@forwardimpact/schema 0.1.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (65) hide show
  1. package/bin/fit-schema.js +260 -0
  2. package/examples/behaviours/_index.yaml +8 -0
  3. package/examples/behaviours/outcome_ownership.yaml +43 -0
  4. package/examples/behaviours/polymathic_knowledge.yaml +41 -0
  5. package/examples/behaviours/precise_communication.yaml +39 -0
  6. package/examples/behaviours/relentless_curiosity.yaml +37 -0
  7. package/examples/behaviours/systems_thinking.yaml +40 -0
  8. package/examples/capabilities/_index.yaml +8 -0
  9. package/examples/capabilities/business.yaml +189 -0
  10. package/examples/capabilities/delivery.yaml +305 -0
  11. package/examples/capabilities/people.yaml +68 -0
  12. package/examples/capabilities/reliability.yaml +414 -0
  13. package/examples/capabilities/scale.yaml +378 -0
  14. package/examples/copilot-setup-steps.yaml +25 -0
  15. package/examples/devcontainer.yaml +21 -0
  16. package/examples/disciplines/_index.yaml +6 -0
  17. package/examples/disciplines/data_engineering.yaml +78 -0
  18. package/examples/disciplines/engineering_management.yaml +63 -0
  19. package/examples/disciplines/software_engineering.yaml +78 -0
  20. package/examples/drivers.yaml +202 -0
  21. package/examples/framework.yaml +69 -0
  22. package/examples/grades.yaml +115 -0
  23. package/examples/questions/behaviours/outcome_ownership.yaml +51 -0
  24. package/examples/questions/behaviours/polymathic_knowledge.yaml +47 -0
  25. package/examples/questions/behaviours/precise_communication.yaml +54 -0
  26. package/examples/questions/behaviours/relentless_curiosity.yaml +50 -0
  27. package/examples/questions/behaviours/systems_thinking.yaml +52 -0
  28. package/examples/questions/skills/architecture_design.yaml +53 -0
  29. package/examples/questions/skills/cloud_platforms.yaml +47 -0
  30. package/examples/questions/skills/code_quality.yaml +48 -0
  31. package/examples/questions/skills/data_modeling.yaml +45 -0
  32. package/examples/questions/skills/devops.yaml +46 -0
  33. package/examples/questions/skills/full_stack_development.yaml +47 -0
  34. package/examples/questions/skills/sre_practices.yaml +43 -0
  35. package/examples/questions/skills/stakeholder_management.yaml +48 -0
  36. package/examples/questions/skills/team_collaboration.yaml +42 -0
  37. package/examples/questions/skills/technical_writing.yaml +42 -0
  38. package/examples/self-assessments.yaml +64 -0
  39. package/examples/stages.yaml +139 -0
  40. package/examples/tracks/_index.yaml +5 -0
  41. package/examples/tracks/platform.yaml +49 -0
  42. package/examples/tracks/sre.yaml +48 -0
  43. package/examples/vscode-settings.yaml +21 -0
  44. package/lib/index-generator.js +65 -0
  45. package/lib/index.js +44 -0
  46. package/lib/levels.js +601 -0
  47. package/lib/loader.js +599 -0
  48. package/lib/modifiers.js +23 -0
  49. package/lib/schema-validation.js +438 -0
  50. package/lib/validation.js +2130 -0
  51. package/package.json +49 -0
  52. package/schema/json/behaviour-questions.schema.json +68 -0
  53. package/schema/json/behaviour.schema.json +73 -0
  54. package/schema/json/capability.schema.json +220 -0
  55. package/schema/json/defs.schema.json +132 -0
  56. package/schema/json/discipline.schema.json +132 -0
  57. package/schema/json/drivers.schema.json +48 -0
  58. package/schema/json/framework.schema.json +55 -0
  59. package/schema/json/grades.schema.json +121 -0
  60. package/schema/json/index.schema.json +18 -0
  61. package/schema/json/self-assessments.schema.json +52 -0
  62. package/schema/json/skill-questions.schema.json +68 -0
  63. package/schema/json/stages.schema.json +84 -0
  64. package/schema/json/track.schema.json +100 -0
  65. package/schema/rdf/pathway.ttl +2362 -0
@@ -0,0 +1,378 @@
1
+ # yaml-language-server: $schema=https://schema.forwardimpact.team/json/capability.schema.json
2
+
3
+ name: Scale
4
+ emojiIcon: 📐
5
+ displayOrder: 4
6
+ description: |
7
+ Building systems that grow gracefully.
