1) / nth;
1595
+ int64_t start = duty * ith;
1596
+ int64_t end = start + duty;
1597
+ if (RM == 4 && RN == 4) {
1598
+ kernel = &tinyBLAS_PPC::KERNEL_4x4;
1599
+ } else if (RM == 4 && RN == 8) {
1600
+ kernel = &tinyBLAS_PPC::KERNEL_4x8;
1601
+ } else if (RM == 8 && RN == 4) {
1602
+ kernel = &tinyBLAS_PPC::KERNEL_8x4;
1603
+ } else if (RM == 8 && RN == 8) {
1604
+ kernel = &tinyBLAS_PPC::KERNEL_8x8;
1605
+ }
1606
+ if (end > tiles)
1607
+ end = tiles;
1608
+ for (int64_t job = start; job < end; ++job) {
1609
+ int64_t ii = m0 + job / xtiles * RM;
1610
+ int64_t jj = n0 + job % xtiles * RN;
1611
+ (this->*kernel)(ii, jj);
1612
+ }
1613
+ }
1614
+
1615
+ const TA *const A;
1616
+ const TB *const B;
1617
+ TC *C;
1618
+ TA *At;
1619
+ TB *Bt;
1620
+ const int64_t k;
1621
+ const int64_t lda;
1622
+ const int64_t ldb;
1623
+ const int64_t ldc;
1624
+ const int ith;
1625
+ const int nth;
1626
+ };
1627
+ #endif
1628
+ } // namespace
1629
+
1630
+ /**
1631
+ * Performs optimized matrix multiplication on CPU.
1632
+ *
1633
+ * This subroutine may compute C = Aᵀ * B with column major ordering.
1634
+ * Despite its name, this isn't a generalized implementation. Work is
1635
+ * only performed when a handwritten kernel is written and available.
1636
+ * Otherwise the caller should fall back to a general matmul routine.
1637
+ *
1638
+ * For example, for single-threaded single-precision GEMM you can say
1639
+ *
1640
+ * llamafile_sgemm(m, n, k, A, lda, B, ldb, C, ldc,
1641
+ * 0, 1,
1642
+ * GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32);
1643
+ *
1644
+ * @param m is rows in `A` and `C`
1645
+ * @param n is cols in `B` and `C`
1646
+ * @param k is cols in `A` and rows in `B`
1647
+ * @param A is first input matrix (always transposed)
1648
+ * @param lda is row stride of `A`
1649
+ * @param B is second input matrix (never transposed)
1650
+ * @param ldb is row stride of `B`
1651
+ * @param C is input/output array of output matrices
1652
+ * @param ldc is row stride of `C`
1653
+ * @param ith is thread id (must be less than `nth`)
1654
+ * @param nth is number of threads (must be greater than zero)
1655
+ * @param Atype is GGML data type of `A`
1656
+ * @param Btype is GGML data type of `B`
1657
+ * @param Ctype is GGML data type of `C`
1658
+ * @return true if this function was able to service the matmul request
1659
+ */
1660
+ bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda, const void *B, int64_t ldb, void *C,
1661
+ int64_t ldc, int ith, int nth, int Atype, int Btype, int Ctype) {
1662
+
1663
+ assert(m >= 0);
1664
+ assert(n >= 0);
1665
+ assert(k >= 0);
1666
+ assert(lda >= k);
1667
+ assert(ldb >= k);
1668
+ assert(ldc >= m);
1669
+ assert(nth > 0);
1670
+ assert(ith < nth);
1671
+
1672
+ // only enable sgemm for prompt processing
1673
+ if (n < 2)
1674
+ return false;
