@digabi/exam-engine-exams 19.19.1-xml-exams.0 → 20.0.0-alpha.0
Sign up to get free protection for your applications and to get access to all the features.
- package/A_E/A_E_fi-FI.mex +0 -0
- package/A_X/A_X_fi-FI.mex +0 -0
- package/FF/FF_fi-FI.mex +0 -0
- package/FF/FF_sv-FI.mex +0 -0
- package/GE/GE_fi-FI.mex +0 -0
- package/GE/GE_sv-FI.mex +0 -0
- package/MexDocumentation/MexDocumentation_fi-FI.mex +0 -0
- package/N/N_fi-FI.mex +0 -0
- package/N/N_fi-FI_vi.mex +0 -0
- package/N/N_sv-FI.mex +0 -0
- package/SC/SC_fi-FI.mex +0 -0
- package/SC/SC_fi-FI_hi.mex +0 -0
- package/SC/SC_sv-FI.mex +0 -0
- package/package.json +4 -6
- package/A_E/A_E.xml +0 -175
- package/A_X/A_X.xml +0 -424
- package/FF/FF.xml +0 -2323
- package/GE/GE.xml +0 -1572
- package/MexDocumentation/MexDocumentation.xml +0 -3127
- package/N/N.xml +0 -2307
- package/SC/SC.xml +0 -2275
package/N/N.xml
DELETED
@@ -1,2307 +0,0 @@
|
|
1
|
-
<?xml version="1.0" encoding="UTF-8"?>
|
2
|
-
<e:exam xmlns:e="http://ylioppilastutkinto.fi/exam.xsd" xmlns="http://www.w3.org/1999/xhtml" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://ylioppilastutkinto.fi/exam.xsd https://abitti.dev/schema/exam.xsd" exam-schema-version="0.5" date="2022-03-23" exam-code="N">
|
3
|
-
<e:exam-versions>
|
4
|
-
<e:exam-version lang="fi-FI"/>
|
5
|
-
<e:exam-version lang="sv-FI"/>
|
6
|
-
<e:exam-version lang="fi-FI" exam-type="visually-impaired"/>
|
7
|
-
</e:exam-versions>
|
8
|
-
|
9
|
-
<e:exam-instruction>
|
10
|
-
<e:localization lang="fi-FI">
|
11
|
-
<p>
|
12
|
-
Koe koostuu 13 tehtävästä, joista vastataan kymmeneen. Tehtävät on jaettu kolmeen osaan. A-osassa on neljä kaikille pakollista tehtävää. B1-osassa on viisi tehtävää, joista vastataan kolmeen. B2-osassa on neljä tehtävää, joista vastataan kolmeen. Kaikki tehtävät arvostellaan pistein 0–12, joten kokeen maksimipistemäärä on 120.
|
13
|
-
</p>
|
14
|
-
|
15
|
-
<e:localization lang="fi-FI" exam-type="normal">
|
16
|
-
<p>
|
17
|
-
A-osassa saat käyttää koejärjestelmässä olevaa taulukkokirjaa ja perusohjelmia. A-osa palautetaan tehtävän 4 jälkeen olevalla painikkeella. Tämän jälkeen A-osan vastauksia ei voi enää muokata. A-osan palauttamisen jälkeen kaikki koejärjestelmän ohjelmat ovat käytettävissäsi. Voit vastata B-osien tehtäviin myös ennen A-osan palauttamista.
|
18
|
-
</p>
|
19
|
-
</e:localization>
|
20
|
-
|
21
|
-
<e:localization lang="fi-FI" exam-type="visually-impaired">
|
22
|
-
<p>
|
23
|
-
A-osa palautetaan tehtävän 4 jälkeen olevalla painikkeella. Tämän jälkeen A-osan vastauksia ei voi enää muokata. Voit vastata B-osien tehtäviin myös ennen A-osan palauttamista. Kokeessa saat käyttää koejärjestelmässä olevia aineistoja sekä sinulle erityisjärjestelypäätöksessä myönnettyjä ohjelmia.
|
24
|
-
</p>
|
25
|
-
</e:localization>
|
26
|
-
|
27
|
-
<p>
|
28
|
-
Useimmissa tehtävissä kaikkien osatehtävien vastaukset kirjoitetaan samaan vastauskenttään. Jaottele vastauksesi osatehtävien mukaisesti. Halutessasi voit tuottaa vastausten tueksi piirroksia, kaavioita tai taulukoita ja liittää niistä kuvakaappauksen mihin tahansa tekstivastaukseen.
|
29
|
-
</p>
|
30
|
-
<p>
|
31
|
-
Älä jätä mitään merkintöjä sellaisen tehtävän vastaukselle varattuun tilaan, jota et halua jättää arvosteltavaksi.
|
32
|
-
</p>
|
33
|
-
</e:localization>
|
34
|
-
|
35
|
-
<e:localization lang="fi-FI" exam-type="visually-impaired">
|
36
|
-
<h5>Ruudunlukuohjelmalla käytettyjä merkintöjä</h5>
|
37
|
-
<p>
|
38
|
-
^ potenssin tai yläindeksin merkki<br/>
|
39
|
-
_ alaindeksin merkki<br/>
|
40
|
-
* kertomerkki<br/>
|
41
|
-
</p>
|
42
|
-
</e:localization>
|
43
|
-
<e:localization lang="sv-FI">
|
44
|
-
<p>
|
45
|
-
Provet består av 13 uppgifter av vilka tio ska lösas. Uppgifterna är indelade i tre delar. Del A består av fyra obligatoriska uppgifter. Del B1 består av fem uppgifter av vilka tre ska lösas. Del B2 består av fyra uppgifter av vilka tre ska lösas. Alla uppgifter bedöms med 0–12 poäng, vilket betyder att provets maximala antal poäng är 120.
|
46
|
-
</p>
|
47
|
-
<p>
|
48
|
-
I del A får du använda den tabellbok och de basprogram som ingår i provsystemet. Del A återlämnas med hjälp av tryckknappen efter uppgift 4. Efter detta kan svaren i del A inte längre redigeras och alla program i provsystemet kan användas. Du kan även lösa uppgifterna i B-delarna innan du lämnat in del A.
|
49
|
-
</p>
|
50
|
-
<p>
|
51
|
-
I de flesta uppgifter skrivs lösningarna till alla deluppgifter in i samma svarsfält. Dela in ditt svar enligt deluppgifterna. Om du vill kan du skapa figurer, diagram eller tabeller som stöd för svaret och bifoga en skärmdump av dem till vilket textsvar som helst.
|
52
|
-
</p>
|
53
|
-
<p>
|
54
|
-
Lämna inga anteckningar i svarsfältet för sådana uppgifter som du inte vill lämna in för bedömning.
|
55
|
-
</p>
|
56
|
-
</e:localization>
|
57
|
-
</e:exam-instruction>
|
58
|
-
|
59
|
-
<e:exam-grading-instruction>
|
60
|
-
<e:localization lang="fi-FI">
|
61
|
-
<p>Alustavat hyvän vastauksen piirteet 23.3.2022</p>
|
62
|
-
<p>
|
63
|
-
Alustavat hyvän vastauksen piirteet on suuntaa-antava kuvaus kokeen tehtäviin odotetuista vastauksista ja tarkoitettu ensisijaisesti tueksi alustavaa arvostelua varten. Alustavat hyvän vastauksen piirteet eivät välttämättä sisällä ja kuvaa tehtävien kaikkia hyväksyttyjä vastauksia. Alustavat hyvän vastauksen piirteet eivät ole osa Ylioppilastutkintolautakunnan yleisissä määräyksissä ja ohjeissa tarkoitettua tietoa siitä, miten arvosteluperusteita on sovellettu yksittäisen kokelaan koesuoritukseen. Alustavat hyvän vastauksen piirteet eivät sido Ylioppilastutkintolautakuntaa lopullisen arvostelun perusteiden laadinnassa.
|
64
|
-
</p>
|
65
|
-
<p>
|
66
|
-
Hyvästä suorituksesta näkyy, miten vastaukseen on päädytty. Ratkaisussa on oltava tarvittavat laskut tai muut riittävät perustelut sekä lopputulos. Arvioinnissa kiinnitetään huomiota kokonaisuuteen, ja ratkaisu pyritään arvioimaan kolmiosaisesti: alku, välivaiheet ja lopputulos. Laskuvirheet, jotka eivät olennaisesti muuta tehtävän luonnetta, eivät alenna pistemäärää merkittävästi. Sen sijaan tehtävän luonnetta muuttavat lasku- ja mallinnusvirheet saattavat alentaa pistemäärää huomattavasti.
|
67
|
-
</p>
|
68
|
-
<p>
|
69
|
-
Matemaattiset ohjelmistot ovat kokeen apuvälineitä, joiden roolit arvioidaan tehtäväkohtaisesti. Jos ratkaisussa on käytetty ohjelmistoja, sen on käytävä ilmi suorituksesta. Analysointia vaativien tehtävien ratkaisemisessa pelkkä ohjelmistolla saatu vastaus ei riitä ilman muita perusteluja. Sen sijaan ohjelmasta saatu tulos yleensä riittää rutiinitehtävissä ja laajempien tehtävien rutiiniosissa. Tällaisia ovat esimerkiksi lausekkeiden muokkaaminen, yhtälöiden ratkaiseminen sekä funktioiden derivointi ja integrointi.</p>
|
70
|
-
</e:localization>
|
71
|
-
<e:localization lang="sv-FI">
|
72
|
-
<p>Preliminära beskrivningarna av goda svar 23.3.2022</p>
|
73
|
-
<p>
|
74
|
-
De preliminära beskrivningarna av goda svar utgör en riktgivande beskrivning av de svar som förväntas på uppgifterna i provet. De är i första hand ämnade som stöd för den preliminära bedömningen. De preliminära beskrivningarna av goda svar innehåller och beskriver inte nödvändigtvis alla godkända svar. De preliminära beskrivningarna av goda svar utgör inte en del av den uppgift om hur bedömningsgrunderna tillämpats på en enskild examinands provprestation som avses i Studentexamensnämndens allmänna föreskrifter och anvisningar. De preliminära beskrivningarna av goda svar är inte bindande för Studentexamensnämnden då grunderna för den slutgiltiga bedömningen fastställs.
|
75
|
-
</p>
|
76
|
-
<p>
|
77
|
-
Av en god prestation framgår det hur examinanden har kommit fram till svaret. I lösningen måste det ingå nödvändiga uträkningar eller andra tillräckliga motiveringar och ett slutresultat. I bedömningen fästs uppmärksamhet vid helheten och vid de tre stegen start, mellansteg och slutresultat. Räknefel som inte väsentligt ändrar uppgiftens natur ger ingen betydande sänkning av antalet poäng. Räknefel och fel i den matematiska modellen som ändrar uppgiftens karaktär kan däremot sänka antalet poäng avsevärt.
|
78
|
-
</p>
|
79
|
-
<p>
|
80
|
-
I provet är matematisk programvara ett hjälpmedel, och dess roll bedöms separat för varje uppgift. Om programvara använts i en uppgift ska det framgå av prestationen. I lösningar av uppgifter som kräver analys räcker det inte enbart med ett svar som erhållits med programvara utan övriga motiveringar. Däremot räcker ett svar som examinanden fått med ett program i allmänhet i rutinberäkningar. Detsamma gäller rutinmässiga delar av mera omfattande uppgifter. Exempel på sådana är omskrivning av uttryck, ekvationslösning samt derivering och integrering av funktioner.
|
81
|
-
</p>
|
82
|
-
</e:localization>
|
83
|
-
</e:exam-grading-instruction>
|
84
|
-
<e:table-of-contents/>
|
85
|
-
<e:section max-answers="4" cas-forbidden="true">
|
86
|
-
<e:section-title>
|
87
|
-
|
88
|
-
<e:localization lang="fi-FI">
|
89
|
-
A-osa
|
90
|
-
</e:localization>
|
91
|
-
<e:localization lang="sv-FI">
|
92
|
-
Del A
|
93
|
-
</e:localization>
|
94
|
-
</e:section-title>
|
95
|
-
|
96
|
-
<!-- 1 -->
|
97
|
-
<e:question>
|
98
|
-
<e:question-title>
|
99
|
-
<e:localization lang="fi-FI">Peruslaskuja</e:localization>
|
100
|
-
<e:localization lang="sv-FI">Basuppgifter</e:localization>
|
101
|
-
</e:question-title>
|
102
|
-
<e:question-instruction>
|
103
|
-
<e:localization lang="fi-FI">
|
104
|
-
<p>Kirjoita tämän tehtävän vastauskenttiin pelkät laskujen lopputulokset ilman välivaiheita ja perusteluja. Jokaisen kohdan vastaus on kokonaisluku. </p>
|
105
|
-
<p>Tehtävässä ei voi käyttää kuvakaappauksia eikä kaavaeditoria. Kunkin vastauksen maksimipituus on 5 merkkiä. Vastaukset arvostellaan tietokoneavusteisesti, ja ohjeiden noudattamatta jättäminen voi johtaa pistevähennyksiin. Jokaisesta kohdasta voi saada 2 pistettä.</p>
|
106
|
-
</e:localization>
|
107
|
-
<e:localization lang="sv-FI">
|
108
|
-
<p>I den här uppgiften ska du endast skriva in de slutliga resultaten av uträkningarna utan mellansteg och motiveringar i svarsfälten. Svaret på varje deluppgift är ett heltal.</p>
|
109
|
-
<p>I uppgiften kan du inte använda skärmdumpar eller formeleditor. Svaret på varje deluppgift har maximilängden 5 tecken. Svaren bedöms med hjälp av dator, och om instruktionerna inte följs kan det leda till poängavdrag. Man kan få 2 poäng för varje deluppgift.</p>
|
110
|
-
</e:localization>
|
111
|
-
</e:question-instruction>
|
112
|
-
<e:question-grading-instruction>
|
113
|
-
<e:localization lang="fi-FI">
|
114
|
-
Tämä tehtävä arvostellaan lautakunnassa keskitetysti, eikä opettajan tarvitse tehdä alustavaa arvostelua. Keskitetysti arvosteltavan vastauksen pisteet päivittyvät arvostelupalveluun lopullisen arvostelun edetessä.
|
115
|
-
</e:localization>
|
116
|
-
<e:localization lang="sv-FI">
|
117
|
-
Den här uppgiften bedöms centraliserat på studentexamensnämnden, och läraren behöver inte göra den preliminära bedömningen. Poängen för de uppgifter som bedöms centraliserat uppdateras i bedömningstjänsten efterhand som den slutliga bedömningen framskrider.
|
118
|
-
</e:localization>
|
119
|
-
</e:question-grading-instruction>
|
120
|
-
<e:question>
|
121
|
-
<e:question-title>
|
122
|
-
<e:localization lang="fi-FI">
|
123
|
-
Lausekkeen <e:formula assistive-title="(-9) *(42 -35)">(-9)\cdot (42-35)</e:formula> arvo on </e:localization>
|
124
|
-
<e:localization lang="sv-FI">
|
125
|
-
Värdet av uttrycket <e:formula>(-9)\cdot (42-35)</e:formula> är </e:localization>
|
126
|
-
</e:question-title>
|
127
|
-
<p><e:scored-text-answer max-score="2" type="integer"><e:accepted-answer score="2">–63</e:accepted-answer></e:scored-text-answer></p>
|
128
|
-
</e:question>
|
129
|
-
|
130
|
-
<e:question>
|
131
|
-
<e:question-title>
|
132
|
-
<e:localization lang="fi-FI">
|
133
|
-
Funktion <e:formula assistive-title="f(x) =4 x -12">f(x)=4x-12</e:formula> nollakohta on </e:localization>
|
134
|
-
<e:localization lang="sv-FI">
|
135
|
-
Nollstället till funktionen <e:formula>f(x)=4x-12</e:formula> är </e:localization>
|
136
|
-
</e:question-title>
|
137
|
-
<p><e:formula>x=</e:formula> <e:scored-text-answer max-score="2" type="integer"><e:accepted-answer score="2">3</e:accepted-answer></e:scored-text-answer></p></e:question>
|
138
|
-
|
139
|
-
<e:question>
|
140
|
-
<e:question-title>
|
141
|
-
<e:localization lang="fi-FI">
|
142
|
-
Suora kulkee pisteiden <e:formula assistive-title="A =(1, 15)">A = (1, 15)</e:formula> ja <e:formula assistive-title="B =(7, 81)">B = (7, 81)</e:formula> kautta.
