@brizz/sdk 0.1.2 → 0.1.3-rc.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/dist/index.cjs +153 -966
- package/dist/index.cjs.map +1 -1
- package/dist/index.d.cts +1 -40
- package/dist/index.d.ts +1 -40
- package/dist/index.js +148 -963
- package/dist/index.js.map +1 -1
- package/dist/preload.cjs +145 -956
- package/dist/preload.cjs.map +1 -1
- package/dist/preload.js +143 -957
- package/dist/preload.js.map +1 -1
- package/package.json +29 -25
package/dist/index.js
CHANGED
|
@@ -164,939 +164,6 @@ function getLogLevel() {
|
|
|
164
164
|
return logger.getLevel();
|
|
165
165
|
}
|
|
166
166
|
|
|
167
|
-
// src/internal/instrumentation/vercel-ai/instrumentation.ts
|
|
168
|
-
import {
|
|
169
|
-
InstrumentationBase,
|
|
170
|
-
InstrumentationNodeModuleDefinition
|
|
171
|
-
} from "@opentelemetry/instrumentation";
|
|
172
|
-
|
|
173
|
-
// src/internal/instrumentation/vercel-ai/patchers/base-patcher.ts
|
|
174
|
-
import { SpanKind, SpanStatusCode } from "@opentelemetry/api";
|
|
175
|
-
|
|
176
|
-
// src/internal/instrumentation/vercel-ai/semconv.ts
|
|
177
|
-
var ATTR_GEN_AI_SYSTEM = "gen_ai.system";
|
|
178
|
-
var ATTR_GEN_AI_OPERATION_NAME = "gen_ai.operation.name";
|
|
179
|
-
var ATTR_GEN_AI_REQUEST_MODEL = "gen_ai.request.model";
|
|
180
|
-
var ATTR_GEN_AI_REQUEST_MAX_TOKENS = "gen_ai.request.max_tokens";
|
|
181
|
-
var ATTR_GEN_AI_REQUEST_TEMPERATURE = "gen_ai.request.temperature";
|
|
182
|
-
var ATTR_GEN_AI_REQUEST_TOP_P = "gen_ai.request.top_p";
|
|
183
|
-
var ATTR_GEN_AI_REQUEST_TOP_K = "gen_ai.request.top_k";
|
|
184
|
-
var ATTR_GEN_AI_REQUEST_STOP_SEQUENCES = "gen_ai.request.stop_sequences";
|
|
185
|
-
var ATTR_GEN_AI_REQUEST_FREQUENCY_PENALTY = "gen_ai.request.frequency_penalty";
|
|
186
|
-
var ATTR_GEN_AI_REQUEST_PRESENCE_PENALTY = "gen_ai.request.presence_penalty";
|
|
187
|
-
var ATTR_GEN_AI_RESPONSE_ID = "gen_ai.response.id";
|
|
188
|
-
var ATTR_GEN_AI_RESPONSE_MODEL = "gen_ai.response.model";
|
|
189
|
-
var ATTR_GEN_AI_RESPONSE_FINISH_REASONS = "gen_ai.response.finish_reasons";
|
|
190
|
-
var ATTR_GEN_AI_TOKEN_TYPE = "gen_ai.token.type";
|
|
191
|
-
var ATTR_GEN_AI_PROMPT = "gen_ai.prompt";
|
|
192
|
-
var ATTR_GEN_AI_COMPLETION = "gen_ai.completion";
|
|
193
|
-
var ATTR_GEN_AI_OPENAI_API_BASE = "gen_ai.openai.api_base";
|
|
194
|
-
var ATTR_EVENT_NAME = "event.name";
|
|
195
|
-
var EVENT_GEN_AI_USER_MESSAGE = "gen_ai.user.message";
|
|
196
|
-
var EVENT_GEN_AI_ASSISTANT_MESSAGE = "gen_ai.assistant.message";
|
|
197
|
-
var EVENT_GEN_AI_SYSTEM_MESSAGE = "gen_ai.system.message";
|
|
198
|
-
var EVENT_GEN_AI_TOOL_MESSAGE = "gen_ai.tool.message";
|
|
199
|
-
var METRIC_GEN_AI_CLIENT_OPERATION_DURATION = "gen_ai.client.operation.duration";
|
|
200
|
-
var METRIC_GEN_AI_CLIENT_TOKEN_USAGE = "gen_ai.client.token.usage";
|
|
201
|
-
var OPERATION_NAME_CHAT = "chat";
|
|
202
|
-
var OPERATION_NAME_EMBEDDINGS = "embeddings";
|
|
203
|
-
var TOKEN_TYPE_INPUT = "input";
|
|
204
|
-
var TOKEN_TYPE_OUTPUT = "output";
|
|
205
|
-
var PROVIDER_OPENAI = "openai";
|
|
206
|
-
var PROVIDER_ANTHROPIC = "anthropic";
|
|
207
|
-
var PROVIDER_GOOGLE = "google";
|
|
208
|
-
var PROVIDER_AMAZON = "amazon";
|
|
209
|
-
var PROVIDER_AZURE = "azure";
|
|
210
|
-
var PROVIDER_VERCEL = "vercel";
|
|
211
|
-
var PROVIDER_UNKNOWN = "unknown";
|
|
212
|
-
var SPAN_NAME_GEN_AI_CHAT = "gen_ai.chat";
|
|
213
|
-
var SPAN_NAME_GEN_AI_EMBEDDINGS = "gen_ai.embeddings";
|
|
214
|
-
|
|
215
|
-
// src/internal/instrumentation/vercel-ai/utils.ts
|
|
216
|
-
function detectProvider(model) {
|
|
217
|
-
if (typeof model === "object" && model !== null) {
|
|
218
|
-
const modelObj = model;
|
|
219
|
-
if (modelObj.provider) {
|
|
220
|
-
return {
|
|
221
|
-
system: normalizeProviderName(modelObj.provider),
|
|
222
|
-
apiBase: extractApiBase(modelObj)
|
|
223
|
-
};
|
|
224
|
-
}
|
|
225
|
-
if (modelObj.modelId) {
|
|
226
|
-
return detectProviderFromModelId(modelObj.modelId);
|
|
227
|
-
}
|
|
228
|
-
}
|
|
229
|
-
if (typeof model === "string") {
|
|
230
|
-
return detectProviderFromModelId(model);
|
|
231
|
-
}
|
|
232
|
-
return { system: PROVIDER_UNKNOWN };
|
|
233
|
-
}
|
|
234
|
-
function detectProviderFromModelId(modelId) {
|
|
235
|
-
const lowerModel = modelId.toLowerCase();
|
|
236
|
-
if (lowerModel.startsWith("gpt-") || lowerModel.startsWith("text-davinci-") || lowerModel.startsWith("text-embedding-") || lowerModel.startsWith("dall-e") || lowerModel.startsWith("whisper-") || lowerModel.startsWith("tts-")) {
|
|
237
|
-
return { system: PROVIDER_OPENAI };
|
|
238
|
-
}
|
|
239
|
-
if (lowerModel.startsWith("claude-")) {
|
|
240
|
-
return { system: PROVIDER_ANTHROPIC };
|
|
241
|
-
}
|
|
242
|
-
if (lowerModel.startsWith("gemini-") || lowerModel.startsWith("palm-") || lowerModel.includes("bison") || lowerModel.includes("gecko")) {
|
|
243
|
-
return { system: PROVIDER_GOOGLE };
|
|
244
|
-
}
|
|
245
|
-
if (lowerModel.startsWith("amazon.") || lowerModel.startsWith("anthropic.claude-") || lowerModel.startsWith("ai21.") || lowerModel.startsWith("cohere.") || lowerModel.startsWith("meta.llama")) {
|
|
246
|
-
return { system: PROVIDER_AMAZON };
|
|
247
|
-
}
|
|
248
|
-
if (lowerModel.includes("azure") || lowerModel.includes(".openai.azure.com")) {
|
|
249
|
-
return { system: PROVIDER_AZURE };
|
|
250
|
-
}
|
|
251
|
-
const parts = modelId.split(/[-._/]/);
|
|
252
|
-
if (parts.length > 0 && parts[0]) {
|
|
253
|
-
return { system: normalizeProviderName(parts[0]) };
|
|
254
|
-
}
|
|
255
|
-
return { system: PROVIDER_UNKNOWN };
|
|
256
|
-
}
|
|
257
|
-
function normalizeProviderName(provider) {
|
|
258
|
-
const normalized = provider.toLowerCase().trim();
|
|
259
|
-
switch (normalized) {
|
|
260
|
-
case "openai":
|
|
261
|
-
case "open-ai":
|
|
262
|
-
case "open_ai": {
|
|
263
|
-
return PROVIDER_OPENAI;
|
|
264
|
-
}
|
|
265
|
-
case "anthropic":
|
|
266
|
-
case "claude": {
|
|
267
|
-
return PROVIDER_ANTHROPIC;
|
|
268
|
-
}
|
|
269
|
-
case "google":
|
|
270
|
-
case "vertex":
|
|
271
|
-
case "vertexai":
|
|
272
|
-
case "vertex-ai":
|
|
273
|
-
case "gemini": {
|
|
274
|
-
return PROVIDER_GOOGLE;
|
|
275
|
-
}
|
|
276
|
-
case "amazon":
|
|
277
|
-
case "aws":
|
|
278
|
-
case "bedrock":
|
|
279
|
-
case "amazon-bedrock": {
|
|
280
|
-
return PROVIDER_AMAZON;
|
|
281
|
-
}
|
|
282
|
-
case "azure":
|
|
283
|
-
case "azure-openai":
|
|
284
|
-
case "microsoft": {
|
|
285
|
-
return PROVIDER_AZURE;
|
|
286
|
-
}
|
|
287
|
-
case "vercel":
|
|
288
|
-
case "vercel-ai": {
|
|
289
|
-
return PROVIDER_VERCEL;
|
|
290
|
-
}
|
|
291
|
-
default: {
|
|
292
|
-
return normalized;
|
|
293
|
-
}
|
|
294
|
-
}
|
|
295
|
-
}
|
|
296
|
-
function extractApiBase(model) {
|
|
297
|
-
if (typeof model === "object" && model !== null) {
|
|
298
|
-
const anyModel = model;
|
|
299
|
-
