@azure/arm-machinelearning 2.0.1-alpha.20221020.1 → 2.1.0-alpha.20221101.2
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +173 -10
- package/dist/index.js +6417 -3094
- package/dist/index.js.map +1 -1
- package/dist/index.min.js +1 -1
- package/dist/index.min.js.map +1 -1
- package/dist-esm/samples-dev/batchDeploymentsCreateOrUpdateSample.js +1 -1
- package/dist-esm/samples-dev/batchDeploymentsDeleteSample.js +1 -1
- package/dist-esm/samples-dev/batchDeploymentsGetSample.js +1 -1
- package/dist-esm/samples-dev/batchDeploymentsListSample.js +1 -1
- package/dist-esm/samples-dev/batchDeploymentsUpdateSample.js +1 -1
- package/dist-esm/samples-dev/batchEndpointsCreateOrUpdateSample.js +1 -1
- package/dist-esm/samples-dev/batchEndpointsDeleteSample.js +1 -1
- package/dist-esm/samples-dev/batchEndpointsGetSample.js +1 -1
- package/dist-esm/samples-dev/batchEndpointsListKeysSample.js +1 -1
- package/dist-esm/samples-dev/batchEndpointsListSample.js +1 -1
- package/dist-esm/samples-dev/batchEndpointsUpdateSample.js +1 -1
- package/dist-esm/samples-dev/codeContainersCreateOrUpdateSample.js +1 -1
- package/dist-esm/samples-dev/codeContainersDeleteSample.js +1 -1
- package/dist-esm/samples-dev/codeContainersGetSample.js +1 -1
- package/dist-esm/samples-dev/codeContainersListSample.js +1 -1
- package/dist-esm/samples-dev/codeVersionsCreateOrUpdateSample.js +1 -1
- package/dist-esm/samples-dev/codeVersionsDeleteSample.js +1 -1
- package/dist-esm/samples-dev/codeVersionsGetSample.js +1 -1
- package/dist-esm/samples-dev/codeVersionsListSample.js +1 -1
- package/dist-esm/samples-dev/componentContainersCreateOrUpdateSample.js +1 -1
- package/dist-esm/samples-dev/componentContainersDeleteSample.js +1 -1
- package/dist-esm/samples-dev/componentContainersGetSample.js +1 -1
- package/dist-esm/samples-dev/componentContainersListSample.js +1 -1
- package/dist-esm/samples-dev/componentVersionsCreateOrUpdateSample.js +1 -1
- package/dist-esm/samples-dev/componentVersionsDeleteSample.js +1 -1
- package/dist-esm/samples-dev/componentVersionsGetSample.js +1 -1
- package/dist-esm/samples-dev/componentVersionsListSample.js +1 -1
- package/dist-esm/samples-dev/computeCreateOrUpdateSample.js +60 -8
- package/dist-esm/samples-dev/computeCreateOrUpdateSample.js.map +1 -1
- package/dist-esm/samples-dev/computeDeleteSample.js +1 -1
- package/dist-esm/samples-dev/computeGetSample.js +4 -4
- package/dist-esm/samples-dev/computeListKeysSample.js +1 -1
- package/dist-esm/samples-dev/computeListNodesSample.js +1 -1
- package/dist-esm/samples-dev/computeListSample.js +1 -1
- package/dist-esm/samples-dev/computeRestartSample.js +1 -1
- package/dist-esm/samples-dev/computeStartSample.js +1 -1
- package/dist-esm/samples-dev/computeStopSample.js +1 -1
- package/dist-esm/samples-dev/computeUpdateSample.js +1 -1
- package/dist-esm/samples-dev/dataContainersCreateOrUpdateSample.js +1 -1
- package/dist-esm/samples-dev/dataContainersDeleteSample.js +1 -1
- package/dist-esm/samples-dev/dataContainersGetSample.js +1 -1
- package/dist-esm/samples-dev/dataContainersListSample.js +1 -1
- package/dist-esm/samples-dev/dataVersionsCreateOrUpdateSample.js +1 -1
- package/dist-esm/samples-dev/dataVersionsDeleteSample.js +1 -1
- package/dist-esm/samples-dev/dataVersionsGetSample.js +1 -1
- package/dist-esm/samples-dev/dataVersionsListSample.js +1 -1
- package/dist-esm/samples-dev/datastoresCreateOrUpdateSample.js +4 -4
- package/dist-esm/samples-dev/datastoresDeleteSample.js +1 -1
- package/dist-esm/samples-dev/datastoresGetSample.js +1 -1
- package/dist-esm/samples-dev/datastoresListSample.js +1 -1
- package/dist-esm/samples-dev/datastoresListSecretsSample.js +1 -1
- package/dist-esm/samples-dev/environmentContainersCreateOrUpdateSample.js +1 -1
- package/dist-esm/samples-dev/environmentContainersDeleteSample.js +1 -1
- package/dist-esm/samples-dev/environmentContainersGetSample.js +1 -1
- package/dist-esm/samples-dev/environmentContainersListSample.js +1 -1
- package/dist-esm/samples-dev/environmentVersionsCreateOrUpdateSample.js +1 -1
- package/dist-esm/samples-dev/environmentVersionsDeleteSample.js +1 -1
- package/dist-esm/samples-dev/environmentVersionsGetSample.js +1 -1
- package/dist-esm/samples-dev/environmentVersionsListSample.js +1 -1
- package/dist-esm/samples-dev/jobsCancelSample.js +1 -1
- package/dist-esm/samples-dev/jobsCreateOrUpdateSample.js +66 -3
- package/dist-esm/samples-dev/jobsCreateOrUpdateSample.js.map +1 -1
- package/dist-esm/samples-dev/jobsDeleteSample.js +1 -1
- package/dist-esm/samples-dev/jobsGetSample.js +22 -3
- package/dist-esm/samples-dev/jobsGetSample.js.map +1 -1
- package/dist-esm/samples-dev/jobsListSample.js +44 -12
- package/dist-esm/samples-dev/jobsListSample.js.map +1 -1
- package/dist-esm/samples-dev/modelContainersCreateOrUpdateSample.js +1 -1
- package/dist-esm/samples-dev/modelContainersDeleteSample.js +1 -1
- package/dist-esm/samples-dev/modelContainersGetSample.js +1 -1
- package/dist-esm/samples-dev/modelContainersListSample.js +1 -1
- package/dist-esm/samples-dev/modelVersionsCreateOrUpdateSample.js +1 -1
- package/dist-esm/samples-dev/modelVersionsDeleteSample.js +1 -1
- package/dist-esm/samples-dev/modelVersionsGetSample.js +1 -1
- package/dist-esm/samples-dev/modelVersionsListSample.js +1 -1
- package/dist-esm/samples-dev/onlineDeploymentsCreateOrUpdateSample.js +2 -2
- package/dist-esm/samples-dev/onlineDeploymentsDeleteSample.js +1 -1
- package/dist-esm/samples-dev/onlineDeploymentsGetLogsSample.js +1 -1
- package/dist-esm/samples-dev/onlineDeploymentsGetSample.js +2 -2
- package/dist-esm/samples-dev/onlineDeploymentsListSample.js +1 -1
- package/dist-esm/samples-dev/onlineDeploymentsListSkusSample.js +2 -2
- package/dist-esm/samples-dev/onlineDeploymentsUpdateSample.js +2 -2
- package/dist-esm/samples-dev/onlineEndpointsCreateOrUpdateSample.js +1 -1
- package/dist-esm/samples-dev/onlineEndpointsDeleteSample.js +1 -1
- package/dist-esm/samples-dev/onlineEndpointsGetSample.js +1 -1
- package/dist-esm/samples-dev/onlineEndpointsGetTokenSample.js +1 -1
- package/dist-esm/samples-dev/onlineEndpointsListKeysSample.js +1 -1
- package/dist-esm/samples-dev/onlineEndpointsListSample.js +1 -1
- package/dist-esm/samples-dev/onlineEndpointsRegenerateKeysSample.js +1 -1
- package/dist-esm/samples-dev/onlineEndpointsUpdateSample.js +1 -1
- package/dist-esm/samples-dev/operationsListSample.js +1 -1
- package/dist-esm/samples-dev/privateEndpointConnectionsCreateOrUpdateSample.js +1 -1
- package/dist-esm/samples-dev/privateEndpointConnectionsDeleteSample.js +1 -1
- package/dist-esm/samples-dev/privateEndpointConnectionsGetSample.js +1 -1
- package/dist-esm/samples-dev/privateEndpointConnectionsListSample.js +1 -1
- package/dist-esm/samples-dev/privateLinkResourcesListSample.js +1 -1
- package/dist-esm/samples-dev/quotasListSample.js +1 -1
- package/dist-esm/samples-dev/quotasUpdateSample.js +1 -1
- package/dist-esm/samples-dev/schedulesCreateOrUpdateSample.d.ts +2 -0
- package/dist-esm/samples-dev/schedulesCreateOrUpdateSample.d.ts.map +1 -0
- package/dist-esm/samples-dev/schedulesCreateOrUpdateSample.js +54 -0
- package/dist-esm/samples-dev/schedulesCreateOrUpdateSample.js.map +1 -0
- package/dist-esm/samples-dev/schedulesDeleteSample.d.ts +2 -0
- package/dist-esm/samples-dev/schedulesDeleteSample.d.ts.map +1 -0
- package/dist-esm/samples-dev/schedulesDeleteSample.js +32 -0
- package/dist-esm/samples-dev/schedulesDeleteSample.js.map +1 -0
- package/dist-esm/samples-dev/schedulesGetSample.d.ts +2 -0
- package/dist-esm/samples-dev/schedulesGetSample.d.ts.map +1 -0
- package/dist-esm/samples-dev/schedulesGetSample.js +32 -0
- package/dist-esm/samples-dev/schedulesGetSample.js.map +1 -0
- package/dist-esm/samples-dev/schedulesListSample.d.ts +2 -0
- package/dist-esm/samples-dev/schedulesListSample.d.ts.map +1 -0
- package/dist-esm/samples-dev/schedulesListSample.js +45 -0
- package/dist-esm/samples-dev/schedulesListSample.js.map +1 -0
- package/dist-esm/samples-dev/usagesListSample.js +1 -1
- package/dist-esm/samples-dev/virtualMachineSizesListSample.js +1 -1
- package/dist-esm/samples-dev/workspaceConnectionsCreateSample.js +1 -1
- package/dist-esm/samples-dev/workspaceConnectionsDeleteSample.js +1 -1
- package/dist-esm/samples-dev/workspaceConnectionsGetSample.js +1 -1
- package/dist-esm/samples-dev/workspaceConnectionsListSample.js +1 -1
- package/dist-esm/samples-dev/workspaceFeaturesListSample.js +1 -1
- package/dist-esm/samples-dev/workspacesCreateOrUpdateSample.js +1 -1
- package/dist-esm/samples-dev/workspacesDeleteSample.js +1 -1
- package/dist-esm/samples-dev/workspacesDiagnoseSample.js +1 -1
- package/dist-esm/samples-dev/workspacesGetSample.js +1 -1
- package/dist-esm/samples-dev/workspacesListByResourceGroupSample.js +1 -1
- package/dist-esm/samples-dev/workspacesListBySubscriptionSample.js +1 -1
- package/dist-esm/samples-dev/workspacesListKeysSample.js +1 -1
- package/dist-esm/samples-dev/workspacesListNotebookAccessTokenSample.js +1 -1
- package/dist-esm/samples-dev/workspacesListNotebookKeysSample.js +1 -1
- package/dist-esm/samples-dev/workspacesListOutboundNetworkDependenciesEndpointsSample.js +1 -1
- package/dist-esm/samples-dev/workspacesListStorageAccountKeysSample.js +1 -1
- package/dist-esm/samples-dev/workspacesPrepareNotebookSample.js +1 -1
- package/dist-esm/samples-dev/workspacesResyncKeysSample.js +1 -1
- package/dist-esm/samples-dev/workspacesUpdateSample.js +1 -1
- package/dist-esm/src/azureMachineLearningWorkspaces.d.ts +2 -1
- package/dist-esm/src/azureMachineLearningWorkspaces.d.ts.map +1 -1
- package/dist-esm/src/azureMachineLearningWorkspaces.js +4 -3
- package/dist-esm/src/azureMachineLearningWorkspaces.js.map +1 -1
- package/dist-esm/src/models/index.d.ts +2177 -118
- package/dist-esm/src/models/index.d.ts.map +1 -1
- package/dist-esm/src/models/index.js +645 -42
- package/dist-esm/src/models/index.js.map +1 -1
- package/dist-esm/src/models/mappers.d.ts +107 -8
- package/dist-esm/src/models/mappers.d.ts.map +1 -1
- package/dist-esm/src/models/mappers.js +3218 -915
- package/dist-esm/src/models/mappers.js.map +1 -1
- package/dist-esm/src/models/parameters.d.ts +2 -0
- package/dist-esm/src/models/parameters.d.ts.map +1 -1
- package/dist-esm/src/models/parameters.js +15 -2
- package/dist-esm/src/models/parameters.js.map +1 -1
- package/dist-esm/src/operations/index.d.ts +1 -0
- package/dist-esm/src/operations/index.d.ts.map +1 -1
- package/dist-esm/src/operations/index.js +1 -0
- package/dist-esm/src/operations/index.js.map +1 -1
- package/dist-esm/src/operations/schedules.d.ts +81 -0
- package/dist-esm/src/operations/schedules.d.ts.map +1 -0
- package/dist-esm/src/operations/schedules.js +343 -0
- package/dist-esm/src/operations/schedules.js.map +1 -0
- package/dist-esm/src/operationsInterfaces/index.d.ts +1 -0
- package/dist-esm/src/operationsInterfaces/index.d.ts.map +1 -1
- package/dist-esm/src/operationsInterfaces/index.js +1 -0
- package/dist-esm/src/operationsInterfaces/index.js.map +1 -1
- package/dist-esm/src/operationsInterfaces/schedules.d.ts +56 -0
- package/dist-esm/src/operationsInterfaces/schedules.d.ts.map +1 -0
- package/dist-esm/src/operationsInterfaces/schedules.js +9 -0
- package/dist-esm/src/operationsInterfaces/schedules.js.map +1 -0
- package/package.json +3 -2
- package/review/arm-machinelearning.api.md +1033 -11
- package/src/azureMachineLearningWorkspaces.ts +6 -2
- package/src/models/index.ts +2662 -410
- package/src/models/mappers.ts +4026 -1470
- package/src/models/parameters.ts +18 -2
- package/src/operations/index.ts +1 -0
- package/src/operations/schedules.ts +476 -0
- package/src/operationsInterfaces/index.ts +1 -0
- package/src/operationsInterfaces/schedules.ts +109 -0
- package/types/arm-machinelearning.d.ts +2348 -80
- package/types/tsdoc-metadata.json +1 -1
|
@@ -318,12 +318,81 @@ export declare interface AssignedUser {
|
|
|
318
318
|
tenantId: string;
|
|
319
319
|
}
|
|
320
320
|
|
|
321
|
+
/** Forecast horizon determined automatically by system. */
|
|
322
|
+
export declare interface AutoForecastHorizon extends ForecastHorizon {
|
|
323
|
+
/** Polymorphic discriminator, which specifies the different types this object can be */
|
|
324
|
+
mode: "Auto";
|
|
325
|
+
}
|
|
326
|
+
|
|
327
|
+
/**
|
|
328
|
+
* AutoMLJob class.
|
|
329
|
+
* Use this class for executing AutoML tasks like Classification/Regression etc.
|
|
330
|
+
* See TaskType enum for all the tasks supported.
|
|
331
|
+
*/
|
|
332
|
+
export declare interface AutoMLJob extends JobBaseProperties {
|
|
333
|
+
/** Polymorphic discriminator, which specifies the different types this object can be */
|
|
334
|
+
jobType: "AutoML";
|
|
335
|
+
/**
|
|
336
|
+
* The ARM resource ID of the Environment specification for the job.
|
|
337
|
+
* This is optional value to provide, if not provided, AutoML will default this to Production AutoML curated environment version when running the job.
|
|
338
|
+
*/
|
|
339
|
+
environmentId?: string;
|
|
340
|
+
/** Environment variables included in the job. */
|
|
341
|
+
environmentVariables?: {
|
|
342
|
+
[propertyName: string]: string | null;
|
|
343
|
+
};
|
|
344
|
+
/** Mapping of output data bindings used in the job. */
|
|
345
|
+
outputs?: {
|
|
346
|
+
[propertyName: string]: JobOutputUnion | null;
|
|
347
|
+
};
|
|
348
|
+
/** Compute Resource configuration for the job. */
|
|
349
|
+
resources?: JobResourceConfiguration;
|
|
350
|
+
/** [Required] This represents scenario which can be one of Tables/NLP/Image */
|
|
351
|
+
taskDetails: AutoMLVerticalUnion;
|
|
352
|
+
}
|
|
353
|
+
|
|
354
|
+
/**
|
|
355
|
+
* AutoML vertical class.
|
|
356
|
+
* Base class for AutoML verticals - TableVertical/ImageVertical/NLPVertical
|
|
357
|
+
*/
|
|
358
|
+
export declare interface AutoMLVertical {
|
|
359
|
+
/** Polymorphic discriminator, which specifies the different types this object can be */
|
|
360
|
+
taskType: "Classification" | "Forecasting" | "ImageClassification" | "ImageClassificationMultilabel" | "ImageInstanceSegmentation" | "ImageObjectDetection" | "Regression" | "TextClassification" | "TextClassificationMultilabel" | "TextNER";
|
|
361
|
+
/** Log verbosity for the job. */
|
|
362
|
+
logVerbosity?: LogVerbosity;
|
|
363
|
+
/**
|
|
364
|
+
* Target column name: This is prediction values column.
|
|
365
|
+
* Also known as label column name in context of classification tasks.
|
|
366
|
+
*/
|
|
367
|
+
targetColumnName?: string;
|
|
368
|
+
/** [Required] Training data input. */
|
|
369
|
+
trainingData: MLTableJobInput;
|
|
370
|
+
}
|
|
371
|
+
|
|
372
|
+
export declare type AutoMLVerticalUnion = AutoMLVertical | Classification | Forecasting | ImageClassification | ImageClassificationMultilabel | ImageInstanceSegmentation | ImageObjectDetection | Regression | TextClassification | TextClassificationMultilabel | TextNer;
|
|
373
|
+
|
|
374
|
+
/** N-Cross validations determined automatically. */
|
|
375
|
+
export declare interface AutoNCrossValidations extends NCrossValidations {
|
|
376
|
+
/** Polymorphic discriminator, which specifies the different types this object can be */
|
|
377
|
+
mode: "Auto";
|
|
378
|
+
}
|
|
379
|
+
|
|
321
380
|
/** Auto pause properties */
|
|
322
381
|
export declare interface AutoPauseProperties {
|
|
323
382
|
delayInMinutes?: number;
|
|
324
383
|
enabled?: boolean;
|
|
325
384
|
}
|
|
326
385
|
|
|
386
|
+
/**
|
|
387
|
+
* Defines values for AutoRebuildSetting. \
|
|
388
|
+
* {@link KnownAutoRebuildSetting} can be used interchangeably with AutoRebuildSetting,
|
|
389
|
+
* this enum contains the known values that the service supports.
|
|
390
|
+
* ### Known values supported by the service
|
|
391
|
+
* **Disabled** \
|
|
392
|
+
* **OnBaseImageUpdate**
|
|
393
|
+
*/
|
|
394
|
+
export declare type AutoRebuildSetting = string;
|
|
395
|
+
|
|
327
396
|
/**
|
|
328
397
|
* Defines values for Autosave. \
|
|
329
398
|
* {@link KnownAutosave} can be used interchangeably with Autosave,
|
|
@@ -342,6 +411,22 @@ export declare interface AutoScaleProperties {
|
|
|
342
411
|
maxNodeCount?: number;
|
|
343
412
|
}
|
|
344
413
|
|
|
414
|
+
export declare interface AutoSeasonality extends Seasonality {
|
|
415
|
+
/** Polymorphic discriminator, which specifies the different types this object can be */
|
|
416
|
+
mode: "Auto";
|
|
417
|
+
}
|
|
418
|
+
|
|
419
|
+
export declare interface AutoTargetLags extends TargetLags {
|
|
420
|
+
/** Polymorphic discriminator, which specifies the different types this object can be */
|
|
421
|
+
mode: "Auto";
|
|
422
|
+
}
|
|
423
|
+
|
|
424
|
+
/** Target lags rolling window determined automatically. */
|
|
425
|
+
export declare interface AutoTargetRollingWindowSize extends TargetRollingWindowSize {
|
|
426
|
+
/** Polymorphic discriminator, which specifies the different types this object can be */
|
|
427
|
+
mode: "Auto";
|
|
428
|
+
}
|
|
429
|
+
|
|
345
430
|
/** Azure Blob datastore configuration. */
|
|
346
431
|
export declare interface AzureBlobDatastore extends DatastoreProperties {
|
|
347
432
|
/** Polymorphic discriminator, which specifies the different types this object can be */
|
|
@@ -438,6 +523,7 @@ export declare class AzureMachineLearningWorkspaces extends coreClient.ServiceCl
|
|
|
438
523
|
modelVersions: ModelVersions;
|
|
439
524
|
onlineEndpoints: OnlineEndpoints;
|
|
440
525
|
onlineDeployments: OnlineDeployments;
|
|
526
|
+
schedules: Schedules;
|
|
441
527
|
workspaceFeatures: WorkspaceFeatures;
|
|
442
528
|
}
|
|
443
529
|
|
|
@@ -509,7 +595,7 @@ export declare interface BatchDeploymentProperties extends EndpointDeploymentPro
|
|
|
509
595
|
* Indicates compute configuration for the job.
|
|
510
596
|
* If not provided, will default to the defaults defined in ResourceConfiguration.
|
|
511
597
|
*/
|
|
512
|
-
resources?:
|
|
598
|
+
resources?: DeploymentResourceConfiguration;
|
|
513
599
|
/**
|
|
514
600
|
* Retry Settings for the batch inference operation.
|
|
515
601
|
* If not provided, will default to the defaults defined in BatchRetrySettings.
|
|
@@ -951,6 +1037,24 @@ export declare interface BayesianSamplingAlgorithm extends SamplingAlgorithm {
|
|
|
951
1037
|
*/
|
|
952
1038
|
export declare type BillingCurrency = string;
|
|
953
1039
|
|
|
1040
|
+
/**
|
|
1041
|
+
* Defines values for BlockedTransformers. \
|
|
1042
|
+
* {@link KnownBlockedTransformers} can be used interchangeably with BlockedTransformers,
|
|
1043
|
+
* this enum contains the known values that the service supports.
|
|
1044
|
+
* ### Known values supported by the service
|
|
1045
|
+
* **TextTargetEncoder**: Target encoding for text data. \
|
|
1046
|
+
* **OneHotEncoder**: Ohe hot encoding creates a binary feature transformation. \
|
|
1047
|
+
* **CatTargetEncoder**: Target encoding for categorical data. \
|
|
1048
|
+
* **TfIdf**: Tf-Idf stands for, term-frequency times inverse document-frequency. This is a common term weighting scheme for identifying information from documents. \
|
|
1049
|
+
* **WoETargetEncoder**: Weight of Evidence encoding is a technique used to encode categorical variables. It uses the natural log of the P(1)\/P(0) to create weights. \
|
|
1050
|
+
* **LabelEncoder**: Label encoder converts labels\/categorical variables in a numerical form. \
|
|
1051
|
+
* **WordEmbedding**: Word embedding helps represents words or phrases as a vector, or a series of numbers. \
|
|
1052
|
+
* **NaiveBayes**: Naive Bayes is a classified that is used for classification of discrete features that are categorically distributed. \
|
|
1053
|
+
* **CountVectorizer**: Count Vectorizer converts a collection of text documents to a matrix of token counts. \
|
|
1054
|
+
* **HashOneHotEncoder**: Hashing One Hot Encoder can turn categorical variables into a limited number of new features. This is often used for high-cardinality categorical features.
|
|
1055
|
+
*/
|
|
1056
|
+
export declare type BlockedTransformers = string;
|
|
1057
|
+
|
|
954
1058
|
/** Configuration settings for Docker build context */
|
|
955
1059
|
export declare interface BuildContext {
|
|
956
1060
|
/**
|
|
@@ -1002,6 +1106,92 @@ export declare interface CertificateDatastoreSecrets extends DatastoreSecrets {
|
|
|
1002
1106
|
certificate?: string;
|
|
1003
1107
|
}
|
|
1004
1108
|
|
|
1109
|
+
/** Classification task in AutoML Table vertical. */
|
|
1110
|
+
export declare interface Classification extends TableVertical, AutoMLVertical {
|
|
1111
|
+
/** Positive label for binary metrics calculation. */
|
|
1112
|
+
positiveLabel?: string;
|
|
1113
|
+
/** Primary metric for the task. */
|
|
1114
|
+
primaryMetric?: ClassificationPrimaryMetrics;
|
|
1115
|
+
/** Inputs for training phase for an AutoML Job. */
|
|
1116
|
+
trainingSettings?: ClassificationTrainingSettings;
|
|
1117
|
+
}
|
|
1118
|
+
|
|
1119
|
+
/**
|
|
1120
|
+
* Defines values for ClassificationModels. \
|
|
1121
|
+
* {@link KnownClassificationModels} can be used interchangeably with ClassificationModels,
|
|
1122
|
+
* this enum contains the known values that the service supports.
|
|
1123
|
+
* ### Known values supported by the service
|
|
1124
|
+
* **LogisticRegression**: Logistic regression is a fundamental classification technique.
|
|
1125
|
+
* It belongs to the group of linear classifiers and is somewhat similar to polynomial and linear regression.
|
|
1126
|
+
* Logistic regression is fast and relatively uncomplicated, and it's convenient for you to interpret the results.
|
|
1127
|
+
* Although it's essentially a method for binary classification, it can also be applied to multiclass problems. \
|
|
1128
|
+
* **SGD**: SGD: Stochastic gradient descent is an optimization algorithm often used in machine learning applications
|
|
1129
|
+
* to find the model parameters that correspond to the best fit between predicted and actual outputs. \
|
|
1130
|
+
* **MultinomialNaiveBayes**: The multinomial Naive Bayes classifier is suitable for classification with discrete features (e.g., word counts for text classification).
|
|
1131
|
+
* The multinomial distribution normally requires integer feature counts. However, in practice, fractional counts such as tf-idf may also work. \
|
|
1132
|
+
* **BernoulliNaiveBayes**: Naive Bayes classifier for multivariate Bernoulli models. \
|
|
1133
|
+
* **SVM**: A support vector machine (SVM) is a supervised machine learning model that uses classification algorithms for two-group classification problems.
|
|
1134
|
+
* After giving an SVM model sets of labeled training data for each category, they're able to categorize new text. \
|
|
1135
|
+
* **LinearSVM**: A support vector machine (SVM) is a supervised machine learning model that uses classification algorithms for two-group classification problems.
