@forwardimpact/schema 0.1.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/bin/fit-schema.js +260 -0
- package/examples/behaviours/_index.yaml +8 -0
- package/examples/behaviours/outcome_ownership.yaml +43 -0
- package/examples/behaviours/polymathic_knowledge.yaml +41 -0
- package/examples/behaviours/precise_communication.yaml +39 -0
- package/examples/behaviours/relentless_curiosity.yaml +37 -0
- package/examples/behaviours/systems_thinking.yaml +40 -0
- package/examples/capabilities/_index.yaml +8 -0
- package/examples/capabilities/business.yaml +189 -0
- package/examples/capabilities/delivery.yaml +305 -0
- package/examples/capabilities/people.yaml +68 -0
- package/examples/capabilities/reliability.yaml +414 -0
- package/examples/capabilities/scale.yaml +378 -0
- package/examples/copilot-setup-steps.yaml +25 -0
- package/examples/devcontainer.yaml +21 -0
- package/examples/disciplines/_index.yaml +6 -0
- package/examples/disciplines/data_engineering.yaml +78 -0
- package/examples/disciplines/engineering_management.yaml +63 -0
- package/examples/disciplines/software_engineering.yaml +78 -0
- package/examples/drivers.yaml +202 -0
- package/examples/framework.yaml +69 -0
- package/examples/grades.yaml +115 -0
- package/examples/questions/behaviours/outcome_ownership.yaml +51 -0
- package/examples/questions/behaviours/polymathic_knowledge.yaml +47 -0
- package/examples/questions/behaviours/precise_communication.yaml +54 -0
- package/examples/questions/behaviours/relentless_curiosity.yaml +50 -0
- package/examples/questions/behaviours/systems_thinking.yaml +52 -0
- package/examples/questions/skills/architecture_design.yaml +53 -0
- package/examples/questions/skills/cloud_platforms.yaml +47 -0
- package/examples/questions/skills/code_quality.yaml +48 -0
- package/examples/questions/skills/data_modeling.yaml +45 -0
- package/examples/questions/skills/devops.yaml +46 -0
- package/examples/questions/skills/full_stack_development.yaml +47 -0
- package/examples/questions/skills/sre_practices.yaml +43 -0
- package/examples/questions/skills/stakeholder_management.yaml +48 -0
- package/examples/questions/skills/team_collaboration.yaml +42 -0
- package/examples/questions/skills/technical_writing.yaml +42 -0
- package/examples/self-assessments.yaml +64 -0
- package/examples/stages.yaml +139 -0
- package/examples/tracks/_index.yaml +5 -0
- package/examples/tracks/platform.yaml +49 -0
- package/examples/tracks/sre.yaml +48 -0
- package/examples/vscode-settings.yaml +21 -0
- package/lib/index-generator.js +65 -0
- package/lib/index.js +44 -0
- package/lib/levels.js +601 -0
- package/lib/loader.js +599 -0
- package/lib/modifiers.js +23 -0
- package/lib/schema-validation.js +438 -0
- package/lib/validation.js +2130 -0
- package/package.json +49 -0
- package/schema/json/behaviour-questions.schema.json +68 -0
- package/schema/json/behaviour.schema.json +73 -0
- package/schema/json/capability.schema.json +220 -0
- package/schema/json/defs.schema.json +132 -0
- package/schema/json/discipline.schema.json +132 -0
- package/schema/json/drivers.schema.json +48 -0
- package/schema/json/framework.schema.json +55 -0
- package/schema/json/grades.schema.json +121 -0
- package/schema/json/index.schema.json +18 -0
- package/schema/json/self-assessments.schema.json +52 -0
- package/schema/json/skill-questions.schema.json +68 -0
- package/schema/json/stages.schema.json +84 -0
- package/schema/json/track.schema.json +100 -0
- package/schema/rdf/pathway.ttl +2362 -0
|
@@ -0,0 +1,378 @@
|
|
|
1
|
+
# yaml-language-server: $schema=https://schema.forwardimpact.team/json/capability.schema.json
|
|
2
|
+
|
|
3
|
+
name: Scale
|
|
4
|
+
emojiIcon: 📐
|
|
5
|
+
displayOrder: 4
|
|
6
|
+
description: |
|
|
7
|
+
Building systems that grow gracefully.
|
|
8
|
+
Encompasses architecture, code quality, testing, performance,
|
|
9
|
+
and technical decision-making.
