@azure/arm-machinelearning 2.0.1-alpha.20221020.1 → 2.1.0-alpha.20221101.2

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (184) hide show
  1. package/CHANGELOG.md +173 -10
  2. package/dist/index.js +6417 -3094
  3. package/dist/index.js.map +1 -1
  4. package/dist/index.min.js +1 -1
  5. package/dist/index.min.js.map +1 -1
  6. package/dist-esm/samples-dev/batchDeploymentsCreateOrUpdateSample.js +1 -1
  7. package/dist-esm/samples-dev/batchDeploymentsDeleteSample.js +1 -1
  8. package/dist-esm/samples-dev/batchDeploymentsGetSample.js +1 -1
  9. package/dist-esm/samples-dev/batchDeploymentsListSample.js +1 -1
  10. package/dist-esm/samples-dev/batchDeploymentsUpdateSample.js +1 -1
  11. package/dist-esm/samples-dev/batchEndpointsCreateOrUpdateSample.js +1 -1
  12. package/dist-esm/samples-dev/batchEndpointsDeleteSample.js +1 -1
  13. package/dist-esm/samples-dev/batchEndpointsGetSample.js +1 -1
  14. package/dist-esm/samples-dev/batchEndpointsListKeysSample.js +1 -1
  15. package/dist-esm/samples-dev/batchEndpointsListSample.js +1 -1
  16. package/dist-esm/samples-dev/batchEndpointsUpdateSample.js +1 -1
  17. package/dist-esm/samples-dev/codeContainersCreateOrUpdateSample.js +1 -1
  18. package/dist-esm/samples-dev/codeContainersDeleteSample.js +1 -1
  19. package/dist-esm/samples-dev/codeContainersGetSample.js +1 -1
  20. package/dist-esm/samples-dev/codeContainersListSample.js +1 -1
  21. package/dist-esm/samples-dev/codeVersionsCreateOrUpdateSample.js +1 -1
  22. package/dist-esm/samples-dev/codeVersionsDeleteSample.js +1 -1
  23. package/dist-esm/samples-dev/codeVersionsGetSample.js +1 -1
  24. package/dist-esm/samples-dev/codeVersionsListSample.js +1 -1
  25. package/dist-esm/samples-dev/componentContainersCreateOrUpdateSample.js +1 -1
  26. package/dist-esm/samples-dev/componentContainersDeleteSample.js +1 -1
  27. package/dist-esm/samples-dev/componentContainersGetSample.js +1 -1
  28. package/dist-esm/samples-dev/componentContainersListSample.js +1 -1
  29. package/dist-esm/samples-dev/componentVersionsCreateOrUpdateSample.js +1 -1
  30. package/dist-esm/samples-dev/componentVersionsDeleteSample.js +1 -1
  31. package/dist-esm/samples-dev/componentVersionsGetSample.js +1 -1
  32. package/dist-esm/samples-dev/componentVersionsListSample.js +1 -1
  33. package/dist-esm/samples-dev/computeCreateOrUpdateSample.js +60 -8
  34. package/dist-esm/samples-dev/computeCreateOrUpdateSample.js.map +1 -1
  35. package/dist-esm/samples-dev/computeDeleteSample.js +1 -1
  36. package/dist-esm/samples-dev/computeGetSample.js +4 -4
  37. package/dist-esm/samples-dev/computeListKeysSample.js +1 -1
  38. package/dist-esm/samples-dev/computeListNodesSample.js +1 -1
  39. package/dist-esm/samples-dev/computeListSample.js +1 -1
  40. package/dist-esm/samples-dev/computeRestartSample.js +1 -1
  41. package/dist-esm/samples-dev/computeStartSample.js +1 -1
  42. package/dist-esm/samples-dev/computeStopSample.js +1 -1
  43. package/dist-esm/samples-dev/computeUpdateSample.js +1 -1
  44. package/dist-esm/samples-dev/dataContainersCreateOrUpdateSample.js +1 -1
  45. package/dist-esm/samples-dev/dataContainersDeleteSample.js +1 -1
  46. package/dist-esm/samples-dev/dataContainersGetSample.js +1 -1
  47. package/dist-esm/samples-dev/dataContainersListSample.js +1 -1
  48. package/dist-esm/samples-dev/dataVersionsCreateOrUpdateSample.js +1 -1
  49. package/dist-esm/samples-dev/dataVersionsDeleteSample.js +1 -1
  50. package/dist-esm/samples-dev/dataVersionsGetSample.js +1 -1
  51. package/dist-esm/samples-dev/dataVersionsListSample.js +1 -1
  52. package/dist-esm/samples-dev/datastoresCreateOrUpdateSample.js +4 -4
  53. package/dist-esm/samples-dev/datastoresDeleteSample.js +1 -1
  54. package/dist-esm/samples-dev/datastoresGetSample.js +1 -1
  55. package/dist-esm/samples-dev/datastoresListSample.js +1 -1
  56. package/dist-esm/samples-dev/datastoresListSecretsSample.js +1 -1
  57. package/dist-esm/samples-dev/environmentContainersCreateOrUpdateSample.js +1 -1
  58. package/dist-esm/samples-dev/environmentContainersDeleteSample.js +1 -1
  59. package/dist-esm/samples-dev/environmentContainersGetSample.js +1 -1
  60. package/dist-esm/samples-dev/environmentContainersListSample.js +1 -1
  61. package/dist-esm/samples-dev/environmentVersionsCreateOrUpdateSample.js +1 -1
  62. package/dist-esm/samples-dev/environmentVersionsDeleteSample.js +1 -1
  63. package/dist-esm/samples-dev/environmentVersionsGetSample.js +1 -1
  64. package/dist-esm/samples-dev/environmentVersionsListSample.js +1 -1
  65. package/dist-esm/samples-dev/jobsCancelSample.js +1 -1
  66. package/dist-esm/samples-dev/jobsCreateOrUpdateSample.js +66 -3
  67. package/dist-esm/samples-dev/jobsCreateOrUpdateSample.js.map +1 -1
  68. package/dist-esm/samples-dev/jobsDeleteSample.js +1 -1
  69. package/dist-esm/samples-dev/jobsGetSample.js +22 -3
  70. package/dist-esm/samples-dev/jobsGetSample.js.map +1 -1
  71. package/dist-esm/samples-dev/jobsListSample.js +44 -12
  72. package/dist-esm/samples-dev/jobsListSample.js.map +1 -1
  73. package/dist-esm/samples-dev/modelContainersCreateOrUpdateSample.js +1 -1
  74. package/dist-esm/samples-dev/modelContainersDeleteSample.js +1 -1
  75. package/dist-esm/samples-dev/modelContainersGetSample.js +1 -1
  76. package/dist-esm/samples-dev/modelContainersListSample.js +1 -1
  77. package/dist-esm/samples-dev/modelVersionsCreateOrUpdateSample.js +1 -1
  78. package/dist-esm/samples-dev/modelVersionsDeleteSample.js +1 -1
  79. package/dist-esm/samples-dev/modelVersionsGetSample.js +1 -1
  80. package/dist-esm/samples-dev/modelVersionsListSample.js +1 -1
  81. package/dist-esm/samples-dev/onlineDeploymentsCreateOrUpdateSample.js +2 -2
  82. package/dist-esm/samples-dev/onlineDeploymentsDeleteSample.js +1 -1
  83. package/dist-esm/samples-dev/onlineDeploymentsGetLogsSample.js +1 -1
  84. package/dist-esm/samples-dev/onlineDeploymentsGetSample.js +2 -2
  85. package/dist-esm/samples-dev/onlineDeploymentsListSample.js +1 -1
  86. package/dist-esm/samples-dev/onlineDeploymentsListSkusSample.js +2 -2
  87. package/dist-esm/samples-dev/onlineDeploymentsUpdateSample.js +2 -2
  88. package/dist-esm/samples-dev/onlineEndpointsCreateOrUpdateSample.js +1 -1
  89. package/dist-esm/samples-dev/onlineEndpointsDeleteSample.js +1 -1
  90. package/dist-esm/samples-dev/onlineEndpointsGetSample.js +1 -1
  91. package/dist-esm/samples-dev/onlineEndpointsGetTokenSample.js +1 -1
  92. package/dist-esm/samples-dev/onlineEndpointsListKeysSample.js +1 -1
  93. package/dist-esm/samples-dev/onlineEndpointsListSample.js +1 -1
  94. package/dist-esm/samples-dev/onlineEndpointsRegenerateKeysSample.js +1 -1
  95. package/dist-esm/samples-dev/onlineEndpointsUpdateSample.js +1 -1
  96. package/dist-esm/samples-dev/operationsListSample.js +1 -1
  97. package/dist-esm/samples-dev/privateEndpointConnectionsCreateOrUpdateSample.js +1 -1
  98. package/dist-esm/samples-dev/privateEndpointConnectionsDeleteSample.js +1 -1
  99. package/dist-esm/samples-dev/privateEndpointConnectionsGetSample.js +1 -1
  100. package/dist-esm/samples-dev/privateEndpointConnectionsListSample.js +1 -1
  101. package/dist-esm/samples-dev/privateLinkResourcesListSample.js +1 -1
  102. package/dist-esm/samples-dev/quotasListSample.js +1 -1
  103. package/dist-esm/samples-dev/quotasUpdateSample.js +1 -1
  104. package/dist-esm/samples-dev/schedulesCreateOrUpdateSample.d.ts +2 -0
  105. package/dist-esm/samples-dev/schedulesCreateOrUpdateSample.d.ts.map +1 -0
  106. package/dist-esm/samples-dev/schedulesCreateOrUpdateSample.js +54 -0
  107. package/dist-esm/samples-dev/schedulesCreateOrUpdateSample.js.map +1 -0
  108. package/dist-esm/samples-dev/schedulesDeleteSample.d.ts +2 -0
  109. package/dist-esm/samples-dev/schedulesDeleteSample.d.ts.map +1 -0
  110. package/dist-esm/samples-dev/schedulesDeleteSample.js +32 -0
  111. package/dist-esm/samples-dev/schedulesDeleteSample.js.map +1 -0
  112. package/dist-esm/samples-dev/schedulesGetSample.d.ts +2 -0
  113. package/dist-esm/samples-dev/schedulesGetSample.d.ts.map +1 -0
  114. package/dist-esm/samples-dev/schedulesGetSample.js +32 -0
  115. package/dist-esm/samples-dev/schedulesGetSample.js.map +1 -0
  116. package/dist-esm/samples-dev/schedulesListSample.d.ts +2 -0
  117. package/dist-esm/samples-dev/schedulesListSample.d.ts.map +1 -0
  118. package/dist-esm/samples-dev/schedulesListSample.js +45 -0
  119. package/dist-esm/samples-dev/schedulesListSample.js.map +1 -0
  120. package/dist-esm/samples-dev/usagesListSample.js +1 -1
  121. package/dist-esm/samples-dev/virtualMachineSizesListSample.js +1 -1
  122. package/dist-esm/samples-dev/workspaceConnectionsCreateSample.js +1 -1
  123. package/dist-esm/samples-dev/workspaceConnectionsDeleteSample.js +1 -1
  124. package/dist-esm/samples-dev/workspaceConnectionsGetSample.js +1 -1
  125. package/dist-esm/samples-dev/workspaceConnectionsListSample.js +1 -1
  126. package/dist-esm/samples-dev/workspaceFeaturesListSample.js +1 -1
  127. package/dist-esm/samples-dev/workspacesCreateOrUpdateSample.js +1 -1
  128. package/dist-esm/samples-dev/workspacesDeleteSample.js +1 -1
  129. package/dist-esm/samples-dev/workspacesDiagnoseSample.js +1 -1
  130. package/dist-esm/samples-dev/workspacesGetSample.js +1 -1
  131. package/dist-esm/samples-dev/workspacesListByResourceGroupSample.js +1 -1
  132. package/dist-esm/samples-dev/workspacesListBySubscriptionSample.js +1 -1
  133. package/dist-esm/samples-dev/workspacesListKeysSample.js +1 -1
  134. package/dist-esm/samples-dev/workspacesListNotebookAccessTokenSample.js +1 -1
  135. package/dist-esm/samples-dev/workspacesListNotebookKeysSample.js +1 -1
  136. package/dist-esm/samples-dev/workspacesListOutboundNetworkDependenciesEndpointsSample.js +1 -1
  137. package/dist-esm/samples-dev/workspacesListStorageAccountKeysSample.js +1 -1
  138. package/dist-esm/samples-dev/workspacesPrepareNotebookSample.js +1 -1
  139. package/dist-esm/samples-dev/workspacesResyncKeysSample.js +1 -1
  140. package/dist-esm/samples-dev/workspacesUpdateSample.js +1 -1
  141. package/dist-esm/src/azureMachineLearningWorkspaces.d.ts +2 -1
  142. package/dist-esm/src/azureMachineLearningWorkspaces.d.ts.map +1 -1
  143. package/dist-esm/src/azureMachineLearningWorkspaces.js +4 -3
  144. package/dist-esm/src/azureMachineLearningWorkspaces.js.map +1 -1
  145. package/dist-esm/src/models/index.d.ts +2177 -118
  146. package/dist-esm/src/models/index.d.ts.map +1 -1
  147. package/dist-esm/src/models/index.js +645 -42
  148. package/dist-esm/src/models/index.js.map +1 -1
  149. package/dist-esm/src/models/mappers.d.ts +107 -8
  150. package/dist-esm/src/models/mappers.d.ts.map +1 -1
  151. package/dist-esm/src/models/mappers.js +3218 -915
  152. package/dist-esm/src/models/mappers.js.map +1 -1
  153. package/dist-esm/src/models/parameters.d.ts +2 -0
  154. package/dist-esm/src/models/parameters.d.ts.map +1 -1
  155. package/dist-esm/src/models/parameters.js +15 -2
  156. package/dist-esm/src/models/parameters.js.map +1 -1
  157. package/dist-esm/src/operations/index.d.ts +1 -0
  158. package/dist-esm/src/operations/index.d.ts.map +1 -1
  159. package/dist-esm/src/operations/index.js +1 -0
  160. package/dist-esm/src/operations/index.js.map +1 -1
  161. package/dist-esm/src/operations/schedules.d.ts +81 -0
  162. package/dist-esm/src/operations/schedules.d.ts.map +1 -0
  163. package/dist-esm/src/operations/schedules.js +343 -0
  164. package/dist-esm/src/operations/schedules.js.map +1 -0
  165. package/dist-esm/src/operationsInterfaces/index.d.ts +1 -0
  166. package/dist-esm/src/operationsInterfaces/index.d.ts.map +1 -1
  167. package/dist-esm/src/operationsInterfaces/index.js +1 -0
  168. package/dist-esm/src/operationsInterfaces/index.js.map +1 -1
  169. package/dist-esm/src/operationsInterfaces/schedules.d.ts +56 -0
  170. package/dist-esm/src/operationsInterfaces/schedules.d.ts.map +1 -0
  171. package/dist-esm/src/operationsInterfaces/schedules.js +9 -0
  172. package/dist-esm/src/operationsInterfaces/schedules.js.map +1 -0
  173. package/package.json +3 -2
  174. package/review/arm-machinelearning.api.md +1033 -11
  175. package/src/azureMachineLearningWorkspaces.ts +6 -2
  176. package/src/models/index.ts +2662 -410
  177. package/src/models/mappers.ts +4026 -1470
  178. package/src/models/parameters.ts +18 -2
  179. package/src/operations/index.ts +1 -0
  180. package/src/operations/schedules.ts +476 -0
  181. package/src/operationsInterfaces/index.ts +1 -0
  182. package/src/operationsInterfaces/schedules.ts +109 -0
  183. package/types/arm-machinelearning.d.ts +2348 -80
  184. package/types/tsdoc-metadata.json +1 -1
@@ -318,12 +318,81 @@ export declare interface AssignedUser {
318
318
  tenantId: string;
319
319
  }
320
320
 
321
+ /** Forecast horizon determined automatically by system. */
322
+ export declare interface AutoForecastHorizon extends ForecastHorizon {
323
+ /** Polymorphic discriminator, which specifies the different types this object can be */
324
+ mode: "Auto";
325
+ }
326
+
327
+ /**
328
+ * AutoMLJob class.
329
+ * Use this class for executing AutoML tasks like Classification/Regression etc.
330
+ * See TaskType enum for all the tasks supported.
331
+ */
332
+ export declare interface AutoMLJob extends JobBaseProperties {
333
+ /** Polymorphic discriminator, which specifies the different types this object can be */
334
+ jobType: "AutoML";
335
+ /**
336
+ * The ARM resource ID of the Environment specification for the job.
337
+ * This is optional value to provide, if not provided, AutoML will default this to Production AutoML curated environment version when running the job.
338
+ */
339
+ environmentId?: string;
340
+ /** Environment variables included in the job. */
341
+ environmentVariables?: {
342
+ [propertyName: string]: string | null;
343
+ };
344
+ /** Mapping of output data bindings used in the job. */
345
+ outputs?: {
346
+ [propertyName: string]: JobOutputUnion | null;
347
+ };
348
+ /** Compute Resource configuration for the job. */
349
+ resources?: JobResourceConfiguration;
350
+ /** [Required] This represents scenario which can be one of Tables/NLP/Image */
351
+ taskDetails: AutoMLVerticalUnion;
352
+ }
353
+
354
+ /**
355
+ * AutoML vertical class.
356
+ * Base class for AutoML verticals - TableVertical/ImageVertical/NLPVertical
357
+ */
358
+ export declare interface AutoMLVertical {
359
+ /** Polymorphic discriminator, which specifies the different types this object can be */
360
+ taskType: "Classification" | "Forecasting" | "ImageClassification" | "ImageClassificationMultilabel" | "ImageInstanceSegmentation" | "ImageObjectDetection" | "Regression" | "TextClassification" | "TextClassificationMultilabel" | "TextNER";
361
+ /** Log verbosity for the job. */
362
+ logVerbosity?: LogVerbosity;
363
+ /**
364
+ * Target column name: This is prediction values column.
365
+ * Also known as label column name in context of classification tasks.
366
+ */
367
+ targetColumnName?: string;
368
+ /** [Required] Training data input. */
369
+ trainingData: MLTableJobInput;
370
+ }
371
+
372
+ export declare type AutoMLVerticalUnion = AutoMLVertical | Classification | Forecasting | ImageClassification | ImageClassificationMultilabel | ImageInstanceSegmentation | ImageObjectDetection | Regression | TextClassification | TextClassificationMultilabel | TextNer;
373
+
374
+ /** N-Cross validations determined automatically. */
375
+ export declare interface AutoNCrossValidations extends NCrossValidations {
376
+ /** Polymorphic discriminator, which specifies the different types this object can be */
377
+ mode: "Auto";
378
+ }
379
+
321
380
  /** Auto pause properties */
322
381
  export declare interface AutoPauseProperties {
323
382
  delayInMinutes?: number;
324
383
  enabled?: boolean;
325
384
  }
326
385
 
386
+ /**
387
+ * Defines values for AutoRebuildSetting. \
388
+ * {@link KnownAutoRebuildSetting} can be used interchangeably with AutoRebuildSetting,
389
+ * this enum contains the known values that the service supports.
390
+ * ### Known values supported by the service
391
+ * **Disabled** \
392
+ * **OnBaseImageUpdate**
393
+ */
394
+ export declare type AutoRebuildSetting = string;
395
+
327
396
  /**
328
397
  * Defines values for Autosave. \
329
398
  * {@link KnownAutosave} can be used interchangeably with Autosave,
@@ -342,6 +411,22 @@ export declare interface AutoScaleProperties {
342
411
  maxNodeCount?: number;
343
412
  }
344
413
 
414
+ export declare interface AutoSeasonality extends Seasonality {
415
+ /** Polymorphic discriminator, which specifies the different types this object can be */
416
+ mode: "Auto";
417
+ }
418
+
419
+ export declare interface AutoTargetLags extends TargetLags {
420
+ /** Polymorphic discriminator, which specifies the different types this object can be */
421
+ mode: "Auto";
422
+ }
423
+
424
+ /** Target lags rolling window determined automatically. */
425
+ export declare interface AutoTargetRollingWindowSize extends TargetRollingWindowSize {
426
+ /** Polymorphic discriminator, which specifies the different types this object can be */
427
+ mode: "Auto";
428
+ }
429
+
345
430
  /** Azure Blob datastore configuration. */
346
431
  export declare interface AzureBlobDatastore extends DatastoreProperties {
347
432
  /** Polymorphic discriminator, which specifies the different types this object can be */
@@ -438,6 +523,7 @@ export declare class AzureMachineLearningWorkspaces extends coreClient.ServiceCl
438
523
  modelVersions: ModelVersions;
439
524
  onlineEndpoints: OnlineEndpoints;
440
525
  onlineDeployments: OnlineDeployments;
526
+ schedules: Schedules;
441
527
  workspaceFeatures: WorkspaceFeatures;
442
528
  }
443
529
 
@@ -509,7 +595,7 @@ export declare interface BatchDeploymentProperties extends EndpointDeploymentPro
509
595
  * Indicates compute configuration for the job.
510
596
  * If not provided, will default to the defaults defined in ResourceConfiguration.
511
597
  */
512
- resources?: ResourceConfiguration;
598
+ resources?: DeploymentResourceConfiguration;
513
599
  /**
514
600
  * Retry Settings for the batch inference operation.
515
601
  * If not provided, will default to the defaults defined in BatchRetrySettings.
@@ -951,6 +1037,24 @@ export declare interface BayesianSamplingAlgorithm extends SamplingAlgorithm {
951
1037
  */
952
1038
  export declare type BillingCurrency = string;
953
1039
 