|
|
1136
|
+
* After giving an SVM model sets of labeled training data for each category, they're able to categorize new text.
|
|
1137
|
+
* Linear SVM performs best when input data is linear, i.e., data can be easily classified by drawing the straight line between classified values on a plotted graph. \
|
|
1138
|
+
* **KNN**: K-nearest neighbors (KNN) algorithm uses 'feature similarity' to predict the values of new datapoints
|
|
1139
|
+
* which further means that the new data point will be assigned a value based on how closely it matches the points in the training set. \
|
|
1140
|
+
* **DecisionTree**: Decision Trees are a non-parametric supervised learning method used for both classification and regression tasks.
|
|
1141
|
+
* The goal is to create a model that predicts the value of a target variable by learning simple decision rules inferred from the data features. \
|
|
1142
|
+
* **RandomForest**: Random forest is a supervised learning algorithm.
|
|
1143
|
+
* The "forest" it builds, is an ensemble of decision trees, usually trained with the “bagging” method.
|
|
1144
|
+
* The general idea of the bagging method is that a combination of learning models increases the overall result. \
|
|
1145
|
+
* **ExtremeRandomTrees**: Extreme Trees is an ensemble machine learning algorithm that combines the predictions from many decision trees. It is related to the widely used random forest algorithm. \
|
|
1146
|
+
* **LightGBM**: LightGBM is a gradient boosting framework that uses tree based learning algorithms. \
|
|
1147
|
+
* **GradientBoosting**: The technique of transiting week learners into a strong learner is called Boosting. The gradient boosting algorithm process works on this theory of execution. \
|
|
1148
|
+
* **XGBoostClassifier**: XGBoost: Extreme Gradient Boosting Algorithm. This algorithm is used for structured data where target column values can be divided into distinct class values.
|
|
1149
|
+
*/
|
|
1150
|
+
export declare type ClassificationModels = string;
|
|
1151
|
+
|
|
1152
|
+
/**
|
|
1153
|
+
* Defines values for ClassificationMultilabelPrimaryMetrics. \
|
|
1154
|
+
* {@link KnownClassificationMultilabelPrimaryMetrics} can be used interchangeably with ClassificationMultilabelPrimaryMetrics,
|
|
1155
|
+
* this enum contains the known values that the service supports.
|
|
1156
|
+
* ### Known values supported by the service
|
|
1157
|
+
* **AUCWeighted**: AUC is the Area under the curve.
|
|
1158
|
+
* This metric represents arithmetic mean of the score for each class,
|
|
1159
|
+
* weighted by the number of true instances in each class. \
|
|
1160
|
+
* **Accuracy**: Accuracy is the ratio of predictions that exactly match the true class labels. \
|
|
1161
|
+
* **NormMacroRecall**: Normalized macro recall is recall macro-averaged and normalized, so that random
|
|
1162
|
+
* performance has a score of 0, and perfect performance has a score of 1. \
|
|
1163
|
+
* **AveragePrecisionScoreWeighted**: The arithmetic mean of the average precision score for each class, weighted by
|
|
1164
|
+
* the number of true instances in each class. \
|
|
1165
|
+
* **PrecisionScoreWeighted**: The arithmetic mean of precision for each class, weighted by number of true instances in each class. \
|
|
1166
|
+
* **IOU**: Intersection Over Union. Intersection of predictions divided by union of predictions.
|
|
1167
|
+
*/
|
|
1168
|
+
export declare type ClassificationMultilabelPrimaryMetrics = string;
|
|
1169
|
+
|
|
1170
|
+
/**
|
|
1171
|
+
* Defines values for ClassificationPrimaryMetrics. \
|
|
1172
|
+
* {@link KnownClassificationPrimaryMetrics} can be used interchangeably with ClassificationPrimaryMetrics,
|
|
1173
|
+
* this enum contains the known values that the service supports.
|
|
1174
|
+
* ### Known values supported by the service
|
|
1175
|
+
* **AUCWeighted**: AUC is the Area under the curve.
|
|
1176
|
+
* This metric represents arithmetic mean of the score for each class,
|
|
1177
|
+
* weighted by the number of true instances in each class. \
|
|
1178
|
+
* **Accuracy**: Accuracy is the ratio of predictions that exactly match the true class labels. \
|
|
1179
|
+
* **NormMacroRecall**: Normalized macro recall is recall macro-averaged and normalized, so that random
|
|
1180
|
+
* performance has a score of 0, and perfect performance has a score of 1. \
|
|
1181
|
+
* **AveragePrecisionScoreWeighted**: The arithmetic mean of the average precision score for each class, weighted by
|
|
1182
|
+
* the number of true instances in each class. \
|
|
1183
|
+
* **PrecisionScoreWeighted**: The arithmetic mean of precision for each class, weighted by number of true instances in each class.
|
|
1184
|
+
*/
|
|
1185
|
+
export declare type ClassificationPrimaryMetrics = string;
|
|
1186
|
+
|
|
1187
|
+
/** Classification Training related configuration. */
|
|
1188
|
+
export declare interface ClassificationTrainingSettings extends TrainingSettings {
|
|
1189
|
+
/** Allowed models for classification task. */
|
|
1190
|
+
allowedTrainingAlgorithms?: ClassificationModels[];
|
|
1191
|
+
/** Blocked models for classification task. */
|
|
1192
|
+
blockedTrainingAlgorithms?: ClassificationModels[];
|
|
1193
|
+
}
|
|
1194
|
+
|
|
1005
1195
|
/**
|
|
1006
1196
|
* Defines values for ClusterPurpose. \
|
|
1007
1197
|
* {@link KnownClusterPurpose} can be used interchangeably with ClusterPurpose,
|
|
@@ -1221,6 +1411,17 @@ export declare interface CodeVersionsListOptionalParams extends coreClient.Opera
|
|
|
1221
1411
|
/** Contains response data for the list operation. */
|
|
1222
1412
|
export declare type CodeVersionsListResponse = CodeVersionResourceArmPaginatedResult;
|
|
1223
1413
|
|
|
1414
|
+
/** Column transformer parameters. */
|
|
1415
|
+
export declare interface ColumnTransformer {
|
|
1416
|
+
/** Fields to apply transformer logic on. */
|
|
1417
|
+
fields?: string[];
|
|
1418
|
+
/**
|
|
1419
|
+
* Different properties to be passed to transformer.
|
|
1420
|
+
* Input expected is dictionary of key,value pairs in JSON format.
|
|
1421
|
+
*/
|
|
1422
|
+
parameters?: Record<string, unknown>;
|
|
1423
|
+
}
|
|
1424
|
+
|
|
1224
1425
|
/** Command job definition. */
|
|
1225
1426
|
export declare interface CommandJob extends JobBaseProperties {
|
|
1226
1427
|
/** Polymorphic discriminator, which specifies the different types this object can be */
|
|
@@ -1253,7 +1454,7 @@ export declare interface CommandJob extends JobBaseProperties {
|
|
|
1253
1454
|
*/
|
|
1254
1455
|
readonly parameters?: Record<string, unknown>;
|
|
1255
1456
|
/** Compute Resource configuration for the job. */
|
|
1256
|
-
resources?:
|
|
1457
|
+
resources?: JobResourceConfiguration;
|
|
1257
1458
|
}
|
|
1258
1459
|
|
|
1259
1460
|
/** Command Job limit class. */
|
|
@@ -1474,11 +1675,8 @@ export declare type ComponentVersionsListResponse = ComponentVersionResourceArmP
|
|
|
1474
1675
|
export declare interface Compute {
|
|
1475
1676
|
/** Polymorphic discriminator, which specifies the different types this object can be */
|
|
1476
1677
|
computeType: "AKS" | "Kubernetes" | "AmlCompute" | "ComputeInstance" | "VirtualMachine" | "HDInsight" | "DataFactory" | "Databricks" | "DataLakeAnalytics" | "SynapseSpark";
|
|
1477
|
-
/**
|
|
1478
|
-
|
|
1479
|
-
* NOTE: This property will not be serialized. It can only be populated by the server.
|
|
1480
|
-
*/
|
|
1481
|
-
readonly computeLocation?: string;
|
|
1678
|
+
/** Location for the underlying compute */
|
|
1679
|
+
computeLocation?: string;
|
|
1482
1680
|
/**
|
|
1483
1681
|
* The provision state of the cluster. Valid values are Unknown, Updating, Provisioning, Succeeded, and Failed.
|
|
1484
1682
|
* NOTE: This property will not be serialized. It can only be populated by the server.
|
|
@@ -2056,7 +2254,7 @@ export declare interface ComputeStartOptionalParams extends coreClient.Operation
|
|
|
2056
2254
|
/** Compute start stop schedule properties */
|
|
2057
2255
|
export declare interface ComputeStartStopSchedule {
|
|
2058
2256
|
/**
|
|
2059
|
-
*
|
|
2257
|
+
* A system assigned id for the schedule.
|
|
2060
2258
|
* NOTE: This property will not be serialized. It can only be populated by the server.
|
|
2061
2259
|
*/
|
|
2062
2260
|
readonly id?: string;
|
|
@@ -2065,8 +2263,17 @@ export declare interface ComputeStartStopSchedule {
|
|
|
2065
2263
|
* NOTE: This property will not be serialized. It can only be populated by the server.
|
|
2066
2264
|
*/
|
|
2067
2265
|
readonly provisioningStatus?: ProvisioningStatus;
|
|
2068
|
-
/**
|
|
2266
|
+
/** Is the schedule enabled or disabled? */
|
|
2267
|
+
status?: ScheduleStatus;
|
|
2268
|
+
/** [Required] The compute power action. */
|
|
2069
2269
|
action?: ComputePowerAction;
|
|
2270
|
+
/** [Required] The schedule trigger type. */
|
|
2271
|
+
triggerType?: TriggerType;
|
|
2272
|
+
/** Required if triggerType is Recurrence. */
|
|
2273
|
+
recurrence?: RecurrenceTrigger;
|
|
2274
|
+
/** Required if triggerType is Cron. */
|
|
2275
|
+
cron?: CronTrigger;
|
|
2276
|
+
/** [Deprecated] Not used any more. */
|
|
2070
2277
|
schedule?: ScheduleBase;
|
|
2071
2278
|
}
|
|
2072
2279
|
|
|
@@ -2199,12 +2406,59 @@ export declare type CreatedByType = string;
|
|
|
2199
2406
|
*/
|
|
2200
2407
|
export declare type CredentialsType = string;
|
|
2201
2408
|
|
|
2409
|
+
export declare interface CronTrigger extends TriggerBase {
|
|
2410
|
+
/** Polymorphic discriminator, which specifies the different types this object can be */
|
|
2411
|
+
triggerType: "Cron";
|
|
2412
|
+
/**
|
|
2413
|
+
* [Required] Specifies cron expression of schedule.
|
|
2414
|
+
* The expression should follow NCronTab format.
|
|
2415
|
+
*/
|
|
2416
|
+
expression: string;
|
|
2417
|
+
}
|
|
2418
|
+
|
|
2419
|
+
/** The desired maximum forecast horizon in units of time-series frequency. */
|
|
2420
|
+
export declare interface CustomForecastHorizon extends ForecastHorizon {
|
|
2421
|
+
/** Polymorphic discriminator, which specifies the different types this object can be */
|
|
2422
|
+
mode: "Custom";
|
|
2423
|
+
/** [Required] Forecast horizon value. */
|
|
2424
|
+
value: number;
|
|
2425
|
+
}
|
|
2426
|
+
|
|
2202
2427
|
export declare interface CustomModelJobInput extends AssetJobInput, JobInput {
|
|
2203
2428
|
}
|
|
2204
2429
|
|
|
2205
2430
|
export declare interface CustomModelJobOutput extends AssetJobOutput, JobOutput {
|
|
2206
2431
|
}
|
|
2207
2432
|
|
|
2433
|
+
/** N-Cross validations are specified by user. */
|
|
2434
|
+
export declare interface CustomNCrossValidations extends NCrossValidations {
|
|
2435
|
+
/** Polymorphic discriminator, which specifies the different types this object can be */
|
|
2436
|
+
mode: "Custom";
|
|
2437
|
+
/** [Required] N-Cross validations value. */
|
|
2438
|
+
value: number;
|
|
2439
|
+
}
|
|
2440
|
+
|
|
2441
|
+
export declare interface CustomSeasonality extends Seasonality {
|
|
2442
|
+
/** Polymorphic discriminator, which specifies the different types this object can be */
|
|
2443
|
+
mode: "Custom";
|
|
2444
|
+
/** [Required] Seasonality value. */
|
|
2445
|
+
value: number;
|
|
2446
|
+
}
|
|
2447
|
+
|
|
2448
|
+
export declare interface CustomTargetLags extends TargetLags {
|
|
2449
|
+
/** Polymorphic discriminator, which specifies the different types this object can be */
|
|
2450
|
+
mode: "Custom";
|
|
2451
|
+
/** [Required] Set target lags values. */
|
|
2452
|
+
values: number[];
|
|
2453
|
+
}
|
|
2454
|
+
|
|
2455
|
+
export declare interface CustomTargetRollingWindowSize extends TargetRollingWindowSize {
|
|
2456
|
+
/** Polymorphic discriminator, which specifies the different types this object can be */
|
|
2457
|
+
mode: "Custom";
|
|
2458
|
+
/** [Required] TargetRollingWindowSize value. */
|
|
2459
|
+
value: number;
|
|
2460
|
+
}
|
|
2461
|
+
|
|
2208
2462
|
/** A DataFactory compute. */
|
|
2209
2463
|
export declare interface Databricks extends Compute, DatabricksSchema {
|
|
2210
2464
|
/** Polymorphic discriminator, which specifies the different types this object can be */
|
|
@@ -2554,7 +2808,7 @@ export declare interface DataVersionBase extends Resource {
|
|
|
2554
2808
|
export declare interface DataVersionBaseProperties extends AssetBase {
|
|
2555
2809
|
/** [Required] Specifies the type of data. */
|
|
2556
2810
|
dataType: DataType;
|
|
2557
|
-
/** [Required] Uri of the data. Usage/meaning depends on Microsoft.MachineLearning.ManagementFrontEnd.Contracts.
|
|
2811
|
+
/** [Required] Uri of the data. Usage/meaning depends on Microsoft.MachineLearning.ManagementFrontEnd.Contracts.V20221001.Assets.DataVersionBase.DataType */
|
|
2558
2812
|
dataUri: string;
|
|
2559
2813
|
}
|
|
2560
2814
|
|
|
@@ -2698,6 +2952,9 @@ export declare interface DeploymentLogsRequest {
|
|
|
2698
2952
|
*/
|
|
2699
2953
|
export declare type DeploymentProvisioningState = string;
|
|
2700
2954
|
|
|
2955
|
+
export declare interface DeploymentResourceConfiguration extends ResourceConfiguration {
|
|
2956
|
+
}
|
|
2957
|
+
|
|
2701
2958
|
export declare interface DiagnoseRequestProperties {
|
|
2702
2959
|
/** Setting for diagnosing user defined routing */
|
|
2703
2960
|
udr?: {
|
|
@@ -2831,6 +3088,16 @@ export declare type EarlyTerminationPolicyType = string;
|
|
|
2831
3088
|
|
|
2832
3089
|
export declare type EarlyTerminationPolicyUnion = EarlyTerminationPolicy | BanditPolicy | MedianStoppingPolicy | TruncationSelectionPolicy;
|
|
2833
3090
|
|
|
3091
|
+
/**
|
|
3092
|
+
* Defines values for EgressPublicNetworkAccessType. \
|
|
3093
|
+
* {@link KnownEgressPublicNetworkAccessType} can be used interchangeably with EgressPublicNetworkAccessType,
|
|
3094
|
+
* this enum contains the known values that the service supports.
|
|
3095
|
+
* ### Known values supported by the service
|
|
3096
|
+
* **Enabled** \
|
|
3097
|
+
* **Disabled**
|
|
3098
|
+
*/
|
|
3099
|
+
export declare type EgressPublicNetworkAccessType = string;
|
|
3100
|
+
|
|
2834
3101
|
export declare interface EncryptionKeyVaultProperties {
|
|
2835
3102
|
/** The ArmId of the keyVault where the customer owned encryption key is present. */
|
|
2836
3103
|
keyVaultArmId: string;
|
|
@@ -2960,6 +3227,16 @@ export declare interface EndpointPropertiesBase {
|
|
|
2960
3227
|
*/
|
|
2961
3228
|
export declare type EndpointProvisioningState = string;
|
|
2962
3229
|
|
|
3230
|
+
export declare interface EndpointScheduleAction extends ScheduleActionBase {
|
|
3231
|
+
/** Polymorphic discriminator, which specifies the different types this object can be */
|
|
3232
|
+
actionType: "InvokeBatchEndpoint";
|
|
3233
|
+
/**
|
|
3234
|
+
* [Required] Defines Schedule action definition details.
|
|
3235
|
+
* <see href="TBD" />
|
|
3236
|
+
*/
|
|
3237
|
+
endpointInvocationDefinition: Record<string, unknown>;
|
|
3238
|
+
}
|
|
3239
|
+
|
|
2963
3240
|
/** Azure Resource Manager resource envelope. */
|
|
2964
3241
|
export declare interface EnvironmentContainer extends Resource {
|
|
2965
3242
|
/** [Required] Additional attributes of the entity. */
|
|
@@ -3072,6 +3349,8 @@ export declare interface EnvironmentVersion extends Resource {
|
|
|
3072
3349
|
|
|
3073
3350
|
/** Environment version details. */
|
|
3074
3351
|
export declare interface EnvironmentVersionProperties extends AssetBase {
|
|
3352
|
+
/** Defines if image needs to be rebuilt based on base image changes. */
|
|
3353
|
+
autoRebuild?: AutoRebuildSetting;
|
|
3075
3354
|
/** Configuration settings for Docker build context. */
|
|
3076
3355
|
build?: BuildContext;
|
|
3077
3356
|
/**
|
|
@@ -3265,6 +3544,33 @@ export declare interface ExternalFqdnResponse {
|
|
|
3265
3544
|
value?: FqdnEndpoints[];
|
|
3266
3545
|
}
|
|
3267
3546
|
|
|
3547
|
+
/**
|
|
3548
|
+
* Defines values for FeatureLags. \
|
|
3549
|
+
* {@link KnownFeatureLags} can be used interchangeably with FeatureLags,
|
|
3550
|
+
* this enum contains the known values that the service supports.
|
|
3551
|
+
* ### Known values supported by the service
|
|
3552
|
+
* **None**: No feature lags generated. \
|
|
3553
|
+
* **Auto**: System auto-generates feature lags.
|
|
3554
|
+
*/
|
|
3555
|
+
export declare type FeatureLags = string;
|
|
3556
|
+
|
|
3557
|
+
/**
|
|
3558
|
+
* Defines values for FeaturizationMode. \
|
|
3559
|
+
* {@link KnownFeaturizationMode} can be used interchangeably with FeaturizationMode,
|
|
3560
|
+
* this enum contains the known values that the service supports.
|
|
3561
|
+
* ### Known values supported by the service
|
|
3562
|
+
* **Auto**: Auto mode, system performs featurization without any custom featurization inputs. \
|
|
3563
|
+
* **Custom**: Custom featurization. \
|
|
3564
|
+
* **Off**: Featurization off. 'Forecasting' task cannot use this value.
|
|
3565
|
+
*/
|
|
3566
|
+
export declare type FeaturizationMode = string;
|
|
3567
|
+
|
|
3568
|
+
/** Featurization Configuration. */
|
|
3569
|
+
export declare interface FeaturizationSettings {
|
|
3570
|
+
/** Dataset language, useful for the text data. */
|
|
3571
|
+
datasetLanguage?: string;
|
|
3572
|
+
}
|
|
3573
|
+
|
|
3268
3574
|
export declare interface FlavorData {
|
|
3269
3575
|
/** Model flavor-specific data. */
|
|
3270
3576
|
data?: {
|
|
@@ -3272,6 +3578,136 @@ export declare interface FlavorData {
|
|
|
3272
3578
|
};
|
|
3273
3579
|
}
|
|
3274
3580
|
|
|
3581
|
+
/** The desired maximum forecast horizon in units of time-series frequency. */
|
|
3582
|
+
export declare interface ForecastHorizon {
|
|
3583
|
+
/** Polymorphic discriminator, which specifies the different types this object can be */
|
|
3584
|
+
mode: "Auto" | "Custom";
|
|
3585
|
+
}
|
|
3586
|
+
|
|
3587
|
+
/**
|
|
3588
|
+
* Defines values for ForecastHorizonMode. \
|
|
3589
|
+
* {@link KnownForecastHorizonMode} can be used interchangeably with ForecastHorizonMode,
|
|
3590
|
+
* this enum contains the known values that the service supports.
|
|
3591
|
+
* ### Known values supported by the service
|
|
3592
|
+
* **Auto**: Forecast horizon to be determined automatically. \
|
|
3593
|
+
* **Custom**: Use the custom forecast horizon.
|
|
3594
|
+
*/
|
|
3595
|
+
export declare type ForecastHorizonMode = string;
|
|
3596
|
+
|
|
3597
|
+
export declare type ForecastHorizonUnion = ForecastHorizon | AutoForecastHorizon | CustomForecastHorizon;
|
|
3598
|
+
|
|
3599
|
+
/** Forecasting task in AutoML Table vertical. */
|
|
3600
|
+
export declare interface Forecasting extends TableVertical, AutoMLVertical {
|
|
3601
|
+
/** Forecasting task specific inputs. */
|
|
3602
|
+
forecastingSettings?: ForecastingSettings;
|
|
3603
|
+
/** Primary metric for forecasting task. */
|
|
3604
|
+
primaryMetric?: ForecastingPrimaryMetrics;
|
|
3605
|
+
/** Inputs for training phase for an AutoML Job. */
|
|
3606
|
+
trainingSettings?: ForecastingTrainingSettings;
|
|
3607
|
+
}
|
|
3608
|
+
|
|
3609
|
+
/**
|
|
3610
|
+
* Defines values for ForecastingModels. \
|
|
3611
|
+
* {@link KnownForecastingModels} can be used interchangeably with ForecastingModels,
|
|
3612
|
+
* this enum contains the known values that the service supports.
|
|
3613
|
+
* ### Known values supported by the service
|
|
3614
|
+
* **AutoArima**: Auto-Autoregressive Integrated Moving Average (ARIMA) model uses time-series data and statistical analysis to interpret the data and make future predictions.
|
|
3615
|
+
* This model aims to explain data by using time series data on its past values and uses linear regression to make predictions. \
|
|
3616
|
+
* **Prophet**: Prophet is a procedure for forecasting time series data based on an additive model where non-linear trends are fit with yearly, weekly, and daily seasonality, plus holiday effects.
|
|
3617
|
+
* It works best with time series that have strong seasonal effects and several seasons of historical data. Prophet is robust to missing data and shifts in the trend, and typically handles outliers well. \
|
|
3618
|
+
* **Naive**: The Naive forecasting model makes predictions by carrying forward the latest target value for each time-series in the training data. \
|
|
3619
|
+
* **SeasonalNaive**: The Seasonal Naive forecasting model makes predictions by carrying forward the latest season of target values for each time-series in the training data. \
|
|
3620
|
+
* **Average**: The Average forecasting model makes predictions by carrying forward the average of the target values for each time-series in the training data. \
|
|
3621
|
+
* **SeasonalAverage**: The Seasonal Average forecasting model makes predictions by carrying forward the average value of the latest season of data for each time-series in the training data. \
|
|
3622
|
+
* **ExponentialSmoothing**: Exponential smoothing is a time series forecasting method for univariate data that can be extended to support data with a systematic trend or seasonal component. \
|
|
3623
|
+
* **Arimax**: An Autoregressive Integrated Moving Average with Explanatory Variable (ARIMAX) model can be viewed as a multiple regression model with one or more autoregressive (AR) terms and\/or one or more moving average (MA) terms.
|
|
3624
|
+
* This method is suitable for forecasting when data is stationary\/non stationary, and multivariate with any type of data pattern, i.e., level\/trend \/seasonality\/cyclicity. \
|
|
3625
|
+
* **TCNForecaster**: TCNForecaster: Temporal Convolutional Networks Forecaster. \/\/TODO: Ask forecasting team for brief intro. \
|
|
3626
|
+
* **ElasticNet**: Elastic net is a popular type of regularized linear regression that combines two popular penalties, specifically the L1 and L2 penalty functions. \
|
|
3627
|
+
* **GradientBoosting**: The technique of transiting week learners into a strong learner is called Boosting. The gradient boosting algorithm process works on this theory of execution. \
|
|
3628
|
+
* **DecisionTree**: Decision Trees are a non-parametric supervised learning method used for both classification and regression tasks.
|
|
3629
|
+
* The goal is to create a model that predicts the value of a target variable by learning simple decision rules inferred from the data features. \
|
|
3630
|
+
* **KNN**: K-nearest neighbors (KNN) algorithm uses 'feature similarity' to predict the values of new datapoints
|
|
3631
|
+
* which further means that the new data point will be assigned a value based on how closely it matches the points in the training set. \
|
|
3632
|
+
* **LassoLars**: Lasso model fit with Least Angle Regression a.k.a. Lars. It is a Linear Model trained with an L1 prior as regularizer. \
|
|
3633
|
+
* **SGD**: SGD: Stochastic gradient descent is an optimization algorithm often used in machine learning applications
|
|
3634
|
+
* to find the model parameters that correspond to the best fit between predicted and actual outputs.
|
|
3635
|
+
* It's an inexact but powerful technique. \
|
|
3636
|
+
* **RandomForest**: Random forest is a supervised learning algorithm.
|
|
3637
|
+
* The "forest" it builds, is an ensemble of decision trees, usually trained with the “bagging” method.
|
|
3638
|
+
* The general idea of the bagging method is that a combination of learning models increases the overall result. \
|
|
3639
|
+
* **ExtremeRandomTrees**: Extreme Trees is an ensemble machine learning algorithm that combines the predictions from many decision trees. It is related to the widely used random forest algorithm. \
|
|
3640
|
+
* **LightGBM**: LightGBM is a gradient boosting framework that uses tree based learning algorithms. \
|
|
3641
|
+
* **XGBoostRegressor**: XGBoostRegressor: Extreme Gradient Boosting Regressor is a supervised machine learning model using ensemble of base learners.
|
|
3642
|
+
*/
|
|
3643
|
+
export declare type ForecastingModels = string;
|
|
3644
|
+
|
|
3645
|
+
/**
|
|
3646
|
+
* Defines values for ForecastingPrimaryMetrics. \
|
|
3647
|
+
* {@link KnownForecastingPrimaryMetrics} can be used interchangeably with ForecastingPrimaryMetrics,
|
|
3648
|
+
* this enum contains the known values that the service supports.