8
+ Encompasses architecture, code quality, testing, performance,
9
+ and technical decision-making.
10
+ professionalResponsibilities:
11
+ awareness:
12
+ Follow established architectural patterns and coding standards with guidance
13
+ from senior engineers
14
+ foundational:
15
+ Contribute to scalable designs, write quality code with appropriate tests,
16
+ and understand architectural trade-offs
17
+ working:
18
+ Design scalable components, make sound architectural decisions, ensure code
19
+ quality, and review others' designs
20
+ practitioner:
21
+ Lead architectural decisions for complex systems across teams, establish
22
+ quality standards for your area, mentor engineers on architecture, and own
23
+ technical debt strategy
24
+ expert:
25
+ Define technical standards across the business unit, guide enterprise
26
+ architecture, be recognized externally for architectural expertise, and
27
+ drive innovation
28
+ managementResponsibilities:
29
+ awareness:
30
+ Understand technical architecture decisions and their resource and timeline
31
+ implications
32
+ foundational:
33
+ Support team technical decisions, ensure alignment with architectural
34
+ standards, and escalate technical risks
35
+ working:
36
+ Facilitate architectural discussions, manage technical debt prioritization,
37
+ champion quality, and balance technical investment with delivery
38
+ practitioner:
39
+ Drive technical excellence across teams, establish quality standards for
40
+ your area, own cross-team technical direction, and advise on architecture
41
+ trade-offs
42
+ expert:
43
+ Shape technical strategy across the business unit, guide enterprise
44
+ architecture governance, and represent technical priorities at executive
45
+ level
46
+ skills:
47
+ - id: cloud_platforms
48
+ name: Cloud Platforms
49
+ human:
50
+ description:
51
+ Working effectively with cloud infrastructure (AWS, Azure, GCP)
52
+ levelDescriptions:
53
+ awareness:
54
+ You understand cloud computing concepts (IaaS, PaaS, SaaS) and can use
55
+ cloud services through consoles and defined interfaces with guidance.
56
+ foundational:
57
+ You deploy applications to cloud platforms and use common services
58
+ (compute, storage, databases, queues). You understand cloud pricing
59
+ and basic security configuration.
60
+ working:
61
+ You design cloud-native solutions, manage infrastructure as code,
62
+ implement security best practices, and make informed service
63
+ selections. You troubleshoot cloud-specific issues.
64
+ practitioner:
65
+ You architect multi-region, highly available solutions across teams.
66
+ You optimize for cost and performance, lead cloud migrations for your
67
+ area, and mentor engineers on cloud architecture patterns.
68
+ expert:
69
+ You shape cloud strategy across the business unit. You solve
70
+ large-scale cloud challenges, define cloud governance, and are
71
+ recognized as an authority on cloud architecture.
72
+ agent:
73
+ name: cloud-platforms
74
+ description: Guide for working with cloud infrastructure and services.
75
+ useWhen: |
76
+ Deploying to cloud, selecting cloud services, configuring
77
+ infrastructure, or solving cloud-specific challenges.
78
+ stages:
79
+ specify:
80
+ focus: |
81
+ Define cloud infrastructure requirements and constraints.
82
+ Clarify availability, security, and cost expectations.
