@brizz/sdk 0.1.2 → 0.1.3-rc.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/dist/index.cjs +153 -966
- package/dist/index.cjs.map +1 -1
- package/dist/index.d.cts +1 -40
- package/dist/index.d.ts +1 -40
- package/dist/index.js +148 -963
- package/dist/index.js.map +1 -1
- package/dist/preload.cjs +145 -956
- package/dist/preload.cjs.map +1 -1
- package/dist/preload.js +143 -957
- package/dist/preload.js.map +1 -1
- package/package.json +29 -25
package/dist/preload.js
CHANGED
|
@@ -234,941 +234,6 @@ import { PineconeInstrumentation } from "@traceloop/instrumentation-pinecone";
|
|
|
234
234
|
import { QdrantInstrumentation } from "@traceloop/instrumentation-qdrant";
|
|
235
235
|
import { TogetherInstrumentation } from "@traceloop/instrumentation-together";
|
|
236
236
|
import { VertexAIInstrumentation } from "@traceloop/instrumentation-vertexai";
|
|
237
|
-
|
|
238
|
-
// src/internal/instrumentation/vercel-ai/instrumentation.ts
|
|
239
|
-
import {
|
|
240
|
-
InstrumentationBase,
|
|
241
|
-
InstrumentationNodeModuleDefinition
|
|
242
|
-
} from "@opentelemetry/instrumentation";
|
|
243
|
-
|
|
244
|
-
// src/internal/instrumentation/vercel-ai/patchers/base-patcher.ts
|
|
245
|
-
import { SpanKind, SpanStatusCode } from "@opentelemetry/api";
|
|
246
|
-
|
|
247
|
-
// src/internal/instrumentation/vercel-ai/semconv.ts
|
|
248
|
-
var ATTR_GEN_AI_SYSTEM = "gen_ai.system";
|
|
249
|
-
var ATTR_GEN_AI_OPERATION_NAME = "gen_ai.operation.name";
|
|
250
|
-
var ATTR_GEN_AI_REQUEST_MODEL = "gen_ai.request.model";
|
|
251
|
-
var ATTR_GEN_AI_REQUEST_MAX_TOKENS = "gen_ai.request.max_tokens";
|
|
252
|
-
var ATTR_GEN_AI_REQUEST_TEMPERATURE = "gen_ai.request.temperature";
|
|
253
|
-
var ATTR_GEN_AI_REQUEST_TOP_P = "gen_ai.request.top_p";
|
|
254
|
-
var ATTR_GEN_AI_REQUEST_TOP_K = "gen_ai.request.top_k";
|
|
255
|
-
var ATTR_GEN_AI_REQUEST_STOP_SEQUENCES = "gen_ai.request.stop_sequences";
|
|
256
|
-
var ATTR_GEN_AI_REQUEST_FREQUENCY_PENALTY = "gen_ai.request.frequency_penalty";
|
|
257
|
-
var ATTR_GEN_AI_REQUEST_PRESENCE_PENALTY = "gen_ai.request.presence_penalty";
|
|
258
|
-
var ATTR_GEN_AI_RESPONSE_ID = "gen_ai.response.id";
|
|
259
|
-
var ATTR_GEN_AI_RESPONSE_MODEL = "gen_ai.response.model";
|
|
260
|
-
var ATTR_GEN_AI_RESPONSE_FINISH_REASONS = "gen_ai.response.finish_reasons";
|
|
261
|
-
var ATTR_GEN_AI_TOKEN_TYPE = "gen_ai.token.type";
|
|
262
|
-
var ATTR_GEN_AI_PROMPT = "gen_ai.prompt";
|
|
263
|
-
var ATTR_GEN_AI_COMPLETION = "gen_ai.completion";
|
|
264
|
-
var ATTR_GEN_AI_OPENAI_API_BASE = "gen_ai.openai.api_base";
|
|
265
|
-
var ATTR_EVENT_NAME = "event.name";
|
|
266
|
-
var EVENT_GEN_AI_USER_MESSAGE = "gen_ai.user.message";
|
|
267
|
-
var EVENT_GEN_AI_ASSISTANT_MESSAGE = "gen_ai.assistant.message";
|
|
268
|
-
var EVENT_GEN_AI_SYSTEM_MESSAGE = "gen_ai.system.message";
|
|
269
|
-
var EVENT_GEN_AI_TOOL_MESSAGE = "gen_ai.tool.message";
|
|
270
|
-
var METRIC_GEN_AI_CLIENT_OPERATION_DURATION = "gen_ai.client.operation.duration";
|
|
271
|
-
var METRIC_GEN_AI_CLIENT_TOKEN_USAGE = "gen_ai.client.token.usage";
|
|
272
|
-
var OPERATION_NAME_CHAT = "chat";
|
|
273
|
-
var OPERATION_NAME_EMBEDDINGS = "embeddings";
|
|
274
|
-
var TOKEN_TYPE_INPUT = "input";
|
|
275
|
-
var TOKEN_TYPE_OUTPUT = "output";
|
|
276
|
-
var PROVIDER_OPENAI = "openai";
|
|
277
|
-
var PROVIDER_ANTHROPIC = "anthropic";
|
|
278
|
-
var PROVIDER_GOOGLE = "google";
|
|
279
|
-
var PROVIDER_AMAZON = "amazon";
|
|
280
|
-
var PROVIDER_AZURE = "azure";
|
|
281
|
-
var PROVIDER_VERCEL = "vercel";
|
|
282
|
-
var PROVIDER_UNKNOWN = "unknown";
|
|
283
|
-
var SPAN_NAME_GEN_AI_CHAT = "gen_ai.chat";
|
|
284
|
-
var SPAN_NAME_GEN_AI_EMBEDDINGS = "gen_ai.embeddings";
|
|
285
|
-
|
|
286
|
-
// src/internal/instrumentation/vercel-ai/utils.ts
|
|
287
|
-
function detectProvider(model) {
|
|
288
|
-
if (typeof model === "object" && model !== null) {
|
|
289
|
-
const modelObj = model;
|
|
290
|
-
if (modelObj.provider) {
|
|
291
|
-
return {
|
|
292
|
-
system: normalizeProviderName(modelObj.provider),
|
|
293
|
-
apiBase: extractApiBase(modelObj)
|
|
294
|
-
};
|
|
295
|
-
}
|
|
296
|
-
if (modelObj.modelId) {
|
|
297
|
-
return detectProviderFromModelId(modelObj.modelId);
|
|
298
|
-
}
|
|
299
|
-
}
|
|
300
|
-
if (typeof model === "string") {
|
|
301
|
-
return detectProviderFromModelId(model);
|
|
302
|
-
}
|
|
303
|
-
return { system: PROVIDER_UNKNOWN };
|
|
304
|
-
}
|
|
305
|
-
function detectProviderFromModelId(modelId) {
|
|
306
|
-
const lowerModel = modelId.toLowerCase();
|
|
307
|
-
if (lowerModel.startsWith("gpt-") || lowerModel.startsWith("text-davinci-") || lowerModel.startsWith("text-embedding-") || lowerModel.startsWith("dall-e") || lowerModel.startsWith("whisper-") || lowerModel.startsWith("tts-")) {
|
|
308
|
-
return { system: PROVIDER_OPENAI };
|
|
309
|
-
}
|
|
310
|
-
if (lowerModel.startsWith("claude-")) {
|
|
311
|
-
return { system: PROVIDER_ANTHROPIC };
|
|
312
|
-
}
|
|
313
|
-
if (lowerModel.startsWith("gemini-") || lowerModel.startsWith("palm-") || lowerModel.includes("bison") || lowerModel.includes("gecko")) {
|
|
314
|
-
return { system: PROVIDER_GOOGLE };
|
|
315
|
-
}
|
|
316
|
-
if (lowerModel.startsWith("amazon.") || lowerModel.startsWith("anthropic.claude-") || lowerModel.startsWith("ai21.") || lowerModel.startsWith("cohere.") || lowerModel.startsWith("meta.llama")) {
|
|
317
|
-
return { system: PROVIDER_AMAZON };
|
|
318
|
-
}
|
|
319
|
-
if (lowerModel.includes("azure") || lowerModel.includes(".openai.azure.com")) {
|
|
320
|
-
return { system: PROVIDER_AZURE };
|
|
321
|
-
}
|
|
322
|
-
const parts = modelId.split(/[-._/]/);
|
|
323
|
-
if (parts.length > 0 && parts[0]) {
|
|
324
|
-
return { system: normalizeProviderName(parts[0]) };
|
|
325
|
-
}
|
|
326
|
-
return { system: PROVIDER_UNKNOWN };
|
|
327
|
-
}
|
|
328
|
-
function normalizeProviderName(provider) {
|
|
329
|
-
const normalized = provider.toLowerCase().trim();
|
|
330
|
-
switch (normalized) {
|
|
331
|
-
case "openai":
|
|
332
|
-
case "open-ai":
|
|
333
|
-
case "open_ai": {
|
|
334
|
-
return PROVIDER_OPENAI;
|
|
335
|
-
}
|
|
336
|
-
case "anthropic":
|
|
337
|
-
case "claude": {
|
|
338
|
-
return PROVIDER_ANTHROPIC;
|
|
339
|
-
}
|
|
340
|
-
case "google":
|
|
341
|
-
case "vertex":
|
|
342
|
-
case "vertexai":
|
|
343
|
-
case "vertex-ai":
|
|