|
143
|
-
Suoran kulmakerroin on </e:localization>
|
144
|
-
<e:localization lang="sv-FI">
|
145
|
-
En rät linje går genom punkterna <e:formula>A = (1, 15)</e:formula> och <e:formula>B = (7, 81).</e:formula>
|
146
|
-
Linjens riktningskoefficient är </e:localization>
|
147
|
-
</e:question-title>
|
148
|
-
<p><e:formula>k=</e:formula> <e:scored-text-answer max-score="2" type="integer"><e:accepted-answer score="2">11</e:accepted-answer></e:scored-text-answer></p>
|
149
|
-
</e:question>
|
150
|
-
|
151
|
-
<e:question>
|
152
|
-
<e:question-title>
|
153
|
-
<e:localization lang="fi-FI">
|
154
|
-
Lausekkeen <e:formula assistive-title="6^3 *2^(-2)">6^3\cdot 2^{-2}</e:formula> arvo on </e:localization>
|
155
|
-
<e:localization lang="sv-FI">
|
156
|
-
Värdet av uttrycket <e:formula>6^3\cdot 2^{-2}</e:formula> är </e:localization>
|
157
|
-
</e:question-title>
|
158
|
-
<p><e:scored-text-answer max-score="2" type="integer"><e:accepted-answer score="2">54</e:accepted-answer></e:scored-text-answer></p>
|
159
|
-
</e:question>
|
160
|
-
|
161
|
-
<e:question>
|
162
|
-
<e:question-title>
|
163
|
-
<e:localization lang="fi-FI">
|
164
|
-
Geometrinen lukujono alkaa luvuilla <e:formula assistive-title="a_1 =256,">a_1=256,</e:formula> <e:formula assistive-title="a_2 =128">a_2=128</e:formula> ja <e:formula assistive-title="a_3 =64.">a_3=64.</e:formula> Lukujonon viides
|
165
|
-
jäsen on </e:localization>
|
166
|
-
<e:localization lang="sv-FI">
|
167
|
-
En geometrisk talföljd börjar med talen <e:formula>a_1=256,</e:formula> <e:formula>a_2=128</e:formula> och <e:formula>a_3=64.</e:formula> Talföljdens femte element är </e:localization>
|
168
|
-
</e:question-title>
|
169
|
-
<p><e:formula>a_5=</e:formula> <e:scored-text-answer max-score="2" type="integer"><e:accepted-answer score="2">16</e:accepted-answer></e:scored-text-answer></p>
|
170
|
-
</e:question>
|
171
|
-
|
172
|
-
<e:question>
|
173
|
-
<e:question-title>
|
174
|
-
<e:localization lang="fi-FI">
|
175
|
-
Yhtälön <e:formula assistive-title="2^(2 x -5) =8">2^{2x-5}=8</e:formula> ratkaisu on </e:localization>
|
176
|
-
<e:localization lang="sv-FI">
|
177
|
-
Lösningen till ekvationen <e:formula>2^{2x-5}=8</e:formula> är </e:localization>
|
178
|
-
</e:question-title>
|
179
|
-
<p><e:formula>x=</e:formula> <e:scored-text-answer max-score="2" type="integer"><e:accepted-answer score="2">4</e:accepted-answer></e:scored-text-answer></p>
|
180
|
-
</e:question>
|
181
|
-
</e:question>
|
182
|
-
|
183
|
-
<!-- 2 -->
|
184
|
-
<e:question>
|
185
|
-
<e:question-title>
|
186
|
-
<e:localization lang="fi-FI">Useita ratkaisutapoja</e:localization>
|
187
|
-
<e:localization lang="sv-FI">Flera lösningsmetoder</e:localization>
|
188
|
-
</e:question-title>
|
189
|
-
<e:question-instruction>
|
190
|
-
<e:localization lang="fi-FI">
|
191
|
-
<p>Yhtälöitä ratkaistaessa käytetään usein osittelulakia esimerkiksi silloin, kun kerrotaan sulut auki;
|
192
|
-
</p><p class="e-text-center"><e:formula mode="display" assistive-title="4 *(x +1) =4 x +4">4(x+1)=4x+4</e:formula></p><p>
|
193
|
-
on esimerkki sulkujen aukikertomisesta.</p>
|
194
|
-
<p/><ol>
|
195
|
-
<li><p>
|
196
|
-
Ratkaise yhtälö <e:formula assistive-title="12 *(x -7) =24">12(x-7)=24</e:formula> kahdella eri tavalla, joista toisessa käytetään osittelulakia ja toisessa ei käytetä. <b>(6 p.)</b>
|
197
|
-
</p></li>
|
198
|
-
<li><p>
|
199
|
-
Ratkaise yhtälö <e:formula assistive-title="(2 x +1) *(x -6) =0">(2x+1)(x-6)=0</e:formula> kahdella eri tavalla, joista toisessa käytetään osittelulakia ja toisessa ei käytetä. <b>(6 p.)</b>
|
200
|
-
</p></li></ol>
|
201
|
-
<p>
|
202
|
-
</p>
|
203
|
-
</e:localization>
|
204
|
-
<e:localization lang="sv-FI">
|
205
|
-
<p>Då man löser ekvationer används ofta den distributiva lagen exempelvis då man avlägsnar parenteser genom multiplikation;
|
206
|
-
</p><p class="e-text-center"><e:formula mode="display">
|
207
|
-
4(x+1)=4x+4
|
208
|
-
</e:formula></p><p>
|
209
|
-
är ett exempel på att avlägsna parenteser genom multiplikation.</p>
|
210
|
-
<p/><ol>
|
211
|
-
<li><p>
|
212
|
-
Lös ekvationen <e:formula>12(x-7)=24</e:formula> med två olika metoder, där du i den ena använder den distributiva lagen och i den andra inte använder lagen. <b>(6 p.)</b>
|
213
|
-
</p></li>
|
214
|
-
<li><p>
|
215
|
-
Lös ekvationen <e:formula>(2x+1)(x-6)=0</e:formula> med två olika metoder, där du i den ena använder den distributiva lagen och i den andra inte använder lagen. <b>(6 p.)</b>
|
216
|
-
</p></li></ol>
|
217
|
-
</e:localization>
|
218
|
-
</e:question-instruction>
|
219
|
-
|
220
|
-
<e:text-answer type="rich-text" max-score="12">
|
221
|
-
<e:answer-grading-instruction>
|
222
|
-
<e:localization lang="fi-FI">
|
223
|
-
<table class="e-table e-width-full e-table--borderless e-table--zebra">
|
224
|
-
<tbody>
|
225
|
-
<tr>
|
226
|
-
<td>Osittelulailla:
|
227
|
-
</td>
|
228
|
-
<td class="e-text-right"><span class="e-nowrap"/></td>
|
229
|
-
</tr>
|
230
|
-
<tr>
|
231
|
-
<td>Kerrotaan vasemmalta puolelta sulut auki: <e:formula>12(x-7)=12x-84,</e:formula> jolloin yhtälö muuttuu muotoon <e:formula>12x-84=24.</e:formula>
|
232
|
-
</td>
|
233
|
-
<td class="e-text-right"><span class="e-nowrap">1 p.</span></td>
|
234
|
-
</tr>
|
235
|
-
<tr>
|
236
|
-
<td>Siispä <e:formula>12x=84+24=108,</e:formula>
|
237
|
-
</td>
|
238
|
-
<td class="e-text-right"><span class="e-nowrap">1 p.</span></td>
|
239
|
-
</tr>
|
240
|
-
<tr>
|
241
|
-
<td>eli <e:formula>x=9.</e:formula>
|
242
|
-
</td>
|
243
|
-
<td class="e-text-right"><span class="e-nowrap">1 p.</span></td>
|
244
|
-
</tr>
|
245
|
-
<tr>
|
246
|
-
<td>Ilman osittelulakia:
|
247
|
-
</td>
|
248
|
-
<td class="e-text-right"><span class="e-nowrap"/></td>
|
249
|
-
</tr>
|
250
|
-
<tr>
|
251
|
-
<td>Jaetaan puolittain luvulla <e:formula>12,</e:formula>
|
252
|
-
</td>
|
253
|
-
<td class="e-text-right"><span class="e-nowrap">1 p.</span></td>
|
254
|
-
</tr>
|
255
|
-
<tr>
|
256
|
-
<td>jolloin yhtälö muuttuu muotoon <e:formula>x-7=2.</e:formula>
|
257
|
-
</td>
|
258
|
-
<td class="e-text-right"><span class="e-nowrap">1 p.</span></td>
|
259
|
-
</tr>
|
260
|
-
<tr>
|
261
|
-
<td>Siispä <e:formula>x=9.</e:formula>
|
262
|
-
</td>
|
263
|
-
<td class="e-text-right"><span class="e-nowrap">1 p.</span></td>
|
264
|
-
</tr>
|
265
|
-
</tbody>
|
266
|
-
</table><hr class="e-mrg-b-2"/>
|
267
|
-
<table class="e-table e-width-full e-table--borderless e-table--zebra">
|
268
|
-
<tbody>
|
269
|
-
<tr>
|
270
|
-
<td>Ilman osittelulakia:
|
271
|
-
</td>
|
272
|
-
<td class="e-text-right"><span class="e-nowrap"/></td>
|
273
|
-
</tr>
|
274
|
-
<tr>
|
275
|
-
<td>Tulon nollasäännöllä <e:formula>2x+1=0</e:formula> tai <e:formula>x-6=0.</e:formula>
|
276
|
-
</td>
|
277
|
-
<td class="e-text-right">1 p.</td>
|
278
|
-
</tr>
|
279
|
-
<tr>
|
280
|
-
<td>Siispä <e:formula>x=-\frac{1}{2}</e:formula> tai <e:formula>x=6.</e:formula>
|
281
|
-
</td>
|
282
|
-
<td class="e-text-right"><span class="e-nowrap">1+1 p.</span></td>
|
283
|
-
</tr>
|
284
|
-
<tr>
|
285
|
-
<td>Osittelulailla:
|
286
|
-
</td>
|
287
|
-
<td class="e-text-right"><span class="e-nowrap"/></td>
|
288
|
-
</tr>
|
289
|
-
<tr>
|
290
|
-
<td>Kerrotaan auki: <e:formula>2x^2-11x-6=0.</e:formula>
|
291
|
-
</td>
|
292
|
-
<td class="e-text-right">1 p.</td>
|
293
|
-
</tr>
|
294
|
-
<tr>
|
295
|
-
<td>Käytetään toisen asteen yhtälön ratkaisukaavaa: <e:formula>x=\frac{11\pm\sqrt{(-11)^2-4\cdot 2\cdot (-6)}}{2\cdot 2}.</e:formula>
|
296
|
-
</td>
|
297
|
-
<td class="e-text-right">1 p.</td>
|
298
|
-
</tr>
|
299
|
-
<tr>
|
300
|
-
<td>Siispä <e:formula>x=-\frac{1}{2}</e:formula> tai <e:formula>x=6.</e:formula>
|
301
|
-
</td>
|
302
|
-
<td class="e-text-right"><span class="e-nowrap">1 p.</span></td>
|
303
|
-
</tr>
|
304
|
-
</tbody>
|
305
|
-
</table>
|
306
|
-
</e:localization>
|
307
|
-
|
308
|
-
<e:localization lang="sv-FI">
|
309
|
-
<table class="e-table e-width-full e-table--borderless e-table--zebra">
|
310
|
-
<tbody>
|
311
|
-
<tr>
|
312
|
-
<td>Med distributiva lagen:
|
313
|
-
</td>
|
314
|
-
<td class="e-text-right"><span class="e-nowrap"/></td>
|
315
|
-
</tr>
|
316
|
-
<tr>
|
317
|
-
<td>Vi multiplicerar ut parenteserna i vänstra ledet: <e:formula>12(x-7)=12x-84,</e:formula> varvid ekvationen omskrivs till formen <e:formula>12x-84=24.</e:formula>
|
318
|
-
</td>
|
319
|
-
<td class="e-text-right"><span class="e-nowrap">1 p.</span></td>
|
320
|
-
</tr>
|
321
|
-
<tr>
|
322
|
-
<td>Alltså är <e:formula>12x=84+24=108,</e:formula>
|
323
|
-
</td>
|
324
|
-
<td class="e-text-right"><span class="e-nowrap">1 p.</span></td>
|
325
|
-
</tr>
|
326
|
-
<tr>
|
327
|
-
<td>dvs. <e:formula>x=9.</e:formula>
|
328
|
-
</td>
|
329
|
-
<td class="e-text-right"><span class="e-nowrap">1 p.</span></td>
|
330
|
-
</tr>
|
331
|
-
<tr>
|
332
|
-
<td>Utan distributiva lagen:
|
333
|
-
</td>
|
334
|
-
<td class="e-text-right"><span class="e-nowrap"/></td>
|
335
|
-
</tr>
|
336
|
-
<tr>
|
337
|
-
<td>Vi dividerar ledvis med talet <e:formula>12,</e:formula>
|
338
|
-
</td>
|
339
|
-
<td class="e-text-right"><span class="e-nowrap">1 p.</span></td>
|
340
|
-
</tr>
|
341
|
-
<tr>
|
342
|
-
<td>varvid ekvationen omskrivs till formen <e:formula>x-7=2.</e:formula>
|
343
|
-
</td>
|
344
|
-
<td class="e-text-right"><span class="e-nowrap">1 p.</span></td>
|
345
|
-
</tr>
|
346
|
-
<tr>
|
347
|
-
<td>Alltså är <e:formula>x=9.</e:formula>
|
348
|
-
</td>
|
349
|
-
<td class="e-text-right"><span class="e-nowrap">1 p.</span></td>
|
350
|
-
</tr>
|
351
|
-
</tbody>
|
352
|
-
</table><hr class="e-mrg-b-2"/>
|
353
|
-
<table class="e-table e-width-full e-table--borderless e-table--zebra">
|
354
|
-
<tbody>
|
355
|
-
<tr>
|
356
|
-
<td>Utan distributiva lagen:
|
357
|
-
</td>
|
358
|
-
<td class="e-text-right"><span class="e-nowrap"/></td>
|
359
|
-
</tr>
|
360
|
-
<tr>
|
361
|
-
<td>Nollregeln för en produkt ger <e:formula>2x+1=0</e:formula> eller <e:formula>x-6=0.</e:formula>
|
362
|
-
</td>
|
363
|
-
<td class="e-text-right">1 p.</td>
|
364
|
-
</tr>
|
365
|
-
<tr>
|
366
|
-
<td>Alltså är <e:formula>x=-\frac{1}{2}</e:formula> eller <e:formula>x=6.</e:formula>
|
367
|
-
</td>
|
368
|
-
<td class="e-text-right"><span class="e-nowrap">1+1 p.</span></td>
|
369
|
-
</tr>
|
370
|
-
<tr>
|
371
|
-
<td>Med distributiva lagen:
|
372
|
-
</td>
|
373
|
-
<td class="e-text-right"><span class="e-nowrap"/></td>
|
374
|
-
</tr>
|
375
|
-
<tr>
|
376
|
-
<td>Avlägsning av parenteser: <e:formula>2x^2-11x-6=0.</e:formula>
|
377
|
-
</td>
|
378
|
-
<td class="e-text-right">1 p.</td>
|
379
|
-
</tr>
|
380
|
-
<tr>
|
381
|
-
<td>Vi tillämpar rotformeln på andragradsekvationen: <e:formula>x=\frac{11\pm\sqrt{(-11)^2-4\cdot 2\cdot (-6)}}{2\cdot 2}.</e:formula>
|
382
|
-
</td>
|
383
|
-
<td class="e-text-right">1 p.</td>
|
384
|
-
</tr>
|
385
|
-
<tr>
|
386
|
-
<td>Alltså är <e:formula>x=-\frac{1}{2}</e:formula> eller <e:formula>x=6.</e:formula>
|
387
|
-
</td>
|
388
|
-
<td class="e-text-right"><span class="e-nowrap">1 p.</span></td>
|
389
|
-
</tr>
|
390
|
-
</tbody>
|
391
|
-
</table>
|
392
|
-
</e:localization>
|
393
|
-
</e:answer-grading-instruction>
|
394
|
-
</e:text-answer>
|
395
|
-
</e:question>
|
396
|
-
|
397
|
-
<!-- 3 -->
|
398
|
-
<e:question>
|
399
|
-
<e:question-title>
|
400
|
-
<e:localization lang="fi-FI">Sisään ja ympäri piirretyt ympyrät</e:localization>
|
401
|
-
<e:localization lang="sv-FI">Inskrivna och omskrivna cirklar</e:localization>
|
402
|
-
</e:question-title>
|
403
|
-
|
404
|
-
<e:question-instruction>
|
405
|
-
<e:localization lang="fi-FI">
|
406
|
-
<ol>
|
407
|
-
<li><p>
|
408
|
-
Neliön sisään piirretään mahdollisimman suuri ympyrä. Ympyrän säde on 6,0 cm.
|
409
|
-
Määritä neliön kaikkien kärkien kautta kulkevan ympyrän säde 0,1 cm:n tarkkuudella. <b>(6 p.)</b>
|
410
|
-
</p></li>
|
411
|
-
<li><p>
|
412
|
-
Tasasivuisen kolmion sisään piirretään mahdollisimman suuri ympyrä. Ympyrän säde on 6,0 cm.
|
413
|
-
Määritä kolmion kaikkien kärkien kautta kulkevan ympyrän säde 0,1 cm:n tarkkuudella. <b>(6 p.)</b>
|
414
|
-
</p></li></ol>
|
415
|
-
</e:localization>
|
416
|
-
|
417
|
-
<e:localization lang="sv-FI">
|
418
|
-
<ol>
|
419
|
-
<li><p>
|
420
|
-
En så stor cirkel som möjligt inskrivs i en kvadrat. Cirkelns radie är 6,0 cm.
|
421
|
-
Bestäm radien på den cirkel som går genom kvadratens alla hörn med en noggrannhet på 0,1 cm. <b>(6 p.)</b>
|
422
|
-
</p></li>
|
423
|
-
<li><p>
|
424
|
-
En så stor cirkel som möjligt inskrivs i en liksidig triangel. Cirkelns radie är 6,0 cm.
|
425
|
-
Bestäm radien på den cirkel som går genom triangelns alla hörn med en noggrannhet på 0,1 cm. <b>(6 p.)</b></p>
|
426
|
-
<p/></li></ol>
|
427
|
-
</e:localization>
|
428
|
-
</e:question-instruction>
|
429
|
-
|
430
|
-
<e:text-answer type="rich-text" max-score="12">
|
431
|
-
<e:answer-grading-instruction>
|
432
|
-
<e:localization lang="fi-FI">
|
433
|
-
<table class="e-table e-width-full e-table--borderless e-table--zebra">
|
434
|
-
<tbody>
|
435
|
-
<tr>
|
436
|
-
<td>Kysytty pituus on puolet neliön lävistäjän pituudesta.
|
437
|
-
</td>
|
438
|
-
<td class="e-text-right"><span class="e-nowrap">1 p.</span></td>
|
439
|
-
</tr>
|
440
|
-
<tr>
|
441
|
-
<td>Neliön sivun pituus on <e:formula>12.</e:formula>
|
442
|
-
</td>
|
443
|
-
<td class="e-text-right"><span class="e-nowrap">1 p.</span></td>
|
444
|
-
</tr>
|
445
|
-
<tr>
|
446
|
-
<td>Lävistäjän pituus on siis <e:formula>12\cdot \sqrt{2},</e:formula>
|
447
|
-
</td>
|
448
|
-
<td class="e-text-right"><span class="e-nowrap">2 p.</span></td>
|
449
|
-
</tr>
|
450
|
-
<tr>
|
451
|
-
<td>eli kysytty pituus on <e:formula>\frac{12\sqrt{2}}{2}\approx 8{,}5</e:formula> (cm).
|
452
|
-
</td>
|
453
|
-
<td class="e-text-right"><span class="e-nowrap">2 p.</span></td>
|
454
|
-
</tr>
|
455
|
-
<tr>
|
456
|
-
<td>Alkupiste: Piirretty tilanteesta kuva.
|
457
|
-
</td>
|
458
|
-
<td class="e-text-right"><span class="e-nowrap"/></td>
|
459
|
-
</tr>
|
460
|
-
</tbody>
|
461
|
-
</table><hr class="e-mrg-b-2"/>
|
462
|
-
<table class="e-table e-width-full e-table--borderless e-table--zebra">
|
463
|
-
<tbody>
|
464
|
-
<tr>
|
465
|
-
<td>Tasasivuisen kolmion sisään piirretyn ympyrän säde on <e:formula>r</e:formula> ja kolmion sivu on <e:formula>x.</e:formula> Tällöin <e:formula>r=\frac{x\sqrt{3}}{6}.</e:formula>
|
466
|
-
</td>
|
467
|
-
<td class="e-text-right"><span class="e-nowrap">2 p.</span></td>
|
468
|
-
</tr>
|
469
|
-
<tr>
|
470
|
-
<td>Kolmion ympäri piirretyn ympyrän säde taas on <e:formula>R=\frac{x\sqrt{3}}{3}.</e:formula>
|
471
|
-
</td>
|
472
|
-
<td class="e-text-right">2 p.</td>
|
473
|
-
</tr>
|
474
|
-
<tr>
|
475
|
-
<td>Siispä <e:formula>R=2r,</e:formula> joten <span class="e-nowrap"><e:formula>R=2\cdot 6{,}0=12{,}0</e:formula> (cm).</span>
|
476
|
-
</td>
|
477
|
-
<td class="e-text-right"><span class="e-nowrap">2 p.</span></td>
|
478
|
-
</tr>
|
479
|
-
<tr>
|
480
|
-
<td>TAI
|
481
|
-
</td>
|
482
|
-
<td class="e-text-right"/>
|
483
|
-
</tr>
|
484
|
-
<tr>
|
485
|
-
<td>Piirretään jana sisään piirretyn ympyrän keskipisteestä ympyrän ja kolmion sivuamispisteeseen, ja toinen jana keskipisteestä kolmion kärkeen.
|
486
|
-
</td>
|
487
|
-
<td class="e-text-right">1 p.</td>
|
488
|
-
</tr>
|
489
|
-
<tr>
|
490
|
-
<td>Näin syntyy suorakulmainen kolmio, jonka muiden kulmien suuruudet ovat <e:formula>30^{\circ}</e:formula> ja <e:formula>60^{\circ}.</e:formula>
|
491
|
-
</td>
|
492
|
-
<td class="e-text-right"><span class="e-nowrap">2 p.</span></td>
|
493
|
-
</tr>
|
494
|
-
<tr>
|
495
|
-
<td>Koska säde on 6,0 (cm), niin muistikolmion perusteella kolmion hypotenuusan pituus on <span class="e-nowrap"><e:formula>2\cdot 6{,}0 = 12{,}0</e:formula> (cm).</span>
|
496
|
-
</td>
|
497
|
-
<td class="e-text-right"><span class="e-nowrap">2 p.</span></td>
|
498
|
-
</tr>
|
499
|
-
<tr>
|
500
|
-
<td>Tämä on myös kysytyn ympyrän säde.
|
501
|
-
</td>
|
502
|
-
<td class="e-text-right"><span class="e-nowrap">1 p.</span></td>
|
503
|
-
</tr>
|
504
|
-
<tr>
|
505
|
-
<td>Alkupiste: Piirretty tilanteesta
|
506
|
-
kuva.
|
507
|
-
</td>
|
508
|
-
<td class="e-text-right"><span class="e-nowrap"/></td>
|
509
|
-
</tr>
|
510
|
-
</tbody>
|
511
|
-
</table>
|
512
|
-
</e:localization>
|
513
|
-
|
514
|
-
<e:localization lang="sv-FI">
|
515
|
-
<table class="e-table e-width-full e-table--borderless e-table--zebra">
|
516
|
-
<tbody>
|
517
|
-
<tr>
|
518
|
-
<td>Den efterfrågade längden är hälften av längden på kvadratens diagonal.
|
519
|
-
</td>
|
520
|
-
<td class="e-text-right"><span class="e-nowrap">1 p.</span></td>
|
521
|
-
</tr>
|
522
|
-
<tr>
|
523
|
-
<td>Kvadratens sida har längden <e:formula>12.</e:formula>
|
524
|
-
</td>
|
525
|
-
<td class="e-text-right"><span class="e-nowrap">1 p.</span></td>
|
526
|
-
</tr>
|
527
|
-
<tr>
|
528
|
-
<td>Diagonalens längd är alltså <e:formula>12\cdot \sqrt{2},</e:formula>
|
529
|
-
</td>
|
530
|
-
<td class="e-text-right"><span class="e-nowrap">2 p.</span></td>
|
531
|
-
</tr>
|
532
|
-
<tr>
|
533
|
-
<td>dvs. den efterfrågade längden är <span class="e-nowrap"><e:formula>\frac{12\sqrt{2}}{2}\approx 8{,}5</e:formula> (cm).</span>
|
534
|
-
</td>
|
535
|
-
<td class="e-text-right"><span class="e-nowrap">2 p.</span></td>
|
536
|
-
</tr>
|
537
|
-
<tr>
|
538
|
-
<td>Startpoäng: Examinanden har ritat en figur av situationen.