83
+ activities:
84
+ - Document availability and reliability requirements
85
+ - Identify security and compliance constraints
86
+ - Specify cost budget and constraints
87
+ - Define performance requirements (latency, throughput)
88
+ - Mark ambiguities with [NEEDS CLARIFICATION]
89
+ ready:
90
+ - Availability requirements are documented
91
+ - Security requirements are specified
92
+ - Cost constraints are defined
93
+ - Performance requirements are clear
94
+ plan:
95
+ focus: Selecting and designing cloud architecture
96
+ activities:
97
+ - Evaluate service options for the use case
98
+ - Plan multi-AZ deployment for availability
99
+ - Design IAM roles with least privilege
100
+ - Estimate costs and plan resource sizing
101
+ ready:
102
+ - Service selection matches requirements
103
+ - Architecture designed for availability
104
+ - Security approach documented
105
+ - Cost estimate prepared
106
+ code:
107
+ focus: Implementing cloud infrastructure and deployments
108
+ activities:
109
+ - Define infrastructure as code (Terraform/CloudFormation)
110
+ - Configure security groups and network policies
111
+ - Set up encryption at rest and in transit
112
+ - Implement monitoring and alerting
113
+ ready:
114
+ - Infrastructure defined as code
115
+ - Security groups properly configured
116
+ - Encryption enabled for data
117
+ - Monitoring and alerting in place
118
+ review:
119
+ focus: Validating cloud configuration and security
120
+ activities:
121
+ - Verify IAM follows least privilege
122
+ - Check multi-AZ deployment
123
+ - Validate cost controls are in place
124
+ - Review security configuration
125
+ ready:
126
+ - IAM permissions are minimal
127
+ - Multi-AZ deployment confirmed
128
+ - Cost controls established
129
+ - Security review complete
130
+ deploy:
131
+ focus: |
132
+ Deploy cloud infrastructure and verify production readiness.
133
+ Confirm failover and monitoring work correctly.
134
+ activities:
135
+ - Deploy infrastructure to production
136
+ - Verify multi-AZ failover works
137
+ - Confirm monitoring and alerting are operational
138
+ - Validate cost tracking is in place
139
+ ready:
140
+ - Infrastructure deployed successfully
141
+ - Failover tested in production
142
+ - Monitoring is operational
143
+ - Cost tracking is active
144
+ implementationReference: |
145
+ ## Service Categories
146
+
147
+ | Category | Services | Use Case |
148
+ |----------|----------|----------|
149
+ | Compute | EC2, ECS, Lambda | VMs, Containers, Serverless |
150
+ | Storage | S3, EBS, EFS | Objects, Blocks, Files |
151
+ | Database | RDS, DynamoDB | SQL, NoSQL |
152
+ | Messaging | SQS, SNS, Kinesis | Queues, Pub/Sub, Streaming |
153
+
154
+ ## Cloud-Native Principles
155
+ - Design for failure
156
+ - Use managed services
157
+ - Automate everything
158
+ - Monitor and alert
159
+ - id: code_quality
160
+ name: Code Quality & Review
161
+ human:
162
+ description:
163
+ Writing and reviewing clean, maintainable, tested, and well-documented
164
+ code. In the AI era, code review becomes more important than code
165
+ generation—every line must be understood and verified regardless of its
166
+ source.
167
+ levelDescriptions:
168
+ awareness:
169
+ You follow team coding conventions and style guides with guidance. You
170
+ understand why code quality matters and can run linters and tests
171
+ others have written.
172
+ foundational:
173
+ You write readable, well-structured code. You use linting tools, write
174
+ basic unit tests, and participate constructively in code reviews—both
175
+ giving and receiving feedback.
176
+ working:
177
+ You produce consistently high-quality, well-tested code. You review
178
+ AI-generated code critically and never ship code you don't fully
179
+ understand. You identify edge cases and ensure adequate test coverage.
180
+ practitioner:
181
+ You establish and enforce quality standards across teams in your area.
182
+ You mentor engineers on effective code review, ensure verification
183
+ depth for AI-assisted development, and drive testing strategies.
184
+ expert:
185
+ You shape coding standards and quality practices across the business
186
+ unit. You champion code review as a critical engineering skill, define
187
+ AI-assisted development guidelines, and are recognized for quality
188
+ engineering.
189
+ agent:
190
+ name: code-quality-review
191
+ description: Guide for writing quality code and conducting code reviews.
192
+ useWhen: |
193
+ Reviewing code, checking for best practices, or verifying AI-generated
194
+ code before committing.
195
+ stages:
196
+ specify:
197
+ focus: |
198
+ Define code quality requirements and review criteria.
199
+ Clarify standards and acceptance criteria for the change.