|
|
3649
|
+
* ### Known values supported by the service
|
|
3650
|
+
* **SpearmanCorrelation**: The Spearman's rank coefficient of correlation is a non-parametric measure of rank correlation. \
|
|
3651
|
+
* **NormalizedRootMeanSquaredError**: The Normalized Root Mean Squared Error (NRMSE) the RMSE facilitates the comparison between models with different scales. \
|
|
3652
|
+
* **R2Score**: The R2 score is one of the performance evaluation measures for forecasting-based machine learning models. \
|
|
3653
|
+
* **NormalizedMeanAbsoluteError**: The Normalized Mean Absolute Error (NMAE) is a validation metric to compare the Mean Absolute Error (MAE) of (time) series with different scales.
|
|
3654
|
+
*/
|
|
3655
|
+
export declare type ForecastingPrimaryMetrics = string;
|
|
3656
|
+
|
|
3657
|
+
/** Forecasting specific parameters. */
|
|
3658
|
+
export declare interface ForecastingSettings {
|
|
3659
|
+
/**
|
|
3660
|
+
* Country or region for holidays for forecasting tasks.
|
|
3661
|
+
* These should be ISO 3166 two-letter country/region codes, for example 'US' or 'GB'.
|
|
3662
|
+
*/
|
|
3663
|
+
countryOrRegionForHolidays?: string;
|
|
3664
|
+
/**
|
|
3665
|
+
* Number of periods between the origin time of one CV fold and the next fold. For
|
|
3666
|
+
* example, if `CVStepSize` = 3 for daily data, the origin time for each fold will be
|
|
3667
|
+
* three days apart.
|
|
3668
|
+
*/
|
|
3669
|
+
cvStepSize?: number;
|
|
3670
|
+
/** Flag for generating lags for the numeric features with 'auto' or null. */
|
|
3671
|
+
featureLags?: FeatureLags;
|
|
3672
|
+
/** The desired maximum forecast horizon in units of time-series frequency. */
|
|
3673
|
+
forecastHorizon?: ForecastHorizonUnion;
|
|
3674
|
+
/** When forecasting, this parameter represents the period with which the forecast is desired, for example daily, weekly, yearly, etc. The forecast frequency is dataset frequency by default. */
|
|
3675
|
+
frequency?: string;
|
|
3676
|
+
/**
|
|
3677
|
+
* Set time series seasonality as an integer multiple of the series frequency.
|
|
3678
|
+
* If seasonality is set to 'auto', it will be inferred.
|
|
3679
|
+
*/
|
|
3680
|
+
seasonality?: SeasonalityUnion;
|
|
3681
|
+
/** The parameter defining how if AutoML should handle short time series. */
|
|
3682
|
+
shortSeriesHandlingConfig?: ShortSeriesHandlingConfiguration;
|
|
3683
|
+
/**
|
|
3684
|
+
* The function to be used to aggregate the time series target column to conform to a user specified frequency.
|
|
3685
|
+
* If the TargetAggregateFunction is set i.e. not 'None', but the freq parameter is not set, the error is raised. The possible target aggregation functions are: "sum", "max", "min" and "mean".
|
|
3686
|
+
*/
|
|
3687
|
+
targetAggregateFunction?: TargetAggregationFunction;
|
|
3688
|
+
/** The number of past periods to lag from the target column. */
|
|
3689
|
+
targetLags?: TargetLagsUnion;
|
|
3690
|
+
/** The number of past periods used to create a rolling window average of the target column. */
|
|
3691
|
+
targetRollingWindowSize?: TargetRollingWindowSizeUnion;
|
|
3692
|
+
/** The name of the time column. This parameter is required when forecasting to specify the datetime column in the input data used for building the time series and inferring its frequency. */
|
|
3693
|
+
timeColumnName?: string;
|
|
3694
|
+
/**
|
|
3695
|
+
* The names of columns used to group a timeseries. It can be used to create multiple series.
|
|
3696
|
+
* If grain is not defined, the data set is assumed to be one time-series. This parameter is used with task type forecasting.
|
|
3697
|
+
*/
|
|
3698
|
+
timeSeriesIdColumnNames?: string[];
|
|
3699
|
+
/** Configure STL Decomposition of the time-series target column. */
|
|
3700
|
+
useStl?: UseStl;
|
|
3701
|
+
}
|
|
3702
|
+
|
|
3703
|
+
/** Forecasting Training related configuration. */
|
|
3704
|
+
export declare interface ForecastingTrainingSettings extends TrainingSettings {
|
|
3705
|
+
/** Allowed models for forecasting task. */
|
|
3706
|
+
allowedTrainingAlgorithms?: ForecastingModels[];
|
|
3707
|
+
/** Blocked models for forecasting task. */
|
|
3708
|
+
blockedTrainingAlgorithms?: ForecastingModels[];
|
|
3709
|
+
}
|
|
3710
|
+
|
|
3275
3711
|
export declare interface FqdnEndpoint {
|
|
3276
3712
|
domainName?: string;
|
|
3277
3713
|
endpointDetails?: FqdnEndpointDetail[];
|
|
@@ -3360,90 +3796,573 @@ export declare interface IdentityForCmk {
|
|
|
3360
3796
|
userAssignedIdentity?: string;
|
|
3361
3797
|
}
|
|
3362
3798
|
|
|
3363
|
-
|
|
3364
|
-
|
|
3365
|
-
|
|
3366
|
-
|
|
3367
|
-
|
|
3368
|
-
/**
|
|
3369
|
-
|
|
3799
|
+
/**
|
|
3800
|
+
* Image Classification. Multi-class image classification is used when an image is classified with only a single label
|
|
3801
|
+
* from a set of classes - e.g. each image is classified as either an image of a 'cat' or a 'dog' or a 'duck'.
|
|
3802
|
+
*/
|
|
3803
|
+
export declare interface ImageClassification extends ImageClassificationBase, AutoMLVertical {
|
|
3804
|
+
/** Primary metric to optimize for this task. */
|
|
3805
|
+
primaryMetric?: ClassificationPrimaryMetrics;
|
|
3806
|
+
}
|
|
3807
|
+
|
|
3808
|
+
export declare interface ImageClassificationBase extends ImageVertical {
|
|
3809
|
+
/** Settings used for training the model. */
|
|
3810
|
+
modelSettings?: ImageModelSettingsClassification;
|
|
3811
|
+
/** Search space for sampling different combinations of models and their hyperparameters. */
|
|
3812
|
+
searchSpace?: ImageModelDistributionSettingsClassification[];
|
|
3370
3813
|
}
|
|
3371
3814
|
|
|
3372
3815
|
/**
|
|
3373
|
-
*
|
|
3374
|
-
*
|
|
3375
|
-
* this enum contains the known values that the service supports.
|
|
3376
|
-
* ### Known values supported by the service
|
|
3377
|
-
* **ReadOnlyMount** \
|
|
3378
|
-
* **ReadWriteMount** \
|
|
3379
|
-
* **Download** \
|
|
3380
|
-
* **Direct** \
|
|
3381
|
-
* **EvalMount** \
|
|
3382
|
-
* **EvalDownload**
|
|
3816
|
+
* Image Classification Multilabel. Multi-label image classification is used when an image could have one or more labels
|
|
3817
|
+
* from a set of labels - e.g. an image could be labeled with both 'cat' and 'dog'.
|
|
3383
3818
|
*/
|
|
3384
|
-
export declare
|
|
3819
|
+
export declare interface ImageClassificationMultilabel extends ImageClassificationBase, AutoMLVertical {
|
|
3820
|
+
/** Primary metric to optimize for this task. */
|
|
3821
|
+
primaryMetric?: ClassificationMultilabelPrimaryMetrics;
|
|
3822
|
+
}
|
|
3385
3823
|
|
|
3386
|
-
/**
|
|
3387
|
-
|
|
3388
|
-
|
|
3389
|
-
|
|
3390
|
-
|
|
3391
|
-
|
|
3392
|
-
|
|
3393
|
-
resources?: InstanceTypeSchemaResources;
|
|
3824
|
+
/**
|
|
3825
|
+
* Image Instance Segmentation. Instance segmentation is used to identify objects in an image at the pixel level,
|
|
3826
|
+
* drawing a polygon around each object in the image.
|
|
3827
|
+
*/
|
|
3828
|
+
export declare interface ImageInstanceSegmentation extends ImageObjectDetectionBase, AutoMLVertical {
|
|
3829
|
+
/** Primary metric to optimize for this task. */
|
|
3830
|
+
primaryMetric?: InstanceSegmentationPrimaryMetrics;
|
|
3394
3831
|
}
|
|
3395
3832
|
|
|
3396
|
-
/**
|
|
3397
|
-
export declare interface
|
|
3398
|
-
/**
|
|
3399
|
-
|
|
3400
|
-
|
|
3401
|
-
|
|
3402
|
-
/**
|
|
3403
|
-
|
|
3404
|
-
[propertyName: string]: string;
|
|
3405
|
-
};
|
|
3833
|
+
/** Limit settings for the AutoML job. */
|
|
3834
|
+
export declare interface ImageLimitSettings {
|
|
3835
|
+
/** Maximum number of concurrent AutoML iterations. */
|
|
3836
|
+
maxConcurrentTrials?: number;
|
|
3837
|
+
/** Maximum number of AutoML iterations. */
|
|
3838
|
+
maxTrials?: number;
|
|
3839
|
+
/** AutoML job timeout. */
|
|
3840
|
+
timeout?: string;
|
|
3406
3841
|
}
|
|
3407
3842
|
|
|
3408
|
-
/**
|
|
3409
|
-
|
|
3410
|
-
|
|
3411
|
-
|
|
3843
|
+
/**
|
|
3844
|
+
* Distribution expressions to sweep over values of model settings.
|
|
3845
|
+
* <example>
|
|
3846
|
+
* Some examples are:
|
|
3847
|
+
* <code>
|
|
3848
|
+
* ModelName = "choice('seresnext', 'resnest50')";
|
|
3849
|
+
* LearningRate = "uniform(0.001, 0.01)";
|
|
3850
|
+
* LayersToFreeze = "choice(0, 2)";
|
|
3851
|
+
* </code></example>
|
|
3852
|
+
* All distributions can be specified as distribution_name(min, max) or choice(val1, val2, ..., valn)
|
|
3853
|
+
* where distribution name can be: uniform, quniform, loguniform, etc
|
|
3854
|
+
* For more details on how to compose distribution expressions please check the documentation:
|
|
3855
|
+
* https://docs.microsoft.com/en-us/azure/machine-learning/how-to-tune-hyperparameters
|
|
3856
|
+
* For more information on the available settings please visit the official documentation:
|
|
3857
|
+
* https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.
|
|
3858
|
+
*/
|
|
3859
|
+
export declare interface ImageModelDistributionSettings {
|
|
3860
|
+
/** Enable AMSGrad when optimizer is 'adam' or 'adamw'. */
|
|
3861
|
+
amsGradient?: string;
|
|
3862
|
+
/** Settings for using Augmentations. */
|
|
3863
|
+
augmentations?: string;
|
|
3864
|
+
/** Value of 'beta1' when optimizer is 'adam' or 'adamw'. Must be a float in the range [0, 1]. */
|
|
3865
|
+
beta1?: string;
|
|
3866
|
+
/** Value of 'beta2' when optimizer is 'adam' or 'adamw'. Must be a float in the range [0, 1]. */
|
|
3867
|
+
beta2?: string;
|
|
3868
|
+
/** Whether to use distributer training. */
|
|
3869
|
+
distributed?: string;
|
|
3870
|
+
/** Enable early stopping logic during training. */
|
|
3871
|
+
earlyStopping?: string;
|
|
3872
|
+
/**
|
|
3873
|
+
* Minimum number of epochs or validation evaluations to wait before primary metric improvement
|
|
3874
|
+
* is tracked for early stopping. Must be a positive integer.
|
|
3875
|
+
*/
|
|
3876
|
+
earlyStoppingDelay?: string;
|
|
3877
|
+
/**
|
|
3878
|
+
* Minimum number of epochs or validation evaluations with no primary metric improvement before
|
|
3879
|
+
* the run is stopped. Must be a positive integer.
|
|
3880
|
+
*/
|
|
3881
|
+
earlyStoppingPatience?: string;
|
|
3882
|
+
/** Enable normalization when exporting ONNX model. */
|
|
3883
|
+
enableOnnxNormalization?: string;
|
|
3884
|
+
/** Frequency to evaluate validation dataset to get metric scores. Must be a positive integer. */
|
|
3885
|
+
evaluationFrequency?: string;
|
|
3886
|
+
/**
|
|
3887
|
+
* Gradient accumulation means running a configured number of "GradAccumulationStep" steps without
|
|
3888
|
+
* updating the model weights while accumulating the gradients of those steps, and then using
|
|
3889
|
+
* the accumulated gradients to compute the weight updates. Must be a positive integer.
|
|
3890
|
+
*/
|
|
3891
|
+
gradientAccumulationStep?: string;
|
|
3892
|
+
/**
|
|
3893
|
+
* Number of layers to freeze for the model. Must be a positive integer.
|
|
3894
|
+
* For instance, passing 2 as value for 'seresnext' means
|
|
3895
|
+
* freezing layer0 and layer1. For a full list of models supported and details on layer freeze, please
|
|
3896
|
+
* see: https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.
|
|
3897
|
+
*/
|
|
3898
|
+
layersToFreeze?: string;
|
|
3899
|
+
/** Initial learning rate. Must be a float in the range [0, 1]. */
|
|
3900
|
+
learningRate?: string;
|
|
3901
|
+
/** Type of learning rate scheduler. Must be 'warmup_cosine' or 'step'. */
|
|
3902
|
+
learningRateScheduler?: string;
|
|
3903
|
+
/**
|
|
3904
|
+
* Name of the model to use for training.
|
|
3905
|
+
* For more information on the available models please visit the official documentation:
|
|
3906
|
+
* https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.
|
|
3907
|
+
*/
|
|
3908
|
+
modelName?: string;
|
|
3909
|
+
/** Value of momentum when optimizer is 'sgd'. Must be a float in the range [0, 1]. */
|
|
3910
|
+
momentum?: string;
|
|
3911
|
+
/** Enable nesterov when optimizer is 'sgd'. */
|
|
3912
|
+
nesterov?: string;
|
|
3913
|
+
/** Number of training epochs. Must be a positive integer. */
|
|
3914
|
+
numberOfEpochs?: string;
|
|
3915
|
+
/** Number of data loader workers. Must be a non-negative integer. */
|
|
3916
|
+
numberOfWorkers?: string;
|
|
3917
|
+
/** Type of optimizer. Must be either 'sgd', 'adam', or 'adamw'. */
|
|
3918
|
+
optimizer?: string;
|
|
3919
|
+
/** Random seed to be used when using deterministic training. */
|
|
3920
|
+
randomSeed?: string;
|
|
3921
|
+
/** Value of gamma when learning rate scheduler is 'step'. Must be a float in the range [0, 1]. */
|
|
3922
|
+
stepLRGamma?: string;
|
|
3923
|
+
/** Value of step size when learning rate scheduler is 'step'. Must be a positive integer. */
|
|
3924
|
+
stepLRStepSize?: string;
|
|
3925
|
+
/** Training batch size. Must be a positive integer. */
|
|
3926
|
+
trainingBatchSize?: string;
|
|
3927
|
+
/** Validation batch size. Must be a positive integer. */
|
|
3928
|
+
validationBatchSize?: string;
|
|
3929
|
+
/** Value of cosine cycle when learning rate scheduler is 'warmup_cosine'. Must be a float in the range [0, 1]. */
|
|
3930
|
+
warmupCosineLRCycles?: string;
|
|
3931
|
+
/** Value of warmup epochs when learning rate scheduler is 'warmup_cosine'. Must be a positive integer. */
|
|
3932
|
+
warmupCosineLRWarmupEpochs?: string;
|
|
3933
|
+
/** Value of weight decay when optimizer is 'sgd', 'adam', or 'adamw'. Must be a float in the range[0, 1]. */
|
|
3934
|
+
weightDecay?: string;
|
|
3412
3935
|
}
|
|
3413
3936
|
|
|
3414
|
-
/**
|
|
3415
|
-
|
|
3416
|
-
|
|
3417
|
-
|
|
3418
|
-
|
|
3419
|
-
|
|
3420
|
-
|
|
3421
|
-
|
|
3937
|
+
/**
|
|
3938
|
+
* Distribution expressions to sweep over values of model settings.
|
|
3939
|
+
* <example>
|
|
3940
|
+
* Some examples are:
|
|
3941
|
+
* <code>
|
|
3942
|
+
* ModelName = "choice('seresnext', 'resnest50')";
|
|
3943
|
+
* LearningRate = "uniform(0.001, 0.01)";
|
|
3944
|
+
* LayersToFreeze = "choice(0, 2)";
|
|
3945
|
+
* </code></example>
|
|
3946
|
+
* For more details on how to compose distribution expressions please check the documentation:
|
|
3947
|
+
* https://docs.microsoft.com/en-us/azure/machine-learning/how-to-tune-hyperparameters
|
|
3948
|
+
* For more information on the available settings please visit the official documentation:
|
|
3949
|
+
* https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.
|
|
3950
|
+
*/
|
|
3951
|
+
export declare interface ImageModelDistributionSettingsClassification extends ImageModelDistributionSettings {
|
|
3952
|
+
/** Image crop size that is input to the neural network for the training dataset. Must be a positive integer. */
|
|
3953
|
+
trainingCropSize?: string;
|
|
3954
|
+
/** Image crop size that is input to the neural network for the validation dataset. Must be a positive integer. */
|
|
3955
|
+
validationCropSize?: string;
|
|
3956
|
+
/** Image size to which to resize before cropping for validation dataset. Must be a positive integer. */
|
|
3957
|
+
validationResizeSize?: string;
|
|
3422
3958
|
/**
|
|
3423
|
-
*
|
|
3424
|
-
*
|
|
3959
|
+
* Weighted loss. The accepted values are 0 for no weighted loss.
|
|
3960
|
+
* 1 for weighted loss with sqrt.(class_weights). 2 for weighted loss with class_weights. Must be 0 or 1 or 2.
|
|
3425
3961
|
*/
|
|
3426
|
-
|
|
3427
|
-
|
|
3428
|
-
|
|
3429
|
-
|
|
3430
|
-
|
|
3962
|
+
weightedLoss?: string;
|
|
3963
|
+
}
|
|
3964
|
+
|
|
3965
|
+
/**
|
|
3966
|
+
* Distribution expressions to sweep over values of model settings.
|
|
3967
|
+
* <example>
|
|
3968
|
+
* Some examples are:
|
|
3969
|
+
* <code>
|
|
3970
|
+
* ModelName = "choice('seresnext', 'resnest50')";
|
|
3971
|
+
* LearningRate = "uniform(0.001, 0.01)";
|
|
3972
|
+
* LayersToFreeze = "choice(0, 2)";
|
|
3973
|
+
* </code></example>
|
|
3974
|
+
* For more details on how to compose distribution expressions please check the documentation:
|
|
3975
|
+
* https://docs.microsoft.com/en-us/azure/machine-learning/how-to-tune-hyperparameters
|
|
3976
|
+
* For more information on the available settings please visit the official documentation:
|
|
3977
|
+
* https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.
|
|
3978
|
+
*/
|
|
3979
|
+
export declare interface ImageModelDistributionSettingsObjectDetection extends ImageModelDistributionSettings {
|
|
3431
3980
|
/**
|
|
3432
|
-
*
|
|
3433
|
-
*
|
|
3981
|
+
* Maximum number of detections per image, for all classes. Must be a positive integer.
|
|
3982
|
+
* Note: This settings is not supported for the 'yolov5' algorithm.
|
|
3434
3983
|
*/
|
|
3435
|
-
|
|
3436
|
-
[propertyName: string]: JobService | null;
|
|
3437
|
-
};
|
|
3984
|
+
boxDetectionsPerImage?: string;
|
|
3438
3985
|
/**
|
|
3439
|
-
*
|
|
3440
|
-
*
|
|
3986
|
+
* During inference, only return proposals with a classification score greater than
|
|
3987
|
+
* BoxScoreThreshold. Must be a float in the range[0, 1].
|
|
3441
3988
|
*/
|
|
3442
|
-
|
|
3989
|
+
boxScoreThreshold?: string;
|
|
3990
|
+
/**
|
|
3991
|
+
* Image size for train and validation. Must be a positive integer.
|
|
3992
|
+
* Note: The training run may get into CUDA OOM if the size is too big.
|
|
3993
|
+
* Note: This settings is only supported for the 'yolov5' algorithm.
|
|
3994
|
+
*/
|
|
3995
|
+
imageSize?: string;
|
|
3996
|
+
/**
|
|
3997
|
+
* Maximum size of the image to be rescaled before feeding it to the backbone.
|
|
3998
|
+
* Must be a positive integer. Note: training run may get into CUDA OOM if the size is too big.
|
|
3999
|
+
* Note: This settings is not supported for the 'yolov5' algorithm.
|
|
4000
|
+
*/
|
|
4001
|
+
maxSize?: string;
|
|
4002
|
+
/**
|
|
4003
|
+
* Minimum size of the image to be rescaled before feeding it to the backbone.
|
|
4004
|
+
* Must be a positive integer. Note: training run may get into CUDA OOM if the size is too big.
|
|
4005
|
+
* Note: This settings is not supported for the 'yolov5' algorithm.
|
|
4006
|
+
*/
|
|
4007
|
+
minSize?: string;
|
|
4008
|
+
/**
|
|
4009
|
+
* Model size. Must be 'small', 'medium', 'large', or 'xlarge'.
|
|
4010
|
+
* Note: training run may get into CUDA OOM if the model size is too big.
|
|
4011
|
+
* Note: This settings is only supported for the 'yolov5' algorithm.
|
|
4012
|
+
*/
|
|
4013
|
+
modelSize?: string;
|
|
4014
|
+
/**
|
|
4015
|
+
* Enable multi-scale image by varying image size by +/- 50%.
|
|
4016
|
+
* Note: training run may get into CUDA OOM if no sufficient GPU memory.
|
|
4017
|
+
* Note: This settings is only supported for the 'yolov5' algorithm.
|
|
4018
|
+
*/
|
|
4019
|
+
multiScale?: string;
|
|
4020
|
+
/** IOU threshold used during inference in NMS post processing. Must be float in the range [0, 1]. */
|
|
4021
|
+
nmsIouThreshold?: string;
|
|
4022
|
+
/**
|
|
4023
|
+
* The grid size to use for tiling each image. Note: TileGridSize must not be
|
|
4024
|
+
* None to enable small object detection logic. A string containing two integers in mxn format.
|
|
4025
|
+
* Note: This settings is not supported for the 'yolov5' algorithm.
|
|
4026
|
+
*/
|
|
4027
|
+
tileGridSize?: string;
|
|
4028
|
+
/**
|
|
4029
|
+
* Overlap ratio between adjacent tiles in each dimension. Must be float in the range [0, 1).
|
|
4030
|
+
* Note: This settings is not supported for the 'yolov5' algorithm.
|
|
4031
|
+
*/
|
|
4032
|
+
tileOverlapRatio?: string;
|
|
4033
|
+
/**
|
|
4034
|
+
* The IOU threshold to use to perform NMS while merging predictions from tiles and image.
|
|
4035
|
+
* Used in validation/ inference. Must be float in the range [0, 1].
|
|
4036
|
+
* Note: This settings is not supported for the 'yolov5' algorithm.
|
|
4037
|
+
* NMS: Non-maximum suppression
|
|
4038
|
+
*/
|
|
4039
|
+
tilePredictionsNmsThreshold?: string;
|
|
4040
|
+
/** IOU threshold to use when computing validation metric. Must be float in the range [0, 1]. */
|
|
4041
|
+
validationIouThreshold?: string;
|
|
4042
|
+
/** Metric computation method to use for validation metrics. Must be 'none', 'coco', 'voc', or 'coco_voc'. */
|
|
4043
|
+
validationMetricType?: string;
|
|
3443
4044
|
}
|
|
3444
4045
|
|
|
3445
|
-
|
|
3446
|
-
|
|
4046
|
+
/**
|
|
4047
|
+
* Settings used for training the model.
|
|
4048
|
+
* For more information on the available settings please visit the official documentation:
|
|
4049
|
+
* https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.
|
|
4050
|
+
*/
|
|
4051
|
+
export declare interface ImageModelSettings {
|
|
4052
|
+
/** Settings for advanced scenarios. */
|
|
4053
|
+
advancedSettings?: string;
|
|
4054
|
+
/** Enable AMSGrad when optimizer is 'adam' or 'adamw'. */
|
|
4055
|
+
amsGradient?: boolean;
|
|
4056
|
+
/** Settings for using Augmentations. */
|
|
4057
|
+
augmentations?: string;
|
|
4058
|
+
/** Value of 'beta1' when optimizer is 'adam' or 'adamw'. Must be a float in the range [0, 1]. */
|
|
4059
|
+
beta1?: number;
|
|
4060
|
+
/** Value of 'beta2' when optimizer is 'adam' or 'adamw'. Must be a float in the range [0, 1]. */
|
|
4061
|
+
beta2?: number;
|
|
4062
|
+
/** Frequency to store model checkpoints. Must be a positive integer. */
|
|
4063
|
+
checkpointFrequency?: number;
|
|
4064
|
+
/** The pretrained checkpoint model for incremental training. */
|
|
4065
|
+
checkpointModel?: MLFlowModelJobInput;
|
|
4066
|
+
/** The id of a previous run that has a pretrained checkpoint for incremental training. */
|
|
4067
|
+
checkpointRunId?: string;
|
|
4068
|
+
/** Whether to use distributed training. */
|
|
4069
|
+
distributed?: boolean;
|
|
4070
|
+
/** Enable early stopping logic during training. */
|
|
4071
|
+
earlyStopping?: boolean;
|
|
4072
|
+
/**
|
|
4073
|
+
* Minimum number of epochs or validation evaluations to wait before primary metric improvement
|
|
4074
|
+
* is tracked for early stopping. Must be a positive integer.
|
|
4075
|
+
*/
|
|
4076
|
+
earlyStoppingDelay?: number;
|
|
4077
|
+
/**
|
|
4078
|
+
* Minimum number of epochs or validation evaluations with no primary metric improvement before
|
|
4079
|
+
* the run is stopped. Must be a positive integer.
|
|
4080
|
+
*/
|
|
4081
|
+
earlyStoppingPatience?: number;
|
|
4082
|
+
/** Enable normalization when exporting ONNX model. */
|
|
4083
|
+
enableOnnxNormalization?: boolean;
|
|
4084
|
+
/** Frequency to evaluate validation dataset to get metric scores. Must be a positive integer. */
|
|
4085
|
+
evaluationFrequency?: number;
|
|
4086
|
+
/**
|
|
4087
|
+
* Gradient accumulation means running a configured number of "GradAccumulationStep" steps without
|
|
4088
|
+
* updating the model weights while accumulating the gradients of those steps, and then using
|
|
4089
|
+
* the accumulated gradients to compute the weight updates. Must be a positive integer.
|
|
4090
|
+
*/
|
|
4091
|
+
gradientAccumulationStep?: number;
|
|
4092
|
+
/**
|
|
4093
|
+
* Number of layers to freeze for the model. Must be a positive integer.
|
|
4094
|
+
* For instance, passing 2 as value for 'seresnext' means
|
|
4095
|
+
* freezing layer0 and layer1. For a full list of models supported and details on layer freeze, please
|
|
4096
|
+
* see: https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.
|
|
4097
|
+
*/
|
|
4098
|
+
layersToFreeze?: number;
|
|
4099
|
+
/** Initial learning rate. Must be a float in the range [0, 1]. */
|
|
4100
|
+
learningRate?: number;
|
|
4101
|
+
/** Type of learning rate scheduler. Must be 'warmup_cosine' or 'step'. */
|
|
4102
|
+
learningRateScheduler?: LearningRateScheduler;
|
|
4103
|
+
/**
|
|
4104
|
+
* Name of the model to use for training.
|
|
4105
|
+
* For more information on the available models please visit the official documentation:
|
|
4106
|
+
* https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.
|
|
4107
|
+
*/
|
|
4108
|
+
modelName?: string;
|
|
4109
|
+
/** Value of momentum when optimizer is 'sgd'. Must be a float in the range [0, 1]. */
|
|
4110
|
+
momentum?: number;
|
|
4111
|
+
/** Enable nesterov when optimizer is 'sgd'. */
|
|
4112
|
+
nesterov?: boolean;
|
|
4113
|
+
/** Number of training epochs. Must be a positive integer. */
|
|
4114
|
+
numberOfEpochs?: number;
|
|
4115
|
+
/** Number of data loader workers. Must be a non-negative integer. */
|
|
4116
|
+
numberOfWorkers?: number;
|
|
4117
|
+
/** Type of optimizer. */
|
|
4118
|
+
optimizer?: StochasticOptimizer;
|
|
4119
|
+
/** Random seed to be used when using deterministic training. */
|
|
4120
|
+
randomSeed?: number;
|
|
4121
|
+
/** Value of gamma when learning rate scheduler is 'step'. Must be a float in the range [0, 1]. */
|
|
4122
|
+
stepLRGamma?: number;
|
|
4123
|
+
/** Value of step size when learning rate scheduler is 'step'. Must be a positive integer. */
|
|
4124
|
+
stepLRStepSize?: number;
|
|
4125
|
+
/** Training batch size. Must be a positive integer. */
|
|
4126
|
+
trainingBatchSize?: number;
|
|
4127
|
+
/** Validation batch size. Must be a positive integer. */
|
|
4128
|
+
validationBatchSize?: number;
|
|
4129
|
+
/** Value of cosine cycle when learning rate scheduler is 'warmup_cosine'. Must be a float in the range [0, 1]. */
|
|
4130
|
+
warmupCosineLRCycles?: number;
|
|
4131
|
+
/** Value of warmup epochs when learning rate scheduler is 'warmup_cosine'. Must be a positive integer. */
|
|
4132
|
+
warmupCosineLRWarmupEpochs?: number;
|
|
4133
|
+
/** Value of weight decay when optimizer is 'sgd', 'adam', or 'adamw'. Must be a float in the range[0, 1]. */
|
|
4134
|
+
weightDecay?: number;
|
|
4135
|
+
}
|
|
4136
|
+
|
|
4137
|
+
/**
|
|
4138
|
+
* Settings used for training the model.
|
|
4139
|
+
* For more information on the available settings please visit the official documentation:
|
|
4140
|
+
* https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.
|
|
4141
|
+
*/
|
|
4142
|
+
export declare interface ImageModelSettingsClassification extends ImageModelSettings {
|
|
4143
|
+
/** Image crop size that is input to the neural network for the training dataset. Must be a positive integer. */
|
|
4144
|
+
trainingCropSize?: number;
|
|
4145
|
+
/** Image crop size that is input to the neural network for the validation dataset. Must be a positive integer. */
|
|
4146
|
+
validationCropSize?: number;
|
|
4147
|
+
/** Image size to which to resize before cropping for validation dataset. Must be a positive integer. */
|
|
4148
|
+
validationResizeSize?: number;
|
|
4149
|
+
/**
|
|
4150
|
+
* Weighted loss. The accepted values are 0 for no weighted loss.
|
|
4151
|
+
* 1 for weighted loss with sqrt.(class_weights). 2 for weighted loss with class_weights. Must be 0 or 1 or 2.
|
|
4152
|
+
*/
|
|
4153
|
+
weightedLoss?: number;
|
|
4154
|
+
}
|
|
4155
|
+
|
|
4156
|
+
/**
|
|
4157
|
+
* Settings used for training the model.
|
|
4158
|
+
* For more information on the available settings please visit the official documentation:
|
|
4159
|
+
* https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.
|
|
4160
|
+
*/
|
|
4161
|
+
export declare interface ImageModelSettingsObjectDetection extends ImageModelSettings {
|
|
4162
|
+
/**
|
|
4163
|
+
* Maximum number of detections per image, for all classes. Must be a positive integer.
|
|
4164
|
+
* Note: This settings is not supported for the 'yolov5' algorithm.
|
|
4165
|
+
*/
|
|
4166
|
+
boxDetectionsPerImage?: number;
|
|
4167
|
+
/**
|
|
4168
|
+
* During inference, only return proposals with a classification score greater than
|
|
4169
|
+
* BoxScoreThreshold. Must be a float in the range[0, 1].
|
|
4170
|
+
*/
|
|
4171
|
+
boxScoreThreshold?: number;
|
|
4172
|
+
/**
|
|
4173
|
+
* Image size for train and validation. Must be a positive integer.
|
|
4174
|
+
* Note: The training run may get into CUDA OOM if the size is too big.
|
|
4175
|
+
* Note: This settings is only supported for the 'yolov5' algorithm.
|
|
4176
|
+
*/
|
|
4177
|
+
imageSize?: number;
|
|
4178
|
+
/**
|
|
4179
|
+
* Maximum size of the image to be rescaled before feeding it to the backbone.
|
|
4180
|
+
* Must be a positive integer. Note: training run may get into CUDA OOM if the size is too big.
|
|
4181
|
+
* Note: This settings is not supported for the 'yolov5' algorithm.
|
|
4182
|
+
*/
|
|
4183
|
+
maxSize?: number;
|
|
4184
|
+
/**
|
|
4185
|
+
* Minimum size of the image to be rescaled before feeding it to the backbone.
|
|
4186
|
+
* Must be a positive integer. Note: training run may get into CUDA OOM if the size is too big.
|
|
4187
|
+
* Note: This settings is not supported for the 'yolov5' algorithm.
|
|
4188
|
+
*/
|
|
4189
|
+
minSize?: number;
|
|
4190
|
+
/**
|
|
4191
|
+
* Model size. Must be 'small', 'medium', 'large', or 'xlarge'.
|
|
4192
|
+
* Note: training run may get into CUDA OOM if the model size is too big.
|
|
4193
|
+
* Note: This settings is only supported for the 'yolov5' algorithm.
|
|
4194
|
+
*/
|
|
4195
|
+
modelSize?: ModelSize;
|
|
4196
|
+
/**
|
|
4197
|
+
* Enable multi-scale image by varying image size by +/- 50%.
|
|
4198
|
+
* Note: training run may get into CUDA OOM if no sufficient GPU memory.
|
|
4199
|
+
* Note: This settings is only supported for the 'yolov5' algorithm.
|
|
4200
|
+
*/
|
|
4201
|
+
multiScale?: boolean;
|
|
4202
|
+
/** IOU threshold used during inference in NMS post processing. Must be a float in the range [0, 1]. */
|
|
4203
|
+
nmsIouThreshold?: number;
|
|
4204
|
+
/**
|
|
4205
|
+
* The grid size to use for tiling each image. Note: TileGridSize must not be
|
|
4206
|
+
* None to enable small object detection logic. A string containing two integers in mxn format.
|
|
4207
|
+
* Note: This settings is not supported for the 'yolov5' algorithm.
|
|
4208
|
+
*/
|
|
4209
|
+
tileGridSize?: string;
|
|
4210
|
+
/**
|
|
4211
|
+
* Overlap ratio between adjacent tiles in each dimension. Must be float in the range [0, 1).
|
|
4212
|
+
* Note: This settings is not supported for the 'yolov5' algorithm.
|
|
4213
|
+
*/
|
|
4214
|
+
tileOverlapRatio?: number;
|
|
4215
|
+
/**
|
|
4216
|
+
* The IOU threshold to use to perform NMS while merging predictions from tiles and image.
|
|
4217
|
+
* Used in validation/ inference. Must be float in the range [0, 1].
|
|
4218
|
+
* Note: This settings is not supported for the 'yolov5' algorithm.
|
|
4219
|
+
*/
|
|
4220
|
+
tilePredictionsNmsThreshold?: number;
|
|
4221
|
+
/** IOU threshold to use when computing validation metric. Must be float in the range [0, 1]. */
|
|
4222
|
+
validationIouThreshold?: number;
|
|
4223
|
+
/** Metric computation method to use for validation metrics. */
|
|
4224
|
+
validationMetricType?: ValidationMetricType;
|
|
4225
|
+
}
|
|
4226
|
+
|
|
4227
|
+
/**
|
|
4228
|
+
* Image Object Detection. Object detection is used to identify objects in an image and locate each object with a
|
|
4229
|
+
* bounding box e.g. locate all dogs and cats in an image and draw a bounding box around each.
|
|
4230
|
+
*/
|
|
4231
|
+
export declare interface ImageObjectDetection extends ImageObjectDetectionBase, AutoMLVertical {
|
|
4232
|
+
/** Primary metric to optimize for this task. */
|
|
4233
|
+
primaryMetric?: ObjectDetectionPrimaryMetrics;
|
|
4234
|
+
}
|
|
4235
|
+
|
|
4236
|
+
export declare interface ImageObjectDetectionBase extends ImageVertical {
|
|
4237
|
+
/** Settings used for training the model. */
|
|
4238
|
+
modelSettings?: ImageModelSettingsObjectDetection;
|
|
4239
|
+
/** Search space for sampling different combinations of models and their hyperparameters. */
|
|
4240
|
+
searchSpace?: ImageModelDistributionSettingsObjectDetection[];
|
|
4241
|
+
}
|
|
4242
|
+
|
|
4243
|
+
/** Model sweeping and hyperparameter sweeping related settings. */
|
|
4244
|
+
export declare interface ImageSweepSettings {
|
|
4245
|
+
/** Type of early termination policy. */
|
|
4246
|
+
earlyTermination?: EarlyTerminationPolicyUnion;
|
|
4247
|
+
/** [Required] Type of the hyperparameter sampling algorithms. */
|
|
4248
|
+
samplingAlgorithm: SamplingAlgorithmType;
|
|
4249
|
+
}
|
|
4250
|
+
|
|
4251
|
+
/**
|
|
4252
|
+
* Abstract class for AutoML tasks that train image (computer vision) models -
|
|
4253
|
+
* such as Image Classification / Image Classification Multilabel / Image Object Detection / Image Instance Segmentation.
|
|
4254
|
+
*/
|
|
4255
|
+
export declare interface ImageVertical {
|
|
4256
|
+
/** [Required] Limit settings for the AutoML job. */
|
|
4257
|
+
limitSettings: ImageLimitSettings;
|
|
4258
|
+
/** Model sweeping and hyperparameter sweeping related settings. */
|
|
4259
|
+
sweepSettings?: ImageSweepSettings;
|
|
4260
|
+
/** Validation data inputs. */
|
|
4261
|
+
validationData?: MLTableJobInput;
|
|
4262
|
+
/**
|
|
4263
|
+
* The fraction of training dataset that needs to be set aside for validation purpose.
|
|
4264
|
+
* Values between (0.0 , 1.0)
|
|
4265
|
+
* Applied when validation dataset is not provided.
|
|
4266
|
+
*/
|
|
4267
|
+
validationDataSize?: number;
|
|
4268
|
+
}
|
|
4269
|
+
|
|
4270
|
+
export declare interface InferenceContainerProperties {
|
|
4271
|
+
/** The route to check the liveness of the inference server container. */
|
|
4272
|
+
livenessRoute?: Route;
|
|
4273
|
+
/** The route to check the readiness of the inference server container. */
|
|
4274
|
+
readinessRoute?: Route;
|
|
4275
|
+
/** The port to send the scoring requests to, within the inference server container. */
|
|
4276
|
+
scoringRoute?: Route;
|
|
4277
|
+
}
|
|
4278
|
+
|
|
4279
|
+
/**
|
|
4280
|
+
* Defines values for InputDeliveryMode. \
|
|
4281
|
+
* {@link KnownInputDeliveryMode} can be used interchangeably with InputDeliveryMode,
|
|
4282
|
+
* this enum contains the known values that the service supports.
|
|
4283
|
+
* ### Known values supported by the service
|
|
4284
|
+
* **ReadOnlyMount** \
|
|
4285
|
+
* **ReadWriteMount** \
|
|
4286
|
+
* **Download** \
|
|
4287
|
+
* **Direct** \
|
|
4288
|
+
* **EvalMount** \
|
|
4289
|
+
* **EvalDownload**
|
|
4290
|
+
*/
|
|
4291
|
+
export declare type InputDeliveryMode = string;
|
|
4292
|
+
|
|
4293
|
+
/**
|
|
4294
|
+
* Defines values for InstanceSegmentationPrimaryMetrics. \
|
|
4295
|
+
* {@link KnownInstanceSegmentationPrimaryMetrics} can be used interchangeably with InstanceSegmentationPrimaryMetrics,
|
|
4296
|
+
* this enum contains the known values that the service supports.
|
|
4297
|
+
* ### Known values supported by the service
|
|
4298
|
+
* **MeanAveragePrecision**: Mean Average Precision (MAP) is the average of AP (Average Precision).
|
|
4299
|
+
* AP is calculated for each class and averaged to get the MAP.
|
|
4300
|
+
*/
|
|
4301
|
+
export declare type InstanceSegmentationPrimaryMetrics = string;
|
|
4302
|
+
|
|
4303
|
+
/** Instance type schema. */
|
|
4304
|
+
export declare interface InstanceTypeSchema {
|
|
4305
|
+
/** Node Selector */
|
|
4306
|
+
nodeSelector?: {
|
|
4307
|
+
[propertyName: string]: string | null;
|
|
4308
|
+
};
|
|
4309
|
+
/** Resource requests/limits for this instance type */
|
|
4310
|
+
resources?: InstanceTypeSchemaResources;
|
|
4311
|
+
}
|
|
4312
|
+
|
|
4313
|
+
/** Resource requests/limits for this instance type */
|
|
4314
|
+
export declare interface InstanceTypeSchemaResources {
|
|
4315
|
+
/** Resource requests for this instance type */
|
|
4316
|
+
requests?: {
|
|
4317
|
+
[propertyName: string]: string;
|
|
4318
|
+
};
|
|
4319
|
+
/** Resource limits for this instance type */
|
|
4320
|
+
limits?: {
|
|
4321
|
+
[propertyName: string]: string;
|
|
4322
|
+
};
|
|
4323
|
+
}
|
|
4324
|
+
|
|
4325
|
+
/** Azure Resource Manager resource envelope. */
|
|
4326
|
+
export declare interface JobBase extends Resource {
|
|
4327
|
+
/** [Required] Additional attributes of the entity. */
|
|
4328
|
+
properties: JobBasePropertiesUnion;
|
|
4329
|
+
}
|
|
4330
|
+
|
|
4331
|
+
/** Base definition for a job. */
|
|
4332
|
+
export declare interface JobBaseProperties extends ResourceBase {
|
|
4333
|
+
/** ARM resource ID of the component resource. */
|
|
4334
|
+
componentId?: string;
|
|
4335
|
+
/** ARM resource ID of the compute resource. */
|
|
4336
|
+
computeId?: string;
|
|
4337
|
+
/** Display name of job. */
|
|
4338
|
+
displayName?: string;
|
|
4339
|
+
/** The name of the experiment the job belongs to. If not set, the job is placed in the "Default" experiment. */
|
|
4340
|
+
experimentName?: string;
|
|
4341
|
+
/**
|
|
4342
|
+
* Identity configuration. If set, this should be one of AmlToken, ManagedIdentity, UserIdentity or null.
|
|
4343
|
+
* Defaults to AmlToken if null.
|
|
4344
|
+
*/
|
|
4345
|
+
identity?: IdentityConfigurationUnion;
|
|
4346
|
+
/** Is the asset archived? */
|
|
4347
|
+
isArchived?: boolean;
|
|
4348
|
+
/** [Required] Specifies the type of job. */
|
|
4349
|
+
jobType: JobType;
|
|
4350
|
+
/**
|
|
4351
|
+
* List of JobEndpoints.
|
|
4352
|
+
* For local jobs, a job endpoint will have an endpoint value of FileStreamObject.
|
|
4353
|
+
*/
|
|
4354
|
+
services?: {
|
|
4355
|
+
[propertyName: string]: JobService | null;
|
|
4356
|
+
};
|
|
4357
|
+
/**
|
|
4358
|
+
* Status of the job.
|
|
4359
|
+
* NOTE: This property will not be serialized. It can only be populated by the server.
|
|
4360
|
+
*/
|
|
4361
|
+
readonly status?: JobStatus;
|
|
4362
|
+
}
|
|
4363
|
+
|
|
4364
|
+
export declare type JobBasePropertiesUnion = JobBaseProperties | AutoMLJob | CommandJob | PipelineJob | SweepJob;
|
|
4365
|
+
|
|
3447
4366
|
/** A paginated list of JobBase entities. */
|
|
3448
4367
|
export declare interface JobBaseResourceArmPaginatedResult {
|
|
3449
4368
|
/** The link to the next page of JobBase objects. If null, there are no additional pages. */
|
|
@@ -3455,7 +4374,7 @@ export declare interface JobBaseResourceArmPaginatedResult {
|
|
|
3455
4374
|
/** Command job definition. */
|
|
3456
4375
|
export declare interface JobInput {
|
|
3457
4376
|
/** Polymorphic discriminator, which specifies the different types this object can be */
|
|
3458
|
-
jobInputType: "
|
|
4377
|
+
jobInputType: "mltable" | "custom_model" | "mlflow_model" | "literal" | "triton_model" | "uri_file" | "uri_folder";
|
|
3459
4378
|
/** Description for the input. */
|
|
3460
4379
|
description?: string;
|
|
3461
4380
|
}
|
|
@@ -3475,7 +4394,7 @@ export declare interface JobInput {
|
|
|
3475
4394
|
*/
|
|
3476
4395
|
export declare type JobInputType = string;
|
|
3477
4396
|
|
|
3478
|
-
export declare type JobInputUnion = JobInput |
|
|
4397
|
+
export declare type JobInputUnion = JobInput | MLTableJobInput | CustomModelJobInput | MLFlowModelJobInput | LiteralJobInput | TritonModelJobInput | UriFileJobInput | UriFolderJobInput;
|
|
3479
4398
|
|
|
3480
4399
|
export declare interface JobLimits {
|
|
3481
4400
|
/** Polymorphic discriminator, which specifies the different types this object can be */
|
|
@@ -3520,6 +4439,13 @@ export declare type JobOutputType = string;
|
|
|
3520
4439
|
|
|
3521
4440
|
export declare type JobOutputUnion = JobOutput | CustomModelJobOutput | MLFlowModelJobOutput | MLTableJobOutput | TritonModelJobOutput | UriFileJobOutput | UriFolderJobOutput;
|
|
3522
4441
|
|
|
4442
|
+
export declare interface JobResourceConfiguration extends ResourceConfiguration {
|
|
4443
|
+
/** Extra arguments to pass to the Docker run command. This would override any parameters that have already been set by the system, or in this section. This parameter is only supported for Azure ML compute types. */
|
|
4444
|
+
dockerArgs?: string;
|
|
4445
|
+
/** Size of the docker container's shared memory block. This should be in the format of (number)(unit) where number as to be greater than 0 and the unit can be one of b(bytes), k(kilobytes), m(megabytes), or g(gigabytes). */
|
|
4446
|
+
shmSize?: string;
|
|
4447
|
+
}
|
|
4448
|
+
|
|
3523
4449
|
/** Interface representing a Jobs. */
|
|
3524
4450
|
export declare interface Jobs {
|
|
3525
4451
|
/**
|
|
@@ -3596,6 +4522,13 @@ export declare interface JobsCancelOptionalParams extends coreClient.OperationOp
|
|
|
3596
4522
|
resumeFrom?: string;
|
|
3597
4523
|
}
|
|
3598
4524
|
|
|
4525
|
+
export declare interface JobScheduleAction extends ScheduleActionBase {
|
|
4526
|
+
/** Polymorphic discriminator, which specifies the different types this object can be */
|
|
4527
|
+
actionType: "CreateJob";
|
|
4528
|
+
/** [Required] Defines Schedule action definition details. */
|
|
4529
|
+
jobDefinition: JobBasePropertiesUnion;
|
|
4530
|
+
}
|
|
4531
|
+
|
|
3599
4532
|
/** Optional parameters. */
|
|
3600
4533
|
export declare interface JobsCreateOrUpdateOptionalParams extends coreClient.OperationOptions {
|
|
3601
4534
|
}
|
|
@@ -3710,6 +4643,7 @@ export declare type JobStatus = string;
|
|
|
3710
4643
|
* {@link KnownJobType} can be used interchangeably with JobType,
|
|
3711
4644
|
* this enum contains the known values that the service supports.
|
|
3712
4645
|
* ### Known values supported by the service
|
|
4646
|
+
* **AutoML** \
|
|
3713
4647
|
* **Command** \
|
|
3714
4648
|
* **Sweep** \
|
|
3715
4649
|
* **Pipeline**
|
|
@@ -3743,6 +4677,14 @@ export declare enum KnownApplicationSharingPolicy {
|
|
|
3743
4677
|
Shared = "Shared"
|
|
3744
4678
|
}
|
|
3745
4679
|
|
|
4680
|
+
/** Known values of {@link AutoRebuildSetting} that the service accepts. */
|
|
4681
|
+
export declare enum KnownAutoRebuildSetting {
|
|
4682
|
+
/** Disabled */
|
|
4683
|
+
Disabled = "Disabled",
|
|
4684
|
+
/** OnBaseImageUpdate */
|
|
4685
|
+
OnBaseImageUpdate = "OnBaseImageUpdate"
|
|
4686
|
+
}
|
|
4687
|
+
|
|
3746
4688
|
/** Known values of {@link Autosave} that the service accepts. */
|
|
3747
4689
|
export declare enum KnownAutosave {
|
|
3748
4690
|
/** None */
|
|
@@ -3777,6 +4719,30 @@ export declare enum KnownBillingCurrency {
|
|
|
3777
4719
|
USD = "USD"
|
|
3778
4720
|
}
|
|
3779
4721
|
|
|
4722
|
+
/** Known values of {@link BlockedTransformers} that the service accepts. */
|
|
4723
|
+
export declare enum KnownBlockedTransformers {
|
|
4724
|
+
/** Target encoding for text data. */
|
|
4725
|
+
TextTargetEncoder = "TextTargetEncoder",
|
|
4726
|
+
/** Ohe hot encoding creates a binary feature transformation. */
|
|
4727
|
+
OneHotEncoder = "OneHotEncoder",
|
|
4728
|
+
/** Target encoding for categorical data. */
|
|
4729
|
+
CatTargetEncoder = "CatTargetEncoder",
|
|
4730
|
+
/** Tf-Idf stands for, term-frequency times inverse document-frequency. This is a common term weighting scheme for identifying information from documents. */
|
|
4731
|
+
TfIdf = "TfIdf",
|
|
4732
|
+
/** Weight of Evidence encoding is a technique used to encode categorical variables. It uses the natural log of the P(1)/P(0) to create weights. */
|
|
4733
|
+
WoETargetEncoder = "WoETargetEncoder",
|
|
4734
|
+
/** Label encoder converts labels/categorical variables in a numerical form. */
|
|
4735
|
+
LabelEncoder = "LabelEncoder",
|
|
4736
|
+
/** Word embedding helps represents words or phrases as a vector, or a series of numbers. */
|
|
4737
|
+
WordEmbedding = "WordEmbedding",
|
|
4738
|
+
/** Naive Bayes is a classified that is used for classification of discrete features that are categorically distributed. */
|
|
4739
|
+
NaiveBayes = "NaiveBayes",
|
|
4740
|
+
/** Count Vectorizer converts a collection of text documents to a matrix of token counts. */
|
|
4741
|
+
CountVectorizer = "CountVectorizer",
|
|
4742
|
+
/** Hashing One Hot Encoder can turn categorical variables into a limited number of new features. This is often used for high-cardinality categorical features. */
|
|
4743
|
+
HashOneHotEncoder = "HashOneHotEncoder"
|
|
4744
|
+
}
|
|
4745
|
+
|
|
3780
4746
|
/** Known values of {@link Caching} that the service accepts. */
|
|
3781
4747
|
export declare enum KnownCaching {
|
|
3782
4748
|
/** None */
|
|
@@ -3787,6 +4753,114 @@ export declare enum KnownCaching {
|
|
|
3787
4753
|
ReadWrite = "ReadWrite"
|
|
3788
4754
|
}
|
|
3789
4755
|
|
|
4756
|
+
/** Known values of {@link ClassificationModels} that the service accepts. */
|
|
4757
|
+
export declare enum KnownClassificationModels {
|
|
4758
|
+
/**
|
|
4759
|
+
* Logistic regression is a fundamental classification technique.
|
|
4760
|
+
* It belongs to the group of linear classifiers and is somewhat similar to polynomial and linear regression.
|
|
4761
|
+
* Logistic regression is fast and relatively uncomplicated, and it's convenient for you to interpret the results.
|
|
4762
|
+
* Although it's essentially a method for binary classification, it can also be applied to multiclass problems.
|
|
4763
|
+
*/
|
|
4764
|
+
LogisticRegression = "LogisticRegression",
|
|
4765
|
+
/**
|
|
4766
|
+
* SGD: Stochastic gradient descent is an optimization algorithm often used in machine learning applications
|
|
4767
|
+
* to find the model parameters that correspond to the best fit between predicted and actual outputs.
|
|
4768
|
+
*/
|
|
4769
|
+
SGD = "SGD",
|
|
4770
|
+
/**
|
|
4771
|
+
* The multinomial Naive Bayes classifier is suitable for classification with discrete features (e.g., word counts for text classification).
|
|
4772
|
+
* The multinomial distribution normally requires integer feature counts. However, in practice, fractional counts such as tf-idf may also work.
|
|
4773
|
+
*/
|
|
4774
|
+
MultinomialNaiveBayes = "MultinomialNaiveBayes",
|
|
4775
|
+
/** Naive Bayes classifier for multivariate Bernoulli models. */
|
|
4776
|
+
BernoulliNaiveBayes = "BernoulliNaiveBayes",
|
|
4777
|
+
/**
|
|
4778
|
+
* A support vector machine (SVM) is a supervised machine learning model that uses classification algorithms for two-group classification problems.
