@aztec/protocol-contracts 3.0.0-nightly.20251219 → 3.0.0-nightly.20251221
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/artifacts/AuthRegistry.json +29 -29
- package/artifacts/ContractClassRegistry.json +24 -24
- package/artifacts/ContractInstanceRegistry.json +35 -35
- package/artifacts/FeeJuice.json +32 -32
- package/artifacts/MultiCallEntrypoint.json +20 -20
- package/artifacts/Router.json +22 -22
- package/package.json +4 -4
|
@@ -1878,7 +1878,7 @@
|
|
|
1878
1878
|
}
|
|
1879
1879
|
},
|
|
1880
1880
|
"bytecode": "H4sIAAAAAAAA/+z9CZzN5f8//r9msQ0xlpDQSZI9+57s+77v+77v+9IkSZItlKRJkiRJEpIkSZIkSZKQJEkSksT/emimmeY93/+8rstnHqfH79a53S6m6Ryv63k/r/M657xe1/W4Qry/boGYvzt37jpuRM/unQcN69x30IiewwZ1HTC8c+eeg0YMGztksPlN7zs9b1muv+4bYlpYzN+hMf9G/N/F/h3/54yJ3C+zaVUS/C6raQ8k+F22RH6XM5F/L1civ8udyO/uSOR3gUS2cWciv8uTyO/uSuR3eRPZRr5Efpc/EasCifyuYCK/K5zIv1c0kfvdm8jviiXyuxKJ/HulErlf6UR+VyaR35VL5N+rkMj9Kibyu0qJ/K5yIv9elUTuVzWR31WL+Tvc83ELifk7EPN3sR6Nhh0rHl1gQ5Oa66Oi2nTMX/JUnbEbh8ypfuzivHPm/+8Ki7tvErfCN7Odj5LeTiD+v53Oiys4JKaf+PtuL26HDIn5d2Pvt9v8/LFpe0z7JOyf/3hYwo38/7+F3GNx391h/h32+vf+x822//kt7vuxRf8/JfW/gMV991j0f59F/xPbD/fG7Iefxvy9L+bvT+Lth5+Zn/eb9rlpB25yPyxocd/PLBy+ID2PhSzuu9+i/wdJ/S9scd/PLfr/5U3uh1/E7HcHY/7+MubvA/H2w0Pm569MO2za1ze5HxaxuO8hC4cjpOexqMV9v7Lo/zek/t9rcd/DFv0/epP74ZGY/e6bmL+Pxvz9dbz98Jj5+bhp35p24ib3w2IW9z1m4fAd6XksbnHf4xb9P0nqfwmL+35r0f/vb3I//C5mvzsZ8/f3MX+fiLcfnjI//2DaadN+vMn9sKTFfU9ZOJwhPY+lLO77g0X/fyL1v7TFfU9b9P/sTe6HZ2L2u59i/j4b8/eP8fbDn83P50z7xbTzN7kflrG4788WDr+SnseyFvc9Z9H/C6T+l7O47y8W/b94k/vhrzH73YWYvy/G/H0+3n54yfz8m2mXTfv9JvfD8hb3vWThcIX0PFawuO9vFv3/g9T/ihb3vWzR/6s3uR9eidnv/oj5+2rM37/H2w//ND9fM+16mPc/Z7lsHSpZ3PdPC4eQcM7zeJ/Ffa9Z9D+U1P/KFve9btH/sPCb2w/x/OHv0Ji/w2L+xp1i7xdufkhhWkrTUt3kfni/xX3Dw/07pCY9j1Us7pvCov9pSP2vanHflBb9j7jJ/TB1zH6XJubviJi/U8XbD9OaH9KZdotp6W9yP6xmcd+0Fg4ZSM9jdYv7prPof+RNPo8ZYp63yJi/b4n5O3285zGj+SGTaZlNy5LgeQyN+Tvg+etCZs9/bbf6rS2k6QM3joUxNeFxVbyb62dei35m9f8chMTvZ+zjwuP97n8eYNlvi+s9/9hetvCb2GC2cPvHZbfYyV37lT3ezhrw7G+2O01Wi5pus9hp/v7D8//v48IZ6retIb/FNnJYHjxtn0MY5Qi3r/12y4Ni7Ivv9ngvyBAv8SvVyfmCvJnt3O1xtpP1Jp/zpJ47XCjE82G734ZZ3NfiYmTcgxL+EPD1MC8kRzKD4QpzDocXeg6Lg1VOyxps+xKSYBt+a7a1ypXMzwV2wtgdOP7jktqM686bVH9yJ/MBOvZNJmG9ft6c/N7X5oPCHTf5pprUYwrEbMOze9yNNxK8JlIk9o9a9oH1hpLP42zn3/rG5bodm9dcaLyfAzH71Z3hN/Fmc4fjJ59AvMc5bdPhDegOixd2Hse6Entcwn7aHFSSuu9dlgcg275kDbf61H3jTf728OT9JpM3md9kUEMuhzf7u5O5XzgQu3wIyUfwyu3Qr3uSuV840Lt45U/mfmV1/JZZwKJf/5eneCyGsP1jewVdT/EUiXmw7eMKJfMpHvSrkOMpHpc3uTwuO0mu5O0X3nDyOvSroGW/Ym+2n/QLW7xZWViFWPQ/0U/6SfUb4ywLObxxFrXYRpFkPrDBvojDvlHU8cNW0f+DD1tFLI4Z91p+2Iq92e7DxYK/D//1AO+f/U7q7jhm3ZXMH8yLEz7M3OWwD5ewfHMO8f5vTvfavDnfzHYs5iPc1HaK3eTzm+Rry0v+070WY63jHpTwh4Cvh5kdIJnBMIC+iMOL2ubAWtLyxRN7eiup2pLqo98X7fXr148m9vuAl/Q28Ef8vpaKedWXjj0KxL6blYo56sT/XelEOmg98tzfEzHXPBEhpSyetNKWeLY7HnagUqRP2zji3+1w1C8Tnvz9yufQr7KEft3j0K9yhH7ld+hXeUK/Cjj0q4Jlv/5f/UtqOxUttoPjzy2mRcf8N14D2N/w3MIRfa74X/uvkdr/a59P4pYC7y94b7R9rVQK9/9aCY15rSS8BTy7m+3xxqaPrtu4z3IbLtfo438w9PtB1fb5rBxud+xL7/137Puv/Tva/+u15eeztcXr98aXObxObF/D8beRVJ/uD7c7rqZP5PcBz1+/Ev4Q8PUwznH1fsttuL7vJecX+iq85zKug3aPC6lCeC6rCjhUJDhUc9hGYttJar+rbnFMC5Z3dYJ3DZJ3Tf/bCQ2Wd02Cdy2Sd23/2wkLlndtgncdkndd/9sJD5Z3XYJ3PZJ3ff/bSREs7/oE7wYk74b+t5MyWN4NCd6NSN6N/W8nVbC8GxO8m5C8m/rfTupgeTcleDcjeTf3v500wfJuTvBuQfJu6X87EcHybknwbkXybu1/O2mD5d2a4N2G5N3W/3bSBcu7LcG7Hcm7vf/t3BIs7/YE7w4k747+t5M+WN4dCd6dSN6d/W8nQ7C8OxO8u5C8u/rfTmSwvLsSvLuRvLv7307GYHl3J3j3IHn39L+dTMHy7knw7kXy7u1/O5mD5d2b4N2H5N3X/3ayBMu7L8G7H8m7v//t3Bos7/4E7wEk74H+t5M1WN4DCd6DSN6D/W8nW7C8BxO8h5C8h/rfTvZgeQ8leA8jeQ/3v53bguU9nOA9guQ90v92cgTLeyTBexTJe7T/7dweLO/RBO8xJO+x/reTM1jeYwne40je4/1vJ1ewvMcTvCeQvCf6307uYHlPJHhPInlP9r+dO4LlPZng/QDJO8r/dgLB8o4ieD9I8p7ifzt3Bst7CsH7IZL3VP/byRMs76kE74dJ3tP8b+euYHlPI3g/QvKe7n87eYPlPZ3g/SjJe4b/7dwdLO8ZBO/HSN4z/W8nX7C8ZxK8Hyd5z/K/nXuC5T2L4D2b5D3H/3byB8t7DsF7Lsl7nv/tFAiW9zyC9xMk7/n+t1MwWN7zCd4LSN4L/W+nULC8FxK8n7TYRrAcdoUl/zaeIu13i/xvp0iwvBcR9runSd6L/W+naLC8FxO8nyF5L/G/nXuD5b2E4P0syTva/3aKBcs7muD9HMl7qf/tFA+W91KC9/Mk72X+t1MiWN7LCN4vkLyX+99OyWB5Lyd4v0jyXuF/O6WC5b2C4P0SyXul/+2UDpb3SoL3yyTvVf63UyZY3qsI3q+QvFf7307ZYHmvJni/SvJe43875YLlvYbg/RrJe63/7ZQPlvdagvfrJO91/rdTIVje6wjeb5C81/vfTsVgea8neL9J8t7gfzuVguW9geC9keS9yf927guW9yaC91sk783+t1M5WN6bCd5vk7y3+N/O/cHy3kLwfofkvdX/dqoEy3srwftdkvc2/9upGizvbQTv90je2/1vp1qwvLcTvN8nee/wv53qwfLeQfD+gOS90/92agTLeyfB+0OS9y7/26kZtPE+BO+PSN67/W+nVrC8dxO8PyZ57/G/ndrB8t5D8P6E5L3X/3bqBMt7L8H7U5L3Pv/bqRss730E789I3vv9b6desLz3E7w/J3kf8L+d+sHyPkDw/oLkfdD/dhoEy/sgwftLkvch/9tpGCzvQwTvr0jeh/1vp1GwvA8TvL8meR/xv53GwfI+QvD+huR91P92mgTL+yjB+xjJ+7j/7TQNlvdxgve3JO8T/rfTLFjeJwje35G8T/rfTvNgeZ8keH9P8j7lfzstguV9iuD9A8n7tP/ttAyW92mC948k7zP+t9MqWN5nCN4/kbzP+t9O62B5nyV4/0zyPud/O22C5X2O4P0Lyfu8/+20DZb3eYL3ryTvC/630y5Y3hcI3hdJ3pf8b6d9sLwvEbx/I3lf9r+dDsHyvkzw/p3kfcX/djoGy/sKwfsPkvdV/9vpFCzvqwTvP0ne1/xvp3OwvK8RvK+TvL0UvrfTJVjeFn2M9yC7bYSk4HiH+t9O12B5hxK8w0je4f630y1Y3uEE7xQk75T+t9M9WN4pCd6pSN6p/W+nR7C8UxO805C8I/xvp2ewvCMI3mlJ3un8b6dXsLzTEbxvIXmn97+d3sHyTk/wzkDyjvS/nT7B8o4keGckeWfyv52+wfLORPDOTPLO4n87/YLlnYXgfSvJO6v/7fQPlndWgnc2knd2/9sZECzv7ATv20jeOfxvZ2CwvHMQvG8neef0v51BwfLOSfDORfLO7X87g4PlnZvgfQfJO+B/O0OC5R0geN9J8s7jfztDg+Wdh+B9F8k7r//tDAuWd16C990k73z+tzM8WN75CN73kLzz+9/OiGB55yd4FyB5F/S/nZHB8i5I8C5E8i7sfzujguVdmOBdhORd1P92RgfLuyjB+16SdzH/2xkTLO9iBO/iJO8S/rczNljeJQjeJUnepfxvZ1ywvEsRvEuTvMv43874YHmXIXiXJXmX87+dCcHyLkfwLk/yruB/OxOD5V2B4F2R5F3J/3YmBcu7EsH7PpJ3Zf/bmRws78oE7/tJ3lX8b+eBYHlXIXhXJXlX87+dqGB5VyN4Vyd51/C/nQeD5V2D4F2T5F3L/3amBMu7FsG7Nsm7jv/tPBQs7zoE77ok73r+tzM1WN71CN71Sd4N/G/n4WB5NyB4NyR5N/K/nWnB8m5E8G5M8m7ifzuPBMu7CcG7Kcm7mf/tTA+WdzOCd3OSdwv/23k0WN4tCN4tSd6t/G9nRrC8WxG8W5O82/jfzmPB8m5D8G5L8m7nfzszg+XdjuDdnuTdwf92Hg+WdweCd0eSdyf/25kVLO9OBO/OJO8u/rczO1jeXQjeXUne3fxvZ06wvLsRvLuTvHv4387cYHn3IHj3JHn38r+decHy7kXw7k3y7uN/O08Ey7sPwbsvybuf/+3MD5Z3P4J3f5L3AP/bWRAs7wEE74Ek70H+t7MwWN6DCN6DSd5D/G/nyWB5DyF4DyV5D/O/naeC5T2M4D2c5D3C/3YWBct7BMF7JMl7lP/tPB0s71EE79Ek7zH+t7M4WN5jCN5jSd7j/G/nmWB5jyN4jyd5T/C/nSXB8p5A8J5I8p7kfzvPBst7EsF7ssU2wkzLYFp0zH9XC/e8GqbVMq2OafVMa2BaI9OamNbMtBamtTKtjWntTOtgWifTupjWzbQepvUyrY9p/UwbYNog04aYNsy0EaaNMm2MaeNMm2DaJNMeMO1B0x4y7WHTHjHtUdMeM+1x02abNte0J0xbYNqTpj1l2tOmPWPas6Y9Z9rzpr1g2oumvWTay6a9Ytqrpr1m2uumvWHam6ZtNO0t09427R3T3jXtPdPeN+0D0z407SPTPjbtE9Ow1jzWP8ea3FgnGmsXYz1drPGKdUexFibWZ8SagVjHDmurYb0vrEGFdZGwVg/Wj8GaJlhnA2s/YD0CZOQjtx1Z4si3RuYycoCRTYu8VGR4IlcSWYfI30MmHHLKkJ2FPCdkDCH3BlksyAdBZgVyFDC3H/PNMQca83IxVxTzFzGnDvO8MPcI82EwRwPzBjCWHeOrMeYX41AxNhLj9TCGDOOaMNYG4z8wJgHXyXHtFtcTcY0L111wLQDnp3HOFOfxcG4J5zvwHRzfC/FdBZ+f8ZkOnzPw3ofjMY4R2G9jb6GW+3wR80eRcP/HCty3arj9dqpabOMBi9ch+pEhkd8HPH/9SvhDwNfDvJAqhPUIbBwc/v0UeC5L2D+XoTb7SxTvufz7ZusclSL5t/HgTT6XSTnj/ahYzN/xH5fUZsIs7lvMoj9TBJ73ioTX8EMCDtUJDlMFHGoSHB4WcKhNcJgm4FCX4PCIgEN9gsN0AYeGBIdHBRwaExxmCDg0JTg8JuDQnOAwU8ChJcHhcQGH1gSHWQIObQkOswUc2hMc5gg4dCQ4zBVw6ExwmCfg0JXg8ISAQ3eCw3wBh54EhwUCDr0JDgsFHPoSHJ4UcOhPcHhKwGEgwWGRgMNggsPTAg5DCQ6LBRyGExyeEXAYSXBYIuAwmuDwrIDDWIJDtIDDeILDcwIOEwkOSwUcJhMcnlcY90JwWCbgMIXg8IKAw1SCw3IBh2kEhxcFHKYTHFYIOMwgOLwk4DCT4LBSwGEWweFlAYc5BIdVAg7zCA6vCDjMJzisFnBYSHB4VcBhV1jyb2ONgMMiwv7wmoDDYoLDWgGHJQSH1wUcogkO6wQclhIc3hBwWEZwWC/gsJzg8KaAwwqCwwYBh5UEh40CDqsIDpsEHFYTHN4ScFhDcNgs4LCW4PC2gMM6gsMWAYf1BId3BBw2EBy2CjhsIji8K+CwmeCwTcBhC8HhPQGHrQSH7QIO2wgO7ws4bCc47BBw2EFw+EDAYSfBYafCdRyCw4cCDrsJDrsEHPYQHD4ScNhLcNgt4LCP4PCxgMN+gsMeAYcDBIdPBBwOEhz2CjgcIjh8KuBwmOCwT8DhCMHhMwGHowSH/QIOxwkOnws4nCA4HBBwOElw+ELA4RTB4aCAw2mCw5cCDmcIDocEHM4SHL4ScDhHcDgs4HCe4PC1gMMFgsMRAYdLBIdvBBwuExyOCjhcITgcE3C4SnA4LuBwjeDwrYCDR1j35ISAQyjB4TsBh3CCw0kBh5QEh+8FHFITHE4JOEQQHH4QcEhHcDgt4JCe4PCjgEMkweGMgEMmgsNPAg5ZCA5nBRyyEhx+FnDITnA4J+CQg+Dwi4BDToLDeQGH3ASHXwUcAgSHCwIOeQgOFwUc8hIcLgk45CM4/CbgkJ/gcFnAoSDB4XcBh8IEhysCDkUJDn8IOBQjOFwVcChBcPhTwKEUweGagEMZgsN1AYdyBAcv5b/foQLBIUTAoRLBIVTAoTLBIUzAoQrBIVzAoRrBIYWAQw2CQ0oBh1oEh1QCDnUIDqkFHOoRHNIIODQgOEQIODQiOKQVcGhCcEgn4NCM4HCLgEMLgkN6AYdWBIcMAg5tCA6RAg7tCA4ZBRw6EBwyCTh0IjhkFnDoQnDIIuDQjeBwq4BDD4JDVgGHXgSHbAIOfQgO2QUc+hEcbhNwGEBwyCHgMIjgcLuAwxCCQ04Bh2EEh1wCDiMIDrkFHEYRHO4QcBhDcAgIOIwjONwp4DCB4JBHwGESweEuC4cw0yJNi47574dM/6aa9rBp00x7xLTppj1q2gzTHjNtpmmPmzbLtNmmzTFtrmnzTHvCtPmmLTBtoWlPmvaUaYtMe9q0xaY9Y9oS0541Ldq050xbatrzpi0z7QXTlpv2omkrTMP69FibHeuSY01urEeNtZixDjHW4MX6s1h7FeuOYs1NrDeJtRaxziDW2MP6clhbDeuKYU0trCeFtZSwjhDW0MH6MVg7BeuGYM0MrBeBtRKwTgAy8pEPj2x05IIjExt50MhCRg4wMnCR/4rsU+R+IvMSeY/IOkTOHzLukO+GbDPkeiHTCnlOyDJCjg8ybJDfguwS5HYgswJ5DcgqwDx9zFHH/GzMTca8XMxJxXxMzEXEPDzMQcP8K8w9wrwbzDnBfAvMNcA4e4wxx/hqjC3GuFqMKcV4SowlxDg6jCHD+CmMHcK4GYwZwXgJjBXAdXJcI8b1UVwbxHUxXBPC9RBcC8B5cJwDxvlPnPvDeS+c88H5DnzXx/dcfMfD9xt8tsfnWnymw+cZvJffeB8zDccvvHax38beQhPs88V6NBp2rHh0gQ1Naq6PimrTMX/JU3XGbhwyp/qxi/POmf9fJNzzHvT/2grB/aek+N/tJPW4+NtIqk95LY9HkYn8PuD561fCHwK+HuaFRKVI/uORjYPDv58Cz2WJcOvnMqxIuP/n8m7ec/n3zdb57pTJv418Ag4VCRlL9wg4VCc45BdwqElwKCDgUJvgUFDAoS7BoZCAQ32CQ2EBh4YEhyICDo0JDkUFHJoSHO4VcGhOcCgm4NCS4FBcwKE1waGEgENbgkNJAYf2BIdSAg4dCQ6lBRw6ExzKCDh0JTiUFXDoTnAoJ+DQk+BQXsChN8GhgoBDX4JDRQGH/gSHSgIOAwkO9wk4DCY4VBZwGEpwuF/AYTjBoYqAw0iCQ1UBh9EEh2oCDmMJDtUFHMYTHGoIOEwkONQUcJhMcKgl4BBFcKgt4DCF4FBHwGEqwaGugMM0gkM9AYfpBIf6Ag4zCA4NBBxmEhwaCjjMIjg0EnCYQ3BoLOAwj+DQRMBhPsGhqYDDQoJDMwGHXWHJv43mAg6LCPtDCwGHxQSHlgIOSwgOrQQcogkOrQUclhIc2gg4LCM4tBVwWE5waCfgsILg0F7AYSXBoYOAwyqCQ0cBh9UEh04CDmsIDp0FHNYSHLoIOKwjOHQVcFhPcOgm4LCB4NBdwGETwaGHgMNmgkNPAYctBIdeAg5bCQ69BRy2ERz6CDhsJzj0FXDYQXDoJ+Cwk+DQX+E6DsFhgIDDboLDQAGHPQSHQQIOewkOgwUc9hEchgg47Cc4DBVwOEBwGCbgcJDgMFzA4RDBYYSAw2GCw0gBhyMEh1ECDkcJDqMFHI4THMYIOJwgOIwVcDhJcBgn4HCK4DBewOE0wWGCgMMZgsNEAYezBIdJAg7nCA6TBRzOExweEHC4QHCIEnC4RHB4UMDhMsFhioDDFYLDQwIOVwkOUwUcrhEcHhZw8AhrukwTcAglODwi4BBOcJgu4JCS4PCogENqgsMMAYcIgsNjAg7pCA4zBRzSExweF3CIJDjMEnDIRHCYLeCQheAwR8AhK8FhroBDdoLDPAGHHASHJwQcchIc5gs45CY4LBBwCBAcFgo45CE4PCngkJfg8JSAQz6CwyIBh/wEh6cFHAoSHBYLOBQmODwj4FCU4LBEwKEYweFZAYcSBIdoAYdSBIfnBBzKEByWCjiUIzg8L+BQgeCwTMChEsHhBQGHygSH5QIOVQgOLwo4VCM4rBBwqEFweEnAoRbBYaWAQx2Cw8sCDvUIDqsEHBoQHF4RcGhEcFgt4NCE4PCqgEMzgsMaAYcWBIfXBBxaERzWCji0ITi8LuDQjuCwTsChA8HhDQGHTgSH9QIOXQgObwo4dCM4bBBw6EFw2Cjg0IvgsEnAoQ/B4S0Bh34Eh80CDgMIDm8LOAwiOGwRcBhCcHhHwGEYwWGrgMMIgsO7Ag6jCA7bBBzGEBzeE3AYR3DYLuAwgeDwvoDDJILDDguHMNMymhYd89/3mMfmN62AaQVNK2RaYdOKmFbUtHtNK2ZacdNKmFbStFKmlTatjGllTStnWnnTKphW0bRKpt1nWmXT7jetimlVTatmWnXTaphW07RaptU2rY5pdU2rZ1p907A+PdZmx7rkWJMb61FjLWasQ4w1eLH+LNZexbqjWHMT601irUWsM4g19rC+HNZWw7piWFML60lhLSWsI4Q1dLB+DNZOwbohWDMD60VgrQSsE4CMfOTDIxsdueDIxEYeNLKQkQOMDFzkvyL7FLmfyLxE3iOyDpHzh4w75Lsh2wy5Xsi0Qp4TsoyQ44MMG+S3ILsEuR3IrEBeA7IKME8fc9QxPxtzkzEvF3NSMR8TcxExDw9z0DD/CnOPMO8Gc04w3wJzDTDOHmPMMb4aY4sxrhZjSjGeEmMJMY4OY8gwfgpjhzBuBmNGMF4CYwVwnRzXiHF9FNcGcV0M14RwPQTXAnAeHOeAcf4T5/5w3gvnfHC+A9/18T0X3/Hw/Qaf7fG5Fp/p8HkG7+V4H8MxHMcvvHax38beQi33+ULmjyLxslWK9Wg07Fjx6AIbmtRcHxXVpmP+kqfqjN04ZE71YxfnnYu5b76U9tvBY/xu44OUdsejjIn8PuD561fCHwK+HuaF3J0y+Y9HH1huw/LfT4HnskS49XMZbrO/7OQ9l3/fbJ13Ep7LDwUcKhIylnYJOFQnOHwk4FCT4LBbwKE2weFjAYe6BIc9Ag71CQ6fCDg0JDjsFXBoTHD4VMChKcFhn4BDc4LDZwIOLQkO+wUcWhMcPhdwaEtwOCDg0J7g8IWAQ0eCw0EBh84Ehy8FHLoSHA4JOHQnOHwl4NCT4HBYwKE3weFrAYe+BIcjAg79CQ7fCDgMJDgcFXAYTHA4JuAwlOBwXMBhOMHhWwGHkQSHEwIOowkO3wk4jCU4nBRwGE9w+F7AYSLB4ZSAw2SCww8CDlEEh9MCDlMIDj8KOEwlOJwRcJhGcPhJwGE6weGsgMMMgsPPAg4zCQ7nBBxmERx+EXCYQ3A4L+Awj+Dwq4DDfILDBQGHhQSHiwIOu8KSfxuXBBwWEfaH3wQcFhMcLgs4LCE4/C7gEE1wuCLgsJTg8IeAwzKCw1UBh+UEhz8FHFYQHK4JOKwkOFwXcFhFcPBS/fsdVhMcQgQc1hAcQgUc1hIcwgQc1hEcwgUc1hMcUgg4bCA4pBRw2ERwSCXgsJngkFrAYQvBIY2Aw1aCQ4SAwzaCQ1oBh+0Eh3QCDjsIDrcIOOwkOKQXcNhFcMgg4LCb4BAp4LCH4JBRwGEvwSGTgMM+gkNmAYf9BIcsAg4HCA63CjgcJDhkFXA4RHDIJuBwmOCQXcDhCMHhNgGHowSHHAIOxwkOtws4nCA45BRwOElwyCXgcIrgkFvA4TTB4Q4BhzMEh4CAw1mCw50CDucIDnkEHM4THO4ScLhAcMgr4HCJ4HC3gMNlgkM+AYcrBId7BByuEhzyCzhcIzgUEHDwCGtMFRRwCCU4FBJwCCc4FBZwSElwKCLgkJrgUFTAIYLgcK+AQzqCQzEBh/QEh+ICDpEEhxICDpkIDiUFHLIQHEoJOGQlOJQWcMhOcCgj4JCD4FBWwCEnwaGcgENugkN5AYcAwaGCgEMegkNFAYe8BIdKAg75CA73CTjkJzhUFnAoSHC4X8ChMMGhioBDUYJDVQGHYgSHagIOJQgO1QUcShEcagg4lCE41BRwKEdwqCXgUIHgUFvAoRLBoY6AQ2WCQ10BhyoEh3oCDtUIDvUFHGoQHBoIONQiODQUcKhDcGgk4FCP4NBYwKEBwaGJgEMjgkNTAYcmBIdmAg7NCA7NBRxaEBxaCDi0Iji0FHBoQ3BoJeDQjuDQWsChA8GhjYBDJ4JDWwGHLgSHdgIO3QgO7QUcehAcOgg49CI4dBRw6ENw6CTg0I/g0FnAYQDBoYuAwyCCQ1cBhyEEh24CDsMIDt0FHEYQHHoIOIwiOPQUcBhDcOgl4DCO4NBbwGECwaGPgMMkgkNfC4cw0zKZFh3z37tSet5Hpu027WPT9pj2iWl7TfvUtH2mfWbaftM+N+2AaV+YdtC0L007ZNpXph027WvTjpj2jWlHTTtm2nHTvjXthGnfmXbStO9NO2XaD6adNu1H086Y9pNpZ03D+vRYmx3rkmNNbqxHjbWYsQ4x1uDF+rNYexXrjmLNTaw3ibUWsc4g1tjD+nJYWw3rimFNLawnhbWUsI4Q1tDB+jFYOwXrhmDNDKwXgbUSsE4AMvKRD49sdOSCIxMbedDIQkYOMDJwkf+K7FPkfiLzEnmPyDpEzh8y7m7ku5mGXC9kWiHPCVlGyPFBhg3yW5BdgtwOZFYgrwFZBZinjznqmJ+NucmYl4s5qZiPibmImIeHOWiYf4W5R5h3gzknmG+BuQYYZ48x5hhfjbHFGFeLMaUYT4mxhBhHhzFkGD+FsUMYN4MxIxgvgbECuE6Oa8S4Poprg7guhmtCuB6CawE4D45zwDj/iXN/OO+Fcz4434Hv+viei+94+H6Dz/b4XIvPdPg8g/dyvI/hGI7jF1672G9jb6GW+3yRcGMUL1ulWI9Gw44Vjy6woUnN9VFRbTrmL3mqztiNQ+ZUP3Zx3jnz/3H/D1Pab+fDlP630c/yeJQpkd8HPH/9SvhDwNfDvJCdKZP/eER0iNuo3eNCKhJyefoLOFQnOAwQcKhJcBgo4FCb4DBIwKEuwWGwgEN9gsMQAYeGBIehAg6NCQ7DBByaEhyGCzg0JziMEHBoSXAYKeDQmuAwSsChLcFhtIBDe4LDGAGHjgSHsQIOnQkO4wQcuhIcxgs4dCc4TBBw6ElwmCjg0JvgMEnAoS/BYbKAQ3+CwwMCDgMJDlECDoMJDg8KOAwlOEwRcBhOcHhIwGEkwWGqgMNogsPDAg5jCQ7TBBzGExweEXCYSHCYLuAwmeDwqIBDFMFhhoDDFILDYwIOUwkOMwUcphEcHhdwmE5wmCXgMIPgMFvAYSbBYY6AwyyCw1wBhzkEh3kCDvMIDk8IOMwnOMwXcFhIcFgg4LArjGAt4LCIsD88KeCwmODwlIDDEoLDIgGHaILD0wIOSwkOiwUclhEcnhFwWE5wWCLgsILg8KyAw0qCQ7SAwyqCw3MCDqsJDksFHNYQHJ4XcFhLcFgm4LCO4PCCgMN6gsNyAYcNBIcXBRw2ERxWCDhsJji8JOCwheCwUsBhK8HhZQGHbQSHVQIO2wkOrwg47CA4rBZw2ElweFXhOg7BYY2Aw26Cw2sCDnsIDmsFHPYSHF4XcNhHcFgn4LCf4PCGgMMBgsN6AYeDBIc3BRwOERw2CDgcJjhsFHA4QnDYJOBwlODwloDDcYLDZgGHEwSHtwUcThIctgg4nCI4vCPgcJrgsFXA4QzB4V0Bh7MEh20CDucIDu8JOJwnOGwXcLhAcHhfwOESwWGHgMNlgsMHAg5XCA47BRyuEhw+FHC4RnDYJeDgEdYl+kjAIZTgsFvAIZzg8LGAQ0qCwx4Bh9QEh08EHCIIDnsFHNIRHD4VcEhPcNgn4BBJcPhMwCETwWG/gEMWgsPnAg5ZCQ4HBByyExy+EHDIQXA4KOCQk+DwpYBDboLDIQGHAMHhKwGHPASHwwIOeQkOXws45CM4HBFwyE9w+EbAoSDB4aiAQ2GCwzEBh6IEh+MCDsUIDt8KOJQgOJwQcChFcPhOwKEMweGkgEM5gsP3Ag4VCA6nBBwqERx+EHCoTHA4LeBQheDwo4BDNYLDGQGHGgSHnwQcahEczgo41CE4/CzgUI/gcE7AoQHB4RcBh0YEh/MCDk0IDr8KODQjOFwQcGhBcLgo4NCK4HBJwKENweE3AYd2BIfLAg4dCA6/Czh0IjhcEXDoQnD4Q8ChG8HhqoBDD4LDnwIOvQgO1wQc+hAcrgs49CM4eKn//Q4DCA4hAg6DCA6hAg5DCA5hAg7DCA7hAg4jCA4pBBxGERxSCjiMITikEnAYR3BILeAwgeCQRsBhEsEhIrXdNmz//SLhnlci/H8fV6xHo2HHikcX2NCk5vqoqDYd85c8VWfsxiFzqh+7OO+c+f9lcyVvv+6N6VeoZb/S+vcKSe4aipo/CpkawhI8Lqkailrct1C4//ums7D5+w/P4jmL2YZn9zjPlHDjeU6R2D9q2Ycinmf9mnTZTmGPs51Cnt12Er5ekvr38fovGm73uiwWHveLgGd/szWYYnGcDY338y0x+2L61HHbtN64xYvmxr8dFvP3LTGPC/fidvCEnQx4vm43nqTilk9Sccsn6fr165cT+33AS3p7+CN+fRli4CNTe/9EyRDzTMT/XWQ8YJd3r+IO717lCe9eLv2qYNmv2Fu4/+3MNdsJyZDaf58iLd41LFxD/NYau2PaWuKFm8Hh3SixbSV1d9z/DofnO2Myf7q7x7FfmZK5X/kc+5U5mfuVO9ytX1mSuV93e279ujWZ+4U+3enQr6zJ3K+sjs9jNoJXwKFf2S36hffVzKZViflvHGPwesZrB/sp9gn4o1b8uxXD/7/dEvOxsb/Nv31qi/e/1BWS+TMI3v9uS22/r+WwPPOSOZHfBzy7m21tOVIn/zZut3zNZfH+e80lfM3ZftHBc5TO4rMp7ovnyXY7t1tsI6fl6yFLIr8PeP76lfCHgK+HcV4POR22gZvt8TZX8I+3IX//4dkdb3M5HG9z8/avuM7aPS4kN2H/ukPAAcc2n/d13kZAwKE6weFOAYeaBIc8Ag61CQ53CTjUJTjkFXCoT3C4W8ChIcEhn4BDY4LDPQIOTQkO+QUcmhMcCgg4tCQ4FBRwaE1wKCTg0JbgUFjAoT3BoYiAQ0eCQ1EBh84Eh3sFHLoSHIoJOHQnOBQXcOhJcCgh4NCb4FBSwKEvwaGUgEN/gkNpAYeBBIcyAg6DCQ5lBRyGEhzKCTgMJziUF3AYSXCoIOAwmuBQUcBhLMGhkoDDeILDfQIOEwkOlQUcJhMc7hdwiCI4VBFwmEJwqCrgMJXgUE3AYRrBobqAw3SCQw0BhxkEh5oCDjMJDrUEHGYRHGoLOMwhONQRcJhHcKgr4DCf4FBPwGEhwaG+gMOusOTfRgMBh0WE/aGhgMNigkMjAYclBIfGAg7RBIcmAg5LCQ5NBRyWERyaCTgsJzg0F3BYQXBoIeCwkuDQUsBhFcGhlYDDaoJDawGHNQSHNgIOawkObQUc1hEc2gk4rCc4tBdw2EBw6CDgsIng0FHAYTPBoZOAwxaCQ2fLvJ1bvbi8HWQmIC8Ac+UxTxxzpDE/GHNjMS8UcyIxHxBz4TAPDHOgMP8Hc18w7wNzHjDeH2PdMc4bY5wxvhdjWzGuE2MaMZ4PY9kwjgtjmDB+B2NXMG4DYxZwvR7XqnGdFtcocX0O16ZwXQbXJHA+HueicR4W5yBx/g3nnnDeBecc8H0b3zXxPQvfMfD5Gp8t8bkKnynwfor3EhxHcQzB6wf7Dtxib9bBop593g5yOmy3c4fFNrpYvh5uTeT3Ac9fvxL+EPD1ME4eSheHbeBmm7fT1f92kitv58buZOuDfRF9T/i4pOrtxtu/4jpr97iQboT9q7uAAyNvp4eAAyNvp6eAAyNvp5eAAyNvp7eAAyNvp4+AAyNvp6+AAyNvp5+AAyNvp7+AAyNvZ4CAAyNvZ6CAAyNvZ5CAAyNvZ7CAAyNvZ4iAAyNvZ6iAAyNvZ5iAAyNvZ7iAAyNvZ4SAAyNvZ6SAAyNvZ5SAAyNvZ7SAAyNvZ4yAAyNvZ6yAAyNvZ5yAAyNvZ7yAAyNvZ4KAAyNvZ6KAAyNvZ5KAAyNvZ7KAAyNv5wEBB0beTpSAAyNv50EBB0bezhQBB0bezkMCDoy8nakCDoy8nYcFHBh5O9MEHBh5O48IODDydqYLODDydh4VcGDk7cwQcGDk7Twm4MDI25kp4MDI23lcwIGRtzNLwIGRtzNbwIGRtzNHwIGRtzNXwIGRtzNPwIGRt/OEgAMjb2e+gAMjb2eBgAMjb2ehgAMjb+dJAQdG3s5TAg6MvJ1FAg6MvJ2nBRwYeTuLBRwYeTvPCDgw8naWCDgw8naeFXBg5O1ECzgw8naeE3Bg5O0sFXBg5O08b+GATJGsXlzeDjITkBeAufKYJ4450pgfjLmxmBeKOZGYD4i5cJgHhjlQmP+DuS+Y94E5Dxjvj7HuGOeNMc4Y34uxrRjXiTGNGM+HsWwYx4UxTBi/g7ErGLeBMQu4Xo9r1bhOi2uUuD6Ha1O4LoNrEjgfj3PROA+Lc5A4/4ZzTzjvgnMO+L6N75r4noXvGPh8jc+W+FyFzxR4P8V7CY6jOIbg9YN9B26xN9scnMKefd4Ocjpst9PdYhvLLF8PWRP5fcDz16+EPwR8PYyTh7LMYRu42ebtvOB/O8mVt3Ojy7Y+2BfR94SPS6re5bz9K66zdo8LWU7Yv14UcGDk7awQcGDk7bwk4MDI21kp4MDI23lZwIGRt7NKwIGRt/OKgAMjb2e1gAMjb+dVAQdG3s4aAQdG3s5rAg6MvJ21Ag6MvJ3XBRwYeTvrBBwYeTtvCDgw8nbWCzgw8nbeFHBg5O1sEHBg5O1sFHBg5O1sEnBg5O28JeDAyNvZLODAyNt5W8CBkbezRcCBkbfzjoADI29nq4ADI2/nXQEHRt7ONgEHRt7OewIOjLyd7QIOjLyd9wUcGHk7OwQcGHk7Hwg4MPJ2dgo4MPJ2PhRwYOTt7BJwYOTtfCTgwMjb2S3gwMjb+VjAgZG3s0fAgZG384mAAyNvZ6+AAyNv51MBB0bezj4BB0bezmcCDoy8nf0CDoy8nc8FHBh5OwcEHBh5O18IODDydg4KODDydr4UcGDk7RxSmJ9FcPhKwIGRt3NYwIGRt/O1gAMjb+eIgAMjb+cbAQdG3s5RAQdG3s4xAQdG3s5xAQdG3s63Ag6MvJ0TAg6MvJ3vBBwYeTsnBRwYeTvfWzggoCObF5e3g8wE5AVgrjzmiWOONOYHY24s5oViTiTmA2IuHOaBYQ4U5v9g7gvmfWDOA8b7Y6w7xnljjDPG92JsK8Z1YkwjxvNhLBvGcWEME8bvYOwKxm1gzAKu1+NaNa7T4holrs/h2hSuy+CaBM7H41w0zsPiHCTOv+HcE8674JwDvm/juya+Z+E7Bj5f47MlPlfhMwXeT/FeguMojiF4/WDfgVvszTYHZ0oK+7wd5HTYbudFi22csnw9ZEvk9wHPX78S/hDw9TBOHsoph23gZpu384P/7SRX3k44/rD1wb6Ivid8XFL1nubtX3GdtXtcyGnC/vWjgAMjb+eMgAMjb+cnAQdG3s5ZAQdG3s7PAg6MvJ1zAg6MvJ1fBBwYeTvnBRwYeTu/Cjgw8nYuCDgw8nYuCjgw8nYuCTgw8nZ+E3Bg5O1cFnBg5O38LuDAyNu5IuDAyNv5Q8CBkbdzVcCBkbfzp4ADI2/nmoADI2/nuoADI2/HS/Pvd2Dk7YQIODDydkIFHBh5O2ECDoy8nXABB0beTgoBB0beTkoBB0beTioBB0beTmoBB0beThoBB0beToSAAyNvJ62AAyNvJ52AAyNv5xYBB0beTnoBB0beTgYBB0beTqSAAyNvJ6OAAyNvJ5OAAyNvJ7OAAyNvJ4uAAyNv51YBB0beTlYBB0beTjYBB0beTnYBB0bezm0CDoy8nRwCDoy8ndsFHBh5OzkFHBh5O7kEHBh5O7kFHBh5O3cIODDydgICDoy8nTsFHBh5O3kEHBh5O3cJODDydvIKODDydu4WcGDk7eQTcGDk7dwj4MDI28kv4MDI2ykg4MDI2yko4MDI2ylk4YBMkexeXN4OMhOQF4C58pgnjjnSmB+MubGYF4o5kZgPiLlwmAeGOVCY/4O5L5j3gTkPGO+Pse4Y540xzhjfi7GtGNeJMY0Yz4exbBjHhTFMGL+DsSsYt4ExC7hej2vVuE6La5S4PodrU7gug2sSOB+Pc9E4D4tzkDj/hnNPOO+Ccw74vo3vmje+Z5mGz9f4bInPVfhMgfdTvJfgOIpjCF4/2HfgFnuzzcEp5Nnn7fzokLfzo8U2Clu+HrIn8vuA569fCX8I+HoYJw/FxiH+zTZvp4j/7SRX3k4K/GHrg30RfU/4uKTqLcrbv+I6a/e4kKJpkn8b9wo4MPJ2igk4MPJ2igs4MPJ2Sgg4MPJ2Sgo4MPJ2Sgk4MPJ2Sgs4MPJ2ygg4MPJ2ygo4MPJ2ygk4MPJ2ygs4MPJ2Kgg4MPJ2Kgo4MPJ2Kgk4MPJ27hNwYOTtVBZwYOTt3C/gwMjbqSLgwMjbqSrgwMjbqSbgwMjbqS7gwMjbqSHgwMjbqSngwMjbqSXgwMjbqS3gwMjbqSPgwMjbqSvgwMjbqSfgwMjbqS/gwMjbaSDgwMjbaSjgwMjbaSTgwMjbaSzgwMjbaSLgwMjbaSrgwMjbaSbgwMjbaS7gwMjbaSHgwMjbaSngwMjbaSXgwMjbaS3gwMjbaSPgwMjbaSvgwMjbaSfgwMjbaS/gwMjb6SDgwMjb6SjgwMjb6STgwMjb6SzgwMjb6SLgwMjb6SrgwMjb6SbgwMjb6S7gwMjb6SHgwMjb6SngwMjb6SXgwMjb6S3gwMjb6SPgwMjb6SvgwMjb6SfgwMjb6S/gwMjbGSDgwMjbGSjgwMjbGSTgwMjbGWyZt3ObF5e3g8wE5AVgrjzmiWOONOYHY24s5oViTiTmA2IuHOaBYQ4U5v9g7gvmfWDOA8b7Y6w7xnljjDPG92JsK8Z1YkwjxvNhLBvGcWEME8bvYOwKxm1gzAKu1+NaNa7T4holrs/h2hSuy+CaBM7H41w0zsPiHCTOv+HcE8674JwDvm/juya+Z+E7Bj5f47MlPlfhMwXeT/FeguMojiF4/WDfgVvszTYHB5kl6S3zdpDTYbud+NkeSW1jiOXr4bZEfh/w/PUr4Q8BXw/j5KEMcdgGbrZ5O0P9bye58nZS4g9bH+yL6HvCxyVV7zDe/hXXWbvHhQwj7F/DLbdh+5ovYt4zioZbHCPMfYuF2z+fIwSeT0Zu0EgBB0Zu0CgBB0Zu0GgBB0Zu0BgBB0Zu0FgBB0Zu0DgBB0Zu0HgBB0Zu0AQBB0Zu0EQBB0Zu0CQBB0Zu0GQBB0Zu0AMCDozcoCgBB0Zu0IMCDozcoCkCDozcoIcEHBi5QVMFHBi5QQ8LODByg6YJODBygx4RcGDkBk0XcGDkBj0q4MDIDZoh4MDIDXpMwIGRGzRTwIGRG/S4gAMjN2iWgAMjN2i2gAMjN2iOgAMjN2iugAMjN2iegAMjN+gJAQdGbtB8AQdGbtACAQdGbtBCAQdGbtCTAg6M3KCnBBwYuUGLBBwYuUFPCzgwcoMWCzgwcoOeEXBg5AYtEXBg5AY9K+DAyA2KFnBg5AY9J+DAyA1aKuDAyA16XsCBkRu0TMCBkRv0goADIzdouYADIzfoRQEHRm7QCgEHRm7QSwIOjNyglQIOjNyglwUcGLlBqwQcGLlBrwg4MHKDVgs4MHKDXhVwYOQGrRFwYOQGvSbgwMgNWivgwMgNel3AgZEbtM7CAdkoOby43CBkJiAvAHPlMU8cc6QxPxhzYzEvFHMiMR8Qc+EwDwxzoDD/B3NfMO8Dcx4w3h9j3THOG2OcMb4XY1sxrhNjGjGeD2PZMI4LY5gwfgdjVzBuA2MWcL0e16pxnRbXKHF9DtemcF0G1yRwPh7nonEeFucgcf4N555w3gXnHPB9G9818T0L3zHw+RqfLfG5Cp8p8H6K9xIcR3EMwesH+w7cYm8Jsz385ABZ5IfcyGpBTkfC7ST1uPjbSKpPb6Sxez3kSOT3Ac9fvxL+EPD1ME6uyxsO28DNNjdovf/tJFduUCr8YeuDfRF9T/i4pOp9k7d/xXXW7nEhbxL2rw0CDoy8nY0CDoy8nU0CDoy8nbcEHBh5O5sFHBh5O28LODDydrYIODDydt4RcGDk7WwVcGDk7bwr4MDI29km4MDI23lPwIGRt7NdwIGRt/O+gAMjb2eHgAMjb+cDAQdG3s5OAQdG3s6HAg6MvJ1dAg6MvJ2PBBwYeTu7BRwYeTsfCzgw8nb2CDgw8nY+EXBg5O3sFXBg5O18KuDAyNvZJ+DAyNv5TMCBkbezX8CBkbfzuYADI2/ngIADI2/nCwEHRt7OQQEHRt7OlwIOjLydQwIOjLydrwQcGHk7hwUcGHk7Xws4MPJ2jgg4MPJ2vhFwYOTtHBVwYOTtHBNwYOTtHBdwYOTtfCvgwMjbOSHgwMjb+U7AgZG3c1LAgZG3872AAyNv55SAAyNv5wcBB0bezmkBB0bezo8CDoy8nTMCDoy8nZ8EHBh5O2cFHBh5Oz8LODDyds4JODDydn4RcGDk7ZwXcGDk7fwq4MDI27kg4MDI27ko