344
|
-
case "gemini": {
|
|
345
|
-
return PROVIDER_GOOGLE;
|
|
346
|
-
}
|
|
347
|
-
case "amazon":
|
|
348
|
-
case "aws":
|
|
349
|
-
case "bedrock":
|
|
350
|
-
case "amazon-bedrock": {
|
|
351
|
-
return PROVIDER_AMAZON;
|
|
352
|
-
}
|
|
353
|
-
case "azure":
|
|
354
|
-
case "azure-openai":
|
|
355
|
-
case "microsoft": {
|
|
356
|
-
return PROVIDER_AZURE;
|
|
357
|
-
}
|
|
358
|
-
case "vercel":
|
|
359
|
-
case "vercel-ai": {
|
|
360
|
-
return PROVIDER_VERCEL;
|
|
361
|
-
}
|
|
362
|
-
default: {
|
|
363
|
-
return normalized;
|
|
364
|
-
}
|
|
365
|
-
}
|
|
366
|
-
}
|
|
367
|
-
function extractApiBase(model) {
|
|
368
|
-
if (typeof model === "object" && model !== null) {
|
|
369
|
-
const anyModel = model;
|
|
370
|
-
return anyModel.apiBase || anyModel.baseURL || anyModel.endpoint || void 0;
|
|
371
|
-
}
|
|
372
|
-
return void 0;
|
|
373
|
-
}
|
|
374
|
-
function extractModelId(model) {
|
|
375
|
-
if (typeof model === "string") {
|
|
376
|
-
return model;
|
|
377
|
-
}
|
|
378
|
-
if (typeof model === "object" && model !== null) {
|
|
379
|
-
return model.modelId || "unknown";
|
|
380
|
-
}
|
|
381
|
-
return "unknown";
|
|
382
|
-
}
|
|
383
|
-
function messagesToAttributes(messages, prefix, captureContent) {
|
|
384
|
-
const attributes = {};
|
|
385
|
-
for (const [index, msg] of messages.entries()) {
|
|
386
|
-
const baseKey = `${prefix}.${index}`;
|
|
387
|
-
attributes[`${baseKey}.role`] = msg.role;
|
|
388
|
-
if (captureContent && msg.content) {
|
|
389
|
-
if (typeof msg.content === "string") {
|
|
390
|
-
attributes[`${baseKey}.content`] = msg.content;
|
|
391
|
-
} else if (Array.isArray(msg.content)) {
|
|
392
|
-
const textParts = msg.content.filter((part) => part.type === "text" && part.text).map((part) => part.text).join(" ");
|
|
393
|
-
if (textParts) {
|
|
394
|
-
attributes[`${baseKey}.content`] = textParts;
|
|
395
|
-
}
|
|
396
|
-
}
|
|
397
|
-
}
|
|
398
|
-
if (msg.toolInvocations && msg.toolInvocations.length > 0) {
|
|
399
|
-
attributes[`${baseKey}.tool_calls`] = msg.toolInvocations.length;
|
|
400
|
-
}
|
|
401
|
-
}
|
|
402
|
-
return attributes;
|
|
403
|
-
}
|
|
404
|
-
function promptToAttributes(prompt, captureContent) {
|
|
405
|
-
const attributes = {};
|
|
406
|
-
attributes[`${ATTR_GEN_AI_PROMPT}.0.role`] = "user";
|
|
407
|
-
if (captureContent) {
|
|
408
|
-
attributes[`${ATTR_GEN_AI_PROMPT}.0.content`] = prompt;
|
|
409
|
-
}
|
|
410
|
-
return attributes;
|
|
411
|
-
}
|
|
412
|
-
function completionToAttributes(text, finishReason, captureContent) {
|
|
413
|
-
const attributes = {};
|
|
414
|
-
attributes[`${ATTR_GEN_AI_COMPLETION}.0.role`] = "assistant";
|
|
415
|
-
if (captureContent) {
|
|
416
|
-
attributes[`${ATTR_GEN_AI_COMPLETION}.0.content`] = text;
|
|
417
|
-
}
|
|
418
|
-
if (finishReason) {
|
|
419
|
-
attributes[`${ATTR_GEN_AI_COMPLETION}.0.finish_reason`] = finishReason;
|
|
420
|
-
}
|
|
421
|
-
return attributes;
|
|
422
|
-
}
|
|
423
|
-
function tokenUsageToAttributes(usage) {
|
|
424
|
-
if (!usage) {
|
|
425
|
-
return {};
|
|
426
|
-
}
|
|
427
|
-
const attributes = {};
|
|
428
|
-
if (usage.inputTokens !== void 0) {
|
|
429
|
-
attributes["gen_ai.usage.prompt_tokens"] = usage.inputTokens;
|
|
430
|
-
attributes["gen_ai.usage.input_tokens"] = usage.inputTokens;
|
|
431
|
-
attributes["llm.usage.prompt_tokens"] = usage.inputTokens;
|
|
432
|
-
} else if (usage.promptTokens !== void 0) {
|
|
433
|
-
attributes["gen_ai.usage.prompt_tokens"] = usage.promptTokens;
|
|
434
|
-
attributes["gen_ai.usage.input_tokens"] = usage.promptTokens;
|
|
435
|
-
attributes["llm.usage.prompt_tokens"] = usage.promptTokens;
|
|
436
|
-
}
|
|
437
|
-
if (usage.outputTokens !== void 0) {
|
|
438
|
-
attributes["gen_ai.usage.completion_tokens"] = usage.outputTokens;
|
|
439
|
-
attributes["gen_ai.usage.output_tokens"] = usage.outputTokens;
|
|
440
|
-
attributes["llm.usage.completion_tokens"] = usage.outputTokens;
|
|
441
|
-
} else if (usage.completionTokens !== void 0) {
|
|
442
|
-
attributes["gen_ai.usage.completion_tokens"] = usage.completionTokens;
|
|
443
|
-
attributes["gen_ai.usage.output_tokens"] = usage.completionTokens;
|
|
444
|
-
attributes["llm.usage.completion_tokens"] = usage.completionTokens;
|
|
445
|
-
}
|
|
446
|
-
if (usage.totalTokens === void 0) {
|
|
447
|
-
const inputTokens = usage.inputTokens || usage.promptTokens;
|
|
448
|
-
const outputTokens = usage.outputTokens || usage.completionTokens;
|
|
449
|
-
if (inputTokens !== void 0 && outputTokens !== void 0) {
|
|
450
|
-
const totalTokens = inputTokens + outputTokens;
|
|
451
|
-
attributes["gen_ai.usage.total_tokens"] = totalTokens;
|
|
452
|
-
attributes["llm.usage.total_tokens"] = totalTokens;
|
|
453
|
-
}
|
|
454
|
-
} else {
|
|
455
|
-
attributes["gen_ai.usage.total_tokens"] = usage.totalTokens;
|
|
456
|
-
attributes["llm.usage.total_tokens"] = usage.totalTokens;
|
|
457
|
-
}
|
|
458
|
-
return attributes;
|
|
459
|
-
}
|
|
460
|
-
function shouldRecordError(error) {
|
|
461
|
-
if (error instanceof Error) {
|
|
462
|
-
const message = error.message.toLowerCase();
|
|
463
|
-
if (message.includes("abort") || message.includes("cancel")) {
|
|
464
|
-
return false;
|
|
465
|
-
}
|
|
466
|
-
}
|
|
467
|
-
return true;
|
|
468
|
-
}
|
|
469
|
-
function getEnvBool(name) {
|
|
470
|
-
const value = process.env[name];
|
|
471
|
-
if (value === void 0) {
|
|
472
|
-
return void 0;
|
|
473
|
-
}
|
|
474
|
-
return value.toLowerCase() === "true" || value === "1";
|
|
475
|
-
}
|
|
476
|
-
|
|
477
|
-
// src/internal/instrumentation/vercel-ai/patchers/base-patcher.ts
|
|
478
|
-
var BasePatcher = class {
|
|
479
|
-
constructor(context8) {
|
|
480
|
-
this.context = context8;
|
|
481
|
-
}
|
|
482
|
-
createSpan(spanName, params, operationName, additionalAttributes) {
|
|
483
|
-
const provider = detectProvider(params.model);
|
|
484
|
-
const modelId = extractModelId(params.model);
|
|
485
|
-
const span = this.context.tracer.startSpan(spanName, {
|
|
486
|
-
kind: SpanKind.CLIENT,
|
|
487
|
-
attributes: {
|
|
488
|
-
[ATTR_GEN_AI_SYSTEM]: provider.system,
|
|
489
|
-
[ATTR_GEN_AI_OPERATION_NAME]: operationName,
|
|
490
|
-
[ATTR_GEN_AI_REQUEST_MODEL]: modelId,
|
|
491
|
-
...params.maxTokens && { [ATTR_GEN_AI_REQUEST_MAX_TOKENS]: params.maxTokens },
|
|
492
|
-
...params.temperature !== void 0 && {