return anyModel.apiBase || anyModel.baseURL || anyModel.endpoint || void 0;
|
|
300
|
-
}
|
|
301
|
-
return void 0;
|
|
302
|
-
}
|
|
303
|
-
function extractModelId(model) {
|
|
304
|
-
if (typeof model === "string") {
|
|
305
|
-
return model;
|
|
306
|
-
}
|
|
307
|
-
if (typeof model === "object" && model !== null) {
|
|
308
|
-
return model.modelId || "unknown";
|
|
309
|
-
}
|
|
310
|
-
return "unknown";
|
|
311
|
-
}
|
|
312
|
-
function messagesToAttributes(messages, prefix, captureContent) {
|
|
313
|
-
const attributes = {};
|
|
314
|
-
for (const [index, msg] of messages.entries()) {
|
|
315
|
-
const baseKey = `${prefix}.${index}`;
|
|
316
|
-
attributes[`${baseKey}.role`] = msg.role;
|
|
317
|
-
if (captureContent && msg.content) {
|
|
318
|
-
if (typeof msg.content === "string") {
|
|
319
|
-
attributes[`${baseKey}.content`] = msg.content;
|
|
320
|
-
} else if (Array.isArray(msg.content)) {
|
|
321
|
-
const textParts = msg.content.filter((part) => part.type === "text" && part.text).map((part) => part.text).join(" ");
|
|
322
|
-
if (textParts) {
|
|
323
|
-
attributes[`${baseKey}.content`] = textParts;
|
|
324
|
-
}
|
|
325
|
-
}
|
|
326
|
-
}
|
|
327
|
-
if (msg.toolInvocations && msg.toolInvocations.length > 0) {
|
|
328
|
-
attributes[`${baseKey}.tool_calls`] = msg.toolInvocations.length;
|
|
329
|
-
}
|
|
330
|
-
}
|
|
331
|
-
return attributes;
|
|
332
|
-
}
|
|
333
|
-
function promptToAttributes(prompt, captureContent) {
|
|
334
|
-
const attributes = {};
|
|
335
|
-
attributes[`${ATTR_GEN_AI_PROMPT}.0.role`] = "user";
|
|
336
|
-
if (captureContent) {
|
|
337
|
-
attributes[`${ATTR_GEN_AI_PROMPT}.0.content`] = prompt;
|
|
338
|
-
}
|
|
339
|
-
return attributes;
|
|
340
|
-
}
|
|
341
|
-
function completionToAttributes(text, finishReason, captureContent) {
|
|
342
|
-
const attributes = {};
|
|
343
|
-
attributes[`${ATTR_GEN_AI_COMPLETION}.0.role`] = "assistant";
|
|
344
|
-
if (captureContent) {
|
|
345
|
-
attributes[`${ATTR_GEN_AI_COMPLETION}.0.content`] = text;
|
|
346
|
-
}
|
|
347
|
-
if (finishReason) {
|
|
348
|
-
attributes[`${ATTR_GEN_AI_COMPLETION}.0.finish_reason`] = finishReason;
|
|
349
|
-
}
|
|
350
|
-
return attributes;
|
|
351
|
-
}
|
|
352
|
-
function tokenUsageToAttributes(usage) {
|
|
353
|
-
if (!usage) {
|
|
354
|
-
return {};
|
|
355
|
-
}
|
|
356
|
-
const attributes = {};
|
|
357
|
-
if (usage.inputTokens !== void 0) {
|
|
358
|
-
attributes["gen_ai.usage.prompt_tokens"] = usage.inputTokens;
|
|
359
|
-
attributes["gen_ai.usage.input_tokens"] = usage.inputTokens;
|
|
360
|
-
attributes["llm.usage.prompt_tokens"] = usage.inputTokens;
|
|
361
|
-
} else if (usage.promptTokens !== void 0) {
|
|
362
|
-
attributes["gen_ai.usage.prompt_tokens"] = usage.promptTokens;
|
|
363
|
-
attributes["gen_ai.usage.input_tokens"] = usage.promptTokens;
|
|
364
|
-
attributes["llm.usage.prompt_tokens"] = usage.promptTokens;
|
|
365
|
-
}
|
|
366
|
-
if (usage.outputTokens !== void 0) {
|
|
367
|
-
attributes["gen_ai.usage.completion_tokens"] = usage.outputTokens;
|
|
368
|
-
attributes["gen_ai.usage.output_tokens"] = usage.outputTokens;
|
|
369
|
-
attributes["llm.usage.completion_tokens"] = usage.outputTokens;
|
|
370
|
-
} else if (usage.completionTokens !== void 0) {
|
|
371
|
-
attributes["gen_ai.usage.completion_tokens"] = usage.completionTokens;
|
|
372
|
-
attributes["gen_ai.usage.output_tokens"] = usage.completionTokens;
|
|
373
|
-
attributes["llm.usage.completion_tokens"] = usage.completionTokens;
|
|
374
|
-
}
|
|
375
|
-
if (usage.totalTokens === void 0) {
|
|
376
|
-
const inputTokens = usage.inputTokens || usage.promptTokens;
|
|
377
|
-
const outputTokens = usage.outputTokens || usage.completionTokens;
|
|
378
|
-
if (inputTokens !== void 0 && outputTokens !== void 0) {
|
|
379
|
-
const totalTokens = inputTokens + outputTokens;
|
|
380
|
-
attributes["gen_ai.usage.total_tokens"] = totalTokens;
|
|
381
|
-
attributes["llm.usage.total_tokens"] = totalTokens;
|
|
382
|
-
}
|
|
383
|
-
} else {
|
|
384
|
-
attributes["gen_ai.usage.total_tokens"] = usage.totalTokens;
|
|
385
|
-
attributes["llm.usage.total_tokens"] = usage.totalTokens;
|
|
386
|
-
}
|
|
387
|
-
return attributes;
|
|
388
|
-
}
|
|
389
|
-
function shouldRecordError(error) {
|
|
390
|
-
if (error instanceof Error) {
|
|
391
|
-
const message = error.message.toLowerCase();
|
|
392
|
-
if (message.includes("abort") || message.includes("cancel")) {
|
|
393
|
-
return false;
|
|
394
|
-
}
|
|
395
|
-
}
|
|
396
|
-
return true;
|
|
397
|
-
}
|
|
398
|
-
function getEnvBool(name) {
|
|
399
|
-
const value = process.env[name];
|
|
400
|
-
if (value === void 0) {
|
|
401
|
-
return void 0;
|
|
402
|
-
}
|
|
403
|
-
return value.toLowerCase() === "true" || value === "1";
|
|
404
|
-
}
|
|
405
|
-
|
|
406
|
-
// src/internal/instrumentation/vercel-ai/patchers/base-patcher.ts
|
|
407
|
-
var BasePatcher = class {
|
|
408
|
-
constructor(context8) {
|
|
409
|
-
this.context = context8;
|
|
410
|
-
}
|
|
411
|
-
createSpan(spanName, params, operationName, additionalAttributes) {
|
|
412
|
-
const provider = detectProvider(params.model);
|
|
413
|
-
const modelId = extractModelId(params.model);
|
|
414
|
-
const span = this.context.tracer.startSpan(spanName, {
|
|
415
|
-
kind: SpanKind.CLIENT,
|
|
416
|
-
attributes: {
|
|
417
|
-
[ATTR_GEN_AI_SYSTEM]: provider.system,
|
|
418
|
-
[ATTR_GEN_AI_OPERATION_NAME]: operationName,
|
|
419
|
-
[ATTR_GEN_AI_REQUEST_MODEL]: modelId,
|
|
420
|
-
...params.maxTokens && { [ATTR_GEN_AI_REQUEST_MAX_TOKENS]: params.maxTokens },
|
|
421
|
-
...params.temperature !== void 0 && {
|
|
422
|
-
[ATTR_GEN_AI_REQUEST_TEMPERATURE]: params.temperature
|
|
423
|
-
},
|
|
424
|
-
...params.topP !== void 0 && { [ATTR_GEN_AI_REQUEST_TOP_P]: params.topP },
|
|
425
|
-
...params.topK !== void 0 && { [ATTR_GEN_AI_REQUEST_TOP_K]: params.topK },
|
|
426
|
-
...params.frequencyPenalty !== void 0 && {
|
|
427
|
-
[ATTR_GEN_AI_REQUEST_FREQUENCY_PENALTY]: params.frequencyPenalty
|
|
428
|
-
},
|
|
429
|
-
...params.presencePenalty !== void 0 && {
|
|
430
|
-
[ATTR_GEN_AI_REQUEST_PRESENCE_PENALTY]: params.presencePenalty
|
|
431
|
-
},
|
|
432
|
-
...params.stopSequences && {
|
|
433
|
-
[ATTR_GEN_AI_REQUEST_STOP_SEQUENCES]: params.stopSequences
|
|
434
|
-
},
|
|
435
|
-
...provider.apiBase && { [ATTR_GEN_AI_OPENAI_API_BASE]: provider.apiBase },
|
|
436
|
-
...additionalAttributes
|
|
437
|
-
}
|
|
438
|
-
});
|
|
439
|
-
return { span, provider, modelId };
|
|
440
|
-
}
|
|
441
|
-
handleError(error, span) {
|
|
442
|
-
if (shouldRecordError(error)) {
|
|
443
|
-
span.recordException(error);
|
|
444
|
-
span.setStatus({ code: SpanStatusCode.ERROR, message: error.message });
|
|
445
|
-
}
|
|
446
|
-
}
|
|
447
|
-
finalizeDuration(span, startTime, config, provider, modelId, operationName) {
|
|
448
|
-
if (config.enableMetrics) {
|
|
449
|
-