|
539
|
-
</td>
|
540
|
-
<td class="e-text-right"><span class="e-nowrap"/></td>
|
541
|
-
</tr>
|
542
|
-
</tbody>
|
543
|
-
</table><hr class="e-mrg-b-2"/>
|
544
|
-
<table class="e-table e-width-full e-table--borderless e-table--zebra">
|
545
|
-
<tbody>
|
546
|
-
<tr>
|
547
|
-
<td>Radien på den cirkel som är inskriven i den liksidiga triangeln är <e:formula>r</e:formula> och triangelns sida är <e:formula>x.</e:formula> Då är <e:formula>r=\frac{x\sqrt{3}}{6}.</e:formula>
|
548
|
-
</td>
|
549
|
-
<td class="e-text-right"><span class="e-nowrap">2 p.</span></td>
|
550
|
-
</tr>
|
551
|
-
<tr>
|
552
|
-
<td>Den omskrivna cirkeln till triangeln har radien <e:formula>R=\frac{x\sqrt{3}}{3}.</e:formula>
|
553
|
-
</td>
|
554
|
-
<td class="e-text-right">2 p.</td>
|
555
|
-
</tr>
|
556
|
-
<tr>
|
557
|
-
<td>Alltså är <e:formula>R=2r,</e:formula> dvs. <span class="e-nowrap"><e:formula>R=2\cdot 6{,}0=12{,}0</e:formula> (cm).</span>
|
558
|
-
</td>
|
559
|
-
<td class="e-text-right"><span class="e-nowrap">2 p.</span></td>
|
560
|
-
</tr>
|
561
|
-
<tr>
|
562
|
-
<td>ELLER
|
563
|
-
</td>
|
564
|
-
<td class="e-text-right"/>
|
565
|
-
</tr>
|
566
|
-
<tr>
|
567
|
-
<td>Man ritar en sträcka från den inskrivna cirkelns medelpunkt till tangeringspunkten mellan cirkeln och triangeln, och en annan sträcka från medelpunkten till triangelns hörn.
|
568
|
-
</td>
|
569
|
-
<td class="e-text-right">1 p.</td>
|
570
|
-
</tr>
|
571
|
-
<tr>
|
572
|
-
<td>På det här sättet uppstår en rätvinklig triangel, vars övriga vinklar är <e:formula>30^{\circ}</e:formula> och <e:formula>60^{\circ}.</e:formula>
|
573
|
-
</td>
|
574
|
-
<td class="e-text-right"><span class="e-nowrap">2 p.</span></td>
|
575
|
-
</tr>
|
576
|
-
<tr>
|
577
|
-
<td>Eftersom radiens längd är 6,0 (cm) är hypotenusans längd enligt typtriangeln <span class="e-nowrap"><e:formula>2\cdot 6{,}0 = 12{,}0</e:formula> (cm).</span>
|
578
|
-
</td>
|
579
|
-
<td class="e-text-right"><span class="e-nowrap">2 p.</span></td>
|
580
|
-
</tr>
|
581
|
-
<tr>
|
582
|
-
<td>Det här är samtidigt den efterfrågade cirkelns radie.
|
583
|
-
</td>
|
584
|
-
<td class="e-text-right"><span class="e-nowrap">1 p.</span></td>
|
585
|
-
</tr>
|
586
|
-
<tr>
|
587
|
-
<td>Startpoäng: Examinanden har ritat en figur av situationen.
|
588
|
-
</td>
|
589
|
-
<td class="e-text-right"><span class="e-nowrap"/></td>
|
590
|
-
</tr>
|
591
|
-
</tbody>
|
592
|
-
</table>
|
593
|
-
</e:localization>
|
594
|
-
</e:answer-grading-instruction>
|
595
|
-
</e:text-answer>
|
596
|
-
</e:question>
|
597
|
-
|
598
|
-
<!-- 4 -->
|
599
|
-
<e:question>
|
600
|
-
<e:question-title>
|
601
|
-
<e:localization lang="fi-FI">Frekvenssitaulukko</e:localization>
|
602
|
-
<e:localization lang="sv-FI">Frekvenstabell</e:localization>
|
603
|
-
</e:question-title>
|
604
|
-
|
605
|
-
<e:external-material>
|
606
|
-
<e:attachment name="4A">
|
607
|
-
<e:attachment-title>
|
608
|
-
<e:localization lang="fi-FI">Taulukko: Koirien selän pituus</e:localization>
|
609
|
-
<e:localization lang="sv-FI">Tabell: Ryggens längd på hundar</e:localization>
|
610
|
-
</e:attachment-title>
|
611
|
-
|
612
|
-
<e:localization lang="fi-FI">
|
613
|
-
<table class="e-table e-width-half">
|
614
|
-
<thead>
|
615
|
-
<tr>
|
616
|
-
<th>Pituus (cm)</th>
|
617
|
-
<th>Lukumäärä</th>
|
618
|
-
</tr>
|
619
|
-
</thead>
|
620
|
-
<tbody>
|
621
|
-
<tr>
|
622
|
-
<td>42</td>
|
623
|
-
<td>1</td>
|
624
|
-
</tr>
|
625
|
-
<tr>
|
626
|
-
<td>43</td>
|
627
|
-
<td>0</td>
|
628
|
-
</tr>
|
629
|
-
<tr>
|
630
|
-
<td>44</td>
|
631
|
-
<td>8</td>
|
632
|
-
</tr>
|
633
|
-
<tr>
|
634
|
-
<td>45</td>
|
635
|
-
<td>7</td>
|
636
|
-
</tr>
|
637
|
-
<tr>
|
638
|
-
<td>46</td>
|
639
|
-
<td>4</td>
|
640
|
-
</tr>
|
641
|
-
<tr>
|
642
|
-
<td>47</td>
|
643
|
-
<td>11</td>
|
644
|
-
</tr>
|
645
|
-
<tr>
|
646
|
-
<td>48</td>
|
647
|
-
<td>3</td>
|
648
|
-
</tr>
|
649
|
-
</tbody>
|
650
|
-
</table>
|
651
|
-
</e:localization>
|
652
|
-
|
653
|
-
<e:localization lang="sv-FI">
|
654
|
-
<table class="e-table e-width-half">
|
655
|
-
<thead>
|
656
|
-
<tr>
|
657
|
-
<th>Längd (cm)</th>
|
658
|
-
<th>Antal</th>
|
659
|
-
</tr>
|
660
|
-
</thead>
|
661
|
-
<tbody>
|
662
|
-
<tr>
|
663
|
-
<td>42</td>
|
664
|
-
<td>1</td>
|
665
|
-
</tr>
|
666
|
-
<tr>
|
667
|
-
<td>43</td>
|
668
|
-
<td>0</td>
|
669
|
-
</tr>
|
670
|
-
<tr>
|
671
|
-
<td>44</td>
|
672
|
-
<td>8</td>
|
673
|
-
</tr>
|
674
|
-
<tr>
|
675
|
-
<td>45</td>
|
676
|
-
<td>7</td>
|
677
|
-
</tr>
|
678
|
-
<tr>
|
679
|
-
<td>46</td>
|
680
|
-
<td>4</td>
|
681
|
-
</tr>
|
682
|
-
<tr>
|
683
|
-
<td>47</td>
|
684
|
-
<td>11</td>
|
685
|
-
</tr>
|
686
|
-
<tr>
|
687
|
-
<td>48</td>
|
688
|
-
<td>3</td>
|
689
|
-
</tr>
|
690
|
-
</tbody>
|
691
|
-
</table>
|
692
|
-
</e:localization>
|
693
|
-
|
694
|
-
<e:reference>
|
695
|
-
<e:author>
|
696
|
-
<e:localization lang="fi-FI">YTL</e:localization>
|
697
|
-
<e:localization lang="sv-FI">SEN</e:localization>
|
698
|
-
</e:author>
|
699
|
-
</e:reference>
|
700
|
-
</e:attachment>
|
701
|
-
</e:external-material>
|
702
|
-
|
703
|
-
<e:question-instruction>
|
704
|
-
<e:localization lang="fi-FI">
|
705
|
-
<p>
|
706
|
-
Taulukossa <e:attachment-link type="short" ref="4A"/> on esitetty aineisto beagle-koirien selän pituudesta.
|
707
|
-
</p><ol>
|
708
|
-
<li><p>
|
709
|
-
Mikä on aineiston tyyppiarvo eli moodi? <b>(2 p.)</b>
|
710
|
-
</p></li>
|
711
|
-
<li><p>
|
712
|
-
Kuinka monta koiraa aineistoon sisältyy? <b>(2 p.)</b>
|
713
|
-
</p></li>
|
714
|
-
<li><p>
|
715
|
-
Mikä on aineiston koirien selän pituuden keskiarvo? <b>(8 p.)</b>
|
716
|
-
</p></li></ol>
|
717
|
-
</e:localization>
|
718
|
-
|
719
|
-
<e:localization lang="sv-FI">
|
720
|
-
<p>
|
721
|
-
I tabell <e:attachment-link type="short" ref="4A"/> presenteras ett material för längden på ryggen på beagle-hundar.
|
722
|
-
</p><ol>
|
723
|
-
<li><p>
|
724
|
-
Vilket är materialets typvärde, dvs. modus? <b>(2 p.)</b>
|
725
|
-
</p></li>
|
726
|
-
<li><p>
|
727
|
-
Hur många hundar ingår i materialet? <b>(2 p.)</b>
|
728
|
-
</p></li>
|
729
|
-
<li><p>
|
730
|
-
Vilket är medelvärdet av längderna på hundarnas ryggar? <b>(8 p.)</b>
|
731
|
-
</p></li></ol>
|
732
|
-
</e:localization>
|
733
|
-
</e:question-instruction>
|
734
|
-
|
735
|
-
<e:text-answer type="rich-text" max-score="12">
|
736
|
-
<e:answer-grading-instruction>
|
737
|
-
<e:localization lang="fi-FI">
|
738
|
-
<table class="e-table e-width-full e-table--borderless e-table--zebra">
|
739
|
-
<tbody>
|
740
|
-
<tr>
|
741
|
-
<td>Moodi on <e:formula>47</e:formula> (cm).
|
742
|
-
</td>
|
743
|
-
<td class="e-text-right"><span class="e-nowrap">2 p.</span></td>
|
744
|
-
</tr>
|
745
|
-
<tr>
|
746
|
-
<td>Aineistossa on <e:formula>1+0+8+7+4+11+3=34</e:formula> koiraa.
|
747
|
-
</td>
|
748
|
-
<td class="e-text-right"><span class="e-nowrap">2 p.</span></td>
|
749
|
-
</tr>
|
750
|
-
<tr>
|
751
|
-
<td>Keskiarvo: <e:formula>\frac{1\cdot 42+0\cdot 43+8\cdot 44+7\cdot 45+4\cdot 46+11\cdot 47+3\cdot 48}{34}</e:formula>
|
752
|
-
</td>
|
753
|
-
<td class="e-text-right"><span class="e-nowrap">4 p.</span></td>
|
754
|
-
</tr>
|
755
|
-
<tr>
|
756
|
-
<td><e:formula> = \frac{1554}{34} </e:formula>
|
757
|
-
</td>
|
758
|
-
<td class="e-text-right"><span class="e-nowrap">(2 p.)</span></td>
|
759
|
-
</tr>
|
760
|
-
<tr>
|
761
|
-
<td><e:formula>\approx 46</e:formula> TAI <e:formula>45{,}7</e:formula> TAI <span class="e-nowrap"><e:formula>45\frac{12}{17}</e:formula> (cm).</span>
|
762
|
-
</td>
|
763
|
-
<td class="e-text-right"><span class="e-nowrap">2 p.</span></td>
|
764
|
-
</tr>
|
765
|
-
</tbody>
|
766
|
-
</table>
|
767
|
-
</e:localization>
|
768
|
-
|
769
|
-
<e:localization lang="sv-FI">
|
770
|
-
<table class="e-table e-width-full e-table--borderless e-table--zebra">
|
771
|
-
<tbody>
|
772
|
-
<tr>
|
773
|
-
<td>Typvärdet är <e:formula>47</e:formula> (cm).
|
774
|
-
</td>
|
775
|
-
<td class="e-text-right"><span class="e-nowrap">2 p.</span></td>
|
776
|
-
</tr>
|
777
|
-
<tr>
|
778
|
-
<td>I materialet ingår <e:formula>1+0+8+7+4+11+3=34</e:formula> hundar.
|
779
|
-
</td>
|
780
|
-
<td class="e-text-right"><span class="e-nowrap">2 p.</span></td>
|
781
|
-
</tr>
|
782
|
-
<tr>
|
783
|
-
<td>Medelvärdet: <e:formula>\frac{1\cdot 42+0\cdot 43+8\cdot 44+7\cdot 45+4\cdot 46+11\cdot 47+3\cdot 48}{34}</e:formula>
|
784
|
-
</td>
|
785
|
-
<td class="e-text-right"><span class="e-nowrap">4 p.</span></td>
|
786
|
-
</tr>
|
787
|
-
<tr>
|
788
|
-
<td><e:formula> = \frac{1554}{34} </e:formula>
|
789
|
-
</td>
|
790
|
-
<td class="e-text-right"><span class="e-nowrap">(2 p.)</span></td>
|
791
|
-
</tr>
|
792
|
-
<tr>
|
793
|
-
<td><e:formula>\approx 46</e:formula> ELLER <e:formula>45{,}7</e:formula> ELLER <span class="e-nowrap"><e:formula>45\frac{12}{17}</e:formula> (cm).</span>
|
794
|
-
</td>
|
795
|
-
<td class="e-text-right"><span class="e-nowrap">2 p.</span></td>
|
796
|
-
</tr>
|
797
|
-
</tbody>
|
798
|
-
</table>
|
799
|
-
</e:localization>
|
800
|
-
</e:answer-grading-instruction>
|
801
|
-
</e:text-answer>
|
802
|
-
</e:question>
|
803
|
-
|
804
|
-
</e:section>
|
805
|
-
<e:section max-answers="3">
|
806
|
-
<e:section-title>
|
807
|
-
<e:localization lang="fi-FI">
|
808
|
-
B1-osa
|
809
|
-
</e:localization>
|
810
|
-
<e:localization lang="sv-FI">
|
811
|
-
Del B1
|
812
|
-
</e:localization>
|
813
|
-
</e:section-title>
|
814
|
-
|
815
|
-
<!-- 5 -->
|
816
|
-
<e:question>
|
817
|
-
<e:question-title>
|
818
|
-
<e:localization lang="fi-FI">Päivämatkan pituus</e:localization>
|
819
|
-
<e:localization lang="sv-FI">Längden på en dagsetapp</e:localization>
|
820
|
-
</e:question-title>
|
821
|
-
|
822
|
-
<e:question-instruction>
|
823
|
-
<e:localization lang="fi-FI">
|
824
|
-
<p>Aku ja Aulis ovat pitkällä vaelluksella. Käveltyään eräänä päivänä kolmasosan päivämatkastaan he päättävät kävellä vielä 7 km ennen lounastaukoa. Lounaan jälkeen he huomaavat, että jäljellä on puolet aiotusta päivämatkasta. Kuinka pitkä aiottu päivämatka on?</p>
|
825
|
-
</e:localization>
|
826
|
-
|
827
|
-
<e:localization lang="sv-FI">
|
828
|
-
<p>Axel och Albin är på en lång vandring. Då de en dag har gått en tredjedel av sin dagsetapp beslutar de sig för att gå ytterligare 7 km innan lunchpausen. Efter lunchen märker de att hälften av den planerade dagsetappen återstår. Hur lång är den planerade dagsetappen?</p>
|
829
|
-
</e:localization>
|
830
|
-
</e:question-instruction>
|
831
|
-
|
832
|
-
<e:text-answer type="rich-text" max-score="12">
|
833
|
-
<e:answer-grading-instruction>
|
834
|
-
<e:localization lang="fi-FI">
|
835
|
-
<table class="e-table e-width-full e-table--borderless e-table--zebra">
|
836
|
-
<tbody>
|
837
|
-
<tr>
|
838
|
-
<td>Olkoon päivämatka <e:formula>x.</e:formula>
|
839
|
-
</td>
|
840
|
-
<td class="e-text-right"><span class="e-nowrap">1 p.</span></td>
|
841
|
-
</tr>
|
842
|
-
<tr>
|
843
|
-
<td>Nyt <e:formula>\frac{x}{3}+7+\frac{x}{2}=x</e:formula> TAI <e:formula>\frac{x}{3}+7=\frac{x}{2}.</e:formula>
|
844
|
-
</td>
|
845
|
-
<td class="e-text-right"><span class="e-nowrap">6 p.</span></td>
|
846
|
-
</tr>
|
847
|
-
<tr>
|
848
|
-
<td>Tällöin <e:formula>7=\frac{x}{6},</e:formula>
|
849
|
-
</td>
|
850
|
-
<td class="e-text-right"><span class="e-nowrap">(3 p.)</span></td>
|
851
|
-
</tr>
|
852
|
-
<tr>
|
853
|
-
<td>joten <e:formula>x=42</e:formula> (km).
|
854
|
-
</td>
|
855
|
-
<td class="e-text-right"><span class="e-nowrap">2 p.</span></td>
|
856
|
-
</tr>
|
857
|
-
<tr>
|
858
|
-
<td>TAI
|
859
|
-
</td>
|
860
|
-
<td class="e-text-right"><span class="e-nowrap"/></td>
|
861
|
-
</tr>
|
862
|
-
<tr>
|
863
|
-
<td>Vastaus 42 (km)
|
864
|
-
</td>
|
865
|
-
<td class="e-text-right"><span class="e-nowrap">4 p.</span></td>
|
866
|
-
</tr>
|
867
|
-
<tr>
|
868
|
-
<td>Tarkistettu laskuin, että tehtävän ehto toteutuu.
|
869
|
-
</td>
|
870
|
-
<td class="e-text-right"><span class="e-nowrap">4 p.</span></td>
|
871
|
-
</tr>
|
872
|
-
<tr>
|
873
|
-
<td>Osoitettu, ettei tehtävällä ole muita ratkaisuja.
|
874
|
-
</td>
|
875
|
-
<td class="e-text-right">4 p.</td>
|
876
|
-
</tr>
|
877
|
-
</tbody>
|
878
|
-
</table>
|
879
|
-
</e:localization>
|
880
|
-
|
881
|
-
<e:localization lang="sv-FI">
|
882
|
-
<table class="e-table e-width-full e-table--borderless e-table--zebra">
|
883
|
-
<tbody>
|
884
|
-
<tr>
|
885
|
-
<td>Anta att dagsetappens längd är <e:formula>x.</e:formula>
|
886
|
-
</td>
|
887
|
-
<td class="e-text-right"><span class="e-nowrap">1 p.</span></td>
|
888
|
-
</tr>
|
889
|
-
<tr>
|
890
|
-
<td>Då är <e:formula>\frac{x}{3}+7+\frac{x}{2}=x</e:formula> ELLER <e:formula>\frac{x}{3}+7=\frac{x}{2}.</e:formula>
|
891
|
-
</td>
|
892
|
-
<td class="e-text-right"><span class="e-nowrap">6 p.</span></td>
|
893
|
-
</tr>
|
894
|
-
<tr>
|
895
|
-
<td>Därmed är <e:formula>7=\frac{x}{6},</e:formula>
|
896
|
-
</td>
|
897
|
-
<td class="e-text-right"><span class="e-nowrap">(3 p.)</span></td>
|
898
|
-
</tr>
|
899
|
-
<tr>
|
900
|
-
<td>dvs. <e:formula>x=42</e:formula> (km).
|
901
|
-
</td>
|
902
|
-
<td class="e-text-right"><span class="e-nowrap">2 p.</span></td>
|
903
|
-
</tr>
|
904
|
-
<tr>
|
905
|
-
<td>ELLER
|
906
|
-
</td>
|
907
|
-
<td class="e-text-right"><span class="e-nowrap"/></td>
|
908
|
-
</tr>
|
909
|
-
<tr>
|
910
|
-
<td>Svaret 42 (km)
|
911
|
-
</td>
|
912
|
-
<td class="e-text-right"><span class="e-nowrap">4 p.</span></td>
|
913
|
-
</tr>
|
914
|
-
<tr>
|
915
|
-
<td>Granskat med uträkningar att uppgiftens villkor uppfylls.
