@fugood/llama.node 0.3.0 → 0.3.2

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (187) hide show
  1. package/CMakeLists.txt +1 -10
  2. package/bin/darwin/arm64/llama-node.node +0 -0
  3. package/bin/darwin/x64/llama-node.node +0 -0
  4. package/bin/linux/arm64/llama-node.node +0 -0
  5. package/bin/linux/x64/llama-node.node +0 -0
  6. package/bin/linux-vulkan/arm64/llama-node.node +0 -0
  7. package/bin/linux-vulkan/x64/llama-node.node +0 -0
  8. package/bin/win32/arm64/llama-node.node +0 -0
  9. package/bin/win32/arm64/node.lib +0 -0
  10. package/bin/win32/x64/llama-node.node +0 -0
  11. package/bin/win32/x64/node.lib +0 -0
  12. package/bin/win32-vulkan/arm64/llama-node.node +0 -0
  13. package/bin/win32-vulkan/arm64/node.lib +0 -0
  14. package/bin/win32-vulkan/x64/llama-node.node +0 -0
  15. package/bin/win32-vulkan/x64/node.lib +0 -0
  16. package/package.json +6 -4
  17. package/src/LlamaCompletionWorker.cpp +6 -6
  18. package/src/LlamaContext.cpp +7 -9
  19. package/src/common.hpp +2 -1
  20. package/src/llama.cpp/.github/workflows/build.yml +98 -24
  21. package/src/llama.cpp/.github/workflows/close-issue.yml +5 -0
  22. package/src/llama.cpp/.github/workflows/docker.yml +43 -34
  23. package/src/llama.cpp/.github/workflows/nix-ci-aarch64.yml +7 -0
  24. package/src/llama.cpp/.github/workflows/nix-ci.yml +7 -0
  25. package/src/llama.cpp/.github/workflows/python-check-requirements.yml +2 -4
  26. package/src/llama.cpp/.github/workflows/python-type-check.yml +3 -1
  27. package/src/llama.cpp/.github/workflows/server.yml +7 -0
  28. package/src/llama.cpp/CMakeLists.txt +20 -8
  29. package/src/llama.cpp/common/CMakeLists.txt +12 -10
  30. package/src/llama.cpp/common/arg.cpp +2006 -0
  31. package/src/llama.cpp/common/arg.h +77 -0
  32. package/src/llama.cpp/common/common.cpp +496 -1632
  33. package/src/llama.cpp/common/common.h +161 -63
  34. package/src/llama.cpp/common/console.cpp +3 -0
  35. package/src/llama.cpp/common/log.cpp +401 -0
  36. package/src/llama.cpp/common/log.h +66 -698
  37. package/src/llama.cpp/common/ngram-cache.cpp +3 -0
  38. package/src/llama.cpp/common/sampling.cpp +348 -350
  39. package/src/llama.cpp/common/sampling.h +62 -139
  40. package/src/llama.cpp/common/stb_image.h +5990 -6398
  41. package/src/llama.cpp/common/train.cpp +2 -0
  42. package/src/llama.cpp/docs/build.md +36 -1
  43. package/src/llama.cpp/examples/CMakeLists.txt +0 -1
  44. package/src/llama.cpp/examples/baby-llama/baby-llama.cpp +1 -2
  45. package/src/llama.cpp/examples/batched/batched.cpp +39 -55
  46. package/src/llama.cpp/examples/batched-bench/batched-bench.cpp +34 -44
  47. package/src/llama.cpp/examples/convert-llama2c-to-ggml/convert-llama2c-to-ggml.cpp +55 -52
  48. package/src/llama.cpp/examples/cvector-generator/cvector-generator.cpp +15 -15
  49. package/src/llama.cpp/examples/cvector-generator/pca.hpp +3 -13
  50. package/src/llama.cpp/examples/embedding/embedding.cpp +143 -87
  51. package/src/llama.cpp/examples/eval-callback/eval-callback.cpp +33 -33
  52. package/src/llama.cpp/examples/export-lora/export-lora.cpp +36 -35
  53. package/src/llama.cpp/examples/gbnf-validator/gbnf-validator.cpp +14 -39
  54. package/src/llama.cpp/examples/gen-docs/CMakeLists.txt +5 -0
  55. package/src/llama.cpp/examples/gen-docs/gen-docs.cpp +83 -0
  56. package/src/llama.cpp/examples/gguf-split/gguf-split.cpp +58 -39
  57. package/src/llama.cpp/examples/gritlm/gritlm.cpp +34 -27
  58. package/src/llama.cpp/examples/imatrix/imatrix.cpp +59 -62
  59. package/src/llama.cpp/examples/infill/infill.cpp +117 -132
  60. package/src/llama.cpp/examples/llama-bench/llama-bench.cpp +265 -58
  61. package/src/llama.cpp/examples/llama.android/llama/src/main/cpp/llama-android.cpp +29 -22
  62. package/src/llama.cpp/examples/llava/CMakeLists.txt +7 -0
  63. package/src/llama.cpp/examples/llava/clip.cpp +685 -150
  64. package/src/llama.cpp/examples/llava/clip.h +11 -2
  65. package/src/llama.cpp/examples/llava/llava-cli.cpp +47 -58
  66. package/src/llama.cpp/examples/llava/llava.cpp +110 -24
  67. package/src/llama.cpp/examples/llava/llava.h +2 -3
  68. package/src/llama.cpp/examples/llava/minicpmv-cli.cpp +323 -0
  69. package/src/llama.cpp/examples/llava/requirements.txt +1 -0
  70. package/src/llama.cpp/examples/lookahead/lookahead.cpp +42 -43
  71. package/src/llama.cpp/examples/lookup/lookup-create.cpp +10 -8
  72. package/src/llama.cpp/examples/lookup/lookup-stats.cpp +23 -22
  73. package/src/llama.cpp/examples/lookup/lookup.cpp +40 -43
  74. package/src/llama.cpp/examples/main/main.cpp +210 -262
  75. package/src/llama.cpp/examples/parallel/parallel.cpp +49 -49
  76. package/src/llama.cpp/examples/passkey/passkey.cpp +42 -50
  77. package/src/llama.cpp/examples/perplexity/perplexity.cpp +187 -200
  78. package/src/llama.cpp/examples/quantize/CMakeLists.txt +1 -1
  79. package/src/llama.cpp/examples/quantize/quantize.cpp +27 -9
  80. package/src/llama.cpp/examples/quantize-stats/quantize-stats.cpp +2 -3
  81. package/src/llama.cpp/examples/retrieval/retrieval.cpp +49 -44
  82. package/src/llama.cpp/examples/rpc/rpc-server.cpp +24 -1
  83. package/src/llama.cpp/examples/save-load-state/save-load-state.cpp +32 -35
  84. package/src/llama.cpp/examples/server/CMakeLists.txt +3 -5
  85. package/src/llama.cpp/examples/server/server.cpp +1027 -1073
  86. package/src/llama.cpp/examples/server/tests/requirements.txt +2 -1
  87. package/src/llama.cpp/examples/server/utils.hpp +107 -105
  88. package/src/llama.cpp/examples/simple/simple.cpp +35 -41
  89. package/src/llama.cpp/examples/speculative/speculative.cpp +129 -103
  90. package/src/llama.cpp/examples/sycl/run-llama2.sh +10 -19
  91. package/src/llama.cpp/examples/sycl/win-run-llama2.bat +1 -1
  92. package/src/llama.cpp/examples/tokenize/tokenize.cpp +25 -27
  93. package/src/llama.cpp/ggml/CMakeLists.txt +14 -3
  94. package/src/llama.cpp/ggml/include/ggml-alloc.h +3 -3
  95. package/src/llama.cpp/ggml/include/ggml-backend.h +145 -60