const duration = (globalThis.performance.now() - startTime) / 1e3;
|
|
450
|
-
this.context.recordDurationMetric(duration, provider.system, modelId, operationName);
|
|
451
|
-
}
|
|
452
|
-
span.end();
|
|
453
|
-
}
|
|
454
|
-
};
|
|
455
|
-
|
|
456
|
-
// src/internal/instrumentation/vercel-ai/patchers/generate-text-patcher.ts
|
|
457
|
-
import { context, SpanStatusCode as SpanStatusCode2, trace } from "@opentelemetry/api";
|
|
458
|
-
var GenerateTextPatcher = class extends BasePatcher {
|
|
459
|
-
patch(original) {
|
|
460
|
-
return async (params) => {
|
|
461
|
-
const config = this.context.getConfig();
|
|
462
|
-
const startTime = globalThis.performance.now();
|
|
463
|
-
const { span, provider, modelId } = this.createSpan(
|
|
464
|
-
SPAN_NAME_GEN_AI_CHAT,
|
|
465
|
-
params,
|
|
466
|
-
OPERATION_NAME_CHAT
|
|
467
|
-
);
|
|
468
|
-
if (params.prompt) {
|
|
469
|
-
span.setAttributes(
|
|
470
|
-
promptToAttributes(params.prompt, config.captureMessageContent || false)
|
|
471
|
-
);
|
|
472
|
-
} else if (params.messages) {
|
|
473
|
-
span.setAttributes(
|
|
474
|
-
messagesToAttributes(
|
|
475
|
-
params.messages,
|
|
476
|
-
"gen_ai.prompt",
|
|
477
|
-
config.captureMessageContent || false
|
|
478
|
-
)
|
|
479
|
-
);
|
|
480
|
-
if (config.emitEvents) {
|
|
481
|
-
this.context.emitMessageEvents(params.messages, provider.system, span);
|
|
482
|
-
}
|
|
483
|
-
}
|
|
484
|
-
try {
|
|
485
|
-
const result = await context.with(
|
|
486
|
-
trace.setSpan(context.active(), span),
|
|
487
|
-
() => original(params)
|
|
488
|
-
);
|
|
489
|
-
if (result.response) {
|
|
490
|
-
span.setAttributes({
|
|
491
|
-
...result.response.id && { [ATTR_GEN_AI_RESPONSE_ID]: result.response.id },
|
|
492
|
-
...result.response.model && { [ATTR_GEN_AI_RESPONSE_MODEL]: result.response.model }
|
|
493
|
-
});
|
|
494
|
-
}
|
|
495
|
-
if (result.finishReason) {
|
|
496
|
-
span.setAttribute(ATTR_GEN_AI_RESPONSE_FINISH_REASONS, [result.finishReason]);
|
|
497
|
-
}
|
|
498
|
-
span.setAttributes(
|
|
499
|
-
completionToAttributes(
|
|
500
|
-
result.text,
|
|
501
|
-
result.finishReason,
|
|
502
|
-
config.captureMessageContent || false
|
|
503
|
-
)
|
|
504
|
-
);
|
|
505
|
-
const usage = result.usage || result.totalUsage || result.steps?.[0]?.usage;
|
|
506
|
-
if (usage) {
|
|
507
|
-
span.setAttributes(tokenUsageToAttributes(usage));
|
|
508
|
-
if (config.enableMetrics) {
|
|
509
|
-
this.context.recordTokenMetrics(usage, provider.system, modelId);
|
|
510
|
-
}
|
|
511
|
-
}
|
|
512
|
-
if (config.emitEvents) {
|
|
513
|
-
this.context.emitAssistantMessageEvent(result.text, provider.system, span);
|
|
514
|
-
}
|
|
515
|
-
span.setStatus({ code: SpanStatusCode2.OK });
|
|
516
|
-
return result;
|
|
517
|
-
} catch (error) {
|
|
518
|
-
this.handleError(error, span);
|
|
519
|
-
throw error;
|
|
520
|
-
} finally {
|
|
521
|
-
this.finalizeDuration(span, startTime, config, provider, modelId, OPERATION_NAME_CHAT);
|
|
522
|
-
}
|
|
523
|
-
};
|
|
524
|
-
}
|
|
525
|
-
};
|
|
526
|
-
|
|
527
|
-
// src/internal/instrumentation/vercel-ai/patchers/stream-text-patcher.ts
|
|
528
|
-
import { context as context2, trace as trace2 } from "@opentelemetry/api";
|
|
529
|
-
var StreamTextPatcher = class extends BasePatcher {
|
|
530
|
-
constructor(context8, streamHandler) {
|
|
531
|
-
super(context8);
|
|
532
|
-
this.streamHandler = streamHandler;
|
|
533
|
-
}
|
|
534
|
-
patch(original) {
|
|
535
|
-
return async (params) => {
|
|
536
|
-
const config = this.context.getConfig();
|
|
537
|
-
const startTime = globalThis.performance.now();
|
|
538
|
-
const { span, provider, modelId } = this.createSpan(
|
|
539
|
-
SPAN_NAME_GEN_AI_CHAT,
|
|
540
|
-
params,
|
|
541
|
-
OPERATION_NAME_CHAT,
|
|
542
|
-
{ "gen_ai.streaming": true }
|
|
543
|
-
);
|
|
544
|
-
if (params.prompt) {
|
|
545
|
-
span.setAttributes(
|
|
546
|
-
promptToAttributes(params.prompt, config.captureMessageContent || false)
|
|
547
|
-
);
|
|
548
|
-
} else if (params.messages) {
|
|
549
|
-
span.setAttributes(
|
|
550
|
-
messagesToAttributes(
|
|
551
|
-
params.messages,
|
|
552
|
-
"gen_ai.prompt",
|
|
553
|
-
config.captureMessageContent || false
|
|
554
|
-
)
|
|
555
|
-
);
|
|
556
|
-
if (config.emitEvents) {
|
|
557
|
-
this.context.emitMessageEvents(params.messages, provider.system, span);
|
|
558
|
-
}
|
|
559
|
-
}
|
|
560
|
-
try {
|
|
561
|
-
const stream = await context2.with(
|
|
562
|
-
trace2.setSpan(context2.active(), span),
|
|
563
|
-
() => original(params)
|
|
564
|
-
);
|
|
565
|
-
return this.streamHandler.wrapStream(stream, span, config, provider, modelId, startTime);
|
|
566
|
-
} catch (error) {
|
|
567
|
-
this.handleError(error, span);
|
|
568
|
-
span.end();
|
|
569
|
-
throw error;
|
|
570
|
-
}
|
|
571
|
-
};
|
|
572
|
-
}
|
|
573
|
-
};
|
|
574
|
-
|
|
575
|
-
// src/internal/instrumentation/vercel-ai/patchers/embeddings-patcher.ts
|
|
576
|
-
import { context as context3, SpanStatusCode as SpanStatusCode3, trace as trace3 } from "@opentelemetry/api";
|
|
577
|
-
var EmbeddingsPatcher = class extends BasePatcher {
|
|
578
|
-
patch(original, isMany = false) {
|
|
579
|
-
return async (params) => {
|
|
580
|
-
const config = this.context.getConfig();
|
|
581
|
-
const startTime = globalThis.performance.now();
|
|
582
|
-
const additionalAttributes = isMany ? { "gen_ai.embeddings.count": params.values ? params.values.length : 0 } : {};
|
|
583
|
-
const { span, provider, modelId } = this.createSpan(
|
|
584
|
-
SPAN_NAME_GEN_AI_EMBEDDINGS,
|
|
585
|
-
params,
|
|
586
|
-
OPERATION_NAME_EMBEDDINGS,
|
|
587
|
-
additionalAttributes
|
|
588
|
-
);
|
|
589
|
-
if (!isMany && config.captureMessageContent && params.value) {
|
|
590
|
-
span.setAttribute("gen_ai.prompt.0.content", params.value);
|
|
591
|
-
}
|
|
592
|
-
try {
|
|
593
|
-
const result = await context3.with(
|
|
594
|
-
trace3.setSpan(context3.active(), span),
|
|
595
|
-
() => original(params)
|
|
596
|
-
);
|
|
597
|
-
if (result.response) {
|
|
598
|
-
span.setAttributes({
|
|
599
|
-
...result.response.id && { [ATTR_GEN_AI_RESPONSE_ID]: result.response.id },
|
|
600
|
-
...result.response.model && { [ATTR_GEN_AI_RESPONSE_MODEL]: result.response.model }
|
|
601
|
-
});
|
|
602
|
-
}
|
|
603
|
-
if (isMany) {
|
|
604
|
-
if (result.embeddings && result.embeddings.length > 0 && result.embeddings[0]) {
|
|
605
|
-
span.setAttribute("gen_ai.response.embedding_dimensions", result.embeddings[0].length);
|
|
606
|
-
}
|
|
607
|
-
} else {
|
|
608
|
-
if (result.embedding) {
|
|
609
|
-
span.setAttribute("gen_ai.response.embedding_dimensions", result.embedding.length);
|
|
610
|
-
}
|
|
611
|
-
}
|
|
612
|
-
if (result.usage) {
|
|
613
|
-
span.setAttributes(tokenUsageToAttributes(result.usage));
|
|
614
|
-
if (config.enableMetrics) {
|
|
615
|
-