1040
+ /**
1041
+ * Defines values for BlockedTransformers. \
1042
+ * {@link KnownBlockedTransformers} can be used interchangeably with BlockedTransformers,
1043
+ * this enum contains the known values that the service supports.
1044
+ * ### Known values supported by the service
1045
+ * **TextTargetEncoder**: Target encoding for text data. \
1046
+ * **OneHotEncoder**: Ohe hot encoding creates a binary feature transformation. \
1047
+ * **CatTargetEncoder**: Target encoding for categorical data. \
1048
+ * **TfIdf**: Tf-Idf stands for, term-frequency times inverse document-frequency. This is a common term weighting scheme for identifying information from documents. \
1049
+ * **WoETargetEncoder**: Weight of Evidence encoding is a technique used to encode categorical variables. It uses the natural log of the P(1)\/P(0) to create weights. \
1050
+ * **LabelEncoder**: Label encoder converts labels\/categorical variables in a numerical form. \
1051
+ * **WordEmbedding**: Word embedding helps represents words or phrases as a vector, or a series of numbers. \
1052
+ * **NaiveBayes**: Naive Bayes is a classified that is used for classification of discrete features that are categorically distributed. \
1053
+ * **CountVectorizer**: Count Vectorizer converts a collection of text documents to a matrix of token counts. \
1054
+ * **HashOneHotEncoder**: Hashing One Hot Encoder can turn categorical variables into a limited number of new features. This is often used for high-cardinality categorical features.
1055
+ */
1056
+ export declare type BlockedTransformers = string;
1057
+
954
1058
  /** Configuration settings for Docker build context */
955
1059
  export declare interface BuildContext {
956
1060
  /**
@@ -1002,6 +1106,92 @@ export declare interface CertificateDatastoreSecrets extends DatastoreSecrets {
1002
1106
  certificate?: string;
1003
1107
  }
1004
1108
 
1109
+ /** Classification task in AutoML Table vertical. */
1110
+ export declare interface Classification extends TableVertical, AutoMLVertical {
1111
+ /** Positive label for binary metrics calculation. */
1112
+ positiveLabel?: string;
1113
+ /** Primary metric for the task. */
1114
+ primaryMetric?: ClassificationPrimaryMetrics;
1115
+ /** Inputs for training phase for an AutoML Job. */
1116
+ trainingSettings?: ClassificationTrainingSettings;
1117
+ }
1118
+
1119
+ /**
1120
+ * Defines values for ClassificationModels. \
1121
+ * {@link KnownClassificationModels} can be used interchangeably with ClassificationModels,
1122
+ * this enum contains the known values that the service supports.
1123
+ * ### Known values supported by the service
1124
+ * **LogisticRegression**: Logistic regression is a fundamental classification technique.
1125
+ * It belongs to the group of linear classifiers and is somewhat similar to polynomial and linear regression.
1126
+ * Logistic regression is fast and relatively uncomplicated, and it's convenient for you to interpret the results.
1127
+ * Although it's essentially a method for binary classification, it can also be applied to multiclass problems. \
1128
+ * **SGD**: SGD: Stochastic gradient descent is an optimization algorithm often used in machine learning applications
1129
+ * to find the model parameters that correspond to the best fit between predicted and actual outputs. \
1130
+ * **MultinomialNaiveBayes**: The multinomial Naive Bayes classifier is suitable for classification with discrete features (e.g., word counts for text classification).
1131
+ * The multinomial distribution normally requires integer feature counts. However, in practice, fractional counts such as tf-idf may also work. \
1132
+ * **BernoulliNaiveBayes**: Naive Bayes classifier for multivariate Bernoulli models. \
1133
+ * **SVM**: A support vector machine (SVM) is a supervised machine learning model that uses classification algorithms for two-group classification problems.
1134
+ * After giving an SVM model sets of labeled training data for each category, they're able to categorize new text. \
1135
+ * **LinearSVM**: A support vector machine (SVM) is a supervised machine learning model that uses classification algorithms for two-group classification problems.
1136
+ * After giving an SVM model sets of labeled training data for each category, they're able to categorize new text.
1137
+ * Linear SVM performs best when input data is linear, i.e., data can be easily classified by drawing the straight line between classified values on a plotted graph. \
1138
+ * **KNN**: K-nearest neighbors (KNN) algorithm uses 'feature similarity' to predict the values of new datapoints
1139
+ * which further means that the new data point will be assigned a value based on how closely it matches the points in the training set. \
1140
+ * **DecisionTree**: Decision Trees are a non-parametric supervised learning method used for both classification and regression tasks.
1141
+ * The goal is to create a model that predicts the value of a target variable by learning simple decision rules inferred from the data features. \
1142
+ * **RandomForest**: Random forest is a supervised learning algorithm.
1143
+ * The "forest" it builds, is an ensemble of decision trees, usually trained with the “bagging” method.
1144
+ * The general idea of the bagging method is that a combination of learning models increases the overall result. \
1145
+ * **ExtremeRandomTrees**: Extreme Trees is an ensemble machine learning algorithm that combines the predictions from many decision trees. It is related to the widely used random forest algorithm. \
1146
+ * **LightGBM**: LightGBM is a gradient boosting framework that uses tree based learning algorithms. \
1147
+ * **GradientBoosting**: The technique of transiting week learners into a strong learner is called Boosting. The gradient boosting algorithm process works on this theory of execution. \
1148
+ * **XGBoostClassifier**: XGBoost: Extreme Gradient Boosting Algorithm. This algorithm is used for structured data where target column values can be divided into distinct class values.
1149
+ */
1150
+ export declare type ClassificationModels = string;
1151
+
1152
+ /**
1153
+ * Defines values for ClassificationMultilabelPrimaryMetrics. \
1154
+ * {@link KnownClassificationMultilabelPrimaryMetrics} can be used interchangeably with ClassificationMultilabelPrimaryMetrics,
1155
+ * this enum contains the known values that the service supports.
1156
+ * ### Known values supported by the service
1157
+ * **AUCWeighted**: AUC is the Area under the curve.
1158
+ * This metric represents arithmetic mean of the score for each class,
1159
+ * weighted by the number of true instances in each class. \
1160
+ * **Accuracy**: Accuracy is the ratio of predictions that exactly match the true class labels. \
1161
+ * **NormMacroRecall**: Normalized macro recall is recall macro-averaged and normalized, so that random
1162
+ * performance has a score of 0, and perfect performance has a score of 1. \
1163
+ * **AveragePrecisionScoreWeighted**: The arithmetic mean of the average precision score for each class, weighted by
1164
+ * the number of true instances in each class. \
1165
+ * **PrecisionScoreWeighted**: The arithmetic mean of precision for each class, weighted by number of true instances in each class. \
1166
+ * **IOU**: Intersection Over Union. Intersection of predictions divided by union of predictions.
1167
+ */
1168
+ export declare type ClassificationMultilabelPrimaryMetrics = string;
1169
+
1170
+ /**
1171
+ * Defines values for ClassificationPrimaryMetrics. \
1172
+ * {@link KnownClassificationPrimaryMetrics} can be used interchangeably with ClassificationPrimaryMetrics,
1173
+ * this enum contains the known values that the service supports.
1174
+ * ### Known values supported by the service
1175
+ * **AUCWeighted**: AUC is the Area under the curve.
1176
+ * This metric represents arithmetic mean of the score for each class,
1177
+ * weighted by the number of true instances in each class. \
1178
+ * **Accuracy**: Accuracy is the ratio of predictions that exactly match the true class labels. \
1179
+ * **NormMacroRecall**: Normalized macro recall is recall macro-averaged and normalized, so that random
1180
+ * performance has a score of 0, and perfect performance has a score of 1. \
1181
+ * **AveragePrecisionScoreWeighted**: The arithmetic mean of the average precision score for each class, weighted by
1182
+ * the number of true instances in each class. \
1183
+ * **PrecisionScoreWeighted**: The arithmetic mean of precision for each class, weighted by number of true instances in each class.
1184
+ */
1185
+ export declare type ClassificationPrimaryMetrics = string;
1186
+
1187
+ /** Classification Training related configuration. */
1188
+ export declare interface ClassificationTrainingSettings extends TrainingSettings {
1189
+ /** Allowed models for classification task. */
1190
+ allowedTrainingAlgorithms?: ClassificationModels[];
1191
+ /** Blocked models for classification task. */
1192
+ blockedTrainingAlgorithms?: ClassificationModels[];
1193
+ }
1194
+
1005
1195
  /**
1006
1196
  * Defines values for ClusterPurpose. \
1007
1197
  * {@link KnownClusterPurpose} can be used interchangeably with ClusterPurpose,
@@ -1221,6 +1411,17 @@ export declare interface CodeVersionsListOptionalParams extends coreClient.Opera
1221
1411
  /** Contains response data for the list operation. */
1222
1412
  export declare type CodeVersionsListResponse = CodeVersionResourceArmPaginatedResult;
1223
1413
 
1414
+ /** Column transformer parameters. */
1415
+ export declare interface ColumnTransformer {
1416
+ /** Fields to apply transformer logic on. */
1417
+ fields?: string[];
1418
+ /**
1419
+ * Different properties to be passed to transformer.
1420
+ * Input expected is dictionary of key,value pairs in JSON format.
1421
+ */
1422
+ parameters?: Record<string, unknown>;
1423
+ }
1424
+
1224
1425
  /** Command job definition. */
1225
1426
  export declare interface CommandJob extends JobBaseProperties {
1226
1427
  /** Polymorphic discriminator, which specifies the different types this object can be */
@@ -1253,7 +1454,7 @@ export declare interface CommandJob extends JobBaseProperties {
1253
1454
  */
1254
1455
  readonly parameters?: Record<string, unknown>;
1255
1456
  /** Compute Resource configuration for the job. */
1256
- resources?: ResourceConfiguration;
1457
+ resources?: JobResourceConfiguration;
1257
1458
  }
1258
1459
 
1259
1460
  /** Command Job limit class. */
@@ -1474,11 +1675,8 @@ export declare type ComponentVersionsListResponse = ComponentVersionResourceArmP
1474
1675
  export declare interface Compute {
1475
1676
  /** Polymorphic discriminator, which specifies the different types this object can be */
1476
1677
  computeType: "AKS" | "Kubernetes" | "AmlCompute" | "ComputeInstance" | "VirtualMachine" | "HDInsight" | "DataFactory" | "Databricks" | "DataLakeAnalytics" | "SynapseSpark";
1477
- /**
1478
- * Location for the underlying compute
1479
- * NOTE: This property will not be serialized. It can only be populated by the server.
1480
- */
1481
- readonly computeLocation?: string;
1678
+ /** Location for the underlying compute */
1679
+ computeLocation?: string;
1482
1680
  /**
1483
1681
  * The provision state of the cluster. Valid values are Unknown, Updating, Provisioning, Succeeded, and Failed.
1484
1682
  * NOTE: This property will not be serialized. It can only be populated by the server.
@@ -2056,7 +2254,7 @@ export declare interface ComputeStartOptionalParams extends coreClient.Operation
2056
2254
  /** Compute start stop schedule properties */
2057
2255
  export declare interface ComputeStartStopSchedule {
2058
2256
  /**
2059
- * Schedule id.
2257
+ * A system assigned id for the schedule.
2060
2258
  * NOTE: This property will not be serialized. It can only be populated by the server.
2061
2259
  */
2062
2260
  readonly id?: string;
@@ -2065,8 +2263,17 @@ export declare interface ComputeStartStopSchedule {
2065
2263
  * NOTE: This property will not be serialized. It can only be populated by the server.
2066
2264
  */
2067
2265
  readonly provisioningStatus?: ProvisioningStatus;
2068
- /** The compute power action. */
2266
+ /** Is the schedule enabled or disabled? */
2267
+ status?: ScheduleStatus;
2268
+ /** [Required] The compute power action. */
2069
2269
  action?: ComputePowerAction;
2270
+ /** [Required] The schedule trigger type. */
2271
+ triggerType?: TriggerType;
2272
+ /** Required if triggerType is Recurrence. */
2273
+ recurrence?: RecurrenceTrigger;
2274
+ /** Required if triggerType is Cron. */
2275
+ cron?: CronTrigger;
2276
+ /** [Deprecated] Not used any more. */
2070
2277
  schedule?: ScheduleBase;
2071
2278
  }
2072
2279
 
@@ -2199,12 +2406,59 @@ export declare type CreatedByType = string;
2199
2406
  */
2200
2407
  export declare type CredentialsType = string;
2201
2408
 
2409
+ export declare interface CronTrigger extends TriggerBase {
2410
+ /** Polymorphic discriminator, which specifies the different types this object can be */
2411
+ triggerType: "Cron";
2412
+ /**
2413
+ * [Required] Specifies cron expression of schedule.
2414
+ * The expression should follow NCronTab format.
2415
+ */
2416
+ expression: string;
2417
+ }
2418
+
2419
+ /** The desired maximum forecast horizon in units of time-series frequency. */
2420
+ export declare interface CustomForecastHorizon extends ForecastHorizon {
2421
+ /** Polymorphic discriminator, which specifies the different types this object can be */
2422
+ mode: "Custom";
2423
+ /** [Required] Forecast horizon value. */
2424
+ value: number;
2425
+ }
2426
+
2202
2427
  export declare interface CustomModelJobInput extends AssetJobInput, JobInput {
2203
2428
  }
2204
2429
 
2205
2430
  export declare interface CustomModelJobOutput extends AssetJobOutput, JobOutput {
2206
2431
  }
2207
2432
 
2433
+ /** N-Cross validations are specified by user. */
2434
+ export declare interface CustomNCrossValidations extends NCrossValidations {
2435
+ /** Polymorphic discriminator, which specifies the different types this object can be */
2436
+ mode: "Custom";
2437
+ /** [Required] N-Cross validations value. */
2438
+ value: number;
2439
+ }
2440
+
2441
+ export declare interface CustomSeasonality extends Seasonality {
2442
+ /** Polymorphic discriminator, which specifies the different types this object can be */
2443
+ mode: "Custom";
2444
+ /** [Required] Seasonality value. */
2445
+ value: number;
2446
+ }
2447
+
2448
+ export declare interface CustomTargetLags extends TargetLags {
2449
+ /** Polymorphic discriminator, which specifies the different types this object can be */
2450
+ mode: "Custom";
2451
+ /** [Required] Set target lags values. */
2452
+ values: number[];
2453
+ }
2454
+
2455
+ export declare interface CustomTargetRollingWindowSize extends TargetRollingWindowSize {
2456
+ /** Polymorphic discriminator, which specifies the different types this object can be */
2457
+ mode: "Custom";
2458
+ /** [Required] TargetRollingWindowSize value. */
2459
+ value: number;
2460
+ }
2461
+
2208
2462
  /** A DataFactory compute. */
2209
2463
  export declare interface Databricks extends Compute, DatabricksSchema {
2210
2464
  /** Polymorphic discriminator, which specifies the different types this object can be */
@@ -2554,7 +2808,7 @@ export declare interface DataVersionBase extends Resource {
2554
2808
  export declare interface DataVersionBaseProperties extends AssetBase {
2555
2809
  /** [Required] Specifies the type of data. */
2556
2810
  dataType: DataType;
2557
- /** [Required] Uri of the data. Usage/meaning depends on Microsoft.MachineLearning.ManagementFrontEnd.Contracts.V20220501.Assets.DataVersionBase.DataType */
2811
+ /** [Required] Uri of the data. Usage/meaning depends on Microsoft.MachineLearning.ManagementFrontEnd.Contracts.V20221001.Assets.DataVersionBase.DataType */
2558
2812
  dataUri: string;
2559
2813
  }
2560
2814
 
@@ -2698,6 +2952,9 @@ export declare interface DeploymentLogsRequest {
2698
2952
  */
2699
2953
  export declare type DeploymentProvisioningState = string;
2700
2954
 
2955
+ export declare interface DeploymentResourceConfiguration extends ResourceConfiguration {
2956
+ }
2957
+
2701
2958
  export declare interface DiagnoseRequestProperties {
2702
2959
  /** Setting for diagnosing user defined routing */
2703
2960
  udr?: {
@@ -2831,6 +3088,16 @@ export declare type EarlyTerminationPolicyType = string;
2831
3088
 
2832
3089
  export declare type EarlyTerminationPolicyUnion = EarlyTerminationPolicy | BanditPolicy | MedianStoppingPolicy | TruncationSelectionPolicy;
2833
3090
 
3091
+ /**
3092
+ * Defines values for EgressPublicNetworkAccessType. \
3093
+ * {@link KnownEgressPublicNetworkAccessType} can be used interchangeably with EgressPublicNetworkAccessType,
3094
+ * this enum contains the known values that the service supports.
3095
+ * ### Known values supported by the service
3096
+ * **Enabled** \
3097
+ * **Disabled**
3098
+ */
3099
+ export declare type EgressPublicNetworkAccessType = string;
3100
+
2834
3101
  export declare interface EncryptionKeyVaultProperties {
2835
3102
  /** The ArmId of the keyVault where the customer owned encryption key is present. */
2836
3103
  keyVaultArmId: string;
@@ -2960,6 +3227,16 @@ export declare interface EndpointPropertiesBase {
2960
3227
  */
2961
3228
  export declare type EndpointProvisioningState = string;
2962
3229
 
3230
+ export declare interface EndpointScheduleAction extends ScheduleActionBase {
3231
+ /** Polymorphic discriminator, which specifies the different types this object can be */
3232
+ actionType: "InvokeBatchEndpoint";
3233
+ /**
3234
+ * [Required] Defines Schedule action definition details.
3235
+ * <see href="TBD" />
3236
+ */
3237
+ endpointInvocationDefinition: Record<string, unknown>;
3238
+ }
3239
+
2963
3240
  /** Azure Resource Manager resource envelope. */
2964
3241
  export declare interface EnvironmentContainer extends Resource {
2965
3242
  /** [Required] Additional attributes of the entity. */
@@ -3072,6 +3349,8 @@ export declare interface EnvironmentVersion extends Resource {
3072
3349
 
3073
3350
  /** Environment version details. */
3074
3351
  export declare interface EnvironmentVersionProperties extends AssetBase {
3352
+ /** Defines if image needs to be rebuilt based on base image changes. */
3353
+ autoRebuild?: AutoRebuildSetting;
3075
3354
  /** Configuration settings for Docker build context. */
3076
3355
  build?: BuildContext;
3077
3356
  /**
@@ -3265,6 +3544,33 @@ export declare interface ExternalFqdnResponse {
3265
3544
  value?: FqdnEndpoints[];
3266
3545
  }
3267
3546
 
3547
+ /**
3548
+ * Defines values for FeatureLags. \
3549
+ * {@link KnownFeatureLags} can be used interchangeably with FeatureLags,
3550
+ * this enum contains the known values that the service supports.
3551
+ * ### Known values supported by the service
3552
+ * **None**: No feature lags generated. \
3553
+ * **Auto**: System auto-generates feature lags.
3554
+ */
3555
+ export declare type FeatureLags = string;
3556
+
3557
+ /**
3558
+ * Defines values for FeaturizationMode. \
3559
+ * {@link KnownFeaturizationMode} can be used interchangeably with FeaturizationMode,
3560
+ * this enum contains the known values that the service supports.
3561
+ * ### Known values supported by the service
3562
+ * **Auto**: Auto mode, system performs featurization without any custom featurization inputs. \
3563
+ * **Custom**: Custom featurization. \
3564
+ * **Off**: Featurization off. 'Forecasting' task cannot use this value.
3565
+ */
3566
+ export declare type FeaturizationMode = string;
3567
+
3568
+ /** Featurization Configuration. */
3569
+ export declare interface FeaturizationSettings {
3570
+ /** Dataset language, useful for the text data. */
3571
+ datasetLanguage?: string;
3572
+ }
3573
+
3268
3574
  export declare interface FlavorData {
3269
3575
  /** Model flavor-specific data. */
3270
3576
  data?: {
@@ -3272,6 +3578,136 @@ export declare interface FlavorData {
3272
3578
  };
3273
3579
  }
3274
3580
 
