@azure/arm-machinelearning 2.0.1-alpha.20221020.1 → 2.1.0-alpha.20221101.2

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (184) hide show
  1. package/CHANGELOG.md +173 -10
  2. package/dist/index.js +6417 -3094
  3. package/dist/index.js.map +1 -1
  4. package/dist/index.min.js +1 -1
  5. package/dist/index.min.js.map +1 -1
  6. package/dist-esm/samples-dev/batchDeploymentsCreateOrUpdateSample.js +1 -1
  7. package/dist-esm/samples-dev/batchDeploymentsDeleteSample.js +1 -1
  8. package/dist-esm/samples-dev/batchDeploymentsGetSample.js +1 -1
  9. package/dist-esm/samples-dev/batchDeploymentsListSample.js +1 -1
  10. package/dist-esm/samples-dev/batchDeploymentsUpdateSample.js +1 -1
  11. package/dist-esm/samples-dev/batchEndpointsCreateOrUpdateSample.js +1 -1
  12. package/dist-esm/samples-dev/batchEndpointsDeleteSample.js +1 -1
  13. package/dist-esm/samples-dev/batchEndpointsGetSample.js +1 -1
  14. package/dist-esm/samples-dev/batchEndpointsListKeysSample.js +1 -1
  15. package/dist-esm/samples-dev/batchEndpointsListSample.js +1 -1
  16. package/dist-esm/samples-dev/batchEndpointsUpdateSample.js +1 -1
  17. package/dist-esm/samples-dev/codeContainersCreateOrUpdateSample.js +1 -1
  18. package/dist-esm/samples-dev/codeContainersDeleteSample.js +1 -1
  19. package/dist-esm/samples-dev/codeContainersGetSample.js +1 -1
  20. package/dist-esm/samples-dev/codeContainersListSample.js +1 -1
  21. package/dist-esm/samples-dev/codeVersionsCreateOrUpdateSample.js +1 -1
  22. package/dist-esm/samples-dev/codeVersionsDeleteSample.js +1 -1
  23. package/dist-esm/samples-dev/codeVersionsGetSample.js +1 -1
  24. package/dist-esm/samples-dev/codeVersionsListSample.js +1 -1
  25. package/dist-esm/samples-dev/componentContainersCreateOrUpdateSample.js +1 -1
  26. package/dist-esm/samples-dev/componentContainersDeleteSample.js +1 -1
  27. package/dist-esm/samples-dev/componentContainersGetSample.js +1 -1
  28. package/dist-esm/samples-dev/componentContainersListSample.js +1 -1
  29. package/dist-esm/samples-dev/componentVersionsCreateOrUpdateSample.js +1 -1
  30. package/dist-esm/samples-dev/componentVersionsDeleteSample.js +1 -1
  31. package/dist-esm/samples-dev/componentVersionsGetSample.js +1 -1
  32. package/dist-esm/samples-dev/componentVersionsListSample.js +1 -1
  33. package/dist-esm/samples-dev/computeCreateOrUpdateSample.js +60 -8
  34. package/dist-esm/samples-dev/computeCreateOrUpdateSample.js.map +1 -1
  35. package/dist-esm/samples-dev/computeDeleteSample.js +1 -1
  36. package/dist-esm/samples-dev/computeGetSample.js +4 -4
  37. package/dist-esm/samples-dev/computeListKeysSample.js +1 -1
  38. package/dist-esm/samples-dev/computeListNodesSample.js +1 -1
  39. package/dist-esm/samples-dev/computeListSample.js +1 -1
  40. package/dist-esm/samples-dev/computeRestartSample.js +1 -1
  41. package/dist-esm/samples-dev/computeStartSample.js +1 -1
  42. package/dist-esm/samples-dev/computeStopSample.js +1 -1
  43. package/dist-esm/samples-dev/computeUpdateSample.js +1 -1
  44. package/dist-esm/samples-dev/dataContainersCreateOrUpdateSample.js +1 -1
  45. package/dist-esm/samples-dev/dataContainersDeleteSample.js +1 -1
  46. package/dist-esm/samples-dev/dataContainersGetSample.js +1 -1
  47. package/dist-esm/samples-dev/dataContainersListSample.js +1 -1
  48. package/dist-esm/samples-dev/dataVersionsCreateOrUpdateSample.js +1 -1
  49. package/dist-esm/samples-dev/dataVersionsDeleteSample.js +1 -1
  50. package/dist-esm/samples-dev/dataVersionsGetSample.js +1 -1
  51. package/dist-esm/samples-dev/dataVersionsListSample.js +1 -1
  52. package/dist-esm/samples-dev/datastoresCreateOrUpdateSample.js +4 -4
  53. package/dist-esm/samples-dev/datastoresDeleteSample.js +1 -1
  54. package/dist-esm/samples-dev/datastoresGetSample.js +1 -1
  55. package/dist-esm/samples-dev/datastoresListSample.js +1 -1
  56. package/dist-esm/samples-dev/datastoresListSecretsSample.js +1 -1
  57. package/dist-esm/samples-dev/environmentContainersCreateOrUpdateSample.js +1 -1
  58. package/dist-esm/samples-dev/environmentContainersDeleteSample.js +1 -1
  59. package/dist-esm/samples-dev/environmentContainersGetSample.js +1 -1
  60. package/dist-esm/samples-dev/environmentContainersListSample.js +1 -1
  61. package/dist-esm/samples-dev/environmentVersionsCreateOrUpdateSample.js +1 -1
  62. package/dist-esm/samples-dev/environmentVersionsDeleteSample.js +1 -1
  63. package/dist-esm/samples-dev/environmentVersionsGetSample.js +1 -1
  64. package/dist-esm/samples-dev/environmentVersionsListSample.js +1 -1
  65. package/dist-esm/samples-dev/jobsCancelSample.js +1 -1
  66. package/dist-esm/samples-dev/jobsCreateOrUpdateSample.js +66 -3
  67. package/dist-esm/samples-dev/jobsCreateOrUpdateSample.js.map +1 -1
  68. package/dist-esm/samples-dev/jobsDeleteSample.js +1 -1
  69. package/dist-esm/samples-dev/jobsGetSample.js +22 -3
  70. package/dist-esm/samples-dev/jobsGetSample.js.map +1 -1
  71. package/dist-esm/samples-dev/jobsListSample.js +44 -12
  72. package/dist-esm/samples-dev/jobsListSample.js.map +1 -1
  73. package/dist-esm/samples-dev/modelContainersCreateOrUpdateSample.js +1 -1
  74. package/dist-esm/samples-dev/modelContainersDeleteSample.js +1 -1
  75. package/dist-esm/samples-dev/modelContainersGetSample.js +1 -1
  76. package/dist-esm/samples-dev/modelContainersListSample.js +1 -1
  77. package/dist-esm/samples-dev/modelVersionsCreateOrUpdateSample.js +1 -1
  78. package/dist-esm/samples-dev/modelVersionsDeleteSample.js +1 -1
  79. package/dist-esm/samples-dev/modelVersionsGetSample.js +1 -1
  80. package/dist-esm/samples-dev/modelVersionsListSample.js +1 -1
  81. package/dist-esm/samples-dev/onlineDeploymentsCreateOrUpdateSample.js +2 -2
  82. package/dist-esm/samples-dev/onlineDeploymentsDeleteSample.js +1 -1
  83. package/dist-esm/samples-dev/onlineDeploymentsGetLogsSample.js +1 -1
  84. package/dist-esm/samples-dev/onlineDeploymentsGetSample.js +2 -2
  85. package/dist-esm/samples-dev/onlineDeploymentsListSample.js +1 -1
  86. package/dist-esm/samples-dev/onlineDeploymentsListSkusSample.js +2 -2
  87. package/dist-esm/samples-dev/onlineDeploymentsUpdateSample.js +2 -2
  88. package/dist-esm/samples-dev/onlineEndpointsCreateOrUpdateSample.js +1 -1
  89. package/dist-esm/samples-dev/onlineEndpointsDeleteSample.js +1 -1
  90. package/dist-esm/samples-dev/onlineEndpointsGetSample.js +1 -1
  91. package/dist-esm/samples-dev/onlineEndpointsGetTokenSample.js +1 -1
  92. package/dist-esm/samples-dev/onlineEndpointsListKeysSample.js +1 -1
  93. package/dist-esm/samples-dev/onlineEndpointsListSample.js +1 -1
  94. package/dist-esm/samples-dev/onlineEndpointsRegenerateKeysSample.js +1 -1
  95. package/dist-esm/samples-dev/onlineEndpointsUpdateSample.js +1 -1
  96. package/dist-esm/samples-dev/operationsListSample.js +1 -1
  97. package/dist-esm/samples-dev/privateEndpointConnectionsCreateOrUpdateSample.js +1 -1
  98. package/dist-esm/samples-dev/privateEndpointConnectionsDeleteSample.js +1 -1
  99. package/dist-esm/samples-dev/privateEndpointConnectionsGetSample.js +1 -1
  100. package/dist-esm/samples-dev/privateEndpointConnectionsListSample.js +1 -1
  101. package/dist-esm/samples-dev/privateLinkResourcesListSample.js +1 -1
  102. package/dist-esm/samples-dev/quotasListSample.js +1 -1