|
916
|
-
</td>
|
917
|
-
<td class="e-text-right"><span class="e-nowrap">4 p.</span></td>
|
918
|
-
</tr>
|
919
|
-
<tr>
|
920
|
-
<td>Visat att det inte finns andra lösningar.
|
921
|
-
</td>
|
922
|
-
<td class="e-text-right">4 p.</td>
|
923
|
-
</tr>
|
924
|
-
</tbody>
|
925
|
-
</table>
|
926
|
-
</e:localization>
|
927
|
-
</e:answer-grading-instruction>
|
928
|
-
</e:text-answer>
|
929
|
-
</e:question>
|
930
|
-
|
931
|
-
<!-- 6 -->
|
932
|
-
<e:question>
|
933
|
-
<e:question-title>
|
934
|
-
<e:localization lang="fi-FI">Voiton tavoittelu</e:localization>
|
935
|
-
<e:localization lang="sv-FI">Strävan efter vinst</e:localization>
|
936
|
-
</e:question-title>
|
937
|
-
|
938
|
-
<e:question-instruction>
|
939
|
-
<e:localization lang="fi-FI">
|
940
|
-
<p>Tarkastellaan jällenmyyjän tekemää voittoa. Yksinkertaisuuden vuoksi tehtävässä ei oteta verotusta huomioon.</p>
|
941
|
-
<ol>
|
942
|
-
<li><p>
|
943
|
-
Jälleenmyyjä maksoi takista tukkukauppiaalle 120 euroa. Takki ei mennyt kaupaksi, joten jälleenmyyjä alensi hintaa 10 %:a. Mikä takin myyntihinnan pitää olla, jotta 10 %:n alennuksen jälkeen jälleenmyyjä tekee 20 %:a voittoa? <b>(6 p.)</b>
|
944
|
-
</p></li>
|
945
|
-
<li><p>
|
946
|
-
Jälleenmyyjä maksoi juhlakengistä tukkukauppiaalle 140 euroa ja asetti kenkien hinnaksi 199 euroa.
|
947
|
-
Kengät eivät kuitenkaan menneet kaupaksi tähän hintaan, joten jälleenmyyjä päätti alentaa hintaa.
|
948
|
-
Mikä on suurin mahdollinen alennusprosentti, jos hän haluaa tehdä vähintään 20 %:a voittoa ja alennusprosentin pitää olla kokonaisluku? <b>(6 p.)</b>
|
949
|
-
</p></li></ol>
|
950
|
-
</e:localization>
|
951
|
-
|
952
|
-
<e:localization lang="sv-FI">
|
953
|
-
<p>Vi undersöker den vinst som en återförsäljare gör. För enkelhetens skull beaktas inte beskattningen i uppgiften.
|
954
|
-
</p><ol>
|
955
|
-
<li><p>
|
956
|
-
En återförsäljare betalade en partihandlare 120 euro för en jacka. Jackan gick inte åt i försäljningen, så återförsäljaren sänkte priset med 10 %. Vilket borde jackans försäljningspris vara för att återförsäljaren efter rabatten på 10 % ska göra en vinst på 20 %? <b>(6 p.)</b>
|
957
|
-
</p></li>
|
958
|
-
<li><p>
|
959
|
-
En återförsäljare betalade en partihandlare 140 euro för ett par festskor och satte priset 199 euro på skorna. Skorna gick dock inte åt till det priset, så återförsäljaren beslöt sig för att sänka priset. Vilken är den högsta möjliga rabattprocenten om hon vill göra en vinst på minst 20 % och rabattprocenten måste vara ett heltal? <b>(6 p.)</b>
|
960
|
-
</p></li></ol>
|
961
|
-
</e:localization>
|
962
|
-
</e:question-instruction>
|
963
|
-
|
964
|
-
<e:text-answer type="rich-text" max-score="12">
|
965
|
-
<e:answer-grading-instruction>
|
966
|
-
<e:localization lang="fi-FI">
|
967
|
-
<table class="e-table e-width-full e-table--borderless e-table--zebra">
|
968
|
-
<tbody>
|
969
|
-
<tr>
|
970
|
-
<td>Jotta myynnillä saa <e:formula>20</e:formula> prosenttia voittoa, tulee myyntihinnan olla <e:formula>1{,}2\cdot 120=144</e:formula> euroa.
|
971
|
-
</td>
|
972
|
-
<td class="e-text-right"><span class="e-nowrap">2 p.</span></td>
|
973
|
-
</tr>
|
974
|
-
<tr>
|
975
|
-
<td>Jotta myyjä voi antaa <e:formula>10</e:formula> prosenttia alennusta myyntihinnasta <e:formula>x,</e:formula> tulee myyntihinnan toteuttaa yhtälö <e:formula>0{,}9x= 144,</e:formula>
|
976
|
-
</td>
|
977
|
-
<td class="e-text-right"><span class="e-nowrap">2 p.</span></td>
|
978
|
-
</tr>
|
979
|
-
<tr>
|
980
|
-
<td>eli myyntihinnan on oltava <e:formula>160</e:formula> euroa.
|
981
|
-
</td>
|
982
|
-
<td class="e-text-right"><span class="e-nowrap">2 p.</span></td>
|
983
|
-
</tr>
|
984
|
-
</tbody>
|
985
|
-
</table><hr class="e-mrg-b-2"/>
|
986
|
-
<table class="e-table e-width-full e-table--borderless e-table--zebra">
|
987
|
-
<tbody>
|
988
|
-
<tr>
|
989
|
-
<td>Jotta myyjä saa voittoa <e:formula>20</e:formula> prosenttia, tulee myyntihinnan olla <e:formula>1{,}2\cdot 140=168</e:formula> euroa.
|
990
|
-
</td>
|
991
|
-
<td class="e-text-right">2 p.</td>
|
992
|
-
</tr>
|
993
|
-
<tr>
|
994
|
-
<td>Alennusprosentin <e:formula>x</e:formula> on toteutettava ehto <e:formula>\left(1-\frac{x}{100}\right)199\geq 168,</e:formula>
|
995
|
-
</td>
|
996
|
-
<td class="e-text-right">2 p.</td>
|
997
|
-
</tr>
|
998
|
-
<tr>
|
999
|
-
<td>eli <e:formula>x\leq 15{,}577889\dots </e:formula>
|
1000
|
-
</td>
|
1001
|
-
<td class="e-text-right"><span class="e-nowrap">1 p.</span></td>
|
1002
|
-
</tr>
|
1003
|
-
<tr>
|
1004
|
-
<td>Suurin mahdollinen alennusprosentti on siis <e:formula>15.</e:formula>
|
1005
|
-
</td>
|
1006
|
-
<td class="e-text-right">1 p.</td>
|
1007
|
-
</tr>
|
1008
|
-
<tr>
|
1009
|
-
<td>TAI
|
1010
|
-
</td>
|
1011
|
-
<td class="e-text-right"><span class="e-nowrap"/></td>
|
1012
|
-
</tr>
|
1013
|
-
<tr>
|
1014
|
-
<td>Jotta myyjä saa voittoa <e:formula>20</e:formula> prosenttia, tulee myyntihinnan olla <e:formula>1{,}2\cdot 140=168</e:formula> euroa.
|
1015
|
-
</td>
|
1016
|
-
<td class="e-text-right"><span class="e-nowrap">2 p.</span></td>
|
1017
|
-
</tr>
|
1018
|
-
<tr>
|
1019
|
-
<td>Suurin mahdollinen alennusprosentti on <e:formula>15</e:formula> koska
|
1020
|
-
</td>
|
1021
|
-
<td class="e-text-right"><span class="e-nowrap"/></td>
|
1022
|
-
</tr>
|
1023
|
-
<tr>
|
1024
|
-
<td>kun alennusprosentti on 15, on hinta <e:formula>0{,}85\cdot 199 = 169{,}15 > 168</e:formula> ja
|
1025
|
-
</td>
|
1026
|
-
<td class="e-text-right"><span class="e-nowrap">2 p.</span></td>
|
1027
|
-
</tr>
|
1028
|
-
<tr>
|
1029
|
-
<td>kun alennusprosentti on 16, on hinta <e:formula>0{,}84\cdot 199 = 167{,}16 < 168.</e:formula>
|
1030
|
-
</td>
|
1031
|
-
<td class="e-text-right"><span class="e-nowrap">2 p.</span></td>
|
1032
|
-
</tr>
|
1033
|
-
</tbody>
|
1034
|
-
</table>
|
1035
|
-
</e:localization>
|
1036
|
-
|
1037
|
-
<e:localization lang="sv-FI">
|
1038
|
-
<table class="e-table e-width-full e-table--borderless e-table--zebra">
|
1039
|
-
<tbody>
|
1040
|
-
<tr>
|
1041
|
-
<td>För att man ska få en vinst på <e:formula>20</e:formula> procent så ska försäljningspriset vara <e:formula>1{,}2\cdot 120=144</e:formula> euro.
|
1042
|
-
</td>
|
1043
|
-
<td class="e-text-right"><span class="e-nowrap">2 p.</span></td>
|
1044
|
-
</tr>
|
1045
|
-
<tr>
|
1046
|
-
<td>För att återförsäljaren ska kunna ge <e:formula>10</e:formula> procents rabatt på försäljningspriset <e:formula>x,</e:formula> bör försäljningspriset uppfylla ekvationen <e:formula>0{,}9x= 144,</e:formula>
|
1047
|
-
</td>
|
1048
|
-
<td class="e-text-right"><span class="e-nowrap">2 p.</span></td>
|
1049
|
-
</tr>
|
1050
|
-
<tr>
|
1051
|
-
<td>dvs. försäljningspriset måste vara <e:formula>160</e:formula> euro.
|
1052
|
-
</td>
|
1053
|
-
<td class="e-text-right"><span class="e-nowrap">2 p.</span></td>
|
1054
|
-
</tr>
|
1055
|
-
</tbody>
|
1056
|
-
</table><hr class="e-mrg-b-2"/>
|
1057
|
-
<table class="e-table e-width-full e-table--borderless e-table--zebra">
|
1058
|
-
<tbody>
|
1059
|
-
<tr>
|
1060
|
-
<td>För att återförsäljaren ska få en vinst på <e:formula>20</e:formula> procent måste försäljningspriset vara <e:formula>1{,}2\cdot 140=168</e:formula> euro.
|
1061
|
-
</td>
|
1062
|
-
<td class="e-text-right">2 p.</td>
|
1063
|
-
</tr>
|
1064
|
-
<tr>
|
1065
|
-
<td>Rabattprocenten <e:formula>x</e:formula> bör då uppfylla villkoret <e:formula>\left(1-\frac{x}{100}\right)199\geq 168,</e:formula>
|
1066
|
-
</td>
|
1067
|
-
<td class="e-text-right">2 p.</td>
|
1068
|
-
</tr>
|
1069
|
-
<tr>
|
1070
|
-
<td>dvs. <e:formula>x\leq 15{,}577889\dots </e:formula>
|
1071
|
-
</td>
|
1072
|
-
<td class="e-text-right"><span class="e-nowrap">1 p.</span></td>
|
1073
|
-
</tr>
|
1074
|
-
<tr>
|
1075
|
-
<td>Den största möjliga rabattprocenten är alltså <e:formula>15.</e:formula>
|
1076
|
-
</td>
|
1077
|
-
<td class="e-text-right">1 p.</td>
|
1078
|
-
</tr>
|
1079
|
-
<tr>
|
1080
|
-
<td>ELLER
|
1081
|
-
</td>
|
1082
|
-
<td class="e-text-right"><span class="e-nowrap"/></td>
|
1083
|
-
</tr>
|
1084
|
-
<tr>
|
1085
|
-
<td>För att återförsäljaren ska få en vinst på <e:formula>20</e:formula> procent måste försäljningspriset vara <e:formula>1{,}2\cdot 140=168</e:formula> euro.
|
1086
|
-
</td>
|
1087
|
-
<td class="e-text-right"><span class="e-nowrap">2 p.</span></td>
|
1088
|
-
</tr>
|
1089
|
-
<tr>
|
1090
|
-
<td>Den största möjliga rabattprocenten är <e:formula>15</e:formula> eftersom
|
1091
|
-
</td>
|
1092
|
-
<td class="e-text-right"><span class="e-nowrap"/></td>
|
1093
|
-
</tr>
|
1094
|
-
<tr>
|
1095
|
-
<td>då rabattprocenten är 15 är priset <e:formula>0{,}85\cdot 199 = 169{,}15 > 168</e:formula> och
|
1096
|
-
</td>
|
1097
|
-
<td class="e-text-right"><span class="e-nowrap">2 p.</span></td>
|
1098
|
-
</tr>
|
1099
|
-
<tr>
|
1100
|
-
<td>då rabattprocenten är 16 är priset <e:formula>0{,}84\cdot 199 = 167{,}16 < 168.</e:formula>
|
1101
|
-
</td>
|
1102
|
-
<td class="e-text-right"><span class="e-nowrap">2 p.</span></td>
|
1103
|
-
</tr>
|
1104
|
-
</tbody>
|
1105
|
-
</table>
|
1106
|
-
</e:localization>
|
1107
|
-
</e:answer-grading-instruction>
|
1108
|
-
</e:text-answer>
|
1109
|
-
</e:question>
|
1110
|
-
|
1111
|
-
<!-- 7 -->
|
1112
|
-
<e:question>
|
1113
|
-
<e:question-title>
|
1114
|
-
<e:localization lang="fi-FI">Taloudellisempi auto</e:localization>
|
1115
|
-
<e:localization lang="sv-FI">En mer ekonomisk bil</e:localization>
|
1116
|
-
</e:question-title>
|
1117
|
-
|
1118
|
-
<e:external-material>
|
1119
|
-
<e:attachment name="7A">
|
1120
|
-
<e:attachment-title>
|
1121
|
-
<e:localization lang="fi-FI">Taulukko: Autojen tiedot</e:localization>
|
1122
|
-
<e:localization lang="sv-FI">Tabell: Uppgifter om bilar</e:localization>
|
1123
|
-
</e:attachment-title>
|
1124
|
-
|
1125
|
-
<e:localization lang="fi-FI">
|
1126
|
-
<p>
|
1127
|
-
Sähköauto:
|
1128
|
-
</p><ul>
|
1129
|
-
<li><p>
|
1130
|
-
Hinta <e:localization lang="fi-FI" exam-type="normal">25 000</e:localization><e:localization lang="fi-FI" exam-type="visually-impaired">25.000</e:localization> euroa
|
1131
|
-
</p></li>
|
1132
|
-
<li><p>
|
1133
|
-
Sähkö 30 euroa kuukaudessa
|
1134
|
-
</p></li>
|
1135
|
-
<li><p>
|
1136
|
-
Muut kulut 800 euroa vuodessa
|
1137
|
-
</p></li>
|
1138
|
-
<li><p>
|
1139
|
-
Auton arvo alenee 8 % vuodessa
|
1140
|
-
</p></li></ul>
|
1141
|
-
<p/>
|
1142
|
-
<p>Polttomoottoriauto:
|
1143
|
-
</p><ul>
|
1144
|
-
<li><p>
|
1145
|
-
Hinta <e:localization lang="fi-FI" exam-type="normal">12 000</e:localization><e:localization lang="fi-FI" exam-type="visually-impaired">12.000</e:localization> euroa
|
1146
|
-
</p></li>
|
1147
|
-
<li><p>
|
1148
|
-
Polttoaine 150 euroa kuukaudessa
|
1149
|
-
</p></li>
|
1150
|
-
<li><p>
|
1151
|
-
Muut kulut <e:localization lang="fi-FI" exam-type="normal">1 200</e:localization><e:localization lang="fi-FI" exam-type="visually-impaired">1200</e:localization> euroa vuodessa
|
1152
|
-
</p></li>
|
1153
|
-
<li><p>
|
1154
|
-
Auton arvo alenee 12 % vuodessa
|
1155
|
-
</p></li></ul>
|
1156
|
-
<p/>
|
1157
|
-
<p>Muita kuluja ovat esimerkiksi vakuutus, vero, katsastus ja huolto.
|
1158
|
-
</p></e:localization>
|
1159
|
-
|
1160
|
-
<e:localization lang="sv-FI">
|
1161
|
-
<p>
|
1162
|
-
Elbil:
|
1163
|
-
</p><ul>
|
1164
|
-
<li><p>
|
1165
|
-
Pris 25 000 euro
|
1166
|
-
</p></li>
|
1167
|
-
<li><p>
|
1168
|
-
El 30 euro per månad
|
1169
|
-
</p></li>
|
1170
|
-
<li><p>
|
1171
|
-
Övriga kostnader 800 euro per år
|
1172
|
-
</p></li>
|
1173
|
-
<li><p>
|
1174
|
-
Bilens värde minskar årligen med 8 %
|
1175
|
-
</p></li></ul>
|
1176
|
-
<p/>
|
1177
|
-
<p>Bil med förbränningsmotor:
|
1178
|
-
</p><ul>
|
1179
|
-
<li><p>
|
1180
|
-
Pris 12 000 euro
|
1181
|
-
</p></li>
|
1182
|
-
<li><p>
|
1183
|
-
Bränsle 150 euro per månad
|
1184
|
-
</p></li>
|
1185
|
-
<li><p>
|
1186
|
-
Övriga kostnader 1 200 euro per år
|
1187
|
-
</p></li>
|
1188
|
-
<li><p>
|
1189
|
-
Bilens värde minskar årligen med 12 %
|
1190
|
-
</p></li></ul>
|
1191
|
-
<p/>
|
1192
|
-
<p>De övriga kostnaderna utgörs till exempel av försäkring, skatt, besiktning och service.
|
1193
|
-
</p></e:localization>
|
1194
|
-
|
1195
|
-
<e:reference>
|
1196
|
-
<e:author>
|
1197
|
-
<e:localization lang="fi-FI">YTL</e:localization>
|
1198
|
-
<e:localization lang="sv-FI">SEN</e:localization>
|
1199
|
-
</e:author>
|
1200
|
-
</e:reference>
|
1201
|
-
</e:attachment>
|
1202
|
-
</e:external-material>
|
1203
|
-
|
1204
|
-
<e:question-instruction>
|
1205
|
-
<e:localization lang="fi-FI">
|
1206
|
-
<p>Matti aikoo ostaa joko sähkö- tai polttomoottoriauton. Hän vertailee vaihtoehtoja taulukon <e:attachment-link type="short" ref="7A"/> arvioiden perusteella.</p>
|
1207
|
-
<p>Matti tarvitsee auton koko hinnan suuruisen tasalyhennyslainan. Lainan vuosikorko on 2,4 % (jolloin kuukausikorko on 0,2 %) ja lyhennys 200 euroa kuukaudessa.</p>
|
1208
|
-
<p>Laske autojen arvot ja jäljellä olevien lainojen määrät viiden vuoden kuluttua. Laske myös autojen käyttökustannukset ja lainojen korkokustannukset viiden vuoden aikana. Kumpi vaihtoehto olisi ollut viiden vuoden käytön jälkeen taloudellisempi valinta? Tehtävässä ei tarvitse ottaa huomioon rahan arvon muutosta, eli inflaatiota tai deflaatiota.</p>
|
1209
|
-
</e:localization>
|
1210
|
-
|
1211
|
-
<e:localization lang="sv-FI">
|
1212
|
-
<p>Mats ska köpa en elbil eller en bil med förbränningsmotor. Han jämför alternativ utifrån uppskattningarna i tabell <e:attachment-link type="short" ref="7A"/>.</p>
|
1213
|
-
<p>Mats behöver ett lån med jämn amortering för bilens fulla pris. Lånets årsränta är 2,4 % (dvs. månadsräntan är 0,2 %) och amorteringen är 200 euro per månad.</p>
|
1214
|
-
<p>Beräkna bilarnas värden och hur mycket som återstår av lånen efter fem år. Beräkna även användningskostnaderna för bilarna och räntekostnaderna för lånen under de fem åren. Vilket alternativ skulle ha varit mer ekonomiskt efter fem års användning? Du behöver inte beakta förändringen av pengarnas värde, dvs. inflationen eller deflationen, i den här uppgiften.</p>
|
1215
|
-
</e:localization>
|
1216
|
-
</e:question-instruction>
|
1217
|
-
|
1218
|
-
<e:text-answer type="rich-text" max-score="12">
|
1219
|
-
<e:answer-grading-instruction>
|
1220
|
-
<e:localization lang="fi-FI">
|
1221
|
-
<table class="e-table e-width-full e-table--borderless e-table--zebra">
|
1222
|
-
<tbody>
|
1223
|
-
<tr>
|
1224
|
-
<td>Sähköauton kulut:
|
1225
|
-
</td>
|
1226
|
-
<td class="e-text-right"><span class="e-nowrap"/></td>
|
1227
|
-
</tr>
|
1228
|
-
<tr>
|
1229
|
-
<td>Sähkö: <e:formula>30\cdot 12\cdot 5=1\,800.</e:formula> (Kaikki hinnat euroissa.)