3581
+ /** The desired maximum forecast horizon in units of time-series frequency. */
3582
+ export declare interface ForecastHorizon {
3583
+ /** Polymorphic discriminator, which specifies the different types this object can be */
3584
+ mode: "Auto" | "Custom";
3585
+ }
3586
+
3587
+ /**
3588
+ * Defines values for ForecastHorizonMode. \
3589
+ * {@link KnownForecastHorizonMode} can be used interchangeably with ForecastHorizonMode,
3590
+ * this enum contains the known values that the service supports.
3591
+ * ### Known values supported by the service
3592
+ * **Auto**: Forecast horizon to be determined automatically. \
3593
+ * **Custom**: Use the custom forecast horizon.
3594
+ */
3595
+ export declare type ForecastHorizonMode = string;
3596
+
3597
+ export declare type ForecastHorizonUnion = ForecastHorizon | AutoForecastHorizon | CustomForecastHorizon;
3598
+
3599
+ /** Forecasting task in AutoML Table vertical. */
3600
+ export declare interface Forecasting extends TableVertical, AutoMLVertical {
3601
+ /** Forecasting task specific inputs. */
3602
+ forecastingSettings?: ForecastingSettings;
3603
+ /** Primary metric for forecasting task. */
3604
+ primaryMetric?: ForecastingPrimaryMetrics;
3605
+ /** Inputs for training phase for an AutoML Job. */
3606
+ trainingSettings?: ForecastingTrainingSettings;
3607
+ }
3608
+
3609
+ /**
3610
+ * Defines values for ForecastingModels. \
3611
+ * {@link KnownForecastingModels} can be used interchangeably with ForecastingModels,
3612
+ * this enum contains the known values that the service supports.
3613
+ * ### Known values supported by the service
3614
+ * **AutoArima**: Auto-Autoregressive Integrated Moving Average (ARIMA) model uses time-series data and statistical analysis to interpret the data and make future predictions.
3615
+ * This model aims to explain data by using time series data on its past values and uses linear regression to make predictions. \
3616
+ * **Prophet**: Prophet is a procedure for forecasting time series data based on an additive model where non-linear trends are fit with yearly, weekly, and daily seasonality, plus holiday effects.
3617
+ * It works best with time series that have strong seasonal effects and several seasons of historical data. Prophet is robust to missing data and shifts in the trend, and typically handles outliers well. \
3618
+ * **Naive**: The Naive forecasting model makes predictions by carrying forward the latest target value for each time-series in the training data. \
3619
+ * **SeasonalNaive**: The Seasonal Naive forecasting model makes predictions by carrying forward the latest season of target values for each time-series in the training data. \
3620
+ * **Average**: The Average forecasting model makes predictions by carrying forward the average of the target values for each time-series in the training data. \
3621
+ * **SeasonalAverage**: The Seasonal Average forecasting model makes predictions by carrying forward the average value of the latest season of data for each time-series in the training data. \
3622
+ * **ExponentialSmoothing**: Exponential smoothing is a time series forecasting method for univariate data that can be extended to support data with a systematic trend or seasonal component. \
3623
+ * **Arimax**: An Autoregressive Integrated Moving Average with Explanatory Variable (ARIMAX) model can be viewed as a multiple regression model with one or more autoregressive (AR) terms and\/or one or more moving average (MA) terms.
3624
+ * This method is suitable for forecasting when data is stationary\/non stationary, and multivariate with any type of data pattern, i.e., level\/trend \/seasonality\/cyclicity. \
3625
+ * **TCNForecaster**: TCNForecaster: Temporal Convolutional Networks Forecaster. \/\/TODO: Ask forecasting team for brief intro. \
3626
+ * **ElasticNet**: Elastic net is a popular type of regularized linear regression that combines two popular penalties, specifically the L1 and L2 penalty functions. \
3627
+ * **GradientBoosting**: The technique of transiting week learners into a strong learner is called Boosting. The gradient boosting algorithm process works on this theory of execution. \
3628
+ * **DecisionTree**: Decision Trees are a non-parametric supervised learning method used for both classification and regression tasks.
3629
+ * The goal is to create a model that predicts the value of a target variable by learning simple decision rules inferred from the data features. \
3630
+ * **KNN**: K-nearest neighbors (KNN) algorithm uses 'feature similarity' to predict the values of new datapoints
3631
+ * which further means that the new data point will be assigned a value based on how closely it matches the points in the training set. \
3632
+ * **LassoLars**: Lasso model fit with Least Angle Regression a.k.a. Lars. It is a Linear Model trained with an L1 prior as regularizer. \
3633
+ * **SGD**: SGD: Stochastic gradient descent is an optimization algorithm often used in machine learning applications
3634
+ * to find the model parameters that correspond to the best fit between predicted and actual outputs.
3635
+ * It's an inexact but powerful technique. \
3636
+ * **RandomForest**: Random forest is a supervised learning algorithm.
3637
+ * The "forest" it builds, is an ensemble of decision trees, usually trained with the “bagging” method.
3638
+ * The general idea of the bagging method is that a combination of learning models increases the overall result. \
3639
+ * **ExtremeRandomTrees**: Extreme Trees is an ensemble machine learning algorithm that combines the predictions from many decision trees. It is related to the widely used random forest algorithm. \
3640
+ * **LightGBM**: LightGBM is a gradient boosting framework that uses tree based learning algorithms. \
3641
+ * **XGBoostRegressor**: XGBoostRegressor: Extreme Gradient Boosting Regressor is a supervised machine learning model using ensemble of base learners.
3642
+ */
3643
+ export declare type ForecastingModels = string;
3644
+
3645
+ /**
3646
+ * Defines values for ForecastingPrimaryMetrics. \
3647
+ * {@link KnownForecastingPrimaryMetrics} can be used interchangeably with ForecastingPrimaryMetrics,
3648
+ * this enum contains the known values that the service supports.
3649
+ * ### Known values supported by the service
3650
+ * **SpearmanCorrelation**: The Spearman's rank coefficient of correlation is a non-parametric measure of rank correlation. \
3651
+ * **NormalizedRootMeanSquaredError**: The Normalized Root Mean Squared Error (NRMSE) the RMSE facilitates the comparison between models with different scales. \
3652
+ * **R2Score**: The R2 score is one of the performance evaluation measures for forecasting-based machine learning models. \
3653
+ * **NormalizedMeanAbsoluteError**: The Normalized Mean Absolute Error (NMAE) is a validation metric to compare the Mean Absolute Error (MAE) of (time) series with different scales.
3654
+ */
3655
+ export declare type ForecastingPrimaryMetrics = string;
3656
+
3657
+ /** Forecasting specific parameters. */
3658
+ export declare interface ForecastingSettings {
3659
+ /**
3660
+ * Country or region for holidays for forecasting tasks.
3661
+ * These should be ISO 3166 two-letter country/region codes, for example 'US' or 'GB'.
3662
+ */
3663
+ countryOrRegionForHolidays?: string;
3664
+ /**
3665
+ * Number of periods between the origin time of one CV fold and the next fold. For
3666
+ * example, if `CVStepSize` = 3 for daily data, the origin time for each fold will be
3667
+ * three days apart.
3668
+ */
3669
+ cvStepSize?: number;
3670
+ /** Flag for generating lags for the numeric features with 'auto' or null. */
3671
+ featureLags?: FeatureLags;
3672
+ /** The desired maximum forecast horizon in units of time-series frequency. */
3673
+ forecastHorizon?: ForecastHorizonUnion;
3674
+ /** When forecasting, this parameter represents the period with which the forecast is desired, for example daily, weekly, yearly, etc. The forecast frequency is dataset frequency by default. */
3675
+ frequency?: string;
3676
+ /**
3677
+ * Set time series seasonality as an integer multiple of the series frequency.
3678
+ * If seasonality is set to 'auto', it will be inferred.
3679
+ */
3680
+ seasonality?: SeasonalityUnion;
3681
+ /** The parameter defining how if AutoML should handle short time series. */
3682
+ shortSeriesHandlingConfig?: ShortSeriesHandlingConfiguration;
3683
+ /**
3684
+ * The function to be used to aggregate the time series target column to conform to a user specified frequency.
3685
+ * If the TargetAggregateFunction is set i.e. not 'None', but the freq parameter is not set, the error is raised. The possible target aggregation functions are: "sum", "max", "min" and "mean".
3686
+ */
3687
+ targetAggregateFunction?: TargetAggregationFunction;
3688
+ /** The number of past periods to lag from the target column. */
3689
+ targetLags?: TargetLagsUnion;
3690
+ /** The number of past periods used to create a rolling window average of the target column. */
3691
+ targetRollingWindowSize?: TargetRollingWindowSizeUnion;
3692
+ /** The name of the time column. This parameter is required when forecasting to specify the datetime column in the input data used for building the time series and inferring its frequency. */
3693
+ timeColumnName?: string;
3694
+ /**
3695
+ * The names of columns used to group a timeseries. It can be used to create multiple series.
3696
+ * If grain is not defined, the data set is assumed to be one time-series. This parameter is used with task type forecasting.
3697
+ */
3698
+ timeSeriesIdColumnNames?: string[];
3699
+ /** Configure STL Decomposition of the time-series target column. */
3700
+ useStl?: UseStl;
3701
+ }
3702
+
3703
+ /** Forecasting Training related configuration. */
3704
+ export declare interface ForecastingTrainingSettings extends TrainingSettings {
3705
+ /** Allowed models for forecasting task. */
3706
+ allowedTrainingAlgorithms?: ForecastingModels[];
3707
+ /** Blocked models for forecasting task. */
3708
+ blockedTrainingAlgorithms?: ForecastingModels[];
3709
+ }
3710
+
3275
3711
  export declare interface FqdnEndpoint {
3276
3712
  domainName?: string;
3277
3713
  endpointDetails?: FqdnEndpointDetail[];
@@ -3360,90 +3796,573 @@ export declare interface IdentityForCmk {
3360
3796
  userAssignedIdentity?: string;
3361
3797
  }
3362
3798
 
3363
- export declare interface InferenceContainerProperties {
3364
- /** The route to check the liveness of the inference server container. */
3365
- livenessRoute?: Route;
3366
- /** The route to check the readiness of the inference server container. */
3367
- readinessRoute?: Route;
3368
- /** The port to send the scoring requests to, within the inference server container. */
3369
- scoringRoute?: Route;
3799
+ /**
3800
+ * Image Classification. Multi-class image classification is used when an image is classified with only a single label
3801
+ * from a set of classes - e.g. each image is classified as either an image of a 'cat' or a 'dog' or a 'duck'.
3802
+ */
3803
+ export declare interface ImageClassification extends ImageClassificationBase, AutoMLVertical {
3804
+ /** Primary metric to optimize for this task. */
3805
+ primaryMetric?: ClassificationPrimaryMetrics;
3806
+ }
3807
+
3808
+ export declare interface ImageClassificationBase extends ImageVertical {
3809
+ /** Settings used for training the model. */
3810
+ modelSettings?: ImageModelSettingsClassification;
3811
+ /** Search space for sampling different combinations of models and their hyperparameters. */
3812
+ searchSpace?: ImageModelDistributionSettingsClassification[];
3370
3813
  }
3371
3814
 
3372
3815
  /**
3373
- * Defines values for InputDeliveryMode. \
3374
- * {@link KnownInputDeliveryMode} can be used interchangeably with InputDeliveryMode,
3375
- * this enum contains the known values that the service supports.
3376
- * ### Known values supported by the service
3377
- * **ReadOnlyMount** \
3378
- * **ReadWriteMount** \
3379
- * **Download** \
3380
- * **Direct** \
3381
- * **EvalMount** \
3382
- * **EvalDownload**
3816
+ * Image Classification Multilabel. Multi-label image classification is used when an image could have one or more labels
3817
+ * from a set of labels - e.g. an image could be labeled with both 'cat' and 'dog'.
3383
3818
  */
3384
- export declare type InputDeliveryMode = string;
3819
+ export declare interface ImageClassificationMultilabel extends ImageClassificationBase, AutoMLVertical {
3820
+ /** Primary metric to optimize for this task. */
3821
+ primaryMetric?: ClassificationMultilabelPrimaryMetrics;
3822
+ }
3385
3823
 
3386
- /** Instance type schema. */
3387
- export declare interface InstanceTypeSchema {
3388
- /** Node Selector */
3389
- nodeSelector?: {
3390
- [propertyName: string]: string | null;
3391
- };
3392
- /** Resource requests/limits for this instance type */
3393
- resources?: InstanceTypeSchemaResources;
3824
+ /**
3825
+ * Image Instance Segmentation. Instance segmentation is used to identify objects in an image at the pixel level,
3826
+ * drawing a polygon around each object in the image.
3827
+ */
3828
+ export declare interface ImageInstanceSegmentation extends ImageObjectDetectionBase, AutoMLVertical {
3829
+ /** Primary metric to optimize for this task. */
3830
+ primaryMetric?: InstanceSegmentationPrimaryMetrics;
3394
3831
  }
3395
3832
 
3396
- /** Resource requests/limits for this instance type */
3397
- export declare interface InstanceTypeSchemaResources {
3398
- /** Resource requests for this instance type */
3399
- requests?: {
3400
- [propertyName: string]: string;
3401
- };
3402
- /** Resource limits for this instance type */
3403
- limits?: {
3404
- [propertyName: string]: string;
3405
- };
3833
+ /** Limit settings for the AutoML job. */
3834
+ export declare interface ImageLimitSettings {
3835
+ /** Maximum number of concurrent AutoML iterations. */
3836
+ maxConcurrentTrials?: number;
3837
+ /** Maximum number of AutoML iterations. */
3838
+ maxTrials?: number;
3839
+ /** AutoML job timeout. */
3840
+ timeout?: string;
3406
3841
  }
3407
3842
 
3408
- /** Azure Resource Manager resource envelope. */
3409
- export declare interface JobBase extends Resource {
3410
- /** [Required] Additional attributes of the entity. */
3411
- properties: JobBasePropertiesUnion;
3843
+ /**
3844
+ * Distribution expressions to sweep over values of model settings.
3845
+ * <example>
3846
+ * Some examples are:
3847
+ * <code>
3848
+ * ModelName = "choice('seresnext', 'resnest50')";
3849
+ * LearningRate = "uniform(0.001, 0.01)";
3850
+ * LayersToFreeze = "choice(0, 2)";
3851
+ * </code></example>
3852
+ * All distributions can be specified as distribution_name(min, max) or choice(val1, val2, ..., valn)
3853
+ * where distribution name can be: uniform, quniform, loguniform, etc
3854
+ * For more details on how to compose distribution expressions please check the documentation:
3855
+ * https://docs.microsoft.com/en-us/azure/machine-learning/how-to-tune-hyperparameters
3856
+ * For more information on the available settings please visit the official documentation:
3857
+ * https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.
3858
+ */
3859
+ export declare interface ImageModelDistributionSettings {
3860
+ /** Enable AMSGrad when optimizer is 'adam' or 'adamw'. */
3861
+ amsGradient?: string;
3862
+ /** Settings for using Augmentations. */
3863
+ augmentations?: string;
3864
+ /** Value of 'beta1' when optimizer is 'adam' or 'adamw'. Must be a float in the range [0, 1]. */
3865
+ beta1?: string;
3866
+ /** Value of 'beta2' when optimizer is 'adam' or 'adamw'. Must be a float in the range [0, 1]. */
3867
+ beta2?: string;
3868
+ /** Whether to use distributer training. */
3869
+ distributed?: string;
3870
+ /** Enable early stopping logic during training. */
3871
+ earlyStopping?: string;
3872
+ /**
3873
+ * Minimum number of epochs or validation evaluations to wait before primary metric improvement
3874
+ * is tracked for early stopping. Must be a positive integer.
3875
+ */
3876
+ earlyStoppingDelay?: string;
3877
+ /**
3878
+ * Minimum number of epochs or validation evaluations with no primary metric improvement before
3879
+ * the run is stopped. Must be a positive integer.
3880
+ */
3881
+ earlyStoppingPatience?: string;
3882
+ /** Enable normalization when exporting ONNX model. */
3883
+ enableOnnxNormalization?: string;
3884
+ /** Frequency to evaluate validation dataset to get metric scores. Must be a positive integer. */
3885
+ evaluationFrequency?: string;
3886
+ /**
3887
+ * Gradient accumulation means running a configured number of "GradAccumulationStep" steps without
3888
+ * updating the model weights while accumulating the gradients of those steps, and then using
3889
+ * the accumulated gradients to compute the weight updates. Must be a positive integer.
3890
+ */
3891
+ gradientAccumulationStep?: string;
3892
+ /**
3893
+ * Number of layers to freeze for the model. Must be a positive integer.
3894
+ * For instance, passing 2 as value for 'seresnext' means
3895
+ * freezing layer0 and layer1. For a full list of models supported and details on layer freeze, please
3896
+ * see: https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.
3897
+ */
3898
+ layersToFreeze?: string;
3899
+ /** Initial learning rate. Must be a float in the range [0, 1]. */
3900
+ learningRate?: string;
3901
+ /** Type of learning rate scheduler. Must be 'warmup_cosine' or 'step'. */
3902
+ learningRateScheduler?: string;
3903
+ /**
3904
+ * Name of the model to use for training.
3905
+ * For more information on the available models please visit the official documentation:
3906
+ * https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.
3907
+ */
3908
+ modelName?: string;
3909
+ /** Value of momentum when optimizer is 'sgd'. Must be a float in the range [0, 1]. */
3910
+ momentum?: string;
3911
+ /** Enable nesterov when optimizer is 'sgd'. */
3912
+ nesterov?: string;
3913
+ /** Number of training epochs. Must be a positive integer. */
3914
+ numberOfEpochs?: string;
3915
+ /** Number of data loader workers. Must be a non-negative integer. */
3916
+ numberOfWorkers?: string;
3917
+ /** Type of optimizer. Must be either 'sgd', 'adam', or 'adamw'. */
3918
+ optimizer?: string;
3919
+ /** Random seed to be used when using deterministic training. */
3920
+ randomSeed?: string;
3921
+ /** Value of gamma when learning rate scheduler is 'step'. Must be a float in the range [0, 1]. */
3922
+ stepLRGamma?: string;
3923
+ /** Value of step size when learning rate scheduler is 'step'. Must be a positive integer. */
3924
+ stepLRStepSize?: string;
3925
+ /** Training batch size. Must be a positive integer. */
3926
+ trainingBatchSize?: string;
3927
+ /** Validation batch size. Must be a positive integer. */
3928
+ validationBatchSize?: string;
3929
+ /** Value of cosine cycle when learning rate scheduler is 'warmup_cosine'. Must be a float in the range [0, 1]. */
3930
+ warmupCosineLRCycles?: string;
3931
+ /** Value of warmup epochs when learning rate scheduler is 'warmup_cosine'. Must be a positive integer. */
3932
+ warmupCosineLRWarmupEpochs?: string;
3933
+ /** Value of weight decay when optimizer is 'sgd', 'adam', or 'adamw'. Must be a float in the range[0, 1]. */
3934
+ weightDecay?: string;
3412
3935
  }
3413
3936
 
3414
- /** Base definition for a job. */
3415
- export declare interface JobBaseProperties extends ResourceBase {
3416
- /** ARM resource ID of the compute resource. */
3417
- computeId?: string;
3418
- /** Display name of job. */
3419
- displayName?: string;
3420
- /** The name of the experiment the job belongs to. If not set, the job is placed in the "Default" experiment. */
3421
- experimentName?: string;
3937
+ /**
3938
+ * Distribution expressions to sweep over values of model settings.
3939
+ * <example>
3940
+ * Some examples are:
3941
+ * <code>
3942
+ * ModelName = "choice('seresnext', 'resnest50')";
3943
+ * LearningRate = "uniform(0.001, 0.01)";
3944
+ * LayersToFreeze = "choice(0, 2)";
3945
+ * </code></example>
3946
+ * For more details on how to compose distribution expressions please check the documentation:
3947
+ * https://docs.microsoft.com/en-us/azure/machine-learning/how-to-tune-hyperparameters
3948
+ * For more information on the available settings please visit the official documentation:
3949
+ * https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.
3950
+ */
3951
+ export declare interface ImageModelDistributionSettingsClassification extends ImageModelDistributionSettings {
3952
+ /** Image crop size that is input to the neural network for the training dataset. Must be a positive integer. */
3953
+ trainingCropSize?: string;
3954
+ /** Image crop size that is input to the neural network for the validation dataset. Must be a positive integer. */
3955
+ validationCropSize?: string;
3956
+ /** Image size to which to resize before cropping for validation dataset. Must be a positive integer. */
3957
+ validationResizeSize?: string;
3422
3958
  /**
3423
- * Identity configuration. If set, this should be one of AmlToken, ManagedIdentity, UserIdentity or null.
3424
- * Defaults to AmlToken if null.
3959
+ * Weighted loss. The accepted values are 0 for no weighted loss.
3960
+ * 1 for weighted loss with sqrt.(class_weights). 2 for weighted loss with class_weights. Must be 0 or 1 or 2.
3425
3961
  */
3426
- identity?: IdentityConfigurationUnion;
3427
- /** Is the asset archived? */
3428
- isArchived?: boolean;
3429
- /** [Required] Specifies the type of job. */
3430
- jobType: JobType;
3962
+ weightedLoss?: string;
3963
+ }
3964
+
3965
+ /**
3966
+ * Distribution expressions to sweep over values of model settings.
3967
+ * <example>
3968
+ * Some examples are:
3969
+ * <code>
3970
+ * ModelName = "choice('seresnext', 'resnest50')";
3971
+ * LearningRate = "uniform(0.001, 0.01)";
3972
+ * LayersToFreeze = "choice(0, 2)";
3973
+ * </code></example>
3974
+ * For more details on how to compose distribution expressions please check the documentation:
3975
+ * https://docs.microsoft.com/en-us/azure/machine-learning/how-to-tune-hyperparameters
3976
+ * For more information on the available settings please visit the official documentation:
3977
+ * https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.
3978
+ */
3979
+ export declare interface ImageModelDistributionSettingsObjectDetection extends ImageModelDistributionSettings {
3431
3980
  /**
3432
- * List of JobEndpoints.
3433
- * For local jobs, a job endpoint will have an endpoint value of FileStreamObject.
3981
+ * Maximum number of detections per image, for all classes. Must be a positive integer.
3982
+ * Note: This settings is not supported for the 'yolov5' algorithm.
3434
3983
  */
3435
- services?: {
3436
- [propertyName: string]: JobService | null;
3437
- };
3984
+ boxDetectionsPerImage?: string;
3438
3985
  /**
3439
- * Status of the job.
3440
- * NOTE: This property will not be serialized. It can only be populated by the server.
3986
+ * During inference, only return proposals with a classification score greater than
3987
+ * BoxScoreThreshold. Must be a float in the range[0, 1].
3441
3988
  */
3442
- readonly status?: JobStatus;
3989
+ boxScoreThreshold?: string;
3990
+ /**
3991
+ * Image size for train and validation. Must be a positive integer.
3992
+ * Note: The training run may get into CUDA OOM if the size is too big.
3993
+ * Note: This settings is only supported for the 'yolov5' algorithm.
3994
+ */
3995
+ imageSize?: string;
3996
+ /**
3997
+ * Maximum size of the image to be rescaled before feeding it to the backbone.
3998
+ * Must be a positive integer. Note: training run may get into CUDA OOM if the size is too big.
3999
+ * Note: This settings is not supported for the 'yolov5' algorithm.
4000
+ */
4001
+ maxSize?: string;
4002
+ /**
4003
+ * Minimum size of the image to be rescaled before feeding it to the backbone.
4004
+ * Must be a positive integer. Note: training run may get into CUDA OOM if the size is too big.
4005
+ * Note: This settings is not supported for the 'yolov5' algorithm.
4006
+ */
4007
+ minSize?: string;
4008
+ /**
4009
+ * Model size. Must be 'small', 'medium', 'large', or 'xlarge'.
4010
+ * Note: training run may get into CUDA OOM if the model size is too big.
4011
+ * Note: This settings is only supported for the 'yolov5' algorithm.
4012
+ */
4013
+ modelSize?: string;
4014
+ /**
4015
+ * Enable multi-scale image by varying image size by +/- 50%.
4016
+ * Note: training run may get into CUDA OOM if no sufficient GPU memory.
4017
+ * Note: This settings is only supported for the 'yolov5' algorithm.
4018
+ */
4019
+ multiScale?: string;
4020
+ /** IOU threshold used during inference in NMS post processing. Must be float in the range [0, 1]. */
4021
+ nmsIouThreshold?: string;
4022
+ /**
4023
+ * The grid size to use for tiling each image. Note: TileGridSize must not be
4024
+ * None to enable small object detection logic. A string containing two integers in mxn format.
4025
+ * Note: This settings is not supported for the 'yolov5' algorithm.
4026
+ */
4027
+ tileGridSize?: string;
4028
+ /**
4029
+ * Overlap ratio between adjacent tiles in each dimension. Must be float in the range [0, 1).
4030
+ * Note: This settings is not supported for the 'yolov5' algorithm.
4031
+ */
4032
+ tileOverlapRatio?: string;
4033
+ /**
4034
+ * The IOU threshold to use to perform NMS while merging predictions from tiles and image.
4035
+ * Used in validation/ inference. Must be float in the range [0, 1].
4036
+ * Note: This settings is not supported for the 'yolov5' algorithm.
4037
+ * NMS: Non-maximum suppression
4038
+ */
4039
+ tilePredictionsNmsThreshold?: string;
4040
+ /** IOU threshold to use when computing validation metric. Must be float in the range [0, 1]. */
4041
+ validationIouThreshold?: string;
4042
+ /** Metric computation method to use for validation metrics. Must be 'none', 'coco', 'voc', or 'coco_voc'. */
4043
+ validationMetricType?: string;
3443
4044
  }
3444
4045
 