200
+ activities:
201
+ - Identify applicable coding standards
202
+ - Document quality acceptance criteria
203
+ - Specify test coverage requirements
204
+ - Define review depth based on risk level
205
+ - Mark ambiguities with [NEEDS CLARIFICATION]
206
+ ready:
207
+ - Coding standards are identified
208
+ - Quality criteria are documented
209
+ - Test requirements are specified
210
+ - Review approach matches risk level
211
+ plan:
212
+ focus: Planning for quality before implementation
213
+ activities:
214
+ - Review project coding conventions
215
+ - Plan testing strategy for the feature
216
+ - Identify edge cases to handle
217
+ - Consider error handling approach
218
+ ready:
219
+ - Coding conventions understood
220
+ - Testing strategy defined
221
+ - Edge cases identified
222
+ - Error handling planned
223
+ code:
224
+ focus: Writing and testing quality code
225
+ activities:
226
+ - Follow project coding conventions
227
+ - Write tests alongside implementation
228
+ - Handle error conditions appropriately
229
+ - Self-review before requesting review
230
+ ready:
231
+ - Code follows project conventions
232
+ - Changes are covered by tests
233
+ - Error handling is appropriate
234
+ - Self-review completed
235
+ review:
236
+ focus: Verifying code quality and correctness
237
+ activities:
238
+ - Verify code does what it claims
239
+ - Check test coverage is adequate
240
+ - Evaluate maintainability
241
+ - Ensure no code you don't understand
242
+ ready:
243
+ - Code compiles and passes all tests
244
+ - No obvious security vulnerabilities
245
+ - No unnecessary complexity
246
+ - Documentation updated if needed
247
+ deploy:
248
+ focus: |
249
+ Merge and deploy reviewed code. Verify quality checks pass
250
+ in production pipeline.
251
+ activities:
252
+ - Merge approved changes
253
+ - Verify CI pipeline passes
254
+ - Monitor for issues after deployment
255
+ - Document any lessons learned
256
+ ready:
257
+ - Code merged successfully
258
+ - CI pipeline passes all checks
259
+ - No regressions detected
260
+ - Deployment verified
261
+ implementationReference: |
262
+ ## Review Checklist
263
+
264
+ 1. **Correctness**: Does it work as intended?
265
+ 2. **Tests**: Is it properly tested?
266
+ 3. **Maintainability**: Will it be easy to change?
267
+ 4. **Style**: Does it follow conventions?
268
+ - id: data_modeling
269
+ name: Data Modeling
270
+ human:
271
+ description:
272
+ Designing data structures and database schemas that support application
273
+ needs
274
+ levelDescriptions:
275
+ awareness:
276
+ You understand the difference between relational and non-relational
277
+ data stores. You can create basic schemas from specifications with
278
+ guidance.
279
+ foundational:
280
+ You design normalized schemas for straightforward use cases and
281
+ understand indexing basics. You write efficient queries for common
282
+ patterns.
283
+ working:
284
+ You create efficient data models that balance normalization with query
285
+ performance. You optimize queries, handle schema migrations safely,
286
+ and choose appropriate storage technologies.
287
+ practitioner:
288
+ You design complex data architectures spanning multiple systems across
289
+ teams. You make strategic trade-offs between consistency, performance,
290
+ and maintainability. You mentor engineers in your area on data
291
+ modeling best practices.
292
+ expert:
293
+ You define data modeling standards across the business unit. You
294
+ handle extreme scale and complex distributed data challenges, innovate
295
+ on approaches, and are recognized as a data architecture authority.
296
+ agent:
297
+ name: data-modeling
298
+ description: |
299
+ Guide for designing database schemas, data structures, and data
300
+ architectures.
301
+ useWhen: |
302
+ Designing tables, optimizing queries, or making decisions about data
303
+ storage technologies.
304
+ stages:
305
+ specify:
306
+ focus: |
307
+ Define data requirements and access patterns.
308
+ Clarify schema requirements before designing.