this.context.recordTokenMetrics(result.usage, provider.system, modelId);
|
|
616
|
-
}
|
|
617
|
-
}
|
|
618
|
-
span.setStatus({ code: SpanStatusCode3.OK });
|
|
619
|
-
return result;
|
|
620
|
-
} catch (error) {
|
|
621
|
-
this.handleError(error, span);
|
|
622
|
-
throw error;
|
|
623
|
-
} finally {
|
|
624
|
-
this.finalizeDuration(span, startTime, config, provider, modelId, OPERATION_NAME_EMBEDDINGS);
|
|
625
|
-
}
|
|
626
|
-
};
|
|
627
|
-
}
|
|
628
|
-
};
|
|
629
|
-
|
|
630
|
-
// src/internal/instrumentation/vercel-ai/stream-handler.ts
|
|
631
|
-
import { SpanStatusCode as SpanStatusCode4 } from "@opentelemetry/api";
|
|
632
|
-
var StreamHandler = class {
|
|
633
|
-
constructor(context8) {
|
|
634
|
-
this.context = context8;
|
|
635
|
-
}
|
|
636
|
-
wrapStream(stream, span, config, provider, modelId, startTime) {
|
|
637
|
-
const self = this;
|
|
638
|
-
let fullText = "";
|
|
639
|
-
let finishReason;
|
|
640
|
-
let usage;
|
|
641
|
-
let response;
|
|
642
|
-
const wrappedStream = new Proxy(stream, {
|
|
643
|
-
get(target, prop) {
|
|
644
|
-
if (prop === Symbol.asyncIterator) {
|
|
645
|
-
return async function* () {
|
|
646
|
-
try {
|
|
647
|
-
for await (const chunk of target) {
|
|
648
|
-
if (chunk.type === "text-delta" && chunk.textDelta) {
|
|
649
|
-
fullText += chunk.textDelta;
|
|
650
|
-
} else if (chunk.type === "finish") {
|
|
651
|
-
finishReason = chunk.finishReason;
|
|
652
|
-
usage = chunk.usage;
|
|
653
|
-
} else if (chunk.type === "response-metadata") {
|
|
654
|
-
response = chunk.response;
|
|
655
|
-
}
|
|
656
|
-
yield chunk;
|
|
657
|
-
}
|
|
658
|
-
} finally {
|
|
659
|
-
self.finalizeStream(
|
|
660
|
-
span,
|
|
661
|
-
config,
|
|
662
|
-
provider,
|
|
663
|
-
modelId,
|
|
664
|
-
startTime,
|
|
665
|
-
fullText,
|
|
666
|
-
finishReason,
|
|
667
|
-
usage,
|
|
668
|
-
response
|
|
669
|
-
);
|
|
670
|
-
}
|
|
671
|
-
};
|
|
672
|
-
}
|
|
673
|
-
if (prop === "textStream" || prop === "fullStream") {
|
|
674
|
-
const originalStream = target[prop];
|
|
675
|
-
return {
|
|
676
|
-
[Symbol.asyncIterator]: async function* () {
|
|
677
|
-
try {
|
|
678
|
-
for await (const chunk of originalStream) {
|
|
679
|
-
if (prop === "textStream") {
|
|
680
|
-
fullText += chunk;
|
|
681
|
-
}
|
|
682
|
-
yield chunk;
|
|
683
|
-
}
|
|
684
|
-
} finally {
|
|
685
|
-
const streamUsage = await target.usage.catch(() => null);
|
|
686
|
-
if (streamUsage) {
|
|
687
|
-
usage = streamUsage;
|
|
688
|
-
}
|
|
689
|
-
self.finalizeStream(
|
|
690
|
-
span,
|
|
691
|
-
config,
|
|
692
|
-
provider,
|
|
693
|
-
modelId,
|
|
694
|
-
startTime,
|
|
695
|
-
fullText,
|
|
696
|
-
finishReason,
|
|
697
|
-
usage,
|
|
698
|
-
response
|
|
699
|
-
);
|
|
700
|
-
}
|
|
701
|
-
}
|
|
702
|
-
};
|
|
703
|
-
}
|
|
704
|
-
const value = target[prop];
|
|
705
|
-
if (typeof value === "function") {
|
|
706
|
-
return value.bind(target);
|
|
707
|
-
}
|
|
708
|
-
return value;
|
|
709
|
-
}
|
|
710
|
-
});
|
|
711
|
-
return wrappedStream;
|
|
712
|
-
}
|
|
713
|
-
finalizeStream(span, config, provider, modelId, startTime, fullText, finishReason, usage, response) {
|
|
714
|
-
if (response) {
|
|
715
|
-
span.setAttributes({
|
|
716
|
-
...response.id && { [ATTR_GEN_AI_RESPONSE_ID]: response.id },
|
|
717
|
-
...response.model && { [ATTR_GEN_AI_RESPONSE_MODEL]: response.model }
|
|
718
|
-
});
|
|
719
|
-
}
|
|
720
|
-
if (finishReason) {
|
|
721
|
-
span.setAttribute(ATTR_GEN_AI_RESPONSE_FINISH_REASONS, [finishReason]);
|
|
722
|
-
}
|
|
723
|
-
if (fullText) {
|
|
724
|
-
span.setAttributes(
|
|
725
|
-
completionToAttributes(
|
|
726
|
-
fullText,
|
|
727
|
-
finishReason,
|
|
728
|
-
config.captureMessageContent || false
|
|
729
|
-
)
|
|
730
|
-
);
|
|
731
|
-
}
|
|
732
|
-
if (usage) {
|
|
733
|
-
span.setAttributes(tokenUsageToAttributes(usage));
|
|
734
|
-
if (config.enableMetrics) {
|
|
735
|
-
this.context.recordTokenMetrics(usage, provider.system, modelId);
|
|
736
|
-
}
|
|
737
|
-
}
|
|
738
|
-
if (config.enableMetrics) {
|
|
739
|
-
const duration = (performance.now() - startTime) / 1e3;
|
|
740
|
-
this.context.recordDurationMetric(duration, provider.system, modelId, OPERATION_NAME_CHAT);
|
|
741
|
-
}
|
|
742
|
-
span.setStatus({ code: SpanStatusCode4.OK });
|
|
743
|
-
span.end();
|
|
744
|
-
}
|
|
745
|
-
};
|
|
746
|
-
|
|
747
|
-
// src/internal/instrumentation/vercel-ai/telemetry-recorder.ts
|
|
748
|
-
import { context as context4, trace as trace4 } from "@opentelemetry/api";
|
|
749
|
-
import { SeverityNumber } from "@opentelemetry/api-logs";
|
|
750
|
-
var TelemetryRecorder = class {
|
|
751
|
-
constructor(genaiClientOperationDuration, genaiClientTokenUsage, logger2) {
|
|
752
|
-
this.genaiClientOperationDuration = genaiClientOperationDuration;
|
|
753
|
-
this.genaiClientTokenUsage = genaiClientTokenUsage;
|
|
754
|
-
this.logger = logger2;
|
|
755
|
-
}
|
|
756
|
-
/**
|
|
757
|
-
* Record token usage metrics
|
|
758
|
-
*/
|
|
759
|
-
recordTokenMetrics(usage, system, model) {
|
|
760
|
-
if (!this.genaiClientTokenUsage) {
|
|
761
|
-
return;
|
|
762
|
-
}
|
|
763
|
-
const commonAttrs = {
|
|
764
|
-
[ATTR_GEN_AI_SYSTEM]: system,
|
|
765
|
-
[ATTR_GEN_AI_REQUEST_MODEL]: model
|
|
766
|
-
};
|
|
767
|
-
const inputTokens = usage.inputTokens || usage.promptTokens;
|
|
768
|
-
const outputTokens = usage.outputTokens || usage.completionTokens;
|
|
769
|
-
if (inputTokens !== void 0) {
|
|
770
|
-
this.genaiClientTokenUsage.record(inputTokens, {
|
|
771
|
-
...commonAttrs,
|
|
772
|
-
[ATTR_GEN_AI_TOKEN_TYPE]: TOKEN_TYPE_INPUT
|
|
773
|
-
});
|
|
774
|
-
}
|
|
775
|
-
if (outputTokens !== void 0) {
|
|
776
|
-
this.genaiClientTokenUsage.record(outputTokens, {
|
|
777
|
-
...commonAttrs,
|
|
778
|
-
[ATTR_GEN_AI_TOKEN_TYPE]: TOKEN_TYPE_OUTPUT
|
|
779
|
-
});
|
|
780
|
-
}
|
|
781
|
-
}
|
|
782
|
-
/**
|
|
783
|
-
* Record operation duration metric
|
|
784
|
-
*/
|
|
785
|
-
recordDurationMetric(duration, system, model, operation) {
|
|
786
|
-
if (!this.genaiClientOperationDuration) {
|
|
787
|
-
return;
|
|
788
|
-
}
|
|
789
|
-
this.genaiClientOperationDuration.record(duration, {
|
|
790
|
-
[ATTR_GEN_AI_SYSTEM]: system,
|
|
791
|
-
[ATTR_GEN_AI_REQUEST_MODEL]: model,
|
|
792
|
-
[ATTR_GEN_AI_OPERATION_NAME]: operation
|
|
793
|
-
});
|
|
794
|
-
}
|
|
795
|
-
/**
|
|
796
|
-
* Emit message events
|
|
797
|
-
*/
|
|
798
|
-
emitMessageEvents(messages, system, span) {
|
|
799
|
-
if (!this.logger) {
|
|
800
|
-
return;
|
|
801
|
-
}
|
|
802
|
-
const ctx = trace4.setSpan(context4.active(), span);
|
|
803
|
-
for (const msg of messages) {
|
|
804
|
-
let eventName;
|
|
805
|
-
switch (msg.role) {
|
|
806
|
-
case "system": {
|
|
807
|
-
eventName = EVENT_GEN_AI_SYSTEM_MESSAGE;
|
|
808
|
-
break;
|
|
809
|
-
}
|
|
810
|
-
case "user": {
|
|
811
|
-
eventName = EVENT_GEN_AI_USER_MESSAGE;
|
|
812
|
-
break;
|