  96. package/src/llama.cpp/ggml/include/ggml-blas.h +3 -3
  97. package/src/llama.cpp/ggml/include/ggml-cann.h +15 -19
  98. package/src/llama.cpp/ggml/include/ggml-cuda.h +16 -16
  99. package/src/llama.cpp/ggml/include/ggml-metal.h +5 -8
  100. package/src/llama.cpp/ggml/include/ggml-rpc.h +5 -5
  101. package/src/llama.cpp/ggml/include/ggml-sycl.h +8 -8
  102. package/src/llama.cpp/ggml/include/ggml-vulkan.h +7 -7
  103. package/src/llama.cpp/ggml/include/ggml.h +293 -186
  104. package/src/llama.cpp/ggml/src/CMakeLists.txt +86 -44
  105. package/src/llama.cpp/ggml/src/ggml-aarch64.c +2135 -1119
  106. package/src/llama.cpp/ggml/src/ggml-alloc.c +6 -0
  107. package/src/llama.cpp/ggml/src/ggml-backend-impl.h +152 -70
  108. package/src/llama.cpp/ggml/src/{ggml-backend.c → ggml-backend.cpp} +606 -286
  109. package/src/llama.cpp/ggml/src/ggml-blas.cpp +9 -10
  110. package/src/llama.cpp/ggml/src/ggml-cann/acl_tensor.cpp +4 -27
  111. package/src/llama.cpp/ggml/src/ggml-cann/acl_tensor.h +32 -4
  112. package/src/llama.cpp/ggml/src/ggml-cann/aclnn_ops.cpp +179 -41
  113. package/src/llama.cpp/ggml/src/ggml-cann/common.h +1 -0
  114. package/src/llama.cpp/ggml/src/ggml-cann/kernels/CMakeLists.txt +2 -1
  115. package/src/llama.cpp/ggml/src/ggml-cann/kernels/ascendc_kernels.h +2 -0
  116. package/src/llama.cpp/ggml/src/ggml-cann/kernels/quantize_float_to_q4_0.cpp +278 -0
  117. package/src/llama.cpp/ggml/src/ggml-cann.cpp +215 -216
  118. package/src/llama.cpp/ggml/src/ggml-common.h +20 -0
  119. package/src/llama.cpp/ggml/src/ggml-cpu-impl.h +614 -0
  120. package/src/llama.cpp/ggml/src/ggml-cuda/vendors/cuda.h +14 -0
  121. package/src/llama.cpp/ggml/src/ggml-cuda/vendors/hip.h +178 -0
  122. package/src/llama.cpp/ggml/src/ggml-cuda/vendors/musa.h +134 -0
  123. package/src/llama.cpp/ggml/src/ggml-impl.h +49 -603
  124. package/src/llama.cpp/ggml/src/ggml-kompute.cpp +4 -24
  125. package/src/llama.cpp/ggml/src/ggml-quants.c +972 -92
  126. package/src/llama.cpp/ggml/src/ggml-quants.h +15 -0
  127. package/src/llama.cpp/ggml/src/ggml-rpc.cpp +116 -66
  128. package/src/llama.cpp/ggml/src/ggml-sycl/backend.hpp +3 -0
  129. package/src/llama.cpp/ggml/src/ggml-sycl/common.cpp +11 -0
  130. package/src/llama.cpp/ggml/src/ggml-sycl/common.hpp +52 -0
  131. package/src/llama.cpp/ggml/src/ggml-sycl/conv.cpp +99 -0
  132. package/src/llama.cpp/ggml/src/ggml-sycl/conv.hpp +21 -0
  133. package/src/llama.cpp/ggml/src/ggml-sycl/convert.cpp +57 -57
  134. package/src/llama.cpp/ggml/src/ggml-sycl/convert.hpp +1 -1
  135. package/src/llama.cpp/ggml/src/ggml-sycl/dequantize.hpp +106 -106
  136. package/src/llama.cpp/ggml/src/ggml-sycl/dmmv.cpp +4 -4
  137. package/src/llama.cpp/ggml/src/ggml-sycl/dpct/helper.hpp +16 -3
  138. package/src/llama.cpp/ggml/src/ggml-sycl/gemm.hpp +101 -0
  139. package/src/llama.cpp/ggml/src/ggml-sycl/im2col.cpp +125 -0
  140. package/src/llama.cpp/ggml/src/ggml-sycl/im2col.hpp +23 -0
  141. package/src/llama.cpp/ggml/src/ggml-sycl/mmvq.cpp +1 -1
  142. package/src/llama.cpp/ggml/src/ggml-sycl/norm.cpp +6 -3
  143. package/src/llama.cpp/ggml/src/ggml-sycl/presets.hpp +2 -0
  144. package/src/llama.cpp/ggml/src/ggml-sycl/rope.cpp +1 -1
  145. package/src/llama.cpp/ggml/src/ggml-sycl/tsembd.cpp +71 -0
  146. package/src/llama.cpp/ggml/src/ggml-sycl/tsembd.hpp +21 -0
  147. package/src/llama.cpp/ggml/src/ggml-sycl.cpp +97 -169
  148. package/src/llama.cpp/ggml/src/ggml-vulkan.cpp +1508 -1124
  149. package/src/llama.cpp/ggml/src/ggml.c +3001 -1647
  150. package/src/llama.cpp/ggml/src/llamafile/sgemm.cpp +192 -0
  151. package/src/llama.cpp/ggml/src/vulkan-shaders/CMakeLists.txt +2 -0
  152. package/src/llama.cpp/ggml/src/vulkan-shaders/vulkan-shaders-gen.cpp +88 -40
  153. package/src/llama.cpp/include/llama.h +241 -264
  154. package/src/llama.cpp/models/ggml-vocab-chameleon.gguf.inp +112 -0
  155. package/src/llama.cpp/models/ggml-vocab-chameleon.gguf.out +46 -0
  156. package/src/llama.cpp/requirements/requirements-convert_legacy_llama.txt +1 -1
  157. package/src/llama.cpp/src/llama-grammar.cpp +721 -122
  158. package/src/llama.cpp/src/llama-grammar.h +120 -15
  159. package/src/llama.cpp/src/llama-impl.h +156 -1
  160. package/src/llama.cpp/src/llama-sampling.cpp +1375 -303
  161. package/src/llama.cpp/src/llama-sampling.h +20 -47
  162. package/src/llama.cpp/src/llama-vocab.cpp +343 -120
  163. package/src/llama.cpp/src/llama-vocab.h +33 -17
  164. package/src/llama.cpp/src/llama.cpp +4247 -1525
  165. package/src/llama.cpp/src/unicode-data.cpp +6 -4
  166. package/src/llama.cpp/src/unicode-data.h +4 -4
  167. package/src/llama.cpp/src/unicode.cpp +15 -7
  168. package/src/llama.cpp/tests/CMakeLists.txt +3 -0
  169. package/src/llama.cpp/tests/test-arg-parser.cpp +131 -0
  170. package/src/llama.cpp/tests/test-backend-ops.cpp +1592 -289
  171. package/src/llama.cpp/tests/test-barrier.cpp +93 -0
  172. package/src/llama.cpp/tests/test-grad0.cpp +187 -70
  173. package/src/llama.cpp/tests/test-grammar-integration.cpp +23 -38
  174. package/src/llama.cpp/tests/test-grammar-parser.cpp +6 -4
  175. package/src/llama.cpp/tests/test-json-schema-to-grammar.cpp +6 -4
  176. package/src/llama.cpp/tests/test-llama-grammar.cpp +9 -8
  177. package/src/llama.cpp/tests/test-log.cpp +39 -0
  178. package/src/llama.cpp/tests/test-quantize-fns.cpp +6 -0
  179. package/src/llama.cpp/tests/test-rope.cpp +1 -1
  180. package/src/llama.cpp/tests/test-sampling.cpp +157 -98
  181. package/src/llama.cpp/tests/test-tokenizer-0.cpp +55 -35
  182. package/patches/llama.patch +0 -22
  183. package/src/llama.cpp/.github/workflows/bench.yml +0 -310
  184. package/src/llama.cpp/common/grammar-parser.cpp +0 -536
  185. package/src/llama.cpp/common/grammar-parser.h +0 -29
  186. package/src/llama.cpp/examples/benchmark/CMakeLists.txt +0 -6
  187. package/src/llama.cpp/examples/benchmark/benchmark-matmult.cpp +0 -275
@@ -1,460 +1,458 @@
1
- #define LLAMA_API_INTERNAL
2
1
  #include "sampling.h"
3
- #include <random>
4
2
 