309
+ activities:
310
+ - Document data entities and relationships
311
+ - Identify query patterns and access requirements
312
+ - Specify consistency and performance requirements
313
+ - Define data retention and compliance needs
314
+ - Mark ambiguities with [NEEDS CLARIFICATION]
315
+ ready:
316
+ - Data entities are documented
317
+ - Query patterns are identified
318
+ - Performance requirements are specified
319
+ - Compliance needs are clear
320
+ plan:
321
+ focus: Understanding data requirements and designing schema
322
+ activities:
323
+ - Gather data requirements and access patterns
324
+ - Choose appropriate storage technology
325
+ - Design normalized schema
326
+ - Plan indexing strategy
327
+ ready:
328
+ - Requirements understood
329
+ - Storage technology selected
330
+ - Schema design documented
331
+ - Index strategy planned
332
+ code:
333
+ focus: Implementing schema and migrations
334
+ activities:
335
+ - Create database migrations
336
+ - Implement schema changes
337
+ - Add indexes for query patterns
338
+ - Write efficient queries
339
+ ready:
340
+ - Schema implemented correctly
341
+ - Indexes support query patterns
342
+ - Migrations are reversible
343
+ - Queries are optimized
344
+ review:
345
+ focus: Validating schema design and performance
346
+ activities:
347
+ - Verify schema matches requirements
348
+ - Check migration safety
349
+ - Validate query performance
350
+ - Review backward compatibility
351
+ ready:
352
+ - Schema meets requirements
353
+ - Migrations tested on production-like data
354
+ - Query performance acceptable
355
+ - Backward compatibility maintained
356
+ deploy:
357
+ focus: |
358
+ Deploy schema changes to production safely.
359
+ Verify data integrity and query performance.
360
+ activities:
361
+ - Run migrations in production
362
+ - Verify data integrity after migration
363
+ - Monitor query performance
364
+ - Confirm rollback plan works
365
+ ready:
366
+ - Migration completed successfully
367
+ - Data integrity verified
368
+ - Performance meets requirements
369
+ - Rollback procedure tested
370
+ implementationReference: |
371
+ ## Storage Selection Guide
372
+
373
+ | Type | Use When | Examples |
374
+ |------|----------|----------|
375
+ | Relational | ACID needed, complex queries | PostgreSQL, MySQL |
376
+ | Document | Flexible schema, hierarchical | MongoDB, Firestore |
377
+ | Key-Value | Simple lookups, caching | Redis, DynamoDB |
378
+ | Time Series | Temporal data, metrics | InfluxDB, TimescaleDB |
@@ -0,0 +1,25 @@
1
+ # Copilot Coding Agent setup steps workflow
2
+ # This workflow is executed when a Copilot Coding Agent starts
3
+ # to prepare the environment for the agent session.
4
+ #
5
+ # Reference: https://docs.github.com/en/copilot/customizing-copilot/customizing-the-development-environment-for-copilot-coding-agent
6
+
7
+ name: Copilot Setup Steps
8
+
9
+ on: copilot_setup_steps
10
+
11
+ jobs:
12
+ setup:
13
+ runs-on: ubuntu-latest
14
+ steps:
15
+ - name: Checkout repository
16
+ uses: actions/checkout@v4
17
+
18
+ - name: Setup Node.js
19
+ uses: actions/setup-node@v4
20
+ with:
21
+ node-version: "22"
22
+ cache: npm
23
+
24
+ - name: Install dependencies
25
+ run: npm ci
@@ -0,0 +1,21 @@
1
+ # Dev Container configuration template
2
+ # Settings are dynamically populated at generation time
3
+
4
+ # Base image for Node.js development
5
+ image: mcr.microsoft.com/devcontainers/javascript-node:22-bookworm
6
+
7
+ # VS Code customizations are populated dynamically from vscode-settings.yaml
8
+ # customizations:
9
+ # vscode:
10
+ # settings: { ... dynamically injected ... }
11
+
12
+ # Features to add to the dev container
13
+ features:
14
+ ghcr.io/devcontainers/features/github-cli:1: {}
15
+
16
+ # Lifecycle commands
17
+ postCreateCommand: npm install
18
+
19
+ # Forward ports from the container (e.g., for dev server)
20
+ forwardPorts:
21
+ - 3000
@@ -0,0 +1,6 @@
1
+ # Auto-generated index for browser loading
2
+ # Do not edit manually - regenerate with: npx pathway --generate-index
3
+ files:
4
+ - data_engineering
5
+ - engineering_management
6
+ - software_engineering
@@ -0,0 +1,78 @@
1
+ # yaml-language-server: $schema=https://schema.forwardimpact.team/json/discipline.schema.json
2
+
3
+ specialization: Data Engineering
4
+ roleTitle: Data Engineer
5
+ isProfessional: true
6
+ # null = allow trackless (generalist)
7
+ validTracks:
8
+ - null
9
+ - platform
10
+ - sre
11
+
12
+ # Shared content (human and agent)
13
+ description:
14
+ Designs and builds data integration, storage systems, and data infrastructure
15
+ to enable analytics and AI. Masters the art of gaining access to enterprise
16
+ data and making it usable.