|
813
|
-
}
|
|
814
|
-
case "assistant": {
|
|
815
|
-
eventName = EVENT_GEN_AI_ASSISTANT_MESSAGE;
|
|
816
|
-
break;
|
|
817
|
-
}
|
|
818
|
-
case "tool":
|
|
819
|
-
case "function": {
|
|
820
|
-
eventName = EVENT_GEN_AI_TOOL_MESSAGE;
|
|
821
|
-
break;
|
|
822
|
-
}
|
|
823
|
-
default: {
|
|
824
|
-
continue;
|
|
825
|
-
}
|
|
826
|
-
}
|
|
827
|
-
this.logger.emit({
|
|
828
|
-
timestamp: Date.now(),
|
|
829
|
-
context: ctx,
|
|
830
|
-
severityNumber: SeverityNumber.INFO,
|
|
831
|
-
attributes: {
|
|
832
|
-
[ATTR_EVENT_NAME]: eventName,
|
|
833
|
-
[ATTR_GEN_AI_SYSTEM]: system
|
|
834
|
-
},
|
|
835
|
-
body: {
|
|
836
|
-
role: msg.role,
|
|
837
|
-
content: typeof msg.content === "string" ? msg.content : JSON.stringify(msg.content),
|
|
838
|
-
name: msg.name
|
|
839
|
-
}
|
|
840
|
-
});
|
|
841
|
-
}
|
|
842
|
-
}
|
|
843
|
-
/**
|
|
844
|
-
* Emit assistant message event
|
|
845
|
-
*/
|
|
846
|
-
emitAssistantMessageEvent(text, system, span) {
|
|
847
|
-
if (!this.logger) {
|
|
848
|
-
return;
|
|
849
|
-
}
|
|
850
|
-
const ctx = trace4.setSpan(context4.active(), span);
|
|
851
|
-
this.logger.emit({
|
|
852
|
-
timestamp: Date.now(),
|
|
853
|
-
context: ctx,
|
|
854
|
-
severityNumber: SeverityNumber.INFO,
|
|
855
|
-
attributes: {
|
|
856
|
-
[ATTR_EVENT_NAME]: EVENT_GEN_AI_ASSISTANT_MESSAGE,
|
|
857
|
-
[ATTR_GEN_AI_SYSTEM]: system
|
|
858
|
-
},
|
|
859
|
-
body: {
|
|
860
|
-
role: "assistant",
|
|
861
|
-
content: text
|
|
862
|
-
}
|
|
863
|
-
});
|
|
864
|
-
}
|
|
865
|
-
};
|
|
866
|
-
|
|
867
|
-
// src/internal/instrumentation/vercel-ai/instrumentation.ts
|
|
868
|
-
var PACKAGE_NAME = "@brizz/vercel-ai-instrumentation";
|
|
869
|
-
var PACKAGE_VERSION = "0.1.0";
|
|
870
|
-
var VercelAIInstrumentation = class _VercelAIInstrumentation extends InstrumentationBase {
|
|
871
|
-
_genaiClientOperationDuration;
|
|
872
|
-
_genaiClientTokenUsage;
|
|
873
|
-
_telemetryRecorder;
|
|
874
|
-
_streamHandler;
|
|
875
|
-
_patchers = /* @__PURE__ */ new Map();
|
|
876
|
-
// Holds last patched namespace when available (reserved for future factory wrapping)
|
|
877
|
-
_vercelAiNamespace = null;
|
|
878
|
-
static _WRAPPED_SYMBOL = Symbol.for("brizz.vercel-ai.patched");
|
|
879
|
-
constructor(config = {}) {
|
|
880
|
-
super(PACKAGE_NAME, PACKAGE_VERSION, config);
|
|
881
|
-
const cfg = this.getConfig();
|
|
882
|
-
const envCC = getEnvBool("OTEL_INSTRUMENTATION_GENAI_CAPTURE_MESSAGE_CONTENT");
|
|
883
|
-
if (envCC !== void 0) {
|
|
884
|
-
cfg.captureMessageContent = envCC;
|
|
885
|
-
}
|
|
886
|
-
this._initializeComponents();
|
|
887
|
-
}
|
|
888
|
-
setConfig(config = {}) {
|
|
889
|
-
const {
|
|
890
|
-
captureMessageContent = true,
|
|
891
|
-
enableMetrics = true,
|
|
892
|
-
emitEvents = true,
|
|
893
|
-
...validConfig
|
|
894
|
-
} = config;
|
|
895
|
-
const fullConfig = {
|
|
896
|
-
...validConfig,
|
|
897
|
-
captureMessageContent,
|
|
898
|
-
enableMetrics,
|
|
899
|
-
emitEvents
|
|
900
|
-
};
|
|
901
|
-
super.setConfig(fullConfig);
|
|
902
|
-
}
|
|
903
|
-
_initializeComponents() {
|
|
904
|
-
this._telemetryRecorder = new TelemetryRecorder(
|
|
905
|
-
this._genaiClientOperationDuration,
|
|
906
|
-
this._genaiClientTokenUsage,
|
|
907
|
-
this.logger
|
|
908
|
-
);
|
|
909
|
-
this._streamHandler = new StreamHandler({
|
|
910
|
-
recordTokenMetrics: this._telemetryRecorder.recordTokenMetrics.bind(this._telemetryRecorder),
|
|
911
|
-
recordDurationMetric: this._telemetryRecorder.recordDurationMetric.bind(
|
|
912
|
-
this._telemetryRecorder
|
|
913
|
-
)
|
|
914
|
-
});
|
|
915
|
-
const patcherContext = {
|
|
916
|
-
tracer: this.tracer,
|
|
917
|
-
getConfig: this.getConfig.bind(this),
|
|
918
|
-
recordTokenMetrics: this._telemetryRecorder.recordTokenMetrics.bind(this._telemetryRecorder),
|
|
919
|
-
recordDurationMetric: this._telemetryRecorder.recordDurationMetric.bind(
|
|
920
|
-
this._telemetryRecorder
|
|
921
|
-
),
|
|
922
|
-
emitMessageEvents: this._telemetryRecorder.emitMessageEvents.bind(this._telemetryRecorder),
|
|
923
|
-
emitAssistantMessageEvent: this._telemetryRecorder.emitAssistantMessageEvent.bind(
|
|
924
|
-
this._telemetryRecorder
|
|
925
|
-
)
|
|
926
|
-
};
|
|
927
|
-
this._patchers.set("generateText", new GenerateTextPatcher(patcherContext));
|
|
928
|
-
this._patchers.set("streamText", new StreamTextPatcher(patcherContext, this._streamHandler));
|
|
929
|
-
this._patchers.set("embed", new EmbeddingsPatcher(patcherContext));
|
|
930
|
-
this._patchers.set("embedMany", new EmbeddingsPatcher(patcherContext));
|
|
931
|
-
}
|
|
932
|
-
init() {
|
|
933
|
-
return [
|
|
934
|
-
new InstrumentationNodeModuleDefinition(
|
|
935
|
-
"ai",
|
|
936
|
-
[">=4.0.0 <6"],
|
|
937
|
-
(moduleExports) => {
|
|
938
|
-
logger.info("Starting instrumentation of Vercel AI SDK module");
|
|
939
|
-
this._vercelAiNamespace = moduleExports;
|
|
940
|
-
const patched = this._patchModuleExports(moduleExports);
|
|
941
|
-
return patched ?? moduleExports;
|
|
942
|
-
},
|
|
943
|
-
(moduleExports) => {
|
|
944
|
-
logger.debug("Uninstrumenting @vercel/ai module");
|
|
945
|
-
return moduleExports;
|
|
946
|
-
}
|
|
947
|
-
)
|
|
948
|
-
];
|
|
949
|
-
}
|
|
950
|
-
_updateMetricInstruments() {
|
|
951
|
-
const config = this.getConfig();
|
|
952
|
-
if (!config.enableMetrics) {
|
|
953
|
-
return;
|
|
954
|
-
}
|
|
955
|
-
this._genaiClientOperationDuration = this.meter.createHistogram(
|
|
956
|
-
METRIC_GEN_AI_CLIENT_OPERATION_DURATION,
|
|
957
|
-
{
|
|
958
|
-
description: "GenAI operation duration",
|
|
959
|
-
unit: "s",
|
|
960
|
-
advice: {
|
|
961
|
-
explicitBucketBoundaries: [
|
|
962
|
-
0.01,
|
|
963
|
-
0.02,
|
|
964
|
-
0.04,
|
|
965
|
-
0.08,
|
|
966
|
-
0.16,
|
|
967
|
-
0.32,
|
|
968
|
-
0.64,
|
|
969
|
-
1.28,
|
|
970
|
-
2.56,
|
|
971
|
-
5.12,
|
|
972
|
-
10.24,
|
|
973
|
-
20.48,
|
|
974
|
-
40.96,
|
|
975
|
-
81.92
|
|
976
|
-
]
|
|
977
|
-
}
|
|
978
|
-
}
|
|
979
|
-
);
|
|
980
|
-
this._genaiClientTokenUsage = this.meter.createHistogram(METRIC_GEN_AI_CLIENT_TOKEN_USAGE, {
|
|
981
|
-
description: "Measures number of input and output tokens used",
|
|
982
|
-
unit: "{token}",
|
|
983
|
-
advice: {
|
|
984
|
-
explicitBucketBoundaries: [
|
|
985
|
-
1,
|
|
986
|
-
4,
|
|
987
|
-
16,
|
|
988
|
-
64,
|
|
989
|
-
256,
|
|
990
|
-
1024,
|
|
991
|
-
4096,
|
|
992
|
-
16384,
|
|
993
|
-
65536,
|
|
994
|
-
262144,
|
|
995
|
-
1048576,
|
|
996
|
-
4194304,
|
|
997
|
-
16777216,
|
|
998
|
-
67108864
|
|
999
|
-
]
|
|
1000
|
-
}
|
|
1001
|
-
});
|
|
1002
|
-
this._telemetryRecorder = new TelemetryRecorder(
|
|
1003
|
-
this._genaiClientOperationDuration,
|
|
1004
|
-
this._genaiClientTokenUsage,
|
|
1005
|
-
this.logger
|
|
1006
|
-
);
|
|
1007
|
-
}
|
|
1008
|
-
/**
|
|
1009
|
-
* Patch known AI SDK functions in-place on the provided module exports object.