5
- struct llama_sampling_context * llama_sampling_init(const struct llama_sampling_params & params) {
6
- struct llama_sampling_context * result = new llama_sampling_context();
3
+ #include "common.h"
7
4
 
8
- result->params = params;
9
- result->grammar = nullptr;
5
+ #include <cmath>
6
+ #include <unordered_map>
10
7
 
11
- // if there is a grammar, parse it
12
- if (!params.grammar.empty()) {
13
- result->parsed_grammar = grammar_parser::parse(params.grammar.c_str());
8
+ // the ring buffer works similarly to std::deque, but with a fixed capacity
9
+ // TODO: deduplicate with llama-impl.h
10
+ template<typename T>
11
+ struct ring_buffer {
12
+ ring_buffer(size_t cap) : capacity(cap), data(cap) {}
14
13
 
15
- // will be empty (default) if there are parse errors
16
- if (result->parsed_grammar.rules.empty()) {
17
- fprintf(stderr, "%s: failed to parse grammar\n", __func__);
18
- delete result;
19
- return nullptr;
14
+ T & front() {
15
+ if (sz == 0) {
16
+ throw std::runtime_error("ring buffer is empty");
20
17
  }
18
+ return data[first];
19
+ }
21
20
 
22
- // Ensure that there is a "root" node.
23
- if (result->parsed_grammar.symbol_ids.find("root") == result->parsed_grammar.symbol_ids.end()) {
24
- fprintf(stderr, "%s: grammar does not contain a 'root' symbol\n", __func__);
25
- delete result;
26
- return nullptr;
21
+ const T & front() const {
22
+ if (sz == 0) {
23
+ throw std::runtime_error("ring buffer is empty");
27
24
  }
25
+ return data[first];
26
+ }
28
27
 
29
- std::vector<const llama_grammar_element *> grammar_rules(result->parsed_grammar.c_rules());
30
-
31
- struct llama_grammar * grammar = llama_grammar_init(
32
- grammar_rules.data(),
33
- grammar_rules.size(), result->parsed_grammar.symbol_ids.at("root"));
34
- if (grammar == nullptr) {
35
- throw std::runtime_error("Failed to initialize llama_grammar");
28
+ T & back() {
29
+ if (sz == 0) {
30
+ throw std::runtime_error("ring buffer is empty");
36
31
  }
37
- result->grammar = grammar;
32
+ return data[pos];
38
33
  }
39
34
 
40
- result->prev.resize(params.n_prev);
41
-
42
- result->n_valid = 0;
43
-
44
- llama_sampling_set_rng_seed(result, params.seed);
45
-
46
- return result;
47
- }
48
-
49
- void llama_sampling_free(struct llama_sampling_context * ctx) {
50
- if (ctx->grammar != NULL) {
51
- llama_grammar_free(ctx->grammar);
35
+ const T & back() const {
36
+ if (sz == 0) {
37
+ throw std::runtime_error("ring buffer is empty");
38
+ }
39
+ return data[pos];
52
40
  }
53
41
 
54
- delete ctx;
55
- }
56
-
57
- void llama_sampling_reset(llama_sampling_context * ctx) {
58
- if (ctx->grammar != NULL) {
59
- llama_grammar_free(ctx->grammar);
60
- ctx->grammar = NULL;
42
+ void push_back(const T & value) {
43
+ if (sz == capacity) {
44
+ // advance the start when buffer is full
45
+ first = (first + 1) % capacity;
46
+ } else {
47
+ sz++;
48
+ }
49
+ data[pos] = value;
50
+ pos = (pos + 1) % capacity;
61
51
  }
62
52
 
63
- if (!ctx->parsed_grammar.rules.empty()) {
64
- std::vector<const llama_grammar_element *> grammar_rules(ctx->parsed_grammar.c_rules());
53
+ T pop_front() {
54
+ if (sz == 0) {
55
+ throw std::runtime_error("ring buffer is empty");
56
+ }
57
+ T value = data[first];
58
+ first = (first + 1) % capacity;
59
+ sz--;
60
+ return value;
61
+ }
65
62
 
66
- struct llama_grammar * grammar = llama_grammar_init(
67
- grammar_rules.data(),
68
- grammar_rules.size(), ctx->parsed_grammar.symbol_ids.at("root"));
69
- if (grammar == nullptr) {
70
- throw std::runtime_error("Failed to initialize llama_grammar");
63
+ const T & rat(size_t i) const {
64
+ if (i >= sz) {
65
+ throw std::runtime_error("ring buffer: index out of bounds");
71
66
  }
72
- ctx->grammar = grammar;
67
+ return data[(first + sz - i - 1) % capacity];
73
68
  }
74
69
 