17
+
18
+ # Derivation inputs
19
+ coreSkills:
20
+ - data_modeling
21
+ - architecture_design
22
+ - cloud_platforms
23
+ supportingSkills:
24
+ - code_quality
25
+ - full_stack_development
26
+ - devops
27
+ - sre_practices
28
+ broadSkills:
29
+ - stakeholder_management
30
+ - technical_writing
31
+ - team_collaboration
32
+ behaviourModifiers:
33
+ systems_thinking: 1
34
+ outcome_ownership: 1
35
+ relentless_curiosity: 1
36
+
37
+ # Human-specific content
38
+ human:
39
+ professionalRoleSummary:
40
+ We are seeking a skilled {roleTitle} who will design and build data
41
+ integration, storage systems, and data infrastructure that enable analytics
42
+ and AI capabilities. In this role, you will master the art of gaining access
43
+ to enterprise data and making it usable for decision-making across the
44
+ organization.
45
+ managementRoleSummary:
46
+ We are seeking an experienced {specialization} leader to build and lead
47
+ high-performing data engineering teams. In this role, you will drive the
48
+ strategic direction of our data infrastructure while developing talent and
49
+ ensuring data capabilities meet business needs. You will champion data
50
+ quality, governance, and the democratization of data across the
51
+ organization.
52
+
53
+ # Agent-specific content
54
+ agent:
55
+ identity: |
56
+ You are a {roleTitle} agent. Your focus is designing and building
57
+ data integration, storage systems, and data infrastructure that enables
58
+ analytics and AI capabilities.
59
+ priority: |
60
+ Data quality is paramount. Always validate data at ingestion points and
61
+ document schema assumptions. Treat undocumented schemas with suspicion.
62
+ beforeMakingChanges:
63
+ - Understand the data sources and their quality characteristics
64
+ - Map data lineage and dependencies
65
+ - Consider performance implications for downstream consumers
66
+ delegation: |
67
+ When facing tasks outside your expertise, use `runSubagent` to delegate:
68
+ - Statistical analysis or model validation → data science subagent
69
+ - Application code changes → software engineering subagent
70
+ - Infrastructure or deployment → SRE subagent
71
+
72
+ Subagents run in isolated context. Provide clear task descriptions and
73
+ specify what information to return.
74
+ constraints:
75
+ - Ignoring data quality issues
76
+ - Creating pipelines without proper error handling
77
+ - Undocumented schema changes
78
+ - Tight coupling between data producers and consumers
@@ -0,0 +1,63 @@
1
+ # yaml-language-server: $schema=https://schema.forwardimpact.team/json/discipline.schema.json
2
+
3
+ specialization: Engineering Management
4
+ roleTitle: Engineering Manager
5
+ isManagement: true
6
+ minGrade: L2
7
+
8
+ description: |
9
+ People and delivery leadership, focusing on team effectiveness,
10
+ career development, and organizational outcomes.
11
+
12
+ # null = allow trackless (generalist)
13
+ validTracks:
14
+ - null
15
+
16
+ coreSkills:
17
+ - stakeholder_management
18
+ - team_collaboration
19
+ supportingSkills:
20
+ - code_quality
21
+ - devops
22
+ broadSkills:
23
+ - architecture_design
24
+ - technical_writing
25
+
26
+ behaviourModifiers:
27
+ outcome_ownership: 1
28
+ systems_thinking: 1
29
+
30
+ # Human-specific content
31
+ human:
32
+ professionalRoleSummary:
33
+ We are seeking a skilled {roleTitle} who will lead engineering teams,
34
+ focusing on team effectiveness, career development, and organizational
35
+ outcomes. In this role, you will create space for curiosity and
36
+ experimentation while modeling ownership behaviours.