  103. package/dist-esm/samples-dev/quotasUpdateSample.js +1 -1
  104. package/dist-esm/samples-dev/schedulesCreateOrUpdateSample.d.ts +2 -0
  105. package/dist-esm/samples-dev/schedulesCreateOrUpdateSample.d.ts.map +1 -0
  106. package/dist-esm/samples-dev/schedulesCreateOrUpdateSample.js +54 -0
  107. package/dist-esm/samples-dev/schedulesCreateOrUpdateSample.js.map +1 -0
  108. package/dist-esm/samples-dev/schedulesDeleteSample.d.ts +2 -0
  109. package/dist-esm/samples-dev/schedulesDeleteSample.d.ts.map +1 -0
  110. package/dist-esm/samples-dev/schedulesDeleteSample.js +32 -0
  111. package/dist-esm/samples-dev/schedulesDeleteSample.js.map +1 -0
  112. package/dist-esm/samples-dev/schedulesGetSample.d.ts +2 -0
  113. package/dist-esm/samples-dev/schedulesGetSample.d.ts.map +1 -0
  114. package/dist-esm/samples-dev/schedulesGetSample.js +32 -0
  115. package/dist-esm/samples-dev/schedulesGetSample.js.map +1 -0
  116. package/dist-esm/samples-dev/schedulesListSample.d.ts +2 -0
  117. package/dist-esm/samples-dev/schedulesListSample.d.ts.map +1 -0
  118. package/dist-esm/samples-dev/schedulesListSample.js +45 -0
  119. package/dist-esm/samples-dev/schedulesListSample.js.map +1 -0
  120. package/dist-esm/samples-dev/usagesListSample.js +1 -1
  121. package/dist-esm/samples-dev/virtualMachineSizesListSample.js +1 -1
  122. package/dist-esm/samples-dev/workspaceConnectionsCreateSample.js +1 -1
  123. package/dist-esm/samples-dev/workspaceConnectionsDeleteSample.js +1 -1
  124. package/dist-esm/samples-dev/workspaceConnectionsGetSample.js +1 -1
  125. package/dist-esm/samples-dev/workspaceConnectionsListSample.js +1 -1
  126. package/dist-esm/samples-dev/workspaceFeaturesListSample.js +1 -1
  127. package/dist-esm/samples-dev/workspacesCreateOrUpdateSample.js +1 -1
  128. package/dist-esm/samples-dev/workspacesDeleteSample.js +1 -1
  129. package/dist-esm/samples-dev/workspacesDiagnoseSample.js +1 -1
  130. package/dist-esm/samples-dev/workspacesGetSample.js +1 -1
  131. package/dist-esm/samples-dev/workspacesListByResourceGroupSample.js +1 -1
  132. package/dist-esm/samples-dev/workspacesListBySubscriptionSample.js +1 -1
  133. package/dist-esm/samples-dev/workspacesListKeysSample.js +1 -1
  134. package/dist-esm/samples-dev/workspacesListNotebookAccessTokenSample.js +1 -1
  135. package/dist-esm/samples-dev/workspacesListNotebookKeysSample.js +1 -1
  136. package/dist-esm/samples-dev/workspacesListOutboundNetworkDependenciesEndpointsSample.js +1 -1
  137. package/dist-esm/samples-dev/workspacesListStorageAccountKeysSample.js +1 -1
  138. package/dist-esm/samples-dev/workspacesPrepareNotebookSample.js +1 -1
  139. package/dist-esm/samples-dev/workspacesResyncKeysSample.js +1 -1
  140. package/dist-esm/samples-dev/workspacesUpdateSample.js +1 -1
  141. package/dist-esm/src/azureMachineLearningWorkspaces.d.ts +2 -1
  142. package/dist-esm/src/azureMachineLearningWorkspaces.d.ts.map +1 -1
  143. package/dist-esm/src/azureMachineLearningWorkspaces.js +4 -3
  144. package/dist-esm/src/azureMachineLearningWorkspaces.js.map +1 -1
  145. package/dist-esm/src/models/index.d.ts +2177 -118
  146. package/dist-esm/src/models/index.d.ts.map +1 -1
  147. package/dist-esm/src/models/index.js +645 -42
  148. package/dist-esm/src/models/index.js.map +1 -1
  149. package/dist-esm/src/models/mappers.d.ts +107 -8
  150. package/dist-esm/src/models/mappers.d.ts.map +1 -1
  151. package/dist-esm/src/models/mappers.js +3218 -915
  152. package/dist-esm/src/models/mappers.js.map +1 -1
  153. package/dist-esm/src/models/parameters.d.ts +2 -0
  154. package/dist-esm/src/models/parameters.d.ts.map +1 -1
  155. package/dist-esm/src/models/parameters.js +15 -2
  156. package/dist-esm/src/models/parameters.js.map +1 -1
  157. package/dist-esm/src/operations/index.d.ts +1 -0
  158. package/dist-esm/src/operations/index.d.ts.map +1 -1
  159. package/dist-esm/src/operations/index.js +1 -0
  160. package/dist-esm/src/operations/index.js.map +1 -1
  161. package/dist-esm/src/operations/schedules.d.ts +81 -0
  162. package/dist-esm/src/operations/schedules.d.ts.map +1 -0
  163. package/dist-esm/src/operations/schedules.js +343 -0
  164. package/dist-esm/src/operations/schedules.js.map +1 -0
  165. package/dist-esm/src/operationsInterfaces/index.d.ts +1 -0
  166. package/dist-esm/src/operationsInterfaces/index.d.ts.map +1 -1
  167. package/dist-esm/src/operationsInterfaces/index.js +1 -0
  168. package/dist-esm/src/operationsInterfaces/index.js.map +1 -1
  169. package/dist-esm/src/operationsInterfaces/schedules.d.ts +56 -0
  170. package/dist-esm/src/operationsInterfaces/schedules.d.ts.map +1 -0
  171. package/dist-esm/src/operationsInterfaces/schedules.js +9 -0
  172. package/dist-esm/src/operationsInterfaces/schedules.js.map +1 -0
  173. package/package.json +3 -2
  174. package/review/arm-machinelearning.api.md +1033 -11
  175. package/src/azureMachineLearningWorkspaces.ts +6 -2
  176. package/src/models/index.ts +2662 -410
  177. package/src/models/mappers.ts +4026 -1470
  178. package/src/models/parameters.ts +18 -2
  179. package/src/operations/index.ts +1 -0
  180. package/src/operations/schedules.ts +476 -0
  181. package/src/operationsInterfaces/index.ts +1 -0
  182. package/src/operationsInterfaces/schedules.ts +109 -0
  183. package/types/arm-machinelearning.d.ts +2348 -80
  184. package/types/tsdoc-metadata.json +1 -1
@@ -369,6 +369,14 @@ export var KnownSecretsType;
369
369
  /** ServicePrincipal */
370
370
  KnownSecretsType["ServicePrincipal"] = "ServicePrincipal";
371
371
  })(KnownSecretsType || (KnownSecretsType = {}));
372
+ /** Known values of {@link AutoRebuildSetting} that the service accepts. */
373
+ export var KnownAutoRebuildSetting;
374
+ (function (KnownAutoRebuildSetting) {
375
+ /** Disabled */
376
+ KnownAutoRebuildSetting["Disabled"] = "Disabled";
377
+ /** OnBaseImageUpdate */
378
+ KnownAutoRebuildSetting["OnBaseImageUpdate"] = "OnBaseImageUpdate";
379
+ })(KnownAutoRebuildSetting || (KnownAutoRebuildSetting = {}));
372
380
  /** Known values of {@link EnvironmentType} that the service accepts. */
373
381
  export var KnownEnvironmentType;
374
382
  (function (KnownEnvironmentType) {
@@ -398,6 +406,8 @@ export var KnownIdentityConfigurationType;
398
406
  /** Known values of {@link JobType} that the service accepts. */
399
407
  export var KnownJobType;
400
408
  (function (KnownJobType) {
409
+ /** AutoML */
410
+ KnownJobType["AutoML"] = "AutoML";
401
411
  /** Command */
402
412
  KnownJobType["Command"] = "Command";
403
413
  /** Sweep */
@@ -462,6 +472,22 @@ export var KnownOrderString;
462
472
  /** UpdatedAtAsc */
463
473
  KnownOrderString["UpdatedAtAsc"] = "UpdatedAtAsc";
464
474
  })(KnownOrderString || (KnownOrderString = {}));
475
+ /** Known values of {@link PublicNetworkAccessType} that the service accepts. */
476
+ export var KnownPublicNetworkAccessType;
477
+ (function (KnownPublicNetworkAccessType) {
478
+ /** Enabled */
479
+ KnownPublicNetworkAccessType["Enabled"] = "Enabled";
480
+ /** Disabled */
481
+ KnownPublicNetworkAccessType["Disabled"] = "Disabled";
482
+ })(KnownPublicNetworkAccessType || (KnownPublicNetworkAccessType = {}));
483