75
- std::fill(ctx->prev.begin(), ctx->prev.end(), 0);
76
- ctx->cur.clear();
77
- ctx->n_valid = 0;
78
- }
70
+ std::vector<T> to_vector() const {
71
+ std::vector<T> result;
72
+ result.reserve(sz);
73
+ for (size_t i = 0; i < sz; i++) {
74
+ result.push_back(data[(first + i) % capacity]);
75
+ }
76
+ return result;
77
+ }
79
78
 
80
- void llama_sampling_set_rng_seed(struct llama_sampling_context * ctx, uint32_t seed) {
81
- if (seed == LLAMA_DEFAULT_SEED) {
82
- seed = std::random_device{}();
79
+ void clear() {
80
+ // here only reset the status of the buffer
81
+ sz = 0;
82
+ first = 0;
83
+ pos = 0;
83
84
  }
84
- ctx->rng.seed(seed);
85
- }
86
85
 
87
- void llama_sampling_cp(llama_sampling_context * src, llama_sampling_context * dst) {
88
- if (dst->grammar) {
89
- llama_grammar_free(dst->grammar);
90
- dst->grammar = nullptr;
86
+ bool empty() const {
87
+ return sz == 0;
91
88
  }
92
89
 
93
- if (src->grammar) {
94
- dst->grammar = llama_grammar_copy(src->grammar);
90
+ size_t size() const {
91
+ return sz;
95
92
  }
96
93
 
97
- dst->prev = src->prev;
98
- }
94
+ size_t capacity = 0;
95
+ size_t sz = 0;
96
+ size_t first = 0;
97
+ size_t pos = 0;
98
+ std::vector<T> data;
99
+ };
99
100
 
100
- llama_token llama_sampling_last(llama_sampling_context * ctx) {
101
- return ctx->prev.back();
102
- }
101
+ struct gpt_sampler {
102
+ gpt_sampler_params params;
103
103
 
104
- std::string llama_sampling_prev_str(llama_sampling_context * ctx_sampling, llama_context * ctx_main, int n) {
105
- const int size = ctx_sampling->prev.size();
104
+ struct llama_sampler * grmr;
105
+ struct llama_sampler * chain;
106
106
 
107
- n = std::min(n, size);
107
+ ring_buffer<llama_token> prev;
108
108
 
109
- std::string result;
109
+ std::vector<llama_token_data> cur;
110
110
 
111
- for (int i = size - n; i < size; i++) {
112
- result += llama_token_to_piece(ctx_main, ctx_sampling->prev[i]);
113
- }
111
+ llama_token_data_array cur_p;
114
112
 
115
- return result;
116
- }
113
+ void set_logits(struct llama_context * ctx, int idx) {
114
+ const auto * logits = llama_get_logits_ith(ctx, idx);
117
115
 
118
- std::string llama_sampling_print(const llama_sampling_params & params) {
116
+ const int n_vocab = llama_n_vocab(llama_get_model(ctx));
117
+
118
+ cur.resize(n_vocab);
119
+
120
+ for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
121
+ cur[token_id] = llama_token_data{token_id, logits[token_id], 0.0f};
122
+ }
123
+
124
+ cur_p = { cur.data(), cur.size(), -1, false };
125
+ }
126
+ };
127
+
128
+ std::string gpt_sampler_params::print() const {
119
129
  char result[1024];
120
130
 
121
131
  snprintf(result, sizeof(result),
122
132
  "\trepeat_last_n = %d, repeat_penalty = %.3f, frequency_penalty = %.3f, presence_penalty = %.3f\n"
123
133
  "\ttop_k = %d, tfs_z = %.3f, top_p = %.3f, min_p = %.3f, typical_p = %.3f, temp = %.3f\n"
124
134
  "\tmirostat = %d, mirostat_lr = %.3f, mirostat_ent = %.3f",
125
- params.penalty_last_n, params.penalty_repeat, params.penalty_freq, params.penalty_present,
126
- params.top_k, params.tfs_z, params.top_p, params.min_p, params.typical_p, params.temp,
127
- params.mirostat, params.mirostat_eta, params.mirostat_tau);
135
+ penalty_last_n, penalty_repeat, penalty_freq, penalty_present,
136
+ top_k, tfs_z, top_p, min_p, typ_p, temp,
137
+ mirostat, mirostat_eta, mirostat_tau);
128
138
 
129
139
  return std::string(result);
130
140
  }
131
141
 
132
- std::string llama_sampling_order_print(const llama_sampling_params & params) {
133
- std::string result = "CFG -> Penalties ";
134
- if (params.mirostat == 0) {
135
- for (auto sampler_type : params.samplers_sequence) {
136
- const auto sampler_type_name = llama_sampling_type_to_str(sampler_type);
137
- if (!sampler_type_name.empty()) {
138
- result += "-> " + sampler_type_name + " ";
142
+ struct gpt_sampler * gpt_sampler_init(const struct llama_model * model, const struct gpt_sampler_params & params) {
143
+ llama_sampler_chain_params lparams = llama_sampler_chain_default_params();
144
+
145
+ lparams.no_perf = params.no_perf;
146
+
147
+ auto * result = new gpt_sampler {
148
+ /* .params = */ params,
149
+ /* .grmr = */ llama_sampler_init_grammar(model, params.grammar.c_str(), "root"),
150
+ /* .chain = */ llama_sampler_chain_init(lparams),
151
+ /* .prev = */ ring_buffer<llama_token>(std::max(32, params.n_prev)),
152
+ /* .cur = */ {},
153
+ /* .cur_p = */ {},
154
+ };
155
+
156
+ llama_sampler_chain_add(result->chain,
157
+ llama_sampler_init_logit_bias(
158
+ llama_n_vocab(model),
159
+ params.logit_bias.size(),
160
+ params.logit_bias.data()));
161
+
162
+ llama_sampler_chain_add(result->chain,
163
+ llama_sampler_init_penalties(
164
+ llama_n_vocab (model),
165
+ llama_token_eos(model),
166
+ llama_token_nl (model),
167
+ params.penalty_last_n,
168
+ params.penalty_repeat,
169
+ params.penalty_freq,
170
+ params.penalty_present,
171
+ params.penalize_nl,
172
+ params.ignore_eos));
173
+
174
+ if (params.temp > 0.0f) {
175
+ if (params.mirostat == 0) {
176
+ for (const auto & cnstr : params.samplers) {
177
+ switch (cnstr) {
178
+ case GPT_SAMPLER_TYPE_TOP_K:
179
+ llama_sampler_chain_add(result->chain, llama_sampler_init_top_k (params.top_k));
180
+ break;
181
+ case GPT_SAMPLER_TYPE_TOP_P:
182
+ llama_sampler_chain_add(result->chain, llama_sampler_init_top_p (params.top_p, params.min_keep));
183
+ break;
184
+ case GPT_SAMPLER_TYPE_MIN_P:
185
+ llama_sampler_chain_add(result->chain, llama_sampler_init_min_p (params.min_p, params.min_keep));
186
+ break;
187
+ case GPT_SAMPLER_TYPE_TFS_Z:
188
+ llama_sampler_chain_add(result->chain, llama_sampler_init_tail_free(params.tfs_z, params.min_keep));
189
+ break;
190
+ case GPT_SAMPLER_TYPE_TYPICAL_P:
191
+ llama_sampler_chain_add(result->chain, llama_sampler_init_typical (params.typ_p, params.min_keep));
192
+ break;
193
+ case GPT_SAMPLER_TYPE_TEMPERATURE:
194
+ llama_sampler_chain_add(result->chain, llama_sampler_init_temp_ext (params.temp, params.dynatemp_range, params.dynatemp_exponent));
195
+ break;
196
+ default:
197
+ GGML_ASSERT(false && "unknown sampler type");
198
+ }
139
199
  }
200
+ llama_sampler_chain_add(result->chain, llama_sampler_init_softmax());
201
+ llama_sampler_chain_add(result->chain, llama_sampler_init_dist(params.seed));
202
+ } else if (params.mirostat == 1) {
203
+ llama_sampler_chain_add(result->chain, llama_sampler_init_temp(params.temp));
204
+ llama_sampler_chain_add(result->chain, llama_sampler_init_mirostat(llama_n_vocab(model), params.seed, params.mirostat_tau, params.mirostat_eta, 100));
205
+ } else if (params.mirostat == 2) {
206
+ llama_sampler_chain_add(result->chain, llama_sampler_init_temp(params.temp));
207
+ llama_sampler_chain_add(result->chain, llama_sampler_init_mirostat_v2(params.seed, params.mirostat_tau, params.mirostat_eta));
208
+ } else {
209
+ GGML_ASSERT(false && "unknown mirostat version");
140
210
  }
141
211
  } else {
142
- result += "-> mirostat ";
212
+ if (params.n_probs > 0) {
213
+ // some use cases require to sample greedily, but still obtain the probabilities of the top tokens
214
+ // ref: https://github.com/ggerganov/llama.cpp/pull/9605
215
+ //
216
+ // the following will not produce exactly the same probs as applyging softmax to the full vocabulary, but
217
+ // it is much faster, since we avoid sorting all tokens and should give a good approximation
218
+ llama_sampler_chain_add(result->chain, llama_sampler_init_top_k(params.n_probs));
219
+ llama_sampler_chain_add(result->chain, llama_sampler_init_softmax());
220
+ }
221
+ llama_sampler_chain_add(result->chain, llama_sampler_init_greedy());
143
222
  }
144
223
 