|
|
493
|
-
[ATTR_GEN_AI_REQUEST_TEMPERATURE]: params.temperature
|
|
494
|
-
},
|
|
495
|
-
...params.topP !== void 0 && { [ATTR_GEN_AI_REQUEST_TOP_P]: params.topP },
|
|
496
|
-
...params.topK !== void 0 && { [ATTR_GEN_AI_REQUEST_TOP_K]: params.topK },
|
|
497
|
-
...params.frequencyPenalty !== void 0 && {
|
|
498
|
-
[ATTR_GEN_AI_REQUEST_FREQUENCY_PENALTY]: params.frequencyPenalty
|
|
499
|
-
},
|
|
500
|
-
...params.presencePenalty !== void 0 && {
|
|
501
|
-
[ATTR_GEN_AI_REQUEST_PRESENCE_PENALTY]: params.presencePenalty
|
|
502
|
-
},
|
|
503
|
-
...params.stopSequences && {
|
|
504
|
-
[ATTR_GEN_AI_REQUEST_STOP_SEQUENCES]: params.stopSequences
|
|
505
|
-
},
|
|
506
|
-
...provider.apiBase && { [ATTR_GEN_AI_OPENAI_API_BASE]: provider.apiBase },
|
|
507
|
-
...additionalAttributes
|
|
508
|
-
}
|
|
509
|
-
});
|
|
510
|
-
return { span, provider, modelId };
|
|
511
|
-
}
|
|
512
|
-
handleError(error, span) {
|
|
513
|
-
if (shouldRecordError(error)) {
|
|
514
|
-
span.recordException(error);
|
|
515
|
-
span.setStatus({ code: SpanStatusCode.ERROR, message: error.message });
|
|
516
|
-
}
|
|
517
|
-
}
|
|
518
|
-
finalizeDuration(span, startTime, config, provider, modelId, operationName) {
|
|
519
|
-
if (config.enableMetrics) {
|
|
520
|
-
const duration = (globalThis.performance.now() - startTime) / 1e3;
|
|
521
|
-
this.context.recordDurationMetric(duration, provider.system, modelId, operationName);
|
|
522
|
-
}
|
|
523
|
-
span.end();
|
|
524
|
-
}
|
|
525
|
-
};
|
|
526
|
-
|
|
527
|
-
// src/internal/instrumentation/vercel-ai/patchers/generate-text-patcher.ts
|
|
528
|
-
import { context, SpanStatusCode as SpanStatusCode2, trace } from "@opentelemetry/api";
|
|
529
|
-
var GenerateTextPatcher = class extends BasePatcher {
|
|
530
|
-
patch(original) {
|
|
531
|
-
return async (params) => {
|
|
532
|
-
const config = this.context.getConfig();
|
|
533
|
-
const startTime = globalThis.performance.now();
|
|
534
|
-
const { span, provider, modelId } = this.createSpan(
|
|
535
|
-
SPAN_NAME_GEN_AI_CHAT,
|
|
536
|
-
params,
|
|
537
|
-
OPERATION_NAME_CHAT
|
|
538
|
-
);
|
|
539
|
-
if (params.prompt) {
|
|
540
|
-
span.setAttributes(
|
|
541
|
-
promptToAttributes(params.prompt, config.captureMessageContent || false)
|
|
542
|
-
);
|
|
543
|
-
} else if (params.messages) {
|
|
544
|
-
span.setAttributes(
|
|
545
|
-
messagesToAttributes(
|
|
546
|
-
params.messages,
|
|
547
|
-
"gen_ai.prompt",
|
|
548
|
-
config.captureMessageContent || false
|
|
549
|
-
)
|
|
550
|
-
);
|
|
551
|
-
if (config.emitEvents) {
|
|
552
|
-
this.context.emitMessageEvents(params.messages, provider.system, span);
|
|
553
|
-
}
|
|
554
|
-
}
|
|
555
|
-
try {
|
|
556
|
-
const result = await context.with(
|
|
557
|
-
trace.setSpan(context.active(), span),
|
|
558
|
-
() => original(params)
|
|
559
|
-
);
|
|
560
|
-
if (result.response) {
|
|
561
|
-
span.setAttributes({
|
|
562
|
-
...result.response.id && { [ATTR_GEN_AI_RESPONSE_ID]: result.response.id },
|
|
563
|
-
...result.response.model && { [ATTR_GEN_AI_RESPONSE_MODEL]: result.response.model }
|
|
564
|
-
});
|
|
565
|
-
}
|
|
566
|
-
if (result.finishReason) {
|
|
567
|
-
span.setAttribute(ATTR_GEN_AI_RESPONSE_FINISH_REASONS, [result.finishReason]);
|
|
568
|
-
}
|
|
569
|
-
span.setAttributes(
|
|
570
|
-
completionToAttributes(
|
|
571
|
-
result.text,
|
|
572
|
-
result.finishReason,
|
|
573
|
-
config.captureMessageContent || false
|
|
574
|
-
)
|
|
575
|
-
);
|
|
576
|
-
const usage = result.usage || result.totalUsage || result.steps?.[0]?.usage;
|
|
577
|
-
if (usage) {
|
|
578
|
-
span.setAttributes(tokenUsageToAttributes(usage));
|
|
579
|
-
if (config.enableMetrics) {
|
|
580
|
-
this.context.recordTokenMetrics(usage, provider.system, modelId);
|
|
581
|
-
}
|
|
582
|
-
}
|
|
583
|
-
if (config.emitEvents) {
|
|
584
|
-
this.context.emitAssistantMessageEvent(result.text, provider.system, span);
|
|
585
|
-
}
|
|
586
|
-
span.setStatus({ code: SpanStatusCode2.OK });
|
|
587
|
-
return result;
|
|
588
|
-
} catch (error) {
|
|
589
|
-
this.handleError(error, span);
|
|
590
|
-
throw error;
|
|
591
|
-
} finally {
|
|
592
|
-
this.finalizeDuration(span, startTime, config, provider, modelId, OPERATION_NAME_CHAT);
|
|
593
|
-
}
|
|
594
|
-
};
|
|
595
|
-
}
|
|
596
|
-
};
|
|
597
|
-
|
|
598
|
-
// src/internal/instrumentation/vercel-ai/patchers/stream-text-patcher.ts
|
|
599
|
-
import { context as context2, trace as trace2 } from "@opentelemetry/api";
|
|
600
|
-
var StreamTextPatcher = class extends BasePatcher {
|
|
601
|
-
constructor(context8, streamHandler) {
|
|
602
|
-
super(context8);
|
|
603
|
-
this.streamHandler = streamHandler;
|
|
604
|
-
}
|
|
605
|
-
patch(original) {
|
|
606
|
-
return async (params) => {
|
|
607
|
-
const config = this.context.getConfig();
|
|
608
|
-
const startTime = globalThis.performance.now();
|
|
609
|
-
const { span, provider, modelId } = this.createSpan(
|
|
610
|
-
SPAN_NAME_GEN_AI_CHAT,
|
|
611
|
-
params,
|
|
612
|
-
OPERATION_NAME_CHAT,
|
|
613
|
-
{ "gen_ai.streaming": true }
|
|
614
|
-
);
|
|
615
|
-
if (params.prompt) {
|
|
616
|
-
span.setAttributes(
|
|
617
|
-
promptToAttributes(params.prompt, config.captureMessageContent || false)
|
|
618
|
-
);
|
|
619
|
-
} else if (params.messages) {
|
|
620
|
-
span.setAttributes(
|
|
621
|
-
messagesToAttributes(
|
|
622
|
-
params.messages,
|
|
623
|
-
"gen_ai.prompt",
|
|
624
|
-
config.captureMessageContent || false
|
|
625
|
-
)
|
|
626
|
-
);
|
|
627
|
-
if (config.emitEvents) {
|
|
628
|
-
this.context.emitMessageEvents(params.messages, provider.system, span);
|
|
629
|
-
}
|
|
630
|
-
}
|
|
631
|
-
try {
|
|
632
|
-
const stream = await context2.with(
|
|
633
|
-
trace2.setSpan(context2.active(), span),
|
|
634
|
-
() => original(params)
|
|
635
|
-
);
|
|
636
|
-
return this.streamHandler.wrapStream(stream, span, config, provider, modelId, startTime);
|
|
637
|
-
} catch (error) {
|
|
638
|
-
this.handleError(error, span);
|
|
639
|
-
span.end();
|
|
640
|
-
throw error;
|
|
641
|
-
}
|
|
642
|
-
};
|
|
643
|
-
}
|
|
644
|
-
};
|
|
645
|
-
|
|
646
|
-
// src/internal/instrumentation/vercel-ai/patchers/embeddings-patcher.ts
|
|
647
|
-
import { context as context3, SpanStatusCode as SpanStatusCode3, trace as trace3 } from "@opentelemetry/api";
|
|
648
|
-