+ /** Known values of {@link EgressPublicNetworkAccessType} that the service accepts. */
484
+ export var KnownEgressPublicNetworkAccessType;
485
+ (function (KnownEgressPublicNetworkAccessType) {
486
+ /** Enabled */
487
+ KnownEgressPublicNetworkAccessType["Enabled"] = "Enabled";
488
+ /** Disabled */
489
+ KnownEgressPublicNetworkAccessType["Disabled"] = "Disabled";
490
+ })(KnownEgressPublicNetworkAccessType || (KnownEgressPublicNetworkAccessType = {}));
465
491
  /** Known values of {@link ScaleType} that the service accepts. */
466
492
  export var KnownScaleType;
467
493
  (function (KnownScaleType) {
@@ -496,6 +522,48 @@ export var KnownKeyType;
496
522
  /** Secondary */
497
523
  KnownKeyType["Secondary"] = "Secondary";
498
524
  })(KnownKeyType || (KnownKeyType = {}));
525
+ /** Known values of {@link ScheduleListViewType} that the service accepts. */
526
+ export var KnownScheduleListViewType;
527
+ (function (KnownScheduleListViewType) {
528
+ /** EnabledOnly */
529
+ KnownScheduleListViewType["EnabledOnly"] = "EnabledOnly";
530
+ /** DisabledOnly */
531
+ KnownScheduleListViewType["DisabledOnly"] = "DisabledOnly";
532
+ /** All */
533
+ KnownScheduleListViewType["All"] = "All";
534
+ })(KnownScheduleListViewType || (KnownScheduleListViewType = {}));
535
+ /** Known values of {@link ScheduleActionType} that the service accepts. */
536
+ export var KnownScheduleActionType;
537
+ (function (KnownScheduleActionType) {
538
+ /** CreateJob */
539
+ KnownScheduleActionType["CreateJob"] = "CreateJob";
540
+ /** InvokeBatchEndpoint */
541
+ KnownScheduleActionType["InvokeBatchEndpoint"] = "InvokeBatchEndpoint";
542
+ })(KnownScheduleActionType || (KnownScheduleActionType = {}));
543
+ /** Known values of {@link ScheduleProvisioningStatus} that the service accepts. */
544
+ export var KnownScheduleProvisioningStatus;
545
+ (function (KnownScheduleProvisioningStatus) {
546
+ /** Creating */
547
+ KnownScheduleProvisioningStatus["Creating"] = "Creating";
548
+ /** Updating */
549
+ KnownScheduleProvisioningStatus["Updating"] = "Updating";
550
+ /** Deleting */
551
+ KnownScheduleProvisioningStatus["Deleting"] = "Deleting";
552
+ /** Succeeded */
553
+ KnownScheduleProvisioningStatus["Succeeded"] = "Succeeded";
554
+ /** Failed */
555
+ KnownScheduleProvisioningStatus["Failed"] = "Failed";
556
+ /** Canceled */
557
+ KnownScheduleProvisioningStatus["Canceled"] = "Canceled";
558
+ })(KnownScheduleProvisioningStatus || (KnownScheduleProvisioningStatus = {}));
559
+ /** Known values of {@link TriggerType} that the service accepts. */
560
+ export var KnownTriggerType;
561
+ (function (KnownTriggerType) {
562
+ /** Recurrence */
563
+ KnownTriggerType["Recurrence"] = "Recurrence";
564
+ /** Cron */
565
+ KnownTriggerType["Cron"] = "Cron";
566
+ })(KnownTriggerType || (KnownTriggerType = {}));
499
567
  /** Known values of {@link ClusterPurpose} that the service accepts. */
500
568
  export var KnownClusterPurpose;
501
569
  (function (KnownClusterPurpose) {
@@ -670,6 +738,14 @@ export var KnownProvisioningStatus;
670
738
  /** Failed */
671
739
  KnownProvisioningStatus["Failed"] = "Failed";
672
740
  })(KnownProvisioningStatus || (KnownProvisioningStatus = {}));
741
+ /** Known values of {@link ScheduleStatus} that the service accepts. */
742
+ export var KnownScheduleStatus;
743
+ (function (KnownScheduleStatus) {
744
+ /** Enabled */
745
+ KnownScheduleStatus["Enabled"] = "Enabled";
746
+ /** Disabled */
747
+ KnownScheduleStatus["Disabled"] = "Disabled";
748
+ })(KnownScheduleStatus || (KnownScheduleStatus = {}));
673
749
  /** Known values of {@link ComputePowerAction} that the service accepts. */
674
750
  export var KnownComputePowerAction;
675
751
  (function (KnownComputePowerAction) {
@@ -678,6 +754,38 @@ export var KnownComputePowerAction;
678
754
  /** Stop */
679
755
  KnownComputePowerAction["Stop"] = "Stop";
680
756
  })(KnownComputePowerAction || (KnownComputePowerAction = {}));
757
+ /** Known values of {@link RecurrenceFrequency} that the service accepts. */
758
+ export var KnownRecurrenceFrequency;
759
+ (function (KnownRecurrenceFrequency) {
760
+ /** Minute frequency */
761
+ KnownRecurrenceFrequency["Minute"] = "Minute";
762
+ /** Hour frequency */
763
+ KnownRecurrenceFrequency["Hour"] = "Hour";
764
+ /** Day frequency */
765
+ KnownRecurrenceFrequency["Day"] = "Day";
766
+ /** Week frequency */
767
+ KnownRecurrenceFrequency["Week"] = "Week";
768
+ /** Month frequency */
769
+ KnownRecurrenceFrequency["Month"] = "Month";
770
+ })(KnownRecurrenceFrequency || (KnownRecurrenceFrequency = {}));
771
+ /** Known values of {@link WeekDay} that the service accepts. */
772
+ export var KnownWeekDay;
773
+ (function (KnownWeekDay) {
774
+ /** Monday weekday */
775
+ KnownWeekDay["Monday"] = "Monday";
776
+ /** Tuesday weekday */
777
+ KnownWeekDay["Tuesday"] = "Tuesday";
778
+ /** Wednesday weekday */
779
+ KnownWeekDay["Wednesday"] = "Wednesday";
780
+ /** Thursday weekday */
781
+ KnownWeekDay["Thursday"] = "Thursday";
782
+ /** Friday weekday */
783
+ KnownWeekDay["Friday"] = "Friday";
784
+ /** Saturday weekday */
785
+ KnownWeekDay["Saturday"] = "Saturday";
786
+ /** Sunday weekday */
787
+ KnownWeekDay["Sunday"] = "Sunday";
788
+ })(KnownWeekDay || (KnownWeekDay = {}));
681
789
  /** Known values of {@link ScheduleProvisioningState} that the service accepts. */
682
790
  export var KnownScheduleProvisioningState;
683
791
  (function (KnownScheduleProvisioningState) {
@@ -688,14 +796,6 @@ export var KnownScheduleProvisioningState;
688
796
  /** Failed */
689
797
  KnownScheduleProvisioningState["Failed"] = "Failed";
690
798
  })(KnownScheduleProvisioningState || (KnownScheduleProvisioningState = {}));
691
- /** Known values of {@link ScheduleStatus} that the service accepts. */
692
- export var KnownScheduleStatus;
693
- (function (KnownScheduleStatus) {
694
- /** Enabled */
695
- KnownScheduleStatus["Enabled"] = "Enabled";
696
- /** Disabled */
697
- KnownScheduleStatus["Disabled"] = "Disabled";
698
- })(KnownScheduleStatus || (KnownScheduleStatus = {}));
699
799
  /** Known values of {@link Autosave} that the service accepts. */
700
800
  export var KnownAutosave;
701
801
  (function (KnownAutosave) {
@@ -790,6 +890,144 @@ export var KnownOutputDeliveryMode;
790
890
  /** Upload */
791
891
  KnownOutputDeliveryMode["Upload"] = "Upload";
792
892
  })(KnownOutputDeliveryMode || (KnownOutputDeliveryMode = {}));
893
+ /** Known values of {@link ForecastHorizonMode} that the service accepts. */
894
+ export var KnownForecastHorizonMode;
895
+ (function (KnownForecastHorizonMode) {
896
+ /** Forecast horizon to be determined automatically. */
897
+ KnownForecastHorizonMode["Auto"] = "Auto";
898
+ /** Use the custom forecast horizon. */
899
+ KnownForecastHorizonMode["Custom"] = "Custom";
900
+ })(KnownForecastHorizonMode || (KnownForecastHorizonMode = {}));
901
+ /** Known values of {@link JobOutputType} that the service accepts. */
902
+ export var KnownJobOutputType;
903
+ (function (KnownJobOutputType) {
904
+ /** UriFile */
905
+ KnownJobOutputType["UriFile"] = "uri_file";
906
+ /** UriFolder */
907
+ KnownJobOutputType["UriFolder"] = "uri_folder";
908
+ /** Mltable */
909
+ KnownJobOutputType["Mltable"] = "mltable";
910
+ /** CustomModel */
911