145
224
  return result;
146
225
  }
147
226
 
148
- std::string llama_sampling_type_to_str(llama_sampler_type sampler_type) {
149
- switch (sampler_type) {
150
- case llama_sampler_type::TOP_K: return "top_k";
151
- case llama_sampler_type::TFS_Z: return "tfs_z";
152
- case llama_sampler_type::TYPICAL_P: return "typical_p";
153
- case llama_sampler_type::TOP_P: return "top_p";
154
- case llama_sampler_type::MIN_P: return "min_p";
155
- case llama_sampler_type::TEMPERATURE: return "temperature";
156
- default : return "";
227
+ void gpt_sampler_free(struct gpt_sampler * gsmpl) {
228
+ if (gsmpl) {
229
+ llama_sampler_free(gsmpl->grmr);
230
+
231
+ llama_sampler_free(gsmpl->chain);
232
+
233
+ delete gsmpl;
157
234
  }
158
235
  }
159
236
 
160
- std::vector<llama_sampler_type> llama_sampling_types_from_names(const std::vector<std::string> & names, bool allow_alt_names) {
161
- std::unordered_map<std::string, llama_sampler_type> sampler_canonical_name_map {
162
- {"top_k", llama_sampler_type::TOP_K},
163
- {"top_p", llama_sampler_type::TOP_P},
164
- {"typical_p", llama_sampler_type::TYPICAL_P},
165
- {"min_p", llama_sampler_type::MIN_P},
166
- {"tfs_z", llama_sampler_type::TFS_Z},
167
- {"temperature", llama_sampler_type::TEMPERATURE}
168
- };
237
+ void gpt_sampler_accept(struct gpt_sampler * gsmpl, llama_token token, bool accept_grammar) {
238
+ if (accept_grammar) {
239
+ llama_sampler_accept(gsmpl->grmr, token);
240
+ }
169
241
 
170
- // since samplers names are written multiple ways
171
- // make it ready for both system names and input names
172
- std::unordered_map<std::string, llama_sampler_type> sampler_alt_name_map {
173
- {"top-k", llama_sampler_type::TOP_K},
174
- {"top-p", llama_sampler_type::TOP_P},
175
- {"nucleus", llama_sampler_type::TOP_P},
176
- {"typical-p", llama_sampler_type::TYPICAL_P},
177
- {"typical", llama_sampler_type::TYPICAL_P},
178
- {"min-p", llama_sampler_type::MIN_P},
179
- {"tfs-z", llama_sampler_type::TFS_Z},
180
- {"tfs", llama_sampler_type::TFS_Z},
181
- {"temp", llama_sampler_type::TEMPERATURE}
182
- };
242
+ llama_sampler_accept(gsmpl->chain, token);
183
243
 
184
- std::vector<llama_sampler_type> sampler_types;
185
- sampler_types.reserve(names.size());
186
- for (const auto & name : names)
187
- {
188
- auto sampler_item = sampler_canonical_name_map.find(name);
189
- if (sampler_item != sampler_canonical_name_map.end())
190
- {
191
- sampler_types.push_back(sampler_item->second);
192
- }
193
- else
194
- {
195
- if (allow_alt_names)
196
- {
197
- sampler_item = sampler_alt_name_map.find(name);
198
- if (sampler_item != sampler_alt_name_map.end())
199
- {
200
- sampler_types.push_back(sampler_item->second);
201
- }
202
- }
203
- }
204
- }
205
- return sampler_types;
244
+ gsmpl->prev.push_back(token);
206
245
  }
207
246
 
208
- std::vector<llama_sampler_type> llama_sampling_types_from_chars(const std::string & names_string) {
209
- std::unordered_map<char, llama_sampler_type> sampler_name_map {
210
- {'k', llama_sampler_type::TOP_K},
211
- {'p', llama_sampler_type::TOP_P},
212
- {'y', llama_sampler_type::TYPICAL_P},
213
- {'m', llama_sampler_type::MIN_P},
214
- {'f', llama_sampler_type::TFS_Z},
215
- {'t', llama_sampler_type::TEMPERATURE}
216
- };
247
+ void gpt_sampler_reset(struct gpt_sampler * gsmpl) {
248
+ llama_sampler_reset(gsmpl->grmr);
217
249
 
218
- std::vector<llama_sampler_type> sampler_types;
219
- sampler_types.reserve(names_string.size());
220
- for (const auto & c : names_string) {
221
- const auto sampler_item = sampler_name_map.find(c);
222
- if (sampler_item != sampler_name_map.end()) {
223
- sampler_types.push_back(sampler_item->second);
224
- }
225
- }
226
- return sampler_types;
250
+ llama_sampler_reset(gsmpl->chain);
227
251
  }
228
252
 