|
|
10
|
+
professionalResponsibilities:
|
|
11
|
+
awareness:
|
|
12
|
+
Follow established architectural patterns and coding standards with guidance
|
|
13
|
+
from senior engineers
|
|
14
|
+
foundational:
|
|
15
|
+
Contribute to scalable designs, write quality code with appropriate tests,
|
|
16
|
+
and understand architectural trade-offs
|
|
17
|
+
working:
|
|
18
|
+
Design scalable components, make sound architectural decisions, ensure code
|
|
19
|
+
quality, and review others' designs
|
|
20
|
+
practitioner:
|
|
21
|
+
Lead architectural decisions for complex systems across teams, establish
|
|
22
|
+
quality standards for your area, mentor engineers on architecture, and own
|
|
23
|
+
technical debt strategy
|
|
24
|
+
expert:
|
|
25
|
+
Define technical standards across the business unit, guide enterprise
|
|
26
|
+
architecture, be recognized externally for architectural expertise, and
|
|
27
|
+
drive innovation
|
|
28
|
+
managementResponsibilities:
|
|
29
|
+
awareness:
|
|
30
|
+
Understand technical architecture decisions and their resource and timeline
|
|
31
|
+
implications
|
|
32
|
+
foundational:
|
|
33
|
+
Support team technical decisions, ensure alignment with architectural
|
|
34
|
+
standards, and escalate technical risks
|
|
35
|
+
working:
|
|
36
|
+
Facilitate architectural discussions, manage technical debt prioritization,
|
|
37
|
+
champion quality, and balance technical investment with delivery
|
|
38
|
+
practitioner:
|
|
39
|
+
Drive technical excellence across teams, establish quality standards for
|
|
40
|
+
your area, own cross-team technical direction, and advise on architecture
|
|
41
|
+
trade-offs
|
|
42
|
+
expert:
|
|
43
|
+
Shape technical strategy across the business unit, guide enterprise
|
|
44
|
+
architecture governance, and represent technical priorities at executive
|
|
45
|
+
level
|
|
46
|
+
skills:
|
|
47
|
+
- id: cloud_platforms
|
|
48
|
+
name: Cloud Platforms
|
|
49
|
+
human:
|
|
50
|
+
description:
|
|
51
|
+
Working effectively with cloud infrastructure (AWS, Azure, GCP)
|
|
52
|
+
levelDescriptions:
|
|
53
|
+
awareness:
|
|
54
|
+
You understand cloud computing concepts (IaaS, PaaS, SaaS) and can use
|
|
55
|
+
cloud services through consoles and defined interfaces with guidance.
|
|
56
|
+
foundational:
|
|
57
|
+
You deploy applications to cloud platforms and use common services
|
|
58
|
+
(compute, storage, databases, queues). You understand cloud pricing
|
|
59
|
+
and basic security configuration.
|
|
60
|
+
working:
|
|
61
|
+
You design cloud-native solutions, manage infrastructure as code,
|
|
62
|
+
implement security best practices, and make informed service
|
|
63
|
+
selections. You troubleshoot cloud-specific issues.
|
|
64
|
+
practitioner:
|
|
65
|
+
You architect multi-region, highly available solutions across teams.
|
|
66
|
+
You optimize for cost and performance, lead cloud migrations for your
|
|
67
|
+
area, and mentor engineers on cloud architecture patterns.
|
|
68
|
+
expert:
|
|
69
|
+
You shape cloud strategy across the business unit. You solve
|
|
70
|
+
large-scale cloud challenges, define cloud governance, and are
|
|
71
|
+
recognized as an authority on cloud architecture.
|
|
72
|
+
agent:
|
|
73
|
+
name: cloud-platforms
|
|
74
|
+
description: Guide for working with cloud infrastructure and services.
|
|
75
|
+
useWhen: |
|
|
76
|
+
Deploying to cloud, selecting cloud services, configuring
|
|
77
|
+
infrastructure, or solving cloud-specific challenges.
|
|
78
|
+
stages:
|
|
79
|
+
specify:
|
|
80
|
+
focus: |
|
|
81
|
+
Define cloud infrastructure requirements and constraints.
|
|
82
|
+
Clarify availability, security, and cost expectations.