+ KnownJobOutputType["CustomModel"] = "custom_model";
912
+ /** MlflowModel */
913
+ KnownJobOutputType["MlflowModel"] = "mlflow_model";
914
+ /** TritonModel */
915
+ KnownJobOutputType["TritonModel"] = "triton_model";
916
+ })(KnownJobOutputType || (KnownJobOutputType = {}));
917
+ /** Known values of {@link LogVerbosity} that the service accepts. */
918
+ export var KnownLogVerbosity;
919
+ (function (KnownLogVerbosity) {
920
+ /** No logs emitted. */
921
+ KnownLogVerbosity["NotSet"] = "NotSet";
922
+ /** Debug and above log statements logged. */
923
+ KnownLogVerbosity["Debug"] = "Debug";
924
+ /** Info and above log statements logged. */
925
+ KnownLogVerbosity["Info"] = "Info";
926
+ /** Warning and above log statements logged. */
927
+ KnownLogVerbosity["Warning"] = "Warning";
928
+ /** Error and above log statements logged. */
929
+ KnownLogVerbosity["Error"] = "Error";
930
+ /** Only critical statements logged. */
931
+ KnownLogVerbosity["Critical"] = "Critical";
932
+ })(KnownLogVerbosity || (KnownLogVerbosity = {}));
933
+ /** Known values of {@link TaskType} that the service accepts. */
934
+ export var KnownTaskType;
935
+ (function (KnownTaskType) {
936
+ /**
937
+ * Classification in machine learning and statistics is a supervised learning approach in which
938
+ * the computer program learns from the data given to it and make new observations or classifications.
939
+ */
940
+ KnownTaskType["Classification"] = "Classification";
941
+ /** Regression means to predict the value using the input data. Regression models are used to predict a continuous value. */
942
+ KnownTaskType["Regression"] = "Regression";
943
+ /**
944
+ * Forecasting is a special kind of regression task that deals with time-series data and creates forecasting model
945
+ * that can be used to predict the near future values based on the inputs.
946
+ */
947
+ KnownTaskType["Forecasting"] = "Forecasting";
948
+ /**
949
+ * Image Classification. Multi-class image classification is used when an image is classified with only a single label
950
+ * from a set of classes - e.g. each image is classified as either an image of a 'cat' or a 'dog' or a 'duck'.
951
+ */
952
+ KnownTaskType["ImageClassification"] = "ImageClassification";
953
+ /**
954
+ * Image Classification Multilabel. Multi-label image classification is used when an image could have one or more labels
955
+ * from a set of labels - e.g. an image could be labeled with both 'cat' and 'dog'.
956
+ */
957
+ KnownTaskType["ImageClassificationMultilabel"] = "ImageClassificationMultilabel";
958
+ /**
959
+ * Image Object Detection. Object detection is used to identify objects in an image and locate each object with a
960
+ * bounding box e.g. locate all dogs and cats in an image and draw a bounding box around each.
961
+ */
962
+ KnownTaskType["ImageObjectDetection"] = "ImageObjectDetection";
963
+ /**
964
+ * Image Instance Segmentation. Instance segmentation is used to identify objects in an image at the pixel level,
965
+ * drawing a polygon around each object in the image.
966
+ */
967
+ KnownTaskType["ImageInstanceSegmentation"] = "ImageInstanceSegmentation";
968
+ /**
969
+ * Text classification (also known as text tagging or text categorization) is the process of sorting texts into categories.
970
+ * Categories are mutually exclusive.
971
+ */
972
+ KnownTaskType["TextClassification"] = "TextClassification";
973
+ /** Multilabel classification task assigns each sample to a group (zero or more) of target labels. */
974
+ KnownTaskType["TextClassificationMultilabel"] = "TextClassificationMultilabel";
975
+ /**
976
+ * Text Named Entity Recognition a.k.a. TextNER.
977
+ * Named Entity Recognition (NER) is the ability to take free-form text and identify the occurrences of entities such as people, locations, organizations, and more.
978
+ */
979
+ KnownTaskType["TextNER"] = "TextNER";
980
+ })(KnownTaskType || (KnownTaskType = {}));
981
+ /** Known values of {@link JobInputType} that the service accepts. */
982
+ export var KnownJobInputType;
983
+ (function (KnownJobInputType) {
984
+ /** Literal */
985
+ KnownJobInputType["Literal"] = "literal";
986
+ /** UriFile */
987
+ KnownJobInputType["UriFile"] = "uri_file";
988
+ /** UriFolder */
989
+ KnownJobInputType["UriFolder"] = "uri_folder";
990
+ /** Mltable */
991
+ KnownJobInputType["Mltable"] = "mltable";
992
+ /** CustomModel */
993
+ KnownJobInputType["CustomModel"] = "custom_model";
994
+ /** MlflowModel */
995
+ KnownJobInputType["MlflowModel"] = "mlflow_model";
996
+ /** TritonModel */
997
+ KnownJobInputType["TritonModel"] = "triton_model";
998
+ })(KnownJobInputType || (KnownJobInputType = {}));
999
+ /** Known values of {@link NCrossValidationsMode} that the service accepts. */
1000
+ export var KnownNCrossValidationsMode;
1001
+ (function (KnownNCrossValidationsMode) {
1002
+ /** Determine N-Cross validations value automatically. Supported only for 'Forecasting' AutoML task. */
1003
+ KnownNCrossValidationsMode["Auto"] = "Auto";
1004
+ /** Use custom N-Cross validations value. */
1005
+ KnownNCrossValidationsMode["Custom"] = "Custom";
1006
+ })(KnownNCrossValidationsMode || (KnownNCrossValidationsMode = {}));
1007
+ /** Known values of {@link SeasonalityMode} that the service accepts. */
1008
+ export var KnownSeasonalityMode;
1009
+ (function (KnownSeasonalityMode) {
1010
+ /** Seasonality to be determined automatically. */
1011
+ KnownSeasonalityMode["Auto"] = "Auto";
1012
+ /** Use the custom seasonality value. */
1013
+ KnownSeasonalityMode["Custom"] = "Custom";
1014
+ })(KnownSeasonalityMode || (KnownSeasonalityMode = {}));
1015
+ /** Known values of {@link TargetLagsMode} that the service accepts. */
1016
+ export var KnownTargetLagsMode;
1017
+ (function (KnownTargetLagsMode) {
1018
+ /** Target lags to be determined automatically. */
1019
+ KnownTargetLagsMode["Auto"] = "Auto";
1020
+ /** Use the custom target lags. */
1021
+ KnownTargetLagsMode["Custom"] = "Custom";
1022
+ })(KnownTargetLagsMode || (KnownTargetLagsMode = {}));
1023
+ /** Known values of {@link TargetRollingWindowSizeMode} that the service accepts. */
1024
+ export var KnownTargetRollingWindowSizeMode;
1025
+ (function (KnownTargetRollingWindowSizeMode) {
1026
+ /** Determine rolling windows size automatically. */
1027
+ KnownTargetRollingWindowSizeMode["Auto"] = "Auto";
1028
+ /** Use the specified rolling window size. */
1029
+ KnownTargetRollingWindowSizeMode["Custom"] = "Custom";
1030
+ })(KnownTargetRollingWindowSizeMode || (KnownTargetRollingWindowSizeMode = {}));
793
1031
  /** Known values of {@link ServiceDataAccessAuthIdentity} that the service accepts. */
794
1032
  export var KnownServiceDataAccessAuthIdentity;
795
1033
  (function (KnownServiceDataAccessAuthIdentity) {
@@ -820,6 +1058,142 @@ export var KnownSamplingAlgorithmType;
820
1058
  /** Bayesian */
821
1059
  KnownSamplingAlgorithmType["Bayesian"] = "Bayesian";
822
1060
  })(KnownSamplingAlgorithmType || (KnownSamplingAlgorithmType = {}));
1061
+ /** Known values of {@link ClassificationPrimaryMetrics} that the service accepts. */
1062
+ export var KnownClassificationPrimaryMetrics;
1063
+ (function (KnownClassificationPrimaryMetrics) {
1064
+ /**
1065
+ * AUC is the Area under the curve.