229
- // no reasons to expose this function in header
230
- static void sampler_queue(
231
- struct llama_context * ctx_main,
232
- const llama_sampling_params & params,
233
- llama_token_data_array & cur_p,
234
- size_t min_keep) {
235
- const float temp = params.temp;
236
- const float dynatemp_range = params.dynatemp_range;
237
- const float dynatemp_exponent = params.dynatemp_exponent;
238
- const int32_t top_k = params.top_k;
239
- const float top_p = params.top_p;
240
- const float min_p = params.min_p;
241
- const float tfs_z = params.tfs_z;
242
- const float typical_p = params.typical_p;
243
- const std::vector<llama_sampler_type> & samplers_sequence = params.samplers_sequence;
244
-
245
- for (auto sampler_type : samplers_sequence) {
246
- switch (sampler_type) {
247
- case llama_sampler_type::TOP_K : llama_sample_top_k (ctx_main, &cur_p, top_k, min_keep); break;
248
- case llama_sampler_type::TFS_Z : llama_sample_tail_free(ctx_main, &cur_p, tfs_z, min_keep); break;
249
- case llama_sampler_type::TYPICAL_P: llama_sample_typical (ctx_main, &cur_p, typical_p, min_keep); break;
250
- case llama_sampler_type::TOP_P : llama_sample_top_p (ctx_main, &cur_p, top_p, min_keep); break;
251
- case llama_sampler_type::MIN_P : llama_sample_min_p (ctx_main, &cur_p, min_p, min_keep); break;
252
- case llama_sampler_type::TEMPERATURE:
253
- if (dynatemp_range > 0) {
254
- float dynatemp_min = std::max(0.0f, temp - dynatemp_range);
255
- float dynatemp_max = std::max(0.0f, temp + dynatemp_range);
256
- llama_sample_entropy(ctx_main, &cur_p, dynatemp_min, dynatemp_max, dynatemp_exponent);
257
- } else {
258
- llama_sample_temp(ctx_main, &cur_p, temp);
259
- }
260
- break;
261
- default : break;
262
- }
263
- }
253
+ struct gpt_sampler * gpt_sampler_clone(gpt_sampler * gsmpl) {
254
+ return new gpt_sampler {
255
+ /* .params = */ gsmpl->params,
256
+ /* .grmr = */ llama_sampler_clone(gsmpl->grmr),
257
+ /* .chain = */ llama_sampler_clone(gsmpl->chain),
258
+ /* .prev = */ gsmpl->prev,
259
+ /* .cur = */ gsmpl->cur,
260
+ /* .cur_p = */ gsmpl->cur_p,
261
+ };
264
262
  }
265
263
 
266
- static llama_token llama_sampling_sample_impl(
267
- struct llama_sampling_context * ctx_sampling,
268
- struct llama_context * ctx_main,
269
- struct llama_context * ctx_cfg,
270
- const int idx,
271
- bool is_resampling) {
272
- const llama_sampling_params & params = ctx_sampling->params;
273
-
274
- const float temp = params.temp;
275
- const int mirostat = params.mirostat;
276
- const float mirostat_tau = params.mirostat_tau;
277
- const float mirostat_eta = params.mirostat_eta;
278
-
279
- std::vector<float> original_logits;
280
- auto cur_p = llama_sampling_prepare(ctx_sampling, ctx_main, ctx_cfg, idx, /* apply_grammar= */ is_resampling, &original_logits);
281
- if (ctx_sampling->grammar != NULL && !is_resampling) {
282
- GGML_ASSERT(!original_logits.empty());
283
- }
284
- llama_token id = 0;
285
-
286
- if (temp < 0.0) {
287
- // greedy sampling, with probs
288
- llama_sample_softmax(ctx_main, &cur_p);
289
- id = cur_p.data[0].id;
290
- } else if (temp == 0.0) {
291
- // greedy sampling, no probs
292
- id = llama_sample_token_greedy(ctx_main, &cur_p);
293
- } else {
294
- if (mirostat == 1) {
295
- const int mirostat_m = 100;
296
- llama_sample_temp(ctx_main, &cur_p, temp);
297
- id = llama_sample_token_mirostat(ctx_main, &cur_p, mirostat_tau, mirostat_eta, mirostat_m, &ctx_sampling->mirostat_mu);
298
- } else if (mirostat == 2) {
299
- llama_sample_temp(ctx_main, &cur_p, temp);
300
- id = llama_sample_token_mirostat_v2(ctx_main, &cur_p, mirostat_tau, mirostat_eta, &ctx_sampling->mirostat_mu);
301
- } else {
302
- // temperature sampling
303
- size_t min_keep = std::max(1, params.min_keep);
304
-
305
- sampler_queue(ctx_main, params, cur_p, min_keep);
264
+ void gpt_perf_print(const struct llama_context * ctx, const struct gpt_sampler * gsmpl) {
265
+ // TODO: measure grammar performance
306
266
 
307
- id = llama_sample_token_with_rng(ctx_main, &cur_p, ctx_sampling->rng);
267
+ if (gsmpl) {
268
+ llama_perf_sampler_print(gsmpl->chain);
269
+ }
270
+ if (ctx) {
271
+ llama_perf_context_print(ctx);
272
+ }
273
+ }
308
274
 
309
- //{
310
- // const int n_top = 10;
311
- // LOG("top %d candidates:\n", n_top);
275
+ llama_token gpt_sampler_sample(struct gpt_sampler * gsmpl, struct llama_context * ctx, int idx, bool grammar_first) {
276
+ gsmpl->set_logits(ctx, idx);
312
277
 
313
- // for (int i = 0; i < n_top; i++) {
314
- // const llama_token id = cur_p.data[i].id;
315
- // (void)id; // To avoid a warning that id is unused when logging is disabled.
316
- // LOG(" - %5d: '%12s' (%.3f)\n", id, llama_token_to_piece(ctx_main, id).c_str(), cur_p.data[i].p);
317
- // }
318
- //}
278
+ auto & grmr = gsmpl->grmr;
279
+ auto & chain = gsmpl->chain;
280
+ auto & cur_p = gsmpl->cur_p; // initialized by set_logits
319
281
 
320
- //LOG("sampled token: %5d: '%s'\n", id, llama_token_to_piece(ctx_main, id).c_str());
321
- }
282
+ if (grammar_first) {
283
+ llama_sampler_apply(grmr, &cur_p);
322
284
  }
323
285
 
324
- if (ctx_sampling->grammar != NULL && !is_resampling) {
325
- // Get a pointer to the logits
326
- float * logits = llama_get_logits_ith(ctx_main, idx);
286
+ llama_sampler_apply(chain, &cur_p);
327
287
 
328
- // Create an array with a single token data element for the sampled id
329
- llama_token_data single_token_data = {id, logits[id], 0.0f};
330
- llama_token_data_array single_token_data_array = { &single_token_data, 1, false };
288
+ GGML_ASSERT(cur_p.selected != -1 && "no selected token during sampling - check your sampling configuration");
331
289
 
332
- // Apply grammar constraints to the single token
333
- llama_grammar_sample(ctx_sampling->grammar, ctx_main, &single_token_data_array);
290
+ const llama_token id = cur_p.data[cur_p.selected].id;
334
291
 
335
- // Check if the token is valid according to the grammar by seeing if its logit has been set to -INFINITY
336
- bool is_valid = single_token_data_array.data[0].logit != -INFINITY;
292
+ if (grammar_first) {
293
+ return id;
294
+ }
337
295
 
338
- // If the token is not valid according to the grammar, perform resampling
339
- if (!is_valid) {
340
- LOG("Resampling because token %d: '%s' does not meet grammar rules\n", id, llama_token_to_piece(ctx_main, id).c_str());
296
+ // check if it the sampled token fits the grammar
297
+ {
298
+ llama_token_data single_token_data = { id, 1.0f, 0.0f };
299
+ llama_token_data_array single_token_data_array = { &single_token_data, 1, -1, false };
341
300
 
342
- // Restore logits from the copy
343
- std::copy(original_logits.begin(), original_logits.end(), logits);
301
+ llama_sampler_apply(grmr, &single_token_data_array);
344
302
 
345
- return llama_sampling_sample_impl(ctx_sampling, ctx_main, ctx_cfg, idx, /* is_resampling= */ true);
303
+ const bool is_valid = single_token_data_array.data[0].logit != -INFINITY;
304
+ if (is_valid) {
305
+ return id;
346
306
  }
347
307
  }
348
308
 
349
- ctx_sampling->n_valid = temp == 0.0f ? 0 : cur_p.size;
309
+ // resampling:
310
+ // if the token is not valid, sample again, but first apply the grammar sampler and then the sampling chain
311
+ gsmpl->set_logits(ctx, idx);
350
312
 
351
- return id;
352
- }
313
+ llama_sampler_apply(grmr, &cur_p);
314
+ llama_sampler_apply(chain, &cur_p);
353
315
 
354
- static llama_token_data_array llama_sampling_prepare_impl(
355
- struct llama_sampling_context * ctx_sampling,
356
- struct llama_context * ctx_main,
357
- struct llama_context * ctx_cfg,
358
- const int idx,
359
- bool apply_grammar,
360
- std::vector<float> * original_logits) {
361
- const llama_sampling_params & params = ctx_sampling->params;
316
+ GGML_ASSERT(cur_p.selected != -1 && "no selected token during re-sampling - check your sampling configuration");
362
317
 
363
- const int n_vocab = llama_n_vocab(llama_get_model(ctx_main));
318
+ return cur_p.data[cur_p.selected].id;
319
+ }
364
320
 
365
- const int32_t penalty_last_n = params.penalty_last_n < 0 ? params.n_prev : params.penalty_last_n;
366
- const float penalty_repeat = params.penalty_repeat;
367
- const float penalty_freq = params.penalty_freq;
368
- const float penalty_present = params.penalty_present;
321
+ uint32_t gpt_sampler_get_seed(const struct gpt_sampler * gsmpl) {
322
+ return llama_sampler_get_seed(gsmpl->chain);
323
+ }
324
+
325
+ // helpers
369
326
 
370
- const bool penalize_nl = params.penalize_nl;
327
+ llama_token_data_array * gpt_sampler_get_candidates(struct gpt_sampler * gsmpl) {
328
+ return &gsmpl->cur_p;
329
+ }
371
330
 
372
- auto & prev = ctx_sampling->prev;
373
- auto & cur = ctx_sampling->cur;
331
+ llama_token gpt_sampler_last(const struct gpt_sampler * gsmpl) {
332
+ return gsmpl->prev.rat(0);
333
+ }
374
334
 
375
- // Get a pointer to the logits
376
- float * logits = llama_get_logits_ith(ctx_main, idx);
335
+ std::string gpt_sampler_print(const struct gpt_sampler * gsmpl) {
336
+ std::string result = "logits ";
377
337
 
378
- if (ctx_sampling->grammar != NULL && !apply_grammar) {
379
- GGML_ASSERT(original_logits != NULL);
380
- // Only make a copy of the original logits if we are not applying grammar checks, not sure if I actually have to do this.
381
- *original_logits = {logits, logits + n_vocab};
338
+ for (int i = 0; i < llama_sampler_chain_n(gsmpl->chain); i++) {
339
+ const auto * smpl = llama_sampler_chain_get(gsmpl->chain, i);
340
+ result += std::string("-> ") + llama_sampler_name(smpl) + " ";
382
341
  }
383
342
 
384
- // apply params.logit_bias map
385
- for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) {
386
- logits[it->first] += it->second;
343
+ return result;
344
+ }
345
+
346
+ std::string gpt_sampler_prev_str(gpt_sampler * gsmpl, llama_context * ctx_main, int n) {
347
+ n = std::min(n, (int) gsmpl->prev.size());
348
+
349
+ if (n <= 0) {
350
+ return "";
387
351
  }
388
352
 
389
- if (ctx_cfg) {
390
- float * logits_guidance = llama_get_logits_ith(ctx_cfg, idx);
391
- llama_sample_apply_guidance(ctx_main, logits, logits_guidance, params.cfg_scale);
353
+ std::string result;
354
+ result.reserve(8*n); // 8 is the average length of a token [citation needed], TODO: compute this from the vocab
355
+
356
+ for (int i = n - 1; i >= 0; i--) {
357
+ const llama_token id = gsmpl->prev.rat(i);
358
+
359
+ GGML_ASSERT(id != LLAMA_TOKEN_NULL && "null token in the sampling history - should not happen");
360
+
361
+ result += llama_token_to_piece(ctx_main, id);
392
362
  }
393
363
 
394
- cur.resize(n_vocab);
364
+ return result;
365
+ }
366
+
367
+ char gpt_sampler_type_to_chr(enum gpt_sampler_type cnstr) {
368
+ switch (cnstr) {
369
+ case GPT_SAMPLER_TYPE_TOP_K: return 'k';
370
+ case GPT_SAMPLER_TYPE_TFS_Z: return 'f';
371
+ case GPT_SAMPLER_TYPE_TYPICAL_P: return 'y';
372
+ case GPT_SAMPLER_TYPE_TOP_P: return 'p';
373
+ case GPT_SAMPLER_TYPE_MIN_P: return 'm';
374
+ case GPT_SAMPLER_TYPE_TEMPERATURE: return 't';
375
+ default : return '?';
376
+ }
377
+ }
395
378
 
396
- for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
397
- cur[token_id] = llama_token_data{token_id, logits[token_id], 0.0f};
379
+ std::string gpt_sampler_type_to_str(enum gpt_sampler_type cnstr) {
380
+ switch (cnstr) {
381
+ case GPT_SAMPLER_TYPE_TOP_K: return "top_k";
382
+ case GPT_SAMPLER_TYPE_TFS_Z: return "tfs_z";
383
+ case GPT_SAMPLER_TYPE_TYPICAL_P: return "typ_p";
384
+ case GPT_SAMPLER_TYPE_TOP_P: return "top_p";
385
+ case GPT_SAMPLER_TYPE_MIN_P: return "min_p";
386
+ case GPT_SAMPLER_TYPE_TEMPERATURE: return "temperature";
387
+ default : return "";
398
388
  }
389
+ }
399
390
 