var EmbeddingsPatcher = class extends BasePatcher {
|
|
649
|
-
patch(original, isMany = false) {
|
|
650
|
-
return async (params) => {
|
|
651
|
-
const config = this.context.getConfig();
|
|
652
|
-
const startTime = globalThis.performance.now();
|
|
653
|
-
const additionalAttributes = isMany ? { "gen_ai.embeddings.count": params.values ? params.values.length : 0 } : {};
|
|
654
|
-
const { span, provider, modelId } = this.createSpan(
|
|
655
|
-
SPAN_NAME_GEN_AI_EMBEDDINGS,
|
|
656
|
-
params,
|
|
657
|
-
OPERATION_NAME_EMBEDDINGS,
|
|
658
|
-
additionalAttributes
|
|
659
|
-
);
|
|
660
|
-
if (!isMany && config.captureMessageContent && params.value) {
|
|
661
|
-
span.setAttribute("gen_ai.prompt.0.content", params.value);
|
|
662
|
-
}
|
|
663
|
-
try {
|
|
664
|
-
const result = await context3.with(
|
|
665
|
-
trace3.setSpan(context3.active(), span),
|
|
666
|
-
() => original(params)
|
|
667
|
-
);
|
|
668
|
-
if (result.response) {
|
|
669
|
-
span.setAttributes({
|
|
670
|
-
...result.response.id && { [ATTR_GEN_AI_RESPONSE_ID]: result.response.id },
|
|
671
|
-
...result.response.model && { [ATTR_GEN_AI_RESPONSE_MODEL]: result.response.model }
|
|
672
|
-
});
|
|
673
|
-
}
|
|
674
|
-
if (isMany) {
|
|
675
|
-
if (result.embeddings && result.embeddings.length > 0 && result.embeddings[0]) {
|
|
676
|
-
span.setAttribute("gen_ai.response.embedding_dimensions", result.embeddings[0].length);
|
|
677
|
-
}
|
|
678
|
-
} else {
|
|
679
|
-
if (result.embedding) {
|
|
680
|
-
span.setAttribute("gen_ai.response.embedding_dimensions", result.embedding.length);
|
|
681
|
-
}
|
|
682
|
-
}
|
|
683
|
-
if (result.usage) {
|
|
684
|
-
span.setAttributes(tokenUsageToAttributes(result.usage));
|
|
685
|
-
if (config.enableMetrics) {
|
|
686
|
-
this.context.recordTokenMetrics(result.usage, provider.system, modelId);
|
|
687
|
-
}
|
|
688
|
-
}
|
|
689
|
-
span.setStatus({ code: SpanStatusCode3.OK });
|
|
690
|
-
return result;
|
|
691
|
-
} catch (error) {
|
|
692
|
-
this.handleError(error, span);
|
|
693
|
-
throw error;
|
|
694
|
-
} finally {
|
|
695
|
-
this.finalizeDuration(span, startTime, config, provider, modelId, OPERATION_NAME_EMBEDDINGS);
|
|
696
|
-
}
|
|
697
|
-
};
|
|
698
|
-
}
|
|
699
|
-
};
|
|
700
|
-
|
|
701
|
-
// src/internal/instrumentation/vercel-ai/stream-handler.ts
|
|
702
|
-
import { SpanStatusCode as SpanStatusCode4 } from "@opentelemetry/api";
|
|
703
|
-
var StreamHandler = class {
|
|
704
|
-
constructor(context8) {
|
|
705
|
-
this.context = context8;
|
|
706
|
-
}
|
|
707
|
-
wrapStream(stream, span, config, provider, modelId, startTime) {
|
|
708
|
-
const self = this;
|
|
709
|
-
let fullText = "";
|
|
710
|
-
let finishReason;
|
|
711
|
-
let usage;
|
|
712
|
-
let response;
|
|
713
|
-
const wrappedStream = new Proxy(stream, {
|
|
714
|
-
get(target, prop) {
|
|
715
|
-
if (prop === Symbol.asyncIterator) {
|
|
716
|
-
return async function* () {
|
|
717
|
-
try {
|
|
718
|
-
for await (const chunk of target) {
|
|
719
|
-
if (chunk.type === "text-delta" && chunk.textDelta) {
|
|
720
|
-
fullText += chunk.textDelta;
|
|
721
|
-
} else if (chunk.type === "finish") {
|
|
722
|
-
finishReason = chunk.finishReason;
|
|
723
|
-
usage = chunk.usage;
|
|
724
|
-
} else if (chunk.type === "response-metadata") {
|
|
725
|
-
response = chunk.response;
|
|
726
|
-
}
|
|
727
|
-
yield chunk;
|
|
728
|
-
}
|
|
729
|
-
} finally {
|
|
730
|
-
self.finalizeStream(
|
|
731
|
-
span,
|
|
732
|
-
config,
|
|
733
|
-
provider,
|
|
734
|
-
modelId,
|
|
735
|
-
startTime,
|
|
736
|
-
fullText,
|
|
737
|
-
finishReason,
|
|
738
|
-
usage,
|
|
739
|
-
response
|
|
740
|
-
);
|
|
741
|
-
}
|
|
742
|
-
};
|
|
743
|
-
}
|
|
744
|
-
if (prop === "textStream" || prop === "fullStream") {
|
|
745
|
-
const originalStream = target[prop];
|
|
746
|
-
return {
|
|
747
|
-
[Symbol.asyncIterator]: async function* () {
|
|
748
|
-
try {
|
|
749
|
-
for await (const chunk of originalStream) {
|
|
750
|
-
if (prop === "textStream") {
|
|
751
|
-
fullText += chunk;
|
|
752
|
-
}
|
|
753
|
-
yield chunk;
|
|
754
|
-
}
|
|
755
|
-
} finally {
|
|
756
|
-
const streamUsage = await target.usage.catch(() => null);
|
|
757
|
-
if (streamUsage) {
|
|
758
|
-
usage = streamUsage;
|
|
759
|
-
}
|
|
760
|
-
self.finalizeStream(
|
|
761
|
-
span,
|
|
762
|
-
config,
|
|
763
|
-
provider,
|
|
764
|
-
modelId,
|
|
765
|
-
startTime,
|
|
766
|
-
fullText,
|
|
767
|
-
finishReason,
|
|
768
|
-
usage,
|
|
769
|
-
response
|
|
770
|
-
);
|
|
771
|
-
}
|
|
772
|
-
}
|
|
773
|
-
};
|
|
774
|
-
}
|
|
775
|
-
const value = target[prop];
|
|
776
|
-
if (typeof value === "function") {
|
|
777
|
-
return value.bind(target);
|
|
778
|
-
}
|
|
779
|
-
return value;
|
|
780
|
-
}
|
|
781
|
-
});
|
|
782
|
-
return wrappedStream;
|
|
783
|
-
}
|
|
784
|
-
finalizeStream(span, config, provider, modelId, startTime, fullText, finishReason, usage, response) {
|
|
785
|
-
if (response) {
|
|
786
|
-
span.setAttributes({
|
|
787
|
-
...response.id && { [ATTR_GEN_AI_RESPONSE_ID]: response.id },
|
|
788
|
-
...response.model && { [ATTR_GEN_AI_RESPONSE_MODEL]: response.model }
|
|
789
|
-
});
|
|
790
|
-
}
|
|
791
|
-
if (finishReason) {
|
|
792
|
-
span.setAttribute(ATTR_GEN_AI_RESPONSE_FINISH_REASONS, [finishReason]);
|
|
793
|
-
}
|
|
794
|
-
if (fullText) {
|
|
795
|
-
span.setAttributes(
|
|
796
|
-
completionToAttributes(
|
|
797
|
-
fullText,
|
|
798
|
-
finishReason,
|
|
799
|
-
config.captureMessageContent || false
|
|
800
|
-
)
|
|
801
|
-
);
|
|
802
|
-
}
|
|
803
|
-
if (usage) {
|
|
804
|
-
span.setAttributes(tokenUsageToAttributes(usage));
|
|
805
|
-
if (config.enableMetrics) {
|
|
806
|
-
this.context.recordTokenMetrics(usage, provider.system, modelId);
|
|
807
|
-
}
|
|
808
|
-
}
|
|
809
|
-
if (config.enableMetrics) {
|
|
810
|
-
const duration = (performance.now() - startTime) / 1e3;
|
|
811
|
-
this.context.recordDurationMetric(duration, provider.system, modelId, OPERATION_NAME_CHAT);
|
|
812
|
-
}
|
|
813
|
-
span.setStatus({ code: SpanStatusCode4.OK });
|
|
814
|
-
span.end();
|
|
815
|
-
}
|
|
816
|
-
};
|
|
817
|
-
|
|
818
|
-
// src/internal/instrumentation/vercel-ai/telemetry-recorder.ts
|
|
819
|
-
import { context as context4, trace as trace4 } from "@opentelemetry/api";
|
|
820
|
-
import { SeverityNumber } from "@opentelemetry/api-logs";
|
|
821
|
-