1066
+ * This metric represents arithmetic mean of the score for each class,
1067
+ * weighted by the number of true instances in each class.
1068
+ */
1069
+ KnownClassificationPrimaryMetrics["AUCWeighted"] = "AUCWeighted";
1070
+ /** Accuracy is the ratio of predictions that exactly match the true class labels. */
1071
+ KnownClassificationPrimaryMetrics["Accuracy"] = "Accuracy";
1072
+ /**
1073
+ * Normalized macro recall is recall macro-averaged and normalized, so that random
1074
+ * performance has a score of 0, and perfect performance has a score of 1.
1075
+ */
1076
+ KnownClassificationPrimaryMetrics["NormMacroRecall"] = "NormMacroRecall";
1077
+ /**
1078
+ * The arithmetic mean of the average precision score for each class, weighted by
1079
+ * the number of true instances in each class.
1080
+ */
1081
+ KnownClassificationPrimaryMetrics["AveragePrecisionScoreWeighted"] = "AveragePrecisionScoreWeighted";
1082
+ /** The arithmetic mean of precision for each class, weighted by number of true instances in each class. */
1083
+ KnownClassificationPrimaryMetrics["PrecisionScoreWeighted"] = "PrecisionScoreWeighted";
1084
+ })(KnownClassificationPrimaryMetrics || (KnownClassificationPrimaryMetrics = {}));
1085
+ /** Known values of {@link ClassificationModels} that the service accepts. */
1086
+ export var KnownClassificationModels;
1087
+ (function (KnownClassificationModels) {
1088
+ /**
1089
+ * Logistic regression is a fundamental classification technique.
1090
+ * It belongs to the group of linear classifiers and is somewhat similar to polynomial and linear regression.
1091
+ * Logistic regression is fast and relatively uncomplicated, and it's convenient for you to interpret the results.
1092
+ * Although it's essentially a method for binary classification, it can also be applied to multiclass problems.
1093
+ */
1094
+ KnownClassificationModels["LogisticRegression"] = "LogisticRegression";
1095
+ /**
1096
+ * SGD: Stochastic gradient descent is an optimization algorithm often used in machine learning applications
1097
+ * to find the model parameters that correspond to the best fit between predicted and actual outputs.
1098
+ */
1099
+ KnownClassificationModels["SGD"] = "SGD";
1100
+ /**
1101
+ * The multinomial Naive Bayes classifier is suitable for classification with discrete features (e.g., word counts for text classification).
1102
+ * The multinomial distribution normally requires integer feature counts. However, in practice, fractional counts such as tf-idf may also work.
1103
+ */
1104
+ KnownClassificationModels["MultinomialNaiveBayes"] = "MultinomialNaiveBayes";
1105
+ /** Naive Bayes classifier for multivariate Bernoulli models. */
1106
+ KnownClassificationModels["BernoulliNaiveBayes"] = "BernoulliNaiveBayes";
1107
+ /**
1108
+ * A support vector machine (SVM) is a supervised machine learning model that uses classification algorithms for two-group classification problems.
1109
+ * After giving an SVM model sets of labeled training data for each category, they're able to categorize new text.
1110
+ */
1111
+ KnownClassificationModels["SVM"] = "SVM";
1112
+ /**
1113
+ * A support vector machine (SVM) is a supervised machine learning model that uses classification algorithms for two-group classification problems.
1114
+ * After giving an SVM model sets of labeled training data for each category, they're able to categorize new text.
1115
+ * Linear SVM performs best when input data is linear, i.e., data can be easily classified by drawing the straight line between classified values on a plotted graph.
1116
+ */
1117
+ KnownClassificationModels["LinearSVM"] = "LinearSVM";
1118
+ /**
1119
+ * K-nearest neighbors (KNN) algorithm uses 'feature similarity' to predict the values of new datapoints
1120
+ * which further means that the new data point will be assigned a value based on how closely it matches the points in the training set.
1121
+ */
1122
+ KnownClassificationModels["KNN"] = "KNN";
1123
+ /**
1124
+ * Decision Trees are a non-parametric supervised learning method used for both classification and regression tasks.
1125
+ * The goal is to create a model that predicts the value of a target variable by learning simple decision rules inferred from the data features.
1126
+ */
1127
+ KnownClassificationModels["DecisionTree"] = "DecisionTree";
1128
+ /**
1129
+ * Random forest is a supervised learning algorithm.
1130
+ * The "forest" it builds, is an ensemble of decision trees, usually trained with the “bagging” method.
1131
+ * The general idea of the bagging method is that a combination of learning models increases the overall result.
1132
+ */
1133
+ KnownClassificationModels["RandomForest"] = "RandomForest";
1134
+ /** Extreme Trees is an ensemble machine learning algorithm that combines the predictions from many decision trees. It is related to the widely used random forest algorithm. */
1135
+ KnownClassificationModels["ExtremeRandomTrees"] = "ExtremeRandomTrees";
1136
+ /** LightGBM is a gradient boosting framework that uses tree based learning algorithms. */
1137
+ KnownClassificationModels["LightGBM"] = "LightGBM";
1138
+ /** The technique of transiting week learners into a strong learner is called Boosting. The gradient boosting algorithm process works on this theory of execution. */
1139
+ KnownClassificationModels["GradientBoosting"] = "GradientBoosting";
1140
+ /** XGBoost: Extreme Gradient Boosting Algorithm. This algorithm is used for structured data where target column values can be divided into distinct class values. */
1141
+ KnownClassificationModels["XGBoostClassifier"] = "XGBoostClassifier";
1142
+ })(KnownClassificationModels || (KnownClassificationModels = {}));
1143
+ /** Known values of {@link StackMetaLearnerType} that the service accepts. */
1144
+ export var KnownStackMetaLearnerType;
1145
+ (function (KnownStackMetaLearnerType) {
1146
+ /** None */
1147
+ KnownStackMetaLearnerType["None"] = "None";
1148
+ /** Default meta-learners are LogisticRegression for classification tasks. */
1149
+ KnownStackMetaLearnerType["LogisticRegression"] = "LogisticRegression";
1150
+ /** Default meta-learners are LogisticRegression for classification task when CV is on. */
1151
+ KnownStackMetaLearnerType["LogisticRegressionCV"] = "LogisticRegressionCV";
1152
+ /** LightGBMClassifier */
1153
+ KnownStackMetaLearnerType["LightGBMClassifier"] = "LightGBMClassifier";
1154
+ /** Default meta-learners are LogisticRegression for regression task. */
1155
+ KnownStackMetaLearnerType["ElasticNet"] = "ElasticNet";
1156
+ /** Default meta-learners are LogisticRegression for regression task when CV is on. */
1157
+ KnownStackMetaLearnerType["ElasticNetCV"] = "ElasticNetCV";
1158
+ /** LightGBMRegressor */
1159
+ KnownStackMetaLearnerType["LightGBMRegressor"] = "LightGBMRegressor";
1160
+ /** LinearRegression */
1161
+ KnownStackMetaLearnerType["LinearRegression"] = "LinearRegression";
1162
+ })(KnownStackMetaLearnerType || (KnownStackMetaLearnerType = {}));
1163
+ /** Known values of {@link BlockedTransformers} that the service accepts. */
1164
+ export var KnownBlockedTransformers;
1165
+ (function (KnownBlockedTransformers) {
1166
+ /** Target encoding for text data. */
1167
+ KnownBlockedTransformers["TextTargetEncoder"] = "TextTargetEncoder";
1168
+ /** Ohe hot encoding creates a binary feature transformation. */
1169
+ KnownBlockedTransformers["OneHotEncoder"] = "OneHotEncoder";
1170
+ /** Target encoding for categorical data. */
1171
+ KnownBlockedTransformers["CatTargetEncoder"] = "CatTargetEncoder";
1172
+ /** Tf-Idf stands for, term-frequency times inverse document-frequency. This is a common term weighting scheme for identifying information from documents. */
1173