|
|
83
|
+
activities:
|
|
84
|
+
- Document availability and reliability requirements
|
|
85
|
+
- Identify security and compliance constraints
|
|
86
|
+
- Specify cost budget and constraints
|
|
87
|
+
- Define performance requirements (latency, throughput)
|
|
88
|
+
- Mark ambiguities with [NEEDS CLARIFICATION]
|
|
89
|
+
ready:
|
|
90
|
+
- Availability requirements are documented
|
|
91
|
+
- Security requirements are specified
|
|
92
|
+
- Cost constraints are defined
|
|
93
|
+
- Performance requirements are clear
|
|
94
|
+
plan:
|
|
95
|
+
focus: Selecting and designing cloud architecture
|
|
96
|
+
activities:
|
|
97
|
+
- Evaluate service options for the use case
|
|
98
|
+
- Plan multi-AZ deployment for availability
|
|
99
|
+
- Design IAM roles with least privilege
|
|
100
|
+
- Estimate costs and plan resource sizing
|
|
101
|
+
ready:
|
|
102
|
+
- Service selection matches requirements
|
|
103
|
+
- Architecture designed for availability
|
|
104
|
+
- Security approach documented
|
|
105
|
+
- Cost estimate prepared
|
|
106
|
+
code:
|
|
107
|
+
focus: Implementing cloud infrastructure and deployments
|
|
108
|
+
activities:
|
|
109
|
+
- Define infrastructure as code (Terraform/CloudFormation)
|
|
110
|
+
- Configure security groups and network policies
|
|
111
|
+
- Set up encryption at rest and in transit
|
|
112
|
+
- Implement monitoring and alerting
|
|
113
|
+
ready:
|
|
114
|
+
- Infrastructure defined as code
|
|
115
|
+
- Security groups properly configured
|
|
116
|
+
- Encryption enabled for data
|
|
117
|
+
- Monitoring and alerting in place
|
|
118
|
+
review:
|
|
119
|
+
focus: Validating cloud configuration and security
|
|
120
|
+
activities:
|
|
121
|
+
- Verify IAM follows least privilege
|
|
122
|
+
- Check multi-AZ deployment
|
|
123
|
+
- Validate cost controls are in place
|
|
124
|
+
- Review security configuration
|
|
125
|
+
ready:
|
|
126
|
+
- IAM permissions are minimal
|
|
127
|
+
- Multi-AZ deployment confirmed
|
|
128
|
+
- Cost controls established
|
|
129
|
+
- Security review complete
|
|
130
|
+
deploy:
|
|
131
|
+
focus: |
|
|
132
|
+
Deploy cloud infrastructure and verify production readiness.
|
|
133
|
+
Confirm failover and monitoring work correctly.
|
|
134
|
+
activities:
|
|
135
|
+
- Deploy infrastructure to production
|
|
136
|
+
- Verify multi-AZ failover works
|
|
137
|
+
- Confirm monitoring and alerting are operational
|
|
138
|
+
- Validate cost tracking is in place
|
|
139
|
+
ready:
|
|
140
|
+
- Infrastructure deployed successfully
|
|
141
|
+
- Failover tested in production
|
|
142
|
+
- Monitoring is operational
|
|
143
|
+
- Cost tracking is active
|
|
144
|
+
implementationReference: |
|
|
145
|
+
## Service Categories
|
|
146
|
+
|
|
147
|
+
| Category | Services | Use Case |
|
|
148
|
+
|----------|----------|----------|
|
|
149
|
+
| Compute | EC2, ECS, Lambda | VMs, Containers, Serverless |
|
|
150
|
+
| Storage | S3, EBS, EFS | Objects, Blocks, Files |
|
|
151
|
+
| Database | RDS, DynamoDB | SQL, NoSQL |
|
|
152
|
+
| Messaging | SQS, SNS, Kinesis | Queues, Pub/Sub, Streaming |
|
|
153
|
+
|
|
154
|
+
## Cloud-Native Principles
|
|
155
|
+
- Design for failure
|
|
156
|
+
- Use managed services
|
|
157
|
+
- Automate everything
|
|
158
|
+
- Monitor and alert
|
|
159
|
+
- id: code_quality
|
|
160
|
+
name: Code Quality & Review
|
|
161
|
+
human:
|
|
162
|
+
description:
|
|
163
|
+
Writing and reviewing clean, maintainable, tested, and well-documented
|
|
164
|
+
code. In the AI era, code review becomes more important than code
|
|
165
|
+
generation—every line must be understood and verified regardless of its
|
|
166
|
+
source.
|
|
167
|
+
levelDescriptions:
|
|
168
|
+
awareness:
|
|
169
|
+
You follow team coding conventions and style guides with guidance. You
|
|
170
|
+
understand why code quality matters and can run linters and tests
|
|
171
|
+
others have written.
|
|
172
|
+
foundational:
|
|
173
|
+
You write readable, well-structured code. You use linting tools, write
|
|
174
|
+
basic unit tests, and participate constructively in code reviews—both
|
|
175
|
+
giving and receiving feedback.
|
|
176
|
+
working:
|
|
177
|
+
You produce consistently high-quality, well-tested code. You review
|
|
178
|
+
AI-generated code critically and never ship code you don't fully
|
|
179
|
+
understand. You identify edge cases and ensure adequate test coverage.
|
|
180
|
+
practitioner:
|
|
181
|
+
You establish and enforce quality standards across teams in your area.
|
|
182
|
+
You mentor engineers on effective code review, ensure verification
|
|
183
|
+
depth for AI-assisted development, and drive testing strategies.
|
|
184
|
+
expert:
|
|
185
|
+
You shape coding standards and quality practices across the business
|
|
186
|
+
unit. You champion code review as a critical engineering skill, define
|
|
187
|
+
AI-assisted development guidelines, and are recognized for quality
|
|
188
|
+
engineering.