1675
+
1676
+ if (Ctype != GGML_TYPE_F32)
1677
+ return false;
1678
+
1679
+ switch (Atype) {
1680
+
1681
+ case GGML_TYPE_F32: {
1682
+ if (Btype != GGML_TYPE_F32)
1683
+ return false;
1684
+ #if defined(__AVX512F__)
1685
+ if (k % 16)
1686
+ return false;
1687
+ tinyBLAS<16, __m512, __m512, float, float, float> tb{
1688
+ k, (const float *)A, lda,
1689
+ (const float *)B, ldb,
1690
+ (float *)C, ldc,
1691
+ ith, nth};
1692
+ tb.matmul(m, n);
1693
+ return true;
1694
+ #elif defined(__AVX__) || defined(__AVX2__)
1695
+ if (k % 8)
1696
+ return false;
1697
+ tinyBLAS<8, __m256, __m256, float, float, float> tb{
1698
+ k, (const float *)A, lda,
1699
+ (const float *)B, ldb,
1700
+ (float *)C, ldc,
1701
+ ith, nth};
1702
+ tb.matmul(m, n);
1703
+ return true;
1704
+ #elif defined(__ARM_NEON)
1705
+ if (n < 4)
1706
+ return false;
1707
+ if (k % 4)
1708
+ return false;
1709
+ tinyBLAS<4, float32x4_t, float32x4_t, float, float, float> tb{
1710
+ k, (const float *)A, lda,
1711
+ (const float *)B, ldb,
1712
+ (float *)C, ldc,
1713
+ ith, nth};
1714
+ tb.matmul(m, n);
1715
+ return true;
1716
+ #elif defined(__MMA__)
1717
+ if (k % 8)
1718
+ return false;
1719
+ tinyBLAS_PPC<float, float, float> tb{
1720
+ k, (const float *)A, lda,
1721
+ (const float *)B, ldb,
1722
+ (float *)C, ldc,
1723
+ ith, nth};
1724
+ tb.matmul(m, n);
1725
+ return true;
1726
+ #else
1727
+ return false;
1728
+ #endif
1729
+ }
1730
+
1731
+ case GGML_TYPE_F16: {
1732
+ #if defined(__AVX512F__)
1733
+ if (k % 16)
1734
+ return false;
1735
+ if (Btype != GGML_TYPE_F32)
1736
+ return false;
1737
+ tinyBLAS<16, __m512, __m512, ggml_fp16_t, float, float> tb{
1738
+ k, (const ggml_fp16_t *)A, lda,
1739
+ (const float *)B, ldb,
1740
+ (float *)C, ldc,
1741
+ ith, nth};
1742
+ tb.matmul(m, n);
1743
+ return true;
1744
+ #elif (defined(__AVX__) || defined(__AVX2__)) && defined(__F16C__)
1745
+ if (k % 8)
1746
+ return false;
1747
+ if (Btype != GGML_TYPE_F32)
1748
+ return false;
1749
+ tinyBLAS<8, __m256, __m256, ggml_fp16_t, float, float> tb{
1750
+ k, (const ggml_fp16_t *)A, lda,
1751
+ (const float *)B, ldb,
1752
+ (float *)C, ldc,
1753
+ ith, nth};
1754
+ tb.matmul(m, n);
1755
+ return true;
1756
+ #elif defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && !defined(_MSC_VER)
1757
+ if (n < 8)
1758
+ return false;
1759
+ if (k % 8)
1760
+ return false;
1761
+ if (Btype != GGML_TYPE_F16)
1762
+ return false;
1763
+ tinyBLAS<8, float16x8_t, float16x8_t, ggml_fp16_t, ggml_fp16_t, float> tb{
1764
+ k, (const ggml_fp16_t *)A, lda,
1765
+ (const ggml_fp16_t *)B, ldb,
1766
+ (float *)C, ldc,
1767
+ ith, nth};
1768
+ tb.matmul(m, n);
1769
+ return true;
1770
+ #elif defined(__ARM_NEON) && !defined(_MSC_VER)
1771
+ if (k % 4)
1772
+ return false;
1773
+ if (Btype != GGML_TYPE_F32)
1774
+ return false;
1775