var TelemetryRecorder = class {
|
|
822
|
-
constructor(genaiClientOperationDuration, genaiClientTokenUsage, logger2) {
|
|
823
|
-
this.genaiClientOperationDuration = genaiClientOperationDuration;
|
|
824
|
-
this.genaiClientTokenUsage = genaiClientTokenUsage;
|
|
825
|
-
this.logger = logger2;
|
|
826
|
-
}
|
|
827
|
-
/**
|
|
828
|
-
* Record token usage metrics
|
|
829
|
-
*/
|
|
830
|
-
recordTokenMetrics(usage, system, model) {
|
|
831
|
-
if (!this.genaiClientTokenUsage) {
|
|
832
|
-
return;
|
|
833
|
-
}
|
|
834
|
-
const commonAttrs = {
|
|
835
|
-
[ATTR_GEN_AI_SYSTEM]: system,
|
|
836
|
-
[ATTR_GEN_AI_REQUEST_MODEL]: model
|
|
837
|
-
};
|
|
838
|
-
const inputTokens = usage.inputTokens || usage.promptTokens;
|
|
839
|
-
const outputTokens = usage.outputTokens || usage.completionTokens;
|
|
840
|
-
if (inputTokens !== void 0) {
|
|
841
|
-
this.genaiClientTokenUsage.record(inputTokens, {
|
|
842
|
-
...commonAttrs,
|
|
843
|
-
[ATTR_GEN_AI_TOKEN_TYPE]: TOKEN_TYPE_INPUT
|
|
844
|
-
});
|
|
845
|
-
}
|
|
846
|
-
if (outputTokens !== void 0) {
|
|
847
|
-
this.genaiClientTokenUsage.record(outputTokens, {
|
|
848
|
-
...commonAttrs,
|
|
849
|
-
[ATTR_GEN_AI_TOKEN_TYPE]: TOKEN_TYPE_OUTPUT
|
|
850
|
-
});
|
|
851
|
-
}
|
|
852
|
-
}
|
|
853
|
-
/**
|
|
854
|
-
* Record operation duration metric
|
|
855
|
-
*/
|
|
856
|
-
recordDurationMetric(duration, system, model, operation) {
|
|
857
|
-
if (!this.genaiClientOperationDuration) {
|
|
858
|
-
return;
|
|
859
|
-
}
|
|
860
|
-
this.genaiClientOperationDuration.record(duration, {
|
|
861
|
-
[ATTR_GEN_AI_SYSTEM]: system,
|
|
862
|
-
[ATTR_GEN_AI_REQUEST_MODEL]: model,
|
|
863
|
-
[ATTR_GEN_AI_OPERATION_NAME]: operation
|
|
864
|
-
});
|
|
865
|
-
}
|
|
866
|
-
/**
|
|
867
|
-
* Emit message events
|
|
868
|
-
*/
|
|
869
|
-
emitMessageEvents(messages, system, span) {
|
|
870
|
-
if (!this.logger) {
|
|
871
|
-
return;
|
|
872
|
-
}
|
|
873
|
-
const ctx = trace4.setSpan(context4.active(), span);
|
|
874
|
-
for (const msg of messages) {
|
|
875
|
-
let eventName;
|
|
876
|
-
switch (msg.role) {
|
|
877
|
-
case "system": {
|
|
878
|
-
eventName = EVENT_GEN_AI_SYSTEM_MESSAGE;
|
|
879
|
-
break;
|
|
880
|
-
}
|
|
881
|
-
case "user": {
|
|
882
|
-
eventName = EVENT_GEN_AI_USER_MESSAGE;
|
|
883
|
-
break;
|
|
884
|
-
}
|
|
885
|
-
case "assistant": {
|
|
886
|
-
eventName = EVENT_GEN_AI_ASSISTANT_MESSAGE;
|
|
887
|
-
break;
|
|
888
|
-
}
|
|
889
|
-
case "tool":
|
|
890
|
-
case "function": {
|
|
891
|
-
eventName = EVENT_GEN_AI_TOOL_MESSAGE;
|
|
892
|
-
break;
|
|
893
|
-
}
|
|
894
|
-
default: {
|
|
895
|
-
continue;
|
|
896
|
-
}
|
|
897
|
-
}
|
|
898
|
-
this.logger.emit({
|
|
899
|
-
timestamp: Date.now(),
|
|
900
|
-
context: ctx,
|
|
901
|
-
severityNumber: SeverityNumber.INFO,
|
|
902
|
-
attributes: {
|
|
903
|
-
[ATTR_EVENT_NAME]: eventName,
|
|
904
|
-
[ATTR_GEN_AI_SYSTEM]: system
|
|
905
|
-
},
|
|
906
|
-
body: {
|
|
907
|
-
role: msg.role,
|
|
908
|
-
content: typeof msg.content === "string" ? msg.content : JSON.stringify(msg.content),
|
|
909
|
-
name: msg.name
|
|
910
|
-
}
|
|
911
|
-
});
|
|
912
|
-
}
|
|
913
|
-
}
|
|
914
|
-
/**
|
|
915
|
-
* Emit assistant message event
|
|
916
|
-
*/
|
|
917
|
-
emitAssistantMessageEvent(text, system, span) {
|
|
918
|
-
if (!this.logger) {
|
|
919
|
-
return;
|
|
920
|
-
}
|
|
921
|
-
const ctx = trace4.setSpan(context4.active(), span);
|
|
922
|
-
this.logger.emit({
|
|
923
|
-
timestamp: Date.now(),
|
|
924
|
-
context: ctx,
|
|
925
|
-
severityNumber: SeverityNumber.INFO,
|
|
926
|
-
attributes: {
|
|
927
|
-
[ATTR_EVENT_NAME]: EVENT_GEN_AI_ASSISTANT_MESSAGE,
|
|
928
|
-
[ATTR_GEN_AI_SYSTEM]: system
|
|
929
|
-
},
|
|
930
|
-
body: {
|
|
931
|
-
role: "assistant",
|
|
932
|
-
content: text
|
|
933
|
-
}
|
|
934
|
-
});
|
|
935
|
-
}
|
|
936
|
-
};
|
|
937
|
-
|
|
938
|
-
// src/internal/instrumentation/vercel-ai/instrumentation.ts
|
|
939
|
-
var PACKAGE_NAME = "@brizz/vercel-ai-instrumentation";
|
|
940
|
-
var PACKAGE_VERSION = "0.1.0";
|
|
941
|
-
var VercelAIInstrumentation = class _VercelAIInstrumentation extends InstrumentationBase {
|
|
942
|
-
_genaiClientOperationDuration;
|
|
943
|
-
_genaiClientTokenUsage;
|
|
944
|
-
_telemetryRecorder;
|
|
945
|
-
_streamHandler;
|
|
946
|
-
_patchers = /* @__PURE__ */ new Map();
|
|
947
|
-
// Holds last patched namespace when available (reserved for future factory wrapping)
|
|
948
|
-
_vercelAiNamespace = null;
|
|
949
|
-
static _WRAPPED_SYMBOL = Symbol.for("brizz.vercel-ai.patched");
|
|
950
|
-
constructor(config = {}) {
|
|
951
|
-
super(PACKAGE_NAME, PACKAGE_VERSION, config);
|
|
952
|
-
const cfg = this.getConfig();
|
|
953
|
-
const envCC = getEnvBool("OTEL_INSTRUMENTATION_GENAI_CAPTURE_MESSAGE_CONTENT");
|
|
954
|
-
if (envCC !== void 0) {
|
|
955
|
-
cfg.captureMessageContent = envCC;
|
|
956
|
-
}
|
|
957
|
-
this._initializeComponents();
|
|
958
|
-
}
|
|
959
|
-
setConfig(config = {}) {
|
|
960
|
-
const {
|
|
961
|
-
captureMessageContent = true,
|
|
962
|
-
enableMetrics = true,
|
|
963
|
-
emitEvents = true,
|
|
964
|
-
...validConfig
|
|
965
|
-
} = config;
|
|
966
|
-
const fullConfig = {
|
|
967
|
-
...validConfig,
|
|
968
|
-
captureMessageContent,
|
|
969
|
-
enableMetrics,
|
|
970
|
-
emitEvents
|
|
971
|
-
};
|
|
972
|
-
super.setConfig(fullConfig);
|
|
973
|
-
}
|
|
974
|
-
_initializeComponents() {
|
|
975
|
-
this._telemetryRecorder = new TelemetryRecorder(
|
|
976
|
-
this._genaiClientOperationDuration,
|
|
977
|
-
this._genaiClientTokenUsage,
|
|
978
|
-
this.logger
|
|
979
|
-
);
|
|
980
|
-
this._streamHandler = new StreamHandler({
|
|
981
|
-
recordTokenMetrics: this._telemetryRecorder.recordTokenMetrics.bind(this._telemetryRecorder),
|
|
982
|
-
recordDurationMetric: this._telemetryRecorder.recordDurationMetric.bind(
|
|
983
|
-
this._telemetryRecorder
|
|
984
|
-
)
|
|
985
|
-
});
|
|
986
|
-
const patcherContext = {
|
|
987
|
-
tracer: this.tracer,
|
|
988
|
-
getConfig: this.getConfig.bind(this),
|
|
989
|
-
recordTokenMetrics: this._telemetryRecorder.recordTokenMetrics.bind(this._telemetryRecorder),
|
|
990
|
-
recordDurationMetric: this._telemetryRecorder.recordDurationMetric.bind(
|
|
991
|
-
this._telemetryRecorder
|
|
992
|
-
),
|
|
993
|
-
emitMessageEvents: this._telemetryRecorder.emitMessageEvents.bind(this._telemetryRecorder),
|
|
994