+ KnownBlockedTransformers["TfIdf"] = "TfIdf";
1174
+ /** Weight of Evidence encoding is a technique used to encode categorical variables. It uses the natural log of the P(1)/P(0) to create weights. */
1175
+ KnownBlockedTransformers["WoETargetEncoder"] = "WoETargetEncoder";
1176
+ /** Label encoder converts labels/categorical variables in a numerical form. */
1177
+ KnownBlockedTransformers["LabelEncoder"] = "LabelEncoder";
1178
+ /** Word embedding helps represents words or phrases as a vector, or a series of numbers. */
1179
+ KnownBlockedTransformers["WordEmbedding"] = "WordEmbedding";
1180
+ /** Naive Bayes is a classified that is used for classification of discrete features that are categorically distributed. */
1181
+ KnownBlockedTransformers["NaiveBayes"] = "NaiveBayes";
1182
+ /** Count Vectorizer converts a collection of text documents to a matrix of token counts. */
1183
+ KnownBlockedTransformers["CountVectorizer"] = "CountVectorizer";
1184
+ /** Hashing One Hot Encoder can turn categorical variables into a limited number of new features. This is often used for high-cardinality categorical features. */
1185
+ KnownBlockedTransformers["HashOneHotEncoder"] = "HashOneHotEncoder";
1186
+ })(KnownBlockedTransformers || (KnownBlockedTransformers = {}));
1187
+ /** Known values of {@link FeaturizationMode} that the service accepts. */
1188
+ export var KnownFeaturizationMode;
1189
+ (function (KnownFeaturizationMode) {
1190
+ /** Auto mode, system performs featurization without any custom featurization inputs. */
1191
+ KnownFeaturizationMode["Auto"] = "Auto";
1192
+ /** Custom featurization. */
1193
+ KnownFeaturizationMode["Custom"] = "Custom";
1194
+ /** Featurization off. 'Forecasting' task cannot use this value. */
1195
+ KnownFeaturizationMode["Off"] = "Off";
1196
+ })(KnownFeaturizationMode || (KnownFeaturizationMode = {}));
823
1197
  /** Known values of {@link DistributionType} that the service accepts. */
824
1198
  export var KnownDistributionType;
825
1199
  (function (KnownDistributionType) {
@@ -830,24 +1204,6 @@ export var KnownDistributionType;
830
1204
  /** Mpi */
831
1205
  KnownDistributionType["Mpi"] = "Mpi";
832
1206
  })(KnownDistributionType || (KnownDistributionType = {}));
833
- /** Known values of {@link JobInputType} that the service accepts. */
834
- export var KnownJobInputType;
835
- (function (KnownJobInputType) {
836
- /** Literal */
837
- KnownJobInputType["Literal"] = "literal";
838
- /** UriFile */
839
- KnownJobInputType["UriFile"] = "uri_file";
840
- /** UriFolder */
841
- KnownJobInputType["UriFolder"] = "uri_folder";
842
- /** Mltable */
843
- KnownJobInputType["Mltable"] = "mltable";
844
- /** CustomModel */
845
- KnownJobInputType["CustomModel"] = "custom_model";
846
- /** MlflowModel */
847
- KnownJobInputType["MlflowModel"] = "mlflow_model";
848
- /** TritonModel */
849
- KnownJobInputType["TritonModel"] = "triton_model";
850
- })(KnownJobInputType || (KnownJobInputType = {}));
851
1207
  /** Known values of {@link JobLimitsType} that the service accepts. */
852
1208
  export var KnownJobLimitsType;
853
1209
  (function (KnownJobLimitsType) {
@@ -856,22 +1212,219 @@ export var KnownJobLimitsType;
856
1212
  /** Sweep */
857
1213
  KnownJobLimitsType["Sweep"] = "Sweep";
858
1214
  })(KnownJobLimitsType || (KnownJobLimitsType = {}));
859
- /** Known values of {@link JobOutputType} that the service accepts. */
860
- export var KnownJobOutputType;
861
- (function (KnownJobOutputType) {
862
- /** UriFile */
863
- KnownJobOutputType["UriFile"] = "uri_file";
864
- /** UriFolder */
865
- KnownJobOutputType["UriFolder"] = "uri_folder";
866
- /** Mltable */
867
- KnownJobOutputType["Mltable"] = "mltable";
868
- /** CustomModel */
869
- KnownJobOutputType["CustomModel"] = "custom_model";
870
- /** MlflowModel */
871
- KnownJobOutputType["MlflowModel"] = "mlflow_model";
872
- /** TritonModel */
873
- KnownJobOutputType["TritonModel"] = "triton_model";
874
- })(KnownJobOutputType || (KnownJobOutputType = {}));
1215
+ /** Known values of {@link FeatureLags} that the service accepts. */
1216
+ export var KnownFeatureLags;
1217
+ (function (KnownFeatureLags) {
1218
+ /** No feature lags generated. */
1219
+ KnownFeatureLags["None"] = "None";
1220
+ /** System auto-generates feature lags. */
1221
+ KnownFeatureLags["Auto"] = "Auto";
1222
+ })(KnownFeatureLags || (KnownFeatureLags = {}));
1223
+ /** Known values of {@link ShortSeriesHandlingConfiguration} that the service accepts. */
1224
+ export var KnownShortSeriesHandlingConfiguration;
1225
+ (function (KnownShortSeriesHandlingConfiguration) {
1226
+ /** Represents no/null value. */
1227
+ KnownShortSeriesHandlingConfiguration["None"] = "None";
1228
+ /** Short series will be padded if there are no long series, otherwise short series will be dropped. */
1229
+ KnownShortSeriesHandlingConfiguration["Auto"] = "Auto";
1230
+ /** All the short series will be padded. */
1231
+ KnownShortSeriesHandlingConfiguration["Pad"] = "Pad";
1232
+ /** All the short series will be dropped. */
1233
+ KnownShortSeriesHandlingConfiguration["Drop"] = "Drop";
1234
+ })(KnownShortSeriesHandlingConfiguration || (KnownShortSeriesHandlingConfiguration = {}));
1235
+ /** Known values of {@link TargetAggregationFunction} that the service accepts. */
1236
+ export var KnownTargetAggregationFunction;
1237
+ (function (KnownTargetAggregationFunction) {
1238
+ /** Represent no value set. */
1239
+ KnownTargetAggregationFunction["None"] = "None";
1240
+ /** Sum */
1241
+ KnownTargetAggregationFunction["Sum"] = "Sum";
1242
+ /** Max */
1243
+ KnownTargetAggregationFunction["Max"] = "Max";
1244
+ /** Min */
1245
+ KnownTargetAggregationFunction["Min"] = "Min";
1246
+ /** Mean */
1247
+ KnownTargetAggregationFunction["Mean"] = "Mean";
1248
+ })(KnownTargetAggregationFunction || (KnownTargetAggregationFunction = {}));
1249
+ /** Known values of {@link UseStl} that the service accepts. */
1250
+ export var KnownUseStl;
1251
+ (function (KnownUseStl) {
1252
+ /** No stl decomposition. */
1253
+ KnownUseStl["None"] = "None";
1254
+ /** Season */
1255
+ KnownUseStl["Season"] = "Season";
1256
+ /** SeasonTrend */
1257
+ KnownUseStl["SeasonTrend"] = "SeasonTrend";
1258
+ })(KnownUseStl || (KnownUseStl = {}));
1259
+ /** Known values of {@link ForecastingPrimaryMetrics} that the service accepts. */
1260
+ export var KnownForecastingPrimaryMetrics;
1261
+ (function (KnownForecastingPrimaryMetrics) {
1262
+ /** The Spearman's rank coefficient of correlation is a non-parametric measure of rank correlation. */
1263
+ KnownForecastingPrimaryMetrics["SpearmanCorrelation"] = "SpearmanCorrelation";
1264
+ /** The Normalized Root Mean Squared Error (NRMSE) the RMSE facilitates the comparison between models with different scales. */
1265
+ KnownForecastingPrimaryMetrics["NormalizedRootMeanSquaredError"] = "NormalizedRootMeanSquaredError";
1266
+ /** The R2 score is one of the performance evaluation measures for forecasting-based machine learning models. */
1267
+ KnownForecastingPrimaryMetrics["R2Score"] = "R2Score";
1268
+ /** The Normalized Mean Absolute Error (NMAE) is a validation metric to compare the Mean Absolute Error (MAE) of (time) series with different scales. */
1269
+ KnownForecastingPrimaryMetrics["NormalizedMeanAbsoluteError"] = "NormalizedMeanAbsoluteError";
1270
+ })(KnownForecastingPrimaryMetrics || (KnownForecastingPrimaryMetrics = {}));
1271
+ /** Known values of {@link ForecastingModels} that the service accepts. */
1272
+ export var KnownForecastingModels;
1273
+ (function (KnownForecastingModels) {
1274
+ /**
1275
+ * Auto-Autoregressive Integrated Moving Average (ARIMA) model uses time-series data and statistical analysis to interpret the data and make future predictions.