|
1230
|
-
</td>
|
1231
|
-
<td class="e-text-right"><span class="e-nowrap">1 p.</span></td>
|
1232
|
-
</tr>
|
1233
|
-
<tr>
|
1234
|
-
<td>Muut kulut: <e:formula>800\cdot 5=4\,000.</e:formula>
|
1235
|
-
</td>
|
1236
|
-
<td class="e-text-right"><span class="e-nowrap">1 p.</span></td>
|
1237
|
-
</tr>
|
1238
|
-
<tr>
|
1239
|
-
<td>Auton arvo <e:formula>5</e:formula> vuoden jälkeen: <e:formula>(1-0{,}08)^5\cdot 25\,000
|
1240
|
-
\approx 16\,500.</e:formula>
|
1241
|
-
</td>
|
1242
|
-
<td class="e-text-right"><span class="e-nowrap">1 p.</span></td>
|
1243
|
-
</tr>
|
1244
|
-
<tr>
|
1245
|
-
<td>Korko lasketaan aina jäljellä olevan lainan määrästä, joka tasalyhennyslainassa vähenee tasaisesti. Siispä <e:formula>n</e:formula> kuukauden jälkeen lainaa on jäljellä <e:formula>25\,000-n\cdot 200.</e:formula>
|
1246
|
-
</td>
|
1247
|
-
<td class="e-text-right"><span class="e-nowrap">1 p.</span></td>
|
1248
|
-
</tr>
|
1249
|
-
<tr>
|
1250
|
-
<td>Korkokertymä viideltä vuodelta on siis <e:formula>\sum_{n=0}^{5\cdot 12-1}0{,}002\cdot (25\,000-n\cdot 200)=2\,292.</e:formula>
|
1251
|
-
</td>
|
1252
|
-
<td class="e-text-right"><span class="e-nowrap">1 p.</span></td>
|
1253
|
-
</tr>
|
1254
|
-
<tr>
|
1255
|
-
<td>Polttomoottoriauto:
|
1256
|
-
</td>
|
1257
|
-
<td class="e-text-right"><span class="e-nowrap"/></td>
|
1258
|
-
</tr>
|
1259
|
-
<tr>
|
1260
|
-
<td>Bensiini: <e:formula>150\cdot 12\cdot 5=9\,000.</e:formula>
|
1261
|
-
</td>
|
1262
|
-
<td class="e-text-right">1 p.</td>
|
1263
|
-
</tr>
|
1264
|
-
<tr>
|
1265
|
-
<td>Muut kulut: <e:formula>1\,200\cdot 5=6\,000.</e:formula>
|
1266
|
-
</td>
|
1267
|
-
<td class="e-text-right">1 p.</td>
|
1268
|
-
</tr>
|
1269
|
-
<tr>
|
1270
|
-
<td>Auton arvo <e:formula>5</e:formula> vuoden jälkeen: <e:formula>(1-0{,}12)^5\cdot 12\,000\approx
|
1271
|
-
6\,300.</e:formula>
|
1272
|
-
</td>
|
1273
|
-
<td class="e-text-right"><span class="e-nowrap">1 p.</span></td>
|
1274
|
-
</tr>
|
1275
|
-
<tr>
|
1276
|
-
<td>Korko lasketaan aina jäljellä olevan lainan määrästä, joka tasalyhennyslainassa vähenee tasaisesti. Siispä <e:formula>n</e:formula> kuukauden jälkeen lainaa on jäljellä <e:formula>12\,000-n\cdot 200.</e:formula> Laina saadaan siis maksettua tasan viidessä vuodessa kokonaisuudessaan.
|
1277
|
-
</td>
|
1278
|
-
<td class="e-text-right">1 p.</td>
|
1279
|
-
</tr>
|
1280
|
-
<tr>
|
1281
|
-
<td>Korkokertymä viideltä vuodelta on siis <e:formula>\sum_{n=0}^{5\cdot 12-1}0,002\cdot (12\,000-n\cdot 200)\approx 732.</e:formula>
|
1282
|
-
</td>
|
1283
|
-
<td class="e-text-right"><span class="e-nowrap">1 p.</span></td>
|
1284
|
-
</tr>
|
1285
|
-
<tr>
|
1286
|
-
<td>Sähköauton kokonaiskustannukset ovat olleet noin <e:formula>1\,800+4\,000+2\,292\approx 8\,100,</e:formula> ja auton jäljellä oleva arvo (eli esim. myyntihinta) on noin <e:formula>16\,500.</e:formula> Polttomoottoriauton kustannukset ovat <e:formula>9\,000+6\,000+732\approx 15\,700,</e:formula> ja jäljellä oleva arvo <e:formula>6\,300.</e:formula> Siispä sähköauto on ollut taloudellisempi valinta.
|
1287
|
-
</td>
|
1288
|
-
<td class="e-text-right"><span class="e-nowrap">2 p.</span></td>
|
1289
|
-
</tr>
|
1290
|
-
</tbody>
|
1291
|
-
</table>
|
1292
|
-
</e:localization>
|
1293
|
-
|
1294
|
-
<e:localization lang="sv-FI">
|
1295
|
-
<table class="e-table e-width-full e-table--borderless e-table--zebra">
|
1296
|
-
<tbody>
|
1297
|
-
<tr>
|
1298
|
-
<td>Elbilens kostnader:
|
1299
|
-
</td>
|
1300
|
-
<td class="e-text-right"><span class="e-nowrap"/></td>
|
1301
|
-
</tr>
|
1302
|
-
<tr>
|
1303
|
-
<td>Elektricitet: <e:formula>30\cdot 12\cdot 5=1\,800.</e:formula> (Alla priser i euro.)
|
1304
|
-
</td>
|
1305
|
-
<td class="e-text-right"><span class="e-nowrap">1 p.</span></td>
|
1306
|
-
</tr>
|
1307
|
-
<tr>
|
1308
|
-
<td>Övriga kostnader: <e:formula>800\cdot 5=4\,000.</e:formula>
|
1309
|
-
</td>
|
1310
|
-
<td class="e-text-right"><span class="e-nowrap">1 p.</span></td>
|
1311
|
-
</tr>
|
1312
|
-
<tr>
|
1313
|
-
<td>Bilens värde efter <e:formula>5</e:formula> år är: <e:formula>(1-0{,}08)^5\cdot 25\,000
|
1314
|
-
\approx 16\,500.</e:formula>
|
1315
|
-
</td>
|
1316
|
-
<td class="e-text-right"><span class="e-nowrap">1 p.</span></td>
|
1317
|
-
</tr>
|
1318
|
-
<tr>
|
1319
|
-
<td>Räntan beräknas alltid på det återstående lånebeloppet. I fallet jämn amortering minskar det beloppet jämnt. Alltså är det återstående lånebeloppet efter <e:formula>n</e:formula> månader <e:formula>25\,000-n\cdot 200.</e:formula>
|
1320
|
-
</td>
|
1321
|
-
<td class="e-text-right"><span class="e-nowrap">1 p.</span></td>
|
1322
|
-
</tr>
|
1323
|
-
<tr>
|
1324
|
-
<td>Den ränta som betalas på fem år är <e:formula>\sum_{n=0}^{5\cdot 12-1}0{,}002\cdot (25\,000-n\cdot 200)=2\,292.</e:formula>
|
1325
|
-
</td>
|
1326
|
-
<td class="e-text-right"><span class="e-nowrap">1 p.</span></td>
|
1327
|
-
</tr>
|
1328
|
-
<tr>
|
1329
|
-
<td>Bilen med förbränningsmotor:
|
1330
|
-
</td>
|
1331
|
-
<td class="e-text-right"><span class="e-nowrap"/></td>
|
1332
|
-
</tr>
|
1333
|
-
<tr>
|
1334
|
-
<td>Bensin: <e:formula>150\cdot 12\cdot 5=9\,000.</e:formula>
|
1335
|
-
</td>
|
1336
|
-
<td class="e-text-right">1 p.</td>
|
1337
|
-
</tr>
|
1338
|
-
<tr>
|
1339
|
-
<td>Övriga kostnader: <e:formula>1\,200\cdot 5=6\,000.</e:formula>
|
1340
|
-
</td>
|
1341
|
-
<td class="e-text-right">1 p.</td>
|
1342
|
-
</tr>
|
1343
|
-
<tr>
|
1344
|
-
<td>Bilens värde efter <e:formula>5</e:formula> år är: <e:formula>(1-0{,}12)^5\cdot 12\,000\approx
|
1345
|
-
6\,300.</e:formula>
|
1346
|
-
</td>
|
1347
|
-
<td class="e-text-right"><span class="e-nowrap">1 p.</span></td>
|
1348
|
-
</tr>
|
1349
|
-
<tr>
|
1350
|
-
<td>Räntan beräknas alltid på det återstående lånebeloppet. I fallet jämn amortering minskar det beloppet jämnt. Alltså är det återstående lånebeloppet efter <e:formula>n</e:formula> månader <e:formula>12\,000-n\cdot 200.</e:formula> Lånet återbetalas i sin helhet på jämnt fem år.
|
1351
|
-
</td>
|
1352
|
-
<td class="e-text-right">1 p.</td>
|
1353
|
-
</tr>
|
1354
|
-
<tr>
|
1355
|
-
<td>Den ränta som betalas på fem år är <e:formula>\sum_{n=0}^{5\cdot 12-1}0,002\cdot (12\,000-n\cdot 200)\approx 732.</e:formula>
|
1356
|
-
</td>
|
1357
|
-
<td class="e-text-right"><span class="e-nowrap">1 p.</span></td>
|
1358
|
-
</tr>
|
1359
|
-
<tr>
|
1360
|
-
<td>Elbilens totala kostnader har varit cirka <e:formula>1\,800+4\,000+2\,292\approx 8\,100,</e:formula> och bilens återstående värde (dvs. exempelvis försäljningsvärdet) är cirka <e:formula>16\,500.</e:formula> Kostnaderna för bilen med förbränningsmotorn är <e:formula>9\,000+6\,000+732\approx 15\,700,</e:formula> och det återstående värdet är <e:formula>6\,300.</e:formula> Alltså har elbilen varit ett mer ekonomiskt val.
|
1361
|
-
</td>
|
1362
|
-
<td class="e-text-right"><span class="e-nowrap">2 p.</span></td>
|
1363
|
-
</tr>
|
1364
|
-
</tbody>
|
1365
|
-
</table>
|
1366
|
-
</e:localization>
|
1367
|
-
</e:answer-grading-instruction>
|
1368
|
-
</e:text-answer>
|
1369
|
-
</e:question>
|
1370
|
-
|
1371
|
-
<!-- 8 -->
|
1372
|
-
<e:question>
|
1373
|
-
<e:question-title>
|
1374
|
-
<e:localization lang="fi-FI">Suurin arvo</e:localization>
|
1375
|
-
<e:localization lang="sv-FI">Största värdet</e:localization>
|
1376
|
-
</e:question-title>
|
1377
|
-
|
1378
|
-
<e:question-instruction>
|
1379
|
-
<e:localization lang="fi-FI">
|
1380
|
-
<p>Lukuun 10 lisätään erään positiivisen luvun neliön ja kuution erotus. Määritä derivaatan avulla suurin mahdollinen arvo, joka näin voidaan saada.</p>
|
1381
|
-
</e:localization>
|
1382
|
-
|
1383
|
-
<e:localization lang="sv-FI">
|
1384
|
-
<p>Till talet 10 adderas differensen av ett positivt tals kvadrat och talets kub. Bestäm med hjälp av derivatan det största möjliga värdet som man kan få på detta sätt.</p>
|
1385
|
-
</e:localization>
|
1386
|
-
</e:question-instruction>
|
1387
|
-
<e:text-answer type="rich-text" max-score="12">
|
1388
|
-
<e:answer-grading-instruction>
|
1389
|
-
<e:localization lang="fi-FI">
|
1390
|
-
<table class="e-table e-width-full e-table--borderless e-table--zebra">
|
1391
|
-
<tbody>
|
1392
|
-
<tr>
|
1393
|
-
<td>Maksimoidaan funktio <e:formula>f(x)=10+x^2-x^3,</e:formula> kun <e:formula>x</e:formula> on positiivinen.
|
1394
|
-
</td>
|
1395
|
-
<td class="e-text-right"><span class="e-nowrap">2 p.</span></td>
|
1396
|
-
</tr>
|
1397
|
-
<tr>
|
1398
|
-
<td>Derivoidaan lauseke: <e:formula>f'(x)=2x-3x^2.</e:formula>
|
1399
|
-
</td>
|
1400
|
-
<td class="e-text-right"><span class="e-nowrap">2 p.</span></td>
|
1401
|
-
</tr>
|
1402
|
-
<tr>
|
1403
|
-
<td>Derivaatta on nolla, jos <e:formula>x(2-3x)=0,</e:formula> eli <e:formula>x=0</e:formula> tai <e:formula>x=\frac{2}{3}.</e:formula>
|
1404
|
-
</td>
|
1405
|
-
<td class="e-text-right"><span class="e-nowrap">2 p.</span></td>
|
1406
|
-
</tr>
|
1407
|
-
<tr>
|
1408
|
-
<td>Lasketaan <e:formula>f'(1/3)=1/3</e:formula> ja <e:formula>f'(1)=-1,</e:formula> joten kuvaajan muoto positiivisilla luvuilla on <e:formula>+|-.</e:formula>
|
1409
|
-
</td>
|
1410
|
-
<td class="e-text-right"><span class="e-nowrap">2 p.</span></td>
|
1411
|
-
</tr>
|
1412
|
-
<tr>
|
1413
|
-
<td>Maksimi saavutetaan siis, kun <e:formula>x=\frac{2}{3},</e:formula>
|
1414
|
-
</td>
|
1415
|
-
<td class="e-text-right"><span class="e-nowrap">2 p.</span></td>
|
1416
|
-
</tr>
|
1417
|
-
<tr>
|
1418
|
-
<td>jolloin suurin arvo on <e:formula>f(\frac 23)=10\frac4{27}.</e:formula>
|
1419
|
-
</td>
|
1420
|
-
<td class="e-text-right"><span class="e-nowrap">2 p.</span></td>
|
1421
|
-
</tr>
|
1422
|
-
</tbody>
|
1423
|
-
</table>
|
1424
|
-
</e:localization>
|
1425
|
-
|
1426
|
-
<e:localization lang="sv-FI">
|
1427
|
-
<table class="e-table e-width-full e-table--borderless e-table--zebra">
|
1428
|
-
<tbody>
|
1429
|
-
<tr>
|
1430
|
-
<td>Vi maximerar funktionen <e:formula>f(x)=10+x^2-x^3,</e:formula> där <e:formula>x</e:formula> är positivt.
|
1431
|
-
</td>
|
1432
|
-
<td class="e-text-right"><span class="e-nowrap">2 p.</span></td>
|
1433
|
-
</tr>
|
1434
|
-
<tr>
|
1435
|
-
<td>Derivering av uttrycket: <e:formula>f'(x)=2x-3x^2.</e:formula>
|
1436
|
-
</td>
|
1437
|
-
<td class="e-text-right"><span class="e-nowrap">2 p.</span></td>
|
1438
|
-
</tr>
|
1439
|
-
<tr>
|
1440
|
-
<td>Derivatan är noll om <e:formula>x(2-3x)=0,</e:formula> dvs. <e:formula>x=0</e:formula> eller <e:formula>x=\frac{2}{3}.</e:formula>
|
1441
|
-
</td>
|
1442
|
-
<td class="e-text-right"><span class="e-nowrap">2 p.</span></td>
|
1443
|
-
</tr>
|
1444
|
-
<tr>
|
1445
|
-
<td>Vi beräknar <e:formula>f'(1/3)=1/3</e:formula> och <e:formula>f'(1)=-1,</e:formula> dvs. grafens form med positiva tal är <e:formula>+|-.</e:formula>
|
1446
|
-
</td>
|
1447
|
-
<td class="e-text-right"><span class="e-nowrap">2 p.</span></td>
|
1448
|
-
</tr>
|
1449
|
-
<tr>
|
1450
|
-
<td>Vi får alltså det största värdet då <e:formula>x=\frac{2}{3},</e:formula>
|
1451
|
-
</td>
|
1452
|
-
<td class="e-text-right"><span class="e-nowrap">2 p.</span></td>
|
1453
|
-
</tr>
|
1454
|
-
<tr>
|
1455
|
-
<td>varvid det största värdet är <e:formula>f(\frac 23)=10\frac4{27}.</e:formula>
|
1456
|
-
</td>
|
1457
|
-
<td class="e-text-right"><span class="e-nowrap">2 p.</span></td>
|
1458
|
-
</tr>
|
1459
|
-
</tbody>
|
1460
|
-
</table>
|
1461
|
-
</e:localization>
|
1462
|
-
</e:answer-grading-instruction>
|
1463
|
-
</e:text-answer>
|
1464
|
-
</e:question>
|
1465
|
-
|
1466
|
-
<!-- 9 -->
|
1467
|
-
<e:question>
|
1468
|
-
<e:question-title>
|
1469
|
-
<e:localization lang="fi-FI">Monivalintakoe</e:localization>
|
1470
|
-
<e:localization lang="sv-FI">Flervalsprov</e:localization>
|
1471
|
-
</e:question-title>
|
1472
|
-
|
1473
|
-
<e:question-instruction>
|
1474
|
-
<e:localization lang="fi-FI">
|
1475
|
-
<p>
|
1476
|
-
Kokeessa on 10 monivalintatehtävää. Jokaisessa tehtävässä on neljä vaihtoehtoa, joista vain yksi on oikein. Oikeasta vastauksesta saa 3 pistettä ja väärästä saa –1 pistettä.
|
1477
|
-
Lopuksi pisteet lasketaan yhteen, ja jos summa on negatiivinen, se muutetaan pistemääräksi nolla. </p>
|
1478
|
-
<p/><ol>
|
1479
|
-
<li><p>
|
1480
|
-
Eräs opiskelija ei osaa vastata yhteenkään tehtävään tietojensa pohjalta, ja hän vastaa kaikkiin tehtäviin arvaamalla. Millä todennäköisyydellä hän saa kokeesta nolla pistettä? <b>(6 p.)</b>
|
1481
|
-
</p></li>
|
1482
|
-
<li><p>
|
1483
|
-
Toinen opiskelija pystyy sulkemaan jokaisesta tehtävästä pois yhden väärän vastausvaihtoehdon,
|
1484
|
-
ja hän vastaa kaikkiin tehtäviin arvaamalla jäljellä olevista vaihtoehdoista.
|
1485
|
-
Millä todennäköisyydellä hän saa kokeesta täydet pisteet? <b>(6 p.)</b>
|
1486
|
-
</p></li></ol>
|
1487
|
-
</e:localization>
|
1488
|
-
|
1489
|
-
<e:localization lang="sv-FI">
|
1490
|
-
<p>Ett prov innehåller 10 flervalsuppgifter. I varje uppgift finns fyra svarsalternativ, av vilka endast ett är korrekt. För ett korrekt svar får man 3 poäng och för ett felaktigt svar får man –1 poäng. Till slut adderas poängen, och om summan är negativ så ändras den till poängsumman noll. </p>
|
1491
|
-
<p/><ol>
|
1492
|
-
<li><p>
|
1493
|
-
En studerande kan inte besvara någon av uppgifterna på basis av sina kunskaper och han besvarar alla uppgifter genom att gissa. Med vilken sannolikhet får han noll poäng i provet? <b>(6 p.)</b>
|
1494
|
-
</p></li>
|
1495
|
-
<li><p>
|
1496
|
-
En annan studerande klarar av att utesluta ett felaktigt svarsalternativ i varje uppgift, och hon besvarar alla uppgifter genom att gissa på något av de återstående alternativen. Med vilken sannolikhet får hon fulla poäng i provet? <b>(6 p.)</b>
|
1497
|
-
</p></li></ol>
|
1498
|
-
</e:localization>
|
1499
|
-
</e:question-instruction>
|
1500
|
-
|
1501
|
-
<e:text-answer type="rich-text" max-score="12">
|
1502
|
-
<e:answer-grading-instruction>
|
1503
|
-
<e:localization lang="fi-FI">
|
1504
|
-
<table class="e-table e-width-full e-table--borderless e-table--zebra">
|
1505
|
-
<tbody>
|
1506
|
-
<tr>
|
1507
|
-
<td>Opiskelija saa <e:formula>0</e:formula> pistettä, jos hänellä on oikein korkeintaan <e:formula>2</e:formula> tehtävää.