3445
- export declare type JobBasePropertiesUnion = JobBaseProperties | CommandJob | PipelineJob | SweepJob;
3446
-
4046
+ /**
4047
+ * Settings used for training the model.
4048
+ * For more information on the available settings please visit the official documentation:
4049
+ * https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.
4050
+ */
4051
+ export declare interface ImageModelSettings {
4052
+ /** Settings for advanced scenarios. */
4053
+ advancedSettings?: string;
4054
+ /** Enable AMSGrad when optimizer is 'adam' or 'adamw'. */
4055
+ amsGradient?: boolean;
4056
+ /** Settings for using Augmentations. */
4057
+ augmentations?: string;
4058
+ /** Value of 'beta1' when optimizer is 'adam' or 'adamw'. Must be a float in the range [0, 1]. */
4059
+ beta1?: number;
4060
+ /** Value of 'beta2' when optimizer is 'adam' or 'adamw'. Must be a float in the range [0, 1]. */
4061
+ beta2?: number;
4062
+ /** Frequency to store model checkpoints. Must be a positive integer. */
4063
+ checkpointFrequency?: number;
4064
+ /** The pretrained checkpoint model for incremental training. */
4065
+ checkpointModel?: MLFlowModelJobInput;
4066
+ /** The id of a previous run that has a pretrained checkpoint for incremental training. */
4067
+ checkpointRunId?: string;
4068
+ /** Whether to use distributed training. */
4069
+ distributed?: boolean;
4070
+ /** Enable early stopping logic during training. */
4071
+ earlyStopping?: boolean;
4072
+ /**
4073
+ * Minimum number of epochs or validation evaluations to wait before primary metric improvement
4074
+ * is tracked for early stopping. Must be a positive integer.
4075
+ */
4076
+ earlyStoppingDelay?: number;
4077
+ /**
4078
+ * Minimum number of epochs or validation evaluations with no primary metric improvement before
4079
+ * the run is stopped. Must be a positive integer.
4080
+ */
4081
+ earlyStoppingPatience?: number;
4082
+ /** Enable normalization when exporting ONNX model. */
4083
+ enableOnnxNormalization?: boolean;
4084
+ /** Frequency to evaluate validation dataset to get metric scores. Must be a positive integer. */
4085
+ evaluationFrequency?: number;
4086
+ /**
4087
+ * Gradient accumulation means running a configured number of "GradAccumulationStep" steps without
4088
+ * updating the model weights while accumulating the gradients of those steps, and then using
4089
+ * the accumulated gradients to compute the weight updates. Must be a positive integer.
4090
+ */
4091
+ gradientAccumulationStep?: number;
4092
+ /**
4093
+ * Number of layers to freeze for the model. Must be a positive integer.
4094
+ * For instance, passing 2 as value for 'seresnext' means
4095
+ * freezing layer0 and layer1. For a full list of models supported and details on layer freeze, please
4096
+ * see: https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.
4097
+ */
4098
+ layersToFreeze?: number;
4099
+ /** Initial learning rate. Must be a float in the range [0, 1]. */
4100
+ learningRate?: number;
4101
+ /** Type of learning rate scheduler. Must be 'warmup_cosine' or 'step'. */
4102
+ learningRateScheduler?: LearningRateScheduler;
4103
+ /**
4104
+ * Name of the model to use for training.
4105
+ * For more information on the available models please visit the official documentation:
4106
+ * https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.
4107
+ */
4108
+ modelName?: string;
4109
+ /** Value of momentum when optimizer is 'sgd'. Must be a float in the range [0, 1]. */
4110
+ momentum?: number;
4111
+ /** Enable nesterov when optimizer is 'sgd'. */
4112
+ nesterov?: boolean;
4113
+ /** Number of training epochs. Must be a positive integer. */
4114
+ numberOfEpochs?: number;
4115
+ /** Number of data loader workers. Must be a non-negative integer. */
4116
+ numberOfWorkers?: number;
4117
+ /** Type of optimizer. */
4118
+ optimizer?: StochasticOptimizer;
4119
+ /** Random seed to be used when using deterministic training. */
4120
+ randomSeed?: number;
4121
+ /** Value of gamma when learning rate scheduler is 'step'. Must be a float in the range [0, 1]. */
4122
+ stepLRGamma?: number;
4123
+ /** Value of step size when learning rate scheduler is 'step'. Must be a positive integer. */
4124
+ stepLRStepSize?: number;
4125
+ /** Training batch size. Must be a positive integer. */
4126
+ trainingBatchSize?: number;
4127
+ /** Validation batch size. Must be a positive integer. */
4128
+ validationBatchSize?: number;
4129
+ /** Value of cosine cycle when learning rate scheduler is 'warmup_cosine'. Must be a float in the range [0, 1]. */
4130
+ warmupCosineLRCycles?: number;
4131
+ /** Value of warmup epochs when learning rate scheduler is 'warmup_cosine'. Must be a positive integer. */
4132
+ warmupCosineLRWarmupEpochs?: number;
4133
+ /** Value of weight decay when optimizer is 'sgd', 'adam', or 'adamw'. Must be a float in the range[0, 1]. */
4134
+ weightDecay?: number;
4135
+ }
4136
+
4137
+ /**
4138
+ * Settings used for training the model.
4139
+ * For more information on the available settings please visit the official documentation:
4140
+ * https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.
4141
+ */
4142
+ export declare interface ImageModelSettingsClassification extends ImageModelSettings {
4143
+ /** Image crop size that is input to the neural network for the training dataset. Must be a positive integer. */
4144
+ trainingCropSize?: number;
4145
+ /** Image crop size that is input to the neural network for the validation dataset. Must be a positive integer. */
4146
+ validationCropSize?: number;
4147
+ /** Image size to which to resize before cropping for validation dataset. Must be a positive integer. */
4148
+ validationResizeSize?: number;
4149
+ /**
4150
+ * Weighted loss. The accepted values are 0 for no weighted loss.
4151
+ * 1 for weighted loss with sqrt.(class_weights). 2 for weighted loss with class_weights. Must be 0 or 1 or 2.
4152
+ */
4153
+ weightedLoss?: number;
4154
+ }
4155
+
4156
+ /**
4157
+ * Settings used for training the model.
4158
+ * For more information on the available settings please visit the official documentation:
4159
+ * https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.
4160
+ */
4161
+ export declare interface ImageModelSettingsObjectDetection extends ImageModelSettings {
4162
+ /**
4163
+ * Maximum number of detections per image, for all classes. Must be a positive integer.
4164
+ * Note: This settings is not supported for the 'yolov5' algorithm.
4165
+ */
4166
+ boxDetectionsPerImage?: number;
4167
+ /**
4168
+ * During inference, only return proposals with a classification score greater than
4169
+ * BoxScoreThreshold. Must be a float in the range[0, 1].
4170
+ */
4171
+ boxScoreThreshold?: number;
4172
+ /**
4173
+ * Image size for train and validation. Must be a positive integer.
4174
+ * Note: The training run may get into CUDA OOM if the size is too big.
4175
+ * Note: This settings is only supported for the 'yolov5' algorithm.
4176
+ */
4177
+ imageSize?: number;
4178
+ /**
4179
+ * Maximum size of the image to be rescaled before feeding it to the backbone.
4180
+ * Must be a positive integer. Note: training run may get into CUDA OOM if the size is too big.
4181
+ * Note: This settings is not supported for the 'yolov5' algorithm.
4182
+ */
4183
+ maxSize?: number;
4184
+ /**
4185
+ * Minimum size of the image to be rescaled before feeding it to the backbone.
4186
+ * Must be a positive integer. Note: training run may get into CUDA OOM if the size is too big.
4187
+ * Note: This settings is not supported for the 'yolov5' algorithm.
4188
+ */
4189
+ minSize?: number;
4190
+ /**
4191
+ * Model size. Must be 'small', 'medium', 'large', or 'xlarge'.
4192
+ * Note: training run may get into CUDA OOM if the model size is too big.
4193
+ * Note: This settings is only supported for the 'yolov5' algorithm.
4194
+ */
4195
+ modelSize?: ModelSize;
4196
+ /**
4197
+ * Enable multi-scale image by varying image size by +/- 50%.
4198
+ * Note: training run may get into CUDA OOM if no sufficient GPU memory.
4199
+ * Note: This settings is only supported for the 'yolov5' algorithm.
4200
+ */
4201
+ multiScale?: boolean;
4202
+ /** IOU threshold used during inference in NMS post processing. Must be a float in the range [0, 1]. */
4203
+ nmsIouThreshold?: number;
4204
+ /**
4205
+ * The grid size to use for tiling each image. Note: TileGridSize must not be
4206
+ * None to enable small object detection logic. A string containing two integers in mxn format.
4207
+ * Note: This settings is not supported for the 'yolov5' algorithm.
4208
+ */
4209
+ tileGridSize?: string;
4210
+ /**
4211
+ * Overlap ratio between adjacent tiles in each dimension. Must be float in the range [0, 1).
4212
+ * Note: This settings is not supported for the 'yolov5' algorithm.
4213
+ */
4214
+ tileOverlapRatio?: number;
4215
+ /**
4216
+ * The IOU threshold to use to perform NMS while merging predictions from tiles and image.
4217
+ * Used in validation/ inference. Must be float in the range [0, 1].
4218
+ * Note: This settings is not supported for the 'yolov5' algorithm.
4219
+ */
4220
+ tilePredictionsNmsThreshold?: number;
4221
+ /** IOU threshold to use when computing validation metric. Must be float in the range [0, 1]. */
4222
+ validationIouThreshold?: number;
4223
+ /** Metric computation method to use for validation metrics. */
4224
+ validationMetricType?: ValidationMetricType;
4225
+ }
4226
+
4227
+ /**
4228
+ * Image Object Detection. Object detection is used to identify objects in an image and locate each object with a
4229
+ * bounding box e.g. locate all dogs and cats in an image and draw a bounding box around each.
4230
+ */
4231
+ export declare interface ImageObjectDetection extends ImageObjectDetectionBase, AutoMLVertical {
4232
+ /** Primary metric to optimize for this task. */
4233
+ primaryMetric?: ObjectDetectionPrimaryMetrics;
4234
+ }
4235
+
4236
+ export declare interface ImageObjectDetectionBase extends ImageVertical {
4237
+ /** Settings used for training the model. */
4238
+ modelSettings?: ImageModelSettingsObjectDetection;
4239
+ /** Search space for sampling different combinations of models and their hyperparameters. */
4240
+ searchSpace?: ImageModelDistributionSettingsObjectDetection[];
4241
+ }
4242
+
4243
+ /** Model sweeping and hyperparameter sweeping related settings. */
4244
+ export declare interface ImageSweepSettings {
4245
+ /** Type of early termination policy. */
4246
+ earlyTermination?: EarlyTerminationPolicyUnion;
4247
+ /** [Required] Type of the hyperparameter sampling algorithms. */
4248
+ samplingAlgorithm: SamplingAlgorithmType;
4249
+ }
4250
+
4251
+ /**
4252
+ * Abstract class for AutoML tasks that train image (computer vision) models -
4253
+ * such as Image Classification / Image Classification Multilabel / Image Object Detection / Image Instance Segmentation.
4254
+ */
4255
+ export declare interface ImageVertical {
4256
+ /** [Required] Limit settings for the AutoML job. */
4257
+ limitSettings: ImageLimitSettings;
4258
+ /** Model sweeping and hyperparameter sweeping related settings. */
4259
+ sweepSettings?: ImageSweepSettings;
4260
+ /** Validation data inputs. */
4261
+ validationData?: MLTableJobInput;
4262
+ /**
4263
+ * The fraction of training dataset that needs to be set aside for validation purpose.
4264
+ * Values between (0.0 , 1.0)
4265
+ * Applied when validation dataset is not provided.
4266
+ */
4267
+ validationDataSize?: number;
4268
+ }
4269
+
4270
+ export declare interface InferenceContainerProperties {
4271
+ /** The route to check the liveness of the inference server container. */
4272
+ livenessRoute?: Route;
4273
+ /** The route to check the readiness of the inference server container. */
4274
+ readinessRoute?: Route;
4275
+ /** The port to send the scoring requests to, within the inference server container. */
4276
+ scoringRoute?: Route;
4277
+ }
4278
+
4279
+ /**
4280
+ * Defines values for InputDeliveryMode. \
4281
+ * {@link KnownInputDeliveryMode} can be used interchangeably with InputDeliveryMode,
4282
+ * this enum contains the known values that the service supports.
4283
+ * ### Known values supported by the service
4284
+ * **ReadOnlyMount** \
4285
+ * **ReadWriteMount** \
4286
+ * **Download** \
4287
+ * **Direct** \
4288
+ * **EvalMount** \
4289
+ * **EvalDownload**
4290
+ */
4291
+ export declare type InputDeliveryMode = string;
4292
+
4293
+ /**
4294
+ * Defines values for InstanceSegmentationPrimaryMetrics. \
4295
+ * {@link KnownInstanceSegmentationPrimaryMetrics} can be used interchangeably with InstanceSegmentationPrimaryMetrics,
4296
+ * this enum contains the known values that the service supports.
4297
+ * ### Known values supported by the service
4298
+ * **MeanAveragePrecision**: Mean Average Precision (MAP) is the average of AP (Average Precision).
4299
+ * AP is calculated for each class and averaged to get the MAP.
4300
+ */
4301
+ export declare type InstanceSegmentationPrimaryMetrics = string;
4302
+
4303
+ /** Instance type schema. */
4304
+ export declare interface InstanceTypeSchema {
4305
+ /** Node Selector */
4306
+ nodeSelector?: {
4307
+ [propertyName: string]: string | null;
4308
+ };
4309
+ /** Resource requests/limits for this instance type */
4310
+ resources?: InstanceTypeSchemaResources;
4311
+ }
4312
+
4313
+ /** Resource requests/limits for this instance type */
4314
+ export declare interface InstanceTypeSchemaResources {
4315
+ /** Resource requests for this instance type */
4316
+ requests?: {
4317
+ [propertyName: string]: string;
4318
+ };
4319
+ /** Resource limits for this instance type */
4320
+ limits?: {
4321
+ [propertyName: string]: string;
4322
+ };
4323
+ }
4324
+
4325
+ /** Azure Resource Manager resource envelope. */
4326
+ export declare interface JobBase extends Resource {
4327
+ /** [Required] Additional attributes of the entity. */
4328
+ properties: JobBasePropertiesUnion;
4329
+ }
4330
+
4331
+ /** Base definition for a job. */
4332
+ export declare interface JobBaseProperties extends ResourceBase {
4333
+ /** ARM resource ID of the component resource. */
4334
+ componentId?: string;
4335
+ /** ARM resource ID of the compute resource. */
4336
+ computeId?: string;
4337
+ /** Display name of job. */
4338
+ displayName?: string;
4339
+ /** The name of the experiment the job belongs to. If not set, the job is placed in the "Default" experiment. */
4340
+ experimentName?: string;
4341
+ /**
4342
+ * Identity configuration. If set, this should be one of AmlToken, ManagedIdentity, UserIdentity or null.
4343
+ * Defaults to AmlToken if null.
4344
+ */
4345
+ identity?: IdentityConfigurationUnion;
4346
+ /** Is the asset archived? */
4347
+ isArchived?: boolean;
4348
+ /** [Required] Specifies the type of job. */
4349
+ jobType: JobType;
4350
+ /**
4351
+ * List of JobEndpoints.
4352
+ * For local jobs, a job endpoint will have an endpoint value of FileStreamObject.
4353
+ */
4354
+ services?: {
4355
+ [propertyName: string]: JobService | null;
4356
+ };
4357
+ /**
4358
+ * Status of the job.
4359
+ * NOTE: This property will not be serialized. It can only be populated by the server.
4360
+ */
4361
+ readonly status?: JobStatus;
4362
+ }
4363
+
4364
+ export declare type JobBasePropertiesUnion = JobBaseProperties | AutoMLJob | CommandJob | PipelineJob | SweepJob;
4365
+
3447
4366
  /** A paginated list of JobBase entities. */
3448
4367
  export declare interface JobBaseResourceArmPaginatedResult {
3449
4368
  /** The link to the next page of JobBase objects. If null, there are no additional pages. */
@@ -3455,7 +4374,7 @@ export declare interface JobBaseResourceArmPaginatedResult {
3455
4374
  /** Command job definition. */
3456
4375
  export declare interface JobInput {
3457
4376
  /** Polymorphic discriminator, which specifies the different types this object can be */
3458
- jobInputType: "custom_model" | "literal" | "mlflow_model" | "mltable" | "triton_model" | "uri_file" | "uri_folder";
4377
+ jobInputType: "mltable" | "custom_model" | "mlflow_model" | "literal" | "triton_model" | "uri_file" | "uri_folder";
3459
4378
  /** Description for the input. */
3460
4379
  description?: string;
3461
4380
  }
@@ -3475,7 +4394,7 @@ export declare interface JobInput {
3475
4394
  */
3476
4395
  export declare type JobInputType = string;
3477
4396
 
3478
- export declare type JobInputUnion = JobInput | CustomModelJobInput | LiteralJobInput | MLFlowModelJobInput | MLTableJobInput | TritonModelJobInput | UriFileJobInput | UriFolderJobInput;
4397
+ export declare type JobInputUnion = JobInput | MLTableJobInput | CustomModelJobInput | MLFlowModelJobInput | LiteralJobInput | TritonModelJobInput | UriFileJobInput | UriFolderJobInput;
3479
4398
 
3480
4399
  export declare interface JobLimits {
3481
4400
  /** Polymorphic discriminator, which specifies the different types this object can be */
@@ -3520,6 +4439,13 @@ export declare type JobOutputType = string;
3520
4439
 
3521
4440
  export declare type JobOutputUnion = JobOutput | CustomModelJobOutput | MLFlowModelJobOutput | MLTableJobOutput | TritonModelJobOutput | UriFileJobOutput | UriFolderJobOutput;
3522
4441
 
4442
+ export declare interface JobResourceConfiguration extends ResourceConfiguration {
4443
+ /** Extra arguments to pass to the Docker run command. This would override any parameters that have already been set by the system, or in this section. This parameter is only supported for Azure ML compute types. */
4444
+ dockerArgs?: string;
4445
+ /** Size of the docker container's shared memory block. This should be in the format of (number)(unit) where number as to be greater than 0 and the unit can be one of b(bytes), k(kilobytes), m(megabytes), or g(gigabytes). */
4446
+ shmSize?: string;
4447
+ }
4448
+
3523
4449
  /** Interface representing a Jobs. */
3524
4450
  export declare interface Jobs {
3525
4451
  /**
@@ -3596,6 +4522,13 @@ export declare interface JobsCancelOptionalParams extends coreClient.OperationOp
3596
4522
  resumeFrom?: string;
3597
4523
  }
3598
4524
 
4525
+ export declare interface JobScheduleAction extends ScheduleActionBase {
4526
+ /** Polymorphic discriminator, which specifies the different types this object can be */
4527
+ actionType: "CreateJob";
4528
+ /** [Required] Defines Schedule action definition details. */
4529
+ jobDefinition: JobBasePropertiesUnion;
4530
+ }
4531
+
3599
4532
  /** Optional parameters. */
3600
4533
  export declare interface JobsCreateOrUpdateOptionalParams extends coreClient.OperationOptions {
3601
4534
  }
@@ -3710,6 +4643,7 @@ export declare type JobStatus = string;
3710
4643
  * {@link KnownJobType} can be used interchangeably with JobType,
3711
4644
  * this enum contains the known values that the service supports.
3712
4645
  * ### Known values supported by the service
4646
+ * **AutoML** \
3713
4647
  * **Command** \
3714
4648
  * **Sweep** \
3715
4649
  * **Pipeline**
@@ -3743,6 +4677,14 @@ export declare enum KnownApplicationSharingPolicy {
3743
4677
  Shared = "Shared"
3744
4678
  }
3745
4679
 
4680
+ /** Known values of {@link AutoRebuildSetting} that the service accepts. */
4681
+ export declare enum KnownAutoRebuildSetting {
4682
+ /** Disabled */
4683
+ Disabled = "Disabled",
4684
+ /** OnBaseImageUpdate */
4685
+ OnBaseImageUpdate = "OnBaseImageUpdate"
4686
+ }
4687
+
3746
4688
  /** Known values of {@link Autosave} that the service accepts. */
3747
4689
  export declare enum KnownAutosave {
3748
4690
  /** None */
@@ -3777,6 +4719,30 @@ export declare enum KnownBillingCurrency {
3777
4719
  USD = "USD"
3778
4720
  }
3779
4721
 