|
|
4779
|
+
* After giving an SVM model sets of labeled training data for each category, they're able to categorize new text.
|
|
4780
|
+
*/
|
|
4781
|
+
SVM = "SVM",
|
|
4782
|
+
/**
|
|
4783
|
+
* A support vector machine (SVM) is a supervised machine learning model that uses classification algorithms for two-group classification problems.
|
|
4784
|
+
* After giving an SVM model sets of labeled training data for each category, they're able to categorize new text.
|
|
4785
|
+
* Linear SVM performs best when input data is linear, i.e., data can be easily classified by drawing the straight line between classified values on a plotted graph.
|
|
4786
|
+
*/
|
|
4787
|
+
LinearSVM = "LinearSVM",
|
|
4788
|
+
/**
|
|
4789
|
+
* K-nearest neighbors (KNN) algorithm uses 'feature similarity' to predict the values of new datapoints
|
|
4790
|
+
* which further means that the new data point will be assigned a value based on how closely it matches the points in the training set.
|
|
4791
|
+
*/
|
|
4792
|
+
KNN = "KNN",
|
|
4793
|
+
/**
|
|
4794
|
+
* Decision Trees are a non-parametric supervised learning method used for both classification and regression tasks.
|
|
4795
|
+
* The goal is to create a model that predicts the value of a target variable by learning simple decision rules inferred from the data features.
|
|
4796
|
+
*/
|
|
4797
|
+
DecisionTree = "DecisionTree",
|
|
4798
|
+
/**
|
|
4799
|
+
* Random forest is a supervised learning algorithm.
|
|
4800
|
+
* The "forest" it builds, is an ensemble of decision trees, usually trained with the “bagging” method.
|
|
4801
|
+
* The general idea of the bagging method is that a combination of learning models increases the overall result.
|
|
4802
|
+
*/
|
|
4803
|
+
RandomForest = "RandomForest",
|
|
4804
|
+
/** Extreme Trees is an ensemble machine learning algorithm that combines the predictions from many decision trees. It is related to the widely used random forest algorithm. */
|
|
4805
|
+
ExtremeRandomTrees = "ExtremeRandomTrees",
|
|
4806
|
+
/** LightGBM is a gradient boosting framework that uses tree based learning algorithms. */
|
|
4807
|
+
LightGBM = "LightGBM",
|
|
4808
|
+
/** The technique of transiting week learners into a strong learner is called Boosting. The gradient boosting algorithm process works on this theory of execution. */
|
|
4809
|
+
GradientBoosting = "GradientBoosting",
|
|
4810
|
+
/** XGBoost: Extreme Gradient Boosting Algorithm. This algorithm is used for structured data where target column values can be divided into distinct class values. */
|
|
4811
|
+
XGBoostClassifier = "XGBoostClassifier"
|
|
4812
|
+
}
|
|
4813
|
+
|
|
4814
|
+
/** Known values of {@link ClassificationMultilabelPrimaryMetrics} that the service accepts. */
|
|
4815
|
+
export declare enum KnownClassificationMultilabelPrimaryMetrics {
|
|
4816
|
+
/**
|
|
4817
|
+
* AUC is the Area under the curve.
|
|
4818
|
+
* This metric represents arithmetic mean of the score for each class,
|
|
4819
|
+
* weighted by the number of true instances in each class.
|
|
4820
|
+
*/
|
|
4821
|
+
AUCWeighted = "AUCWeighted",
|
|
4822
|
+
/** Accuracy is the ratio of predictions that exactly match the true class labels. */
|
|
4823
|
+
Accuracy = "Accuracy",
|
|
4824
|
+
/**
|
|
4825
|
+
* Normalized macro recall is recall macro-averaged and normalized, so that random
|
|
4826
|
+
* performance has a score of 0, and perfect performance has a score of 1.
|
|
4827
|
+
*/
|
|
4828
|
+
NormMacroRecall = "NormMacroRecall",
|
|
4829
|
+
/**
|
|
4830
|
+
* The arithmetic mean of the average precision score for each class, weighted by
|
|
4831
|
+
* the number of true instances in each class.
|
|
4832
|
+
*/
|
|
4833
|
+
AveragePrecisionScoreWeighted = "AveragePrecisionScoreWeighted",
|
|
4834
|
+
/** The arithmetic mean of precision for each class, weighted by number of true instances in each class. */
|
|
4835
|
+
PrecisionScoreWeighted = "PrecisionScoreWeighted",
|
|
4836
|
+
/** Intersection Over Union. Intersection of predictions divided by union of predictions. */
|
|
4837
|
+
IOU = "IOU"
|
|
4838
|
+
}
|
|
4839
|
+
|
|
4840
|
+
/** Known values of {@link ClassificationPrimaryMetrics} that the service accepts. */
|
|
4841
|
+
export declare enum KnownClassificationPrimaryMetrics {
|
|
4842
|
+
/**
|
|
4843
|
+
* AUC is the Area under the curve.
|
|
4844
|
+
* This metric represents arithmetic mean of the score for each class,
|
|
4845
|
+
* weighted by the number of true instances in each class.
|
|
4846
|
+
*/
|
|
4847
|
+
AUCWeighted = "AUCWeighted",
|
|
4848
|
+
/** Accuracy is the ratio of predictions that exactly match the true class labels. */
|
|
4849
|
+
Accuracy = "Accuracy",
|
|
4850
|
+
/**
|
|
4851
|
+
* Normalized macro recall is recall macro-averaged and normalized, so that random
|
|
4852
|
+
* performance has a score of 0, and perfect performance has a score of 1.
|
|
4853
|
+
*/
|
|
4854
|
+
NormMacroRecall = "NormMacroRecall",
|
|
4855
|
+
/**
|
|
4856
|
+
* The arithmetic mean of the average precision score for each class, weighted by
|
|
4857
|
+
* the number of true instances in each class.
|
|
4858
|
+
*/
|
|
4859
|
+
AveragePrecisionScoreWeighted = "AveragePrecisionScoreWeighted",
|
|
4860
|
+
/** The arithmetic mean of precision for each class, weighted by number of true instances in each class. */
|
|
4861
|
+
PrecisionScoreWeighted = "PrecisionScoreWeighted"
|
|
4862
|
+
}
|
|
4863
|
+
|
|
3790
4864
|
/** Known values of {@link ClusterPurpose} that the service accepts. */
|
|
3791
4865
|
export declare enum KnownClusterPurpose {
|
|
3792
4866
|
/** FastProd */
|
|
@@ -3997,6 +5071,14 @@ export declare enum KnownEarlyTerminationPolicyType {
|
|
|
3997
5071
|
TruncationSelection = "TruncationSelection"
|
|
3998
5072
|
}
|
|
3999
5073
|
|
|
5074
|
+
/** Known values of {@link EgressPublicNetworkAccessType} that the service accepts. */
|
|
5075
|
+
export declare enum KnownEgressPublicNetworkAccessType {
|
|
5076
|
+
/** Enabled */
|
|
5077
|
+
Enabled = "Enabled",
|
|
5078
|
+
/** Disabled */
|
|
5079
|
+
Disabled = "Disabled"
|
|
5080
|
+
}
|
|
5081
|
+
|
|
4000
5082
|
/** Known values of {@link EncryptionStatus} that the service accepts. */
|
|
4001
5083
|
export declare enum KnownEncryptionStatus {
|
|
4002
5084
|
/** Enabled */
|
|
@@ -4049,6 +5131,109 @@ export declare enum KnownEnvironmentType {
|
|
|
4049
5131
|
UserCreated = "UserCreated"
|
|
4050
5132
|
}
|
|
4051
5133
|
|
|
5134
|
+
/** Known values of {@link FeatureLags} that the service accepts. */
|
|
5135
|
+
export declare enum KnownFeatureLags {
|
|
5136
|
+
/** No feature lags generated. */
|
|
5137
|
+
None = "None",
|
|
5138
|
+
/** System auto-generates feature lags. */
|
|
5139
|
+
Auto = "Auto"
|
|
5140
|
+
}
|
|
5141
|
+
|
|
5142
|
+
/** Known values of {@link FeaturizationMode} that the service accepts. */
|
|
5143
|
+
export declare enum KnownFeaturizationMode {
|
|
5144
|
+
/** Auto mode, system performs featurization without any custom featurization inputs. */
|
|
5145
|
+
Auto = "Auto",
|
|
5146
|
+
/** Custom featurization. */
|
|
5147
|
+
Custom = "Custom",
|
|
5148
|
+
/** Featurization off. 'Forecasting' task cannot use this value. */
|
|
5149
|
+
Off = "Off"
|
|
5150
|
+
}
|
|
5151
|
+
|
|
5152
|
+
/** Known values of {@link ForecastHorizonMode} that the service accepts. */
|
|
5153
|
+
export declare enum KnownForecastHorizonMode {
|
|
5154
|
+
/** Forecast horizon to be determined automatically. */
|
|
5155
|
+
Auto = "Auto",
|
|
5156
|
+
/** Use the custom forecast horizon. */
|
|
5157
|
+
Custom = "Custom"
|
|
5158
|
+
}
|
|
5159
|
+
|
|
5160
|
+
/** Known values of {@link ForecastingModels} that the service accepts. */
|
|
5161
|
+
export declare enum KnownForecastingModels {
|
|
5162
|
+
/**
|
|
5163
|
+
* Auto-Autoregressive Integrated Moving Average (ARIMA) model uses time-series data and statistical analysis to interpret the data and make future predictions.
|
|
5164
|
+
* This model aims to explain data by using time series data on its past values and uses linear regression to make predictions.
|
|
5165
|
+
*/
|
|
5166
|
+
AutoArima = "AutoArima",
|
|
5167
|
+
/**
|
|
5168
|
+
* Prophet is a procedure for forecasting time series data based on an additive model where non-linear trends are fit with yearly, weekly, and daily seasonality, plus holiday effects.
|
|
5169
|
+
* It works best with time series that have strong seasonal effects and several seasons of historical data. Prophet is robust to missing data and shifts in the trend, and typically handles outliers well.
|
|
5170
|
+
*/
|
|
5171
|
+
Prophet = "Prophet",
|
|
5172
|
+
/** The Naive forecasting model makes predictions by carrying forward the latest target value for each time-series in the training data. */
|
|
5173
|
+
Naive = "Naive",
|
|
5174
|
+
/** The Seasonal Naive forecasting model makes predictions by carrying forward the latest season of target values for each time-series in the training data. */
|
|
5175
|
+
SeasonalNaive = "SeasonalNaive",
|
|
5176
|
+
/** The Average forecasting model makes predictions by carrying forward the average of the target values for each time-series in the training data. */
|
|
5177
|
+
Average = "Average",
|
|
5178
|
+
/** The Seasonal Average forecasting model makes predictions by carrying forward the average value of the latest season of data for each time-series in the training data. */
|
|
5179
|
+
SeasonalAverage = "SeasonalAverage",
|
|
5180
|
+
/** Exponential smoothing is a time series forecasting method for univariate data that can be extended to support data with a systematic trend or seasonal component. */
|
|
5181
|
+
ExponentialSmoothing = "ExponentialSmoothing",
|
|
5182
|
+
/**
|
|
5183
|
+
* An Autoregressive Integrated Moving Average with Explanatory Variable (ARIMAX) model can be viewed as a multiple regression model with one or more autoregressive (AR) terms and/or one or more moving average (MA) terms.
|
|
5184
|
+
* This method is suitable for forecasting when data is stationary/non stationary, and multivariate with any type of data pattern, i.e., level/trend /seasonality/cyclicity.
|
|
5185
|
+
*/
|
|
5186
|
+
Arimax = "Arimax",
|
|
5187
|
+
/** TCNForecaster: Temporal Convolutional Networks Forecaster. //TODO: Ask forecasting team for brief intro. */
|
|
5188
|
+
TCNForecaster = "TCNForecaster",
|
|
5189
|
+
/** Elastic net is a popular type of regularized linear regression that combines two popular penalties, specifically the L1 and L2 penalty functions. */
|
|
5190
|
+
ElasticNet = "ElasticNet",
|
|
5191
|
+
/** The technique of transiting week learners into a strong learner is called Boosting. The gradient boosting algorithm process works on this theory of execution. */
|
|
5192
|
+
GradientBoosting = "GradientBoosting",
|
|
5193
|
+
/**
|
|
5194
|
+
* Decision Trees are a non-parametric supervised learning method used for both classification and regression tasks.
|
|
5195
|
+
* The goal is to create a model that predicts the value of a target variable by learning simple decision rules inferred from the data features.
|
|
5196
|
+
*/
|
|
5197
|
+
DecisionTree = "DecisionTree",
|
|
5198
|
+
/**
|
|
5199
|
+
* K-nearest neighbors (KNN) algorithm uses 'feature similarity' to predict the values of new datapoints
|
|
5200
|
+
* which further means that the new data point will be assigned a value based on how closely it matches the points in the training set.
|
|
5201
|
+
*/
|
|
5202
|
+
KNN = "KNN",
|
|
5203
|
+
/** Lasso model fit with Least Angle Regression a.k.a. Lars. It is a Linear Model trained with an L1 prior as regularizer. */
|
|
5204
|
+
LassoLars = "LassoLars",
|
|
5205
|
+
/**
|
|
5206
|
+
* SGD: Stochastic gradient descent is an optimization algorithm often used in machine learning applications
|
|
5207
|
+
* to find the model parameters that correspond to the best fit between predicted and actual outputs.
|
|
5208
|
+
* It's an inexact but powerful technique.
|
|
5209
|
+
*/
|
|
5210
|
+
SGD = "SGD",
|
|
5211
|
+
/**
|
|
5212
|
+
* Random forest is a supervised learning algorithm.
|
|
5213
|
+
* The "forest" it builds, is an ensemble of decision trees, usually trained with the “bagging” method.
|
|
5214
|
+
* The general idea of the bagging method is that a combination of learning models increases the overall result.
|
|
5215
|
+
*/
|
|
5216
|
+
RandomForest = "RandomForest",
|
|
5217
|
+
/** Extreme Trees is an ensemble machine learning algorithm that combines the predictions from many decision trees. It is related to the widely used random forest algorithm. */
|
|
5218
|
+
ExtremeRandomTrees = "ExtremeRandomTrees",
|
|
5219
|
+
/** LightGBM is a gradient boosting framework that uses tree based learning algorithms. */
|
|
5220
|
+
LightGBM = "LightGBM",
|
|
5221
|
+
/** XGBoostRegressor: Extreme Gradient Boosting Regressor is a supervised machine learning model using ensemble of base learners. */
|
|
5222
|
+
XGBoostRegressor = "XGBoostRegressor"
|
|
5223
|
+
}
|
|
5224
|
+
|
|
5225
|
+
/** Known values of {@link ForecastingPrimaryMetrics} that the service accepts. */
|
|
5226
|
+
export declare enum KnownForecastingPrimaryMetrics {
|
|
5227
|
+
/** The Spearman's rank coefficient of correlation is a non-parametric measure of rank correlation. */
|
|
5228
|
+
SpearmanCorrelation = "SpearmanCorrelation",
|
|
5229
|
+
/** The Normalized Root Mean Squared Error (NRMSE) the RMSE facilitates the comparison between models with different scales. */
|
|
5230
|
+
NormalizedRootMeanSquaredError = "NormalizedRootMeanSquaredError",
|
|
5231
|
+
/** The R2 score is one of the performance evaluation measures for forecasting-based machine learning models. */
|
|
5232
|
+
R2Score = "R2Score",
|
|
5233
|
+
/** The Normalized Mean Absolute Error (NMAE) is a validation metric to compare the Mean Absolute Error (MAE) of (time) series with different scales. */
|
|
5234
|
+
NormalizedMeanAbsoluteError = "NormalizedMeanAbsoluteError"
|
|
5235
|
+
}
|
|
5236
|
+
|
|
4052
5237
|
/** Known values of {@link Goal} that the service accepts. */
|
|
4053
5238
|
export declare enum KnownGoal {
|
|
4054
5239
|
/** Minimize */
|
|
@@ -4083,6 +5268,15 @@ export declare enum KnownInputDeliveryMode {
|
|
|
4083
5268
|
EvalDownload = "EvalDownload"
|
|
4084
5269
|
}
|
|
4085
5270
|
|
|
5271
|
+
/** Known values of {@link InstanceSegmentationPrimaryMetrics} that the service accepts. */
|
|
5272
|
+
export declare enum KnownInstanceSegmentationPrimaryMetrics {
|
|
5273
|
+
/**
|
|
5274
|
+
* Mean Average Precision (MAP) is the average of AP (Average Precision).
|
|
5275
|
+
* AP is calculated for each class and averaged to get the MAP.
|
|
5276
|
+
*/
|
|
5277
|
+
MeanAveragePrecision = "MeanAveragePrecision"
|
|
5278
|
+
}
|
|
5279
|
+
|
|
4086
5280
|
/** Known values of {@link JobInputType} that the service accepts. */
|
|
4087
5281
|
export declare enum KnownJobInputType {
|
|
4088
5282
|
/** Literal */
|
|
@@ -4162,6 +5356,8 @@ export declare enum KnownJobStatus {
|
|
|
4162
5356
|
|
|
4163
5357
|
/** Known values of {@link JobType} that the service accepts. */
|
|
4164
5358
|
export declare enum KnownJobType {
|
|
5359
|
+
/** AutoML */
|
|
5360
|
+
AutoML = "AutoML",
|
|
4165
5361
|
/** Command */
|
|
4166
5362
|
Command = "Command",
|
|
4167
5363
|
/** Sweep */
|
|
@@ -4178,6 +5374,16 @@ export declare enum KnownKeyType {
|
|
|
4178
5374
|
Secondary = "Secondary"
|
|
4179
5375
|
}
|
|
4180
5376
|
|
|
5377
|
+
/** Known values of {@link LearningRateScheduler} that the service accepts. */
|
|
5378
|
+
export declare enum KnownLearningRateScheduler {
|
|
5379
|
+
/** No learning rate scheduler selected. */
|
|
5380
|
+
None = "None",
|
|
5381
|
+
/** Cosine Annealing With Warmup. */
|
|
5382
|
+
WarmupCosine = "WarmupCosine",
|
|
5383
|
+
/** Step learning rate scheduler. */
|
|
5384
|
+
Step = "Step"
|
|
5385
|
+
}
|
|
5386
|
+
|
|
4181
5387
|
/** Known values of {@link ListViewType} that the service accepts. */
|
|
4182
5388
|
export declare enum KnownListViewType {
|
|
4183
5389
|
/** ActiveOnly */
|
|
@@ -4196,6 +5402,22 @@ export declare enum KnownLoadBalancerType {
|
|
|
4196
5402
|
InternalLoadBalancer = "InternalLoadBalancer"
|
|
4197
5403
|
}
|
|
4198
5404
|
|
|
5405
|
+
/** Known values of {@link LogVerbosity} that the service accepts. */
|
|
5406
|
+
export declare enum KnownLogVerbosity {
|
|
5407
|
+
/** No logs emitted. */
|
|
5408
|
+
NotSet = "NotSet",
|
|
5409
|
+
/** Debug and above log statements logged. */
|
|
5410
|
+
Debug = "Debug",
|
|
5411
|
+
/** Info and above log statements logged. */
|
|
5412
|
+
Info = "Info",
|
|
5413
|
+
/** Warning and above log statements logged. */
|
|
5414
|
+
Warning = "Warning",
|
|
5415
|
+
/** Error and above log statements logged. */
|
|
5416
|
+
Error = "Error",
|
|
5417
|
+
/** Only critical statements logged. */
|
|
5418
|
+
Critical = "Critical"
|
|
5419
|
+
}
|
|
5420
|
+
|
|
4199
5421
|
/** Known values of {@link ManagedServiceIdentityType} that the service accepts. */
|
|
4200
5422
|
export declare enum KnownManagedServiceIdentityType {
|
|
4201
5423
|
/** None */
|
|
@@ -4208,6 +5430,20 @@ export declare enum KnownManagedServiceIdentityType {
|
|
|
4208
5430
|
SystemAssignedUserAssigned = "SystemAssigned,UserAssigned"
|
|
4209
5431
|
}
|
|
4210
5432
|
|
|
5433
|
+
/** Known values of {@link ModelSize} that the service accepts. */
|
|
5434
|
+
export declare enum KnownModelSize {
|
|
5435
|
+
/** No value selected. */
|
|
5436
|
+
None = "None",
|
|
5437
|
+
/** Small size. */
|
|
5438
|
+
Small = "Small",
|
|
5439
|
+
/** Medium size. */
|
|
5440
|
+
Medium = "Medium",
|
|
5441
|
+
/** Large size. */
|
|
5442
|
+
Large = "Large",
|
|
5443
|
+
/** Extra large size. */
|
|
5444
|
+
ExtraLarge = "ExtraLarge"
|
|
5445
|
+
}
|
|
5446
|
+
|
|
4211
5447
|
/** Known values of {@link MountAction} that the service accepts. */
|
|
4212
5448
|
export declare enum KnownMountAction {
|
|
4213
5449
|
/** Mount */
|
|
@@ -4232,6 +5468,14 @@ export declare enum KnownMountState {
|
|
|
4232
5468
|
Unmounted = "Unmounted"
|
|
4233
5469
|
}
|
|
4234
5470
|
|
|
5471
|
+
/** Known values of {@link NCrossValidationsMode} that the service accepts. */
|
|
5472
|
+
export declare enum KnownNCrossValidationsMode {
|
|
5473
|
+
/** Determine N-Cross validations value automatically. Supported only for 'Forecasting' AutoML task. */
|
|
5474
|
+
Auto = "Auto",
|
|
5475
|
+
/** Use custom N-Cross validations value. */
|
|
5476
|
+
Custom = "Custom"
|
|
5477
|
+
}
|
|
5478
|
+
|
|
4235
5479
|
/** Known values of {@link Network} that the service accepts. */
|
|
4236
5480
|
export declare enum KnownNetwork {
|
|
4237
5481
|
/** Bridge */
|
|
@@ -4256,6 +5500,15 @@ export declare enum KnownNodeState {
|
|
|
4256
5500
|
Preempted = "preempted"
|
|
4257
5501
|
}
|
|
4258
5502
|
|
|
5503
|
+
/** Known values of {@link ObjectDetectionPrimaryMetrics} that the service accepts. */
|
|
5504
|
+
export declare enum KnownObjectDetectionPrimaryMetrics {
|
|
5505
|
+
/**
|
|
5506
|
+
* Mean Average Precision (MAP) is the average of AP (Average Precision).
|
|
5507
|
+
* AP is calculated for each class and averaged to get the MAP.
|
|
5508
|
+
*/
|
|
5509
|
+
MeanAveragePrecision = "MeanAveragePrecision"
|
|
5510
|
+
}
|
|
5511
|
+
|
|
4259
5512
|
/** Known values of {@link OperatingSystemType} that the service accepts. */
|
|
4260
5513
|
export declare enum KnownOperatingSystemType {
|
|
4261
5514
|
/** Linux */
|
|
@@ -4400,6 +5653,14 @@ export declare enum KnownPublicNetworkAccess {
|
|
|
4400
5653
|
Disabled = "Disabled"
|
|
4401
5654
|
}
|
|
4402
5655
|
|
|
5656
|
+
/** Known values of {@link PublicNetworkAccessType} that the service accepts. */
|
|
5657
|
+
export declare enum KnownPublicNetworkAccessType {
|
|
5658
|
+
/** Enabled */
|
|
5659
|
+
Enabled = "Enabled",
|
|
5660
|
+
/** Disabled */
|
|
5661
|
+
Disabled = "Disabled"
|
|
5662
|
+
}
|
|
5663
|
+
|
|
4403
5664
|
/** Known values of {@link QuotaUnit} that the service accepts. */
|
|
4404
5665
|
export declare enum KnownQuotaUnit {
|
|
4405
5666
|
/** Count */
|
|
@@ -4414,6 +5675,20 @@ export declare enum KnownRandomSamplingAlgorithmRule {
|
|
|
4414
5675
|
Sobol = "Sobol"
|
|
4415
5676
|
}
|
|
4416
5677
|
|
|
5678
|
+
/** Known values of {@link RecurrenceFrequency} that the service accepts. */
|
|
5679
|
+
export declare enum KnownRecurrenceFrequency {
|
|
5680
|
+
/** Minute frequency */
|
|
5681
|
+
Minute = "Minute",
|
|
5682
|
+
/** Hour frequency */
|
|
5683
|
+
Hour = "Hour",
|
|
5684
|
+
/** Day frequency */
|
|
5685
|
+
Day = "Day",
|
|
5686
|
+
/** Week frequency */
|
|
5687
|
+
Week = "Week",
|
|
5688
|
+
/** Month frequency */
|
|
5689
|
+
Month = "Month"
|
|
5690
|
+
}
|
|
5691
|
+
|
|
4417
5692
|
/** Known values of {@link ReferenceType} that the service accepts. */
|
|
4418
5693
|
export declare enum KnownReferenceType {
|
|
4419
5694
|
/** Id */
|
|
@@ -4424,6 +5699,56 @@ export declare enum KnownReferenceType {
|
|
|
4424
5699
|
OutputPath = "OutputPath"
|
|
4425
5700
|
}
|
|
4426
5701
|
|
|
5702
|
+
/** Known values of {@link RegressionModels} that the service accepts. */
|
|
5703
|
+
export declare enum KnownRegressionModels {
|
|
5704
|
+
/** Elastic net is a popular type of regularized linear regression that combines two popular penalties, specifically the L1 and L2 penalty functions. */
|
|
5705
|
+
ElasticNet = "ElasticNet",
|
|
5706
|
+
/** The technique of transiting week learners into a strong learner is called Boosting. The gradient boosting algorithm process works on this theory of execution. */
|
|
5707
|
+
GradientBoosting = "GradientBoosting",
|
|
5708
|
+
/**
|
|
5709
|
+
* Decision Trees are a non-parametric supervised learning method used for both classification and regression tasks.
|
|
5710
|
+
* The goal is to create a model that predicts the value of a target variable by learning simple decision rules inferred from the data features.
|
|
5711
|
+
*/
|
|
5712
|
+
DecisionTree = "DecisionTree",
|
|
5713
|
+
/**
|
|
5714
|
+
* K-nearest neighbors (KNN) algorithm uses 'feature similarity' to predict the values of new datapoints
|
|
5715
|
+
* which further means that the new data point will be assigned a value based on how closely it matches the points in the training set.
|
|
5716
|
+
*/
|
|
5717
|
+
KNN = "KNN",
|
|
5718
|
+
/** Lasso model fit with Least Angle Regression a.k.a. Lars. It is a Linear Model trained with an L1 prior as regularizer. */
|
|
5719
|
+
LassoLars = "LassoLars",
|
|
5720
|
+
/**
|
|
5721
|
+
* SGD: Stochastic gradient descent is an optimization algorithm often used in machine learning applications
|
|
5722
|
+
* to find the model parameters that correspond to the best fit between predicted and actual outputs.
|
|
5723
|
+
* It's an inexact but powerful technique.