|
1508
|
-
</td>
|
1509
|
-
<td class="e-text-right"><span class="e-nowrap">2 p.</span></td>
|
1510
|
-
</tr>
|
1511
|
-
<tr>
|
1512
|
-
<td>(Binomitodennäköisyyden kaavan avulla) saadaan todennäköisyydeksi<br/> <e:formula>\left(\frac{3}{4}\right)^{10}+\binom{10}{1}\left(\frac{3}{4}\right)^{9}\left(\frac{1}{4}\right)^{1}+\binom{10}{2}\left(\frac{3}{4}\right)^{8}\left(\frac{1}{4}\right)^{2} = 0{,}52559\ldots \approx 0{,}53.</e:formula>
|
1513
|
-
</td>
|
1514
|
-
<td class="e-text-right"><span class="e-nowrap">4 p.</span></td>
|
1515
|
-
</tr>
|
1516
|
-
</tbody>
|
1517
|
-
</table><hr class="e-mrg-b-2"/>
|
1518
|
-
<table class="e-table e-width-full e-table--borderless e-table--zebra">
|
1519
|
-
<tbody>
|
1520
|
-
<tr>
|
1521
|
-
<td>Todennäköisyys sille, että opiskelija saa tehtävän oikein on nyt <e:formula>\frac{1}{3}.</e:formula>
|
1522
|
-
</td>
|
1523
|
-
<td class="e-text-right"><span class="e-nowrap">(2 p.)</span></td>
|
1524
|
-
</tr>
|
1525
|
-
<tr>
|
1526
|
-
<td>Todennäköisyys saada kaikki oikein on siis <e:formula>\left(\frac{1}{3}\right)^{10}
|
1527
|
-
=\frac{1}{59\,049}\ (\approx 0{,}000017).</e:formula>
|
1528
|
-
</td>
|
1529
|
-
<td class="e-text-right"><span class="e-nowrap">4 p.</span></td>
|
1530
|
-
</tr>
|
1531
|
-
</tbody>
|
1532
|
-
</table>
|
1533
|
-
</e:localization>
|
1534
|
-
|
1535
|
-
<e:localization lang="sv-FI">
|
1536
|
-
<table class="e-table e-width-full e-table--borderless e-table--zebra">
|
1537
|
-
<tbody>
|
1538
|
-
<tr>
|
1539
|
-
<td>Den studerande får <e:formula>0</e:formula> poäng om han gissar högst <e:formula>2</e:formula> uppgifter korrekt.
|
1540
|
-
</td>
|
1541
|
-
<td class="e-text-right"><span class="e-nowrap">2 p.</span></td>
|
1542
|
-
</tr>
|
1543
|
-
<tr>
|
1544
|
-
<td>(Med formeln för binomialsannolikhet) får vi sannolikheten<br/> <e:formula>\left(\frac{3}{4}\right)^{10}+\binom{10}{1}\left(\frac{3}{4}\right)^{9}\left(\frac{1}{4}\right)^{1}+\binom{10}{2}\left(\frac{3}{4}\right)^{8}\left(\frac{1}{4}\right)^{2} = 0{,}52559\ldots \approx 0{,}53.</e:formula>
|
1545
|
-
</td>
|
1546
|
-
<td class="e-text-right"><span class="e-nowrap">4 p.</span></td>
|
1547
|
-
</tr>
|
1548
|
-
</tbody>
|
1549
|
-
</table><hr class="e-mrg-b-2"/>
|
1550
|
-
<table class="e-table e-width-full e-table--borderless e-table--zebra">
|
1551
|
-
<tbody>
|
1552
|
-
<tr>
|
1553
|
-
<td>Sannolikheten för att den studerande får en uppgift rätt är nu <e:formula>\frac{1}{3}.</e:formula>
|
1554
|
-
</td>
|
1555
|
-
<td class="e-text-right"><span class="e-nowrap">(2 p.)</span></td>
|
1556
|
-
</tr>
|
1557
|
-
<tr>
|
1558
|
-
<td>Sannolikheten för att hon får alla rätt är alltså <e:formula>\left(\frac{1}{3}\right)^{10}
|
1559
|
-
=\frac{1}{59\,049}\ (\approx 0{,}000017).</e:formula>
|
1560
|
-
</td>
|
1561
|
-
<td class="e-text-right"><span class="e-nowrap">4 p.</span></td>
|
1562
|
-
</tr>
|
1563
|
-
</tbody>
|
1564
|
-
</table>
|
1565
|
-
</e:localization>
|
1566
|
-
</e:answer-grading-instruction>
|
1567
|
-
</e:text-answer>
|
1568
|
-
</e:question>
|
1569
|
-
</e:section>
|
1570
|
-
|
1571
|
-
|
1572
|
-
<e:section max-answers="3">
|
1573
|
-
<e:section-title>
|
1574
|
-
|
1575
|
-
<e:localization lang="fi-FI">
|
1576
|
-
B2-osa
|
1577
|
-
</e:localization>
|
1578
|
-
<e:localization lang="sv-FI">
|
1579
|
-
Del B2
|
1580
|
-
</e:localization>
|
1581
|
-
</e:section-title>
|
1582
|
-
|
1583
|
-
<!-- 10 -->
|
1584
|
-
<e:question>
|
1585
|
-
<e:question-title>
|
1586
|
-
<e:localization lang="fi-FI">Lukujono</e:localization>
|
1587
|
-
<e:localization lang="sv-FI">Talföljd</e:localization>
|
1588
|
-
</e:question-title>
|
1589
|
-
|
1590
|
-
<e:question-instruction>
|
1591
|
-
<e:localization lang="fi-FI">
|
1592
|
-
<p>Lukujono alkaa luvuilla 4 ja 9. Kuinka moni lukujonon jäsen on pienempi kuin <e:localization lang="fi-FI" exam-type="normal">1 000,</e:localization><e:localization lang="fi-FI" exam-type="visually-impaired">1000,</e:localization> jos lukujono on</p>
|
1593
|
-
<ol>
|
1594
|
-
<li><p>
|
1595
|
-
aritmeettinen <b>(6 p.)</b>
|
1596
|
-
</p></li>
|
1597
|
-
<li><p>
|
1598
|
-
geometrinen? <b>(6 p.)</b>
|
1599
|
-
</p></li>
|
1600
|
-
</ol>
|
1601
|
-
</e:localization>
|
1602
|
-
|
1603
|
-
<e:localization lang="sv-FI">
|
1604
|
-
<p>En talföljd börjar med talen 4 och 9. Hur många av talföljdens element är mindre än 1 000, om talföljden är
|
1605
|
-
</p><ol>
|
1606
|
-
<li><p>
|
1607
|
-
aritmetisk <b>(6 p.)</b>
|
1608
|
-
</p></li>
|
1609
|
-
<li><p>
|
1610
|
-
geometrisk? <b>(6 p.)</b>
|
1611
|
-
</p></li></ol>
|
1612
|
-
</e:localization>
|
1613
|
-
</e:question-instruction>
|
1614
|
-
|
1615
|
-
<e:text-answer type="rich-text" max-score="12">
|
1616
|
-
<e:answer-grading-instruction>
|
1617
|
-
<e:localization lang="fi-FI">
|
1618
|
-
<table class="e-table e-width-full e-table--borderless e-table--zebra">
|
1619
|
-
<tbody>
|
1620
|
-
<tr>
|
1621
|
-
<td>Kahden peräkkäisen lukujonon jäsenen erotus on <e:formula>9-4=5.</e:formula>
|
1622
|
-
</td>
|
1623
|
-
<td class="e-text-right"><span class="e-nowrap">1 p.</span></td>
|
1624
|
-
</tr>
|
1625
|
-
<tr>
|
1626
|
-
<td>Yleinen lauseke on siis <e:formula>a_n=4+5(n-1),</e:formula>
|
1627
|
-
</td>
|
1628
|
-
<td class="e-text-right"><span class="e-nowrap">2 p.</span></td>
|
1629
|
-
</tr>
|
1630
|
-
<tr>
|
1631
|
-
<td>joka on pienempi kuin <e:formula>1\,000,</e:formula> kun <e:formula>4+5(n-1)<1\,000,</e:formula>
|
1632
|
-
</td>
|
1633
|
-
<td class="e-text-right"><span class="e-nowrap">1 p.</span></td>
|
1634
|
-
</tr>
|
1635
|
-
<tr>
|
1636
|
-
<td>eli <e:formula>n<\frac{1\,000-4}{5}+1=200{,}2,</e:formula>
|
1637
|
-
</td>
|
1638
|
-
<td class="e-text-right"><span class="e-nowrap">1 p.</span></td>
|
1639
|
-
</tr>
|
1640
|
-
<tr>
|
1641
|
-
<td>joten <e:formula>200</e:formula> jäsentä on pienempiä kuin <e:formula>1\,000.</e:formula>
|
1642
|
-
</td>
|
1643
|
-
<td class="e-text-right"><span class="e-nowrap">1 p.</span></td>
|
1644
|
-
</tr>
|
1645
|
-
</tbody>
|
1646
|
-
</table><hr class="e-mrg-b-2"/>
|
1647
|
-
<table class="e-table e-width-full e-table--borderless e-table--zebra">
|
1648
|
-
<tbody>
|
1649
|
-
<tr>
|
1650
|
-
<td>Kahden peräkkäisen lukujonon jäsenen suhde on <e:formula>\frac{9}{4}.</e:formula>
|
1651
|
-
</td>
|
1652
|
-
<td class="e-text-right">1 p.</td>
|
1653
|
-
</tr>
|
1654
|
-
<tr>
|
1655
|
-
<td>Yleinen lauseke on siis <e:formula>a_n=4\cdot \left(\frac{9}{4}\right)^{n-1},</e:formula>
|
1656
|
-
</td>
|
1657
|
-
<td class="e-text-right">2 p.</td>
|
1658
|
-
</tr>
|
1659
|
-
<tr>
|
1660
|
-
<td>joka on pienempi kuin <e:formula>1\,000,</e:formula> kun <e:formula>4\cdot
|
1661
|
-
\left(\frac{9}{4}\right)^{n-1}<1\,000.</e:formula>
|
1662
|
-
</td>
|
1663
|
-
<td class="e-text-right"><span class="e-nowrap">1 p.</span></td>
|
1664
|
-
</tr>
|
1665
|
-
<tr>
|
1666
|
-
<td>eli <e:formula>n-1<\frac{\ln(250)}{\ln (9/4)}\approx 6{,}8.</e:formula>
|
1667
|
-
</td>
|
1668
|
-
<td class="e-text-right">1 p.</td>
|
1669
|
-
</tr>
|
1670
|
-
<tr>
|
1671
|
-
<td>Siispä <e:formula>7</e:formula> jäsentä on pienempiä kuin <e:formula>1\,000.</e:formula>
|
1672
|
-
</td>
|
1673
|
-
<td class="e-text-right"><span class="e-nowrap">1 p.</span></td>
|
1674
|
-
</tr>
|
1675
|
-
<tr>
|
1676
|
-
<td>TAI
|
1677
|
-
</td>
|
1678
|
-
<td class="e-text-right"><span class="e-nowrap"/></td>
|
1679
|
-
</tr>
|
1680
|
-
<tr>
|
1681
|
-
<td>Jonon jäsenet kokonaisluvuiksi pyöristettyinä ovat <e:formula>4,</e:formula> <e:formula>9,</e:formula> <e:formula>20,</e:formula> <e:formula>41,</e:formula> <e:formula>103,</e:formula> <e:formula>204,</e:formula> <e:formula>519,</e:formula> <e:formula>1168,</e:formula> <e:formula>\ldots</e:formula>
|
1682
|
-
</td>
|
1683
|
-
<td class="e-text-right"><span class="e-nowrap">4 p.</span></td>
|
1684
|
-
</tr>
|
1685
|
-
<tr>
|
1686
|
-
<td>Siispä <e:formula>7</e:formula> jäsentä on pienempiä kuin <e:formula>1\,000,</e:formula>
|
1687
|
-
</td>
|
1688
|
-
<td class="e-text-right"><span class="e-nowrap">1 p.</span></td>
|
1689
|
-
</tr>
|
1690
|
-
<tr>
|
1691
|
-
<td>koska jono on kasvava.
|
1692
|
-
</td>
|
1693
|
-
<td class="e-text-right"><span class="e-nowrap">1 p.</span></td>
|
1694
|
-
</tr>
|
1695
|
-
</tbody>
|
1696
|
-
</table>
|
1697
|
-
</e:localization>
|
1698
|
-
|
1699
|
-
<e:localization lang="sv-FI">
|
1700
|
-
<table class="e-table e-width-full e-table--borderless e-table--zebra">
|
1701
|
-
<tbody>
|
1702
|
-
<tr>
|
1703
|
-
<td>Differensen av två på varandra efterföljande element är <e:formula>9-4=5.</e:formula>
|
1704
|
-
</td>
|
1705
|
-
<td class="e-text-right"><span class="e-nowrap">1 p.</span></td>
|
1706
|
-
</tr>
|
1707
|
-
<tr>
|
1708
|
-
<td>Det allmänna uttrycket är alltså <e:formula>a_n=4+5(n-1),</e:formula>
|
1709
|
-
</td>
|
1710
|
-
<td class="e-text-right"><span class="e-nowrap">2 p.</span></td>
|
1711
|
-
</tr>
|
1712
|
-
<tr>
|
1713
|
-
<td>som är mindre än <e:formula>1\,000,</e:formula> då <e:formula>4+5(n-1)<1\,000,</e:formula>
|
1714
|
-
</td>
|
1715
|
-
<td class="e-text-right"><span class="e-nowrap">1 p.</span></td>
|
1716
|
-
</tr>
|
1717
|
-
<tr>
|
1718
|
-
<td>dvs. <e:formula>n<\frac{1\,000-4}{5}+1=200{,}2,</e:formula>
|
1719
|
-
</td>
|
1720
|
-
<td class="e-text-right"><span class="e-nowrap">1 p.</span></td>
|
1721
|
-
</tr>
|
1722
|
-
<tr>
|
1723
|
-
<td>vilket betyder att <e:formula>200</e:formula> element är mindre än <e:formula>1\,000.</e:formula>
|
1724
|
-
</td>
|
1725
|
-
<td class="e-text-right"><span class="e-nowrap">1 p.</span></td>
|
1726
|
-
</tr>
|
1727
|
-
</tbody>
|
1728
|
-
</table><hr class="e-mrg-b-2"/>
|
1729
|
-
<table class="e-table e-width-full e-table--borderless e-table--zebra">
|
1730
|
-
<tbody>
|
1731
|
-
<tr>
|
1732
|
-
<td>Förhållandet mellan två på varandra följande element är <e:formula>\frac{9}{4}.</e:formula>
|
1733
|
-
</td>
|
1734
|
-
<td class="e-text-right">1 p.</td>
|
1735
|
-
</tr>
|
1736
|
-
<tr>
|
1737
|
-
<td>Det allmänna uttrycket är alltså <e:formula>a_n=4\cdot \left(\frac{9}{4}\right)^{n-1},</e:formula>
|
1738
|
-
</td>
|
1739
|
-
<td class="e-text-right">2 p.</td>
|
1740
|
-
</tr>
|
1741
|
-
<tr>
|
1742
|
-
<td>som är mindre än <e:formula>1\,000,</e:formula> då <e:formula>4\cdot
|
1743
|
-
\left(\frac{9}{4}\right)^{n-1}<1\,000.</e:formula>
|
1744
|
-
</td>
|
1745
|
-
<td class="e-text-right"><span class="e-nowrap">1 p.</span></td>
|
1746
|
-
</tr>
|
1747
|
-
<tr>
|
1748
|
-
<td>dvs. <e:formula>n-1<\frac{\ln(250)}{\ln (9/4)}\approx 6{,}8.</e:formula>
|
1749
|
-
</td>
|
1750
|
-
<td class="e-text-right">1 p.</td>
|
1751
|
-
</tr>
|
1752
|
-
<tr>
|
1753
|
-
<td>Alltså är <e:formula>7</e:formula> element mindre kuin <e:formula>1\,000.</e:formula>
|
1754
|
-
</td>
|
1755
|
-
<td class="e-text-right"><span class="e-nowrap">1 p.</span></td>
|
1756
|
-
</tr>
|
1757
|
-
<tr>
|
1758
|
-
<td>ELLER
|
1759
|
-
</td>
|
1760
|
-
<td class="e-text-right"><span class="e-nowrap"/></td>
|
1761
|
-
</tr>
|
1762
|
-
<tr>
|
1763
|
-
<td>Talföljdens element avrundade till hela tal är <e:formula>4,</e:formula> <e:formula>9,</e:formula> <e:formula>20,</e:formula> <e:formula>41,</e:formula> <e:formula>103,</e:formula> <e:formula>204,</e:formula> <e:formula>519,</e:formula> <e:formula>1168,</e:formula> <e:formula>\ldots</e:formula>
|
1764
|
-
</td>
|
1765
|
-
<td class="e-text-right"><span class="e-nowrap">4 p.</span></td>
|
1766
|
-
</tr>
|
1767
|
-
<tr>
|
1768
|
-
<td>Alltså är <e:formula>7</e:formula> element mindre än <e:formula>1\,000,</e:formula>
|
1769
|
-
</td>
|
1770
|
-
<td class="e-text-right"><span class="e-nowrap">1 p.</span></td>
|
1771
|
-
</tr>
|
1772
|
-
<tr>
|
1773
|
-
<td>eftersom talföljden är växande.
|
1774
|
-
</td>
|
1775
|
-
<td class="e-text-right"><span class="e-nowrap">1 p.</span></td>
|
1776
|
-
</tr>
|
1777
|
-
</tbody>
|
1778
|
-
</table>
|
1779
|
-
</e:localization>
|
1780
|
-
</e:answer-grading-instruction>
|
1781
|
-
</e:text-answer>
|
1782
|
-
</e:question>
|
1783
|
-
|
1784
|
-
<!-- 11 -->
|
1785
|
-
<e:question>
|
1786
|
-
<e:question-title>
|
1787
|
-
<e:localization lang="fi-FI">Virustartunnat</e:localization>
|
1788
|
-
<e:localization lang="sv-FI">Virussmittfall</e:localization>
|
1789
|
-
</e:question-title>
|
1790
|
-
|
1791
|
-
<e:question-instruction>
|
1792
|
-
<e:localization lang="fi-FI">
|
1793
|
-
<p>Syksyllä 2020 koronaviruspandemian toisen aallon alkuvaiheessa Suomessa raportoitiin edeltävien kahden viikon (14 vuorokauden) aikana havaittujien tartuntatapausten lukumääriä. Tämä lukumäärä oli 7. syyskuuta 389 ja kaksi viikkoa myöhemmin 21. syyskuuta 719 koronavirustartuntaa. (Lähde: www.hs.fi. Luettu 21.9.2020.) Oletetaan, että havaittujen tartuntojen määrä noudattaa eksponentiaalista mallia.</p>
|
1794
|
-
<ol>
|
1795
|
-
<li><p>
|
1796
|
-
Kuinka monta koronavirustartuntaa havaittiin mallin mukaan päivämäärää 8.1.2021 edeltävällä kahden viikon jaksolla? Tammikuun 8. päivä on 140 vuorokautta päivämäärän 21.9.2020 jälkeen. <b>(4 p.)</b>
|
1797
|
-
</p></li>
|
1798
|
-
<li><p>
|
1799
|
-
Merkitään muuttujalla <e:formula assistive-title="t">t</e:formula> aikaa vuorokausina niin, että päivämäärä 7.9.2020 vastaa arvoa <e:formula assistive-title="t =0.">t=0.</e:formula>
|
1800
|
-
Eksponentiaalisen mallin mukaan edeltävän kahden viikon aikana havaittujen tapausten lukumäärälle <e:formula assistive-title="k">k</e:formula> pätee <e:formula assistive-title="k =a *2^(b t).">k=a \cdot 2^{bt}.</e:formula> Määritä vakiot <e:formula assistive-title="a">a</e:formula> ja <e:formula assistive-title="b.">b.</e:formula> <b>(4 p.)</b>
|
1801
|
-
</p></li>
|
1802
|
-
<li><p>
|
1803
|
-
Pohdi syitä sille, miksi tässä tehtävässä käytetty malli ei ole hyvä ennuste tartuntamäärien kehitykselle pitkällä aikavälillä. <b>(4 p.)</b>
|
1804
|
-
</p></li></ol>
|
1805
|
-
</e:localization>
|
1806
|
-
|
1807
|
-
<e:localization lang="sv-FI">
|
1808
|
-
<p>Under coronaviruspandemins andra våg hösten 2020 rapporterades i Finland antalet smittfall under de föregående två veckorna (14 dygn). Den 7 september var detta antal 389 medan antalet två veckor senare, den 21 september, var 719 fall av coronavirussmitta. (Källa: www.hs.fi. Hämtad 21.9.2020.) Vi antar att det observerade antalet smittfall följer en exponentiell modell.