4722
+ /** Known values of {@link BlockedTransformers} that the service accepts. */
4723
+ export declare enum KnownBlockedTransformers {
4724
+ /** Target encoding for text data. */
4725
+ TextTargetEncoder = "TextTargetEncoder",
4726
+ /** Ohe hot encoding creates a binary feature transformation. */
4727
+ OneHotEncoder = "OneHotEncoder",
4728
+ /** Target encoding for categorical data. */
4729
+ CatTargetEncoder = "CatTargetEncoder",
4730
+ /** Tf-Idf stands for, term-frequency times inverse document-frequency. This is a common term weighting scheme for identifying information from documents. */
4731
+ TfIdf = "TfIdf",
4732
+ /** Weight of Evidence encoding is a technique used to encode categorical variables. It uses the natural log of the P(1)/P(0) to create weights. */
4733
+ WoETargetEncoder = "WoETargetEncoder",
4734
+ /** Label encoder converts labels/categorical variables in a numerical form. */
4735
+ LabelEncoder = "LabelEncoder",
4736
+ /** Word embedding helps represents words or phrases as a vector, or a series of numbers. */
4737
+ WordEmbedding = "WordEmbedding",
4738
+ /** Naive Bayes is a classified that is used for classification of discrete features that are categorically distributed. */
4739
+ NaiveBayes = "NaiveBayes",
4740
+ /** Count Vectorizer converts a collection of text documents to a matrix of token counts. */
4741
+ CountVectorizer = "CountVectorizer",
4742
+ /** Hashing One Hot Encoder can turn categorical variables into a limited number of new features. This is often used for high-cardinality categorical features. */
4743
+ HashOneHotEncoder = "HashOneHotEncoder"
4744
+ }
4745
+
3780
4746
  /** Known values of {@link Caching} that the service accepts. */
3781
4747
  export declare enum KnownCaching {
3782
4748
  /** None */
@@ -3787,6 +4753,114 @@ export declare enum KnownCaching {
3787
4753
  ReadWrite = "ReadWrite"
3788
4754
  }
3789
4755
 
4756
+ /** Known values of {@link ClassificationModels} that the service accepts. */
4757
+ export declare enum KnownClassificationModels {
4758
+ /**
4759
+ * Logistic regression is a fundamental classification technique.
4760
+ * It belongs to the group of linear classifiers and is somewhat similar to polynomial and linear regression.
4761
+ * Logistic regression is fast and relatively uncomplicated, and it's convenient for you to interpret the results.
4762
+ * Although it's essentially a method for binary classification, it can also be applied to multiclass problems.
4763
+ */
4764
+ LogisticRegression = "LogisticRegression",
4765
+ /**
4766
+ * SGD: Stochastic gradient descent is an optimization algorithm often used in machine learning applications
4767
+ * to find the model parameters that correspond to the best fit between predicted and actual outputs.
4768
+ */
4769
+ SGD = "SGD",
4770
+ /**
4771
+ * The multinomial Naive Bayes classifier is suitable for classification with discrete features (e.g., word counts for text classification).
4772
+ * The multinomial distribution normally requires integer feature counts. However, in practice, fractional counts such as tf-idf may also work.
4773
+ */
4774
+ MultinomialNaiveBayes = "MultinomialNaiveBayes",
4775
+ /** Naive Bayes classifier for multivariate Bernoulli models. */
4776
+ BernoulliNaiveBayes = "BernoulliNaiveBayes",
4777
+ /**
4778
+ * A support vector machine (SVM) is a supervised machine learning model that uses classification algorithms for two-group classification problems.
4779
+ * After giving an SVM model sets of labeled training data for each category, they're able to categorize new text.
4780
+ */
4781
+ SVM = "SVM",
4782
+ /**
4783
+ * A support vector machine (SVM) is a supervised machine learning model that uses classification algorithms for two-group classification problems.
4784
+ * After giving an SVM model sets of labeled training data for each category, they're able to categorize new text.
4785
+ * Linear SVM performs best when input data is linear, i.e., data can be easily classified by drawing the straight line between classified values on a plotted graph.
4786
+ */
4787
+ LinearSVM = "LinearSVM",
4788
+ /**
4789
+ * K-nearest neighbors (KNN) algorithm uses 'feature similarity' to predict the values of new datapoints
4790
+ * which further means that the new data point will be assigned a value based on how closely it matches the points in the training set.
4791
+ */
4792
+ KNN = "KNN",
4793
+ /**
4794
+ * Decision Trees are a non-parametric supervised learning method used for both classification and regression tasks.
4795
+ * The goal is to create a model that predicts the value of a target variable by learning simple decision rules inferred from the data features.
4796
+ */
4797
+ DecisionTree = "DecisionTree",
4798
+ /**
4799
+ * Random forest is a supervised learning algorithm.
4800
+ * The "forest" it builds, is an ensemble of decision trees, usually trained with the “bagging” method.
4801
+ * The general idea of the bagging method is that a combination of learning models increases the overall result.
4802
+ */
4803
+ RandomForest = "RandomForest",
4804
+ /** Extreme Trees is an ensemble machine learning algorithm that combines the predictions from many decision trees. It is related to the widely used random forest algorithm. */
4805
+ ExtremeRandomTrees = "ExtremeRandomTrees",
4806
+ /** LightGBM is a gradient boosting framework that uses tree based learning algorithms. */
4807
+ LightGBM = "LightGBM",
4808
+ /** The technique of transiting week learners into a strong learner is called Boosting. The gradient boosting algorithm process works on this theory of execution. */
4809
+ GradientBoosting = "GradientBoosting",
4810
+ /** XGBoost: Extreme Gradient Boosting Algorithm. This algorithm is used for structured data where target column values can be divided into distinct class values. */
4811
+ XGBoostClassifier = "XGBoostClassifier"
4812
+ }
4813
+
4814
+ /** Known values of {@link ClassificationMultilabelPrimaryMetrics} that the service accepts. */
4815
+ export declare enum KnownClassificationMultilabelPrimaryMetrics {
4816
+ /**
4817
+ * AUC is the Area under the curve.
4818
+ * This metric represents arithmetic mean of the score for each class,
4819
+ * weighted by the number of true instances in each class.
4820
+ */
4821
+ AUCWeighted = "AUCWeighted",
4822
+ /** Accuracy is the ratio of predictions that exactly match the true class labels. */
4823
+ Accuracy = "Accuracy",
4824
+ /**
4825
+ * Normalized macro recall is recall macro-averaged and normalized, so that random
4826
+ * performance has a score of 0, and perfect performance has a score of 1.
4827
+ */
4828
+ NormMacroRecall = "NormMacroRecall",
4829
+ /**
4830
+ * The arithmetic mean of the average precision score for each class, weighted by
4831
+ * the number of true instances in each class.
4832
+ */
4833
+ AveragePrecisionScoreWeighted = "AveragePrecisionScoreWeighted",
4834
+ /** The arithmetic mean of precision for each class, weighted by number of true instances in each class. */
4835
+ PrecisionScoreWeighted = "PrecisionScoreWeighted",
4836
+ /** Intersection Over Union. Intersection of predictions divided by union of predictions. */
4837
+ IOU = "IOU"
4838
+ }
4839
+
4840
+ /** Known values of {@link ClassificationPrimaryMetrics} that the service accepts. */
4841
+ export declare enum KnownClassificationPrimaryMetrics {
4842
+ /**
4843
+ * AUC is the Area under the curve.
4844
+ * This metric represents arithmetic mean of the score for each class,
4845
+ * weighted by the number of true instances in each class.
4846
+ */
4847
+ AUCWeighted = "AUCWeighted",
4848
+ /** Accuracy is the ratio of predictions that exactly match the true class labels. */
4849
+ Accuracy = "Accuracy",
4850
+ /**
4851
+ * Normalized macro recall is recall macro-averaged and normalized, so that random
4852
+ * performance has a score of 0, and perfect performance has a score of 1.
4853
+ */
4854
+ NormMacroRecall = "NormMacroRecall",
4855
+ /**
4856
+ * The arithmetic mean of the average precision score for each class, weighted by
4857
+ * the number of true instances in each class.
4858
+ */
4859
+ AveragePrecisionScoreWeighted = "AveragePrecisionScoreWeighted",
4860
+ /** The arithmetic mean of precision for each class, weighted by number of true instances in each class. */
4861
+ PrecisionScoreWeighted = "PrecisionScoreWeighted"
4862
+ }
4863
+
3790
4864
  /** Known values of {@link ClusterPurpose} that the service accepts. */
3791
4865
  export declare enum KnownClusterPurpose {
3792
4866
  /** FastProd */
@@ -3997,6 +5071,14 @@ export declare enum KnownEarlyTerminationPolicyType {
3997
5071
  TruncationSelection = "TruncationSelection"
3998
5072
  }
3999
5073
 
5074
+ /** Known values of {@link EgressPublicNetworkAccessType} that the service accepts. */
5075
+ export declare enum KnownEgressPublicNetworkAccessType {
5076
+ /** Enabled */
5077
+ Enabled = "Enabled",
5078
+ /** Disabled */
5079
+ Disabled = "Disabled"
5080
+ }
5081
+
4000
5082
  /** Known values of {@link EncryptionStatus} that the service accepts. */
4001
5083
  export declare enum KnownEncryptionStatus {
4002
5084
  /** Enabled */
@@ -4049,6 +5131,109 @@ export declare enum KnownEnvironmentType {
4049
5131
  UserCreated = "UserCreated"
4050
5132
  }
4051
5133
 
5134
+ /** Known values of {@link FeatureLags} that the service accepts. */
5135
+ export declare enum KnownFeatureLags {
5136
+ /** No feature lags generated. */
5137
+ None = "None",
5138
+ /** System auto-generates feature lags. */
5139
+ Auto = "Auto"
5140
+ }
5141
+
5142
+ /** Known values of {@link FeaturizationMode} that the service accepts. */
5143
+ export declare enum KnownFeaturizationMode {
5144
+ /** Auto mode, system performs featurization without any custom featurization inputs. */
5145
+ Auto = "Auto",
5146
+ /** Custom featurization. */
5147
+ Custom = "Custom",
5148
+ /** Featurization off. 'Forecasting' task cannot use this value. */
5149
+ Off = "Off"
5150
+ }
5151
+
5152
+ /** Known values of {@link ForecastHorizonMode} that the service accepts. */
5153
+ export declare enum KnownForecastHorizonMode {
5154
+ /** Forecast horizon to be determined automatically. */
5155
+ Auto = "Auto",
5156
+ /** Use the custom forecast horizon. */
5157
+ Custom = "Custom"
5158
+ }
5159
+
5160
+ /** Known values of {@link ForecastingModels} that the service accepts. */
5161
+ export declare enum KnownForecastingModels {
5162
+ /**
5163
+ * Auto-Autoregressive Integrated Moving Average (ARIMA) model uses time-series data and statistical analysis to interpret the data and make future predictions.
5164
+ * This model aims to explain data by using time series data on its past values and uses linear regression to make predictions.
5165
+ */
5166
+ AutoArima = "AutoArima",
5167
+ /**
5168
+ * Prophet is a procedure for forecasting time series data based on an additive model where non-linear trends are fit with yearly, weekly, and daily seasonality, plus holiday effects.
5169
+ * It works best with time series that have strong seasonal effects and several seasons of historical data. Prophet is robust to missing data and shifts in the trend, and typically handles outliers well.
5170
+ */
5171
+ Prophet = "Prophet",
5172
+ /** The Naive forecasting model makes predictions by carrying forward the latest target value for each time-series in the training data. */
5173
+ Naive = "Naive",
5174
+ /** The Seasonal Naive forecasting model makes predictions by carrying forward the latest season of target values for each time-series in the training data. */
5175
+ SeasonalNaive = "SeasonalNaive",
5176
+ /** The Average forecasting model makes predictions by carrying forward the average of the target values for each time-series in the training data. */
5177
+ Average = "Average",
5178
+ /** The Seasonal Average forecasting model makes predictions by carrying forward the average value of the latest season of data for each time-series in the training data. */
5179
+ SeasonalAverage = "SeasonalAverage",
5180
+ /** Exponential smoothing is a time series forecasting method for univariate data that can be extended to support data with a systematic trend or seasonal component. */
5181
+ ExponentialSmoothing = "ExponentialSmoothing",
5182
+ /**
5183
+ * An Autoregressive Integrated Moving Average with Explanatory Variable (ARIMAX) model can be viewed as a multiple regression model with one or more autoregressive (AR) terms and/or one or more moving average (MA) terms.
5184
+ * This method is suitable for forecasting when data is stationary/non stationary, and multivariate with any type of data pattern, i.e., level/trend /seasonality/cyclicity.
5185
+ */
5186
+ Arimax = "Arimax",
5187
+ /** TCNForecaster: Temporal Convolutional Networks Forecaster. //TODO: Ask forecasting team for brief intro. */
5188
+ TCNForecaster = "TCNForecaster",
5189
+ /** Elastic net is a popular type of regularized linear regression that combines two popular penalties, specifically the L1 and L2 penalty functions. */
5190
+ ElasticNet = "ElasticNet",
5191
+ /** The technique of transiting week learners into a strong learner is called Boosting. The gradient boosting algorithm process works on this theory of execution. */
5192
+ GradientBoosting = "GradientBoosting",
5193
+ /**
5194
+ * Decision Trees are a non-parametric supervised learning method used for both classification and regression tasks.
5195
+ * The goal is to create a model that predicts the value of a target variable by learning simple decision rules inferred from the data features.
5196
+ */
5197
+ DecisionTree = "DecisionTree",
5198
+ /**
5199
+ * K-nearest neighbors (KNN) algorithm uses 'feature similarity' to predict the values of new datapoints
5200
+ * which further means that the new data point will be assigned a value based on how closely it matches the points in the training set.
5201
+ */
5202
+ KNN = "KNN",
5203
+ /** Lasso model fit with Least Angle Regression a.k.a. Lars. It is a Linear Model trained with an L1 prior as regularizer. */
5204
+ LassoLars = "LassoLars",
5205
+ /**
5206
+ * SGD: Stochastic gradient descent is an optimization algorithm often used in machine learning applications
5207
+ * to find the model parameters that correspond to the best fit between predicted and actual outputs.
5208
+ * It's an inexact but powerful technique.
5209
+ */
5210
+ SGD = "SGD",
5211
+ /**
5212
+ * Random forest is a supervised learning algorithm.
5213
+ * The "forest" it builds, is an ensemble of decision trees, usually trained with the “bagging” method.
5214
+ * The general idea of the bagging method is that a combination of learning models increases the overall result.
5215
+ */
5216
+ RandomForest = "RandomForest",
5217
+ /** Extreme Trees is an ensemble machine learning algorithm that combines the predictions from many decision trees. It is related to the widely used random forest algorithm. */
5218
+ ExtremeRandomTrees = "ExtremeRandomTrees",
5219
+ /** LightGBM is a gradient boosting framework that uses tree based learning algorithms. */
5220
+ LightGBM = "LightGBM",
5221
+ /** XGBoostRegressor: Extreme Gradient Boosting Regressor is a supervised machine learning model using ensemble of base learners. */
5222
+ XGBoostRegressor = "XGBoostRegressor"
5223
+ }
5224
+
5225
+ /** Known values of {@link ForecastingPrimaryMetrics} that the service accepts. */
5226
+ export declare enum KnownForecastingPrimaryMetrics {
5227
+ /** The Spearman's rank coefficient of correlation is a non-parametric measure of rank correlation. */
5228
+ SpearmanCorrelation = "SpearmanCorrelation",
5229
+ /** The Normalized Root Mean Squared Error (NRMSE) the RMSE facilitates the comparison between models with different scales. */
5230
+ NormalizedRootMeanSquaredError = "NormalizedRootMeanSquaredError",
5231
+ /** The R2 score is one of the performance evaluation measures for forecasting-based machine learning models. */
5232
+ R2Score = "R2Score",
5233
+ /** The Normalized Mean Absolute Error (NMAE) is a validation metric to compare the Mean Absolute Error (MAE) of (time) series with different scales. */
5234
+ NormalizedMeanAbsoluteError = "NormalizedMeanAbsoluteError"
5235
+ }
5236
+
4052
5237
  /** Known values of {@link Goal} that the service accepts. */
4053
5238
  export declare enum KnownGoal {
4054
5239
  /** Minimize */
@@ -4083,6 +5268,15 @@ export declare enum KnownInputDeliveryMode {
4083
5268
  EvalDownload = "EvalDownload"
4084
5269
  }
4085
5270
 
5271
+ /** Known values of {@link InstanceSegmentationPrimaryMetrics} that the service accepts. */
5272
+ export declare enum KnownInstanceSegmentationPrimaryMetrics {
5273
+ /**
5274
+ * Mean Average Precision (MAP) is the average of AP (Average Precision).
5275
+ * AP is calculated for each class and averaged to get the MAP.
5276
+ */
5277
+ MeanAveragePrecision = "MeanAveragePrecision"
5278
+ }
5279
+
4086
5280
  /** Known values of {@link JobInputType} that the service accepts. */
4087
5281
  export declare enum KnownJobInputType {
4088
5282
  /** Literal */
@@ -4162,6 +5356,8 @@ export declare enum KnownJobStatus {
4162
5356
 
4163
5357
  /** Known values of {@link JobType} that the service accepts. */
4164
5358
  export declare enum KnownJobType {
5359
+ /** AutoML */
5360
+ AutoML = "AutoML",
4165
5361
  /** Command */
4166
5362
  Command = "Command",
4167
5363
  /** Sweep */
@@ -4178,6 +5374,16 @@ export declare enum KnownKeyType {
4178
5374
  Secondary = "Secondary"
4179
5375
  }
4180
5376
 
5377
+ /** Known values of {@link LearningRateScheduler} that the service accepts. */
5378
+ export declare enum KnownLearningRateScheduler {
5379
+ /** No learning rate scheduler selected. */
5380
+ None = "None",
5381
+ /** Cosine Annealing With Warmup. */
5382
+ WarmupCosine = "WarmupCosine",
5383
+ /** Step learning rate scheduler. */
5384
+ Step = "Step"
5385
+ }
5386
+
4181
5387
  /** Known values of {@link ListViewType} that the service accepts. */
4182
5388
  export declare enum KnownListViewType {
4183
5389
  /** ActiveOnly */
@@ -4196,6 +5402,22 @@ export declare enum KnownLoadBalancerType {
4196
5402
  InternalLoadBalancer = "InternalLoadBalancer"
4197
5403
  }
4198
5404
 
5405
+ /** Known values of {@link LogVerbosity} that the service accepts. */
5406
+ export declare enum KnownLogVerbosity {
5407
+ /** No logs emitted. */
5408
+ NotSet = "NotSet",
5409
+ /** Debug and above log statements logged. */
5410
+ Debug = "Debug",
5411
+ /** Info and above log statements logged. */
5412
+ Info = "Info",
5413
+ /** Warning and above log statements logged. */
5414
+ Warning = "Warning",
5415
+ /** Error and above log statements logged. */
5416
+ Error = "Error",
5417
+ /** Only critical statements logged. */
5418
+ Critical = "Critical"
5419
+ }
5420
+
4199
5421
  /** Known values of {@link ManagedServiceIdentityType} that the service accepts. */
4200
5422
  export declare enum KnownManagedServiceIdentityType {
4201
5423
  /** None */
@@ -4208,6 +5430,20 @@ export declare enum KnownManagedServiceIdentityType {
4208
5430
  SystemAssignedUserAssigned = "SystemAssigned,UserAssigned"
4209
5431
  }
4210
5432
 
5433
+ /** Known values of {@link ModelSize} that the service accepts. */
5434
+ export declare enum KnownModelSize {
5435
+ /** No value selected. */
5436
+ None = "None",
5437
+ /** Small size. */
5438
+ Small = "Small",
5439
+ /** Medium size. */
5440
+ Medium = "Medium",
5441
+ /** Large size. */
5442
+ Large = "Large",
5443
+ /** Extra large size. */
5444
+ ExtraLarge = "ExtraLarge"
5445
+ }
5446
+
4211
5447
  /** Known values of {@link MountAction} that the service accepts. */
4212
5448
  export declare enum KnownMountAction {
4213
5449
  /** Mount */
@@ -4232,6 +5468,14 @@ export declare enum KnownMountState {
4232
5468
  Unmounted = "Unmounted"
4233
5469
  }
4234
5470
 
5471
+ /** Known values of {@link NCrossValidationsMode} that the service accepts. */
5472
+ export declare enum KnownNCrossValidationsMode {
5473
+ /** Determine N-Cross validations value automatically. Supported only for 'Forecasting' AutoML task. */
5474
+ Auto = "Auto",
5475
+ /** Use custom N-Cross validations value. */
5476
+ Custom = "Custom"
5477
+ }
5478
+
4235
5479
  /** Known values of {@link Network} that the service accepts. */
4236
5480
  export declare enum KnownNetwork {
4237
5481
  /** Bridge */
@@ -4256,6 +5500,15 @@ export declare enum KnownNodeState {
4256
5500
  Preempted = "preempted"
4257
5501
  }
4258
5502
 
5503
+ /** Known values of {@link ObjectDetectionPrimaryMetrics} that the service accepts. */
5504
+ export declare enum KnownObjectDetectionPrimaryMetrics {
5505
+ /**
5506
+ * Mean Average Precision (MAP) is the average of AP (Average Precision).
5507
+ * AP is calculated for each class and averaged to get the MAP.
5508
+ */
5509
+ MeanAveragePrecision = "MeanAveragePrecision"
5510
+ }
5511
+
4259
5512
  /** Known values of {@link OperatingSystemType} that the service accepts. */
4260
5513
  export declare enum KnownOperatingSystemType {
4261
5514
  /** Linux */
@@ -4400,6 +5653,14 @@ export declare enum KnownPublicNetworkAccess {
4400
5653
  Disabled = "Disabled"
4401
5654
  }
4402
5655
 
5656
+ /** Known values of {@link PublicNetworkAccessType} that the service accepts. */
5657
+ export declare enum KnownPublicNetworkAccessType {
5658
+ /** Enabled */
5659
+ Enabled = "Enabled",
5660
+ /** Disabled */
5661
+ Disabled = "Disabled"
5662
+ }
5663
+
4403
5664
  /** Known values of {@link QuotaUnit} that the service accepts. */
4404
5665
  export declare enum KnownQuotaUnit {
4405
5666
  /** Count */
@@ -4414,6 +5675,20 @@ export declare enum KnownRandomSamplingAlgorithmRule {
4414
5675
  Sobol = "Sobol"
4415
5676
  }
4416
5677
 