|
-
emitAssistantMessageEvent: this._telemetryRecorder.emitAssistantMessageEvent.bind(
|
|
995
|
-
this._telemetryRecorder
|
|
996
|
-
)
|
|
997
|
-
};
|
|
998
|
-
this._patchers.set("generateText", new GenerateTextPatcher(patcherContext));
|
|
999
|
-
this._patchers.set("streamText", new StreamTextPatcher(patcherContext, this._streamHandler));
|
|
1000
|
-
this._patchers.set("embed", new EmbeddingsPatcher(patcherContext));
|
|
1001
|
-
this._patchers.set("embedMany", new EmbeddingsPatcher(patcherContext));
|
|
1002
|
-
}
|
|
1003
|
-
init() {
|
|
1004
|
-
return [
|
|
1005
|
-
new InstrumentationNodeModuleDefinition(
|
|
1006
|
-
"ai",
|
|
1007
|
-
[">=4.0.0 <6"],
|
|
1008
|
-
(moduleExports) => {
|
|
1009
|
-
logger.info("Starting instrumentation of Vercel AI SDK module");
|
|
1010
|
-
this._vercelAiNamespace = moduleExports;
|
|
1011
|
-
const patched = this._patchModuleExports(moduleExports);
|
|
1012
|
-
return patched ?? moduleExports;
|
|
1013
|
-
},
|
|
1014
|
-
(moduleExports) => {
|
|
1015
|
-
logger.debug("Uninstrumenting @vercel/ai module");
|
|
1016
|
-
return moduleExports;
|
|
1017
|
-
}
|
|
1018
|
-
)
|
|
1019
|
-
];
|
|
1020
|
-
}
|
|
1021
|
-
_updateMetricInstruments() {
|
|
1022
|
-
const config = this.getConfig();
|
|
1023
|
-
if (!config.enableMetrics) {
|
|
1024
|
-
return;
|
|
1025
|
-
}
|
|
1026
|
-
this._genaiClientOperationDuration = this.meter.createHistogram(
|
|
1027
|
-
METRIC_GEN_AI_CLIENT_OPERATION_DURATION,
|
|
1028
|
-
{
|
|
1029
|
-
description: "GenAI operation duration",
|
|
1030
|
-
unit: "s",
|
|
1031
|
-
advice: {
|
|
1032
|
-
explicitBucketBoundaries: [
|
|
1033
|
-
0.01,
|
|
1034
|
-
0.02,
|
|
1035
|
-
0.04,
|
|
1036
|
-
0.08,
|
|
1037
|
-
0.16,
|
|
1038
|
-
0.32,
|
|
1039
|
-
0.64,
|
|
1040
|
-
1.28,
|
|
1041
|
-
2.56,
|
|
1042
|
-
5.12,
|
|
1043
|
-
10.24,
|
|
1044
|
-
20.48,
|
|
1045
|
-
40.96,
|
|
1046
|
-
81.92
|
|
1047
|
-
]
|
|
1048
|
-
}
|
|
1049
|
-
}
|
|
1050
|
-
);
|
|
1051
|
-
this._genaiClientTokenUsage = this.meter.createHistogram(METRIC_GEN_AI_CLIENT_TOKEN_USAGE, {
|
|
1052
|
-
description: "Measures number of input and output tokens used",
|
|
1053
|
-
unit: "{token}",
|
|
1054
|
-
advice: {
|
|
1055
|
-
explicitBucketBoundaries: [
|
|
1056
|
-
1,
|
|
1057
|
-
4,
|
|
1058
|
-
16,
|
|
1059
|
-
64,
|
|
1060
|
-
256,
|
|
1061
|
-
1024,
|
|
1062
|
-
4096,
|
|
1063
|
-
16384,
|
|
1064
|
-
65536,
|
|
1065
|
-
262144,
|
|
1066
|
-
1048576,
|
|
1067
|
-
4194304,
|
|
1068
|
-
16777216,
|
|
1069
|
-
67108864
|
|
1070
|
-
]
|
|
1071
|
-
}
|
|
1072
|
-
});
|
|
1073
|
-
this._telemetryRecorder = new TelemetryRecorder(
|
|
1074
|
-
this._genaiClientOperationDuration,
|
|
1075
|
-
this._genaiClientTokenUsage,
|
|
1076
|
-
this.logger
|
|
1077
|
-
);
|
|
1078
|
-
}
|
|
1079
|
-
/**
|
|
1080
|
-
* Patch known AI SDK functions in-place on the provided module exports object.
|
|
1081
|
-
* This approach is compatible with both CJS and ESM module loaders.
|
|
1082
|
-
*/
|
|
1083
|
-
_patchModuleExports(moduleExports) {
|
|
1084
|
-
if (!moduleExports || typeof moduleExports !== "object") {
|
|
1085
|
-
return null;
|
|
1086
|
-
}
|
|
1087
|
-
let inPlacePatched = true;
|
|
1088
|
-
const wrapFunction = (name, isEmbedMany = false) => {
|
|
1089
|
-
const current = moduleExports[name];
|
|
1090
|
-
if (typeof current !== "function") {
|
|
1091
|
-
return;
|
|
1092
|
-
}
|
|
1093
|
-
const currentFn = current;
|
|
1094
|
-
if (currentFn[_VercelAIInstrumentation._WRAPPED_SYMBOL]) {
|
|
1095
|
-
return;
|
|
1096
|
-
}
|
|
1097
|
-
const descriptor = Object.getOwnPropertyDescriptor(moduleExports, name);
|
|
1098
|
-
if (descriptor && (!descriptor.writable || !descriptor.configurable) && !descriptor.set) {
|
|
1099
|
-
inPlacePatched = false;
|
|
1100
|
-
return;
|
|
1101
|
-
}
|
|
1102
|
-
const patcher = this._patchers.get(name);
|
|
1103
|
-
if (!patcher) {
|
|
1104
|
-
return;
|
|
1105
|
-
}
|
|
1106
|
-
const patched = isEmbedMany ? patcher.patch(currentFn, true) : patcher.patch(currentFn);
|
|
1107
|
-
try {
|
|
1108
|
-
Object.defineProperty(patched, _VercelAIInstrumentation._WRAPPED_SYMBOL, {
|
|
1109
|
-
value: true,
|
|
1110
|
-
enumerable: false,
|
|
1111
|
-
configurable: false
|
|
1112
|
-
});
|
|
1113
|
-
} catch {
|
|
1114
|
-
}
|
|
1115
|
-
try {
|
|
1116
|
-
moduleExports[name] = patched;
|
|
1117
|
-
} catch {
|
|
1118
|
-
inPlacePatched = false;
|
|
1119
|
-
}
|
|
1120
|
-
};
|
|
1121
|
-
wrapFunction("generateText");
|
|
1122
|
-
wrapFunction("streamText");
|
|
1123
|
-
wrapFunction("embed");
|
|
1124
|
-
wrapFunction("embedMany", true);
|
|
1125
|
-
if (!inPlacePatched) {
|
|
1126
|
-
const proxiedModule = new Proxy(moduleExports, {
|
|
1127
|
-
get: (target, prop, receiver) => {
|
|
1128
|
-
const originalValue = Reflect.get(target, prop, receiver);
|
|
1129
|
-
if (typeof originalValue === "function" && typeof prop === "string" && this._patchers.has(prop)) {
|
|
1130
|
-
const patcher = this._patchers.get(prop);
|
|
1131
|
-
const isEmbedMany = prop === "embedMany";
|
|
1132
|
-
const wrapped = isEmbedMany ? patcher.patch(originalValue, true) : patcher.patch(originalValue);
|
|
1133
|
-
return wrapped;
|
|
1134
|
-
}
|
|
1135
|
-
return originalValue;
|
|
1136
|
-
}
|
|
1137
|
-
});
|
|
1138
|
-
return proxiedModule;
|
|
1139
|
-
}
|
|
1140
|
-
return moduleExports;
|
|
1141
|
-
}
|
|
1142
|
-
/**
|
|
1143
|
-
* Manual instrumentation hook for bundlers/Next.js. Applies in-place wrapping
|
|
1144
|
-
* on the provided module namespace.
|
|
1145
|
-
*/
|
|
1146
|
-
manuallyInstrument(module3) {
|
|
1147
|
-
try {
|
|
1148
|
-
const result = this._patchModuleExports(module3);
|
|
1149
|
-
if (result !== null) {
|
|
1150
|
-
logger.debug("Applied manual Vercel AI instrumentation");
|
|
1151
|
-
this._vercelAiNamespace = result;
|
|
1152
|
-
return result;
|
|
1153
|
-
}
|
|
1154
|
-
logger.warn("Manual Vercel AI instrumentation received invalid module");
|
|
1155
|
-
return module3;
|
|
1156
|
-
} catch (error) {
|
|
1157
|
-
logger.error(`Failed manual Vercel AI instrumentation: ${String(error)}`);
|
|
1158
|
-
return this._vercelAiNamespace || module3;
|
|
1159
|
-
}
|
|
1160
|
-
}
|
|
1161
|
-
/**
|
|
1162
|
-
* Wrap a created provider/client instance (factory return) when possible.
|
|
1163
|
-
* Call this from wrappers that construct provider clients (e.g., OpenAI SDK).