|
|
5724
|
+
*/
|
|
5725
|
+
SGD = "SGD",
|
|
5726
|
+
/**
|
|
5727
|
+
* Random forest is a supervised learning algorithm.
|
|
5728
|
+
* The "forest" it builds, is an ensemble of decision trees, usually trained with the “bagging” method.
|
|
5729
|
+
* The general idea of the bagging method is that a combination of learning models increases the overall result.
|
|
5730
|
+
*/
|
|
5731
|
+
RandomForest = "RandomForest",
|
|
5732
|
+
/** Extreme Trees is an ensemble machine learning algorithm that combines the predictions from many decision trees. It is related to the widely used random forest algorithm. */
|
|
5733
|
+
ExtremeRandomTrees = "ExtremeRandomTrees",
|
|
5734
|
+
/** LightGBM is a gradient boosting framework that uses tree based learning algorithms. */
|
|
5735
|
+
LightGBM = "LightGBM",
|
|
5736
|
+
/** XGBoostRegressor: Extreme Gradient Boosting Regressor is a supervised machine learning model using ensemble of base learners. */
|
|
5737
|
+
XGBoostRegressor = "XGBoostRegressor"
|
|
5738
|
+
}
|
|
5739
|
+
|
|
5740
|
+
/** Known values of {@link RegressionPrimaryMetrics} that the service accepts. */
|
|
5741
|
+
export declare enum KnownRegressionPrimaryMetrics {
|
|
5742
|
+
/** The Spearman's rank coefficient of correlation is a nonparametric measure of rank correlation. */
|
|
5743
|
+
SpearmanCorrelation = "SpearmanCorrelation",
|
|
5744
|
+
/** The Normalized Root Mean Squared Error (NRMSE) the RMSE facilitates the comparison between models with different scales. */
|
|
5745
|
+
NormalizedRootMeanSquaredError = "NormalizedRootMeanSquaredError",
|
|
5746
|
+
/** The R2 score is one of the performance evaluation measures for forecasting-based machine learning models. */
|
|
5747
|
+
R2Score = "R2Score",
|
|
5748
|
+
/** The Normalized Mean Absolute Error (NMAE) is a validation metric to compare the Mean Absolute Error (MAE) of (time) series with different scales. */
|
|
5749
|
+
NormalizedMeanAbsoluteError = "NormalizedMeanAbsoluteError"
|
|
5750
|
+
}
|
|
5751
|
+
|
|
4427
5752
|
/** Known values of {@link RemoteLoginPortPublicAccess} that the service accepts. */
|
|
4428
5753
|
export declare enum KnownRemoteLoginPortPublicAccess {
|
|
4429
5754
|
/** Enabled */
|
|
@@ -4452,7 +5777,25 @@ export declare enum KnownScaleType {
|
|
|
4452
5777
|
TargetUtilization = "TargetUtilization"
|
|
4453
5778
|
}
|
|
4454
5779
|
|
|
4455
|
-
/** Known values of {@link
|
|
5780
|
+
/** Known values of {@link ScheduleActionType} that the service accepts. */
|
|
5781
|
+
export declare enum KnownScheduleActionType {
|
|
5782
|
+
/** CreateJob */
|
|
5783
|
+
CreateJob = "CreateJob",
|
|
5784
|
+
/** InvokeBatchEndpoint */
|
|
5785
|
+
InvokeBatchEndpoint = "InvokeBatchEndpoint"
|
|
5786
|
+
}
|
|
5787
|
+
|
|
5788
|
+
/** Known values of {@link ScheduleListViewType} that the service accepts. */
|
|
5789
|
+
export declare enum KnownScheduleListViewType {
|
|
5790
|
+
/** EnabledOnly */
|
|
5791
|
+
EnabledOnly = "EnabledOnly",
|
|
5792
|
+
/** DisabledOnly */
|
|
5793
|
+
DisabledOnly = "DisabledOnly",
|
|
5794
|
+
/** All */
|
|
5795
|
+
All = "All"
|
|
5796
|
+
}
|
|
5797
|
+
|
|
5798
|
+
/** Known values of {@link ScheduleProvisioningState} that the service accepts. */
|
|
4456
5799
|
export declare enum KnownScheduleProvisioningState {
|
|
4457
5800
|
/** Completed */
|
|
4458
5801
|
Completed = "Completed",
|
|
@@ -4462,6 +5805,22 @@ export declare enum KnownScheduleProvisioningState {
|
|
|
4462
5805
|
Failed = "Failed"
|
|
4463
5806
|
}
|
|
4464
5807
|
|
|
5808
|
+
/** Known values of {@link ScheduleProvisioningStatus} that the service accepts. */
|
|
5809
|
+
export declare enum KnownScheduleProvisioningStatus {
|
|
5810
|
+
/** Creating */
|
|
5811
|
+
Creating = "Creating",
|
|
5812
|
+
/** Updating */
|
|
5813
|
+
Updating = "Updating",
|
|
5814
|
+
/** Deleting */
|
|
5815
|
+
Deleting = "Deleting",
|
|
5816
|
+
/** Succeeded */
|
|
5817
|
+
Succeeded = "Succeeded",
|
|
5818
|
+
/** Failed */
|
|
5819
|
+
Failed = "Failed",
|
|
5820
|
+
/** Canceled */
|
|
5821
|
+
Canceled = "Canceled"
|
|
5822
|
+
}
|
|
5823
|
+
|
|
4465
5824
|
/** Known values of {@link ScheduleStatus} that the service accepts. */
|
|
4466
5825
|
export declare enum KnownScheduleStatus {
|
|
4467
5826
|
/** Enabled */
|
|
@@ -4470,6 +5829,14 @@ export declare enum KnownScheduleStatus {
|
|
|
4470
5829
|
Disabled = "Disabled"
|
|
4471
5830
|
}
|
|
4472
5831
|
|
|
5832
|
+
/** Known values of {@link SeasonalityMode} that the service accepts. */
|
|
5833
|
+
export declare enum KnownSeasonalityMode {
|
|
5834
|
+
/** Seasonality to be determined automatically. */
|
|
5835
|
+
Auto = "Auto",
|
|
5836
|
+
/** Use the custom seasonality value. */
|
|
5837
|
+
Custom = "Custom"
|
|
5838
|
+
}
|
|
5839
|
+
|
|
4473
5840
|
/** Known values of {@link SecretsType} that the service accepts. */
|
|
4474
5841
|
export declare enum KnownSecretsType {
|
|
4475
5842
|
/** AccountKey */
|
|
@@ -4492,6 +5859,18 @@ export declare enum KnownServiceDataAccessAuthIdentity {
|
|
|
4492
5859
|
WorkspaceUserAssignedIdentity = "WorkspaceUserAssignedIdentity"
|
|
4493
5860
|
}
|
|
4494
5861
|
|
|
5862
|
+
/** Known values of {@link ShortSeriesHandlingConfiguration} that the service accepts. */
|
|
5863
|
+
export declare enum KnownShortSeriesHandlingConfiguration {
|
|
5864
|
+
/** Represents no/null value. */
|
|
5865
|
+
None = "None",
|
|
5866
|
+
/** Short series will be padded if there are no long series, otherwise short series will be dropped. */
|
|
5867
|
+
Auto = "Auto",
|
|
5868
|
+
/** All the short series will be padded. */
|
|
5869
|
+
Pad = "Pad",
|
|
5870
|
+
/** All the short series will be dropped. */
|
|
5871
|
+
Drop = "Drop"
|
|
5872
|
+
}
|
|
5873
|
+
|
|
4495
5874
|
/** Known values of {@link SkuScaleType} that the service accepts. */
|
|
4496
5875
|
export declare enum KnownSkuScaleType {
|
|
4497
5876
|
/** Automatically scales node count. */
|
|
@@ -4530,6 +5909,26 @@ export declare enum KnownSslConfigStatus {
|
|
|
4530
5909
|
Auto = "Auto"
|
|
4531
5910
|
}
|
|
4532
5911
|
|
|
5912
|
+
/** Known values of {@link StackMetaLearnerType} that the service accepts. */
|
|
5913
|
+
export declare enum KnownStackMetaLearnerType {
|
|
5914
|
+
/** None */
|
|
5915
|
+
None = "None",
|
|
5916
|
+
/** Default meta-learners are LogisticRegression for classification tasks. */
|
|
5917
|
+
LogisticRegression = "LogisticRegression",
|
|
5918
|
+
/** Default meta-learners are LogisticRegression for classification task when CV is on. */
|
|
5919
|
+
LogisticRegressionCV = "LogisticRegressionCV",
|
|
5920
|
+
/** LightGBMClassifier */
|
|
5921
|
+
LightGBMClassifier = "LightGBMClassifier",
|
|
5922
|
+
/** Default meta-learners are LogisticRegression for regression task. */
|
|
5923
|
+
ElasticNet = "ElasticNet",
|
|
5924
|
+
/** Default meta-learners are LogisticRegression for regression task when CV is on. */
|
|
5925
|
+
ElasticNetCV = "ElasticNetCV",
|
|
5926
|
+
/** LightGBMRegressor */
|
|
5927
|
+
LightGBMRegressor = "LightGBMRegressor",
|
|
5928
|
+
/** LinearRegression */
|
|
5929
|
+
LinearRegression = "LinearRegression"
|
|
5930
|
+
}
|
|
5931
|
+
|
|
4533
5932
|
/** Known values of {@link Status} that the service accepts. */
|
|
4534
5933
|
export declare enum KnownStatus {
|
|
4535
5934
|
/** Undefined */
|
|
@@ -4550,6 +5949,18 @@ export declare enum KnownStatus {
|
|
|
4550
5949
|
OperationNotEnabledForRegion = "OperationNotEnabledForRegion"
|
|
4551
5950
|
}
|
|
4552
5951
|
|
|
5952
|
+
/** Known values of {@link StochasticOptimizer} that the service accepts. */
|
|
5953
|
+
export declare enum KnownStochasticOptimizer {
|
|
5954
|
+
/** No optimizer selected. */
|
|
5955
|
+
None = "None",
|
|
5956
|
+
/** Stochastic Gradient Descent optimizer. */
|
|
5957
|
+
Sgd = "Sgd",
|
|
5958
|
+
/** Adam is algorithm the optimizes stochastic objective functions based on adaptive estimates of moments */
|
|
5959
|
+
Adam = "Adam",
|
|
5960
|
+
/** AdamW is a variant of the optimizer Adam that has an improved implementation of weight decay. */
|
|
5961
|
+
Adamw = "Adamw"
|
|
5962
|
+
}
|
|
5963
|
+
|
|
4553
5964
|
/** Known values of {@link StorageAccountType} that the service accepts. */
|
|
4554
5965
|
export declare enum KnownStorageAccountType {
|
|
4555
5966
|
/** StandardLRS */
|
|
@@ -4558,6 +5969,92 @@ export declare enum KnownStorageAccountType {
|
|
|
4558
5969
|
PremiumLRS = "Premium_LRS"
|
|
4559
5970
|
}
|
|
4560
5971
|
|
|
5972
|
+
/** Known values of {@link TargetAggregationFunction} that the service accepts. */
|
|
5973
|
+
export declare enum KnownTargetAggregationFunction {
|
|
5974
|
+
/** Represent no value set. */
|
|
5975
|
+
None = "None",
|
|
5976
|
+
/** Sum */
|
|
5977
|
+
Sum = "Sum",
|
|
5978
|
+
/** Max */
|
|
5979
|
+
Max = "Max",
|
|
5980
|
+
/** Min */
|
|
5981
|
+
Min = "Min",
|
|
5982
|
+
/** Mean */
|
|
5983
|
+
Mean = "Mean"
|
|
5984
|
+
}
|
|
5985
|
+
|
|
5986
|
+
/** Known values of {@link TargetLagsMode} that the service accepts. */
|
|
5987
|
+
export declare enum KnownTargetLagsMode {
|
|
5988
|
+
/** Target lags to be determined automatically. */
|
|
5989
|
+
Auto = "Auto",
|
|
5990
|
+
/** Use the custom target lags. */
|
|
5991
|
+
Custom = "Custom"
|
|
5992
|
+
}
|
|
5993
|
+
|
|
5994
|
+
/** Known values of {@link TargetRollingWindowSizeMode} that the service accepts. */
|
|
5995
|
+
export declare enum KnownTargetRollingWindowSizeMode {
|
|
5996
|
+
/** Determine rolling windows size automatically. */
|
|
5997
|
+
Auto = "Auto",
|
|
5998
|
+
/** Use the specified rolling window size. */
|
|
5999
|
+
Custom = "Custom"
|
|
6000
|
+
}
|
|
6001
|
+
|
|
6002
|
+
/** Known values of {@link TaskType} that the service accepts. */
|
|
6003
|
+
export declare enum KnownTaskType {
|
|
6004
|
+
/**
|
|
6005
|
+
* Classification in machine learning and statistics is a supervised learning approach in which
|
|
6006
|
+
* the computer program learns from the data given to it and make new observations or classifications.
|
|
6007
|
+
*/
|
|
6008
|
+
Classification = "Classification",
|
|
6009
|
+
/** Regression means to predict the value using the input data. Regression models are used to predict a continuous value. */
|
|
6010
|
+
Regression = "Regression",
|
|
6011
|
+
/**
|
|
6012
|
+
* Forecasting is a special kind of regression task that deals with time-series data and creates forecasting model
|
|
6013
|
+
* that can be used to predict the near future values based on the inputs.
|
|
6014
|
+
*/
|
|
6015
|
+
Forecasting = "Forecasting",
|
|
6016
|
+
/**
|
|
6017
|
+
* Image Classification. Multi-class image classification is used when an image is classified with only a single label
|
|
6018
|
+
* from a set of classes - e.g. each image is classified as either an image of a 'cat' or a 'dog' or a 'duck'.
|
|
6019
|
+
*/
|
|
6020
|
+
ImageClassification = "ImageClassification",
|
|
6021
|
+
/**
|
|
6022
|
+
* Image Classification Multilabel. Multi-label image classification is used when an image could have one or more labels
|
|
6023
|
+
* from a set of labels - e.g. an image could be labeled with both 'cat' and 'dog'.
|
|
6024
|
+
*/
|
|
6025
|
+
ImageClassificationMultilabel = "ImageClassificationMultilabel",
|
|
6026
|
+
/**
|
|
6027
|
+
* Image Object Detection. Object detection is used to identify objects in an image and locate each object with a
|
|
6028
|
+
* bounding box e.g. locate all dogs and cats in an image and draw a bounding box around each.
|
|
6029
|
+
*/
|
|
6030
|
+
ImageObjectDetection = "ImageObjectDetection",
|
|
6031
|
+
/**
|
|
6032
|
+
* Image Instance Segmentation. Instance segmentation is used to identify objects in an image at the pixel level,
|
|
6033
|
+
* drawing a polygon around each object in the image.
|
|
6034
|
+
*/
|
|
6035
|
+
ImageInstanceSegmentation = "ImageInstanceSegmentation",
|
|
6036
|
+
/**
|
|
6037
|
+
* Text classification (also known as text tagging or text categorization) is the process of sorting texts into categories.
|
|
6038
|
+
* Categories are mutually exclusive.
|
|
6039
|
+
*/
|
|
6040
|
+
TextClassification = "TextClassification",
|
|
6041
|
+
/** Multilabel classification task assigns each sample to a group (zero or more) of target labels. */
|
|
6042
|
+
TextClassificationMultilabel = "TextClassificationMultilabel",
|
|
6043
|
+
/**
|
|
6044
|
+
* Text Named Entity Recognition a.k.a. TextNER.
|
|
6045
|
+
* Named Entity Recognition (NER) is the ability to take free-form text and identify the occurrences of entities such as people, locations, organizations, and more.
|
|
6046
|
+
*/
|
|
6047
|
+
TextNER = "TextNER"
|
|
6048
|
+
}
|
|
6049
|
+
|
|
6050
|
+
/** Known values of {@link TriggerType} that the service accepts. */
|
|
6051
|
+
export declare enum KnownTriggerType {
|
|
6052
|
+
/** Recurrence */
|
|
6053
|
+
Recurrence = "Recurrence",
|
|
6054
|
+
/** Cron */
|
|
6055
|
+
Cron = "Cron"
|
|
6056
|
+
}
|
|
6057
|
+
|
|
4561
6058
|
/** Known values of {@link UnderlyingResourceAction} that the service accepts. */
|
|
4562
6059
|
export declare enum KnownUnderlyingResourceAction {
|
|
4563
6060
|
/** Delete */
|
|
@@ -4578,6 +6075,28 @@ export declare enum KnownUsageUnit {
|
|
|
4578
6075
|
Count = "Count"
|
|
4579
6076
|
}
|
|
4580
6077
|
|
|
6078
|
+
/** Known values of {@link UseStl} that the service accepts. */
|
|
6079
|
+
export declare enum KnownUseStl {
|
|
6080
|
+
/** No stl decomposition. */
|
|
6081
|
+
None = "None",
|
|
6082
|
+
/** Season */
|
|
6083
|
+
Season = "Season",
|
|
6084
|
+
/** SeasonTrend */
|
|
6085
|
+
SeasonTrend = "SeasonTrend"
|
|
6086
|
+
}
|
|
6087
|
+
|
|
6088
|
+
/** Known values of {@link ValidationMetricType} that the service accepts. */
|
|
6089
|
+
export declare enum KnownValidationMetricType {
|
|
6090
|
+
/** No metric. */
|
|
6091
|
+
None = "None",
|
|
6092
|
+
/** Coco metric. */
|
|
6093
|
+
Coco = "Coco",
|
|
6094
|
+
/** Voc metric. */
|
|
6095
|
+
Voc = "Voc",
|
|
6096
|
+
/** CocoVoc metric. */
|
|
6097
|
+
CocoVoc = "CocoVoc"
|
|
6098
|
+
}
|
|
6099
|
+
|
|
4581
6100
|
/** Known values of {@link ValueFormat} that the service accepts. */
|
|
4582
6101
|
export declare enum KnownValueFormat {
|
|
4583
6102
|
/** Json */
|
|
@@ -4610,6 +6129,24 @@ export declare enum KnownVMTier {
|
|
|
4610
6129
|
Spot = "Spot"
|
|
4611
6130
|
}
|
|
4612
6131
|
|
|
6132
|
+
/** Known values of {@link WeekDay} that the service accepts. */
|
|
6133
|
+
export declare enum KnownWeekDay {
|
|
6134
|
+
/** Monday weekday */
|
|
6135
|
+
Monday = "Monday",
|
|
6136
|
+
/** Tuesday weekday */
|
|
6137
|
+
Tuesday = "Tuesday",
|
|
6138
|
+
/** Wednesday weekday */
|
|
6139
|
+
Wednesday = "Wednesday",
|
|
6140
|
+
/** Thursday weekday */
|
|
6141
|
+
Thursday = "Thursday",
|
|
6142
|
+
/** Friday weekday */
|
|
6143
|
+
Friday = "Friday",
|
|
6144
|
+
/** Saturday weekday */
|
|
6145
|
+
Saturday = "Saturday",
|
|
6146
|
+
/** Sunday weekday */
|
|
6147
|
+
Sunday = "Sunday"
|
|
6148
|
+
}
|
|
6149
|
+
|
|
4613
6150
|
/** A Machine Learning compute based on Kubernetes Compute. */
|
|
4614
6151
|
export declare interface Kubernetes extends Compute, KubernetesSchema {
|
|
4615
6152
|
/** Polymorphic discriminator, which specifies the different types this object can be */
|
|
@@ -4652,6 +6189,17 @@ export declare interface KubernetesSchema {
|
|
|
4652
6189
|
properties?: KubernetesProperties;
|
|
4653
6190
|
}
|
|
4654
6191
|
|
|
6192
|
+
/**
|
|
6193
|
+
* Defines values for LearningRateScheduler. \
|
|
6194
|
+
* {@link KnownLearningRateScheduler} can be used interchangeably with LearningRateScheduler,
|
|
6195
|
+
* this enum contains the known values that the service supports.
|
|
6196
|
+
* ### Known values supported by the service
|
|
6197
|
+
* **None**: No learning rate scheduler selected. \
|
|
6198
|
+
* **WarmupCosine**: Cosine Annealing With Warmup. \
|
|
6199
|
+
* **Step**: Step learning rate scheduler.
|
|
6200
|
+
*/
|
|
6201
|
+
export declare type LearningRateScheduler = string;
|
|
6202
|
+
|
|
4655
6203
|
/** The List Aml user feature operation response. */
|
|
4656
6204
|
export declare interface ListAmlUserFeatureResult {
|
|
4657
6205
|
/**
|
|
@@ -4748,6 +6296,20 @@ export declare interface LiteralJobInput extends JobInput {
|
|
|
4748
6296
|
*/
|
|
4749
6297
|
export declare type LoadBalancerType = string;
|
|
4750
6298
|
|
|
6299
|
+
/**
|
|
6300
|
+
* Defines values for LogVerbosity. \
|
|
6301
|
+
* {@link KnownLogVerbosity} can be used interchangeably with LogVerbosity,
|
|
6302
|
+
* this enum contains the known values that the service supports.
|
|
6303
|
+
* ### Known values supported by the service
|
|
6304
|
+
* **NotSet**: No logs emitted. \
|
|
6305
|
+
* **Debug**: Debug and above log statements logged. \
|
|
6306
|
+
* **Info**: Info and above log statements logged. \
|
|
6307
|
+
* **Warning**: Warning and above log statements logged. \
|
|
6308
|
+
* **Error**: Error and above log statements logged. \
|
|
6309
|
+
* **Critical**: Only critical statements logged.
|
|
6310
|
+
*/
|
|
6311
|
+
export declare type LogVerbosity = string;
|
|
6312
|
+
|
|
4751
6313
|
/** Managed identity configuration. */
|
|
4752
6314
|
export declare interface ManagedIdentity extends IdentityConfiguration {
|
|
4753
6315
|
/** Polymorphic discriminator, which specifies the different types this object can be */
|
|
@@ -4927,6 +6489,19 @@ export declare interface ModelContainersListOptionalParams extends coreClient.Op
|
|
|
4927
6489
|
/** Contains response data for the list operation. */
|
|
4928
6490
|
export declare type ModelContainersListResponse = ModelContainerResourceArmPaginatedResult;
|
|
4929
6491
|
|
|
6492
|
+
/**
|
|
6493
|
+
* Defines values for ModelSize. \
|
|
6494
|
+
* {@link KnownModelSize} can be used interchangeably with ModelSize,
|
|
6495
|
+
* this enum contains the known values that the service supports.
|
|
6496
|
+
* ### Known values supported by the service
|
|
6497
|
+
* **None**: No value selected. \
|
|
6498
|
+
* **Small**: Small size. \
|
|
6499
|
+
* **Medium**: Medium size. \
|
|
6500
|
+
* **Large**: Large size. \
|
|
6501
|
+
* **ExtraLarge**: Extra large size.
|
|
6502
|
+
*/
|
|
6503
|
+
export declare type ModelSize = string;
|
|
6504
|
+
|
|
4930
6505
|
/** Azure Resource Manager resource envelope. */
|
|
4931
6506
|
export declare interface ModelVersion extends Resource {
|
|
4932
6507
|
/** [Required] Additional attributes of the entity. */
|
|
@@ -5099,6 +6674,24 @@ export declare interface Mpi extends DistributionConfiguration {
|
|
|
5099
6674
|
processCountPerInstance?: number;
|
|
5100
6675
|
}
|
|
5101
6676
|
|
|
6677
|
+
/** N-Cross validations value. */
|
|
6678
|
+
export declare interface NCrossValidations {
|
|
6679
|
+
/** Polymorphic discriminator, which specifies the different types this object can be */
|
|
6680
|
+
mode: "Auto" | "Custom";
|
|
6681
|
+
}
|
|
6682
|
+
|
|
6683
|
+
/**
|
|
6684
|
+
* Defines values for NCrossValidationsMode. \
|
|
6685
|
+
* {@link KnownNCrossValidationsMode} can be used interchangeably with NCrossValidationsMode,
|
|
6686
|
+
* this enum contains the known values that the service supports.
|
|
6687
|
+
* ### Known values supported by the service
|
|
6688
|
+
* **Auto**: Determine N-Cross validations value automatically. Supported only for 'Forecasting' AutoML task. \
|
|
6689
|
+
* **Custom**: Use custom N-Cross validations value.
|
|
6690
|
+
*/
|
|
6691
|
+
export declare type NCrossValidationsMode = string;
|
|
6692
|
+
|
|
6693
|
+
export declare type NCrossValidationsUnion = NCrossValidations | AutoNCrossValidations | CustomNCrossValidations;
|
|
6694
|
+
|
|
5102
6695
|
/**
|
|
5103
6696
|
* Defines values for Network. \
|
|
5104
6697
|
* {@link KnownNetwork} can be used interchangeably with Network,
|
|
@@ -5109,6 +6702,32 @@ export declare interface Mpi extends DistributionConfiguration {
|
|
|
5109
6702
|
*/
|
|
5110
6703
|
export declare type Network = string;
|
|
5111
6704
|
|
|
6705
|
+
/**
|
|
6706
|
+
* Abstract class for NLP related AutoML tasks.
|
|
6707
|
+
* NLP - Natural Language Processing.
|
|
6708
|
+
*/
|
|
6709
|
+
export declare interface NlpVertical {
|
|
6710
|
+
/** Featurization inputs needed for AutoML job. */
|
|
6711
|
+
featurizationSettings?: NlpVerticalFeaturizationSettings;
|
|
6712
|
+
/** Execution constraints for AutoMLJob. */
|
|
6713
|
+
limitSettings?: NlpVerticalLimitSettings;
|
|
6714
|
+
/** Validation data inputs. */
|
|
6715
|
+
validationData?: MLTableJobInput;
|
|
6716
|
+
}
|
|
6717
|
+
|
|
6718
|
+
export declare interface NlpVerticalFeaturizationSettings extends FeaturizationSettings {
|
|
6719
|
+
}
|
|
6720
|
+
|
|
6721
|
+
/** Job execution constraints. */
|
|
6722
|
+
export declare interface NlpVerticalLimitSettings {
|
|
6723
|
+
/** Maximum Concurrent AutoML iterations. */
|
|
6724
|
+
maxConcurrentTrials?: number;
|
|
6725
|
+
/** Number of AutoML iterations. */
|
|
6726
|
+
maxTrials?: number;
|
|
6727
|
+
/** AutoML job timeout. */
|
|
6728
|
+
timeout?: string;
|
|
6729
|
+
}
|
|
6730
|
+
|
|
5112
6731
|
/**
|
|
5113
6732
|
* Defines values for NodeState. \
|
|
5114
6733
|
* {@link KnownNodeState} can be used interchangeably with NodeState,
|
|
@@ -5200,6 +6819,16 @@ export declare interface NotebookResourceInfo {
|
|
|
5200
6819
|
notebookPreparationError?: NotebookPreparationError;
|
|
5201
6820
|
}
|
|
5202
6821
|
|
|
6822
|
+
/**
|
|
6823
|
+
* Defines values for ObjectDetectionPrimaryMetrics. \
|
|
6824
|
+
* {@link KnownObjectDetectionPrimaryMetrics} can be used interchangeably with ObjectDetectionPrimaryMetrics,
|
|
6825
|
+
* this enum contains the known values that the service supports.