5678
+ /** Known values of {@link RecurrenceFrequency} that the service accepts. */
5679
+ export declare enum KnownRecurrenceFrequency {
5680
+ /** Minute frequency */
5681
+ Minute = "Minute",
5682
+ /** Hour frequency */
5683
+ Hour = "Hour",
5684
+ /** Day frequency */
5685
+ Day = "Day",
5686
+ /** Week frequency */
5687
+ Week = "Week",
5688
+ /** Month frequency */
5689
+ Month = "Month"
5690
+ }
5691
+
4417
5692
  /** Known values of {@link ReferenceType} that the service accepts. */
4418
5693
  export declare enum KnownReferenceType {
4419
5694
  /** Id */
@@ -4424,6 +5699,56 @@ export declare enum KnownReferenceType {
4424
5699
  OutputPath = "OutputPath"
4425
5700
  }
4426
5701
 
5702
+ /** Known values of {@link RegressionModels} that the service accepts. */
5703
+ export declare enum KnownRegressionModels {
5704
+ /** Elastic net is a popular type of regularized linear regression that combines two popular penalties, specifically the L1 and L2 penalty functions. */
5705
+ ElasticNet = "ElasticNet",
5706
+ /** The technique of transiting week learners into a strong learner is called Boosting. The gradient boosting algorithm process works on this theory of execution. */
5707
+ GradientBoosting = "GradientBoosting",
5708
+ /**
5709
+ * Decision Trees are a non-parametric supervised learning method used for both classification and regression tasks.
5710
+ * The goal is to create a model that predicts the value of a target variable by learning simple decision rules inferred from the data features.
5711
+ */
5712
+ DecisionTree = "DecisionTree",
5713
+ /**
5714
+ * K-nearest neighbors (KNN) algorithm uses 'feature similarity' to predict the values of new datapoints
5715
+ * which further means that the new data point will be assigned a value based on how closely it matches the points in the training set.
5716
+ */
5717
+ KNN = "KNN",
5718
+ /** Lasso model fit with Least Angle Regression a.k.a. Lars. It is a Linear Model trained with an L1 prior as regularizer. */
5719
+ LassoLars = "LassoLars",
5720
+ /**
5721
+ * SGD: Stochastic gradient descent is an optimization algorithm often used in machine learning applications
5722
+ * to find the model parameters that correspond to the best fit between predicted and actual outputs.
5723
+ * It's an inexact but powerful technique.
5724
+ */
5725
+ SGD = "SGD",
5726
+ /**
5727
+ * Random forest is a supervised learning algorithm.
5728
+ * The "forest" it builds, is an ensemble of decision trees, usually trained with the “bagging” method.
5729
+ * The general idea of the bagging method is that a combination of learning models increases the overall result.
5730
+ */
5731
+ RandomForest = "RandomForest",
5732
+ /** Extreme Trees is an ensemble machine learning algorithm that combines the predictions from many decision trees. It is related to the widely used random forest algorithm. */
5733
+ ExtremeRandomTrees = "ExtremeRandomTrees",
5734
+ /** LightGBM is a gradient boosting framework that uses tree based learning algorithms. */
5735
+ LightGBM = "LightGBM",
5736
+ /** XGBoostRegressor: Extreme Gradient Boosting Regressor is a supervised machine learning model using ensemble of base learners. */
5737
+ XGBoostRegressor = "XGBoostRegressor"
5738
+ }
5739
+
5740
+ /** Known values of {@link RegressionPrimaryMetrics} that the service accepts. */
5741
+ export declare enum KnownRegressionPrimaryMetrics {
5742
+ /** The Spearman's rank coefficient of correlation is a nonparametric measure of rank correlation. */
5743
+ SpearmanCorrelation = "SpearmanCorrelation",
5744
+ /** The Normalized Root Mean Squared Error (NRMSE) the RMSE facilitates the comparison between models with different scales. */
5745
+ NormalizedRootMeanSquaredError = "NormalizedRootMeanSquaredError",
5746
+ /** The R2 score is one of the performance evaluation measures for forecasting-based machine learning models. */
5747
+ R2Score = "R2Score",
5748
+ /** The Normalized Mean Absolute Error (NMAE) is a validation metric to compare the Mean Absolute Error (MAE) of (time) series with different scales. */
5749
+ NormalizedMeanAbsoluteError = "NormalizedMeanAbsoluteError"
5750
+ }
5751
+
4427
5752
  /** Known values of {@link RemoteLoginPortPublicAccess} that the service accepts. */
4428
5753
  export declare enum KnownRemoteLoginPortPublicAccess {
4429
5754
  /** Enabled */
@@ -4452,7 +5777,25 @@ export declare enum KnownScaleType {
4452
5777
  TargetUtilization = "TargetUtilization"
4453
5778
  }
4454
5779
 
4455
- /** Known values of {@link ScheduleProvisioningState} that the service accepts. */
5780
+ /** Known values of {@link ScheduleActionType} that the service accepts. */
5781
+ export declare enum KnownScheduleActionType {
5782
+ /** CreateJob */
5783
+ CreateJob = "CreateJob",
5784
+ /** InvokeBatchEndpoint */
5785
+ InvokeBatchEndpoint = "InvokeBatchEndpoint"
5786
+ }
5787
+
5788
+ /** Known values of {@link ScheduleListViewType} that the service accepts. */
5789
+ export declare enum KnownScheduleListViewType {
5790
+ /** EnabledOnly */
5791
+ EnabledOnly = "EnabledOnly",
5792
+ /** DisabledOnly */
5793
+ DisabledOnly = "DisabledOnly",
5794
+ /** All */
5795
+ All = "All"
5796
+ }
5797
+
5798
+ /** Known values of {@link ScheduleProvisioningState} that the service accepts. */
4456
5799
  export declare enum KnownScheduleProvisioningState {
4457
5800
  /** Completed */
4458
5801
  Completed = "Completed",
@@ -4462,6 +5805,22 @@ export declare enum KnownScheduleProvisioningState {
4462
5805
  Failed = "Failed"
4463
5806
  }
4464
5807
 
5808
+ /** Known values of {@link ScheduleProvisioningStatus} that the service accepts. */
5809
+ export declare enum KnownScheduleProvisioningStatus {
5810
+ /** Creating */
5811
+ Creating = "Creating",
5812
+ /** Updating */
5813
+ Updating = "Updating",
5814
+ /** Deleting */
5815
+ Deleting = "Deleting",
5816
+ /** Succeeded */
5817
+ Succeeded = "Succeeded",
5818
+ /** Failed */
5819
+ Failed = "Failed",
5820
+ /** Canceled */
5821
+ Canceled = "Canceled"
5822
+ }
5823
+
4465
5824
  /** Known values of {@link ScheduleStatus} that the service accepts. */
4466
5825
  export declare enum KnownScheduleStatus {
4467
5826
  /** Enabled */
@@ -4470,6 +5829,14 @@ export declare enum KnownScheduleStatus {
4470
5829
  Disabled = "Disabled"
4471
5830
  }
4472
5831
 
5832
+ /** Known values of {@link SeasonalityMode} that the service accepts. */
5833
+ export declare enum KnownSeasonalityMode {
5834
+ /** Seasonality to be determined automatically. */
5835
+ Auto = "Auto",
5836
+ /** Use the custom seasonality value. */
5837
+ Custom = "Custom"
5838
+ }
5839
+
4473
5840
  /** Known values of {@link SecretsType} that the service accepts. */
4474
5841
  export declare enum KnownSecretsType {
4475
5842
  /** AccountKey */
@@ -4492,6 +5859,18 @@ export declare enum KnownServiceDataAccessAuthIdentity {
4492
5859
  WorkspaceUserAssignedIdentity = "WorkspaceUserAssignedIdentity"
4493
5860
  }
4494
5861
 
5862
+ /** Known values of {@link ShortSeriesHandlingConfiguration} that the service accepts. */
5863
+ export declare enum KnownShortSeriesHandlingConfiguration {
5864
+ /** Represents no/null value. */
5865
+ None = "None",
5866
+ /** Short series will be padded if there are no long series, otherwise short series will be dropped. */
5867
+ Auto = "Auto",
5868
+ /** All the short series will be padded. */
5869
+ Pad = "Pad",
5870
+ /** All the short series will be dropped. */
5871
+ Drop = "Drop"
5872
+ }
5873
+
4495
5874
  /** Known values of {@link SkuScaleType} that the service accepts. */
4496
5875
  export declare enum KnownSkuScaleType {
4497
5876
  /** Automatically scales node count. */
@@ -4530,6 +5909,26 @@ export declare enum KnownSslConfigStatus {
4530
5909
  Auto = "Auto"
4531
5910
  }
4532
5911
 
5912
+ /** Known values of {@link StackMetaLearnerType} that the service accepts. */
5913
+ export declare enum KnownStackMetaLearnerType {
5914
+ /** None */
5915
+ None = "None",
5916
+ /** Default meta-learners are LogisticRegression for classification tasks. */
5917
+ LogisticRegression = "LogisticRegression",
5918
+ /** Default meta-learners are LogisticRegression for classification task when CV is on. */
5919
+ LogisticRegressionCV = "LogisticRegressionCV",
5920
+ /** LightGBMClassifier */
5921
+ LightGBMClassifier = "LightGBMClassifier",
5922
+ /** Default meta-learners are LogisticRegression for regression task. */
5923
+ ElasticNet = "ElasticNet",
5924
+ /** Default meta-learners are LogisticRegression for regression task when CV is on. */
5925
+ ElasticNetCV = "ElasticNetCV",
5926
+ /** LightGBMRegressor */
5927
+ LightGBMRegressor = "LightGBMRegressor",
5928
+ /** LinearRegression */
5929
+ LinearRegression = "LinearRegression"
5930
+ }
5931
+
4533
5932
  /** Known values of {@link Status} that the service accepts. */
4534
5933
  export declare enum KnownStatus {
4535
5934
  /** Undefined */
@@ -4550,6 +5949,18 @@ export declare enum KnownStatus {
4550
5949
  OperationNotEnabledForRegion = "OperationNotEnabledForRegion"
4551
5950
  }
4552
5951
 
5952
+ /** Known values of {@link StochasticOptimizer} that the service accepts. */
5953
+ export declare enum KnownStochasticOptimizer {
5954
+ /** No optimizer selected. */
5955
+ None = "None",
5956
+ /** Stochastic Gradient Descent optimizer. */
5957
+ Sgd = "Sgd",
5958
+ /** Adam is algorithm the optimizes stochastic objective functions based on adaptive estimates of moments */
5959
+ Adam = "Adam",
5960
+ /** AdamW is a variant of the optimizer Adam that has an improved implementation of weight decay. */
5961
+ Adamw = "Adamw"
5962
+ }
5963
+
4553
5964
  /** Known values of {@link StorageAccountType} that the service accepts. */
4554
5965
  export declare enum KnownStorageAccountType {
4555
5966
  /** StandardLRS */
@@ -4558,6 +5969,92 @@ export declare enum KnownStorageAccountType {
4558
5969
  PremiumLRS = "Premium_LRS"
4559
5970
  }
4560
5971
 
5972
+ /** Known values of {@link TargetAggregationFunction} that the service accepts. */
5973
+ export declare enum KnownTargetAggregationFunction {
5974
+ /** Represent no value set. */
5975
+ None = "None",
5976
+ /** Sum */
5977
+ Sum = "Sum",
5978
+ /** Max */
5979
+ Max = "Max",
5980
+ /** Min */
5981
+ Min = "Min",
5982
+ /** Mean */
5983
+ Mean = "Mean"
5984
+ }
5985
+
5986
+ /** Known values of {@link TargetLagsMode} that the service accepts. */
5987
+ export declare enum KnownTargetLagsMode {
5988
+ /** Target lags to be determined automatically. */
5989
+ Auto = "Auto",
5990
+ /** Use the custom target lags. */
5991
+ Custom = "Custom"
5992
+ }
5993
+
5994
+ /** Known values of {@link TargetRollingWindowSizeMode} that the service accepts. */
5995
+ export declare enum KnownTargetRollingWindowSizeMode {
5996
+ /** Determine rolling windows size automatically. */
5997
+ Auto = "Auto",
5998
+ /** Use the specified rolling window size. */
5999
+ Custom = "Custom"
6000
+ }
6001
+
6002
+ /** Known values of {@link TaskType} that the service accepts. */
6003
+ export declare enum KnownTaskType {
6004
+ /**
6005
+ * Classification in machine learning and statistics is a supervised learning approach in which
6006
+ * the computer program learns from the data given to it and make new observations or classifications.
6007
+ */
6008
+ Classification = "Classification",
6009
+ /** Regression means to predict the value using the input data. Regression models are used to predict a continuous value. */
6010
+ Regression = "Regression",
6011
+ /**
6012
+ * Forecasting is a special kind of regression task that deals with time-series data and creates forecasting model
6013
+ * that can be used to predict the near future values based on the inputs.
6014
+ */
6015
+ Forecasting = "Forecasting",
6016
+ /**
6017
+ * Image Classification. Multi-class image classification is used when an image is classified with only a single label
6018
+ * from a set of classes - e.g. each image is classified as either an image of a 'cat' or a 'dog' or a 'duck'.
6019
+ */
6020
+ ImageClassification = "ImageClassification",
6021
+ /**
6022
+ * Image Classification Multilabel. Multi-label image classification is used when an image could have one or more labels
6023
+ * from a set of labels - e.g. an image could be labeled with both 'cat' and 'dog'.
6024
+ */
6025
+ ImageClassificationMultilabel = "ImageClassificationMultilabel",
6026
+ /**
6027
+ * Image Object Detection. Object detection is used to identify objects in an image and locate each object with a
6028
+ * bounding box e.g. locate all dogs and cats in an image and draw a bounding box around each.
6029
+ */
6030
+ ImageObjectDetection = "ImageObjectDetection",
6031
+ /**
6032
+ * Image Instance Segmentation. Instance segmentation is used to identify objects in an image at the pixel level,
6033
+ * drawing a polygon around each object in the image.
6034
+ */
6035
+ ImageInstanceSegmentation = "ImageInstanceSegmentation",
6036
+ /**
6037
+ * Text classification (also known as text tagging or text categorization) is the process of sorting texts into categories.
6038
+ * Categories are mutually exclusive.
6039
+ */
6040
+ TextClassification = "TextClassification",
6041
+ /** Multilabel classification task assigns each sample to a group (zero or more) of target labels. */
6042
+ TextClassificationMultilabel = "TextClassificationMultilabel",
6043
+ /**
6044
+ * Text Named Entity Recognition a.k.a. TextNER.
6045
+ * Named Entity Recognition (NER) is the ability to take free-form text and identify the occurrences of entities such as people, locations, organizations, and more.
6046
+ */
6047
+ TextNER = "TextNER"
6048
+ }
6049
+
6050
+ /** Known values of {@link TriggerType} that the service accepts. */
6051
+ export declare enum KnownTriggerType {
6052
+ /** Recurrence */
6053
+ Recurrence = "Recurrence",
6054
+ /** Cron */
6055
+ Cron = "Cron"
6056
+ }
6057
+
4561
6058
  /** Known values of {@link UnderlyingResourceAction} that the service accepts. */
4562
6059
  export declare enum KnownUnderlyingResourceAction {
4563
6060
  /** Delete */
@@ -4578,6 +6075,28 @@ export declare enum KnownUsageUnit {
4578
6075
  Count = "Count"
4579
6076
  }
4580
6077
 
6078
+ /** Known values of {@link UseStl} that the service accepts. */
6079
+ export declare enum KnownUseStl {
6080
+ /** No stl decomposition. */
6081
+ None = "None",
6082
+ /** Season */
6083
+ Season = "Season",
6084
+ /** SeasonTrend */
6085
+ SeasonTrend = "SeasonTrend"
6086
+ }
6087
+
6088
+ /** Known values of {@link ValidationMetricType} that the service accepts. */
6089
+ export declare enum KnownValidationMetricType {
6090
+ /** No metric. */
6091
+ None = "None",
6092
+ /** Coco metric. */
6093
+ Coco = "Coco",
6094
+ /** Voc metric. */
6095
+ Voc = "Voc",
6096
+ /** CocoVoc metric. */
6097
+ CocoVoc = "CocoVoc"
6098
+ }
6099
+
4581
6100
  /** Known values of {@link ValueFormat} that the service accepts. */
4582
6101
  export declare enum KnownValueFormat {
4583
6102
  /** Json */
@@ -4610,6 +6129,24 @@ export declare enum KnownVMTier {
4610
6129
  Spot = "Spot"
4611
6130
  }
4612
6131
 
6132
+ /** Known values of {@link WeekDay} that the service accepts. */
6133
+ export declare enum KnownWeekDay {
6134
+ /** Monday weekday */
6135
+ Monday = "Monday",
6136
+ /** Tuesday weekday */
6137
+ Tuesday = "Tuesday",
6138
+ /** Wednesday weekday */
6139
+ Wednesday = "Wednesday",
6140
+ /** Thursday weekday */
6141
+ Thursday = "Thursday",
6142
+ /** Friday weekday */
6143
+ Friday = "Friday",
6144
+ /** Saturday weekday */
6145
+ Saturday = "Saturday",
6146
+ /** Sunday weekday */
6147
+ Sunday = "Sunday"
6148
+ }
6149
+
4613
6150
  /** A Machine Learning compute based on Kubernetes Compute. */
4614
6151
  export declare interface Kubernetes extends Compute, KubernetesSchema {
4615
6152
  /** Polymorphic discriminator, which specifies the different types this object can be */
@@ -4652,6 +6189,17 @@ export declare interface KubernetesSchema {
4652
6189
  properties?: KubernetesProperties;
4653
6190
  }
4654
6191
 
6192
+ /**
6193
+ * Defines values for LearningRateScheduler. \
6194
+ * {@link KnownLearningRateScheduler} can be used interchangeably with LearningRateScheduler,
6195
+ * this enum contains the known values that the service supports.
6196
+ * ### Known values supported by the service
6197
+ * **None**: No learning rate scheduler selected. \
6198
+ * **WarmupCosine**: Cosine Annealing With Warmup. \
6199
+ * **Step**: Step learning rate scheduler.
6200
+ */
6201
+ export declare type LearningRateScheduler = string;
6202
+
4655
6203
  /** The List Aml user feature operation response. */
4656
6204
  export declare interface ListAmlUserFeatureResult {
4657
6205
  /**
@@ -4748,6 +6296,20 @@ export declare interface LiteralJobInput extends JobInput {
4748
6296
  */
4749
6297
  export declare type LoadBalancerType = string;
4750
6298
 
6299
+ /**
6300
+ * Defines values for LogVerbosity. \
6301
+ * {@link KnownLogVerbosity} can be used interchangeably with LogVerbosity,
6302
+ * this enum contains the known values that the service supports.
6303
+ * ### Known values supported by the service
6304
+ * **NotSet**: No logs emitted. \
6305
+ * **Debug**: Debug and above log statements logged. \
6306
+ * **Info**: Info and above log statements logged. \
6307
+ * **Warning**: Warning and above log statements logged. \
6308
+ * **Error**: Error and above log statements logged. \
6309
+ * **Critical**: Only critical statements logged.
6310
+ */
6311
+ export declare type LogVerbosity = string;
6312
+
4751
6313
  /** Managed identity configuration. */
4752
6314
  export declare interface ManagedIdentity extends IdentityConfiguration {
4753
6315
  /** Polymorphic discriminator, which specifies the different types this object can be */
@@ -4927,6 +6489,19 @@ export declare interface ModelContainersListOptionalParams extends coreClient.Op
4927
6489
  /** Contains response data for the list operation. */
4928
6490
  export declare type ModelContainersListResponse = ModelContainerResourceArmPaginatedResult;
4929
6491
 
6492
+ /**
6493
+ * Defines values for ModelSize. \
6494
+ * {@link KnownModelSize} can be used interchangeably with ModelSize,
6495
+ * this enum contains the known values that the service supports.
6496
+ * ### Known values supported by the service
6497
+ * **None**: No value selected. \
6498
+ * **Small**: Small size. \
6499
+ * **Medium**: Medium size. \
6500
+ * **Large**: Large size. \
6501
+ * **ExtraLarge**: Extra large size.
6502
+ */
6503
+ export declare type ModelSize = string;
6504
+
4930
6505
  /** Azure Resource Manager resource envelope. */
4931
6506
  export declare interface ModelVersion extends Resource {
4932
6507
  /** [Required] Additional attributes of the entity. */
@@ -5099,6 +6674,24 @@ export declare interface Mpi extends DistributionConfiguration {
5099
6674
  processCountPerInstance?: number;
5100
6675
  }
5101
6676
 
6677
+ /** N-Cross validations value. */
6678
+ export declare interface NCrossValidations {
6679
+ /** Polymorphic discriminator, which specifies the different types this object can be */
6680
+ mode: "Auto" | "Custom";
6681
+ }
6682
+
6683
+ /**
6684
+ * Defines values for NCrossValidationsMode. \
6685
+ * {@link KnownNCrossValidationsMode} can be used interchangeably with NCrossValidationsMode,
6686
+ * this enum contains the known values that the service supports.
6687
+ * ### Known values supported by the service
6688
+ * **Auto**: Determine N-Cross validations value automatically. Supported only for 'Forecasting' AutoML task. \
6689
+ * **Custom**: Use custom N-Cross validations value.
6690
+ */
6691
+ export declare type NCrossValidationsMode = string;
6692
+
6693
+ export declare type NCrossValidationsUnion = NCrossValidations | AutoNCrossValidations | CustomNCrossValidations;
6694
+
5102
6695
  /**
5103
6696
  * Defines values for Network. \
5104
6697
  * {@link KnownNetwork} can be used interchangeably with Network,
@@ -5109,6 +6702,32 @@ export declare interface Mpi extends DistributionConfiguration {
5109
6702
  */
5110
6703
  export declare type Network = string;
5111
6704
 