37
+ managementRoleSummary:
38
+ We are seeking an experienced {specialization} leader to build and lead
39
+ high-performing engineering teams. In this role, you will drive team
40
+ effectiveness and career development while ensuring organizational outcomes
41
+ are achieved. You will create space for innovation and model the ownership
42
+ behaviors that define our engineering culture.
43
+
44
+ # Agent-specific content
45
+ agent:
46
+ identity: |
47
+ You are an {specialization} leadership support agent. Your primary
48
+ focus is supporting engineering managers with team effectiveness,
49
+ process design, and communication.
50
+ priority: |
51
+ People and process over direct implementation. You help create space
52
+ for curiosity and experimentation, model ownership behaviors, and
53
+ remove organizational friction.
54
+
55
+ Your role is to support engineering judgment, not replace it.
56
+ beforeMakingChanges:
57
+ - Consider team dynamics and individual growth
58
+ - Think about systemic improvements over individual fixes
59
+ - Focus on enabling others rather than doing directly
60
+ constraints:
61
+ - Focus on enabling and empowering rather than doing directly
62
+ - Consider long-term team health over short-term fixes
63
+ - Support engineering judgment, don't replace it
@@ -0,0 +1,78 @@
1
+ # yaml-language-server: $schema=https://schema.forwardimpact.team/json/discipline.schema.json
2
+
3
+ specialization: Software Engineering
4
+ roleTitle: Software Engineer
5
+ isProfessional: true
6
+ # null = allow trackless (generalist)
7
+ validTracks:
8
+ - null
9
+ - platform
10
+ - sre
11
+
12
+ # Shared content (human and agent)
13
+ description:
14
+ Builds and maintains software systems, focusing on code quality, architecture,
15
+ and reliable delivery of business value. In the AI era, emphasizes
16
+ verification and review of AI-generated code.
17
+
18
+ # Derivation inputs
19
+ coreSkills:
20
+ - architecture_design
21
+ - code_quality
22
+ - full_stack_development
23
+ supportingSkills:
24
+ - devops
25
+ - cloud_platforms
26
+ - sre_practices
27
+ broadSkills:
28
+ - data_modeling
29
+ - stakeholder_management
30
+ - technical_writing
31
+ - team_collaboration
32
+ behaviourModifiers:
33
+ outcome_ownership: 1
34
+ systems_thinking: 1
35
+ relentless_curiosity: 1
36
+
37
+ # Human-specific content
38
+ human:
39
+ professionalRoleSummary:
40
+ We are seeking a skilled {roleTitle} who will design, build, and maintain
41
+ software systems that deliver business value. In this role, you will focus
42
+ on code quality, architecture decisions, and reliable delivery while
43
+ leveraging AI tools to enhance productivity. You will verify and review
44
+ AI-generated code to ensure it meets our quality standards.
45
+ managementRoleSummary:
46
+ We are seeking an experienced {specialization} leader to build and lead
47
+ high-performing software engineering teams. In this role, you will drive
48
+ technical excellence while developing talent and ensuring delivery of
49
+ business value. You will set technical direction, create space for
50
+ innovation, and model the ownership behaviors that define our engineering
51
+ culture.
52
+
53
+ # Agent-specific content
54
+ agent:
55
+ identity: |
56
+ You are a {roleTitle} agent. Your primary focus is writing
57
+ correct, maintainable, well-tested code.
58
+ priority: |
59
+ Code review is more important than code generation. Every line of code
60
+ you produce must be understood and verified. Never ship code without
61
+ comprehensive testing.
62
+ beforeMakingChanges:
63
+ - Understand the existing architecture and patterns
64
+ - Identify test coverage requirements
65
+ - Consider backward compatibility implications
66
+ delegation: |
67
+ When facing tasks outside your expertise, use `runSubagent` to delegate:
68
+ - Data modeling or statistical analysis → data science subagent
69
+ - Security assessment or threat modeling → research subagent
70
+ - Complex debugging across unfamiliar systems → research subagent
71
+
72
+ Subagents run in isolated context. Provide clear task descriptions and
73
+ specify what information to return.
74
+ constraints:
75
+ - Committing code without running tests
76
+ - Making changes without understanding the existing codebase
77
+ - Ignoring error handling and edge cases
78
+ - Over-engineering simple solutions