|
|
1010
|
-
* This approach is compatible with both CJS and ESM module loaders.
|
|
1011
|
-
*/
|
|
1012
|
-
_patchModuleExports(moduleExports) {
|
|
1013
|
-
if (!moduleExports || typeof moduleExports !== "object") {
|
|
1014
|
-
return null;
|
|
1015
|
-
}
|
|
1016
|
-
let inPlacePatched = true;
|
|
1017
|
-
const wrapFunction = (name, isEmbedMany = false) => {
|
|
1018
|
-
const current = moduleExports[name];
|
|
1019
|
-
if (typeof current !== "function") {
|
|
1020
|
-
return;
|
|
1021
|
-
}
|
|
1022
|
-
const currentFn = current;
|
|
1023
|
-
if (currentFn[_VercelAIInstrumentation._WRAPPED_SYMBOL]) {
|
|
1024
|
-
return;
|
|
1025
|
-
}
|
|
1026
|
-
const descriptor = Object.getOwnPropertyDescriptor(moduleExports, name);
|
|
1027
|
-
if (descriptor && (!descriptor.writable || !descriptor.configurable) && !descriptor.set) {
|
|
1028
|
-
inPlacePatched = false;
|
|
1029
|
-
return;
|
|
1030
|
-
}
|
|
1031
|
-
const patcher = this._patchers.get(name);
|
|
1032
|
-
if (!patcher) {
|
|
1033
|
-
return;
|
|
1034
|
-
}
|
|
1035
|
-
const patched = isEmbedMany ? patcher.patch(currentFn, true) : patcher.patch(currentFn);
|
|
1036
|
-
try {
|
|
1037
|
-
Object.defineProperty(patched, _VercelAIInstrumentation._WRAPPED_SYMBOL, {
|
|
1038
|
-
value: true,
|
|
1039
|
-
enumerable: false,
|
|
1040
|
-
configurable: false
|
|
1041
|
-
});
|
|
1042
|
-
} catch {
|
|
1043
|
-
}
|
|
1044
|
-
try {
|
|
1045
|
-
moduleExports[name] = patched;
|
|
1046
|
-
} catch {
|
|
1047
|
-
inPlacePatched = false;
|
|
1048
|
-
}
|
|
1049
|
-
};
|
|
1050
|
-
wrapFunction("generateText");
|
|
1051
|
-
wrapFunction("streamText");
|
|
1052
|
-
wrapFunction("embed");
|
|
1053
|
-
wrapFunction("embedMany", true);
|
|
1054
|
-
if (!inPlacePatched) {
|
|
1055
|
-
const proxiedModule = new Proxy(moduleExports, {
|
|
1056
|
-
get: (target, prop, receiver) => {
|
|
1057
|
-
const originalValue = Reflect.get(target, prop, receiver);
|
|
1058
|
-
if (typeof originalValue === "function" && typeof prop === "string" && this._patchers.has(prop)) {
|
|
1059
|
-
const patcher = this._patchers.get(prop);
|
|
1060
|
-
const isEmbedMany = prop === "embedMany";
|
|
1061
|
-
const wrapped = isEmbedMany ? patcher.patch(originalValue, true) : patcher.patch(originalValue);
|
|
1062
|
-
return wrapped;
|
|
1063
|
-
}
|
|
1064
|
-
return originalValue;
|
|
1065
|
-
}
|
|
1066
|
-
});
|
|
1067
|
-
return proxiedModule;
|
|
1068
|
-
}
|
|
1069
|
-
return moduleExports;
|
|
1070
|
-
}
|
|
1071
|
-
/**
|
|
1072
|
-
* Manual instrumentation hook for bundlers/Next.js. Applies in-place wrapping
|
|
1073
|
-
* on the provided module namespace.
|
|
1074
|
-
*/
|
|
1075
|
-
manuallyInstrument(module2) {
|
|
1076
|
-
try {
|
|
1077
|
-
const result = this._patchModuleExports(module2);
|
|
1078
|
-
if (result !== null) {
|
|
1079
|
-
logger.debug("Applied manual Vercel AI instrumentation");
|
|
1080
|
-
this._vercelAiNamespace = result;
|
|
1081
|
-
return result;
|
|
1082
|
-
}
|
|
1083
|
-
logger.warn("Manual Vercel AI instrumentation received invalid module");
|
|
1084
|
-
return module2;
|
|
1085
|
-
} catch (error) {
|
|
1086
|
-
logger.error(`Failed manual Vercel AI instrumentation: ${String(error)}`);
|
|
1087
|
-
return this._vercelAiNamespace || module2;
|
|
1088
|
-
}
|
|
1089
|
-
}
|
|
1090
|
-
/**
|
|
1091
|
-
* Wrap a created provider/client instance (factory return) when possible.
|
|
1092
|
-
* Call this from wrappers that construct provider clients (e.g., OpenAI SDK).
|
|
1093
|
-
*/
|
|
1094
|
-
// eslint-disable-next-line @typescript-eslint/no-explicit-any
|
|
1095
|
-
wrapFactoryReturn(instance) {
|
|
1096
|
-
return instance;
|
|
1097
|
-
}
|
|
1098
|
-
};
|
|
1099
|
-
|
|
1100
167
|
// src/internal/instrumentation/auto-init.ts
|
|
1101
168
|
var autoInstrumentationsLoaded = false;
|
|
1102
169
|
var exceptionLogger = (error) => {
|
|
@@ -1115,8 +182,6 @@ function loadNodeAutoInstrumentations() {
|
|
|
1115
182
|
function loadGenAIInstrumentations() {
|
|
1116
183
|
const instrumentations = [];
|
|
1117
184
|
const genAIInstrumentationClasses = [
|
|
1118
|
-
{ class: VercelAIInstrumentation, name: "Vercel AI" },
|
|
1119
|
-
// Load first to avoid conflicts
|
|
1120
185
|
{ class: OpenAIInstrumentation, name: "OpenAI" },
|
|
1121
186
|
{ class: AnthropicInstrumentation, name: "Anthropic" },
|
|
1122
187
|
{ class: CohereInstrumentation, name: "Cohere" },
|
|
@@ -1335,8 +400,7 @@ var InstrumentationRegistry = class _InstrumentationRegistry {
|
|
|
1335
400
|
},
|
|
1336
401
|
{ class: ChromaDBInstrumentation2, name: "ChromaDB", module: this.manualModules?.chromadb },
|
|
1337
402
|
{ class: QdrantInstrumentation2, name: "Qdrant", module: this.manualModules?.qdrant },
|
|
1338
|
-
{ class: TogetherInstrumentation2, name: "Together", module: this.manualModules?.together }
|
|
1339
|
-
{ class: VercelAIInstrumentation, name: "Vercel AI", module: this.manualModules?.vercelAI }
|
|
403
|
+
{ class: TogetherInstrumentation2, name: "Together", module: this.manualModules?.together }
|
|
1340
404
|
];
|
|
1341
405
|
for (const config of instrumentationConfigs) {
|
|
1342
406
|
if (config.module) {
|
|
@@ -1355,7 +419,7 @@ var InstrumentationRegistry = class _InstrumentationRegistry {
|
|
|
1355
419
|
};
|
|
1356
420
|
|
|
1357
421
|
// src/internal/log/logging.ts
|
|
1358
|
-
import { SeverityNumber
|
|
422
|
+
import { SeverityNumber } from "@opentelemetry/api-logs";
|
|
1359
423
|
import { OTLPLogExporter } from "@opentelemetry/exporter-logs-otlp-http";
|
|
1360
424
|
import { resourceFromAttributes } from "@opentelemetry/resources";
|
|
1361
425
|
import {
|
|
@@ -1363,7 +427,7 @@ import {
|
|
|
1363
427
|
} from "@opentelemetry/sdk-logs";
|
|
1364
428
|
|
|
1365
429
|
// src/internal/log/processors/log-processor.ts
|
|
1366
|
-
import { context
|
|
430
|
+
import { context } from "@opentelemetry/api";
|
|
1367
431
|
import { BatchLogRecordProcessor, SimpleLogRecordProcessor } from "@opentelemetry/sdk-logs";
|
|
1368
432
|
|
|
1369
433
|
// src/internal/masking/patterns.ts
|
|
@@ -2014,7 +1078,7 @@ var BrizzSimpleLogRecordProcessor = class extends SimpleLogRecordProcessor {
|
|
|
2014
1078
|
if (maskingConfig) {
|
|
2015
1079
|
maskLog(logRecord, maskingConfig);
|
|
2016
1080
|
}
|
|
2017
|
-
const associationProperties =
|
|
1081
|
+
const associationProperties = context.active().getValue(PROPERTIES_CONTEXT_KEY);