6705
+ /**
6706
+ * Abstract class for NLP related AutoML tasks.
6707
+ * NLP - Natural Language Processing.
6708
+ */
6709
+ export declare interface NlpVertical {
6710
+ /** Featurization inputs needed for AutoML job. */
6711
+ featurizationSettings?: NlpVerticalFeaturizationSettings;
6712
+ /** Execution constraints for AutoMLJob. */
6713
+ limitSettings?: NlpVerticalLimitSettings;
6714
+ /** Validation data inputs. */
6715
+ validationData?: MLTableJobInput;
6716
+ }
6717
+
6718
+ export declare interface NlpVerticalFeaturizationSettings extends FeaturizationSettings {
6719
+ }
6720
+
6721
+ /** Job execution constraints. */
6722
+ export declare interface NlpVerticalLimitSettings {
6723
+ /** Maximum Concurrent AutoML iterations. */
6724
+ maxConcurrentTrials?: number;
6725
+ /** Number of AutoML iterations. */
6726
+ maxTrials?: number;
6727
+ /** AutoML job timeout. */
6728
+ timeout?: string;
6729
+ }
6730
+
5112
6731
  /**
5113
6732
  * Defines values for NodeState. \
5114
6733
  * {@link KnownNodeState} can be used interchangeably with NodeState,
@@ -5200,6 +6819,16 @@ export declare interface NotebookResourceInfo {
5200
6819
  notebookPreparationError?: NotebookPreparationError;
5201
6820
  }
5202
6821
 
6822
+ /**
6823
+ * Defines values for ObjectDetectionPrimaryMetrics. \
6824
+ * {@link KnownObjectDetectionPrimaryMetrics} can be used interchangeably with ObjectDetectionPrimaryMetrics,
6825
+ * this enum contains the known values that the service supports.
6826
+ * ### Known values supported by the service
6827
+ * **MeanAveragePrecision**: Mean Average Precision (MAP) is the average of AP (Average Precision).
6828
+ * AP is calculated for each class and averaged to get the MAP.
6829
+ */
6830
+ export declare type ObjectDetectionPrimaryMetrics = string;
6831
+
5203
6832
  /** Optimization objective. */
5204
6833
  export declare interface Objective {
5205
6834
  /** [Required] Defines supported metric goals for hyperparameter tuning */
@@ -5222,6 +6851,8 @@ export declare interface OnlineDeployment extends TrackedResource {
5222
6851
  export declare interface OnlineDeploymentProperties extends EndpointDeploymentPropertiesBase {
5223
6852
  /** If true, enables Application Insights logging. */
5224
6853
  appInsightsEnabled?: boolean;
6854
+ /** If Enabled, allow egress public network access. If Disabled, this will create secure egress. Default: Enabled. */
6855
+ egressPublicNetworkAccess?: EgressPublicNetworkAccessType;
5225
6856
  /** [Required] The compute type of the endpoint. */
5226
6857
  endpointComputeType: EndpointComputeType;
5227
6858
  /** Compute instance type. */
@@ -5501,6 +7132,8 @@ export declare interface OnlineEndpointProperties extends EndpointPropertiesBase
5501
7132
  * NOTE: This property will not be serialized. It can only be populated by the server.
5502
7133
  */
5503
7134
  readonly provisioningState?: EndpointProvisioningState;
7135
+ /** Set to "Enabled" for endpoints that should allow public access when Private Link is enabled. */
7136
+ publicNetworkAccess?: PublicNetworkAccessType;
5504
7137
  /** Percentage of traffic from endpoint to divert to each deployment. Traffic values need to sum to 100. */
5505
7138
  traffic?: {
5506
7139
  [propertyName: string]: number;
@@ -5995,6 +7628,8 @@ export declare interface PipelineJob extends JobBaseProperties {
5995
7628
  };
5996
7629
  /** Pipeline settings, for things like ContinueRunOnStepFailure etc. */
5997
7630
  settings?: Record<string, unknown>;
7631
+ /** ARM resource ID of source job. */
7632
+ sourceJobId?: string;
5998
7633
  }
5999
7634
 
6000
7635
  /** The Private Endpoint resource. */
@@ -6239,6 +7874,16 @@ export declare type ProvisioningStatus = string;
6239
7874
  */
6240
7875
  export declare type PublicNetworkAccess = string;
6241
7876
 
7877
+ /**
7878
+ * Defines values for PublicNetworkAccessType. \
7879
+ * {@link KnownPublicNetworkAccessType} can be used interchangeably with PublicNetworkAccessType,
7880
+ * this enum contains the known values that the service supports.
7881
+ * ### Known values supported by the service
7882
+ * **Enabled** \
7883
+ * **Disabled**
7884
+ */
7885
+ export declare type PublicNetworkAccessType = string;
7886
+
6242
7887
  /** PyTorch distribution configuration. */
6243
7888
  export declare interface PyTorch extends DistributionConfiguration {
6244
7889
  /** Polymorphic discriminator, which specifies the different types this object can be */
@@ -6334,6 +7979,41 @@ export declare interface RandomSamplingAlgorithm extends SamplingAlgorithm {
6334
7979
  */
6335
7980
  export declare type RandomSamplingAlgorithmRule = string;
6336
7981
 
7982
+ /**
7983
+ * Defines values for RecurrenceFrequency. \
7984
+ * {@link KnownRecurrenceFrequency} can be used interchangeably with RecurrenceFrequency,
7985
+ * this enum contains the known values that the service supports.
7986
+ * ### Known values supported by the service
7987
+ * **Minute**: Minute frequency \
7988
+ * **Hour**: Hour frequency \
7989
+ * **Day**: Day frequency \
7990
+ * **Week**: Week frequency \
7991
+ * **Month**: Month frequency
7992
+ */
7993
+ export declare type RecurrenceFrequency = string;
7994
+
7995
+ export declare interface RecurrenceSchedule {
7996
+ /** [Required] List of hours for the schedule. */
7997
+ hours: number[];
7998
+ /** [Required] List of minutes for the schedule. */
7999
+ minutes: number[];
8000
+ /** List of month days for the schedule */
8001
+ monthDays?: number[];
8002
+ /** List of days for the schedule. */
8003
+ weekDays?: WeekDay[];
8004
+ }
8005
+
8006
+ export declare interface RecurrenceTrigger extends TriggerBase {
8007
+ /** Polymorphic discriminator, which specifies the different types this object can be */
8008
+ triggerType: "Recurrence";
8009
+ /** [Required] The frequency to trigger schedule. */
8010
+ frequency: RecurrenceFrequency;
8011
+ /** [Required] Specifies schedule interval in conjunction with frequency */
8012
+ interval: number;
8013
+ /** The recurrence schedule. */
8014
+ schedule?: RecurrenceSchedule;
8015
+ }
8016
+
6337
8017
  /**
6338
8018
  * Defines values for ReferenceType. \
6339
8019
  * {@link KnownReferenceType} can be used interchangeably with ReferenceType,
@@ -6360,6 +8040,58 @@ export declare interface RegistryListCredentialsResult {
6360
8040
  passwords?: Password[];
6361
8041
  }
6362
8042
 
8043
+ /** Regression task in AutoML Table vertical. */
8044
+ export declare interface Regression extends TableVertical, AutoMLVertical {
8045
+ /** Primary metric for regression task. */
8046
+ primaryMetric?: RegressionPrimaryMetrics;
8047
+ /** Inputs for training phase for an AutoML Job. */
8048
+ trainingSettings?: RegressionTrainingSettings;
8049
+ }
8050
+
8051
+ /**
8052
+ * Defines values for RegressionModels. \
8053
+ * {@link KnownRegressionModels} can be used interchangeably with RegressionModels,
8054
+ * this enum contains the known values that the service supports.
8055
+ * ### Known values supported by the service
8056
+ * **ElasticNet**: Elastic net is a popular type of regularized linear regression that combines two popular penalties, specifically the L1 and L2 penalty functions. \
8057
+ * **GradientBoosting**: The technique of transiting week learners into a strong learner is called Boosting. The gradient boosting algorithm process works on this theory of execution. \
8058
+ * **DecisionTree**: Decision Trees are a non-parametric supervised learning method used for both classification and regression tasks.
8059
+ * The goal is to create a model that predicts the value of a target variable by learning simple decision rules inferred from the data features. \
8060
+ * **KNN**: K-nearest neighbors (KNN) algorithm uses 'feature similarity' to predict the values of new datapoints
8061
+ * which further means that the new data point will be assigned a value based on how closely it matches the points in the training set. \
8062
+ * **LassoLars**: Lasso model fit with Least Angle Regression a.k.a. Lars. It is a Linear Model trained with an L1 prior as regularizer. \
8063
+ * **SGD**: SGD: Stochastic gradient descent is an optimization algorithm often used in machine learning applications
8064
+ * to find the model parameters that correspond to the best fit between predicted and actual outputs.
8065
+ * It's an inexact but powerful technique. \
8066
+ * **RandomForest**: Random forest is a supervised learning algorithm.
8067
+ * The "forest" it builds, is an ensemble of decision trees, usually trained with the “bagging” method.
8068
+ * The general idea of the bagging method is that a combination of learning models increases the overall result. \
8069
+ * **ExtremeRandomTrees**: Extreme Trees is an ensemble machine learning algorithm that combines the predictions from many decision trees. It is related to the widely used random forest algorithm. \
8070
+ * **LightGBM**: LightGBM is a gradient boosting framework that uses tree based learning algorithms. \
8071
+ * **XGBoostRegressor**: XGBoostRegressor: Extreme Gradient Boosting Regressor is a supervised machine learning model using ensemble of base learners.
8072
+ */
8073
+ export declare type RegressionModels = string;
8074
+
8075
+ /**
8076
+ * Defines values for RegressionPrimaryMetrics. \
8077
+ * {@link KnownRegressionPrimaryMetrics} can be used interchangeably with RegressionPrimaryMetrics,
8078
+ * this enum contains the known values that the service supports.
8079
+ * ### Known values supported by the service
8080
+ * **SpearmanCorrelation**: The Spearman's rank coefficient of correlation is a nonparametric measure of rank correlation. \
8081
+ * **NormalizedRootMeanSquaredError**: The Normalized Root Mean Squared Error (NRMSE) the RMSE facilitates the comparison between models with different scales. \
8082
+ * **R2Score**: The R2 score is one of the performance evaluation measures for forecasting-based machine learning models. \
8083
+ * **NormalizedMeanAbsoluteError**: The Normalized Mean Absolute Error (NMAE) is a validation metric to compare the Mean Absolute Error (MAE) of (time) series with different scales.
8084
+ */
8085
+ export declare type RegressionPrimaryMetrics = string;
8086
+
8087
+ /** Regression Training related configuration. */
8088
+ export declare interface RegressionTrainingSettings extends TrainingSettings {
8089
+ /** Allowed models for regression task. */
8090
+ allowedTrainingAlgorithms?: RegressionModels[];
8091
+ /** Blocked models for regression task. */
8092
+ blockedTrainingAlgorithms?: RegressionModels[];
8093
+ }
8094
+
6363
8095
  /**
6364
8096
  * Defines values for RemoteLoginPortPublicAccess. \
6365
8097
  * {@link KnownRemoteLoginPortPublicAccess} can be used interchangeably with RemoteLoginPortPublicAccess,
@@ -6550,12 +8282,66 @@ export declare interface ScaleSettingsInformation {
6550
8282
  */
6551
8283
  export declare type ScaleType = string;
6552
8284
 
8285
+ /** Azure Resource Manager resource envelope. */
8286
+ export declare interface Schedule extends Resource {
8287
+ /** [Required] Additional attributes of the entity. */
8288
+ properties: ScheduleProperties;
8289
+ }
8290
+
8291
+ export declare interface ScheduleActionBase {
8292
+ /** Polymorphic discriminator, which specifies the different types this object can be */
8293
+ actionType: "InvokeBatchEndpoint" | "CreateJob";
8294
+ }
8295
+
8296
+ export declare type ScheduleActionBaseUnion = ScheduleActionBase | EndpointScheduleAction | JobScheduleAction;
8297
+
8298
+ /**
8299
+ * Defines values for ScheduleActionType. \
8300
+ * {@link KnownScheduleActionType} can be used interchangeably with ScheduleActionType,
8301
+ * this enum contains the known values that the service supports.
8302
+ * ### Known values supported by the service
8303
+ * **CreateJob** \
8304
+ * **InvokeBatchEndpoint**
8305
+ */
8306
+ export declare type ScheduleActionType = string;
8307
+
6553
8308
  export declare interface ScheduleBase {
8309
+ /** A system assigned id for the schedule. */
6554
8310
  id?: string;
8311
+ /** The current deployment state of schedule. */
6555
8312
  provisioningStatus?: ScheduleProvisioningState;
8313
+ /** Is the schedule enabled or disabled? */
6556
8314
  status?: ScheduleStatus;
6557
8315
  }
6558
8316
 
8317
+ /**
8318
+ * Defines values for ScheduleListViewType. \
8319
+ * {@link KnownScheduleListViewType} can be used interchangeably with ScheduleListViewType,
8320
+ * this enum contains the known values that the service supports.
8321
+ * ### Known values supported by the service
8322
+ * **EnabledOnly** \
8323
+ * **DisabledOnly** \
8324
+ * **All**
8325
+ */
8326
+ export declare type ScheduleListViewType = string;
8327
+
8328
+ /** Base definition of a schedule */
8329
+ export declare interface ScheduleProperties extends ResourceBase {
8330
+ /** [Required] Specifies the action of the schedule */
8331
+ action: ScheduleActionBaseUnion;
8332
+ /** Display name of schedule. */
8333
+ displayName?: string;
8334
+ /** Is the schedule enabled? */
8335
+ isEnabled?: boolean;
8336
+ /**
8337
+ * Provisioning state for the schedule.
8338
+ * NOTE: This property will not be serialized. It can only be populated by the server.
8339
+ */
8340
+ readonly provisioningState?: ScheduleProvisioningStatus;
8341
+ /** [Required] Specifies the trigger details */
8342
+ trigger: TriggerBaseUnion;
8343
+ }
8344
+
6559
8345
  /**
6560
8346
  * Defines values for ScheduleProvisioningState. \
6561
8347
  * {@link KnownScheduleProvisioningState} can be used interchangeably with ScheduleProvisioningState,
@@ -6567,6 +8353,147 @@ export declare interface ScheduleBase {
6567
8353
  */
6568
8354
  export declare type ScheduleProvisioningState = string;
6569
8355
 
8356
+ /**
8357
+ * Defines values for ScheduleProvisioningStatus. \
8358
+ * {@link KnownScheduleProvisioningStatus} can be used interchangeably with ScheduleProvisioningStatus,
8359
+ * this enum contains the known values that the service supports.
8360
+ * ### Known values supported by the service
8361
+ * **Creating** \
8362
+ * **Updating** \
8363
+ * **Deleting** \
8364
+ * **Succeeded** \
8365
+ * **Failed** \
8366
+ * **Canceled**
8367
+ */
8368
+ export declare type ScheduleProvisioningStatus = string;
8369
+
8370
+ /** A paginated list of Schedule entities. */
8371
+ export declare interface ScheduleResourceArmPaginatedResult {
8372
+ /** The link to the next page of Schedule objects. If null, there are no additional pages. */
8373
+ nextLink?: string;
8374
+ /** An array of objects of type Schedule. */
8375
+ value?: Schedule[];
8376
+ }
8377
+
8378
+ /** Interface representing a Schedules. */
8379
+ export declare interface Schedules {
8380
+ /**
8381
+ * List schedules in specified workspace.
8382
+ * @param resourceGroupName The name of the resource group. The name is case insensitive.
8383
+ * @param workspaceName Name of Azure Machine Learning workspace.
8384
+ * @param options The options parameters.
8385
+ */
8386
+ list(resourceGroupName: string, workspaceName: string, options?: SchedulesListOptionalParams): PagedAsyncIterableIterator<Schedule>;
8387
+ /**
8388
+ * Delete schedule.
8389
+ * @param resourceGroupName The name of the resource group. The name is case insensitive.
8390
+ * @param workspaceName Name of Azure Machine Learning workspace.
8391
+ * @param name Schedule name.
8392
+ * @param options The options parameters.
8393
+ */
8394
+ beginDelete(resourceGroupName: string, workspaceName: string, name: string, options?: SchedulesDeleteOptionalParams): Promise<PollerLike<PollOperationState<void>, void>>;
8395
+ /**
8396
+ * Delete schedule.
8397
+ * @param resourceGroupName The name of the resource group. The name is case insensitive.
8398
+ * @param workspaceName Name of Azure Machine Learning workspace.
8399
+ * @param name Schedule name.
8400
+ * @param options The options parameters.
8401
+ */
8402
+ beginDeleteAndWait(resourceGroupName: string, workspaceName: string, name: string, options?: SchedulesDeleteOptionalParams): Promise<void>;
8403
+ /**
8404
+ * Get schedule.
8405
+ * @param resourceGroupName The name of the resource group. The name is case insensitive.
8406
+ * @param workspaceName Name of Azure Machine Learning workspace.
8407
+ * @param name Schedule name.
8408
+ * @param options The options parameters.
8409
+ */
8410
+ get(resourceGroupName: string, workspaceName: string, name: string, options?: SchedulesGetOptionalParams): Promise<SchedulesGetResponse>;
8411
+ /**
8412
+ * Create or update schedule.
8413
+ * @param resourceGroupName The name of the resource group. The name is case insensitive.
8414
+ * @param workspaceName Name of Azure Machine Learning workspace.
8415
+ * @param name Schedule name.
8416
+ * @param body Schedule definition.
8417
+ * @param options The options parameters.
8418
+ */
8419
+ beginCreateOrUpdate(resourceGroupName: string, workspaceName: string, name: string, body: Schedule, options?: SchedulesCreateOrUpdateOptionalParams): Promise<PollerLike<PollOperationState<SchedulesCreateOrUpdateResponse>, SchedulesCreateOrUpdateResponse>>;
8420
+ /**
8421
+ * Create or update schedule.
8422
+ * @param resourceGroupName The name of the resource group. The name is case insensitive.
8423
+ * @param workspaceName Name of Azure Machine Learning workspace.
8424
+ * @param name Schedule name.
8425
+ * @param body Schedule definition.
8426
+ * @param options The options parameters.
8427
+ */
8428
+ beginCreateOrUpdateAndWait(resourceGroupName: string, workspaceName: string, name: string, body: Schedule, options?: SchedulesCreateOrUpdateOptionalParams): Promise<SchedulesCreateOrUpdateResponse>;
8429
+ }
8430
+
8431
+ /** Defines headers for Schedules_createOrUpdate operation. */
8432
+ export declare interface SchedulesCreateOrUpdateHeaders {
8433
+ /** Timeout for the client to use when polling the asynchronous operation. */
8434
+ xMsAsyncOperationTimeout?: string;
8435
+ /** URI to poll for asynchronous operation status. */
8436
+ azureAsyncOperation?: string;
8437
+ }
8438
+
8439
+ /** Optional parameters. */
8440
+ export declare interface SchedulesCreateOrUpdateOptionalParams extends coreClient.OperationOptions {
8441
+ /** Delay to wait until next poll, in milliseconds. */
8442
+ updateIntervalInMs?: number;
8443
+ /** A serialized poller which can be used to resume an existing paused Long-Running-Operation. */
8444
+ resumeFrom?: string;
8445
+ }
8446
+
8447
+ /** Contains response data for the createOrUpdate operation. */
8448
+ export declare type SchedulesCreateOrUpdateResponse = Schedule;
8449
+
8450
+ /** Defines headers for Schedules_delete operation. */
8451
+ export declare interface SchedulesDeleteHeaders {
8452
+ /** Timeout for the client to use when polling the asynchronous operation. */
8453
+ xMsAsyncOperationTimeout?: string;
8454
+ /** URI to poll for asynchronous operation result. */
8455
+ location?: string;
8456
+ /** Duration the client should wait between requests, in seconds. */
8457
+ retryAfter?: number;
8458
+ }
8459
+
8460
+ /** Optional parameters. */
8461
+ export declare interface SchedulesDeleteOptionalParams extends coreClient.OperationOptions {
8462
+ /** Delay to wait until next poll, in milliseconds. */
8463
+ updateIntervalInMs?: number;
8464
+ /** A serialized poller which can be used to resume an existing paused Long-Running-Operation. */
8465
+ resumeFrom?: string;
8466
+ }
8467
+
8468
+ /** Optional parameters. */
8469
+ export declare interface SchedulesGetOptionalParams extends coreClient.OperationOptions {
8470
+ }
8471
+
8472
+ /** Contains response data for the get operation. */
8473
+ export declare type SchedulesGetResponse = Schedule;
8474
+
8475
+ /** Optional parameters. */
8476
+ export declare interface SchedulesListNextOptionalParams extends coreClient.OperationOptions {
8477
+ /** Continuation token for pagination. */
8478
+ skip?: string;
8479
+ /** Status filter for schedule. */
8480
+ listViewType?: ScheduleListViewType;
8481
+ }
8482
+
8483
+ /** Contains response data for the listNext operation. */
8484
+ export declare type SchedulesListNextResponse = ScheduleResourceArmPaginatedResult;
8485
+
8486
+ /** Optional parameters. */
8487
+ export declare interface SchedulesListOptionalParams extends coreClient.OperationOptions {
8488
+ /** Continuation token for pagination. */
8489
+ skip?: string;
8490
+ /** Status filter for schedule. */
8491
+ listViewType?: ScheduleListViewType;
8492
+ }
8493
+
8494
+ /** Contains response data for the list operation. */
8495
+ export declare type SchedulesListResponse = ScheduleResourceArmPaginatedResult;
8496
+
6570
8497
  /**
6571
8498
  * Defines values for ScheduleStatus. \
6572
8499
  * {@link KnownScheduleStatus} can be used interchangeably with ScheduleStatus,
@@ -6579,7 +8506,7 @@ export declare type ScheduleStatus = string;
6579
8506
 