|
1809
|
-
</p><ol>
|
1810
|
-
<li><p>
|
1811
|
-
Hur många fall av coronavirussmitta observerades enligt modellen under den två veckor långa perioden före datumet 8.1.2021? Den 8 januari är 140 dygn efter datumet 21.9.2021. <b>(4 p.)</b>
|
1812
|
-
</p></li>
|
1813
|
-
<li><p>
|
1814
|
-
Vi betecknar antalet dygn med variabeln <e:formula>t</e:formula> så att datumet 7.9.2020 motsvarar värdet <e:formula>t=0.</e:formula>
|
1815
|
-
Enligt den exponentiella modellen gäller för antalet observerade smittfall <e:formula>k</e:formula> under de föregående två veckorna formeln <e:formula>k=a \cdot 2^{bt}.</e:formula> Bestäm konstanterna <e:formula>a</e:formula> och <e:formula>b.</e:formula> <b>(4 p.)</b>
|
1816
|
-
</p></li>
|
1817
|
-
<li><p>
|
1818
|
-
Diskutera orsakerna till att den modell som används i den här uppgiften inte utgör en bra prognos för utvecklingen av antalet smittfall i ett långt tidsperspektiv. <b>(4 p.)</b>
|
1819
|
-
</p></li></ol>
|
1820
|
-
</e:localization>
|
1821
|
-
</e:question-instruction>
|
1822
|
-
|
1823
|
-
<e:text-answer type="rich-text" max-score="12">
|
1824
|
-
<e:answer-grading-instruction>
|
1825
|
-
<e:localization lang="fi-FI">
|
1826
|
-
<table class="e-table e-width-full e-table--borderless e-table--zebra">
|
1827
|
-
<tbody>
|
1828
|
-
<tr>
|
1829
|
-
<td>Kyseessä on eksponentiaalinen malli, jonka kerroin saadaan kahden peräkkäisen jakson osamääränä: <e:formula>\frac{719}{389}.</e:formula>
|
1830
|
-
</td>
|
1831
|
-
<td class="e-text-right"><span class="e-nowrap">1 p.</span></td>
|
1832
|
-
</tr>
|
1833
|
-
<tr>
|
1834
|
-
<td>140 päivää vastaa kymmentä kahden viikon jaksoa.
|
1835
|
-
</td>
|
1836
|
-
<td class="e-text-right"><span class="e-nowrap">1 p.</span></td>
|
1837
|
-
</tr>
|
1838
|
-
<tr>
|
1839
|
-
<td>Tartuntoja on siis <e:formula>\left(\frac{719}{389}\right)^{10}\cdot 389= 181\,026,\ldots\approx 181\,000.</e:formula>
|
1840
|
-
</td>
|
1841
|
-
<td class="e-text-right"><span class="e-nowrap">2 p.</span></td>
|
1842
|
-
</tr>
|
1843
|
-
<tr>
|
1844
|
-
<td>Voi käyttää myös päiväkohtaista kantalukua <e:formula>\left(\frac{719}{389}\right)^{1/14}</e:formula> ja eksponenttia 140.
|
1845
|
-
</td>
|
1846
|
-
<td class="e-text-right"><span class="e-nowrap"/></td>
|
1847
|
-
</tr>
|
1848
|
-
</tbody>
|
1849
|
-
</table><hr class="e-mrg-b-2"/>
|
1850
|
-
<table class="e-table e-width-full e-table--borderless e-table--zebra">
|
1851
|
-
<tbody>
|
1852
|
-
<tr>
|
1853
|
-
<td>Koska syyskuun 7. päivä vastaa arvoa <e:formula>t=0,</e:formula> saadaan yhtälö <e:formula>389=a\cdot 2^{b\cdot 0}=a.</e:formula>
|
1854
|
-
</td>
|
1855
|
-
<td class="e-text-right">1 p.</td>
|
1856
|
-
</tr>
|
1857
|
-
<tr>
|
1858
|
-
<td>Tehdään toinen yhtälö syyskuun 21. päivän perusteella: <e:formula>719=389\cdot 2^{b\cdot 14}.</e:formula>
|
1859
|
-
</td>
|
1860
|
-
<td class="e-text-right">2 p.</td>
|
1861
|
-
</tr>
|
1862
|
-
<tr>
|
1863
|
-
<td>Yhtälön ratkaisu: <e:formula>b\approx 0{,}063.</e:formula>
|
1864
|
-
</td>
|
1865
|
-
<td class="e-text-right"><span class="e-nowrap">1 p.</span></td>
|
1866
|
-
</tr>
|
1867
|
-
</tbody>
|
1868
|
-
</table><hr class="e-mrg-b-2"/>
|
1869
|
-
<table class="e-table e-width-full e-table--borderless e-table--zebra">
|
1870
|
-
<tbody>
|
1871
|
-
<tr>
|
1872
|
-
<td>Eksponentiaalinen malli kasvaa rajatta, mutta Suomessa on alle 6 miljoonaa asukasta. Rajoitustoimet (joita väistämättä tällaisessa tilanteessa otetaan käyttöön, kuten otettiinkin) ja rokotukset hidastavat epidemian etenemistä. Tartunta myös antaa melko monelle sairastuneelle joksikin aikaa immuniteetin, jolloin tartuntaa ei voi saada nopeasti uudestaan. Siksi potentiaalisesti tartunnan saavien joukko pienenee.
|
1873
|
-
</td>
|
1874
|
-
<td class="e-text-right"><span class="e-nowrap">4 p.</span></td>
|
1875
|
-
</tr>
|
1876
|
-
</tbody>
|
1877
|
-
</table>
|
1878
|
-
</e:localization>
|
1879
|
-
|
1880
|
-
<e:localization lang="sv-FI">
|
1881
|
-
<table class="e-table e-width-full e-table--borderless e-table--zebra">
|
1882
|
-
<tbody>
|
1883
|
-
<tr>
|
1884
|
-
<td>Det är fråga om en exponentiell modell, vars tillväxtfaktor vi får fram genom att beräkna kvoten av antalet smittade de två efterföljande perioderna: <e:formula>\frac{719}{389}.</e:formula>
|
1885
|
-
</td>
|
1886
|
-
<td class="e-text-right"><span class="e-nowrap">1 p.</span></td>
|
1887
|
-
</tr>
|
1888
|
-
<tr>
|
1889
|
-
<td>140 dagar motsvarar tio tvåveckorsperioder.
|
1890
|
-
</td>
|
1891
|
-
<td class="e-text-right"><span class="e-nowrap">1 p.</span></td>
|
1892
|
-
</tr>
|
1893
|
-
<tr>
|
1894
|
-
<td>Antalet smittade är alltså <e:formula>\left(\frac{719}{389}\right)^{10}\cdot 389= 181\,026,\ldots\approx 181\,000.</e:formula>
|
1895
|
-
</td>
|
1896
|
-
<td class="e-text-right"><span class="e-nowrap">2 p.</span></td>
|
1897
|
-
</tr>
|
1898
|
-
<tr>
|
1899
|
-
<td>Man kan också använda den dagliga tillväxtfaktorn <e:formula>\left(\frac{719}{389}\right)^{1/14}</e:formula> och exponenten 140.
|
1900
|
-
</td>
|
1901
|
-
<td class="e-text-right"><span class="e-nowrap"/></td>
|
1902
|
-
</tr>
|
1903
|
-
</tbody>
|
1904
|
-
</table><hr class="e-mrg-b-2"/>
|
1905
|
-
<table class="e-table e-width-full e-table--borderless e-table--zebra">
|
1906
|
-
<tbody>
|
1907
|
-
<tr>
|
1908
|
-
<td>Då den 7 september motsvarar värdet <e:formula>t=0,</e:formula> får vi ekvationen <e:formula>389=a\cdot 2^{b\cdot 0}=a.</e:formula>
|
1909
|
-
</td>
|
1910
|
-
<td class="e-text-right">1 p.</td>
|
1911
|
-
</tr>
|
1912
|
-
<tr>
|
1913
|
-
<td>Vi bildar en annan ekvation för 21 september: <e:formula>719=389\cdot 2^{b\cdot 14}.</e:formula>
|
1914
|
-
</td>
|
1915
|
-
<td class="e-text-right">2 p.</td>
|
1916
|
-
</tr>
|
1917
|
-
<tr>
|
1918
|
-
<td>Ekvationens lösning: <e:formula>b\approx 0{,}063.</e:formula>
|
1919
|
-
</td>
|
1920
|
-
<td class="e-text-right"><span class="e-nowrap">1 p.</span></td>
|
1921
|
-
</tr>
|
1922
|
-
</tbody>
|
1923
|
-
</table><hr class="e-mrg-b-2"/>
|
1924
|
-
<table class="e-table e-width-full e-table--borderless e-table--zebra">
|
1925
|
-
<tbody>
|
1926
|
-
<tr>
|
1927
|
-
<td>Den exponentiella modellen växer utan gräns, men Finland har mindre än 6 miljoner invånare. Restriktionerna (som oundvikligen tas i bruk i en sådan här situation, och som även togs i bruk) och vaccinationerna bromsar in epidemins framfart. Smittan ger också ganska många insjuknade immunitet för en tid, vilket betyder att man inte kan få smittan så snabbt på nytt. Därför minskar den grupp som potentiellt kan få smittan.
|
1928
|
-
</td>
|
1929
|
-
<td class="e-text-right"><span class="e-nowrap">4 p.</span></td>
|
1930
|
-
</tr>
|
1931
|
-
</tbody>
|
1932
|
-
</table>
|
1933
|
-
</e:localization>
|
1934
|
-
</e:answer-grading-instruction>
|
1935
|
-
</e:text-answer>
|
1936
|
-
</e:question>
|
1937
|
-
|
1938
|
-
<!-- 12 -->
|
1939
|
-
<e:question>
|
1940
|
-
<e:question-title>
|
1941
|
-
<e:localization lang="fi-FI">Myyntitulojen maksimointi</e:localization>
|
1942
|
-
<e:localization lang="sv-FI">Maximering av försäljningsintäkterna</e:localization>
|
1943
|
-
</e:question-title>
|
1944
|
-
|
1945
|
-
<e:question-instruction>
|
1946
|
-
<e:localization lang="fi-FI">
|
1947
|
-
<p>Tuotteen nykyinen hinta on 60 euroa. Kauppias arvioi, että tällä hinnalla tuotetta myydään <e:localization lang="fi-FI" exam-type="normal">1 000</e:localization><e:localization lang="fi-FI" exam-type="visually-impaired">1000</e:localization> kappaletta. Myyntituloja kasvattaakseen kauppias päättää muuttaa tuotteen hintaa. Vastaavan tuotteen myynnistä kertyneen kokemuksen perusteella kauppias arvioi, että jokainen euro, jolla tuotteen hinta nousee, vähentää myyntiä kymmenellä kappaleella. Vastaavasti jokainen euro, jolla tuotteen hintaa laskee, kasvattaa myyntiä kymmenellä kappaleella.
|
1948
|
-
</p><ol>
|
1949
|
-
<li><p>
|
1950
|
-
Kuinka suuret myyntitulot ovat, jos tuotteen hinta on 55 euroa? <b>(2 p.)</b>
|
1951
|
-
</p></li>
|
1952
|
-
<li><p>
|
1953
|
-
Muodosta myyntituloja mallintava funktio <e:formula assistive-title="f(x),">f(x),</e:formula> kun <e:formula assistive-title="x">x</e:formula> on tuotteen
|
1954
|
-
hinnan muutos, ja laske sen derivaatta <e:formula assistive-title="f’(x).">f'(x).</e:formula> <b>(5 p.)</b>
|
1955
|
-
</p></li>
|
1956
|
-
<li><p>
|
1957
|
-
Määritä se tuotteen hinta, jolla saadaan suurimmat mahdolliset myyntitulot. <b>(5 p.)</b>
|
1958
|
-
</p></li></ol>
|
1959
|
-
</e:localization>
|
1960
|
-
|
1961
|
-
<e:localization lang="sv-FI">
|
1962
|
-
<p>Det nuvarande priset för en produkt är 60 euro. En köpman uppskattar att han med det priset säljer 1 000 stycken av produkten. För att höja försäljningsintäkterna bestämmer köpmannen sig för att ändra produktens pris. Utifrån erfarenheter från försäljning av en motsvarande produkt uppskattar köpmannen att för varje euro som priset höjs minskar försäljningen med tio stycken. På motsvarande sätt ökar försäljningen av produkten med tio stycken för varje euro som priset sänks.
|
1963
|
-
</p><ol>
|
1964
|
-
<li><p>
|
1965
|
-
Hur stora är försäljningsintäkterna om produktens pris är 55 euro? <b>(2 p.)</b>
|
1966
|
-
</p></li>
|
1967
|
-
<li><p>
|
1968
|
-
Bilda en funktion <e:formula>f(x)</e:formula> som ger en modell av försäljningsintäkterna då <e:formula>x</e:formula> är förändringen av produktens pris, samt beräkna funktionens derivata <e:formula>f'(x).</e:formula> <b>(5 p.)</b>
|
1969
|
-
</p></li>
|
1970
|
-
<li><p>
|
1971
|
-
Bestäm det pris på produkten för vilket de största möjliga försäljningsintäkterna uppnås. <b>(5 p.)</b>
|
1972
|
-
</p></li></ol>
|
1973
|
-
</e:localization>
|
1974
|
-
</e:question-instruction>
|
1975
|
-
|
1976
|
-
<e:text-answer type="rich-text" max-score="12">
|
1977
|
-
<e:answer-grading-instruction>
|
1978
|
-
<e:localization lang="fi-FI">
|
1979
|
-
<table class="e-table e-width-full e-table--borderless e-table--zebra">
|
1980
|
-
<tbody>
|
1981
|
-
<tr>
|
1982
|
-
<td><e:formula>(1\,000+(60-55)\cdot 10)\cdot 55 =57\,750</e:formula> euroa.
|
1983
|
-
</td>
|
1984
|
-
<td class="e-text-right"><span class="e-nowrap">2 p.</span></td>
|
1985
|
-
</tr>
|
1986
|
-
</tbody>
|
1987
|
-
</table><hr class="e-mrg-b-2"/>
|
1988
|
-
<table class="e-table e-width-full e-table--borderless e-table--zebra">
|
1989
|
-
<tbody>
|
1990
|
-
<tr>
|
1991
|
-
<td><e:formula>f(x)=(60+x)(1\,000-10x)=-10x^2+400x+60\,000</e:formula>
|
1992
|
-
</td>
|
1993
|
-
<td class="e-text-right"><span class="e-nowrap">3 p.</span></td>
|
1994
|
-
</tr>
|
1995
|
-
<tr>
|
1996
|
-
<td><e:formula>f'(x)= -20x+400.</e:formula>
|
1997
|
-
</td>
|
1998
|
-
<td class="e-text-right"><span class="e-nowrap">2 p.</span></td>
|
1999
|
-
</tr>
|
2000
|
-
</tbody>
|
2001
|
-
</table><hr class="e-mrg-b-2"/>
|
2002
|
-
<table class="e-table e-width-full e-table--borderless e-table--zebra">
|
2003
|
-
<tbody>
|
2004
|
-
<tr>
|
2005
|
-
<td>Derivaatta on nolla, kun <e:formula>x=20.</e:formula> Koska <e:formula>f'(0)=400</e:formula> ja <e:formula>f'(40)=-400,</e:formula> on kuvaajan muoto <e:formula>+|-.</e:formula>
|
2006
|
-
</td>
|
2007
|
-
<td class="e-text-right"><span class="e-nowrap">3 p.</span></td>
|
2008
|
-
</tr>
|
2009
|
-
<tr>
|
2010
|
-
<td>Myyntitulo on siis suurin, kun tuotteen hinta on <e:formula>60+20=80</e:formula> euroa.
|
2011
|
-
</td>
|
2012
|
-
<td class="e-text-right"><span class="e-nowrap">2 p.</span></td>
|
2013
|
-
</tr>
|
2014
|
-
</tbody>
|
2015
|
-
</table>
|
2016
|
-
</e:localization>
|
2017
|
-
|
2018
|
-
<e:localization lang="sv-FI">
|
2019
|
-
<table class="e-table e-width-full e-table--borderless e-table--zebra">
|
2020
|
-
<tbody>
|
2021
|
-
<tr>
|
2022
|
-
<td><e:formula>(1\,000+(60-55)\cdot 10)\cdot 55 =57\,750</e:formula> euro.
|
2023
|
-
</td>
|
2024
|
-
<td class="e-text-right"><span class="e-nowrap">2 p.</span></td>
|
2025
|
-
</tr>
|
2026
|
-
</tbody>
|
2027
|
-
</table><hr class="e-mrg-b-2"/>
|
2028
|
-
<table class="e-table e-width-full e-table--borderless e-table--zebra">
|
2029
|
-
<tbody>
|
2030
|
-
<tr>
|
2031
|
-
<td><e:formula>f(x)=(60+x)(1\,000-10x)=-10x^2+400x+60\,000</e:formula>
|
2032
|
-
</td>
|
2033
|
-
<td class="e-text-right"><span class="e-nowrap">3 p.</span></td>
|
2034
|
-
</tr>
|
2035
|
-
<tr>
|
2036
|
-
<td><e:formula>f'(x)= -20x+400.</e:formula>
|
2037
|
-
</td>
|
2038
|
-
<td class="e-text-right"><span class="e-nowrap">2 p.</span></td>
|
2039
|
-
</tr>
|
2040
|
-
</tbody>
|
2041
|
-
</table><hr class="e-mrg-b-2"/>
|
2042
|
-
<table class="e-table e-width-full e-table--borderless e-table--zebra">
|
2043
|
-
<tbody>
|
2044
|
-
<tr>
|
2045
|
-
<td>Derivatan är noll då <e:formula>x=20.</e:formula> Eftersom <e:formula>f'(0)=400</e:formula> och <e:formula>f'(40)=-400,</e:formula> är grafen i formen <e:formula>+|-.</e:formula>
|
2046
|
-
</td>
|
2047
|
-
<td class="e-text-right"><span class="e-nowrap">3 p.</span></td>
|
2048
|
-
</tr>
|
2049
|
-
<tr>
|
2050
|
-
<td>Försäljningsintäkterna är som störst då produktens pris är <e:formula>60+20=80</e:formula> euro.
|
2051
|
-
</td>
|
2052
|
-
<td class="e-text-right"><span class="e-nowrap">2 p.</span></td>
|
2053
|
-
</tr>
|
2054
|
-
</tbody>
|
2055
|
-
</table>
|
2056
|
-
</e:localization>
|
2057
|
-
</e:answer-grading-instruction>
|
2058
|
-
</e:text-answer>
|
2059
|
-
</e:question>
|
2060
|
-
|
2061
|
-
<!-- 13 -->
|
2062
|
-
<e:question>
|
2063
|
-
<e:question-title>
|
2064
|
-
<e:localization lang="fi-FI">Kuutioista monitahokkaita</e:localization>
|
2065
|
-
<e:localization lang="sv-FI">Polyedrar av kuber</e:localization>
|
2066
|
-
</e:question-title>
|
2067
|
-
|
2068
|
-
<e:external-material exam-type="normal">
|
2069
|
-
<e:attachment name="13A">
|
2070
|
-
<e:attachment-title>
|
2071
|
-
<e:localization lang="fi-FI">Kuva: Puuveistokset</e:localization>
|
2072
|
-
<e:localization lang="sv-FI">Figur: Träskulpturer</e:localization>
|
2073
|
-
</e:attachment-title>
|
2074
|
-
|
2075
|
-
<e:image src="13A.jpg" class="e-width-threequarters"/>
|
2076
|
-
|
2077
|
-
<e:reference>
|
2078
|
-
<e:author>
|
2079
|
-
<e:localization lang="fi-FI">YTL</e:localization>
|
2080
|
-
<e:localization lang="sv-FI">SEN</e:localization>
|
2081
|
-
</e:author>
|
2082
|
-
</e:reference>
|
2083
|
-
</e:attachment>
|
2084
|
-
</e:external-material>
|
2085
|
-
|
2086
|
-
<e:question-instruction>
|
2087
|
-
<e:localization lang="fi-FI" exam-type="normal">
|
2088
|
-
<p>
|
2089
|
-
Puisen kuution särmän pituus on 2,0 cm. Tarkastellaan kahta monitahokasta, jotka saadaan sahaamalla pois kuutioiden nurkista pyramidin muotoiset kappaleet, alla kuvatuilla tavoilla, ks. kuva <e:attachment-link type="short" ref="13A"/>.