+ tinyBLAS<4, float32x4_t, float32x4_t, ggml_fp16_t, float, float> tb{
1776
+ k, (const ggml_fp16_t *)A, lda,
1777
+ (const float *)B, ldb,
1778
+ (float *)C, ldc,
1779
+ ith, nth};
1780
+ tb.matmul(m, n);
1781
+ return true;
1782
+ #else
1783
+ return false;
1784
+ #endif
1785
+ }
1786
+
1787
+ case GGML_TYPE_Q8_0: {
1788
+ if (Btype != GGML_TYPE_Q8_0)
1789
+ return false;
1790
+ #if defined(__AVX2__) || defined(__AVX512F__) || defined(__AVX__)
1791
+ tinyBLAS_Q0_AVX<block_q8_0, block_q8_0, float> tb{
1792
+ k, (const block_q8_0 *)A, lda,
1793
+ (const block_q8_0 *)B, ldb,
1794
+ (float *)C, ldc,
1795
+ ith, nth};
1796
+ tb.matmul(m, n);
1797
+ return true;
1798
+ #elif defined(__ARM_FEATURE_DOTPROD)
1799
+ tinyBLAS_Q0_ARM<block_q8_0> tb{
1800
+ k, (const block_q8_0 *)A, lda,
1801
+ (const block_q8_0 *)B, ldb,
1802
+ (float *)C, ldc,
1803
+ ith, nth};
1804
+ tb.matmul(m, n);
1805
+ return true;
1806
+ #else
1807
+ return false;
1808
+ #endif
1809
+ }
1810
+
1811
+ case GGML_TYPE_Q4_0: {
1812
+ if (Btype != GGML_TYPE_Q8_0)
1813
+ return false;
1814
+ #if defined(__AVX2__) || defined(__AVX512F__) || defined(__AVX__)
1815
+ tinyBLAS_Q0_AVX<block_q4_0, block_q8_0, float> tb{
1816
+ k, (const block_q4_0 *)A, lda,
1817
+ (const block_q8_0 *)B, ldb,
1818
+ (float *)C, ldc,
1819
+ ith, nth};
1820
+ tb.matmul(m, n);
1821
+ return true;
1822
+ #elif defined(__ARM_FEATURE_DOTPROD)
1823
+ tinyBLAS_Q0_ARM<block_q4_0> tb{
1824
+ k, (const block_q4_0 *)A, lda,
1825
+ (const block_q8_0 *)B, ldb,
1826
+ (float *)C, ldc,
1827
+ ith, nth};
1828
+ tb.matmul(m, n);
1829
+ return true;
1830
+ #else
1831
+ return false;
1832
+ #endif
1833
+ }
1834
+
1835
+ case GGML_TYPE_Q5_0: {
1836
+ if (Btype != GGML_TYPE_Q8_0)
1837
+ return false;
1838
+ #if defined(__AVX2__) || defined(__AVX512F__) || defined(__AVX__)
1839
+ tinyBLAS_Q0_AVX<block_q5_0, block_q8_0, float> tb{
1840
+ k, (const block_q5_0 *)A, lda,
1841
+ (const block_q8_0 *)B, ldb,
1842
+ (float *)C, ldc,
1843
+ ith, nth};
1844
+ tb.matmul(m, n);
1845
+ return true;
1846
+ #else
1847
+ return false;
1848
+ #endif
1849
+ }
1850
+
1851
+ case GGML_TYPE_IQ4_NL: {
1852
+ if (Btype != GGML_TYPE_Q8_0)
1853
+ return false;
1854
+ #if defined(__AVX2__) || defined(__AVX512F__) || defined(__AVX__)
1855
+ tinyBLAS_Q0_AVX<block_iq4_nl, block_q8_0, float> tb{
1856
+ k, (const block_iq4_nl *)A, lda,
1857
+ (const block_q8_0 *)B, ldb,
1858
+ (float *)C, ldc,
1859
+ ith, nth};
1860
+ tb.matmul(m, n);
1861
+ return true;
1862
+ #else
1863
+ return false;
1864
+ #endif
1865
+ }
1866
+
1867
+ default:
1868
+ return false;
1869
+ }
1870
+
1871
+ (void)m;
1872
+ (void)n;
1873
+ (void)k;
1874
+ (void)A;
1875
+ (void)lda;
1876
+ (void)B;
1877
+ (void)ldb;
1878
+ (void)C;
1879
+ (void)ldc;
1880
+ (void)ith;
1881
+ (void)nth;
1882
+ (void)Atype;
1883
+ (void)Btype;
1884
+ (void)Ctype;
1885
+ }