400
- llama_token_data_array cur_p = { cur.data(), cur.size(), false };
391
+ std::vector<gpt_sampler_type> gpt_sampler_types_from_names(const std::vector<std::string> & names, bool allow_alt_names) {
392
+ std::unordered_map<std::string, gpt_sampler_type> sampler_canonical_name_map {
393
+ { "top_k", GPT_SAMPLER_TYPE_TOP_K },
394
+ { "top_p", GPT_SAMPLER_TYPE_TOP_P },
395
+ { "typ_p", GPT_SAMPLER_TYPE_TYPICAL_P },
396
+ { "min_p", GPT_SAMPLER_TYPE_MIN_P },
397
+ { "tfs_z", GPT_SAMPLER_TYPE_TFS_Z },
398
+ { "temperature", GPT_SAMPLER_TYPE_TEMPERATURE },
399
+ };
401
400
 
402
- // apply penalties
403
- const auto& penalty_tokens = params.use_penalty_prompt_tokens ? params.penalty_prompt_tokens : prev;
404
- const int penalty_tokens_used_size = std::min((int)penalty_tokens.size(), penalty_last_n);
405
- if (penalty_tokens_used_size) {
406
- const float nl_logit = logits[llama_token_nl(llama_get_model(ctx_main))];
401
+ // since samplers names are written multiple ways
402
+ // make it ready for both system names and input names
403
+ std::unordered_map<std::string, gpt_sampler_type> sampler_alt_name_map {
404
+ { "top-k", GPT_SAMPLER_TYPE_TOP_K },
405
+ { "top-p", GPT_SAMPLER_TYPE_TOP_P },
406
+ { "nucleus", GPT_SAMPLER_TYPE_TOP_P },
407
+ { "typical-p", GPT_SAMPLER_TYPE_TYPICAL_P },
408
+ { "typical", GPT_SAMPLER_TYPE_TYPICAL_P },
409
+ { "typ-p", GPT_SAMPLER_TYPE_TYPICAL_P },
410
+ { "typ", GPT_SAMPLER_TYPE_TYPICAL_P },
411
+ { "min-p", GPT_SAMPLER_TYPE_MIN_P },
412
+ { "tfs-z", GPT_SAMPLER_TYPE_TFS_Z },
413
+ { "tfs", GPT_SAMPLER_TYPE_TFS_Z },
414
+ { "temp", GPT_SAMPLER_TYPE_TEMPERATURE },
415
+ };
407
416
 
408
- llama_sample_repetition_penalties(ctx_main, &cur_p,
409
- penalty_tokens.data() + penalty_tokens.size() - penalty_tokens_used_size,
410
- penalty_tokens_used_size, penalty_repeat, penalty_freq, penalty_present);
417
+ std::vector<gpt_sampler_type> samplers;
418
+ samplers.reserve(names.size());
411
419
 
412
- if (!penalize_nl) {
413
- for (size_t idx = 0; idx < cur_p.size; idx++) {
414
- if (cur_p.data[idx].id == llama_token_nl(llama_get_model(ctx_main))) {
415
- cur_p.data[idx].logit = nl_logit;
416
- break;
420
+ for (const auto & name : names) {
421
+ auto sampler = sampler_canonical_name_map.find(name);
422
+ if (sampler != sampler_canonical_name_map.end()) {
423
+ samplers.push_back(sampler->second);
424
+ } else {
425
+ if (allow_alt_names) {
426
+ sampler = sampler_alt_name_map.find(name);
427
+ if (sampler != sampler_alt_name_map.end()) {
428
+ samplers.push_back(sampler->second);
417
429
  }
418
430
  }
419
431
  }
420
432
  }
421
433
 
422
- // apply grammar checks before sampling logic
423
- if (apply_grammar && ctx_sampling->grammar != NULL) {
424
- llama_grammar_sample(ctx_sampling->grammar, ctx_main, &cur_p);
425
- }
426
-
427
- return cur_p;
434
+ return samplers;
428
435
  }
429
436
 
430
- llama_token llama_sampling_sample(
431
- struct llama_sampling_context * ctx_sampling,
432
- struct llama_context * ctx_main,
433
- struct llama_context * ctx_cfg,
434
- const int idx) {
435
- // Call the implementation function with is_resampling set to false by default
436
- return llama_sampling_sample_impl(ctx_sampling, ctx_main, ctx_cfg, idx, /* is_resampling= */ false);
437
- }
438
-
439
- llama_token_data_array llama_sampling_prepare(
440
- struct llama_sampling_context * ctx_sampling,
441
- struct llama_context * ctx_main,
442
- struct llama_context * ctx_cfg,
443
- const int idx,
444
- bool apply_grammar,
445
- std::vector<float> * original_logits) {
446
- return llama_sampling_prepare_impl(ctx_sampling,ctx_main, ctx_cfg, idx, apply_grammar, original_logits);
447
- }
437
+ std::vector<gpt_sampler_type> gpt_sampler_types_from_chars(const std::string & chars) {
438
+ std::unordered_map<char, gpt_sampler_type> sampler_name_map = {
439
+ { gpt_sampler_type_to_chr(GPT_SAMPLER_TYPE_TOP_K), GPT_SAMPLER_TYPE_TOP_K },
440
+ { gpt_sampler_type_to_chr(GPT_SAMPLER_TYPE_TFS_Z), GPT_SAMPLER_TYPE_TFS_Z },
441
+ { gpt_sampler_type_to_chr(GPT_SAMPLER_TYPE_TYPICAL_P), GPT_SAMPLER_TYPE_TYPICAL_P },
442
+ { gpt_sampler_type_to_chr(GPT_SAMPLER_TYPE_TOP_P), GPT_SAMPLER_TYPE_TOP_P },
443
+ { gpt_sampler_type_to_chr(GPT_SAMPLER_TYPE_MIN_P), GPT_SAMPLER_TYPE_MIN_P },
444
+ { gpt_sampler_type_to_chr(GPT_SAMPLER_TYPE_TEMPERATURE), GPT_SAMPLER_TYPE_TEMPERATURE }
445
+ };
448
446
 
449
- void llama_sampling_accept(
450
- struct llama_sampling_context * ctx_sampling,
451
- struct llama_context * ctx_main,
452
- llama_token id,
453
- bool apply_grammar) {
454
- ctx_sampling->prev.erase(ctx_sampling->prev.begin());
455
- ctx_sampling->prev.push_back(id);
447
+ std::vector<gpt_sampler_type> samplers;
448
+ samplers.reserve(chars.size());
456
449
 
457
- if (ctx_sampling->grammar != NULL && apply_grammar) {
458
- llama_grammar_accept_token(ctx_sampling->grammar, ctx_main, id);
450
+ for (const auto & c : chars) {
451
+ const auto sampler = sampler_name_map.find(c);
452
+ if (sampler != sampler_name_map.end()) {
453
+ samplers.push_back(sampler->second);
454
+ }
459
455
  }
456
+
457
+ return samplers;
460
458
  }