|
|
2018
1082
|
if (associationProperties) {
|
|
2019
1083
|
for (const [key, value] of Object.entries(associationProperties)) {
|
|
2020
1084
|
logRecord.setAttribute(`${BRIZZ}.${key}`, value);
|
|
@@ -2034,7 +1098,7 @@ var BrizzBatchLogRecordProcessor = class extends BatchLogRecordProcessor {
|
|
|
2034
1098
|
if (maskingConfig) {
|
|
2035
1099
|
maskLog(logRecord, maskingConfig);
|
|
2036
1100
|
}
|
|
2037
|
-
const associationProperties =
|
|
1101
|
+
const associationProperties = context.active().getValue(PROPERTIES_CONTEXT_KEY);
|
|
2038
1102
|
if (associationProperties) {
|
|
2039
1103
|
for (const [key, value] of Object.entries(associationProperties)) {
|
|
2040
1104
|
logRecord.setAttribute(`${BRIZZ}.${key}`, value);
|
|
@@ -2171,7 +1235,7 @@ var LoggingModule = class _LoggingModule {
|
|
|
2171
1235
|
/**
|
|
2172
1236
|
* Emit a custom event to the telemetry pipeline
|
|
2173
1237
|
*/
|
|
2174
|
-
emitEvent(name, attributes, body, severityNumber =
|
|
1238
|
+
emitEvent(name, attributes, body, severityNumber = SeverityNumber.INFO) {
|
|
2175
1239
|
logger.debug("Attempting to emit event", {
|
|
2176
1240
|
name,
|
|
2177
1241
|
hasAttributes: !!attributes,
|
|
@@ -2239,7 +1303,7 @@ var LoggingModule = class _LoggingModule {
|
|
|
2239
1303
|
logger.debug("Logging module shutdown completed");
|
|
2240
1304
|
}
|
|
2241
1305
|
};
|
|
2242
|
-
function emitEvent(name, attributes, body, severityNumber =
|
|
1306
|
+
function emitEvent(name, attributes, body, severityNumber = SeverityNumber.INFO) {
|
|
2243
1307
|
return LoggingModule.getInstance().emitEvent(name, attributes, body, severityNumber);
|
|
2244
1308
|
}
|
|
2245
1309
|
|
|
@@ -2349,11 +1413,134 @@ function getMetricsReader() {
|
|
|
2349
1413
|
import { OTLPTraceExporter } from "@opentelemetry/exporter-trace-otlp-http";
|
|
2350
1414
|
|
|
2351
1415
|
// src/internal/trace/processors/span-processor.ts
|
|
2352
|
-
import { context as
|
|
1416
|
+
import { context as context2 } from "@opentelemetry/api";
|
|
2353
1417
|
import {
|
|
2354
1418
|
BatchSpanProcessor,
|
|
2355
1419
|
SimpleSpanProcessor
|
|
2356
1420
|
} from "@opentelemetry/sdk-trace-base";
|
|
1421
|
+
|
|
1422
|
+
// src/internal/trace/transformations/vercel-ai.ts
|
|
1423
|
+
import { SpanAttributes } from "@traceloop/ai-semantic-conventions";
|
|
1424
|
+
var AI_GENERATE_TEXT_DO_GENERATE = "ai.generateText.doGenerate";
|
|
1425
|
+
var AI_STREAM_TEXT_DO_STREAM = "ai.streamText.doStream";
|
|
1426
|
+
var HANDLED_SPAN_NAMES = {
|
|
1427
|
+
[AI_GENERATE_TEXT_DO_GENERATE]: "gen_ai.chat",
|
|
1428
|
+
[AI_STREAM_TEXT_DO_STREAM]: "gen_ai.chat",
|
|
1429
|
+
"ai.streamText": "ai.streamText",
|
|
1430
|
+
"ai.toolCall": (span) => {
|
|
1431
|
+
const toolName = span.attributes["ai.toolCall.name"];
|
|
1432
|
+
return `${toolName}.tool`;
|
|
1433
|
+
}
|
|
1434
|
+
};
|
|
1435
|
+
var AI_RESPONSE_TEXT = "ai.response.text";
|
|
1436
|
+
var AI_PROMPT_MESSAGES = "ai.prompt.messages";
|
|
1437
|
+
var AI_USAGE_PROMPT_TOKENS = "ai.usage.promptTokens";
|
|
1438
|
+
var AI_USAGE_COMPLETION_TOKENS = "ai.usage.completionTokens";
|
|
1439
|
+
var AI_MODEL_PROVIDER = "ai.model.provider";
|
|
1440
|
+
var transformAiSdkSpanName = (span) => {
|
|
1441
|
+
if (span.name in HANDLED_SPAN_NAMES) {
|
|
1442
|
+
if (typeof HANDLED_SPAN_NAMES[span.name] === "function") {
|
|
1443
|
+
span.name = HANDLED_SPAN_NAMES[span.name](span);
|
|
1444
|
+
} else {
|
|
1445
|
+
span.name = HANDLED_SPAN_NAMES[span.name];
|
|
1446
|
+
}
|
|
1447
|
+
}
|
|
1448
|
+
};
|
|
1449
|
+
var transformResponseText = (attributes) => {
|
|
1450
|
+
if (AI_RESPONSE_TEXT in attributes) {
|
|
1451
|
+
attributes[`${SpanAttributes.LLM_COMPLETIONS}.0.content`] = attributes[AI_RESPONSE_TEXT];
|
|
1452
|
+
attributes[`${SpanAttributes.LLM_COMPLETIONS}.0.role`] = "assistant";
|
|
1453
|
+
delete attributes[AI_RESPONSE_TEXT];
|
|
1454
|
+
}
|
|
1455
|
+
};
|
|
1456
|
+
var transformPromptMessages = (attributes) => {
|
|
1457
|
+
if (AI_PROMPT_MESSAGES in attributes) {
|
|
1458
|
+
try {
|
|
1459
|
+
const messages = JSON.parse(attributes[AI_PROMPT_MESSAGES]);
|
|
1460
|
+
messages.forEach((msg, index) => {
|
|
1461
|
+
logger.debug("Transforming prompt message", { msg, type: typeof msg.content });
|
|
1462
|
+
if (typeof msg.content === "string") {
|
|
1463
|
+
attributes[`${SpanAttributes.LLM_PROMPTS}.${index}.content`] = msg.content;
|
|
1464
|
+
} else {
|
|
1465
|
+
if (Array.isArray(msg.content) && msg.content.length > 0) {
|
|
1466
|
+
const lastContent = msg.content[msg.content.length - 1];
|
|
1467
|
+
if (lastContent.text) {
|
|
1468
|
+
attributes[`${SpanAttributes.LLM_PROMPTS}.${index}.content`] = lastContent.text;
|
|
1469
|
+
}
|
|
1470
|
+
} else {
|
|
1471
|
+
attributes[`${SpanAttributes.LLM_PROMPTS}.${index}.content`] = JSON.stringify(
|
|
1472
|
+
msg.content
|
|
1473
|
+
);
|
|
1474
|
+
}
|
|
1475
|
+
}
|
|
1476
|
+
attributes[`${SpanAttributes.LLM_PROMPTS}.${index}.role`] = msg.role;
|
|
1477
|
+
});
|
|
1478
|
+
delete attributes[AI_PROMPT_MESSAGES];
|
|
1479
|
+
} catch {
|
|
1480
|
+
}
|
|
1481
|
+
}
|
|
1482
|
+
};
|
|
1483
|
+
var transformPromptTokens = (attributes) => {
|
|
1484
|
+
if (AI_USAGE_PROMPT_TOKENS in attributes) {
|
|
1485
|
+
attributes[`${SpanAttributes.LLM_USAGE_PROMPT_TOKENS}`] = attributes[AI_USAGE_PROMPT_TOKENS];
|
|
1486
|
+
delete attributes[AI_USAGE_PROMPT_TOKENS];
|
|
1487
|
+
}
|
|
1488
|
+
};
|
|
1489
|
+
var transformCompletionTokens = (attributes) => {
|
|
1490
|
+
if (AI_USAGE_COMPLETION_TOKENS in attributes) {
|
|
1491
|
+
attributes[`${SpanAttributes.LLM_USAGE_COMPLETION_TOKENS}`] = attributes[AI_USAGE_COMPLETION_TOKENS];
|
|
1492
|
+
delete attributes[AI_USAGE_COMPLETION_TOKENS];
|
|
1493
|
+
}
|
|
1494
|
+
};
|
|
1495
|
+
var calculateTotalTokens = (attributes) => {
|
|
1496
|
+
const promptTokens = attributes[`${SpanAttributes.LLM_USAGE_PROMPT_TOKENS}`];
|
|
1497
|
+
const completionTokens = attributes[`${SpanAttributes.LLM_USAGE_COMPLETION_TOKENS}`];
|
|
1498
|
+
if (promptTokens && completionTokens) {
|
|
1499
|
+
attributes[`${SpanAttributes.LLM_USAGE_TOTAL_TOKENS}`] = Number(promptTokens) + Number(completionTokens);
|
|
1500
|
+
}
|
|
1501
|
+
};
|
|
1502
|
+
var transformVendor = (attributes) => {
|
|
1503
|
+
if (AI_MODEL_PROVIDER in attributes) {
|
|
1504
|
+