|
|
6826
|
+
* ### Known values supported by the service
|
|
6827
|
+
* **MeanAveragePrecision**: Mean Average Precision (MAP) is the average of AP (Average Precision).
|
|
6828
|
+
* AP is calculated for each class and averaged to get the MAP.
|
|
6829
|
+
*/
|
|
6830
|
+
export declare type ObjectDetectionPrimaryMetrics = string;
|
|
6831
|
+
|
|
5203
6832
|
/** Optimization objective. */
|
|
5204
6833
|
export declare interface Objective {
|
|
5205
6834
|
/** [Required] Defines supported metric goals for hyperparameter tuning */
|
|
@@ -5222,6 +6851,8 @@ export declare interface OnlineDeployment extends TrackedResource {
|
|
|
5222
6851
|
export declare interface OnlineDeploymentProperties extends EndpointDeploymentPropertiesBase {
|
|
5223
6852
|
/** If true, enables Application Insights logging. */
|
|
5224
6853
|
appInsightsEnabled?: boolean;
|
|
6854
|
+
/** If Enabled, allow egress public network access. If Disabled, this will create secure egress. Default: Enabled. */
|
|
6855
|
+
egressPublicNetworkAccess?: EgressPublicNetworkAccessType;
|
|
5225
6856
|
/** [Required] The compute type of the endpoint. */
|
|
5226
6857
|
endpointComputeType: EndpointComputeType;
|
|
5227
6858
|
/** Compute instance type. */
|
|
@@ -5501,6 +7132,8 @@ export declare interface OnlineEndpointProperties extends EndpointPropertiesBase
|
|
|
5501
7132
|
* NOTE: This property will not be serialized. It can only be populated by the server.
|
|
5502
7133
|
*/
|
|
5503
7134
|
readonly provisioningState?: EndpointProvisioningState;
|
|
7135
|
+
/** Set to "Enabled" for endpoints that should allow public access when Private Link is enabled. */
|
|
7136
|
+
publicNetworkAccess?: PublicNetworkAccessType;
|
|
5504
7137
|
/** Percentage of traffic from endpoint to divert to each deployment. Traffic values need to sum to 100. */
|
|
5505
7138
|
traffic?: {
|
|
5506
7139
|
[propertyName: string]: number;
|
|
@@ -5995,6 +7628,8 @@ export declare interface PipelineJob extends JobBaseProperties {
|
|
|
5995
7628
|
};
|
|
5996
7629
|
/** Pipeline settings, for things like ContinueRunOnStepFailure etc. */
|
|
5997
7630
|
settings?: Record<string, unknown>;
|
|
7631
|
+
/** ARM resource ID of source job. */
|
|
7632
|
+
sourceJobId?: string;
|
|
5998
7633
|
}
|
|
5999
7634
|
|
|
6000
7635
|
/** The Private Endpoint resource. */
|
|
@@ -6239,6 +7874,16 @@ export declare type ProvisioningStatus = string;
|
|
|
6239
7874
|
*/
|
|
6240
7875
|
export declare type PublicNetworkAccess = string;
|
|
6241
7876
|
|
|
7877
|
+
/**
|
|
7878
|
+
* Defines values for PublicNetworkAccessType. \
|
|
7879
|
+
* {@link KnownPublicNetworkAccessType} can be used interchangeably with PublicNetworkAccessType,
|
|
7880
|
+
* this enum contains the known values that the service supports.
|
|
7881
|
+
* ### Known values supported by the service
|
|
7882
|
+
* **Enabled** \
|
|
7883
|
+
* **Disabled**
|
|
7884
|
+
*/
|
|
7885
|
+
export declare type PublicNetworkAccessType = string;
|
|
7886
|
+
|
|
6242
7887
|
/** PyTorch distribution configuration. */
|
|
6243
7888
|
export declare interface PyTorch extends DistributionConfiguration {
|
|
6244
7889
|
/** Polymorphic discriminator, which specifies the different types this object can be */
|
|
@@ -6334,6 +7979,41 @@ export declare interface RandomSamplingAlgorithm extends SamplingAlgorithm {
|
|
|
6334
7979
|
*/
|
|
6335
7980
|
export declare type RandomSamplingAlgorithmRule = string;
|
|
6336
7981
|
|
|
7982
|
+
/**
|
|
7983
|
+
* Defines values for RecurrenceFrequency. \
|
|
7984
|
+
* {@link KnownRecurrenceFrequency} can be used interchangeably with RecurrenceFrequency,
|
|
7985
|
+
* this enum contains the known values that the service supports.
|
|
7986
|
+
* ### Known values supported by the service
|
|
7987
|
+
* **Minute**: Minute frequency \
|
|
7988
|
+
* **Hour**: Hour frequency \
|
|
7989
|
+
* **Day**: Day frequency \
|
|
7990
|
+
* **Week**: Week frequency \
|
|
7991
|
+
* **Month**: Month frequency
|
|
7992
|
+
*/
|
|
7993
|
+
export declare type RecurrenceFrequency = string;
|
|
7994
|
+
|
|
7995
|
+
export declare interface RecurrenceSchedule {
|
|
7996
|
+
/** [Required] List of hours for the schedule. */
|
|
7997
|
+
hours: number[];
|
|
7998
|
+
/** [Required] List of minutes for the schedule. */
|
|
7999
|
+
minutes: number[];
|
|
8000
|
+
/** List of month days for the schedule */
|
|
8001
|
+
monthDays?: number[];
|
|
8002
|
+
/** List of days for the schedule. */
|
|
8003
|
+
weekDays?: WeekDay[];
|
|
8004
|
+
}
|
|
8005
|
+
|
|
8006
|
+
export declare interface RecurrenceTrigger extends TriggerBase {
|
|
8007
|
+
/** Polymorphic discriminator, which specifies the different types this object can be */
|
|
8008
|
+
triggerType: "Recurrence";
|
|
8009
|
+
/** [Required] The frequency to trigger schedule. */
|
|
8010
|
+
frequency: RecurrenceFrequency;
|
|
8011
|
+
/** [Required] Specifies schedule interval in conjunction with frequency */
|
|
8012
|
+
interval: number;
|
|
8013
|
+
/** The recurrence schedule. */
|
|
8014
|
+
schedule?: RecurrenceSchedule;
|
|
8015
|
+
}
|
|
8016
|
+
|
|
6337
8017
|
/**
|
|
6338
8018
|
* Defines values for ReferenceType. \
|
|
6339
8019
|
* {@link KnownReferenceType} can be used interchangeably with ReferenceType,
|
|
@@ -6360,6 +8040,58 @@ export declare interface RegistryListCredentialsResult {
|
|
|
6360
8040
|
passwords?: Password[];
|
|
6361
8041
|
}
|
|
6362
8042
|
|
|
8043
|
+
/** Regression task in AutoML Table vertical. */
|
|
8044
|
+
export declare interface Regression extends TableVertical, AutoMLVertical {
|
|
8045
|
+
/** Primary metric for regression task. */
|
|
8046
|
+
primaryMetric?: RegressionPrimaryMetrics;
|
|
8047
|
+
/** Inputs for training phase for an AutoML Job. */
|
|
8048
|
+
trainingSettings?: RegressionTrainingSettings;
|
|
8049
|
+
}
|
|
8050
|
+
|
|
8051
|
+
/**
|
|
8052
|
+
* Defines values for RegressionModels. \
|
|
8053
|
+
* {@link KnownRegressionModels} can be used interchangeably with RegressionModels,
|
|
8054
|
+
* this enum contains the known values that the service supports.
|
|
8055
|
+
* ### Known values supported by the service
|
|
8056
|
+
* **ElasticNet**: Elastic net is a popular type of regularized linear regression that combines two popular penalties, specifically the L1 and L2 penalty functions. \
|
|
8057
|
+
* **GradientBoosting**: The technique of transiting week learners into a strong learner is called Boosting. The gradient boosting algorithm process works on this theory of execution. \
|
|
8058
|
+
* **DecisionTree**: Decision Trees are a non-parametric supervised learning method used for both classification and regression tasks.
|
|
8059
|
+
* The goal is to create a model that predicts the value of a target variable by learning simple decision rules inferred from the data features. \
|
|
8060
|
+
* **KNN**: K-nearest neighbors (KNN) algorithm uses 'feature similarity' to predict the values of new datapoints
|
|
8061
|
+
* which further means that the new data point will be assigned a value based on how closely it matches the points in the training set. \
|
|
8062
|
+
* **LassoLars**: Lasso model fit with Least Angle Regression a.k.a. Lars. It is a Linear Model trained with an L1 prior as regularizer. \
|
|
8063
|
+
* **SGD**: SGD: Stochastic gradient descent is an optimization algorithm often used in machine learning applications
|
|
8064
|
+
* to find the model parameters that correspond to the best fit between predicted and actual outputs.
|
|
8065
|
+
* It's an inexact but powerful technique. \
|
|
8066
|
+
* **RandomForest**: Random forest is a supervised learning algorithm.
|
|
8067
|
+
* The "forest" it builds, is an ensemble of decision trees, usually trained with the “bagging” method.
|
|
8068
|
+
* The general idea of the bagging method is that a combination of learning models increases the overall result. \
|
|
8069
|
+
* **ExtremeRandomTrees**: Extreme Trees is an ensemble machine learning algorithm that combines the predictions from many decision trees. It is related to the widely used random forest algorithm. \
|
|
8070
|
+
* **LightGBM**: LightGBM is a gradient boosting framework that uses tree based learning algorithms. \
|
|
8071
|
+
* **XGBoostRegressor**: XGBoostRegressor: Extreme Gradient Boosting Regressor is a supervised machine learning model using ensemble of base learners.
|
|
8072
|
+
*/
|
|
8073
|
+
export declare type RegressionModels = string;
|
|
8074
|
+
|
|
8075
|
+
/**
|
|
8076
|
+
* Defines values for RegressionPrimaryMetrics. \
|
|
8077
|
+
* {@link KnownRegressionPrimaryMetrics} can be used interchangeably with RegressionPrimaryMetrics,
|
|
8078
|
+
* this enum contains the known values that the service supports.
|
|
8079
|
+
* ### Known values supported by the service
|
|
8080
|
+
* **SpearmanCorrelation**: The Spearman's rank coefficient of correlation is a nonparametric measure of rank correlation. \
|
|
8081
|
+
* **NormalizedRootMeanSquaredError**: The Normalized Root Mean Squared Error (NRMSE) the RMSE facilitates the comparison between models with different scales. \
|
|
8082
|
+
* **R2Score**: The R2 score is one of the performance evaluation measures for forecasting-based machine learning models. \
|
|
8083
|
+
* **NormalizedMeanAbsoluteError**: The Normalized Mean Absolute Error (NMAE) is a validation metric to compare the Mean Absolute Error (MAE) of (time) series with different scales.
|
|
8084
|
+
*/
|
|
8085
|
+
export declare type RegressionPrimaryMetrics = string;
|
|
8086
|
+
|
|
8087
|
+
/** Regression Training related configuration. */
|
|
8088
|
+
export declare interface RegressionTrainingSettings extends TrainingSettings {
|
|
8089
|
+
/** Allowed models for regression task. */
|
|
8090
|
+
allowedTrainingAlgorithms?: RegressionModels[];
|
|
8091
|
+
/** Blocked models for regression task. */
|
|
8092
|
+
blockedTrainingAlgorithms?: RegressionModels[];
|
|
8093
|
+
}
|
|
8094
|
+
|
|
6363
8095
|
/**
|
|
6364
8096
|
* Defines values for RemoteLoginPortPublicAccess. \
|
|
6365
8097
|
* {@link KnownRemoteLoginPortPublicAccess} can be used interchangeably with RemoteLoginPortPublicAccess,
|
|
@@ -6550,12 +8282,66 @@ export declare interface ScaleSettingsInformation {
|
|
|
6550
8282
|
*/
|
|
6551
8283
|
export declare type ScaleType = string;
|
|
6552
8284
|
|
|
8285
|
+
/** Azure Resource Manager resource envelope. */
|
|
8286
|
+
export declare interface Schedule extends Resource {
|
|
8287
|
+
/** [Required] Additional attributes of the entity. */
|
|
8288
|
+
properties: ScheduleProperties;
|
|
8289
|
+
}
|
|
8290
|
+
|
|
8291
|
+
export declare interface ScheduleActionBase {
|
|
8292
|
+
/** Polymorphic discriminator, which specifies the different types this object can be */
|
|
8293
|
+
actionType: "InvokeBatchEndpoint" | "CreateJob";
|
|
8294
|
+
}
|
|
8295
|
+
|
|
8296
|
+
export declare type ScheduleActionBaseUnion = ScheduleActionBase | EndpointScheduleAction | JobScheduleAction;
|
|
8297
|
+
|
|
8298
|
+
/**
|
|
8299
|
+
* Defines values for ScheduleActionType. \
|
|
8300
|
+
* {@link KnownScheduleActionType} can be used interchangeably with ScheduleActionType,
|
|
8301
|
+
* this enum contains the known values that the service supports.
|
|
8302
|
+
* ### Known values supported by the service
|
|
8303
|
+
* **CreateJob** \
|
|
8304
|
+
* **InvokeBatchEndpoint**
|
|
8305
|
+
*/
|
|
8306
|
+
export declare type ScheduleActionType = string;
|
|
8307
|
+
|
|
6553
8308
|
export declare interface ScheduleBase {
|
|
8309
|
+
/** A system assigned id for the schedule. */
|
|
6554
8310
|
id?: string;
|
|
8311
|
+
/** The current deployment state of schedule. */
|
|
6555
8312
|
provisioningStatus?: ScheduleProvisioningState;
|
|
8313
|
+
/** Is the schedule enabled or disabled? */
|
|
6556
8314
|
status?: ScheduleStatus;
|
|
6557
8315
|
}
|
|
6558
8316
|
|
|
8317
|
+
/**
|
|
8318
|
+
* Defines values for ScheduleListViewType. \
|
|
8319
|
+
* {@link KnownScheduleListViewType} can be used interchangeably with ScheduleListViewType,
|
|
8320
|
+
* this enum contains the known values that the service supports.
|
|
8321
|
+
* ### Known values supported by the service
|
|
8322
|
+
* **EnabledOnly** \
|
|
8323
|
+
* **DisabledOnly** \
|
|
8324
|
+
* **All**
|
|
8325
|
+
*/
|
|
8326
|
+
export declare type ScheduleListViewType = string;
|
|
8327
|
+
|
|
8328
|
+
/** Base definition of a schedule */
|
|
8329
|
+
export declare interface ScheduleProperties extends ResourceBase {
|
|
8330
|
+
/** [Required] Specifies the action of the schedule */
|
|
8331
|
+
action: ScheduleActionBaseUnion;
|
|
8332
|
+
/** Display name of schedule. */
|
|
8333
|
+
displayName?: string;
|
|
8334
|
+
/** Is the schedule enabled? */
|
|
8335
|
+
isEnabled?: boolean;
|
|
8336
|
+
/**
|
|
8337
|
+
* Provisioning state for the schedule.
|
|
8338
|
+
* NOTE: This property will not be serialized. It can only be populated by the server.
|
|
8339
|
+
*/
|
|
8340
|
+
readonly provisioningState?: ScheduleProvisioningStatus;
|
|
8341
|
+
/** [Required] Specifies the trigger details */
|
|
8342
|
+
trigger: TriggerBaseUnion;
|
|
8343
|
+
}
|
|
8344
|
+
|
|
6559
8345
|
/**
|
|
6560
8346
|
* Defines values for ScheduleProvisioningState. \
|
|
6561
8347
|
* {@link KnownScheduleProvisioningState} can be used interchangeably with ScheduleProvisioningState,
|
|
@@ -6567,6 +8353,147 @@ export declare interface ScheduleBase {
|
|
|
6567
8353
|
*/
|
|
6568
8354
|
export declare type ScheduleProvisioningState = string;
|
|
6569
8355
|
|
|
8356
|
+
/**
|
|
8357
|
+
* Defines values for ScheduleProvisioningStatus. \
|
|
8358
|
+
* {@link KnownScheduleProvisioningStatus} can be used interchangeably with ScheduleProvisioningStatus,
|
|
8359
|
+
* this enum contains the known values that the service supports.
|
|
8360
|
+
* ### Known values supported by the service
|
|
8361
|
+
* **Creating** \
|
|
8362
|
+
* **Updating** \
|
|
8363
|
+
* **Deleting** \
|
|
8364
|
+
* **Succeeded** \
|
|
8365
|
+
* **Failed** \
|
|
8366
|
+
* **Canceled**
|
|
8367
|
+
*/
|
|
8368
|
+
export declare type ScheduleProvisioningStatus = string;
|
|
8369
|
+
|
|
8370
|
+
/** A paginated list of Schedule entities. */
|
|
8371
|
+
export declare interface ScheduleResourceArmPaginatedResult {
|
|
8372
|
+
/** The link to the next page of Schedule objects. If null, there are no additional pages. */
|
|
8373
|
+
nextLink?: string;
|
|
8374
|
+
/** An array of objects of type Schedule. */
|
|
8375
|
+
value?: Schedule[];
|
|
8376
|
+
}
|
|
8377
|
+
|
|
8378
|
+
/** Interface representing a Schedules. */
|
|
8379
|
+
export declare interface Schedules {
|
|
8380
|
+
/**
|
|
8381
|
+
* List schedules in specified workspace.
|
|
8382
|
+
* @param resourceGroupName The name of the resource group. The name is case insensitive.
|
|
8383
|
+
* @param workspaceName Name of Azure Machine Learning workspace.
|
|
8384
|
+
* @param options The options parameters.
|
|
8385
|
+
*/
|
|
8386
|
+
list(resourceGroupName: string, workspaceName: string, options?: SchedulesListOptionalParams): PagedAsyncIterableIterator<Schedule>;
|
|
8387
|
+
/**
|
|
8388
|
+
* Delete schedule.
|
|
8389
|
+
* @param resourceGroupName The name of the resource group. The name is case insensitive.
|
|
8390
|
+
* @param workspaceName Name of Azure Machine Learning workspace.
|
|
8391
|
+
* @param name Schedule name.
|
|
8392
|
+
* @param options The options parameters.
|
|
8393
|
+
*/
|
|
8394
|
+
beginDelete(resourceGroupName: string, workspaceName: string, name: string, options?: SchedulesDeleteOptionalParams): Promise<PollerLike<PollOperationState<void>, void>>;
|
|
8395
|
+
/**
|
|
8396
|
+
* Delete schedule.
|
|
8397
|
+
* @param resourceGroupName The name of the resource group. The name is case insensitive.
|
|
8398
|
+
* @param workspaceName Name of Azure Machine Learning workspace.
|
|
8399
|
+
* @param name Schedule name.
|
|
8400
|
+
* @param options The options parameters.
|
|
8401
|
+
*/
|
|
8402
|
+
beginDeleteAndWait(resourceGroupName: string, workspaceName: string, name: string, options?: SchedulesDeleteOptionalParams): Promise<void>;
|
|
8403
|
+
/**
|
|
8404
|
+
* Get schedule.
|
|
8405
|
+
* @param resourceGroupName The name of the resource group. The name is case insensitive.
|
|
8406
|
+
* @param workspaceName Name of Azure Machine Learning workspace.
|
|
8407
|
+
* @param name Schedule name.
|
|
8408
|
+
* @param options The options parameters.
|
|
8409
|
+
*/
|
|
8410
|
+
get(resourceGroupName: string, workspaceName: string, name: string, options?: SchedulesGetOptionalParams): Promise<SchedulesGetResponse>;
|
|
8411
|
+
/**
|
|
8412
|
+
* Create or update schedule.
|
|
8413
|
+
* @param resourceGroupName The name of the resource group. The name is case insensitive.
|
|
8414
|
+
* @param workspaceName Name of Azure Machine Learning workspace.
|
|
8415
|
+
* @param name Schedule name.
|
|
8416
|
+
* @param body Schedule definition.
|
|
8417
|
+
* @param options The options parameters.
|
|
8418
|
+
*/
|
|
8419
|
+
beginCreateOrUpdate(resourceGroupName: string, workspaceName: string, name: string, body: Schedule, options?: SchedulesCreateOrUpdateOptionalParams): Promise<PollerLike<PollOperationState<SchedulesCreateOrUpdateResponse>, SchedulesCreateOrUpdateResponse>>;
|
|
8420
|
+
/**
|
|
8421
|
+
* Create or update schedule.
|
|
8422
|
+
* @param resourceGroupName The name of the resource group. The name is case insensitive.
|
|
8423
|
+
* @param workspaceName Name of Azure Machine Learning workspace.
|
|
8424
|
+
* @param name Schedule name.
|
|
8425
|
+
* @param body Schedule definition.
|
|
8426
|
+
* @param options The options parameters.
|
|
8427
|
+
*/
|
|
8428
|
+
beginCreateOrUpdateAndWait(resourceGroupName: string, workspaceName: string, name: string, body: Schedule, options?: SchedulesCreateOrUpdateOptionalParams): Promise<SchedulesCreateOrUpdateResponse>;
|
|
8429
|
+
}
|
|
8430
|
+
|
|
8431
|
+
/** Defines headers for Schedules_createOrUpdate operation. */
|
|
8432
|
+
export declare interface SchedulesCreateOrUpdateHeaders {
|
|
8433
|
+
/** Timeout for the client to use when polling the asynchronous operation. */
|
|
8434
|
+
xMsAsyncOperationTimeout?: string;
|
|
8435
|
+
/** URI to poll for asynchronous operation status. */
|
|
8436
|
+
azureAsyncOperation?: string;
|
|
8437
|
+
}
|
|
8438
|
+
|
|
8439
|
+
/** Optional parameters. */
|
|
8440
|
+
export declare interface SchedulesCreateOrUpdateOptionalParams extends coreClient.OperationOptions {
|
|
8441
|
+
/** Delay to wait until next poll, in milliseconds. */
|
|
8442
|
+
updateIntervalInMs?: number;
|
|
8443
|
+
/** A serialized poller which can be used to resume an existing paused Long-Running-Operation. */
|
|
8444
|
+
resumeFrom?: string;
|
|
8445
|
+
}
|
|
8446
|
+
|
|
8447
|
+
/** Contains response data for the createOrUpdate operation. */
|
|
8448
|
+
export declare type SchedulesCreateOrUpdateResponse = Schedule;
|
|
8449
|
+
|
|
8450
|
+
/** Defines headers for Schedules_delete operation. */
|
|
8451
|
+
export declare interface SchedulesDeleteHeaders {
|
|
8452
|
+
/** Timeout for the client to use when polling the asynchronous operation. */
|
|
8453
|
+
xMsAsyncOperationTimeout?: string;
|
|
8454
|
+
/** URI to poll for asynchronous operation result. */
|
|
8455
|
+
location?: string;
|
|
8456
|
+
/** Duration the client should wait between requests, in seconds. */
|
|
8457
|
+
retryAfter?: number;
|
|
8458
|
+
}
|
|
8459
|
+
|
|
8460
|
+
/** Optional parameters. */
|
|
8461
|
+
export declare interface SchedulesDeleteOptionalParams extends coreClient.OperationOptions {
|
|
8462
|
+
/** Delay to wait until next poll, in milliseconds. */
|
|
8463
|
+
updateIntervalInMs?: number;
|
|
8464
|
+
/** A serialized poller which can be used to resume an existing paused Long-Running-Operation. */
|
|
8465
|
+
resumeFrom?: string;
|
|
8466
|
+
}
|
|
8467
|
+
|
|
8468
|
+
/** Optional parameters. */
|
|
8469
|
+
export declare interface SchedulesGetOptionalParams extends coreClient.OperationOptions {
|
|
8470
|
+
}
|
|
8471
|
+
|
|
8472
|
+
/** Contains response data for the get operation. */
|
|
8473
|
+
export declare type SchedulesGetResponse = Schedule;
|
|
8474
|
+
|
|
8475
|
+
/** Optional parameters. */
|
|
8476
|
+
export declare interface SchedulesListNextOptionalParams extends coreClient.OperationOptions {
|
|
8477
|
+
/** Continuation token for pagination. */
|
|
8478
|
+
skip?: string;
|
|
8479
|
+
/** Status filter for schedule. */
|
|
8480
|
+
listViewType?: ScheduleListViewType;
|
|
8481
|
+
}
|
|
8482
|
+
|
|
8483
|
+
/** Contains response data for the listNext operation. */
|
|
8484
|
+
export declare type SchedulesListNextResponse = ScheduleResourceArmPaginatedResult;
|
|
8485
|
+
|
|
8486
|
+
/** Optional parameters. */
|
|
8487
|
+
export declare interface SchedulesListOptionalParams extends coreClient.OperationOptions {
|
|
8488
|
+
/** Continuation token for pagination. */
|
|
8489
|
+
skip?: string;
|
|
8490
|
+
/** Status filter for schedule. */
|
|
8491
|
+
listViewType?: ScheduleListViewType;
|
|
8492
|
+
}
|
|
8493
|
+
|
|
8494
|
+
/** Contains response data for the list operation. */
|
|
8495
|
+
export declare type SchedulesListResponse = ScheduleResourceArmPaginatedResult;
|
|
8496
|
+
|
|
6570
8497
|
/**
|
|
6571
8498
|
* Defines values for ScheduleStatus. \
|
|
6572
8499
|
* {@link KnownScheduleStatus} can be used interchangeably with ScheduleStatus,
|
|
@@ -6579,7 +8506,7 @@ export declare type ScheduleStatus = string;
|
|
|
6579
8506
|
|
|
6580
8507
|
/** Script reference */
|
|
6581
8508
|
export declare interface ScriptReference {
|
|
6582
|
-
/** The storage source of the script:
|
|
8509
|
+
/** The storage source of the script: workspace. */
|
|
6583
8510
|
scriptSource?: string;
|
|
6584
8511
|
/** The location of scripts in the mounted volume. */
|
|
6585
8512
|
scriptData?: string;
|
|
@@ -6597,6 +8524,24 @@ export declare interface ScriptsToExecute {
|
|
|
6597
8524
|
creationScript?: ScriptReference;
|
|
6598
8525
|
}
|
|
6599
8526
|
|
|
8527
|
+
/** Forecasting seasonality. */
|
|
8528
|
+
export declare interface Seasonality {
|
|
8529
|
+
/** Polymorphic discriminator, which specifies the different types this object can be */
|
|
8530
|
+
mode: "Auto" | "Custom";
|
|
8531
|
+
}
|
|
8532
|
+
|
|
8533
|
+
/**
|
|
8534
|
+
* Defines values for SeasonalityMode. \
|
|
8535
|
+
* {@link KnownSeasonalityMode} can be used interchangeably with SeasonalityMode,
|
|
8536
|
+
* this enum contains the known values that the service supports.