|
|
189
|
+
agent:
|
|
190
|
+
name: code-quality-review
|
|
191
|
+
description: Guide for writing quality code and conducting code reviews.
|
|
192
|
+
useWhen: |
|
|
193
|
+
Reviewing code, checking for best practices, or verifying AI-generated
|
|
194
|
+
code before committing.
|
|
195
|
+
stages:
|
|
196
|
+
specify:
|
|
197
|
+
focus: |
|
|
198
|
+
Define code quality requirements and review criteria.
|
|
199
|
+
Clarify standards and acceptance criteria for the change.
|
|
200
|
+
activities:
|
|
201
|
+
- Identify applicable coding standards
|
|
202
|
+
- Document quality acceptance criteria
|
|
203
|
+
- Specify test coverage requirements
|
|
204
|
+
- Define review depth based on risk level
|
|
205
|
+
- Mark ambiguities with [NEEDS CLARIFICATION]
|
|
206
|
+
ready:
|
|
207
|
+
- Coding standards are identified
|
|
208
|
+
- Quality criteria are documented
|
|
209
|
+
- Test requirements are specified
|
|
210
|
+
- Review approach matches risk level
|
|
211
|
+
plan:
|
|
212
|
+
focus: Planning for quality before implementation
|
|
213
|
+
activities:
|
|
214
|
+
- Review project coding conventions
|
|
215
|
+
- Plan testing strategy for the feature
|
|
216
|
+
- Identify edge cases to handle
|
|
217
|
+
- Consider error handling approach
|
|
218
|
+
ready:
|
|
219
|
+
- Coding conventions understood
|
|
220
|
+
- Testing strategy defined
|
|
221
|
+
- Edge cases identified
|
|
222
|
+
- Error handling planned
|
|
223
|
+
code:
|
|
224
|
+
focus: Writing and testing quality code
|
|
225
|
+
activities:
|
|
226
|
+
- Follow project coding conventions
|
|
227
|
+
- Write tests alongside implementation
|
|
228
|
+
- Handle error conditions appropriately
|
|
229
|
+
- Self-review before requesting review
|
|
230
|
+
ready:
|
|
231
|
+
- Code follows project conventions
|
|
232
|
+
- Changes are covered by tests
|
|
233
|
+
- Error handling is appropriate
|
|
234
|
+
- Self-review completed
|
|
235
|
+
review:
|
|
236
|
+
focus: Verifying code quality and correctness
|
|
237
|
+
activities:
|
|
238
|
+
- Verify code does what it claims
|
|
239
|
+
- Check test coverage is adequate
|
|
240
|
+
- Evaluate maintainability
|
|
241
|
+
- Ensure no code you don't understand
|
|
242
|
+
ready:
|
|
243
|
+
- Code compiles and passes all tests
|
|
244
|
+
- No obvious security vulnerabilities
|
|
245
|
+
- No unnecessary complexity
|
|
246
|
+
- Documentation updated if needed
|
|
247
|
+
deploy:
|
|
248
|
+
focus: |
|
|
249
|
+
Merge and deploy reviewed code. Verify quality checks pass
|
|
250
|
+
in production pipeline.
|
|
251
|
+
activities:
|
|
252
|
+
- Merge approved changes
|
|
253
|
+
- Verify CI pipeline passes
|
|
254
|
+
- Monitor for issues after deployment
|
|
255
|
+
- Document any lessons learned
|
|
256
|
+
ready:
|
|
257
|
+
- Code merged successfully
|
|
258
|
+
- CI pipeline passes all checks
|
|
259
|
+
- No regressions detected
|
|
260
|
+
- Deployment verified
|
|
261
|
+
implementationReference: |
|
|
262
|
+
## Review Checklist
|
|
263
|
+
|
|
264
|
+
1. **Correctness**: Does it work as intended?
|
|
265
|
+
2. **Tests**: Is it properly tested?
|
|
266
|
+
3. **Maintainability**: Will it be easy to change?
|
|
267
|
+
4. **Style**: Does it follow conventions?
|
|
268
|
+
- id: data_modeling
|
|
269
|
+
name: Data Modeling
|
|
270
|
+
human:
|
|
271
|
+
description:
|
|
272
|
+
Designing data structures and database schemas that support application
|
|
273
|
+
needs
|
|
274
|
+
levelDescriptions:
|
|
275
|
+
awareness:
|
|
276
|
+
You understand the difference between relational and non-relational
|
|
277
|
+
data stores. You can create basic schemas from specifications with
|
|
278
|
+
guidance.
|
|
279
|
+
foundational:
|
|
280
|
+
You design normalized schemas for straightforward use cases and
|
|
281
|
+
understand indexing basics. You write efficient queries for common
|
|
282
|
+
patterns.