const vendor = attributes[AI_MODEL_PROVIDER];
|
|
1505
|
+
if (vendor && vendor.startsWith("openai")) {
|
|
1506
|
+
attributes[SpanAttributes.LLM_SYSTEM] = "OpenAI";
|
|
1507
|
+
} else {
|
|
1508
|
+
attributes[SpanAttributes.LLM_SYSTEM] = vendor;
|
|
1509
|
+
}
|
|
1510
|
+
delete attributes[AI_MODEL_PROVIDER];
|
|
1511
|
+
}
|
|
1512
|
+
};
|
|
1513
|
+
var transformAiSdkAttributes = (attributes) => {
|
|
1514
|
+
transformResponseText(attributes);
|
|
1515
|
+
transformPromptMessages(attributes);
|
|
1516
|
+
transformPromptTokens(attributes);
|
|
1517
|
+
transformCompletionTokens(attributes);
|
|
1518
|
+
calculateTotalTokens(attributes);
|
|
1519
|
+
transformVendor(attributes);
|
|
1520
|
+
};
|
|
1521
|
+
var shouldHandleSpan = (span) => {
|
|
1522
|
+
return span.name in HANDLED_SPAN_NAMES;
|
|
1523
|
+
};
|
|
1524
|
+
var transformAiSdkSpan = (span) => {
|
|
1525
|
+
for (const key in span.attributes) {
|
|
1526
|
+
if (Number.isNaN(span.attributes[key])) {
|
|
1527
|
+
span.attributes[key] = 0;
|
|
1528
|
+
}
|
|
1529
|
+
}
|
|
1530
|
+
logger.debug("Transforming AI SDK span", {
|
|
1531
|
+
spanName: span.name,
|
|
1532
|
+
spanContext: span.spanContext(),
|
|
1533
|
+
attributes: span.attributes
|
|
1534
|
+
});
|
|
1535
|
+
if (!shouldHandleSpan(span)) {
|
|
1536
|
+
logger.debug("Skipping span transformation", { spanName: span.name });
|
|
1537
|
+
return;
|
|
1538
|
+
}
|
|
1539
|
+
transformAiSdkSpanName(span);
|
|
1540
|
+
transformAiSdkAttributes(span.attributes);
|
|
1541
|
+
};
|
|
1542
|
+
|
|
1543
|
+
// src/internal/trace/processors/span-processor.ts
|
|
2357
1544
|
var DEFAULT_MASKING_RULES = [
|
|
2358
1545
|
{
|
|
2359
1546
|
mode: "partial",
|
|
@@ -2364,16 +1551,6 @@ var DEFAULT_MASKING_RULES = [
|
|
|
2364
1551
|
mode: "partial",
|
|
2365
1552
|
attributePattern: "gen_ai.completion",
|
|
2366
1553
|
patterns: DEFAULT_PII_PATTERNS
|
|
2367
|
-
},
|
|
2368
|
-
{
|
|
2369
|
-
mode: "partial",
|
|
2370
|
-
attributePattern: "traceloop.entity.input",
|
|
2371
|
-
patterns: DEFAULT_PII_PATTERNS
|
|
2372
|
-
},
|
|
2373
|
-
{
|
|
2374
|
-
mode: "partial",
|
|
2375
|
-
attributePattern: "traceloop.entity.output",
|
|
2376
|
-
patterns: DEFAULT_PII_PATTERNS
|
|
2377
1554
|
}
|
|
2378
1555
|
];
|
|
2379
1556
|
var BrizzSimpleSpanProcessor = class extends SimpleSpanProcessor {
|
|
@@ -2398,7 +1575,7 @@ var BrizzSimpleSpanProcessor = class extends SimpleSpanProcessor {
|
|
|
2398
1575
|
if (maskingConfig) {
|
|
2399
1576
|
maskSpan(span, maskingConfig);
|
|
2400
1577
|
}
|
|
2401
|
-
const associationProperties =
|
|
1578
|
+
const associationProperties = context2.active().getValue(PROPERTIES_CONTEXT_KEY);
|
|
2402
1579
|
if (associationProperties) {
|
|
2403
1580
|
for (const [key, value] of Object.entries(associationProperties)) {
|
|
2404
1581
|
span.setAttribute(`${BRIZZ}.${key}`, value);
|
|
@@ -2406,6 +1583,10 @@ var BrizzSimpleSpanProcessor = class extends SimpleSpanProcessor {
|
|
|
2406
1583
|
}
|
|
2407
1584
|
super.onStart(span, parentContext);
|
|
2408
1585
|
}
|
|
1586
|
+
onEnd(span) {
|
|
1587
|
+
transformAiSdkSpan(span);
|
|
1588
|
+
super.onEnd(span);
|
|
1589
|
+
}
|
|
2409
1590
|
};
|
|
2410
1591
|
var BrizzBatchSpanProcessor = class extends BatchSpanProcessor {
|
|
2411
1592
|
config;
|
|
@@ -2418,7 +1599,7 @@ var BrizzBatchSpanProcessor = class extends BatchSpanProcessor {
|
|
|
2418
1599
|
if (maskingConfig) {
|
|
2419
1600
|
maskSpan(span, maskingConfig);
|
|
2420
1601
|
}
|
|
2421
|
-
const associationProperties =
|
|
1602
|
+
const associationProperties = context2.active().getValue(PROPERTIES_CONTEXT_KEY);
|
|
2422
1603
|
if (associationProperties) {
|
|
2423
1604
|
for (const [key, value] of Object.entries(associationProperties)) {
|
|
2424
1605
|
span.setAttribute(`${BRIZZ}.${key}`, value);
|
|
@@ -2426,6 +1607,10 @@ var BrizzBatchSpanProcessor = class extends BatchSpanProcessor {
|
|
|
2426
1607
|
}
|
|
2427
1608
|
super.onStart(span, parentContext);
|
|
2428
1609
|
}
|
|
1610
|
+
onEnd(span) {
|
|
1611
|
+
transformAiSdkSpan(span);
|
|
1612
|
+
super.onEnd(span);
|
|
1613
|
+
}
|
|
2429
1614
|
};
|
|
2430
1615
|
function maskSpan(span, config) {
|
|
2431
1616
|
if (!span.attributes || Object.keys(span.attributes).length === 0) {
|
|
@@ -2513,8 +1698,9 @@ var TracingModule = class _TracingModule {
|
|
|
2513
1698
|
disableBatch: config.disableBatch,
|
|
2514
1699
|
hasMasking: !!config.masking?.spanMasking
|
|
2515
1700
|
});
|
|
2516
|
-
|
|
1701
|
+
const spanProcessor = config.disableBatch ? new BrizzSimpleSpanProcessor(this.spanExporter, config) : new BrizzBatchSpanProcessor(this.spanExporter, config);
|
|
2517
1702
|
logger.debug("Span processor initialized successfully");
|
|
1703
|
+
this.spanProcessor = spanProcessor;
|
|
2518
1704
|
}
|
|
2519
1705
|
/**
|
|
2520
1706
|
* Get the span exporter
|
|
@@ -2556,13 +1742,13 @@ function getSpanProcessor() {
|
|
|
2556
1742
|
}
|
|
2557
1743
|
|
|
2558
1744
|
// src/internal/trace/session.ts
|
|
2559
|
-
import { context as
|
|
1745
|
+
import { context as context3 } from "@opentelemetry/api";
|
|
2560
1746
|
function withProperties(properties, fn, thisArg, ...args) {
|
|
2561
1747
|
if (Object.keys(properties).length === 0) {
|
|
2562
1748
|
return fn.apply(thisArg, args);
|
|
2563
1749
|
}
|
|
2564
|
-
const newContext =
|
|
2565
|
-
return
|
|
1750
|
+
const newContext = context3.active().setValue(PROPERTIES_CONTEXT_KEY, properties);
|
|
1751
|
+
return context3.with(newContext, fn, thisArg, ...args);
|
|
2566
1752
|
}
|
|
2567
1753
|
function WithSessionId(sessionId, fn, thisArg, ...args) {
|
|
2568
1754
|
return withProperties({ [SESSION_ID]: sessionId }, fn, thisArg, ...args);
|
|
@@ -2756,7 +1942,7 @@ var _Brizz = class __Brizz {
|
|
|
2756
1942
|
var Brizz = new _Brizz();
|
|
2757
1943
|
|
|
2758
1944
|
// src/index.ts
|
|
2759
|
-
import { SeverityNumber as
|
|
1945
|
+
import { SeverityNumber as SeverityNumber2 } from "@opentelemetry/api-logs";
|
|
2760
1946
|
|
|
2761
1947
|
// src/node/runtime.ts
|
|
2762
1948
|
function detectRuntime() {
|
|
@@ -2806,8 +1992,7 @@ export {
|
|
|
2806
1992
|
Brizz,
|
|
2807
1993
|
DEFAULT_PII_PATTERNS,
|
|
2808
1994
|
LogLevel,
|
|
2809
|
-
|
|
2810
|
-
VercelAIInstrumentation,
|
|
1995
|
+
SeverityNumber2 as SeverityNumber,
|
|
2811
1996
|
WithSessionId,
|
|
2812
1997
|
detectRuntime,
|
|
2813
1998
|
emitEvent,
|