1276
+ * This model aims to explain data by using time series data on its past values and uses linear regression to make predictions.
1277
+ */
1278
+ KnownForecastingModels["AutoArima"] = "AutoArima";
1279
+ /**
1280
+ * Prophet is a procedure for forecasting time series data based on an additive model where non-linear trends are fit with yearly, weekly, and daily seasonality, plus holiday effects.
1281
+ * It works best with time series that have strong seasonal effects and several seasons of historical data. Prophet is robust to missing data and shifts in the trend, and typically handles outliers well.
1282
+ */
1283
+ KnownForecastingModels["Prophet"] = "Prophet";
1284
+ /** The Naive forecasting model makes predictions by carrying forward the latest target value for each time-series in the training data. */
1285
+ KnownForecastingModels["Naive"] = "Naive";
1286
+ /** The Seasonal Naive forecasting model makes predictions by carrying forward the latest season of target values for each time-series in the training data. */
1287
+ KnownForecastingModels["SeasonalNaive"] = "SeasonalNaive";
1288
+ /** The Average forecasting model makes predictions by carrying forward the average of the target values for each time-series in the training data. */
1289
+ KnownForecastingModels["Average"] = "Average";
1290
+ /** The Seasonal Average forecasting model makes predictions by carrying forward the average value of the latest season of data for each time-series in the training data. */
1291
+ KnownForecastingModels["SeasonalAverage"] = "SeasonalAverage";
1292
+ /** Exponential smoothing is a time series forecasting method for univariate data that can be extended to support data with a systematic trend or seasonal component. */
1293
+ KnownForecastingModels["ExponentialSmoothing"] = "ExponentialSmoothing";
1294
+ /**
1295
+ * An Autoregressive Integrated Moving Average with Explanatory Variable (ARIMAX) model can be viewed as a multiple regression model with one or more autoregressive (AR) terms and/or one or more moving average (MA) terms.
1296
+ * This method is suitable for forecasting when data is stationary/non stationary, and multivariate with any type of data pattern, i.e., level/trend /seasonality/cyclicity.
1297
+ */
1298
+ KnownForecastingModels["Arimax"] = "Arimax";
1299
+ /** TCNForecaster: Temporal Convolutional Networks Forecaster. //TODO: Ask forecasting team for brief intro. */
1300
+ KnownForecastingModels["TCNForecaster"] = "TCNForecaster";
1301
+ /** Elastic net is a popular type of regularized linear regression that combines two popular penalties, specifically the L1 and L2 penalty functions. */
1302
+ KnownForecastingModels["ElasticNet"] = "ElasticNet";
1303
+ /** The technique of transiting week learners into a strong learner is called Boosting. The gradient boosting algorithm process works on this theory of execution. */
1304
+ KnownForecastingModels["GradientBoosting"] = "GradientBoosting";
1305
+ /**
1306
+ * Decision Trees are a non-parametric supervised learning method used for both classification and regression tasks.
1307
+ * The goal is to create a model that predicts the value of a target variable by learning simple decision rules inferred from the data features.
1308
+ */
1309
+ KnownForecastingModels["DecisionTree"] = "DecisionTree";
1310
+ /**
1311
+ * K-nearest neighbors (KNN) algorithm uses 'feature similarity' to predict the values of new datapoints
1312
+ * which further means that the new data point will be assigned a value based on how closely it matches the points in the training set.
1313
+ */
1314
+ KnownForecastingModels["KNN"] = "KNN";
1315
+ /** Lasso model fit with Least Angle Regression a.k.a. Lars. It is a Linear Model trained with an L1 prior as regularizer. */
1316
+ KnownForecastingModels["LassoLars"] = "LassoLars";
1317
+ /**
1318
+ * SGD: Stochastic gradient descent is an optimization algorithm often used in machine learning applications
1319
+ * to find the model parameters that correspond to the best fit between predicted and actual outputs.
1320
+ * It's an inexact but powerful technique.
1321
+ */
1322
+ KnownForecastingModels["SGD"] = "SGD";
1323
+ /**
1324
+ * Random forest is a supervised learning algorithm.
1325
+ * The "forest" it builds, is an ensemble of decision trees, usually trained with the “bagging” method.
1326
+ * The general idea of the bagging method is that a combination of learning models increases the overall result.
1327
+ */
1328
+ KnownForecastingModels["RandomForest"] = "RandomForest";
1329
+ /** Extreme Trees is an ensemble machine learning algorithm that combines the predictions from many decision trees. It is related to the widely used random forest algorithm. */
1330
+ KnownForecastingModels["ExtremeRandomTrees"] = "ExtremeRandomTrees";
1331
+ /** LightGBM is a gradient boosting framework that uses tree based learning algorithms. */
1332
+ KnownForecastingModels["LightGBM"] = "LightGBM";
1333
+ /** XGBoostRegressor: Extreme Gradient Boosting Regressor is a supervised machine learning model using ensemble of base learners. */
1334
+ KnownForecastingModels["XGBoostRegressor"] = "XGBoostRegressor";
1335
+ })(KnownForecastingModels || (KnownForecastingModels = {}));
1336
+ /** Known values of {@link LearningRateScheduler} that the service accepts. */
1337
+ export var KnownLearningRateScheduler;
1338
+ (function (KnownLearningRateScheduler) {
1339
+ /** No learning rate scheduler selected. */
1340
+ KnownLearningRateScheduler["None"] = "None";
1341
+ /** Cosine Annealing With Warmup. */
1342
+ KnownLearningRateScheduler["WarmupCosine"] = "WarmupCosine";
1343
+ /** Step learning rate scheduler. */
1344
+ KnownLearningRateScheduler["Step"] = "Step";
1345
+ })(KnownLearningRateScheduler || (KnownLearningRateScheduler = {}));
1346
+ /** Known values of {@link StochasticOptimizer} that the service accepts. */
1347
+ export var KnownStochasticOptimizer;
1348
+ (function (KnownStochasticOptimizer) {
1349
+ /** No optimizer selected. */
1350
+ KnownStochasticOptimizer["None"] = "None";
1351
+ /** Stochastic Gradient Descent optimizer. */
1352
+ KnownStochasticOptimizer["Sgd"] = "Sgd";
1353
+ /** Adam is algorithm the optimizes stochastic objective functions based on adaptive estimates of moments */
1354
+ KnownStochasticOptimizer["Adam"] = "Adam";
1355
+ /** AdamW is a variant of the optimizer Adam that has an improved implementation of weight decay. */
1356
+ KnownStochasticOptimizer["Adamw"] = "Adamw";
1357
+ })(KnownStochasticOptimizer || (KnownStochasticOptimizer = {}));
1358
+ /** Known values of {@link ClassificationMultilabelPrimaryMetrics} that the service accepts. */
1359
+ export var KnownClassificationMultilabelPrimaryMetrics;
1360
+ (function (KnownClassificationMultilabelPrimaryMetrics) {
1361
+ /**
1362
+ * AUC is the Area under the curve.
1363
+ * This metric represents arithmetic mean of the score for each class,
1364
+ * weighted by the number of true instances in each class.
1365
+ */
1366
+ KnownClassificationMultilabelPrimaryMetrics["AUCWeighted"] = "AUCWeighted";
1367
+ /** Accuracy is the ratio of predictions that exactly match the true class labels. */
1368
+ KnownClassificationMultilabelPrimaryMetrics["Accuracy"] = "Accuracy";
1369
+ /**
1370
+ * Normalized macro recall is recall macro-averaged and normalized, so that random
1371
+ * performance has a score of 0, and perfect performance has a score of 1.