|
|
1164
|
-
*/
|
|
1165
|
-
// eslint-disable-next-line @typescript-eslint/no-explicit-any
|
|
1166
|
-
wrapFactoryReturn(instance) {
|
|
1167
|
-
return instance;
|
|
1168
|
-
}
|
|
1169
|
-
};
|
|
1170
|
-
|
|
1171
|
-
// src/internal/instrumentation/registry.ts
|
|
1172
237
|
var InstrumentationRegistry = class _InstrumentationRegistry {
|
|
1173
238
|
static instance;
|
|
1174
239
|
manualModules = null;
|
|
@@ -1244,8 +309,7 @@ var InstrumentationRegistry = class _InstrumentationRegistry {
|
|
|
1244
309
|
},
|
|
1245
310
|
{ class: ChromaDBInstrumentation, name: "ChromaDB", module: this.manualModules?.chromadb },
|
|
1246
311
|
{ class: QdrantInstrumentation, name: "Qdrant", module: this.manualModules?.qdrant },
|
|
1247
|
-
{ class: TogetherInstrumentation, name: "Together", module: this.manualModules?.together }
|
|
1248
|
-
{ class: VercelAIInstrumentation, name: "Vercel AI", module: this.manualModules?.vercelAI }
|
|
312
|
+
{ class: TogetherInstrumentation, name: "Together", module: this.manualModules?.together }
|
|
1249
313
|
];
|
|
1250
314
|
for (const config of instrumentationConfigs) {
|
|
1251
315
|
if (config.module) {
|
|
@@ -1264,7 +328,7 @@ var InstrumentationRegistry = class _InstrumentationRegistry {
|
|
|
1264
328
|
};
|
|
1265
329
|
|
|
1266
330
|
// src/internal/log/logging.ts
|
|
1267
|
-
import { SeverityNumber
|
|
331
|
+
import { SeverityNumber } from "@opentelemetry/api-logs";
|
|
1268
332
|
import { OTLPLogExporter } from "@opentelemetry/exporter-logs-otlp-http";
|
|
1269
333
|
import { resourceFromAttributes } from "@opentelemetry/resources";
|
|
1270
334
|
import {
|
|
@@ -1272,7 +336,7 @@ import {
|
|
|
1272
336
|
} from "@opentelemetry/sdk-logs";
|
|
1273
337
|
|
|
1274
338
|
// src/internal/log/processors/log-processor.ts
|
|
1275
|
-
import { context
|
|
339
|
+
import { context } from "@opentelemetry/api";
|
|
1276
340
|
import { BatchLogRecordProcessor, SimpleLogRecordProcessor } from "@opentelemetry/sdk-logs";
|
|
1277
341
|
|
|
1278
342
|
// src/internal/masking/patterns.ts
|
|
@@ -1922,7 +986,7 @@ var BrizzSimpleLogRecordProcessor = class extends SimpleLogRecordProcessor {
|
|
|
1922
986
|
if (maskingConfig) {
|
|
1923
987
|
maskLog(logRecord, maskingConfig);
|
|
1924
988
|
}
|
|
1925
|
-
const associationProperties =
|
|
989
|
+
const associationProperties = context.active().getValue(PROPERTIES_CONTEXT_KEY);
|
|
1926
990
|
if (associationProperties) {
|
|
1927
991
|
for (const [key, value] of Object.entries(associationProperties)) {
|
|
1928
992
|
logRecord.setAttribute(`${BRIZZ}.${key}`, value);
|
|
@@ -1942,7 +1006,7 @@ var BrizzBatchLogRecordProcessor = class extends BatchLogRecordProcessor {
|
|
|
1942
1006
|
if (maskingConfig) {
|
|
1943
1007
|
maskLog(logRecord, maskingConfig);
|
|
1944
1008
|
}
|
|
1945
|
-
const associationProperties =
|
|
1009
|
+
const associationProperties = context.active().getValue(PROPERTIES_CONTEXT_KEY);
|
|
1946
1010
|
if (associationProperties) {
|
|
1947
1011
|
for (const [key, value] of Object.entries(associationProperties)) {
|
|
1948
1012
|
logRecord.setAttribute(`${BRIZZ}.${key}`, value);
|
|
@@ -2079,7 +1143,7 @@ var LoggingModule = class _LoggingModule {
|
|
|
2079
1143
|
/**
|
|
2080
1144
|
* Emit a custom event to the telemetry pipeline
|
|
2081
1145
|
*/
|
|
2082
|
-
emitEvent(name, attributes, body, severityNumber =
|
|
1146
|
+
emitEvent(name, attributes, body, severityNumber = SeverityNumber.INFO) {
|
|
2083
1147
|
logger.debug("Attempting to emit event", {
|
|
2084
1148
|
name,
|
|
2085
1149
|
hasAttributes: !!attributes,
|
|
@@ -2251,11 +1315,134 @@ function getMetricsReader() {
|
|
|
2251
1315
|
import { OTLPTraceExporter } from "@opentelemetry/exporter-trace-otlp-http";
|
|
2252
1316
|
|
|
2253
1317
|
// src/internal/trace/processors/span-processor.ts
|
|
2254
|
-
import { context as
|
|
1318
|
+
import { context as context2 } from "@opentelemetry/api";
|
|
2255
1319
|
import {
|
|
2256
1320
|
BatchSpanProcessor,
|
|
2257
1321
|
SimpleSpanProcessor
|
|
2258
1322
|
} from "@opentelemetry/sdk-trace-base";
|
|
1323
|
+
|
|
1324
|
+
// src/internal/trace/transformations/vercel-ai.ts
|
|
1325
|
+
import { SpanAttributes } from "@traceloop/ai-semantic-conventions";
|
|
1326
|
+
var AI_GENERATE_TEXT_DO_GENERATE = "ai.generateText.doGenerate";
|
|
1327
|
+
var AI_STREAM_TEXT_DO_STREAM = "ai.streamText.doStream";
|
|
1328
|
+
var HANDLED_SPAN_NAMES = {
|
|
1329
|
+
[AI_GENERATE_TEXT_DO_GENERATE]: "gen_ai.chat",
|
|
1330
|
+
[AI_STREAM_TEXT_DO_STREAM]: "gen_ai.chat",
|
|
1331
|
+
"ai.streamText": "ai.streamText",
|
|
1332
|
+
"ai.toolCall": (span) => {
|
|
1333
|
+
const toolName = span.attributes["ai.toolCall.name"];
|
|
1334
|
+
return `${toolName}.tool`;
|
|
1335
|
+
}
|
|
1336
|
+
};
|
|
1337
|
+
var AI_RESPONSE_TEXT = "ai.response.text";
|
|
1338
|
+
var AI_PROMPT_MESSAGES = "ai.prompt.messages";
|
|
1339
|
+
var AI_USAGE_PROMPT_TOKENS = "ai.usage.promptTokens";
|
|
1340
|
+
var AI_USAGE_COMPLETION_TOKENS = "ai.usage.completionTokens";
|
|
1341
|
+
var AI_MODEL_PROVIDER = "ai.model.provider";
|
|
1342
|
+
var transformAiSdkSpanName = (span) => {
|
|
1343
|
+
if (span.name in HANDLED_SPAN_NAMES) {
|
|
1344
|
+
if (typeof HANDLED_SPAN_NAMES[span.name] === "function") {
|
|
1345
|
+
span.name = HANDLED_SPAN_NAMES[span.name](span);
|
|
1346
|
+
} else {
|
|
1347
|
+
span.name = HANDLED_SPAN_NAMES[span.name];
|
|
1348
|
+
}
|
|
1349
|
+
}
|
|
1350
|
+
};
|
|
1351
|
+
var transformResponseText = (attributes) => {
|
|
1352
|
+
if (AI_RESPONSE_TEXT in attributes) {
|
|
1353
|
+
attributes[`${SpanAttributes.LLM_COMPLETIONS}.0.content`] = attributes[AI_RESPONSE_TEXT];
|
|
1354
|
+
attributes[`${SpanAttributes.LLM_COMPLETIONS}.0.role`] = "assistant";
|
|
1355
|
+
delete attributes[AI_RESPONSE_TEXT];
|
|
1356
|
+
}
|
|
1357
|
+
};
|
|
1358
|
+
var transformPromptMessages = (attributes) => {
|
|
1359
|
+
if (AI_PROMPT_MESSAGES in attributes) {
|
|
1360
|
+
try {
|
|
1361
|
+
const messages = JSON.parse(attributes[AI_PROMPT_MESSAGES]);
|
|
1362
|
+
messages.forEach((msg, index) => {
|
|
1363
|
+
logger.debug("Transforming prompt message", { msg, type: typeof msg.content });
|
|
1364
|
+
if (typeof msg.content === "string") {
|
|
1365
|
+
attributes[`${SpanAttributes.LLM_PROMPTS}.${index}.content`] = msg.content;
|
|
1366
|
+
} else {
|
|
1367
|
+
if (Array.isArray(msg.content) && msg.content.length > 0) {
|
|
1368
|
+
const lastContent = msg.content[msg.content.length - 1];
|
|
1369
|
+
if (lastContent.text) {
|
|
1370
|
+
attributes[`${SpanAttributes.LLM_PROMPTS}.${index}.content`] = lastContent.text;
|
|
1371
|
+
}
|
|
1372
|
+
} else {
|
|
1373
|
+
attributes[`${SpanAttributes.LLM_PROMPTS}.${index}.content`] = JSON.stringify(