|
|
283
|
+
working:
|
|
284
|
+
You create efficient data models that balance normalization with query
|
|
285
|
+
performance. You optimize queries, handle schema migrations safely,
|
|
286
|
+
and choose appropriate storage technologies.
|
|
287
|
+
practitioner:
|
|
288
|
+
You design complex data architectures spanning multiple systems across
|
|
289
|
+
teams. You make strategic trade-offs between consistency, performance,
|
|
290
|
+
and maintainability. You mentor engineers in your area on data
|
|
291
|
+
modeling best practices.
|
|
292
|
+
expert:
|
|
293
|
+
You define data modeling standards across the business unit. You
|
|
294
|
+
handle extreme scale and complex distributed data challenges, innovate
|
|
295
|
+
on approaches, and are recognized as a data architecture authority.
|
|
296
|
+
agent:
|
|
297
|
+
name: data-modeling
|
|
298
|
+
description: |
|
|
299
|
+
Guide for designing database schemas, data structures, and data
|
|
300
|
+
architectures.
|
|
301
|
+
useWhen: |
|
|
302
|
+
Designing tables, optimizing queries, or making decisions about data
|
|
303
|
+
storage technologies.
|
|
304
|
+
stages:
|
|
305
|
+
specify:
|
|
306
|
+
focus: |
|
|
307
|
+
Define data requirements and access patterns.
|
|
308
|
+
Clarify schema requirements before designing.
|
|
309
|
+
activities:
|
|
310
|
+
- Document data entities and relationships
|
|
311
|
+
- Identify query patterns and access requirements
|
|
312
|
+
- Specify consistency and performance requirements
|
|
313
|
+
- Define data retention and compliance needs
|
|
314
|
+
- Mark ambiguities with [NEEDS CLARIFICATION]
|
|
315
|
+
ready:
|
|
316
|
+
- Data entities are documented
|
|
317
|
+
- Query patterns are identified
|
|
318
|
+
- Performance requirements are specified
|
|
319
|
+
- Compliance needs are clear
|
|
320
|
+
plan:
|
|
321
|
+
focus: Understanding data requirements and designing schema
|
|
322
|
+
activities:
|
|
323
|
+
- Gather data requirements and access patterns
|
|
324
|
+
- Choose appropriate storage technology
|
|
325
|
+
- Design normalized schema
|
|
326
|
+
- Plan indexing strategy
|
|
327
|
+
ready:
|
|
328
|
+
- Requirements understood
|
|
329
|
+
- Storage technology selected
|
|
330
|
+
- Schema design documented
|
|
331
|
+
- Index strategy planned
|
|
332
|
+
code:
|
|
333
|
+
focus: Implementing schema and migrations
|
|
334
|
+
activities:
|
|
335
|
+
- Create database migrations
|
|
336
|
+
- Implement schema changes
|
|
337
|
+
- Add indexes for query patterns
|
|
338
|
+
- Write efficient queries
|
|
339
|
+
ready:
|
|
340
|
+
- Schema implemented correctly
|
|
341
|
+
- Indexes support query patterns
|
|
342
|
+
- Migrations are reversible
|
|
343
|
+
- Queries are optimized
|
|
344
|
+
review:
|
|
345
|
+
focus: Validating schema design and performance
|
|
346
|
+
activities:
|
|
347
|
+
- Verify schema matches requirements
|
|
348
|
+
- Check migration safety
|
|
349
|
+
- Validate query performance
|
|
350
|
+
- Review backward compatibility
|
|
351
|
+
ready:
|
|
352
|
+
- Schema meets requirements
|
|
353
|
+
- Migrations tested on production-like data
|
|
354
|
+
- Query performance acceptable
|
|
355
|
+
- Backward compatibility maintained
|
|
356
|
+
deploy:
|
|
357
|
+
focus: |
|
|
358
|
+
Deploy schema changes to production safely.
|
|
359
|
+
Verify data integrity and query performance.
|
|
360
|
+
activities:
|
|
361
|
+
- Run migrations in production
|
|
362
|
+
- Verify data integrity after migration
|
|
363
|
+
- Monitor query performance
|
|
364
|
+
- Confirm rollback plan works
|
|
365
|
+
ready:
|
|
366
|
+
- Migration completed successfully
|
|
367
|
+
- Data integrity verified
|
|
368
|
+
- Performance meets requirements
|
|
369
|
+
- Rollback procedure tested
|
|
370
|
+
implementationReference: |
|
|
371
|
+
## Storage Selection Guide
|
|
372
|
+
|
|
373
|
+
| Type | Use When | Examples |
|
|
374
|
+
|------|----------|----------|
|
|
375
|
+
| Relational | ACID needed, complex queries | PostgreSQL, MySQL |
|
|
376
|
+
| Document | Flexible schema, hierarchical | MongoDB, Firestore |
|
|
377
|
+
| Key-Value | Simple lookups, caching | Redis, DynamoDB |
|
|
378
|
+
| Time Series | Temporal data, metrics | InfluxDB, TimescaleDB |
|
|
@@ -0,0 +1,25 @@
|
|
|
1
|
+
# Copilot Coding Agent setup steps workflow
|
|
2
|
+
# This workflow is executed when a Copilot Coding Agent starts
|
|
3
|
+
# to prepare the environment for the agent session.
|
|
4
|
+
#
|
|
5
|
+
# Reference: https://docs.github.com/en/copilot/customizing-copilot/customizing-the-development-environment-for-copilot-coding-agent
|
|
6
|
+
|
|
7
|
+
name: Copilot Setup Steps
|
|
8
|
+
|
|
9
|
+
on: copilot_setup_steps
|
|
10
|
+
|
|
11
|
+
jobs:
|
|
12
|
+
setup:
|
|
13
|
+
runs-on: ubuntu-latest
|
|
14
|
+
steps:
|
|
15
|
+
- name: Checkout repository
|
|
16
|
+
uses: actions/checkout@v4
|
|
17
|
+
|
|
18
|
+
- name: Setup Node.js
|
|
19
|
+
uses: actions/setup-node@v4
|
|
20
|
+
with:
|
|
21
|
+
node-version: "22"
|
|
22
|
+
cache: npm
|
|
23
|
+
|
|
24
|
+
- name: Install dependencies
|
|
25
|
+
run: npm ci
|
|
@@ -0,0 +1,21 @@
|
|
|
1
|
+
# Dev Container configuration template
|
|
2
|
+
# Settings are dynamically populated at generation time
|
|
3
|
+
|
|
4
|
+
# Base image for Node.js development
|
|
5
|
+
image: mcr.microsoft.com/devcontainers/javascript-node:22-bookworm
|
|
6
|
+
|
|
7
|
+
# VS Code customizations are populated dynamically from vscode-settings.yaml
|
|
8
|
+
# customizations:
|
|
9
|
+
# vscode:
|
|
10
|
+
# settings: { ... dynamically injected ... }
|
|
11
|
+
|
|
12
|
+
# Features to add to the dev container
|
|
13
|
+
features:
|
|
14
|
+
ghcr.io/devcontainers/features/github-cli:1: {}
|
|
15
|
+
|
|
16
|
+
# Lifecycle commands
|
|
17
|
+
postCreateCommand: npm install
|
|
18
|
+
|
|
19
|
+
# Forward ports from the container (e.g., for dev server)
|
|
20
|
+
forwardPorts:
|
|
21
|
+
- 3000
|
|
@@ -0,0 +1,78 @@
|
|
|
1
|
+
# yaml-language-server: $schema=https://schema.forwardimpact.team/json/discipline.schema.json
|
|
2
|
+
|
|
3
|
+
specialization: Data Engineering
|
|
4
|
+
roleTitle: Data Engineer
|
|
5
|
+
isProfessional: true
|
|
6
|
+
# null = allow trackless (generalist)
|
|
7
|
+
validTracks:
|
|
8
|
+
- null
|
|
9
|
+
- platform
|
|
10
|
+
- sre
|
|
11
|
+
|
|
12
|
+
# Shared content (human and agent)
|
|
13
|
+
description:
|
|
14
|
+
Designs and builds data integration, storage systems, and data infrastructure
|
|
15
|
+
to enable analytics and AI. Masters the art of gaining access to enterprise
|
|
16
|
+
data and making it usable.
|
|
17
|
+
|
|
18
|
+
# Derivation inputs
|
|
19
|
+
coreSkills:
|
|
20
|
+
- data_modeling
|
|
21
|
+
- architecture_design
|
|
22
|
+
- cloud_platforms
|
|
23
|
+
supportingSkills:
|
|
24
|
+
- code_quality
|
|
25
|
+
- full_stack_development
|
|
26
|
+
- devops
|
|
27
|
+
- sre_practices
|
|
28
|
+
broadSkills:
|
|
29
|
+
- stakeholder_management
|
|
30
|
+
- technical_writing
|
|
31
|
+
- team_collaboration
|
|
32
|
+
behaviourModifiers:
|
|
33
|
+
systems_thinking: 1
|
|
34
|
+
outcome_ownership: 1
|
|
35
|
+
relentless_curiosity: 1
|
|
36
|
+
|
|
37
|
+
# Human-specific content
|
|
38
|
+
human:
|
|
39
|
+
professionalRoleSummary:
|
|
40
|
+
We are seeking a skilled {roleTitle} who will design and build data
|
|
41
|
+
integration, storage systems, and data infrastructure that enable analytics
|
|
42
|
+
and AI capabilities. In this role, you will master the art of gaining access
|
|
43
|
+
to enterprise data and making it usable for decision-making across the
|
|
44
|
+
organization.