1372
+ */
1373
+ KnownClassificationMultilabelPrimaryMetrics["NormMacroRecall"] = "NormMacroRecall";
1374
+ /**
1375
+ * The arithmetic mean of the average precision score for each class, weighted by
1376
+ * the number of true instances in each class.
1377
+ */
1378
+ KnownClassificationMultilabelPrimaryMetrics["AveragePrecisionScoreWeighted"] = "AveragePrecisionScoreWeighted";
1379
+ /** The arithmetic mean of precision for each class, weighted by number of true instances in each class. */
1380
+ KnownClassificationMultilabelPrimaryMetrics["PrecisionScoreWeighted"] = "PrecisionScoreWeighted";
1381
+ /** Intersection Over Union. Intersection of predictions divided by union of predictions. */
1382
+ KnownClassificationMultilabelPrimaryMetrics["IOU"] = "IOU";
1383
+ })(KnownClassificationMultilabelPrimaryMetrics || (KnownClassificationMultilabelPrimaryMetrics = {}));
1384
+ /** Known values of {@link InstanceSegmentationPrimaryMetrics} that the service accepts. */
1385
+ export var KnownInstanceSegmentationPrimaryMetrics;
1386
+ (function (KnownInstanceSegmentationPrimaryMetrics) {
1387
+ /**
1388
+ * Mean Average Precision (MAP) is the average of AP (Average Precision).
1389
+ * AP is calculated for each class and averaged to get the MAP.
1390
+ */
1391
+ KnownInstanceSegmentationPrimaryMetrics["MeanAveragePrecision"] = "MeanAveragePrecision";
1392
+ })(KnownInstanceSegmentationPrimaryMetrics || (KnownInstanceSegmentationPrimaryMetrics = {}));
1393
+ /** Known values of {@link ModelSize} that the service accepts. */
1394
+ export var KnownModelSize;
1395
+ (function (KnownModelSize) {
1396
+ /** No value selected. */
1397
+ KnownModelSize["None"] = "None";
1398
+ /** Small size. */
1399
+ KnownModelSize["Small"] = "Small";
1400
+ /** Medium size. */
1401
+ KnownModelSize["Medium"] = "Medium";
1402
+ /** Large size. */
1403
+ KnownModelSize["Large"] = "Large";
1404
+ /** Extra large size. */
1405
+ KnownModelSize["ExtraLarge"] = "ExtraLarge";
1406
+ })(KnownModelSize || (KnownModelSize = {}));
1407
+ /** Known values of {@link ValidationMetricType} that the service accepts. */
1408
+ export var KnownValidationMetricType;
1409
+ (function (KnownValidationMetricType) {
1410
+ /** No metric. */
1411
+ KnownValidationMetricType["None"] = "None";
1412
+ /** Coco metric. */
1413
+ KnownValidationMetricType["Coco"] = "Coco";
1414
+ /** Voc metric. */
1415
+ KnownValidationMetricType["Voc"] = "Voc";
1416
+ /** CocoVoc metric. */
1417
+ KnownValidationMetricType["CocoVoc"] = "CocoVoc";
1418
+ })(KnownValidationMetricType || (KnownValidationMetricType = {}));
1419
+ /** Known values of {@link ObjectDetectionPrimaryMetrics} that the service accepts. */
1420
+ export var KnownObjectDetectionPrimaryMetrics;
1421
+ (function (KnownObjectDetectionPrimaryMetrics) {
1422
+ /**
1423
+ * Mean Average Precision (MAP) is the average of AP (Average Precision).
1424
+ * AP is calculated for each class and averaged to get the MAP.
1425
+ */
1426
+ KnownObjectDetectionPrimaryMetrics["MeanAveragePrecision"] = "MeanAveragePrecision";
1427
+ })(KnownObjectDetectionPrimaryMetrics || (KnownObjectDetectionPrimaryMetrics = {}));
875
1428
  /** Known values of {@link Goal} that the service accepts. */
876
1429
  export var KnownGoal;
877
1430
  (function (KnownGoal) {
@@ -888,4 +1441,54 @@ export var KnownRandomSamplingAlgorithmRule;
888
1441
  /** Sobol */
889
1442
  KnownRandomSamplingAlgorithmRule["Sobol"] = "Sobol";
890
1443
  })(KnownRandomSamplingAlgorithmRule || (KnownRandomSamplingAlgorithmRule = {}));
1444
+ /** Known values of {@link RegressionPrimaryMetrics} that the service accepts. */
1445
+ export var KnownRegressionPrimaryMetrics;
1446
+ (function (KnownRegressionPrimaryMetrics) {
1447
+ /** The Spearman's rank coefficient of correlation is a nonparametric measure of rank correlation. */
1448
+ KnownRegressionPrimaryMetrics["SpearmanCorrelation"] = "SpearmanCorrelation";
1449
+ /** The Normalized Root Mean Squared Error (NRMSE) the RMSE facilitates the comparison between models with different scales. */
1450
+ KnownRegressionPrimaryMetrics["NormalizedRootMeanSquaredError"] = "NormalizedRootMeanSquaredError";
1451
+ /** The R2 score is one of the performance evaluation measures for forecasting-based machine learning models. */
1452
+ KnownRegressionPrimaryMetrics["R2Score"] = "R2Score";
1453
+ /** The Normalized Mean Absolute Error (NMAE) is a validation metric to compare the Mean Absolute Error (MAE) of (time) series with different scales. */
1454
+ KnownRegressionPrimaryMetrics["NormalizedMeanAbsoluteError"] = "NormalizedMeanAbsoluteError";
1455
+ })(KnownRegressionPrimaryMetrics || (KnownRegressionPrimaryMetrics = {}));
1456
+ /** Known values of {@link RegressionModels} that the service accepts. */
1457
+ export var KnownRegressionModels;
1458
+ (function (KnownRegressionModels) {
1459
+ /** Elastic net is a popular type of regularized linear regression that combines two popular penalties, specifically the L1 and L2 penalty functions. */
1460
+ KnownRegressionModels["ElasticNet"] = "ElasticNet";
1461
+ /** The technique of transiting week learners into a strong learner is called Boosting. The gradient boosting algorithm process works on this theory of execution. */
1462
+ KnownRegressionModels["GradientBoosting"] = "GradientBoosting";
1463
+ /**
1464
+ * Decision Trees are a non-parametric supervised learning method used for both classification and regression tasks.
1465
+ * The goal is to create a model that predicts the value of a target variable by learning simple decision rules inferred from the data features.
1466
+ */
1467
+ KnownRegressionModels["DecisionTree"] = "DecisionTree";
1468
+ /**
1469
+ * K-nearest neighbors (KNN) algorithm uses 'feature similarity' to predict the values of new datapoints
1470
+ * which further means that the new data point will be assigned a value based on how closely it matches the points in the training set.
1471
+ */
1472
+ KnownRegressionModels["KNN"] = "KNN";
1473
+ /** Lasso model fit with Least Angle Regression a.k.a. Lars. It is a Linear Model trained with an L1 prior as regularizer. */
1474
+ KnownRegressionModels["LassoLars"] = "LassoLars";
1475
+ /**
1476
+ * SGD: Stochastic gradient descent is an optimization algorithm often used in machine learning applications
1477
+ * to find the model parameters that correspond to the best fit between predicted and actual outputs.
1478
+ * It's an inexact but powerful technique.
1479
+ */
1480
+ KnownRegressionModels["SGD"] = "SGD";
1481
+ /**
1482
+ * Random forest is a supervised learning algorithm.
1483
+ * The "forest" it builds, is an ensemble of decision trees, usually trained with the “bagging” method.
1484
+ * The general idea of the bagging method is that a combination of learning models increases the overall result.
1485
+ */
1486
+ KnownRegressionModels["RandomForest"] = "RandomForest";
1487
+ /** Extreme Trees is an ensemble machine learning algorithm that combines the predictions from many decision trees. It is related to the widely used random forest algorithm. */
1488
+ KnownRegressionModels["ExtremeRandomTrees"] = "ExtremeRandomTrees";
1489
+ /** LightGBM is a gradient boosting framework that uses tree based learning algorithms. */
1490
+ KnownRegressionModels["LightGBM"] = "LightGBM";
1491
+ /** XGBoostRegressor: Extreme Gradient Boosting Regressor is a supervised machine learning model using ensemble of base learners. */
1492
+ KnownRegressionModels["XGBoostRegressor"] = "XGBoostRegressor";
1493
+ })(KnownRegressionModels || (KnownRegressionModels = {}));
891
1494
  //# sourceMappingURL=index.js.map