|
|
1374
|
+
msg.content
|
|
1375
|
+
);
|
|
1376
|
+
}
|
|
1377
|
+
}
|
|
1378
|
+
attributes[`${SpanAttributes.LLM_PROMPTS}.${index}.role`] = msg.role;
|
|
1379
|
+
});
|
|
1380
|
+
delete attributes[AI_PROMPT_MESSAGES];
|
|
1381
|
+
} catch {
|
|
1382
|
+
}
|
|
1383
|
+
}
|
|
1384
|
+
};
|
|
1385
|
+
var transformPromptTokens = (attributes) => {
|
|
1386
|
+
if (AI_USAGE_PROMPT_TOKENS in attributes) {
|
|
1387
|
+
attributes[`${SpanAttributes.LLM_USAGE_PROMPT_TOKENS}`] = attributes[AI_USAGE_PROMPT_TOKENS];
|
|
1388
|
+
delete attributes[AI_USAGE_PROMPT_TOKENS];
|
|
1389
|
+
}
|
|
1390
|
+
};
|
|
1391
|
+
var transformCompletionTokens = (attributes) => {
|
|
1392
|
+
if (AI_USAGE_COMPLETION_TOKENS in attributes) {
|
|
1393
|
+
attributes[`${SpanAttributes.LLM_USAGE_COMPLETION_TOKENS}`] = attributes[AI_USAGE_COMPLETION_TOKENS];
|
|
1394
|
+
delete attributes[AI_USAGE_COMPLETION_TOKENS];
|
|
1395
|
+
}
|
|
1396
|
+
};
|
|
1397
|
+
var calculateTotalTokens = (attributes) => {
|
|
1398
|
+
const promptTokens = attributes[`${SpanAttributes.LLM_USAGE_PROMPT_TOKENS}`];
|
|
1399
|
+
const completionTokens = attributes[`${SpanAttributes.LLM_USAGE_COMPLETION_TOKENS}`];
|
|
1400
|
+
if (promptTokens && completionTokens) {
|
|
1401
|
+
attributes[`${SpanAttributes.LLM_USAGE_TOTAL_TOKENS}`] = Number(promptTokens) + Number(completionTokens);
|
|
1402
|
+
}
|
|
1403
|
+
};
|
|
1404
|
+
var transformVendor = (attributes) => {
|
|
1405
|
+
if (AI_MODEL_PROVIDER in attributes) {
|
|
1406
|
+
const vendor = attributes[AI_MODEL_PROVIDER];
|
|
1407
|
+
if (vendor && vendor.startsWith("openai")) {
|
|
1408
|
+
attributes[SpanAttributes.LLM_SYSTEM] = "OpenAI";
|
|
1409
|
+
} else {
|
|
1410
|
+
attributes[SpanAttributes.LLM_SYSTEM] = vendor;
|
|
1411
|
+
}
|
|
1412
|
+
delete attributes[AI_MODEL_PROVIDER];
|
|
1413
|
+
}
|
|
1414
|
+
};
|
|
1415
|
+
var transformAiSdkAttributes = (attributes) => {
|
|
1416
|
+
transformResponseText(attributes);
|
|
1417
|
+
transformPromptMessages(attributes);
|
|
1418
|
+
transformPromptTokens(attributes);
|
|
1419
|
+
transformCompletionTokens(attributes);
|
|
1420
|
+
calculateTotalTokens(attributes);
|
|
1421
|
+
transformVendor(attributes);
|
|
1422
|
+
};
|
|
1423
|
+
var shouldHandleSpan = (span) => {
|
|
1424
|
+
return span.name in HANDLED_SPAN_NAMES;
|
|
1425
|
+
};
|
|
1426
|
+
var transformAiSdkSpan = (span) => {
|
|
1427
|
+
for (const key in span.attributes) {
|
|
1428
|
+
if (Number.isNaN(span.attributes[key])) {
|
|
1429
|
+
span.attributes[key] = 0;
|
|
1430
|
+
}
|
|
1431
|
+
}
|
|
1432
|
+
logger.debug("Transforming AI SDK span", {
|
|
1433
|
+
spanName: span.name,
|
|
1434
|
+
spanContext: span.spanContext(),
|
|
1435
|
+
attributes: span.attributes
|
|
1436
|
+
});
|
|
1437
|
+
if (!shouldHandleSpan(span)) {
|
|
1438
|
+
logger.debug("Skipping span transformation", { spanName: span.name });
|
|
1439
|
+
return;
|
|
1440
|
+
}
|
|
1441
|
+
transformAiSdkSpanName(span);
|
|
1442
|
+
transformAiSdkAttributes(span.attributes);
|
|
1443
|
+
};
|
|
1444
|
+
|
|
1445
|
+
// src/internal/trace/processors/span-processor.ts
|
|
2259
1446
|
var DEFAULT_MASKING_RULES = [
|
|
2260
1447
|
{
|
|
2261
1448
|
mode: "partial",
|
|
@@ -2266,16 +1453,6 @@ var DEFAULT_MASKING_RULES = [
|
|
|
2266
1453
|
mode: "partial",
|
|
2267
1454
|
attributePattern: "gen_ai.completion",
|
|
2268
1455
|
patterns: DEFAULT_PII_PATTERNS
|
|
2269
|
-
},
|
|
2270
|
-
{
|
|
2271
|
-
mode: "partial",
|
|
2272
|
-
attributePattern: "traceloop.entity.input",
|
|
2273
|
-
patterns: DEFAULT_PII_PATTERNS
|
|
2274
|
-
},
|
|
2275
|
-
{
|
|
2276
|
-
mode: "partial",
|
|
2277
|
-
attributePattern: "traceloop.entity.output",
|
|
2278
|
-
patterns: DEFAULT_PII_PATTERNS
|
|
2279
1456
|
}
|
|
2280
1457
|
];
|
|
2281
1458
|
var BrizzSimpleSpanProcessor = class extends SimpleSpanProcessor {
|
|
@@ -2300,7 +1477,7 @@ var BrizzSimpleSpanProcessor = class extends SimpleSpanProcessor {
|
|
|
2300
1477
|
if (maskingConfig) {
|
|
2301
1478
|
maskSpan(span, maskingConfig);
|
|
2302
1479
|
}
|
|
2303
|
-
const associationProperties =
|
|
1480
|
+
const associationProperties = context2.active().getValue(PROPERTIES_CONTEXT_KEY);
|
|
2304
1481
|
if (associationProperties) {
|
|
2305
1482
|
for (const [key, value] of Object.entries(associationProperties)) {
|
|
2306
1483
|
span.setAttribute(`${BRIZZ}.${key}`, value);
|
|
@@ -2308,6 +1485,10 @@ var BrizzSimpleSpanProcessor = class extends SimpleSpanProcessor {
|
|
|
2308
1485
|
}
|
|
2309
1486
|
super.onStart(span, parentContext);
|
|
2310
1487
|
}
|
|
1488
|
+
onEnd(span) {
|
|
1489
|
+
transformAiSdkSpan(span);
|
|
1490
|
+
super.onEnd(span);
|
|
1491
|
+
}
|
|
2311
1492
|
};
|
|
2312
1493
|
var BrizzBatchSpanProcessor = class extends BatchSpanProcessor {
|
|
2313
1494
|
config;
|
|
@@ -2320,7 +1501,7 @@ var BrizzBatchSpanProcessor = class extends BatchSpanProcessor {
|
|
|
2320
1501
|
if (maskingConfig) {
|
|
2321
1502
|
maskSpan(span, maskingConfig);
|
|
2322
1503
|
}
|
|
2323
|
-
const associationProperties =
|
|
1504
|
+
const associationProperties = context2.active().getValue(PROPERTIES_CONTEXT_KEY);
|
|
2324
1505
|
if (associationProperties) {
|
|
2325
1506
|
for (const [key, value] of Object.entries(associationProperties)) {
|
|
2326
1507
|
span.setAttribute(`${BRIZZ}.${key}`, value);
|
|
@@ -2328,6 +1509,10 @@ var BrizzBatchSpanProcessor = class extends BatchSpanProcessor {
|
|
|
2328
1509
|
}
|
|
2329
1510
|
super.onStart(span, parentContext);
|
|
2330
1511
|
}
|
|
1512
|
+
onEnd(span) {
|
|
1513
|
+
transformAiSdkSpan(span);
|
|
1514
|
+
super.onEnd(span);
|
|
1515
|
+
}
|
|
2331
1516
|
};
|
|
2332
1517
|
function maskSpan(span, config) {
|
|
2333
1518
|
if (!span.attributes || Object.keys(span.attributes).length === 0) {
|
|
@@ -2415,8 +1600,9 @@ var TracingModule = class _TracingModule {
|
|
|
2415
1600
|
disableBatch: config.disableBatch,
|
|
2416
1601
|
hasMasking: !!config.masking?.spanMasking
|
|
2417
1602
|
});
|
|
2418
|
-
|
|
1603
|
+
const spanProcessor = config.disableBatch ? new BrizzSimpleSpanProcessor(this.spanExporter, config) : new BrizzBatchSpanProcessor(this.spanExporter, config);
|
|
2419
1604
|
logger.debug("Span processor initialized successfully");
|
|
1605
|
+
this.spanProcessor = spanProcessor;
|
|
2420
1606
|
}
|
|
2421
1607
|
/**
|
|
2422
1608
|
* Get the span exporter
|
|
@@ -2455,7 +1641,7 @@ function getSpanProcessor() {
|
|
|
2455
1641
|
}
|
|
2456
1642
|
|
|
2457
1643
|
// src/internal/trace/session.ts
|
|
2458
|
-
import { context as
|
|
1644
|
+
import { context as context3 } from "@opentelemetry/api";
|
|
2459
1645
|
|
|
2460
1646
|
// src/internal/sdk.ts
|
|
2461
1647
|
var _Brizz = class __Brizz {
|