6580
8507
  /** Script reference */
6581
8508
  export declare interface ScriptReference {
6582
- /** The storage source of the script: inline, workspace. */
8509
+ /** The storage source of the script: workspace. */
6583
8510
  scriptSource?: string;
6584
8511
  /** The location of scripts in the mounted volume. */
6585
8512
  scriptData?: string;
@@ -6597,6 +8524,24 @@ export declare interface ScriptsToExecute {
6597
8524
  creationScript?: ScriptReference;
6598
8525
  }
6599
8526
 
8527
+ /** Forecasting seasonality. */
8528
+ export declare interface Seasonality {
8529
+ /** Polymorphic discriminator, which specifies the different types this object can be */
8530
+ mode: "Auto" | "Custom";
8531
+ }
8532
+
8533
+ /**
8534
+ * Defines values for SeasonalityMode. \
8535
+ * {@link KnownSeasonalityMode} can be used interchangeably with SeasonalityMode,
8536
+ * this enum contains the known values that the service supports.
8537
+ * ### Known values supported by the service
8538
+ * **Auto**: Seasonality to be determined automatically. \
8539
+ * **Custom**: Use the custom seasonality value.
8540
+ */
8541
+ export declare type SeasonalityMode = string;
8542
+
8543
+ export declare type SeasonalityUnion = Seasonality | AutoSeasonality | CustomSeasonality;
8544
+
6600
8545
  /**
6601
8546
  * Defines values for SecretsType. \
6602
8547
  * {@link KnownSecretsType} can be used interchangeably with SecretsType,
@@ -6668,6 +8613,18 @@ export declare interface SharedPrivateLinkResource {
6668
8613
  status?: PrivateEndpointServiceConnectionStatus;
6669
8614
  }
6670
8615
 
8616
+ /**
8617
+ * Defines values for ShortSeriesHandlingConfiguration. \
8618
+ * {@link KnownShortSeriesHandlingConfiguration} can be used interchangeably with ShortSeriesHandlingConfiguration,
8619
+ * this enum contains the known values that the service supports.
8620
+ * ### Known values supported by the service
8621
+ * **None**: Represents no\/null value. \
8622
+ * **Auto**: Short series will be padded if there are no long series, otherwise short series will be dropped. \
8623
+ * **Pad**: All the short series will be padded. \
8624
+ * **Drop**: All the short series will be dropped.
8625
+ */
8626
+ export declare type ShortSeriesHandlingConfiguration = string;
8627
+
6671
8628
  /** The resource model definition representing SKU */
6672
8629
  export declare interface Sku {
6673
8630
  /** The name of the SKU. Ex - P3. It is typically a letter+number code */
@@ -6785,6 +8742,32 @@ export declare interface SslConfiguration {
6785
8742
  overwriteExistingDomain?: boolean;
6786
8743
  }
6787
8744
 
8745
+ /** Advances setting to customize StackEnsemble run. */
8746
+ export declare interface StackEnsembleSettings {
8747
+ /** Optional parameters to pass to the initializer of the meta-learner. */
8748
+ stackMetaLearnerKWargs?: Record<string, unknown>;
8749
+ /** Specifies the proportion of the training set (when choosing train and validation type of training) to be reserved for training the meta-learner. Default value is 0.2. */
8750
+ stackMetaLearnerTrainPercentage?: number;
8751
+ /** The meta-learner is a model trained on the output of the individual heterogeneous models. */
8752
+ stackMetaLearnerType?: StackMetaLearnerType;
8753
+ }
8754
+
8755
+ /**
8756
+ * Defines values for StackMetaLearnerType. \
8757
+ * {@link KnownStackMetaLearnerType} can be used interchangeably with StackMetaLearnerType,
8758
+ * this enum contains the known values that the service supports.
8759
+ * ### Known values supported by the service
8760
+ * **None** \
8761
+ * **LogisticRegression**: Default meta-learners are LogisticRegression for classification tasks. \
8762
+ * **LogisticRegressionCV**: Default meta-learners are LogisticRegression for classification task when CV is on. \
8763
+ * **LightGBMClassifier** \
8764
+ * **ElasticNet**: Default meta-learners are LogisticRegression for regression task. \
8765
+ * **ElasticNetCV**: Default meta-learners are LogisticRegression for regression task when CV is on. \
8766
+ * **LightGBMRegressor** \
8767
+ * **LinearRegression**
8768
+ */
8769
+ export declare type StackMetaLearnerType = string;
8770
+
6788
8771
  /**
6789
8772
  * Defines values for Status. \
6790
8773
  * {@link KnownStatus} can be used interchangeably with Status,
@@ -6801,6 +8784,18 @@ export declare interface SslConfiguration {
6801
8784
  */
6802
8785
  export declare type Status = string;
6803
8786
 
8787
+ /**
8788
+ * Defines values for StochasticOptimizer. \
8789
+ * {@link KnownStochasticOptimizer} can be used interchangeably with StochasticOptimizer,
8790
+ * this enum contains the known values that the service supports.
8791
+ * ### Known values supported by the service
8792
+ * **None**: No optimizer selected. \
8793
+ * **Sgd**: Stochastic Gradient Descent optimizer. \
8794
+ * **Adam**: Adam is algorithm the optimizes stochastic objective functions based on adaptive estimates of moments \
8795
+ * **Adamw**: AdamW is a variant of the optimizer Adam that has an improved implementation of weight decay.
8796
+ */
8797
+ export declare type StochasticOptimizer = string;
8798
+
6804
8799
  /**
6805
8800
  * Defines values for StorageAccountType. \
6806
8801
  * {@link KnownStorageAccountType} can be used interchangeably with StorageAccountType,
@@ -6914,6 +8909,128 @@ export declare interface SystemService {
6914
8909
  readonly version?: string;
6915
8910
  }
6916
8911
 
8912
+ /** Abstract class for AutoML tasks that use table dataset as input - such as Classification/Regression/Forecasting. */
8913
+ export declare interface TableVertical {
8914
+ /** Columns to use for CVSplit data. */
8915
+ cvSplitColumnNames?: string[];
8916
+ /** Featurization inputs needed for AutoML job. */
8917
+ featurizationSettings?: TableVerticalFeaturizationSettings;
8918
+ /** Execution constraints for AutoMLJob. */
8919
+ limitSettings?: TableVerticalLimitSettings;
8920
+ /**
8921
+ * Number of cross validation folds to be applied on training dataset
8922
+ * when validation dataset is not provided.
8923
+ */
8924
+ nCrossValidations?: NCrossValidationsUnion;
8925
+ /** Test data input. */
8926
+ testData?: MLTableJobInput;
8927
+ /**
8928
+ * The fraction of test dataset that needs to be set aside for validation purpose.
8929
+ * Values between (0.0 , 1.0)
8930
+ * Applied when validation dataset is not provided.
8931
+ */
8932
+ testDataSize?: number;
8933
+ /** Validation data inputs. */
8934
+ validationData?: MLTableJobInput;
8935
+ /**
8936
+ * The fraction of training dataset that needs to be set aside for validation purpose.
8937
+ * Values between (0.0 , 1.0)
8938
+ * Applied when validation dataset is not provided.
8939
+ */
8940
+ validationDataSize?: number;
8941
+ /** The name of the sample weight column. Automated ML supports a weighted column as an input, causing rows in the data to be weighted up or down. */
8942
+ weightColumnName?: string;
8943
+ }
8944
+
8945
+ /** Featurization Configuration. */
8946
+ export declare interface TableVerticalFeaturizationSettings extends FeaturizationSettings {
8947
+ /** These transformers shall not be used in featurization. */
8948
+ blockedTransformers?: BlockedTransformers[];
8949
+ /** Dictionary of column name and its type (int, float, string, datetime etc). */
8950
+ columnNameAndTypes?: {
8951
+ [propertyName: string]: string | null;
8952
+ };
8953
+ /** Determines whether to use Dnn based featurizers for data featurization. */
8954
+ enableDnnFeaturization?: boolean;
8955
+ /**
8956
+ * Featurization mode - User can keep the default 'Auto' mode and AutoML will take care of necessary transformation of the data in featurization phase.
8957
+ * If 'Off' is selected then no featurization is done.
8958
+ * If 'Custom' is selected then user can specify additional inputs to customize how featurization is done.
8959
+ */
8960
+ mode?: FeaturizationMode;
8961
+ /** User can specify additional transformers to be used along with the columns to which it would be applied and parameters for the transformer constructor. */
8962
+ transformerParams?: {
8963
+ [propertyName: string]: ColumnTransformer[] | null;
8964
+ };
8965
+ }
8966
+
8967
+ /** Job execution constraints. */
8968
+ export declare interface TableVerticalLimitSettings {
8969
+ /** Enable early termination, determines whether or not if AutoMLJob will terminate early if there is no score improvement in last 20 iterations. */
8970
+ enableEarlyTermination?: boolean;
8971
+ /** Exit score for the AutoML job. */
8972
+ exitScore?: number;
8973
+ /** Maximum Concurrent iterations. */
8974
+ maxConcurrentTrials?: number;
8975
+ /** Max cores per iteration. */
8976
+ maxCoresPerTrial?: number;
8977
+ /** Number of iterations. */
8978
+ maxTrials?: number;
8979
+ /** AutoML job timeout. */
8980
+ timeout?: string;
8981
+ /** Iteration timeout. */
8982
+ trialTimeout?: string;
8983
+ }
8984
+
8985
+ /**
8986
+ * Defines values for TargetAggregationFunction. \
8987
+ * {@link KnownTargetAggregationFunction} can be used interchangeably with TargetAggregationFunction,
8988
+ * this enum contains the known values that the service supports.
8989
+ * ### Known values supported by the service
8990
+ * **None**: Represent no value set. \
8991
+ * **Sum** \
8992
+ * **Max** \
8993
+ * **Min** \
8994
+ * **Mean**
8995
+ */
8996
+ export declare type TargetAggregationFunction = string;
8997
+
8998
+ /** The number of past periods to lag from the target column. */
8999
+ export declare interface TargetLags {
9000
+ /** Polymorphic discriminator, which specifies the different types this object can be */
9001
+ mode: "Auto" | "Custom";
9002
+ }
9003
+
9004
+ /**
9005
+ * Defines values for TargetLagsMode. \
9006
+ * {@link KnownTargetLagsMode} can be used interchangeably with TargetLagsMode,
9007
+ * this enum contains the known values that the service supports.
9008
+ * ### Known values supported by the service
9009
+ * **Auto**: Target lags to be determined automatically. \
9010
+ * **Custom**: Use the custom target lags.
9011
+ */
9012
+ export declare type TargetLagsMode = string;
9013
+
9014
+ export declare type TargetLagsUnion = TargetLags | AutoTargetLags | CustomTargetLags;
9015
+
9016
+ /** Forecasting target rolling window size. */
9017
+ export declare interface TargetRollingWindowSize {
9018
+ /** Polymorphic discriminator, which specifies the different types this object can be */
9019
+ mode: "Auto" | "Custom";
9020
+ }
9021
+
9022
+ /**
9023
+ * Defines values for TargetRollingWindowSizeMode. \
9024
+ * {@link KnownTargetRollingWindowSizeMode} can be used interchangeably with TargetRollingWindowSizeMode,
9025
+ * this enum contains the known values that the service supports.
9026
+ * ### Known values supported by the service
9027
+ * **Auto**: Determine rolling windows size automatically. \
9028
+ * **Custom**: Use the specified rolling window size.
9029
+ */
9030
+ export declare type TargetRollingWindowSizeMode = string;
9031
+
9032
+ export declare type TargetRollingWindowSizeUnion = TargetRollingWindowSize | AutoTargetRollingWindowSize | CustomTargetRollingWindowSize;
9033
+
6917
9034
  export declare interface TargetUtilizationScaleSettings extends OnlineScaleSettings {
6918
9035
  /** Polymorphic discriminator, which specifies the different types this object can be */
6919
9036
  scaleType: "TargetUtilization";
@@ -6927,6 +9044,32 @@ export declare interface TargetUtilizationScaleSettings extends OnlineScaleSetti
6927
9044
  targetUtilizationPercentage?: number;
6928
9045
  }
6929
9046
 
9047
+ /**
9048
+ * Defines values for TaskType. \
9049
+ * {@link KnownTaskType} can be used interchangeably with TaskType,
9050
+ * this enum contains the known values that the service supports.
9051
+ * ### Known values supported by the service
9052
+ * **Classification**: Classification in machine learning and statistics is a supervised learning approach in which
9053
+ * the computer program learns from the data given to it and make new observations or classifications. \
9054
+ * **Regression**: Regression means to predict the value using the input data. Regression models are used to predict a continuous value. \
9055
+ * **Forecasting**: Forecasting is a special kind of regression task that deals with time-series data and creates forecasting model
9056
+ * that can be used to predict the near future values based on the inputs. \
9057
+ * **ImageClassification**: Image Classification. Multi-class image classification is used when an image is classified with only a single label
9058
+ * from a set of classes - e.g. each image is classified as either an image of a 'cat' or a 'dog' or a 'duck'. \
9059
+ * **ImageClassificationMultilabel**: Image Classification Multilabel. Multi-label image classification is used when an image could have one or more labels
9060
+ * from a set of labels - e.g. an image could be labeled with both 'cat' and 'dog'. \
9061
+ * **ImageObjectDetection**: Image Object Detection. Object detection is used to identify objects in an image and locate each object with a
9062
+ * bounding box e.g. locate all dogs and cats in an image and draw a bounding box around each. \
9063
+ * **ImageInstanceSegmentation**: Image Instance Segmentation. Instance segmentation is used to identify objects in an image at the pixel level,
9064
+ * drawing a polygon around each object in the image. \
9065
+ * **TextClassification**: Text classification (also known as text tagging or text categorization) is the process of sorting texts into categories.
9066
+ * Categories are mutually exclusive. \
9067
+ * **TextClassificationMultilabel**: Multilabel classification task assigns each sample to a group (zero or more) of target labels. \
9068
+ * **TextNER**: Text Named Entity Recognition a.k.a. TextNER.
9069
+ * Named Entity Recognition (NER) is the ability to take free-form text and identify the occurrences of entities such as people, locations, organizations, and more.
9070
+ */
9071
+ export declare type TaskType = string;
9072
+
6930
9073
  /** TensorFlow distribution configuration. */
6931
9074
  export declare interface TensorFlow extends DistributionConfiguration {
6932
9075
  /** Polymorphic discriminator, which specifies the different types this object can be */
@@ -6937,6 +9080,42 @@ export declare interface TensorFlow extends DistributionConfiguration {
6937
9080
  workerCount?: number;
6938
9081
  }
6939
9082
 
9083
+ /**
9084
+ * Text Classification task in AutoML NLP vertical.
9085
+ * NLP - Natural Language Processing.
9086
+ */
9087
+ export declare interface TextClassification extends NlpVertical, AutoMLVertical {
9088
+ /** Primary metric for Text-Classification task. */
9089
+ primaryMetric?: ClassificationPrimaryMetrics;
9090
+ }
9091
+
9092
+ /**
9093
+ * Text Classification Multilabel task in AutoML NLP vertical.
9094
+ * NLP - Natural Language Processing.
9095
+ */
9096
+ export declare interface TextClassificationMultilabel extends NlpVertical, AutoMLVertical {
9097
+ /**
9098
+ * Primary metric for Text-Classification-Multilabel task.
9099
+ * Currently only Accuracy is supported as primary metric, hence user need not set it explicitly.
9100
+ * NOTE: This property will not be serialized. It can only be populated by the server.
9101
+ */
9102
+ readonly primaryMetric?: ClassificationMultilabelPrimaryMetrics;
9103
+ }
9104
+
9105
+ /**
9106
+ * Text-NER task in AutoML NLP vertical.
9107
+ * NER - Named Entity Recognition.
9108
+ * NLP - Natural Language Processing.
9109
+ */
9110
+ export declare interface TextNer extends NlpVertical, AutoMLVertical {
9111
+ /**
9112
+ * Primary metric for Text-NER task.
9113
+ * Only 'Accuracy' is supported for Text-NER, so user need not set this explicitly.
9114
+ * NOTE: This property will not be serialized. It can only be populated by the server.
9115
+ */
9116
+ readonly primaryMetric?: ClassificationPrimaryMetrics;
9117
+ }
9118
+
6940
9119
  /** The resource model definition for an Azure Resource Manager tracked top level resource which has 'tags' and a 'location' */
6941
9120
  export declare interface TrackedResource extends Resource {
6942
9121
  /** Resource tags. */
@@ -6947,6 +9126,27 @@ export declare interface TrackedResource extends Resource {
6947
9126
  location: string;
6948
9127
  }
6949
9128
 
9129
+ /** Training related configuration. */
9130
+ export declare interface TrainingSettings {
9131
+ /** Enable recommendation of DNN models. */
9132
+ enableDnnTraining?: boolean;
9133
+ /** Flag to turn on explainability on best model. */
9134
+ enableModelExplainability?: boolean;
9135
+ /** Flag for enabling onnx compatible models. */
9136
+ enableOnnxCompatibleModels?: boolean;
9137
+ /** Enable stack ensemble run. */
9138
+ enableStackEnsemble?: boolean;
9139
+ /** Enable voting ensemble run. */
9140
+ enableVoteEnsemble?: boolean;
9141
+ /**
9142
+ * During VotingEnsemble and StackEnsemble model generation, multiple fitted models from the previous child runs are downloaded.
9143
+ * Configure this parameter with a higher value than 300 secs, if more time is needed.
9144
+ */
9145
+ ensembleModelDownloadTimeout?: string;
9146
+ /** Stack ensemble settings for stack ensemble run. */
9147
+ stackEnsembleSettings?: StackEnsembleSettings;
9148
+ }
9149
+
6950
9150
  /** Trial component definition. */
6951
9151
  export declare interface TrialComponent {
6952
9152
  /** ARM resource ID of the code asset. */
@@ -6962,9 +9162,39 @@ export declare interface TrialComponent {
6962
9162
  [propertyName: string]: string | null;
6963
9163
  };
6964
9164
  /** Compute Resource configuration for the job. */
6965
- resources?: ResourceConfiguration;
9165
+ resources?: JobResourceConfiguration;
6966
9166
  }
6967
9167
 
9168
+ export declare interface TriggerBase {
9169
+ /** Polymorphic discriminator, which specifies the different types this object can be */
9170
+ triggerType: "Recurrence" | "Cron";
9171
+ /**
9172
+ * Specifies end time of schedule in ISO 8601, but without a UTC offset. Refer https://en.wikipedia.org/wiki/ISO_8601.
9173
+ * Recommented format would be "2022-06-01T00:00:01"
9174
+ * If not present, the schedule will run indefinitely
9175
+ */
9176
+ endTime?: string;
9177
+ /** Specifies start time of schedule in ISO 8601 format, but without a UTC offset. */
9178
+ startTime?: string;
9179
+ /**
9180
+ * Specifies time zone in which the schedule runs.
9181
+ * TimeZone should follow Windows time zone format. Refer: https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/default-time-zones?view=windows-11
9182
+ */
9183
+ timeZone?: string;
9184
+ }
9185
+
9186
+ export declare type TriggerBaseUnion = TriggerBase | RecurrenceTrigger | CronTrigger;
9187
+
9188
+ /**
9189
+ * Defines values for TriggerType. \
9190
+ * {@link KnownTriggerType} can be used interchangeably with TriggerType,
9191
+ * this enum contains the known values that the service supports.
9192
+ * ### Known values supported by the service
9193
+ * **Recurrence** \
9194
+ * **Cron**
9195
+ */
9196
+ export declare type TriggerType = string;
9197
+
6968
9198
  export declare interface TritonModelJobInput extends AssetJobInput, JobInput {
6969
9199
  }
6970
9200
 
@@ -7182,6 +9412,29 @@ export declare interface UsernamePasswordAuthTypeWorkspaceConnectionProperties e
7182
9412
  credentials?: WorkspaceConnectionUsernamePassword;
7183
9413
  }
7184
9414
 
9415
+ /**
9416
+ * Defines values for UseStl. \
9417
+ * {@link KnownUseStl} can be used interchangeably with UseStl,
9418
+ * this enum contains the known values that the service supports.
9419
+ * ### Known values supported by the service
9420
+ * **None**: No stl decomposition. \
9421
+ * **Season** \
9422
+ * **SeasonTrend**
9423
+ */
9424
+ export declare type UseStl = string;
9425
+
9426
+ /**
9427
+ * Defines values for ValidationMetricType. \
9428
+ * {@link KnownValidationMetricType} can be used interchangeably with ValidationMetricType,
9429
+ * this enum contains the known values that the service supports.
9430
+ * ### Known values supported by the service
9431
+ * **None**: No metric. \
9432
+ * **Coco**: Coco metric. \
9433
+ * **Voc**: Voc metric. \
9434
+ * **CocoVoc**: CocoVoc metric.
9435
+ */
9436
+ export declare type ValidationMetricType = string;
9437
+
7185
9438
  /**
7186
9439
  * Defines values for ValueFormat. \
7187
9440
  * {@link KnownValueFormat} can be used interchangeably with ValueFormat,
@@ -7352,6 +9605,21 @@ export declare type VmPriority = string;
7352
9605
  */
7353
9606
  export declare type VMTier = string;
7354
9607
 
9608
+ /**
9609
+ * Defines values for WeekDay. \
9610
+ * {@link KnownWeekDay} can be used interchangeably with WeekDay,
9611
+ * this enum contains the known values that the service supports.
9612
+ * ### Known values supported by the service
9613
+ * **Monday**: Monday weekday \
9614
+ * **Tuesday**: Tuesday weekday \
9615
+ * **Wednesday**: Wednesday weekday \
9616
+ * **Thursday**: Thursday weekday \
9617
+ * **Friday**: Friday weekday \
9618
+ * **Saturday**: Saturday weekday \
9619
+ * **Sunday**: Sunday weekday
9620
+ */
9621
+ export declare type WeekDay = string;
9622
+
7355
9623
  /** An object that represents a machine learning workspace. */
7356
9624
  export declare interface Workspace extends Resource {
7357
9625
  /** The identity of the resource. */