|
2090
|
-
</p><ol>
|
2091
|
-
<li><p>
|
2092
|
-
Piirretään kuution tahkoihin janat, jotka yhdistävät vierekkäisten särmien keskipisteet. Poistetaan kuution nurkista pyramidit, joiden pohjasärminä ovat piirretyt janat. Määritä näin saadun monitahokkaan tilavuus. <b>(6 p.)</b>
|
2093
|
-
</p></li>
|
2094
|
-
<li><p>
|
2095
|
-
Piirretään kuution tahkoihin sellaiset janat, joiden päätepisteet ovat vierekkäisillä särmillä niin, että tahkoihin muodostuu säännöllinen 8-kulmio.
|
2096
|
-
Poistetaan kuution nurkista pyramidit, joiden pohjasärminä ovat piirretyt janat. Määritä näin saadun monitahokkaan pinta-ala. <b>(6 p.)</b>
|
2097
|
-
</p></li></ol>
|
2098
|
-
</e:localization>
|
2099
|
-
|
2100
|
-
<e:localization lang="fi-FI" exam-type="visually-impaired">
|
2101
|
-
<p>Puisen kuution särmän pituus on 2,0 cm. Piirretään kuution tahkoihin janat, jotka yhdistävät vierekkäisten särmien keskipisteet. Poistetaan kuution nurkista pyramidit, joiden pohjasärminä ovat piirretyt janat. Määritä näin saadun monitahokkaan tilavuus.</p>
|
2102
|
-
</e:localization>
|
2103
|
-
|
2104
|
-
<e:localization lang="sv-FI">
|
2105
|
-
<p>
|
2106
|
-
Kanten på en träkub har längden 2,0 cm. Vi granskar två polyedrar som vi får genom att såga bort pyramidformade kroppar från kubens hörn på de sätt som är beskrivna nedan, se figur <e:attachment-link type="short" ref="13A"/>.
|
2107
|
-
</p><ol>
|
2108
|
-
<li><p>
|
2109
|
-
På kubens sidoytor ritas sträckor, som förenar mittpunkterna på kanter som ligger bredvid varandra. Från kubens hörn avlägsnas pyramiderna, för vilka kanterna till basytan utgörs av de uppritade sträckorna. Bestäm volymen av den polyeder som vi får på detta sätt. <b>(6 p.)</b>
|
2110
|
-
</p></li>
|
2111
|
-
<li><p>
|
2112
|
-
På kubens sidoytor ritas sådana sträckor, vilkas ändpunkter är belägna på kanter som ligger bredvid varandra, så att det bildas en regelbunden åttahörning på varje sidoyta. Från kubens hörn avlägsnas pyramiderna, för vilka kanterna till basytan utgörs av de uppritade sträckorna. Bestäm arean av den polyeder som vi får på detta sätt. <b>(6 p.)</b>
|
2113
|
-
</p></li></ol>
|
2114
|
-
</e:localization>
|
2115
|
-
</e:question-instruction><e:localization lang="fi-FI" exam-type="normal"/>
|
2116
|
-
|
2117
|
-
<e:text-answer type="rich-text" max-score="12">
|
2118
|
-
<e:answer-grading-instruction>
|
2119
|
-
<e:localization lang="fi-FI">
|
2120
|
-
<table class="e-table e-width-full e-table--borderless e-table--zebra">
|
2121
|
-
<tbody>
|
2122
|
-
<tr>
|
2123
|
-
<td>Kuution alkuperäinen tilavuus on <e:formula>8.</e:formula>
|
2124
|
-
</td>
|
2125
|
-
<td class="e-text-right"><span class="e-nowrap">
|
2126
|
-
<e:localization lang="fi-FI" exam-type="normal">1 p.</e:localization>
|
2127
|
-
<e:localization lang="fi-FI" exam-type="visually-impaired">2 p.</e:localization></span></td>
|
2128
|
-
</tr>
|
2129
|
-
<tr>
|
2130
|
-
<td>Kuutiosta poistetaan <e:formula>8</e:formula> pyramidia (kärkien lukumäärä).
|
2131
|
-
</td>
|
2132
|
-
<td class="e-text-right"><span class="e-nowrap"/></td>
|
2133
|
-
</tr>
|
2134
|
-
<tr>
|
2135
|
-
<td>Pyramidin pohja on tasasivuinen kolmio, joka sivun pituus on <e:formula>\sqrt{2}</e:formula> ja pinta-ala <e:formula>\frac{1}{2}\cdot (\sqrt{2})^2\cdot \frac{\sqrt{3}}{2}=\frac{\sqrt{3}}{2}.</e:formula>
|
2136
|
-
</td>
|
2137
|
-
<td class="e-text-right"><span class="e-nowrap">
|
2138
|
-
<e:localization lang="fi-FI" exam-type="normal">1 p.</e:localization>
|
2139
|
-
<e:localization lang="fi-FI" exam-type="visually-impaired">2 p.</e:localization></span></td>
|
2140
|
-
</tr>
|
2141
|
-
<tr>
|
2142
|
-
<td>Pyramidin sivut ovat suorakulmaisia kolmioita, joiden sivut ovat <e:formula>1,</e:formula> <e:formula>1,</e:formula> <e:formula>\sqrt{2}.</e:formula>
|
2143
|
-
</td>
|
2144
|
-
<td class="e-text-right"><span class="e-nowrap">
|
2145
|
-
<e:localization lang="fi-FI" exam-type="normal">1 p.</e:localization>
|
2146
|
-
<e:localization lang="fi-FI" exam-type="visually-impaired">2 p.</e:localization></span></td>
|
2147
|
-
</tr>
|
2148
|
-
<tr>
|
2149
|
-
<td>Pyramidin huippu on tasasivuisen kolmion keskipisteen yläpuolella. Tarkastellaan suorakulmaista kolmiota, jonka toinen kateetti on pyramidin korkeus, hypotenuusa sivukolmion korkeus <e:formula>\frac{1}{\sqrt{2}}</e:formula> ja toinen kateetin pituus on keskipisteen etäisyys tasasivuisen kolmion sivusta <e:formula>\frac{1}{\sqrt{6}}.</e:formula> Pythagoraan lauseella kateetin pituus on siis <e:formula>\sqrt{\big(\frac{1}{\sqrt{2}}\big)^2-\big(\frac{1}{\sqrt{6}}\big)^2}=\sqrt{\frac12-\frac{1}{6}}=\frac{1}{\sqrt{3}}.</e:formula>
|
2150
|
-
</td>
|
2151
|
-
<td class="e-text-right"><span class="e-nowrap">
|
2152
|
-
<e:localization lang="fi-FI" exam-type="normal">1 p.</e:localization>
|
2153
|
-
<e:localization lang="fi-FI" exam-type="visually-impaired">2 p.</e:localization></span></td>
|
2154
|
-
</tr>
|
2155
|
-
<tr>
|
2156
|
-
<td>Yhden pyramidin tilavuus on siis <e:formula>\frac{1}{3}\cdot \frac{1}{\sqrt{3}}\cdot \frac{\sqrt{3}}{2}=\frac{1}{6}.</e:formula>
|
2157
|
-
</td>
|
2158
|
-
<td class="e-text-right"><span class="e-nowrap">
|
2159
|
-
<e:localization lang="fi-FI" exam-type="normal">1 p.</e:localization>
|
2160
|
-
<e:localization lang="fi-FI" exam-type="visually-impaired">2 p.</e:localization></span></td>
|
2161
|
-
</tr>
|
2162
|
-
<tr>
|
2163
|
-
<td>Koko kappaleen tilavuus on siis <span class="e-nowrap"><e:formula>8-8\cdot \frac{1}{6}=6\frac{2}{3}\approx 6{,}7</e:formula> (cm<e:formula>^3</e:formula>).</span>
|
2164
|
-
</td>
|
2165
|
-
<td class="e-text-right"><span class="e-nowrap">
|
2166
|
-
<e:localization lang="fi-FI" exam-type="normal">1 p.</e:localization>
|
2167
|
-
<e:localization lang="fi-FI" exam-type="visually-impaired">2 p.</e:localization></span></td>
|
2168
|
-
</tr>
|
2169
|
-
<tr>
|
2170
|
-
<td>Pyramidin tilavuuden voi laskea myös kartiona, jonka pohjan pinta-ala on <e:formula>\frac12 \cdot 1\cdot 1</e:formula> ja korkeus on <e:formula>1.</e:formula> Tällöin tilavuus on <e:formula>\frac13\cdot \frac12 = \frac1{6}.</e:formula>
|
2171
|
-
</td>
|
2172
|
-
<td class="e-text-right"><span class="e-nowrap"/></td>
|
2173
|
-
</tr>
|
2174
|
-
</tbody>
|
2175
|
-
</table><e:localization lang="fi-FI" exam-type="normal"><hr class="e-mrg-b-2"/>
|
2176
|
-
<table class="e-table e-width-full e-table--borderless e-table--zebra">
|
2177
|
-
<tbody>
|
2178
|
-
<tr>
|
2179
|
-
<td>Tarkastellaan tahkoa, joka on neliö. Tahkolla on kahdeksankulmio ja kulmista poistetaan suorakulmaiset kolmiot.
|
2180
|
-
</td>
|
2181
|
-
<td class="e-text-right"><span class="e-nowrap">1 p.</span></td>
|
2182
|
-
</tr>
|
2183
|
-
<tr>
|
2184
|
-
<td>Jos kulmien suorakulmaisten kolmioiden kateetit ovat <e:formula>x</e:formula> ja <e:formula>x,</e:formula> niin hypotenuusa on <e:formula>2-2x,</e:formula> jolloin <e:formula>2-2x=\sqrt{2}x,</e:formula> eli <e:formula>x=\frac{2}{2+\sqrt{2}}=2-\sqrt2.</e:formula>
|
2185
|
-
</td>
|
2186
|
-
<td class="e-text-right">1 p.</td>
|
2187
|
-
</tr>
|
2188
|
-
<tr>
|
2189
|
-
<td>Kahdeksankulmion ala on <e:formula>4-4\cdot \frac{1}{2} (2-\sqrt{2})^2=4-2(2-\sqrt{2})^2.</e:formula>
|
2190
|
-
</td>
|
2191
|
-
<td class="e-text-right">1 p.</td>
|
2192
|
-
</tr>
|
2193
|
-
<tr>
|
2194
|
-
<td>Kuutiosta poistettuun nurkkaan muodostuvan tasasivuisen kolmion sivun pituus on <e:formula>2-2x</e:formula> ja sen pinta-ala on <e:formula>\frac{1}{2}\cdot \frac{\sqrt{3}}{2}(2-2x)^2=3(\sqrt{2}-1)^2.</e:formula>
|
2195
|
-
</td>
|
2196
|
-
<td class="e-text-right"><span class="e-nowrap">1 p.</span></td>
|
2197
|
-
</tr>
|
2198
|
-
<tr>
|
2199
|
-
<td>Koko kappaleen ala on <span class="e-nowrap"><e:formula>6(4-2(2-\sqrt{2})^2)+8\cdot \sqrt{3}(\sqrt{2}-1)^2\approx 22{,}25\ldots\approx
|
2200
|
-
22</e:formula> (cm<e:formula>^2</e:formula>).</span>
|
2201
|
-
</td>
|
2202
|
-
<td class="e-text-right"><span class="e-nowrap">2 p.</span></td>
|
2203
|
-
</tr>
|
2204
|
-
</tbody>
|
2205
|
-
</table><hr class="e-mrg-b-2"/>
|
2206
|
-
<table class="e-table e-width-full e-table--borderless e-table--zebra">
|
2207
|
-
<tbody>
|
2208
|
-
<tr>
|
2209
|
-
<td>Tehtävän voi ratkaista myös ohjelmistolla.
|
2210
|
-
</td>
|
2211
|
-
<td class="e-text-right"><span class="e-nowrap"/></td>
|
2212
|
-
</tr>
|
2213
|
-
</tbody>
|
2214
|
-
</table></e:localization>
|
2215
|
-
</e:localization>
|
2216
|
-
|
2217
|
-
<e:localization lang="sv-FI">
|
2218
|
-
<table class="e-table e-width-full e-table--borderless e-table--zebra">
|
2219
|
-
<tbody>
|
2220
|
-
<tr>
|
2221
|
-
<td>Kubens ursprungliga volym är <e:formula>8.</e:formula>
|
2222
|
-
</td>
|
2223
|
-
<td class="e-text-right"><span class="e-nowrap">1 p.</span></td>
|
2224
|
-
</tr>
|
2225
|
-
<tr>
|
2226
|
-
<td>Från kuben avlägsnas <e:formula>8</e:formula> pyramider (antalet hörn).
|
2227
|
-
</td>
|
2228
|
-
<td class="e-text-right"><span class="e-nowrap"/></td>
|
2229
|
-
</tr>
|
2230
|
-
<tr>
|
2231
|
-
<td>Pyramidens botten är en liksidig triangel, vars sidas längd är <e:formula>\sqrt{2}</e:formula> och area <e:formula>\frac{1}{2}\cdot (\sqrt{2})^2\cdot \frac{\sqrt{3}}{2}=\frac{\sqrt{3}}{2}.</e:formula>
|
2232
|
-
</td>
|
2233
|
-
<td class="e-text-right"><span class="e-nowrap">1 p.</span></td>
|
2234
|
-
</tr>
|
2235
|
-
<tr>
|
2236
|
-
<td>Pyramidens sidor är rätvinkliga trianglar, som har sidorna <e:formula>1,</e:formula> <e:formula>1,</e:formula> <e:formula>\sqrt{2}.</e:formula>
|
2237
|
-
</td>
|
2238
|
-
<td class="e-text-right"><span class="e-nowrap">1 p.</span></td>
|
2239
|
-
</tr>
|
2240
|
-
<tr>
|
2241
|
-
<td>Pyramidens topp ligger ovanför den liksidiga triangelns mittpunkt. Vi granskar den rätvinkliga triangel där ena kateten är pyramidens höjd, hypotenusan är sidotriangelns höjd <e:formula>\frac{1}{\sqrt{2}}</e:formula> och den andra katetens längd är avståndet mellan mittpunkten och den liksidiga triangelns sida <e:formula>\frac{1}{\sqrt{6}}.</e:formula> Med hjälp av Pythagoras sats är katetens längd alltså <e:formula>\sqrt{\big(\frac{1}{\sqrt{2}}\big)^2-\big(\frac{1}{\sqrt{6}}\big)^2}=\sqrt{\frac12-\frac{1}{6}}=\frac{1}{\sqrt{3}}.</e:formula>
|
2242
|
-
</td>
|
2243
|
-
<td class="e-text-right"><span class="e-nowrap">1 p.</span></td>
|
2244
|
-
</tr>
|
2245
|
-
<tr>
|
2246
|
-
<td>Volymen av en pyramid är alltså <e:formula>\frac{1}{3}\cdot \frac{1}{\sqrt{3}}\cdot \frac{\sqrt{3}}{2}=\frac{1}{6}.</e:formula>
|
2247
|
-
</td>
|
2248
|
-
<td class="e-text-right"><span class="e-nowrap">1 p.</span></td>
|
2249
|
-
</tr>
|
2250
|
-
<tr>
|
2251
|
-
<td>Hela kroppens volym är därmed <span class="e-nowrap"><e:formula>8-8\cdot \frac{1}{6}=6\frac{2}{3}\approx 6{,}7</e:formula> (cm<e:formula>^3</e:formula>).</span>
|
2252
|
-
</td>
|
2253
|
-
<td class="e-text-right"><span class="e-nowrap">1 p.</span></td>
|
2254
|
-
</tr>
|
2255
|
-
<tr>
|
2256
|
-
<td>Pyramidens volym kan också beräknas som en kon, vars basyta har arean <e:formula>\frac12 \cdot 1\cdot 1</e:formula> och höjden <e:formula>1.</e:formula> Därmed är volymen <e:formula>\frac13\cdot \frac12 = \frac1{6}.</e:formula>
|
2257
|
-
</td>
|
2258
|
-
<td class="e-text-right"><span class="e-nowrap"/></td>
|
2259
|
-
</tr>
|
2260
|
-
</tbody>
|
2261
|
-
</table><hr class="e-mrg-b-2"/>
|
2262
|
-
<table class="e-table e-width-full e-table--borderless e-table--zebra">
|
2263
|
-
<tbody>
|
2264
|
-
<tr>
|
2265
|
-
<td>Vi granskar en kvadratisk sidoyta. Sidoytan blir en åttahörning då man från hörnen avlägsnar rätvinkliga trianglar.
|
2266
|
-
</td>
|
2267
|
-
<td class="e-text-right"><span class="e-nowrap">1 p.</span></td>
|
2268
|
-
</tr>
|
2269
|
-
<tr>
|
2270
|
-
<td>Om kateterna i hörnens rätvinkliga trianglar är <e:formula>x</e:formula> och <e:formula>x,</e:formula> är hypotenusan <e:formula>2-2x,</e:formula> varvid <e:formula>2-2x=\sqrt{2}x,</e:formula> dvs. <e:formula>x=\frac{2}{2+\sqrt{2}}=2-\sqrt2.</e:formula>
|
2271
|
-
</td>
|
2272
|
-
<td class="e-text-right">1 p.</td>
|
2273
|
-
</tr>
|
2274
|
-
<tr>
|
2275
|
-
<td>Åttahörningens area är <e:formula>4-4\cdot \frac{1}{2} (2-\sqrt{2})^2=4-2(2-\sqrt{2})^2.</e:formula>
|
2276
|
-
</td>
|
2277
|
-
<td class="e-text-right">1 p.</td>
|
2278
|
-
</tr>
|
2279
|
-
<tr>
|
2280
|
-
<td>Längden på sidan av den liksidiga triangel som avlägsnats från kubens hörn är <e:formula>2-2x</e:formula> och dess area är <e:formula>\frac{1}{2}\cdot \frac{\sqrt{3}}{2}(2-2x)^2=3(\sqrt{2}-1)^2.</e:formula>
|
2281
|
-
</td>
|
2282
|
-
<td class="e-text-right"><span class="e-nowrap">1 p.</span></td>
|
2283
|
-
</tr>
|
2284
|
-
<tr>
|
2285
|
-
<td>Hela kroppens area är <span class="e-nowrap"><e:formula>6(4-2(2-\sqrt{2})^2)+8\cdot \sqrt{3}(\sqrt{2}-1)^2\approx 22{,}25\ldots\approx
|
2286
|
-
22</e:formula> (cm<e:formula>^2</e:formula>).</span>
|
2287
|
-
</td>
|
2288
|
-
<td class="e-text-right"><span class="e-nowrap">2 p.</span></td>
|
2289
|
-
</tr>
|
2290
|
-
</tbody>
|
2291
|
-
</table><hr class="e-mrg-b-2"/>
|
2292
|
-
<table class="e-table e-width-full e-table--borderless e-table--zebra">
|
2293
|
-
<tbody>
|
2294
|
-
<tr>
|
2295
|
-
<td>Uppgiften kan också lösas med hjälp av programvara.
|
2296
|
-
</td>
|
2297
|
-
<td class="e-text-right"><span class="e-nowrap"/></td>
|
2298
|
-
</tr>
|
2299
|
-
</tbody>
|
2300
|
-
</table>
|
2301
|
-
</e:localization>
|
2302
|
-
</e:answer-grading-instruction>
|
2303
|
-
</e:text-answer>
|
2304
|
-
</e:question>
|
2305
|
-
|
2306
|
-
</e:section>
|
2307
|
-
</e:exam>
|