|
|
45
|
+
managementRoleSummary:
|
|
46
|
+
We are seeking an experienced {specialization} leader to build and lead
|
|
47
|
+
high-performing data engineering teams. In this role, you will drive the
|
|
48
|
+
strategic direction of our data infrastructure while developing talent and
|
|
49
|
+
ensuring data capabilities meet business needs. You will champion data
|
|
50
|
+
quality, governance, and the democratization of data across the
|
|
51
|
+
organization.
|
|
52
|
+
|
|
53
|
+
# Agent-specific content
|
|
54
|
+
agent:
|
|
55
|
+
identity: |
|
|
56
|
+
You are a {roleTitle} agent. Your focus is designing and building
|
|
57
|
+
data integration, storage systems, and data infrastructure that enables
|
|
58
|
+
analytics and AI capabilities.
|
|
59
|
+
priority: |
|
|
60
|
+
Data quality is paramount. Always validate data at ingestion points and
|
|
61
|
+
document schema assumptions. Treat undocumented schemas with suspicion.
|
|
62
|
+
beforeMakingChanges:
|
|
63
|
+
- Understand the data sources and their quality characteristics
|
|
64
|
+
- Map data lineage and dependencies
|
|
65
|
+
- Consider performance implications for downstream consumers
|
|
66
|
+
delegation: |
|
|
67
|
+
When facing tasks outside your expertise, use `runSubagent` to delegate:
|
|
68
|
+
- Statistical analysis or model validation → data science subagent
|
|
69
|
+
- Application code changes → software engineering subagent
|
|
70
|
+
- Infrastructure or deployment → SRE subagent
|
|
71
|
+
|
|
72
|
+
Subagents run in isolated context. Provide clear task descriptions and
|
|
73
|
+
specify what information to return.
|
|
74
|
+
constraints:
|
|
75
|
+
- Ignoring data quality issues
|
|
76
|
+
- Creating pipelines without proper error handling
|
|
77
|
+
- Undocumented schema changes
|
|
78
|
+
- Tight coupling between data producers and consumers
|
|
@@ -0,0 +1,63 @@
|
|
|
1
|
+
# yaml-language-server: $schema=https://schema.forwardimpact.team/json/discipline.schema.json
|
|
2
|
+
|
|
3
|
+
specialization: Engineering Management
|
|
4
|
+
roleTitle: Engineering Manager
|
|
5
|
+
isManagement: true
|
|
6
|
+
minGrade: L2
|
|
7
|
+
|
|
8
|
+
description: |
|
|
9
|
+
People and delivery leadership, focusing on team effectiveness,
|
|
10
|
+
career development, and organizational outcomes.
|
|
11
|
+
|
|
12
|
+
# null = allow trackless (generalist)
|
|
13
|
+
validTracks:
|
|
14
|
+
- null
|
|
15
|
+
|
|
16
|
+
coreSkills:
|
|
17
|
+
- stakeholder_management
|
|
18
|
+
- team_collaboration
|
|
19
|
+
supportingSkills:
|
|
20
|
+
- code_quality
|
|
21
|
+
- devops
|
|
22
|
+
broadSkills:
|
|
23
|
+
- architecture_design
|
|
24
|
+
- technical_writing
|
|
25
|
+
|
|
26
|
+
behaviourModifiers:
|
|
27
|
+
outcome_ownership: 1
|
|
28
|
+
systems_thinking: 1
|
|
29
|
+
|
|
30
|
+
# Human-specific content
|
|
31
|
+
human:
|
|
32
|
+
professionalRoleSummary:
|
|
33
|
+
We are seeking a skilled {roleTitle} who will lead engineering teams,
|
|
34
|
+
focusing on team effectiveness, career development, and organizational
|
|
35
|
+
outcomes. In this role, you will create space for curiosity and
|
|
36
|
+
experimentation while modeling ownership behaviours.
|
|
37
|
+
managementRoleSummary:
|
|
38
|
+
We are seeking an experienced {specialization} leader to build and lead
|
|
39
|
+
high-performing engineering teams. In this role, you will drive team
|
|
40
|
+
effectiveness and career development while ensuring organizational outcomes
|
|
41
|
+
are achieved. You will create space for innovation and model the ownership
|
|
42
|
+
behaviors that define our engineering culture.
|
|
43
|
+
|
|
44
|
+
# Agent-specific content
|
|
45
|
+
agent:
|
|
46
|
+
identity: |
|
|
47
|
+
You are an {specialization} leadership support agent. Your primary
|
|
48
|
+
focus is supporting engineering managers with team effectiveness,
|
|
49
|
+
process design, and communication.
|
|
50
|
+
priority: |
|
|
51
|
+
People and process over direct implementation. You help create space
|
|
52
|
+
for curiosity and experimentation, model ownership behaviors, and
|
|
53
|
+
remove organizational friction.
|
|
54
|
+
|
|
55
|
+
Your role is to support engineering judgment, not replace it.