|
|
8537
|
+
* ### Known values supported by the service
|
|
8538
|
+
* **Auto**: Seasonality to be determined automatically. \
|
|
8539
|
+
* **Custom**: Use the custom seasonality value.
|
|
8540
|
+
*/
|
|
8541
|
+
export declare type SeasonalityMode = string;
|
|
8542
|
+
|
|
8543
|
+
export declare type SeasonalityUnion = Seasonality | AutoSeasonality | CustomSeasonality;
|
|
8544
|
+
|
|
6600
8545
|
/**
|
|
6601
8546
|
* Defines values for SecretsType. \
|
|
6602
8547
|
* {@link KnownSecretsType} can be used interchangeably with SecretsType,
|
|
@@ -6668,6 +8613,18 @@ export declare interface SharedPrivateLinkResource {
|
|
|
6668
8613
|
status?: PrivateEndpointServiceConnectionStatus;
|
|
6669
8614
|
}
|
|
6670
8615
|
|
|
8616
|
+
/**
|
|
8617
|
+
* Defines values for ShortSeriesHandlingConfiguration. \
|
|
8618
|
+
* {@link KnownShortSeriesHandlingConfiguration} can be used interchangeably with ShortSeriesHandlingConfiguration,
|
|
8619
|
+
* this enum contains the known values that the service supports.
|
|
8620
|
+
* ### Known values supported by the service
|
|
8621
|
+
* **None**: Represents no\/null value. \
|
|
8622
|
+
* **Auto**: Short series will be padded if there are no long series, otherwise short series will be dropped. \
|
|
8623
|
+
* **Pad**: All the short series will be padded. \
|
|
8624
|
+
* **Drop**: All the short series will be dropped.
|
|
8625
|
+
*/
|
|
8626
|
+
export declare type ShortSeriesHandlingConfiguration = string;
|
|
8627
|
+
|
|
6671
8628
|
/** The resource model definition representing SKU */
|
|
6672
8629
|
export declare interface Sku {
|
|
6673
8630
|
/** The name of the SKU. Ex - P3. It is typically a letter+number code */
|
|
@@ -6785,6 +8742,32 @@ export declare interface SslConfiguration {
|
|
|
6785
8742
|
overwriteExistingDomain?: boolean;
|
|
6786
8743
|
}
|
|
6787
8744
|
|
|
8745
|
+
/** Advances setting to customize StackEnsemble run. */
|
|
8746
|
+
export declare interface StackEnsembleSettings {
|
|
8747
|
+
/** Optional parameters to pass to the initializer of the meta-learner. */
|
|
8748
|
+
stackMetaLearnerKWargs?: Record<string, unknown>;
|
|
8749
|
+
/** Specifies the proportion of the training set (when choosing train and validation type of training) to be reserved for training the meta-learner. Default value is 0.2. */
|
|
8750
|
+
stackMetaLearnerTrainPercentage?: number;
|
|
8751
|
+
/** The meta-learner is a model trained on the output of the individual heterogeneous models. */
|
|
8752
|
+
stackMetaLearnerType?: StackMetaLearnerType;
|
|
8753
|
+
}
|
|
8754
|
+
|
|
8755
|
+
/**
|
|
8756
|
+
* Defines values for StackMetaLearnerType. \
|
|
8757
|
+
* {@link KnownStackMetaLearnerType} can be used interchangeably with StackMetaLearnerType,
|
|
8758
|
+
* this enum contains the known values that the service supports.
|
|
8759
|
+
* ### Known values supported by the service
|
|
8760
|
+
* **None** \
|
|
8761
|
+
* **LogisticRegression**: Default meta-learners are LogisticRegression for classification tasks. \
|
|
8762
|
+
* **LogisticRegressionCV**: Default meta-learners are LogisticRegression for classification task when CV is on. \
|
|
8763
|
+
* **LightGBMClassifier** \
|
|
8764
|
+
* **ElasticNet**: Default meta-learners are LogisticRegression for regression task. \
|
|
8765
|
+
* **ElasticNetCV**: Default meta-learners are LogisticRegression for regression task when CV is on. \
|
|
8766
|
+
* **LightGBMRegressor** \
|
|
8767
|
+
* **LinearRegression**
|
|
8768
|
+
*/
|
|
8769
|
+
export declare type StackMetaLearnerType = string;
|
|
8770
|
+
|
|
6788
8771
|
/**
|
|
6789
8772
|
* Defines values for Status. \
|
|
6790
8773
|
* {@link KnownStatus} can be used interchangeably with Status,
|
|
@@ -6801,6 +8784,18 @@ export declare interface SslConfiguration {
|
|
|
6801
8784
|
*/
|
|
6802
8785
|
export declare type Status = string;
|
|
6803
8786
|
|
|
8787
|
+
/**
|
|
8788
|
+
* Defines values for StochasticOptimizer. \
|
|
8789
|
+
* {@link KnownStochasticOptimizer} can be used interchangeably with StochasticOptimizer,
|
|
8790
|
+
* this enum contains the known values that the service supports.
|
|
8791
|
+
* ### Known values supported by the service
|
|
8792
|
+
* **None**: No optimizer selected. \
|
|
8793
|
+
* **Sgd**: Stochastic Gradient Descent optimizer. \
|
|
8794
|
+
* **Adam**: Adam is algorithm the optimizes stochastic objective functions based on adaptive estimates of moments \
|
|
8795
|
+
* **Adamw**: AdamW is a variant of the optimizer Adam that has an improved implementation of weight decay.
|
|
8796
|
+
*/
|
|
8797
|
+
export declare type StochasticOptimizer = string;
|
|
8798
|
+
|
|
6804
8799
|
/**
|
|
6805
8800
|
* Defines values for StorageAccountType. \
|
|
6806
8801
|
* {@link KnownStorageAccountType} can be used interchangeably with StorageAccountType,
|
|
@@ -6914,6 +8909,128 @@ export declare interface SystemService {
|
|
|
6914
8909
|
readonly version?: string;
|
|
6915
8910
|
}
|
|
6916
8911
|
|
|
8912
|
+
/** Abstract class for AutoML tasks that use table dataset as input - such as Classification/Regression/Forecasting. */
|
|
8913
|
+
export declare interface TableVertical {
|
|
8914
|
+
/** Columns to use for CVSplit data. */
|
|
8915
|
+
cvSplitColumnNames?: string[];
|
|
8916
|
+
/** Featurization inputs needed for AutoML job. */
|
|
8917
|
+
featurizationSettings?: TableVerticalFeaturizationSettings;
|
|
8918
|
+
/** Execution constraints for AutoMLJob. */
|
|
8919
|
+
limitSettings?: TableVerticalLimitSettings;
|
|
8920
|
+
/**
|
|
8921
|
+
* Number of cross validation folds to be applied on training dataset
|
|
8922
|
+
* when validation dataset is not provided.
|
|
8923
|
+
*/
|
|
8924
|
+
nCrossValidations?: NCrossValidationsUnion;
|
|
8925
|
+
/** Test data input. */
|
|
8926
|
+
testData?: MLTableJobInput;
|
|
8927
|
+
/**
|
|
8928
|
+
* The fraction of test dataset that needs to be set aside for validation purpose.
|
|
8929
|
+
* Values between (0.0 , 1.0)
|
|
8930
|
+
* Applied when validation dataset is not provided.
|
|
8931
|
+
*/
|
|
8932
|
+
testDataSize?: number;
|
|
8933
|
+
/** Validation data inputs. */
|
|
8934
|
+
validationData?: MLTableJobInput;
|
|
8935
|
+
/**
|
|
8936
|
+
* The fraction of training dataset that needs to be set aside for validation purpose.
|
|
8937
|
+
* Values between (0.0 , 1.0)
|
|
8938
|
+
* Applied when validation dataset is not provided.
|
|
8939
|
+
*/
|
|
8940
|
+
validationDataSize?: number;
|
|
8941
|
+
/** The name of the sample weight column. Automated ML supports a weighted column as an input, causing rows in the data to be weighted up or down. */
|
|
8942
|
+
weightColumnName?: string;
|
|
8943
|
+
}
|
|
8944
|
+
|
|
8945
|
+
/** Featurization Configuration. */
|
|
8946
|
+
export declare interface TableVerticalFeaturizationSettings extends FeaturizationSettings {
|
|
8947
|
+
/** These transformers shall not be used in featurization. */
|
|
8948
|
+
blockedTransformers?: BlockedTransformers[];
|
|
8949
|
+
/** Dictionary of column name and its type (int, float, string, datetime etc). */
|
|
8950
|
+
columnNameAndTypes?: {
|
|
8951
|
+
[propertyName: string]: string | null;
|
|
8952
|
+
};
|
|
8953
|
+
/** Determines whether to use Dnn based featurizers for data featurization. */
|
|
8954
|
+
enableDnnFeaturization?: boolean;
|
|
8955
|
+
/**
|
|
8956
|
+
* Featurization mode - User can keep the default 'Auto' mode and AutoML will take care of necessary transformation of the data in featurization phase.
|
|
8957
|
+
* If 'Off' is selected then no featurization is done.
|
|
8958
|
+
* If 'Custom' is selected then user can specify additional inputs to customize how featurization is done.
|
|
8959
|
+
*/
|
|
8960
|
+
mode?: FeaturizationMode;
|
|
8961
|
+
/** User can specify additional transformers to be used along with the columns to which it would be applied and parameters for the transformer constructor. */
|
|
8962
|
+
transformerParams?: {
|
|
8963
|
+
[propertyName: string]: ColumnTransformer[] | null;
|
|
8964
|
+
};
|
|
8965
|
+
}
|
|
8966
|
+
|
|
8967
|
+
/** Job execution constraints. */
|
|
8968
|
+
export declare interface TableVerticalLimitSettings {
|
|
8969
|
+
/** Enable early termination, determines whether or not if AutoMLJob will terminate early if there is no score improvement in last 20 iterations. */
|
|
8970
|
+
enableEarlyTermination?: boolean;
|
|
8971
|
+
/** Exit score for the AutoML job. */
|
|
8972
|
+
exitScore?: number;
|
|
8973
|
+
/** Maximum Concurrent iterations. */
|
|
8974
|
+
maxConcurrentTrials?: number;
|
|
8975
|
+
/** Max cores per iteration. */
|
|
8976
|
+
maxCoresPerTrial?: number;
|
|
8977
|
+
/** Number of iterations. */
|
|
8978
|
+
maxTrials?: number;
|
|
8979
|
+
/** AutoML job timeout. */
|
|
8980
|
+
timeout?: string;
|
|
8981
|
+
/** Iteration timeout. */
|
|
8982
|
+
trialTimeout?: string;
|
|
8983
|
+
}
|
|
8984
|
+
|
|
8985
|
+
/**
|
|
8986
|
+
* Defines values for TargetAggregationFunction. \
|
|
8987
|
+
* {@link KnownTargetAggregationFunction} can be used interchangeably with TargetAggregationFunction,
|
|
8988
|
+
* this enum contains the known values that the service supports.
|
|
8989
|
+
* ### Known values supported by the service
|
|
8990
|
+
* **None**: Represent no value set. \
|
|
8991
|
+
* **Sum** \
|
|
8992
|
+
* **Max** \
|
|
8993
|
+
* **Min** \
|
|
8994
|
+
* **Mean**
|
|
8995
|
+
*/
|
|
8996
|
+
export declare type TargetAggregationFunction = string;
|
|
8997
|
+
|
|
8998
|
+
/** The number of past periods to lag from the target column. */
|
|
8999
|
+
export declare interface TargetLags {
|
|
9000
|
+
/** Polymorphic discriminator, which specifies the different types this object can be */
|
|
9001
|
+
mode: "Auto" | "Custom";
|
|
9002
|
+
}
|
|
9003
|
+
|
|
9004
|
+
/**
|
|
9005
|
+
* Defines values for TargetLagsMode. \
|
|
9006
|
+
* {@link KnownTargetLagsMode} can be used interchangeably with TargetLagsMode,
|
|
9007
|
+
* this enum contains the known values that the service supports.
|
|
9008
|
+
* ### Known values supported by the service
|
|
9009
|
+
* **Auto**: Target lags to be determined automatically. \
|
|
9010
|
+
* **Custom**: Use the custom target lags.
|
|
9011
|
+
*/
|
|
9012
|
+
export declare type TargetLagsMode = string;
|
|
9013
|
+
|
|
9014
|
+
export declare type TargetLagsUnion = TargetLags | AutoTargetLags | CustomTargetLags;
|
|
9015
|
+
|
|
9016
|
+
/** Forecasting target rolling window size. */
|
|
9017
|
+
export declare interface TargetRollingWindowSize {
|
|
9018
|
+
/** Polymorphic discriminator, which specifies the different types this object can be */
|
|
9019
|
+
mode: "Auto" | "Custom";
|
|
9020
|
+
}
|
|
9021
|
+
|
|
9022
|
+
/**
|
|
9023
|
+
* Defines values for TargetRollingWindowSizeMode. \
|
|
9024
|
+
* {@link KnownTargetRollingWindowSizeMode} can be used interchangeably with TargetRollingWindowSizeMode,
|
|
9025
|
+
* this enum contains the known values that the service supports.
|
|
9026
|
+
* ### Known values supported by the service
|
|
9027
|
+
* **Auto**: Determine rolling windows size automatically. \
|
|
9028
|
+
* **Custom**: Use the specified rolling window size.
|
|
9029
|
+
*/
|
|
9030
|
+
export declare type TargetRollingWindowSizeMode = string;
|
|
9031
|
+
|
|
9032
|
+
export declare type TargetRollingWindowSizeUnion = TargetRollingWindowSize | AutoTargetRollingWindowSize | CustomTargetRollingWindowSize;
|
|
9033
|
+
|
|
6917
9034
|
export declare interface TargetUtilizationScaleSettings extends OnlineScaleSettings {
|
|
6918
9035
|
/** Polymorphic discriminator, which specifies the different types this object can be */
|
|
6919
9036
|
scaleType: "TargetUtilization";
|
|
@@ -6927,6 +9044,32 @@ export declare interface TargetUtilizationScaleSettings extends OnlineScaleSetti
|
|
|
6927
9044
|
targetUtilizationPercentage?: number;
|
|
6928
9045
|
}
|
|
6929
9046
|
|
|
9047
|
+
/**
|
|
9048
|
+
* Defines values for TaskType. \
|
|
9049
|
+
* {@link KnownTaskType} can be used interchangeably with TaskType,
|
|
9050
|
+
* this enum contains the known values that the service supports.
|
|
9051
|
+
* ### Known values supported by the service
|
|
9052
|
+
* **Classification**: Classification in machine learning and statistics is a supervised learning approach in which
|
|
9053
|
+
* the computer program learns from the data given to it and make new observations or classifications. \
|
|
9054
|
+
* **Regression**: Regression means to predict the value using the input data. Regression models are used to predict a continuous value. \
|
|
9055
|
+
* **Forecasting**: Forecasting is a special kind of regression task that deals with time-series data and creates forecasting model
|
|
9056
|
+
* that can be used to predict the near future values based on the inputs. \
|
|
9057
|
+
* **ImageClassification**: Image Classification. Multi-class image classification is used when an image is classified with only a single label
|
|
9058
|
+
* from a set of classes - e.g. each image is classified as either an image of a 'cat' or a 'dog' or a 'duck'. \
|
|
9059
|
+
* **ImageClassificationMultilabel**: Image Classification Multilabel. Multi-label image classification is used when an image could have one or more labels
|
|
9060
|
+
* from a set of labels - e.g. an image could be labeled with both 'cat' and 'dog'. \
|
|
9061
|
+
* **ImageObjectDetection**: Image Object Detection. Object detection is used to identify objects in an image and locate each object with a
|
|
9062
|
+
* bounding box e.g. locate all dogs and cats in an image and draw a bounding box around each. \
|
|
9063
|
+
* **ImageInstanceSegmentation**: Image Instance Segmentation. Instance segmentation is used to identify objects in an image at the pixel level,
|
|
9064
|
+
* drawing a polygon around each object in the image. \
|
|
9065
|
+
* **TextClassification**: Text classification (also known as text tagging or text categorization) is the process of sorting texts into categories.
|
|
9066
|
+
* Categories are mutually exclusive. \
|
|
9067
|
+
* **TextClassificationMultilabel**: Multilabel classification task assigns each sample to a group (zero or more) of target labels. \
|
|
9068
|
+
* **TextNER**: Text Named Entity Recognition a.k.a. TextNER.
|
|
9069
|
+
* Named Entity Recognition (NER) is the ability to take free-form text and identify the occurrences of entities such as people, locations, organizations, and more.
|
|
9070
|
+
*/
|
|
9071
|
+
export declare type TaskType = string;
|
|
9072
|
+
|
|
6930
9073
|
/** TensorFlow distribution configuration. */
|
|
6931
9074
|
export declare interface TensorFlow extends DistributionConfiguration {
|
|
6932
9075
|
/** Polymorphic discriminator, which specifies the different types this object can be */
|
|
@@ -6937,6 +9080,42 @@ export declare interface TensorFlow extends DistributionConfiguration {
|
|
|
6937
9080
|
workerCount?: number;
|
|
6938
9081
|
}
|
|
6939
9082
|
|
|
9083
|
+
/**
|
|
9084
|
+
* Text Classification task in AutoML NLP vertical.
|
|
9085
|
+
* NLP - Natural Language Processing.
|
|
9086
|
+
*/
|
|
9087
|
+
export declare interface TextClassification extends NlpVertical, AutoMLVertical {
|
|
9088
|
+
/** Primary metric for Text-Classification task. */
|
|
9089
|
+
primaryMetric?: ClassificationPrimaryMetrics;
|
|
9090
|
+
}
|
|
9091
|
+
|
|
9092
|
+
/**
|
|
9093
|
+
* Text Classification Multilabel task in AutoML NLP vertical.
|
|
9094
|
+
* NLP - Natural Language Processing.
|
|
9095
|
+
*/
|
|
9096
|
+
export declare interface TextClassificationMultilabel extends NlpVertical, AutoMLVertical {
|
|
9097
|
+
/**
|
|
9098
|
+
* Primary metric for Text-Classification-Multilabel task.
|
|
9099
|
+
* Currently only Accuracy is supported as primary metric, hence user need not set it explicitly.
|
|
9100
|
+
* NOTE: This property will not be serialized. It can only be populated by the server.
|
|
9101
|
+
*/
|
|
9102
|
+
readonly primaryMetric?: ClassificationMultilabelPrimaryMetrics;
|
|
9103
|
+
}
|
|
9104
|
+
|
|
9105
|
+
/**
|
|
9106
|
+
* Text-NER task in AutoML NLP vertical.
|
|
9107
|
+
* NER - Named Entity Recognition.
|
|
9108
|
+
* NLP - Natural Language Processing.
|
|
9109
|
+
*/
|
|
9110
|
+
export declare interface TextNer extends NlpVertical, AutoMLVertical {
|
|
9111
|
+
/**
|
|
9112
|
+
* Primary metric for Text-NER task.
|
|
9113
|
+
* Only 'Accuracy' is supported for Text-NER, so user need not set this explicitly.
|
|
9114
|
+
* NOTE: This property will not be serialized. It can only be populated by the server.
|
|
9115
|
+
*/
|
|
9116
|
+
readonly primaryMetric?: ClassificationPrimaryMetrics;
|
|
9117
|
+
}
|
|
9118
|
+
|
|
6940
9119
|
/** The resource model definition for an Azure Resource Manager tracked top level resource which has 'tags' and a 'location' */
|
|
6941
9120
|
export declare interface TrackedResource extends Resource {
|
|
6942
9121
|
/** Resource tags. */
|
|
@@ -6947,6 +9126,27 @@ export declare interface TrackedResource extends Resource {
|
|
|
6947
9126
|
location: string;
|
|
6948
9127
|
}
|
|
6949
9128
|
|
|
9129
|
+
/** Training related configuration. */
|
|
9130
|
+
export declare interface TrainingSettings {
|
|
9131
|
+
/** Enable recommendation of DNN models. */
|
|
9132
|
+
enableDnnTraining?: boolean;
|
|
9133
|
+
/** Flag to turn on explainability on best model. */
|
|
9134
|
+
enableModelExplainability?: boolean;
|
|
9135
|
+
/** Flag for enabling onnx compatible models. */
|
|
9136
|
+
enableOnnxCompatibleModels?: boolean;
|
|
9137
|
+
/** Enable stack ensemble run. */
|
|
9138
|
+
enableStackEnsemble?: boolean;
|
|
9139
|
+
/** Enable voting ensemble run. */
|
|
9140
|
+
enableVoteEnsemble?: boolean;
|
|
9141
|
+
/**
|
|
9142
|
+
* During VotingEnsemble and StackEnsemble model generation, multiple fitted models from the previous child runs are downloaded.
|
|
9143
|
+
* Configure this parameter with a higher value than 300 secs, if more time is needed.
|
|
9144
|
+
*/
|
|
9145
|
+
ensembleModelDownloadTimeout?: string;
|
|
9146
|
+
/** Stack ensemble settings for stack ensemble run. */
|
|
9147
|
+
stackEnsembleSettings?: StackEnsembleSettings;
|
|
9148
|
+
}
|
|
9149
|
+
|
|
6950
9150
|
/** Trial component definition. */
|
|
6951
9151
|
export declare interface TrialComponent {
|
|
6952
9152
|
/** ARM resource ID of the code asset. */
|
|
@@ -6962,9 +9162,39 @@ export declare interface TrialComponent {
|
|
|
6962
9162
|
[propertyName: string]: string | null;
|
|
6963
9163
|
};
|
|
6964
9164
|
/** Compute Resource configuration for the job. */
|
|
6965
|
-
resources?:
|
|
9165
|
+
resources?: JobResourceConfiguration;
|
|
6966
9166
|
}
|
|
6967
9167
|
|
|
9168
|
+
export declare interface TriggerBase {
|
|
9169
|
+
/** Polymorphic discriminator, which specifies the different types this object can be */
|
|
9170
|
+
triggerType: "Recurrence" | "Cron";
|
|
9171
|
+
/**
|
|
9172
|
+
* Specifies end time of schedule in ISO 8601, but without a UTC offset. Refer https://en.wikipedia.org/wiki/ISO_8601.
|
|
9173
|
+
* Recommented format would be "2022-06-01T00:00:01"
|
|
9174
|
+
* If not present, the schedule will run indefinitely
|
|
9175
|
+
*/
|
|
9176
|
+
endTime?: string;
|
|
9177
|
+
/** Specifies start time of schedule in ISO 8601 format, but without a UTC offset. */
|
|
9178
|
+
startTime?: string;
|
|
9179
|
+
/**
|
|
9180
|
+
* Specifies time zone in which the schedule runs.
|
|
9181
|
+
* TimeZone should follow Windows time zone format. Refer: https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/default-time-zones?view=windows-11
|
|
9182
|
+
*/
|
|
9183
|
+
timeZone?: string;
|
|
9184
|
+
}
|
|
9185
|
+
|
|
9186
|
+
export declare type TriggerBaseUnion = TriggerBase | RecurrenceTrigger | CronTrigger;
|
|
9187
|
+
|
|
9188
|
+
/**
|
|
9189
|
+
* Defines values for TriggerType. \
|
|
9190
|
+
* {@link KnownTriggerType} can be used interchangeably with TriggerType,
|
|
9191
|
+
* this enum contains the known values that the service supports.
|
|
9192
|
+
* ### Known values supported by the service
|
|
9193
|
+
* **Recurrence** \
|
|
9194
|
+
* **Cron**
|
|
9195
|
+
*/
|
|
9196
|
+
export declare type TriggerType = string;
|
|
9197
|
+
|
|
6968
9198
|
export declare interface TritonModelJobInput extends AssetJobInput, JobInput {
|
|
6969
9199
|
}
|
|
6970
9200
|
|
|
@@ -7182,6 +9412,29 @@ export declare interface UsernamePasswordAuthTypeWorkspaceConnectionProperties e
|
|
|
7182
9412
|
credentials?: WorkspaceConnectionUsernamePassword;
|
|
7183
9413
|
}
|
|
7184
9414
|
|
|
9415
|
+
/**
|
|
9416
|
+
* Defines values for UseStl. \
|
|
9417
|
+
* {@link KnownUseStl} can be used interchangeably with UseStl,
|
|
9418
|
+
* this enum contains the known values that the service supports.
|
|
9419
|
+
* ### Known values supported by the service
|
|
9420
|
+
* **None**: No stl decomposition. \
|
|
9421
|
+
* **Season** \
|
|
9422
|
+
* **SeasonTrend**
|
|
9423
|
+
*/
|
|
9424
|
+
export declare type UseStl = string;
|
|
9425
|
+
|
|
9426
|
+
/**
|
|
9427
|
+
* Defines values for ValidationMetricType. \
|
|
9428
|
+
* {@link KnownValidationMetricType} can be used interchangeably with ValidationMetricType,
|
|
9429
|
+
* this enum contains the known values that the service supports.
|
|
9430
|
+
* ### Known values supported by the service
|
|
9431
|
+
* **None**: No metric. \
|
|
9432
|
+
* **Coco**: Coco metric. \
|
|
9433
|
+
* **Voc**: Voc metric. \
|
|
9434
|
+
* **CocoVoc**: CocoVoc metric.
|
|
9435
|
+
*/
|
|
9436
|
+
export declare type ValidationMetricType = string;
|
|
9437
|
+
|
|
7185
9438
|
/**
|
|
7186
9439
|
* Defines values for ValueFormat. \
|
|
7187
9440
|
* {@link KnownValueFormat} can be used interchangeably with ValueFormat,
|
|
@@ -7352,6 +9605,21 @@ export declare type VmPriority = string;
|
|
|
7352
9605
|
*/
|
|
7353
9606
|
export declare type VMTier = string;
|
|
7354
9607
|
|
|
9608
|
+
/**
|
|
9609
|
+
* Defines values for WeekDay. \
|
|
9610
|
+
* {@link KnownWeekDay} can be used interchangeably with WeekDay,
|
|
9611
|
+
* this enum contains the known values that the service supports.
|
|
9612
|
+
* ### Known values supported by the service
|
|
9613
|
+
* **Monday**: Monday weekday \
|
|
9614
|
+
* **Tuesday**: Tuesday weekday \
|
|
9615
|
+
* **Wednesday**: Wednesday weekday \
|
|
9616
|
+
* **Thursday**: Thursday weekday \
|
|
9617
|
+
* **Friday**: Friday weekday \
|
|
9618
|
+
* **Saturday**: Saturday weekday \
|
|
9619
|
+
* **Sunday**: Sunday weekday
|
|
9620
|
+
*/
|
|
9621
|
+
export declare type WeekDay = string;
|
|
9622
|
+
|
|
7355
9623
|
/** An object that represents a machine learning workspace. */
|
|
7356
9624
|
export declare interface Workspace extends Resource {
|
|
7357
9625
|
/** The identity of the resource. */
|