|
|
56
|
+
beforeMakingChanges:
|
|
57
|
+
- Consider team dynamics and individual growth
|
|
58
|
+
- Think about systemic improvements over individual fixes
|
|
59
|
+
- Focus on enabling others rather than doing directly
|
|
60
|
+
constraints:
|
|
61
|
+
- Focus on enabling and empowering rather than doing directly
|
|
62
|
+
- Consider long-term team health over short-term fixes
|
|
63
|
+
- Support engineering judgment, don't replace it
|
|
@@ -0,0 +1,78 @@
|
|
|
1
|
+
# yaml-language-server: $schema=https://schema.forwardimpact.team/json/discipline.schema.json
|
|
2
|
+
|
|
3
|
+
specialization: Software Engineering
|
|
4
|
+
roleTitle: Software Engineer
|
|
5
|
+
isProfessional: true
|
|
6
|
+
# null = allow trackless (generalist)
|
|
7
|
+
validTracks:
|
|
8
|
+
- null
|
|
9
|
+
- platform
|
|
10
|
+
- sre
|
|
11
|
+
|
|
12
|
+
# Shared content (human and agent)
|
|
13
|
+
description:
|
|
14
|
+
Builds and maintains software systems, focusing on code quality, architecture,
|
|
15
|
+
and reliable delivery of business value. In the AI era, emphasizes
|
|
16
|
+
verification and review of AI-generated code.
|
|
17
|
+
|
|
18
|
+
# Derivation inputs
|
|
19
|
+
coreSkills:
|
|
20
|
+
- architecture_design
|
|
21
|
+
- code_quality
|
|
22
|
+
- full_stack_development
|
|
23
|
+
supportingSkills:
|
|
24
|
+
- devops
|
|
25
|
+
- cloud_platforms
|
|
26
|
+
- sre_practices
|
|
27
|
+
broadSkills:
|
|
28
|
+
- data_modeling
|
|
29
|
+
- stakeholder_management
|
|
30
|
+
- technical_writing
|
|
31
|
+
- team_collaboration
|
|
32
|
+
behaviourModifiers:
|
|
33
|
+
outcome_ownership: 1
|
|
34
|
+
systems_thinking: 1
|
|
35
|
+
relentless_curiosity: 1
|
|
36
|
+
|
|
37
|
+
# Human-specific content
|
|
38
|
+
human:
|
|
39
|
+
professionalRoleSummary:
|
|
40
|
+
We are seeking a skilled {roleTitle} who will design, build, and maintain
|
|
41
|
+
software systems that deliver business value. In this role, you will focus
|
|
42
|
+
on code quality, architecture decisions, and reliable delivery while
|
|
43
|
+
leveraging AI tools to enhance productivity. You will verify and review
|
|
44
|
+
AI-generated code to ensure it meets our quality standards.
|
|
45
|
+
managementRoleSummary:
|
|
46
|
+
We are seeking an experienced {specialization} leader to build and lead
|
|
47
|
+
high-performing software engineering teams. In this role, you will drive
|
|
48
|
+
technical excellence while developing talent and ensuring delivery of
|
|
49
|
+
business value. You will set technical direction, create space for
|
|
50
|
+
innovation, and model the ownership behaviors that define our engineering
|
|
51
|
+
culture.
|
|
52
|
+
|
|
53
|
+
# Agent-specific content
|
|
54
|
+
agent:
|
|
55
|
+
identity: |
|
|
56
|
+
You are a {roleTitle} agent. Your primary focus is writing
|
|
57
|
+
correct, maintainable, well-tested code.
|
|
58
|
+
priority: |
|
|
59
|
+
Code review is more important than code generation. Every line of code
|
|
60
|
+
you produce must be understood and verified. Never ship code without
|
|
61
|
+
comprehensive testing.
|
|
62
|
+
beforeMakingChanges:
|
|
63
|
+
- Understand the existing architecture and patterns
|
|
64
|
+
- Identify test coverage requirements
|
|
65
|
+
- Consider backward compatibility implications
|
|
66
|
+
delegation: |
|
|
67
|
+
When facing tasks outside your expertise, use `runSubagent` to delegate:
|
|
68
|
+
- Data modeling or statistical analysis → data science subagent
|
|
69
|
+
- Security assessment or threat modeling → research subagent
|
|
70
|
+
- Complex debugging across unfamiliar systems → research subagent
|
|
71
|
+
|
|
72
|
+
Subagents run in isolated context. Provide clear task descriptions and
|
|
73
|
+
specify what information to return.
|
|
74
|
+
constraints:
|
|
75
|
+
- Committing code without running tests
|
|
76
|
+
- Making changes without understanding the existing codebase
|
|
77
|
+
- Ignoring error handling and edge cases
|
|
78
|
+
- Over-engineering simple solutions
|