4MDI27kk4MDI2/lNwIGRt3PZwgGZIrd7cXk7yExAXgDmymOeOOZIY34w5sZiXijmRGI+IObCYR4Y5kBh/g/mvmDeB+Y8YLw/xrpjnDfGOGN8L8a2YlwnxjRiPB/GsmEcF8YwYfwOxq5g3AbGLOB6Pa5V4zotrlHi+hyuTeG6DK5J4Hw8zkXjPCzOQeL8G8494bwLzjng+za+a+J7Fr5j4PM1PlvicxU+U+D9FO8lOI7iGILXD/YduMXebHNwkFlyS+q4+/vJ50FOh+124md7JLWN3y1fD7cn8vuA569fCX8I+HoYJw/ld4dt4Gabt3PF/3ZCLPJ2QizydkL+/sOz23fR94SPS6rePyxc8W+Hxfyd2ONc8q383vdqGju/2Jvt8/9n8J//vx7g/bPfSd099tjlcsyLvW9SNtcc95XYx93k8ekf/7bF4yg5Rdd5x+m4jdo9jpJT5EX8+x0YOUUhAg6MnKJQAQdGTlGYgAMjpyhcwIGRU5RCwIGRU5RSwIGRU5RKwIGRU5RawIGRU5RGwIGRUxQh4MDIKUor4MDIKUon4MDIKbpFwIGRU5RewIGRU5RBwIGRUxQp4MDIKcoo4MDIKcok4MDIKcos4MDIKcoi4MDIKbpVwIGRU5RVwIGRU5RNwIGRU5RdwIGRU3SbgAMjpyiHgAMjp+h2AQdGTlFOAQdGTlEuAQdGTlFuAQdGTtEdAg6MnKKAgAMjp+hOAQdGTlEeAQdGTtFdAg6MnKK8Ag6MnKK7BRwYOUX5BBwYOUX3CDgwcoryCzgwcooKCDgwcooKCjgwcooKCTgwcooKCzgwcoqKCDgwcoqKCjgwcoruFXBg5BQVE3Bg5BQVF3Bg5BSVEHBg5BSVFHBg5BSVEnBg5BSVFnBg5BSVEXBg5BSVFXBg5BSVE3Bg5BSVF3Bg5BRVEHBg5BRVFHBg5BRVEnBg5BTdJ+DAyCmqHGG3Ddt/H/kUfzjkmjRM5rwN5JH8mcY+8+R+/14hyV3DvWb/SJv6fzNSknpckXD/9VaxqLesRb2mC3/ni/zPPxTzd8Dzt92S/u/7j+1VjbiJDeLBto+rFuEf3rVf1SLifhHw/N9cXtjXHF7YTZL5RTEizV9hQ7b9amrZr9ibbUBRdYsXlIVVSNObDKhKqt+lvL/2rYQHzKS2VcpiGzWS+c0I9jUi7GuvadEv/NuxB7bEHmf7hlPD4phRK8JuH4i92e7DtYO/D//1AO+f/U7q7jgu3B9h/xzUScY3fZfAL5s3ZdRcxWGfr2uxz+PNPCTm7//pQILtJtVfmzfzm9lOcY+zndo3eUxL6nkq4/31+rXdj8Is7lvGs7cKSfhDwNfDvJAayQxW2vvroGoLZnMgrmf54kELTWyjln30+6K9fv360cR+H/CS3gb+iN/X+jEfOBtEeP9896sfc9SJ/7sGiXTQ9utLXX9PxFzzRITUt3jSGlji2e542IHqO346t91Z8RWvfyq7r5Jlwh2+pkckfx0DLOso61BHI0IdAy3rKOdQR2NCHYMs6yjvUEcTQh2DLeuo4FBH02T+RoM6hqSy71czQr+GOvSrOaFfwxz61YLQr+EO/WpJ6NcIh361IvRrpEO/WhP6NcqhX20I/Rrt0K+2hH6NcehXO0K/xjr0qz2hX+Mc+tWB0K/xDv3qSOjXBId+dSL0a6JDvzoT+jXJoV9dCP2a7NCvroR+PeDQr26EfkU59Ks7oV8POvSrB6FfUxz61ZPQr4cc+tWL0K+pDv3qTejXww796kPo1zSHfvUl9OsRh371I/RrukO/+hP69ahDvwYQ+jXDoV8DCf16zKFfgwj9munQr8GEfj3u0K8hhH7NcujXUEK/Zjv0axihX3Mc+jWc0K+5Dv0aQejXPId+jST06wmHfo0i9Gu+Q79GE/q1wKFfYwj9WujQr7GEfj3p0K9xhH495dCv8YR+LXLo1wRCv5526NdEQr8WO/RrEqFfzzj0azKhX0sc+vUAoV/POvQritCvaId+PUjo13MO/ZpC6NdSh349ROjX8w79mkro1zKHfj1M6NcLDv2aRujXcod+PULo14sO/ZpO6NcKh349SujXSw79mkHo10qHfj1G6NfLDv2aSejXKod+PU7o1ysO/ZpF6Ndqh37NJvTrVYd+zSH0a41Dv+YS+vWaQ7/mEfq11qFfTxD69bpDv+YT+rXOoV8LCP16w6FfCwn9Wu/QrycJ/XrToV9PEfq1waFfiwj92ujQr6cJ/drk0K/FhH695dCvZwj92uzQryWEfr3t0K9nCf3a4tCvaEK/3nHo13OEfm116NdSQr/edejX84R+bXPo1zJCv95z6NcLhH5td+jXckK/3nfo14uEfu1w6NcKQr8+cOjXS4R+7XTo10pCvz506NfLhH7tcujXKkK/PnLo1yuEfu126NdqQr8+dujXq4R+7XHo1xpCvz5x6NdrhH7tdejXWkK/PnXo1+uEfu1z6Nc6Qr8+c+jXG4R+7Xfo13pCvz536NebhH4dcOjXBkK/vnDo10ZCvw469GsToV9fOvTrLUK/Djn0azOhX1859OttQr8OO/RrC6FfXzv06x1Cv4449GsroV/fOPTrXUK/jjr0axuhX8cc+vUeoV/HHfq1ndCvbx369T6hXycc+rWD0K/vHPr1AaFfJx36tZPQr+8d+vUhoV+nHPq1i9CvHxz69RGhX6cd+rWb0K8fHfr1MaFfZxz6tYfQr58c+vUJoV9nHfq1l9Cvnx369SmhX+cc+rWP0K9fHPr1GaFf5x36tZ/Qr18d+vU5oV8XHPp1gNCviw79+oLQr0sO/TpI6NdvDv36ktCvyw79OkTo1+8O/fqK0K8rDv06TOjXHw79+prQr6sO/TpC6NefDv36htCvaw79Okro13WHfh0j9MtLbd+v44R+hTj061tCv0Id+nWC0K8wh359R+hXuEO/ThL6lcKhX98T+pXSoV+nCP1K5dCvHwj9Su3Qr9OEfqVx6NePhH5FOPTrjEW/sB5CTtOiY/4bGfvIp0e2O3LRkSmO/G5kZSOXGhnQyFtGtjFyhJHZi3xcZNEi9xUZq8gzRXYocjqRiYn8SWQ9IlcRGYbIC0Q2H3LwkDmHfDdkqSG3DBlhyONC9hVyppDphPwkZBUhFwgZPMi7QbYMclyQmYJ8EmSBIHcDGRfIk0B2A3ISkEmA+f+Ya4957ZhDjvnamBuNeciY84v5tZjLinmjmKOJ+ZCYe4h5fphTh/lrmCuGeVmYA4X5Rpjbg3k0mLOC+SGYi4F5D5hjgPH8GDuPceoYE47x1xjrjHHFGMOL8bIYm4pxoBhzifGNGEuIcXsYI4fxaBj7hXFWGNOE8UMYq4NxMRiDgvEeGFuBcQwYM4Dr87gWjuvOuMaL66m4donrhLgmh+tfuNaE6zq4hoLrFbg2gPPwOOeN88s4l4vzpjhHifOBOPeG81w4p4TzNzhXgvMSOAeA79v4bovvkfjOhu9H+C6Cz/34jI3Ps/jsiM9p+EyEzx94r8f7Kt7D8H6BYzOOgzjm4PWN1xL2W8fXSgqsd4G1OmxfKz9F+H+thMa8VhLeAp7dzfY4YNNH122ctdyG7RoI6E/8hWqSel5iF86xfT5/jrA79uXy/jv2/Xfs+3cd+1xW7bN4/d5YXAqvE9vXcPxtJNWncxF2x9Vcifw+4PnrV8IfAr4exjmunrPchuv7XnIuMPYL77mM66Dd40J+ITyX5wUcKoYn/zZ+FXCoTnC4IOBQk+BwUcChNsHhkoBDXYLDbwIO9QkOlwUcGhIcfhdwaExwuCLg0JTg8IeAQ3OCw1UBh5YEhz8FHFoTHK4JOLQlOFwXcGhPcPDS/vsdOhIcQgQcOhMcQgUcuhIcwgQcuhMcwgUcehIcUgg49CY4pBRw6EtwSCXg0J/gkFrAYSDBIY2Aw2CCQ4SAw1CCQ1oBh+EEh3QCDiMJDrcIOIwmOKQXcBhLcMgg4DCe4BAp4DCR4JBRwGEywSGTgEMUwSGzgMMUgkMWAYepBIdbBRymERyyCjhMJzhkE3CYQXDILuAwk+Bwm4DDLIJDDgGHOQSH2wUc5hEccgo4zCc45BJwWEhwyC3gsCss+bdxh4DDIsL+EBBwWExwuFPAYQnBIY+AQzTB4S4Bh6UEh7wCDssIDncLOCwnOOQTcFhBcLhHwGElwSG/gMMqgkMBAYfVBIeCAg5rCA6FBBzWEhwKCzisIzgUEXBYT3AoKuCwgeBwr4DDJoJDMQGHzQSH4gIOWwgOJQQcthIcSgo4bCM4lBJw2E5wKC3gsIPgUEbAYSfBoazCdRyCQzkBh90Eh/ICDnsIDhUEHPYSHCoKOOwjOFQScNhPcLhPwOEAwaGygMNBgsP9Ag6HCA5VBBwOExyqCjgcIThUE3A4SnCoLuBwnOBQQ8DhBMGhpoDDSYJDLQGHUwSH2gIOpwkOdQQczhAc6go4nCU41BNwOEdwqC/gcJ7g0EDA4QLBoaGAwyWCQyMBh8sEh8YCDlcIDk0EHK4SHJoKOFwjODQTcPBSJP82mgs4hBIcWgg4hBMcWgo4pCQ4tBJwSE1waC3gEEFwaCPgkI7g0FbAIT3BoZ2AQyTBob2AQyaCQwcBhywEh44CDlkJDp0EHLITHDoLOOQgOHQRcMhJcOgq4JCb4NBNwCFAcOgu4JCH4NBDwCEvwaGngEM+gkMvAYf8BIfeAg4FCQ59BBwKExz6CjgUJTj0E3AoRnDoL+BQguAwQMChFMFhoIBDGYLDIAGHcgSHwQIOFQgOQwQcKhEchgo4VCY4DBNwqEJwGC7gUI3gMELAoQbBYaSAQy2CwygBhzoEh9ECDvUIDmMEHBoQHMYKODQiOIwTcGhCcBgv4NCM4DBBwKEFwWGigEMrgsMkAYc2BIfJAg7tCA4PCDh0IDhECTh0Ijg8KODQheAwRcChG8HhIQGHHgSHqQIOvQgODws49CE4TBNw6EdweETAYQDBYbqAwyCCw6MCDkMIDjMEHIYRHB4TcBhBcJgp4DCK4PC4gMMYgsMsAYdxBIfZAg4TCA5zBBwmERzmWjiEmZbbtOiY//41wvMumHbRtEum/WbaZdN+N+2KaX+YdtW0P027Ztp10zyzvRDTQk0LMy3ctBSmpTQtlWmpTUtjWoRpaU1LZ9otpqU3LYNpkaZlNC2TaZlNy2LaraZlNS2baVifHmuzY11yrMmN9aixFjPWIb6xBq9pWHsV645izU2sN4m1FrHOINbYw/pyWFsN64phTS2sJ4W1lLCOENbQwfoxWDsF64ZgzQysF4G1ErBOADLykQ+PbHTkgiMTG3nQyEJGDjAycJH/iuxT5H4i8xJ5j8g6RM4fMu6Q74ZsM+R6IdMKeU7IMkKODzJskN+C7BLkdiCzAnkNyCrAPH3MUcf8bMxNxrxczEnFfEzMRcQ8PMxBw/wrzD3CvBvMOcF8C8w1wDh7jDHH+GqMLca4WowpxXhKjCXEODqMIcP4KYwdwrgZjBnBeAmMFcB1clwjxvVRXBvEdTFcE8L1EFwLwHlwnAPG+U+c+8N5L5zzwfkOfNfH91x8x8P3G3y2x+dafKbD5xm8l+N9DMdwHL/w2sV+G3sLtdznS5o/akTE3b9Yj0bDjhWPLrChSc31UVFtOuYvearO2I1D5lQ/dnHeuZj7no+w3855i23MS2t3PMqdyO8Dnr9+Jfwh4OthXsgvEcl/PLJxcPj3U+C5rGv/XIba7C9P8J7Lv2+2zk+kTf5tzL/J5zIpZ7wflYn5O/7jktpMmMV9y1j0Z4HA816RkCm1UMChOsHhSQGHmgSHpwQcahMcFgk41CU4PC3gUJ/gsFjAoSHB4RkBh8YEhyUCDk0JDs8KODQnOEQLOLQkODwn4NCa4LBUwKEtweF5AYf2BIdlAg4dCQ4vCDh0JjgsF3DoSnB4UcChO8FhhYBDT4LDSwIOvQkOKwUc+hIcXhZw6E9wWCXgMJDg8IqAw2CCw2oBh6EEh1cFHIYTHNYIOIwkOLwm4DCa4LBWwGEsweF1AYfxBId1Ag4TCQ5vCDhMJjisF3CIIji8KeAwheCwQcBhKsFho4DDNILDJgGH6QSHtwQcZhAcNgs4zCQ4vC3gMIvgsEXAYQ7B4R0Bh3kEh60CDvMJDu8KOCwkOGwTcNgVlvzbeE/AYRFhf9gu4LCY4PC+gMMSgsMOAYdogsMHAg5LCQ47BRyWERw+FHBYTnDYJeCwguDwkYDDSoLDbgGHVQSHjwUcVhMc9gg4rCE4fCLgsJbgsFfAYR3B4VMBh/UEh30CDhsIDp8JOGwiOOwXcNhMcPhcwGELweGAgMNWgsMXAg7bCA4HBRy2Exy+FHDYQXA4JOCwk+DwlcJ1HILDYQGH3QSHrwUc9hAcjgg47CU4fCPgsI/gcFTAYT/B4ZiAwwGCw3EBh4MEh28FHA4RHE4IOBwmOHwn4HCE4HBSwOEoweF7AYfjBIdTAg4nCA4/CDicJDicFnA4RXD4UcDhNMHhjIDDGYLDTwIOZwkOZwUczhEcfhZwOE9wOCfgcIHg8IuAwyWCw3kBh8sEh18FHK4QHC4IOFwlOFwUcLhGcLgk4OAR1tT6TcAhlOBwWcAhnODwu4BDSoLDFQGH1ASHPwQcIggOVwUc0hEc/hRwSE9wuCbgEElwuC7gkIng4KX79ztkITiECDhkJTiECjhkJziECTjkIDiECzjkJDikEHDITXBIKeAQIDikEnDIQ3BILeCQl+CQRsAhH8EhQsAhP8EhrYBDQYJDOgGHwgSHWwQcihIc0gs4FCM4ZBBwKEFwiBRwKEVwyCjgUIbgkEnAoRzBIbOAQwWCQxYBh0oEh1sFHCoTHLIKOFQhOGQTcKhGcMgu4FCD4HCbgEMtgkMOAYc6BIfbBRzqERxyCjg0IDjkEnBoRHDILeDQhOBwh4BDM4JDQMChBcHhTgGHVgSHPAIObQgOdwk4tCM45BVw6EBwuFvAoRPBIZ+AQxeCwz0CDt0IDvkFHHoQHAoIOPQiOBQUcOhDcCgk4NCP4FBYwGEAwaGIgMMggkNRAYchBId7BRyGERyKCTiMIDgUF3AYRXAoIeAwhuBQUsBhHMGhlIDDBIJDaQGHSQSHMhYOYabdYVp0zH8vTOt5T5r2lGmLTHvatMWmPWPaEtOeNS3atOdMW2ra86YtM+0F05ab9qJpK0x7ybSVpr1s2irTXjFttWmvmrbGtNdMW2va66atM+0N09ab9qZpG0zbaNom094yDevTY212rEuONbmxHjXWYsY6xFiDF+vPYu1VrDuKNTex3iTWWsQ6g1hjD+vLYW01rCuGNbWwnhTWUsI6QlhDB+vHYO0UrBuCNTOwXgTWSsA6AcjIRz48stGRC45MbORBIwsZOcDIwEX+K7JPkfuJzEvkPSLrEDl/yLhDvhuyzZDrhUwr5Dkhywg5PsiwQX4LskuQ24HMCuQ1IKsA8/QxRx3zszE3GfNyMScV8zExFxHz8DAHDfOvMPcI824w5wTzLTDXAOPsMcYc46sxthjjajGmFOMpMZYQ4+gwhgzjpzB2CONmMGYE4yUwVgDXyXGNGNdHcW0Q18VuXBMyDdcCcB4c54Bx/hPn/nDeC+d8cL4D3/XxPRff8fD9Bp/t8bkWn+nweQbv5XgfwzEcxy+8drHfxt5CE+zzxXo0GnaseHSBDU1qro+KatMxf8lTdcZuHDKn+rGL886Z/18jwvPm+5+vG4L7L0j7v9tJ6nHxt5FUn8paHo/uSOT3Ac9fvxL+EPD1MC/kibTJfzyycXD491PguawbYf1chuFxsfdN6rksx3su/77ZOpdLl/zbKC/gUJGQsVRBwKE6waGigENNgkMlAYfaBIf7BBzqEhwqCzjUJzjcL+DQkOBQRcChMcGhqoBDU4JDNQGH5gSH6gIOLQkONQQcWhMcago4tCU41BJwaE9wqC3g0JHgUEfAoTPBoa6AQ1eCQz0Bh+4Eh/oCDj0JDg0EHHoTHBoKOPQlODQScOhPcGgs4DCQ4NBEwGEwwaGpgMNQgkMzAYfhBIfmAg4jCQ4tBBxGExxaCjiMJTi0EnAYT3BoLeAwkeDQRsBhMsGhrYBDFMGhnYDDFIJDewGHqQSHDgIO0wgOHQUcphMcOgk4zCA4dBZwmElw6CLgMIvg0FXAYQ7BoZuAwzyCQ3cBh/kEhx4CDgsJDj0FHHaFJf82egk4LCLsD70FHBYTHPoIOCwhOPQVcIgmOPQTcFhKcOgv4LCM4DBAwGE5wWGggMMKgsMgAYeVBIfBAg6rCA5DBBxWExyGCjisITgME3BYS3AYLuCwjuAwQsBhPcFhpIDDBoLDKAGHTQSH0QIOmwkOYwQcthAcxgo4bCU4jBNw2EZwGC/gsJ3gMEHAYQfBYaKAw06CwySF6zgEh8kCDrsJDg8IOOwhOEQJOOwlODwo4LCP4DBFwGE/weEhAYcDBIepAg4HCQ4PCzgcIjhME3A4THB4RMDhCMFhuoDDUYLDowIOxwkOMwQcThAcHhNwOElwmCngcIrg8LiAw2mCwywBhzMEh9kCDmcJDnMEHM4RHOYKOJwnOMwTcLhAcHhCwOESwWG+gMNlgsMCAYcrBIeFAg5XCQ5PCjhcIzg8JeDgEdaYWiTgEEpweFrAIZzgsFjAISXB4RkBh9QEhyUCDhEEh2cFHNIRHKIFHNITHJ4TcIgkOCwVcMhEcHhewCELwWGZgENWgsMLAg7ZCQ7LBRxyEBxeFHDISXBYIeCQm+DwkoBDgOCwUsAhD8HhZQGHvASHVQIO+QgOrwg45Cc4rBZwKEhweFXAoTDBYY2AQ1GCw2sCDsUIDmsFHEoQHF4XcChFcFgn4FCG4PCGgEM5gsN6AYcKBIc3BRwqERw2CDhUJjhsFHCoQnDYJOBQjeDwloBDDYLDZgGHWgSHtwUc6hActgg41CM4vCPg0IDgsFXAoRHB4V0BhyYEh20CDs0IDu8JOLQgOGwXcGhFcHhfwKENwWGHgEM7gsMHAg4dCA47BRw6ERw+FHDoQnDYJeDQjeDwkYBDD4LDbgGHXgSHjwUc+hAc9gg49CM4fCLgMIDgsFfAYRDB4VMBhyEEh30CDsMIDp8JOIwgOOwXcBhFcPhcwGEMweGAgMM4gsMXAg4TCA4HBRwmERy+tHAIi/l3o2P+u4J5bEXTKpl2n2mVTbvftCqmVTWtmmnVTathWk3TaplW27Q6ptU1rZ5p9U1rYFpD0xqZ1ti0JqY1Na2Zac1Na2FaS9NamdbatDamtTWtnWntTetgWkfTOpmG9emxNjvWJcea3FiPGmsxYx1irMGL9Wex9irWHcWam1hvEmstYp1BrLGH9eWwthrWFcOaWlhPCmspYR0hrKGD9WOwdgrWDcGaGVgvAmslYJ0AZOQjHx7Z6MgFRyY28qCRhYwcYGTgIv8V2afI/UTmJfIekXWInD9k3CHfDdlmyPVCphXynJBlhBwfZNggvwXZJcjtQGYF8hqQVYB5+pijjvnZmJuMebmYk4r5mJiLiHl4mIOG+VeYe4R5N5hzgvkWmGuAcfYYY47x1RhbjHG1GFOK8ZQYS4hxdBhDhvFTGDuEcTMYM4LxEhgrgOvkuEaM66O4NojrYrgmhOshuBaA8+A4B4zznzj3h/NeOOeD8x34ro/vufiOh+83+GyPz7X4TIfPM3gvx/sYjuE4fuG1i/029hZquc8XN3/UiIi7f7EejYYdKx5dYEOTmuujotp0zF/yVJ2xG4fMqX7s4rxzMfctn85+O3iM320cSmd3PErsvgHPX78S/hDw9TAvpFy65D8eHbLchuW/nwLPZd0I6+cy3GZ/+Yr3XP59s3X+ivBcHhZwqEjIWPpawKE6weGIgENNgsM3Ag61CQ5HBRzqEhyOCTjUJzgcF3BoSHD4VsChMcHhhIBDU4LDdwIOzQkOJwUcWhIcvhdwaE1wOCXg0Jbg8IOAQ3uCw2kBh44Ehx8FHDoTHM4IOHQlOPwk4NCd4HBWwKEnweFnAYfeBIdzAg59CQ6/CDj0JzicF3AYSHD4VcBhMMHhgoDDUILDRQGH4QSHSwIOIwkOvwk4jCY4XBZwGEtw+F3AYTzB4YqAw0SCwx8CDpMJDlcFHKIIDn8KOEwhOFwTcJhKcLgu4DCN4ODd8u93mE5wCBFwmEFwCBVwmElwCBNwmEVwCBdwmENwSCHgMI/gkFLAYT7BIZWAw0KCQ2oBh11hyb+NNAIOiwj7Q4SAw2KCQ1oBhyUEh3QCDtEEh1sEHJYSHNILOCwjOGQQcFhOcIgUcFhBcMgo4LCS4JBJwGEVwSGzgMNqgkMWAYc1BIdbBRzWEhyyCjisIzhkE3BYT3DILuCwgeBwm4DDJoJDDgGHzQSH2wUcthAccgo4bCU45BJw2EZwyC3gsJ3gcIeAww6CQ0DAYSfB4U6F6zgEhzwCDrsJDncJOOwhOOQVcNhLcLhbwGEfwSGfgMN+gsM9Ag4HCA75BRwOEhwKCDgcIjgUFHA4THAoJOBwhOBQWMDhKMGhiIDDcYJDUQGHEwSHewUcThIcigk4nCI4FBdwOE1wKCHgcIbgUFLA4SzBoZSAwzmCQ2kBh/MEhzICDhcIDmUFHC4RHMoJOFwmOJQXcLhCcKgg4HCV4FBRwOEawaGSgINHWGPqPgGHUIJDZQGHcILD/QIOKQkOVQQcUhMcqgo4RBAcqgk4pCM4VBdwSE9wqCHgEElwqCngkIngUEvAIQvBobaAQ1aCQx0Bh+wEh7oCDjkIDvUEHHISHOoLOOQmODQQcAgQHBoKOOQhODQScMhLcGgs4JCP4NBEwCE/waGpgENBgkMzAYfCBIfmAg5FCQ4tBByKERxaCjiUIDi0EnAoRXBoLeBQhuDQRsChHMGhrYBDBYJDOwGHSgSH9gIOlQkOHQQcqhAcOgo4VCM4dBJwqEFw6CzgUIvg0EXAoQ7BoauAQz2CQzcBhwYEh+4CDo0IDj0EHJoQHHoKODQjOPQScGhBcOgt4NCK4NBHwKENwaGvgEM7gkM/AYcOBIf+Ag6dCA4DBBy6EBwGCjh0IzgMEnDoQXAYLODQi+AwRMChD8FhqIBDP4LDMAGHAQSH4QIOgwgOIwQchhAcRgo4DCM4jBJwGEFwGC3gMIrgMEbAYQzBYayAwziCwzgBhwkEh/ECDpMIDhMsHMJMu9O06Jj//jqd5x0x7RvTjpp2zLTjpn1r2gnTvjPtpGnfm3bKtB9MO23aj6adMe0n086a9rNp50z7xbTzpv1q2gXTLpp2ybTfTLts2u+mXTHtD9OumvanaddMu26aZ+oIMQ3r02NtdqxLjjW5sR411mLGOsRYgxfrz2LtVaw7ijU3sd4k1lrEOoNYYw/ry2FtNawrhjW1sJ4U1lLCOkJYQwfrx2DtFKwbgjUzsF7EjbUSTENGPvLhkY2OXHBkYiMPGlnIyAFGBi7yX5F9itxPZF4i7xFZh8j5Q8Yd8t2QbYZcL2RaIc8JWUbI8UGGDfJbkF2C3A5kViCvAVkFmKePOeqYn425yZiXizmpmI+JuYiYh4c5aJh/hblHmHeDOSeYb4G5BhhnjzHmGF+NscUYV4sxpRhPibGEGEeHMWQYP4WxQxg3gzEjGC+BsQK4To5rxLg+imuDuC6Ga0K4HoJrATgPjnPAOP+Jc38474VzPjjfge/6+J6L73j4foPP9vhci890+DyD93K8j+EYjuMXXrvYb2NvoZb7fI0IYxIRd/9iPRoNO1Y8usCGJjXXR0W16Zi/5Kk6YzcOmVP92MV558z/x/0Pp7PfDh7jdxsTb7E7Ht2ZyO8Dnr9+Jfwh4OthXshX6ZL/eGTj4PLv47msG+G2z8TeN6nncpJFDeh/WMzfsY+7yef3H/+2xeNCKhLyhibz9vO4jdo9LqQ6weEBAYeaBIcoAYfaBIcHBRzqEhymCDjUJzg8JODQkOAwVcChMcHhYQGHpgSHaQIOzQkOjwg4tCQ4TBdwaE1weFTAoS3BYYaAQ3uCw2MCDh0JDjMFHDoTHB4XcOhKcJgl4NCd4DBbwKEnwWGOgENvgsNcAYe+BId5Ag79CQ5PCDgMJDjMF3AYTHBYIOAwlOCwUMBhOMHhSQGHkQSHpwQcRhMcFgk4jCU4PC3gMJ7gsFjAYSLB4RkBh8kEhyUCDlEEh2cFHKYQHKIFHKYSHJ4TcJhGcFgq4DCd4PC8gMMMgsMyAYeZBIcXBBxmERyWCzjMITi8KOAwj+CwQsBhPsHhJQGHhQSHlQIOu8KSfxsvCzgsIuwPqwQcFhMcXhFwWEJwWC3gEE1weFXAYSnBYY2AwzKCw2sCDssJDmsFHFYQHF4XcFhJcFgn4LCK4PCGgMNqgsN6AYc1BIc3BRzWEhw2CDisIzhsFHBYT3DYJOCwgeDwloDDJoLDZgGHzQSHtwUcthActgg4bCU4vCPgsI3gsFXAYTvB4V0Bhx0Eh20CDjsJDu8pXMchOGwXcNhNcHhfwGEPwWGHgMNegsMHAg77CA47BRz2Exw+FHA4QHDYJeBwkODwkYDDIYLDbgGHwwSHjwUcjhAc9gg4HCU4fCLgcJzgsFfA4QTB4VMBh5MEh30CDqcIDp8JOJwmOOwXcDhDcPhcwOEsweGAgMM5gsMXAg7nCQ4HBRwuEBy+FHC4RHA4JOBwmeDwlYDDFYLDYQGHqwSHrwUcrhEcjgg4eIT1lr4RcAglOBwVcAgnOBwTcEhJcDgu4JCa4PCtgEMEweGEgEM6gsN3Ag7pCQ4nBRwiCQ7fCzhkIjicEnDIQnD4QcAhK8HhtIBDdoLDjwIOOQgOZwQcchIcfhJwyE1wOCvgECA4/CzgkIfgcE7AIS/B4RcBh3wEh/MCDvkJDr8KOBQkOFwQcChMcLgo4FCU4HBJwKEYweE3AYcSBIfLAg6lCA6/CziUIThcEXAoR3D4Q8ChAsHhqoBDJYLDnwIOlQkO1wQcqhAcrgs4VCM4eOn//Q41CA4hAg61CA6hAg51CA5hAg71CA7hAg4NCA4pBBwaERxSCjg0ITikEnBoRnBILeDQguCQRsChFcEhQsChDcEhrYBDO4JDOgGHDgSHWwQcOhEc0gs4dCE4ZBBw6EZwiBRw6EFwyCjg0IvgkEnAoQ/BIbOAQz+CQxYBhwEEh1sFHAYRHLIKOAwhOGQTcBhGcMgu4DCC4HCbgMMogkMOAYcxBIfbBRzGERxyCjhMIDjkEnCYRHDInd5uG6GW/36NCM+rG+H//rVi7p+wjmI9Gg07Vjy6wIYmNddHRbXpmL/kqTpjNw6ZU/3YxXnnzP+/w7IOW6dS5o9qpl9hlv0qZXHfahH+7xvwX2/I3394/h9TOmYbnt3jvHDvr30kRWL/qGUfSnqe9f7vsp0SHmc7xb3kf63VtHyt1Y6I+0XAs7/ZGixIa3fcjb3dGbMv5kkft03rjVu8aG7822Exf98Z87hwL24HT9jJgOfrduNJqmP5JNWxfJKuX79+ObHfB7ykt4c/4td3Vwx83vTeP1Huinkm4v8ubzxg2ycnFsb2yD8wV/Ie+Ws59muQZb9ib+H+tzPXbCfkrvT++5TX4l3DwjXEb62xO6atJV64dzm8G+Fm+wJNl9r0M43/+2c097+axr6mu9Mnfx2exYEmk2Md+Qh1hFjUkdmxjnsIdYRa1JHFsY78hDrCLOq41bGOAoQ6wi3qyOpYR0FCHSks6sjmWEchQh0pLerI7lhH4WT+pog6Ujl8XihC6Fdqh34VJfQrjUO/7iX0K8KhX8UI/Urr0K/ihH6lc+hXCUK/bnHoV0lCv9I79KsUoV8ZHPpVmtCvSId+lSH0K6NDv8oS+pXJoV/lCP3K7NCv8oR+ZXHoVwVCv2516FdFQr+yOvSrEqFf2Rz6dR+hX9kd+lWZ0K/bHPp1P6FfORz6VYXQr9sd+lWV0K+cDv2qRuhXLod+VSf0K7dDv2oQ+nWHQ79qEvoVcOhXLUK/7nToV21Cv/I49KsOoV93OfSrLqFfeR36VY/Qr7sd+lWf0K98Dv1qQOjXPQ79akjoV36HfjUi9KuAQ78aE/pV0KFfTQj9KuTQr6aEfhV26FczQr+KOPSrOaFfRR361YLQr3sd+tWS0K9iDv1qRehXcYd+tSb0q4RDv9oQ+lXSoV9tCf0q5dCvdoR+lXboV3tCv8o49KsDoV9lHfrVkdCvcg796kToV3mHfnUm9KuCQ7+6EPpV0aFfXQn9quTQr26Eft3n0K/uhH5VduhXD4t+YVxoHtOqxPw3xrxhvBjGWmGcEsb4YHwMxpZgXAbGQGC8Aa7t4zo6rlnj+jCuxeK6J64x4noerp3hOhWuCeH6C6514LoCzuHjfDnOTeM8MM654vwmziXivB3OkeF8FM794DwLzmng/AG+q+N7Mb6D4vsevlvhewy+M+DzOT4L43MnPuPh8xQ+u+BzAt6T8f6H9xoc13EMxfEKxwa8DrHPY//Cc9kjfeI+NvY9/dunthi/mXpQMo+hxfhN9N12X+vlv94b443yJPL7gGd3s63Npo+u2+ht+Zq7y/vvNZfwNWc7Hg3PUfwJA37GKON5st1Ob4tt9LF8PdyVyO8Dnr9+Jfwh4OthnNdDH4dt4GZ7vO0b/ONtyN9/eHbH274Ox9t+vP0rrrN2jwvpR9i/+gs4VCSsDj5AwKE6wWGggENNgsMgAYfaBIfBAg51CQ5DBBzqExyGCjg0JDgME3BoTHAYLuDQlOAwQsChOcFhpIBDS4LDKAGH1gSH0QIObQkOYwQc2hMcxgo4dCQ4jBNw6ExwGC/g0JXgMEHAoTvBYaKAQ0+CwyQBh94Eh8kCDn0JDg8IOPQnOEQJOAwkODwo4DCY4DBFwGEoweEhAYfhBIepAg4jCQ4PCziMJjhME3AYS3B4RMBhPMFhuoDDRILDowIOkwkOMwQcoggOjwk4TCE4zBRwmEpweFzAYRrBYZaAw3SCw2wBhxkEhzkCDjMJDnMFHGYRHOYJOMwhODwh4DCP4DBfwGE+wWGBgMNCgsNCAYddYcm/jScFHBYR9oenBBwWExwWCTgsITg8LeAQTXBYLOCwlODwjIDDMoLDEgGH5QSHZwUcVhAcogUcVhIcnhNwWEVwWCrgsJrg8LyAwxqCwzIBh7UEhxcEHNYRHJYLOKwnOLwo4LCB4LBCwGETweElAYfNBIeVAg5bCA4vWziY04ReXi8ubweZCcgLwFx5zBPHHGnMD8bcWMwLxZxIzAfEXDjMA8McKMz/wdwXzPvAnAeM98dYd4zzxhhnjO/F2FaM68SYRoznw1g2jOPCGCaM38HYFYzbwJgFXK/HtWpcp8U1Slyfw7UpXJfBNQmcj8e5aJyHxTlInH/DuSecd8E5B3zfxndNfM/Cdwx8vsZnS3yuwmcKvJ/ivQTHURxD8PrBvgO32JttDs6N1Z7jufvJ20FOh+12+ltsY5Xl6yFvIr8PeP76lfCHgK+HcfJQVjlsA7ewBNtJyvsV/9tJrrydG7uTrQ/2RfQ94eOSqnc1b/+K66zd40JWE/avVwUcGHk7awQcGHk7rwk4MPJ21go4MPJ2XhdwYOTtrBNwYOTtvCHgwMjbWS/gwMjbeVPAgZG3s0HAgZG3s1HAgZG3s0nAgZG385aAAyNvZ7OAAyNv520BB0bezhYBB0bezjsCDoy8na0CDoy8nXcFHBh5O9sEHBh5O+8JODDydrYLODDydt4XcGDk7ewQcGDk7Xwg4MDI29kp4MDI2/lQwIGRt7NLwIGRt/ORgAMjb2e3gAMjb+djAQdG3s4eAQdG3s4nAg6MvJ29Ag6MvJ1PBRwYeTv7BBwYeTufCTgw8nb2Czgw8nY+F3Bg5O0cEHBg5O18IeDAyNs5KODAyNv5UsCBkbdzSMCBkbfzlYADI2/nsIADI2/nawEHRt7OEQEHRt7ONwIOjLydowIOjLydYwIOjLyd4wIOjLydbwUcGHk7JwQcGHk73wk4MPJ2TirM3yQ4fC/gwMjbOSXgwMjb+UHAgZG3c1rAgZG386OAAyNv54yAAyNv5ycBB0bezlkBB0bezs8WDsgUuduLy9tBZgLyAjBXHvPEMUca84MxNxbzQjEnEvMBMRcO88AwBwrzfzD3BfM+MOcB4/0x1h3jvDHGGeN7MbYV4zoxphHj+TCWDeO4MIYJ43cwdgXjNjBmAdfrca0a12lxjRLX53BtCtdlcE0C5+NxLhrnYXEOEuffcO4J511wzgHft/FdE9+z8B0Dn6/x2RKfq/CZAu+neC/BcRTHELx+sO/ALfZmm4NTAveN5+4nbwc5HbbbedViG+csXw93J/L7gOevXwl/CPh6GCcP5ZzDNnCzzdv5xf92kitv50aXbX2wL6LvCR+XVL3neftXXGftHhdynrB//SrgwMjbuSDgwMjbuSjgwMjbuSTgwMjb+U3AgZG3c1nAgZG387uAAyNv54qAAyNv5w8BB0bezlUBB0bezp8CDoy8nWsCDoy8nesCDoy8HS/Dv9+BkbcTIuDAyNsJFXBg5O2ECTgw8nbCBRwYeTspBBwYeTspBRwYeTupBBwYeTupBRwYeTtpBBwYeTsRAg6MvJ20Ag6MvJ10Ag6MvJ1bBBwYeTvpBRwYeTsZBBwYeTuRAg6MvJ2MAg6MvJ1MAg6MvJ3MAg6MvJ0sAg6MvJ1bBRwYeTtZBRwYeTvZBBwYeTvZBRwYeTu3CTgw8nZyCDgw8nZuF3Bg5O3kFHBg5O3kEnBg5O3kFnBg5O3cIeDAyNsJCDgw8nbuFHBg5O3kEXBg5O3cJeDAyNvJK+DAyNu5W8CBkbeTT8CBkbdzj4ADI28nv4ADI2+ngIADI2+noIADI2+nkIADI2+nsIADI2+niIADI2+nqIADI2/nXgEHRt5OMQEHRt5OcQEHRt5OCQEHRt5OSQsHBHTk8+LydpCZgLwAzJXHPHHMkcb8YMyNxbxQzInEfEDMhcM8MMyBwvwfzH3BvA/MecB4f4x1xzhvjHHG+F6MbcW4ToxpxHg+jGXDOC6MYcL4HYxdwbgNjFnA9Xpcq8Z1WlyjxPU5XJvCdRlck8D5eJyLvnEe1jScf8O5J5x3wTkHfN/Gd018z8J3DHy+xmdLfK7CZwq8n+K9BMdRHEPw+sG+A7fYm20OzoK0nnXezq8OeTu/WmyjlOXrIV8ivw94/vqV8IeAr4dx8lBsHOLfbPN2SvvfTnLl7YTjD1sf7Ivoe8LHJVVvGd7+FddZu8eFlMmQ/NsoK+DAyNspJ+DAyNspL+DAyNupIODAyNupKODAyNupJODAyNu5T8CBkbdTWcCBkbdzv4ADI2+nioADI2+nqoADI2+nmoADI2+nuoADI2+nhoADI2+npoADI2+nloADI2+ntoADI2+njoADI2+nroADI2+nnoADI2+nvoADI2+ngYADI2+noYADI2+nkYADI2+nsYADI2+niYADI2+nqYADI2+nmYADI2+nuYADI2+nhYADI2+npYADI2+nlYADI2+ntYADI2+njYADI2+nrYADI2+nnYADI2+nvYADI2+ng4ADI2+no4ADI2+nk4ADI2+ns4ADI2+ni4ADI2+nq4ADI2+nm4ADI2+nu4ADI2+nh4ADI2+np4ADI2+nl4ADI2+nt4ADI2+nj4ADI2+nr4ADI2+nn4ADI2+nv4ADI29ngIADI29noIADI29nkIADI29nsIADI29niIADI29nqIADI29nmIADI29nuIADI29nhIADI29npIADI29nlIADI29ntGXezj1eXN4OMhOQF4C58pgnjjnSmB+MubGYF4o5kZgPiLlwmAeGOVCY/4O5L5j3gTkPGO+Pse4Y540xzhjfi7GtGNeJMY0Yz4exbBjHhTFMGL+DsSsYt4ExC7hej2vVuE6La5S4PodrU7gug2sSOB+Pc9E4D4tzkDj/hnNPOO+Ccw74vo3vmviehe8Y+HyNz5b4XIXPFHg/xXsJjqM4huD1g30HbrE32xyc4rivZd4OcjpstxM/2yOpbYyxfD3ck8jvA56/fiX8IeDrYZw8lDEO28DNNm9nrP/tJFfeTgr8YeuDfRF9T/i4pOodx9u/4jpr97iQcYT9a7yAAyNvZ4KAAyNvZ6KAAyNvZ5KAAyNvZ7KAAyNv5wEBB0beTpSAAyNv50EBB0bezhQBB0bezkMCDoy8nakCDoy8nYcFHBh5O9MEHBh5O48IODDydqYLODDydh4VcGDk7cwQcGDk7Twm4MDI25kp4MDI23lcwIGRtzNLwIGRtzNbwIGRtzNHwIGRtzNXwIGRtzNPwIGRt/OEgAMjb2e+gAMjb2eBgAMjb2ehgAMjb+dJAQdG3s5TAg6MvJ1FAg6MvJ2nBRwYeTuLBRwYeTvPCDgw8naWCDgw8naeFXBg5O1ECzgw8naeE3Bg5O0sFXBg5O08L+DAyNtZJuDAyNt5QcCBkbezXMCBkbfzooADI29nhYADI2/nJQEHRt7OSgEHRt7OywIOjLydVQIOjLydVwQcGHk7qwUcGHk7rwo4MPJ21gg4MPJ2XhNwYOTtrBVwYOTtvC7gwMjbWSfgwMjbeUPAgZG3s17AgZG386aAAyNvZ4OAAyNvZ6OAAyNvZ5OAAyNv5y0LB2SK5Pfi8naQmYC8AMyVxzxxzJHG/GDMjcW8UMyJxHxAzIXDPDDMgcL8H8x9wbwPzHnAeH+Mdcc4b4xxxvhejG3FuE6MacR4PoxlwzgujGHC+B2MXcG4DYxZwPV6XKvGdVpco8T1OVybwnUZXJPA+Xici8Z5WJyDxPk3nHvCeRecc8D3bXzXxPcsfMfA52t8tsTnKnymwPsp3ktwHMUxBK8f7Dtwi73Z5uAgsySPZd4OcjpstxM/2yOpbWy2fD3kT+T3Ac9fvxL+EPD1ME4eymaHbeBmm7fztv/tJFfeTkr8YeuDfRF9T/i4pOrdwtu/4jpr97iQLYT96x3Lbdi+5mtEeF7NCP/3r2XuWzvC/vncKvB8MnKD3hVwYOQGbRNwYOQGvSfgwMgN2i7gwMgNel/AgZEbtEPAgZEb9IGAAyM3aKeAAyM36EMBB0Zu0C4BB0Zu0EcCDozcoN0CDozcoI8FHBi5QXsEHBi5QZ8IODByg/YKODBygz4VcGDkBu0TcGDkBn0m4MDIDdov4MDIDfpcwIGRG3RAwIGRG/SFgAMjN+iggAMjN+hLAQdGbtAhAQdGbtBXAg6M3KDDAg6M3KCvBRwYuUFHBBwYuUHfCDgwcoOOCjgwcoOOCTgwcoOOCzgwcoO+FXBg5AadEHBg5AZ9J+DAyA06KeDAyA36XsCBkRt0SsCBkRv0g4ADIzfotIADIzfoRwEHRm7QGQEHRm7QTwIOjNygswIOjNygnwUcGLlB5wQcGLlBvwg4MHKDzgs4MHKDfhVwYOQGXRBwYOQGXRRwYOQGXRJwYOQG/SbgwMgNuizgwMgN+l3AgZEbdEXAgZEb9IeAAyM36KqAAyM36E8BB0Zu0DUBB0Zu0HWFHAuCgxfpfxvIRingxeUGITMBeQGYK4954pgjjfnBmBuLeaGYE4n5gJgLh3lgmAOF+T+Y+4J5H5jzgPH+GOuOcd4Y44zxvRjbinGdGNOI8XwYy4ZxXBjDhPE7GLuCcRsYs4Dr9bhWjeu0uEaJ63O4NoXrMrgmgfPxOBeN87A4B4nzbzj3hPMuOOeA79v4ronvWfiOgc/X+GyJz1X4TIH3U7yX4DiKYwheP9h34BZ7S5jt4ScHyCI/5EZWC3I6Em4nqcfF30ZSfQqJtHs9FEjk9wHPX78S/hDw9TBOrouNQ/ybbW5QqP/tJFduUCr8YeuDfRF9T/i4pOoN4+1fcZ21e1xIWGTybyNcwIGRt5NCwIGRt5NSwIGRt5NKwIGRt5NawIGRt5NGwIGRtxMh4MDI20kr4MDI20kn4MDI27lFwIGRt5NewIGRt5NBwIGRtxMp4MDI28ko4MDI28kk4MDI28ks4MDI28ki4MDI27lVwIGRt5NVwIGRt5NNwIGRt5NdwIGRt3ObgAMjbyeHgAMjb+d2AQdG3k5OAQdG3k4uAQdG3k5uAQdG3s4dAg6MvJ2AgAMjb+dOAQdG3k4eAQdG3s5dAg6MvJ28Ag6MvJ27BRwYeTv5BBwYeTv3CDgw8nbyCzgw8nYKCDgw8nYKCjgw8nYKCTgw8nYKCzgw8naKCDgw8naKCjgw8nbuFXBg5O0UE3Bg5O0UF3Bg5O2UEHBg5O2UFHBg5O2UEnBg5O2UFnBg5O2UEXBg5O2UFXBg5O2UE3Bg5O2UF3Bg5O1UEHBg5O1UFHBg5O1UEnBg5O3cJ+DAyNupLODAyNu5X8CBkbdTRcCBkbdTVcCBkbdTTcCBkbdTXcCBkbdTwzJvp6AXl7eDzATkBWCuPOaJY4405gdjbizmhWJOJOYDYi4c5oFhDhTm/2DuC+Z9YM4DxvtjrDvGeWOMM8b3YmwrxnViTCPG890Yy2YaxjBh/A7GrmDcBsYs4Ho9rlXjOi2uUeL6HK5N4boMrkngfDzOReM8LM5B4vwbzj3hvAvOOeD7Nr5r4nsWvmPg8zU+W+JzFT5T4P0U7yU4juIYgtcP9h24xd5sc3CQWXJn+rj7+8nnQU6H7XbiZ3sktY2alq+Hgon8PuD561fCHwK+HsbJQ6npsA3cbPN2avnfTohF3k6IRd5OyN9/eHb7Lvqe8HFJ1VvbwhX/dljM34k9ziXfyu9960Ta+cXebJ//usF//v96gPfPfid199hjl8sxL/a+SdnUc9xXYh93k8enf/zbFo+j5BTV5x2n4zZq9zhKTlEDAQdGTlFDAQdGTlEjAQdGTlFjAQdGTlETAQdGTlFTAQdGTlEzAQdGTlFzAQdGTlELAQdGTlFLAQdGTlErAQdGTlFrAQdGTlEbAQdGTlFbAQdGTlE7AQdGTlF7AQdGTlEHAQdGTlFHAQdGTlEnAQdGTlFnAQdGTlEXAQdGTlFXAQdGTlE3AQdGTlF3AQdGTlEPAQdGTlFPAQdGTlEvAQdGTlFvAQdGTlEfAQdGTlFfAQdGTlE/AQdGTlF/AQdGTtEAAQdGTtFAAQdGTtEgAQdGTtFgAQdGTtEQAQdGTtFQAQdGTtEwAQdGTtFwAQdGTtEIAQdGTtFIAQdGTtEoAQdGTtFoAQdGTtEYAQdGTtFYAQdGTtE4AQdGTtF4AQdGTtEEAQdGTtFEAQdGTtEkAQdGTtFkAQdGTtEDAg6MnKIoAQdGTtGDAg6MnKIpAg6MnKKHBBwYOUVTBRwYOUUPCzgwcoqmCTgwcooeEXBg5BRNF3Bg5BQ9apnLYvvvI5+itkOuyZxkzttAHkndSPvMkxkW+SK2NSTsS1L/fo0Iz5t0i//71zL3vyO9/XPxmMU+YnbZv3ND/qcDCbabVH/L+7/vP7Y3M/ImNjgz0v5xj1sEQrn26/HIuF8EPP83lxdsPYcX7PxkfsFuzfBXiJBtvxZY9iv2Zhs8NMviwGBhFbLgJoOnkup3Be+vfcv24FPBYhuzk/lNBvazXd5kHAOR5vwfhGfNtjhmzCWFZ80L/j781wO8f/Y7qbvjuDDD4c38iX/RmzmOuxZvtDdqfszlOG35Zh4S8/f/dCDBdpPqr82b+c1sp6zH2c68mzymJfU8VfL+ev3a7kdhFvet5NlbhST8IeDrYV7I7GQGq+j9dVC1BbM5EC+wfPGghSa2Ucs++n3RXr9+/Whivw94SW8Df8Tv68KYD5xPRnr/fPdbGHPUif+7JxPpYMJ3n6Q6MN/fEzHXPBEhCy2etCct8Wx3POxACx0/nbt85Zts+ZWvYYR9TU9FJn8dD1jW0cihjkWEOqIs62jsUMfThDoetKyjiUMdiwl1TLGso6lDHc8Q6njIso5mDnUsIdQx1bKO5g51PEuo42HLOlo41BFNqGOaZR0tHep4jlDHI5Z1tHKoYymhjumWdbR2qON5Qh2PWtbRxqGOZYQ6ZljW0dahjhcIdTxmWUc7hzqWE+qYaVlHe4c6XiTU8bhlHR0c6lhBqGOWZR0dHep4iVDHbMs6OjnUsZJQxxzLOjo71PEyoY65lnV0cahjFaGOeZZ1dHWo4xVCHU9Y1tHNoY7VhDrmW9bR3aGOVwl1LLCso4dDHWsIdSy0rKOnQx2vEep40rKOXg51rCXU8ZRlHb0d6nidUMciyzr6ONSxjlDH05Z19HWo4w1CHYst6+jnUMd6Qh3PWNbR36GONwl1LLGsY4BDHRsIdTxrWcdAhzo2EuqItqxjkEMdmwh1PGdZx2CHOt4i1LHUso4hDnVsJtTxvGUdQx3qeJtQxzLLOoY51LGFUMcLlnUMd6jjHUIdyy3rGOFQx1ZCHS9a1jHSoY53CXWssKxjlEMd2wh1vGRZx2iHOt4j1LHSso4xDnVsJ9TxsmUdYx3qeJ9QxyrLOsY51LGDUMcrlnWMd6jjA0Idqy3rmOBQx05CHa9a1jHRoY4PCXWssaxjkkMduwh1vGZZx2SHOj4i1LHWso4HHOrYTajjdcs6ohzq+JhQxzrLOh50qGMPoY43LOuY4lDHJ4Q61lvW8ZBDHXsJdbxpWcdUhzo+JdSxwbKOhx3q2EeoY6NlHdMc6viMUMcmyzoecahjP6GOtyzrmO5Qx+eEOjZb1vGoQx0HCHW8bVnHDIc6viDUscWyjscc6jhIqOMdyzpmOtTxJaGOrZZ1PO5QxyFCHe9a1jHLoY6vCHVss6xjtkMdhwl1vGdZxxyHOr4m1LHdso65DnUcIdTxvmUd8xzq+IZQxw7LOp5wqOMooY4PLOuY71DHMUIdOy3rWOBQx3FCHR9a1rHQoY5vCXXssqzjSYc6ThDq+Miyjqcc6viOUMduyzoWOdRxklDHx5Z1PO1Qx/eEOvZY1rHYoY5ThDo+sazjGYc6fiDUsdeyjiUOdZwm1PGpZR3POtTxI6GOfZZ1RDvUcYZQx2eWdTznUMdPhDr2W9ax1KGOs4Q6Pres43mHOn4m1HHAso5lDnWcI9TxhWUdLzjU8QuhjoOWdSx3qOM8oY4vLet40aGOXwl1HLKsY4VDHRcIdXxlWcdLDnVcJNRx2LKOlQ51XCLU8bVlHS871PEboY4jlnWscqjjMqGObyzreMWhjt8JdRy1rGO1Qx1XCHUcs6zjVYc6/iDUcdyyjjUOdVwl1PGtZR2vOdTxJ6GOE5Z1rHWo4xqhju8s63jdoY7rhDpOWtaxzqEOL2Py1/G9ZR1vONQRQqjjlGUd6x3qCCXU8YNlHW861BFGqOO0ZR0bHOoIJ9Txo2UdGx3qSEGo44xlHZsc6khJqOMnyzrecqgjFaGOs5Z1bHaoIzWhjp8t63jboY40hDrOWdaxxaGOCEIdv1jW8Y5DHWkJdZy3rGOrQx3pCHX8alnHuw513EKo44JlHdsc6khPqOOiZR3vOdSRgVDHJcs6tjvUEUmo4zfLOt53qCMjoY7LlnXscKgjE6GO3y3r+MChjsyEOq5Y1rHToY4shDr+sKzjQ4c6biXUcdWyjl0OdWQl1PGnZR0fOdSRjVDHNcs6djvUkZ1Qx3XLOj52qOM2Qh1eers69jjUkYNQR4hlHZ841HE7oY5Qyzr2OtSRk1BHmGUdnzrUkYtQR7hlHfsc6shNqCOFZR2fOdRxB6GOlJZ17HeoI0CoI5VlHZ871HEnoY7UlnUccKgjD6GONJZ1fOFQx12EOiIs6zjoUEdeQh1pLev40qGOuwl1pLOs45BDHfkIddxiWcdXDnXcQ6gjvWUdhx3qyE+oI4NlHV871FGAUEekZR1HHOooSKgjo2Ud3zjUUYhQRybLOo461FGYUEdmyzqOOdRRhFBHFss6jjvUUZRQx62WdXzrUMe9hDqyWtZxwqGOYoQ6slnW8Z1DHcUJdWS3rOOkQx0lCHXcZlnH9w51lCTUkcOyjlMOdZQi1HG7ZR0/ONRRmlBHTss6TjvUUYZQRy7LOn50qKMsoY7clnWccaijnEUdWB++kGnRMf+NNcexXjfWusY60VhjGesTY21frIuLNWWxHivWMsU6oFhDE+tPYu1GrHuINQOx3h7WqsM6b1gjDeuLYW0urGuFNaGwnhLWIloX+dcaOFg/BmuvYN0SrPmB9TKw1gTWacAaB1gfANn6yKVHpjvy0JEljhxuZFgj/xnZycgdRmYv8m6RFYucVWSUIt8T2ZjIlUQmI/IMkQWIHD1k0CG/DdlnyA1D5hbyqpD1hJwkZAwhnwfZNsiFQaYK8kiQ5YEcDGRIIH8B2QWY948585hvjrnamOeMOcKYX4u5qZjXiTmRmE+IuXiYx4Y5YJg/hblHmLeDOS+YL4K5FpingDH+GB+PseUYl40xzRgPjLG0GIeKMZwY/4ixgxh3hzFrGO+FsVIYZ4QxOhjfgrEhGFeBMQm4no9r4biOjGuwuH6Ja3+4boZrTrheg2sduE6Ac+w4P33j3G7Gv84p4nwczmXhPBDOoeD8A76743svvjPi+xa+q+BzPj4j4/MlPpvhcw0+E+D9FO9FOI7jGIjjB1572G//3vkT7PNJ3FLMNj7zI+1fK+UtXiuhMa+VhLeAZ3ezrC3Epo+u26iQzMc+9GdBpP/npaJpsx2ez4qWx77C3n/Hvv+Off+uY1+o5T6P14nF6zcE98frxPY1HH8bSfWpUka742rhRH4f8Pz1K+EPAV8P4xxXK1luw/V9z/a5nG1xLL6P91zGddDucSH3EZ7LygIOFcOTfxv3CzhUJzhUEXCoSXCoKuBQm+BQTcChLsGhuoBDfYJDDQGHhgSHmgIOjQkOtQQcmhIcags4NCc41BFwaElwqCvg0JrgUE/AoS3Bob6AQ3uCQwMBh44Eh4YCDp0JDo0EHLoSHBoLOHQnODQRcOhJcGgq4NCb4NBMwKEvwaG5gEN/gkMLAYeBBIeWAg6DCQ6tBByGEhxaCzgMJzi0EXAYSXBoK+AwmuDQTsBhLMGhvYDDeIJDBwGHiQSHjgIOkwkOnQQcoggOnQUcphAcugg4TCU4dBVwmEZw6CbgMJ3g0F3AYQbBoYeAw0yCQ08Bh1kEh14CDnMIDr0FHOYRHPoIOMwnOPQVcFhIcOgn4LArLPm30V/AYRFhfxgg4LCY4DBQwGEJwWGQgEM0wWGwgMNSgsMQAYdlBIehAg7LCQ7DBBxWEByGCzisJDiMEHBYRXAYKeCwmuAwSsBhDcFhtIDDWoLDGAGHdQSHsQIO6wkO4wQcNhAcxgs4bCI4TBBw2ExwmCjgsIXgMEnAYSvBYbKAwzaCwwMCDtsJDlECDjsIDg8KOOwkOExRuI5DcHhIwGE3wWGqgMMegsPDAg57CQ7TBBz2ERweEXDYT3CYLuBwgODwqIDDQYLDDAGHQwSHxwQcDhMcZgo4HCE4PC7gcJTgMEvA4TjBYbaAwwmCwxwBh5MEh7kCDqcIDvMEHE4THJ4QcDhDcJgv4HCW4LBAwOEcwWGhgMN5gsOTAg4XCA5PCThcIjgsEnC4THB4WsDhCsFhsYDDVYLDMwIO1wgOSwQcvBTJv41nBRxCCQ7RAg7hBIfnBBxSEhyWCjikJjg8L+AQQXBYJuCQjuDwgoBDeoLDcgGHSILDiwIOmQgOKwQcshAcXhJwyEpwWCngkJ3g8LKAQw6CwyoBh5wEh1cEHHITHFYLOAQIDq8KOOQhOKwRcMhLcHhNwCEfwWGtgEN+gsPrAg4FCQ7rBBwKExzeEHAoSnBYL+BQjODwpoBDCYLDBgGHUgSHjQIOZQgOmwQcyhEc3hJwqEBw2CzgUIng8LaAQ2WCwxYBhyoEh3cEHKoRHLYKONQgOLwr4FCL4LBNwKEOweE9AYd6BIftAg4NCA7vCzg0IjjsEHBoQnD4QMChGcFhp4BDC4LDhwIOrQgOuwQc2hAcPhJwaEdw2C3g0IHg8LGAQyeCwx4Bhy4Eh08EHLoRHPYKOPQgOHwq4NCL4LBPwKEPweEzAYd+BIf9Ag4DCA6fCzgMIjgcEHAYQnD4QsBhGMHhoIDDCILDlwIOowgOhwQcxhAcvhJwGEdwOCzgMIHg8LWAwySCwxELhzDTipgWHfPf95vHVjGtqmnVTKtuWg3TappWy7TaptUxra5p9Uyrb1oD0xqa1si0xqY1Ma2pac1Ma25aC9NamtbKtNamtTGtrWntTGtvWgfTOprWybTOpnUxratp3UzrbhrWp8fa7FiXHGtyYz1qrMWMdYixBi/Wn8Xaq1h3FGtuYr1JrLWIdQaxxh7Wl8PaalhXDGtqYT0prKWEdYSwhg7Wj8HaKVg3BGtmYL0IrJWAdQKQkY98eGSjIxccmdjIg0YWMnKAkYGL/FdknyL3E5mXyHtE1iFy/pBxh3w3ZJsh1wuZVshzQpYRcnyQYYP8FmSXILcDmRXIa0BWAebpY4465mdjbjLm5WJOKuZjYi4i5uFhDhrmX2HuEebdYM4J5ltgrgHG2WOMOcZXY2wxxtViTCnGU2IsIcbRYQwZxk9h7BDGzWDMCMZLYKwArpPjGjGuj+LaIK6L4ZoQrofgWgDOg+McMM5/4twfznvhnA/Od+C7Pr7n4jsevt/gsz0+1+IzHT7P4L0c72M4huP4hdcu9tvYW6jlPl/e/DE7Mu7+xXo0GnaseHSBDU1qro+KatMxf8lTdcZuHDKn+rGL887F3LdyRvvt4DF+t/FNRrvjUZFEfh/w/PUr4Q8BXw/zQu7LmPzHo28st2H576fAczk/0vq5DLXZX47ynsu/b7bORwnP5bGbfC6Tcsb7UaWYv+M/LqnNhFnct5JFf44LPO8VCZlS3wo4VCc4nBBwqElw+E7AoTbB4aSAQ12Cw/cCDvUJDqcEHBoSHH4QcGhMcDgt4NCU4PCjgENzgsMZAYeWBIefBBxaExzOCji0JTj8LODQnuBwTsChI8HhFwGHzgSH8wIOXQkOvwo4dCc4XBBw6ElwuCjg0JvgcEnAoS/B4TcBh/4Eh8sCDgMJDr8LOAwmOFwRcBhKcPhDwGE4weGqgMNIgsOfAg6jCQ7XBBzGEhyuCziMJzh4mf79DhMJDiECDpMJDqECDlEEhzABhykEh3ABh6kEhxQCDtMIDikFHKYTHFIJOMwgOKQWcJhJcEgj4DCL4BAh4DCH4JBWwGEewSGdgMN8gsMtAg4LCQ7pBRx2hSX/NjIIOCwi7A+RAg6LCQ4ZBRyWEBwyCThEExwyCzgsJThkEXBYRnC4VcBhOcEhq4DDCoJDNgGHlQSH7AIOqwgOtwk4rCY45BBwWENwuF3AYS3BIaeAwzqCQy4Bh/UEh9wCDhsIDncIOGwiOAQEHDYTHO4UcNhCcMgj4LCV4HCXgMM2gkNeAYftBIe7BRx2EBzyCTjsJDjco3Adh+CQX8BhN8GhgIDDHoJDQQGHvQSHQgIO+wgOhQUc9hMcigg4HCA4FBVwOEhwuFfA4RDBoZiAw2GCQ3EBhyMEhxICDkcJDiUFHI4THEoJOJwgOJQWcDhJcCgj4HCK4FBWwOE0waGcgMMZgkN5AYezBIcKAg7nCA4VBRzOExwqCThcIDjcJ+BwieBQWcDhMsHhfgGHKwSHKgIOVwkOVQUcrhEcqgk4eIQ1taoLOIQSHGoIOIQTHGoKOKQkONQScEhNcKgt4BBBcKgj4JCO4FBXwCE9waGegEMkwaG+gEMmgkMDAYcsBIeGAg5ZCQ6NBByyExwaCzjkIDg0EXDISXBoKuCQm+DQTMAhQHBoLuCQh+DQQsAhL8GhpYBDPoJDKwGH/ASH1gIOBQkObQQcChMc2go4FCU4tBNwKEZwaC/gUILg0EHAoRTBoaOAQxmCQycBh3IEh84CDhUIDl0EHCoRHLoKOFQmOHQTcKhCcOgu4FCN4NBDwKEGwaGngEMtgkMvAYc6BIfeAg71CA59BBwaEBz6Cjg0Ijj0E3BoQnDoL+DQjOAwQMChBcFhoIBDK4LDIAGHNgSHwQIO7QgOQwQcOhAchgo4dCI4DBNw6EJwGC7g0I3gMELAoQfBYaSAQy+CwygBhz4Eh9ECDv0IDmMEHAYQHMYKOAwiOIwTcBhCcBgv4DCM4DBBwGEEwWGigMMogsMkAYcxBIfJAg7jCA4PCDhMIDhECThMIjg8aOEQZlpR06Jj/vvbjJ53wrTvTDtp2vemnTLtB9NOm/ajaWdM+8m0s6b9bNo5034x7bxpv5p2wbSLpl0y7TfTLpv2u2lXTPvDtKum/WnaNdOum+aZ/oaYFmpamGnhpqUwLaVpqUzD+vRYmx3rkmNNbqxHjbWYsQ4x1uDF+rNYexXrjmLNTaw3ibUWsc4g1tjD+nJYWw3rimFNLawnhbWUsI7QjTV0TMPaKVg3BGtmYL0IrJWAdQKQkY98eGSjIxccmdjIg0YWMnKAkYGL/FdknyL3E5mXyHtE1iFy/pBxh3w3ZJsh1wuZVshzQpYRcnyQYYP8FmSXILcDmRXIa0BWAebpY4465mdjbjLm5WJOKuZjYi4i5uFhDhrmX2HuEebdYM4J5ltgrgHG2WOMOcZXY2wxxtViTCnGU2IsIcbRYQwZxk9h7BDGzWDMCMZLYKwArpPjGjGuj+LaIK6L4ZoQrofgWgDOg+McMM5/4twfznvhnA/Od+C7Pr7n4jsevt/gsz0+1+IzHT7P4L0c72M4huP4hdcu9tvYW2iCfb5Yj0bDjhWPLrChSc31UVFtOuYvearO2I1D5lQ/dnHeOfP/Z0d63rGM/l8juP/xjP+7naQeF38bSfVpSia741HRRH4f8Pz1K+EPAV8P80KOZkz+45GNg8O/nwLP5fxI6+cyDI+LvW9Sz+VDvOfy75ut80OZkn8bUwUcKhIylh4WcKhOcJgm4FCT4PCIgENtgsN0AYe6BIdHBRzqExxmCDg0JDg8JuDQmOAwU8ChKcHhcQGH5gSHWQIOLQkOswUcWhMc5gg4tCU4zBVwaE9wmCfg0JHg8ISAQ2eCw3wBh64EhwUCDt0JDgsFHHoSHJ4UcOhNcHhKwKEvwWGRgEN/gsPTAg4DCQ6LBRwGExyeEXAYSnBYIuAwnODwrIDDSIJDtIDDaILDcwIOYwkOSwUcxhMcnhdwmEhwWCbgMJng8IKAQxTBYbmAwxSCw4sCDlMJDisEHKYRHF4ScJhOcFgp4DCD4PCygMNMgsMqAYdZBIdXBBzmEBxWCzjMIzi8KuAwn+CwRsBhIcHhNQGHXWHJv421Ag6LCPvD6wIOiwkO6wQclhAc3hBwiCY4rBdwWEpweFPAYRnBYYOAw3KCw0YBhxUEh00CDisJDm8JOKwiOGwWcFhNcHhbwGENwWGLgMNagsM7Ag7rCA5bBRzWExzeFXDYQHDYJuCwieDwnoDDZoLDdgGHLQSH9wUcthIcdgg4bCM4fCDgsJ3gsFPAYQfB4UMBh50Eh10K13EIDh8JOOwmOOwWcNhDcPhYwGEvwWGPgMM+gsMnAg77CQ57BRwOEBw+FXA4SHDYJ+BwiODwmYDDYYLDfgGHIwSHzwUcjhIcDgg4HCc4fCHgcILgcFDA4STB4UsBh1MEh0MCDqcJDl8JOJwhOBwWcDhLcPhawOEcweGIgMN5gsM3Ag4XCA5HBRwuERyOCThcJjgcF3C4QnD4VsDhKsHhhIDDNYLDdwIOHmGNqZMCDqEEh+8FHMIJDqcEHFISHH4QcEhNcDgt4BBBcPhRwCEdweGMgEN6gsNPAg6RBIezAg6ZCA4/CzhkITicE3DISnD4RcAhO8HhvIBDDoLDrwIOOQkOFwQcchMcLgo4BAgOlwQc8hAcfhNwyEtwuCzgkI/g8LuAQ36CwxUBh4IEhz8EHAoTHK4KOBQlOPwp4FCM4HBNwKEEweG6gEMpgoOX+d/vUIbgECLgUI7gECrgUIHgECbgUIngEC7gUJngkELAoQrBIaWAQzWCQyoBhxoEh9QCDrUIDmkEHOoQHCIEHOoRHNIKODQgOKQTcGhEcLhFwKEJwSG9gEMzgkMGAYcWBIdIAYdWBIeMAg5tCA6ZBBzaERwyCzh0IDhkEXDoRHC4VcChC8Ehq4BDN4JDNgGHHgSH7AIOvQgOtwk49CE45BBw6EdwuF3AYQDBIaeAwyCCQy4BhyEEh9wCDsMIDncIOIwgOAQEHEYRHO4UcBhDcMgj4DCO4HCXgMMEgkNeAYdJBIe7LRzCTLvXtOiY/344k+dNM+0R06ab9qhpM0x7zLSZpj1u2izTZps2x7S5ps0z7QnT5pu2wLSFpj1p2lOmLTLtadMWm/aMaUtMe9a0aNOeM22pac+btsy0F0xbbtqLpq0w7SXTVpqG9emxNjvWJcea3FiPGmsxYx1irMGL9Wex9irWHcWam1hvEmstYp1BrLGH9eWwthrWFcOaWlhPCmspYR0hrKGD9WOwdgrWDcGaGVgvAmslYJ0AZOQjHx7Z6MgFRyY28qCRhYwcYGTgIv8V2afI/UTmJfIekXWInD9k3CHfDdlmyPVCphXynJBlhBwfZNggvwXZJcjtQGYF8hqQVYB5+pijjvnZmJuMebmYk4r5mJiLiHl4mIOG+VeYe4R5N5hzgvkWmGuAcfYYY47x1RhbjHG1GFOK8ZQYS4hxdBhDhvFTGDuEcTMYM4LxEhgrgOvkuEaM66O4NojrYrgmhOshuBaA8+A4B4zznzj3h/NeOOeD8x34ro/vufiOh+83+GyPz7X4THfj84xpeB/DMRzHL7x2sd/G3kIt9/my5o/ZkXH3L9aj0bBjxaMLbGhSc31UVJuO+UueqjN245A51Y9dnHcu5r5TM9lvZ2om/9vIZ3k8ujeR3wc8f/1K+EPA18O8kIcyJf/xyMbB4d9PgedyfqT1cxlus7/cw3su/77ZOt+TOfm3kV/AoSIhY6mAgEN1gkNBAYeaBIdCAg61CQ6FBRzqEhyKCDjUJzgUFXBoSHC4V8ChMcGhmIBDU4JDcQGH5gSHEgIOLQkOJQUcWhMcSgk4tCU4lBZwaE9wKCPg0JHgUFbAoTPBoZyAQ1eCQ3kBh+4EhwoCDj0JDhUFHHoTHCoJOPQlONwn4NCf4FBZwGEgweF+AYfBBIcqAg5DCQ5VBRyGExyqCTiMJDhUF3AYTXCoIeAwluBQU8BhPMGhloDDRIJDbQGHyQSHOgIOUQSHugIOUwgO9QQcphIc6gs4TCM4NBBwmE5waCjgMIPg0EjAYSbBobGAwyyCQxMBhzkEh6YCDvMIDs0EHOYTHJoLOCwkOLQQcNgVlvzbaCngsIiwP7QScFhMcGgt4LCE4NBGwCGa4NBWwGEpwaGdgMMygkN7AYflBIcOAg4rCA4dBRxWEhw6CTisIjh0FnBYTXDoIuCwhuDQVcBhLcGhm4DDOoJDdwGH9QSHHgIOGwgOPQUcNhEcegk4bCY49BZw2EJw6CPgsJXg0FfAYRvBoZ+Aw3aCQ38Bhx0EhwECDjsJDgMVruMQHAYJOOwmOAwWcNhDcBgi4LCX4DBUwGEfwWGYgMN+gsNwAYcDBIcRAg4HCQ4jBRwOERxGCTgcJjiMFnA4QnAYI+BwlOAwVsDhOMFhnIDDCYLDeAGHkwSHCQIOpwgOEwUcThMcJgk4nCE4TBZwOEtweEDA4RzBIUrA4TzB4UEBhwsEhykCDpcIDg8JOFwmOEwVcLhCcHhYwOEqwWGagMM1gsMjAg4eYY2p6QIOoQSHRwUcwgkOMwQcUhIcHhNwSE1wmCngEEFweFzAIR3BYZaAQ3qCw2wBh0iCwxwBh0wEh7kCDlkIDvMEHLISHJ4QcMhOcJgv4JCD4LBAwCEnwWGhgENugsOTAg4BgsNTAg55CA6LBBzyEhyeFnDIR3BYLOCQn+DwjIBDQYLDEgGHwgSHZwUcihIcogUcihEcnhNwKEFwWCrgUIrg8LyAQxmCwzIBh3IEhxcEHCoQHJYLOFQiOLwo4FCZ4LBCwKEKweElAYdqBIeVAg41CA4vCzjUIjisEnCoQ3B4RcChHsFhtYBDA4LDqwIOjQgOawQcmhAcXhNwaEZwWCvg0ILg8LqAQyuCwzoBhzYEhzcEHNoRHNYLOHQgOLwp4NCJ4LBBwKELwWGjgEM3gsMmAYceBIe3BBx6ERw2Czj0ITi8LeDQj+CwRcBhAMHhHQGHQQSHrQIOQwgO7wo4DCM4bBNwGEFweE/AYRTBYbuAwxiCw/sCDuMIDjsEHCYQHD4QcJhEcNhp4RBmWjHTomP+u4B5bEHTCplW2LQiphU17V7TiplW3LQSppU0rZRppU0rY1pZ08qZVt60CqZVNK2SafeZVtm0+02rYlpV06qZVt20GqbVNK2WabVNq2NaXdPqmVbftAamNTQN69NjbXasS441ubEeNdZixjrEWIMX689i7VWsO4o1N7HeJNZaxDqDWGMP68thbTWsK4Y1tbCeFNZSwjpCWEMH68dg7RSsG4I1M7BeBNZKwDoByMhHPjyy0ZELjkxs5EEjCxk5wMjARf4rsk+R+4nMS+Q9IusQOX/IuEO+G7LNkOuFTCvkOSHLCDk+yLBBfguyS5DbgcwK5DUgqwDz9DFHHfOzMTcZ83IxJxXzMTEXEfPwMAcN868w9wjzbjDnBPMtMNcA4+wxxhzjqzG2GONqMaYU4ykxlhDj6DCGDOOnMHYI42YwZgTjJTBWANfJcY0Y10dxbRDXxXBNCNdDcC0A58FxDhjnP3HuD+e9cM4H5zvwXR/fc/EdD99v8Nken2vxmQ6fZ/BejvcxHMNx/MJrF/tt7C3Ucp+fHWlMIuPuX6xHo2HHikcX2NCk5vqoqDYd85c8VWfsxiFzqh+7OO+c+f+4f/7M9tvBY/xu48PMdsejYon8PuD561fCHwK+HuaF3JM5+Y9HH1puw/bfx3M5P9Jtn4m9b1LP5S6LGtD/sJi/Yx93k8/vP/5ti8eFVCTkDX3E28/jNmr3uJDqBIfdAg41CQ4fCzjUJjjsEXCoS3D4RMChPsFhr4BDQ4LDpwIOjQkO+wQcmhIcPhNwaE5w2C/g0JLg8LmAQ2uCwwEBh7YEhy8EHNoTHA4KOHQkOHwp4NCZ4HBIwKErweErAYfuBIfDAg49CQ5fCzj0JjgcEXDoS3D4RsChP8HhqIDDQILDMQGHwQSH4wIOQwkO3wo4DCc4nBBwGElw+E7AYTTB4aSAw1iCw/cCDuMJDqcEHCYSHH4QcJhMcDgt4BBFcPhRwGEKweGMgMNUgsNPAg7TCA5nBRymExx+FnCYQXA4J+Awk+Dwi4DDLILDeQGHOQSHXwUc5hEcLgg4zCc4XBRwWEhwuCTgsCss+bfxm4DDIsL+cFnAYTHB4XcBhyUEhysCDtEEhz8EHJYSHK4KOCwjOPwp4LCc4HBNwGEFweG6gMNKgoOX5d/vsIrgECLgsJrgECrgsIbgECbgsJbgEC7gsI7gkELAYT3BIaWAwwaCQyoBh00Eh9QCDpsJDmkEHLYQHCIEHLYSHNIKOGwjOKQTcNhOcLhFwGEHwSG9gMNOgkMGAYddBIdIAYfdBIeMAg57CA6ZBBz2EhwyCzjsIzhkEXDYT3C4VcDhAMEhq4DDQYJDNgGHQwSH7AIOhwkOtwk4HCE45BBwOEpwuF3A4TjBIaeAwwmCQy4Bh5MEh9wCDqcIDncIOJwmOAQEHM4QHO4UcDhLcMgj4HCO4HCXgMN5gkNeAYcLBIe7BRwuERzyCThcJjjcI+BwheCQX8DhKsGhgIDDNYJDQQEHj7DeUiEBh1CCQ2EBh3CCQxEBh5QEh6ICDqkJDvcKOEQQHIoJOKQjOBQXcEhPcCgh4BBJcCgp4JCJ4FBKwCELwaG0gENWgkMZAYfsBIeyAg45CA7lBBxyEhzKCzjkJjhUEHAIEBwqCjjkIThUEnDIS3C4T8AhH8GhsoBDfoLD/QIOBQkOVQQcChMcqgo4FCU4VBNwKEZwqC7gUILgUEPAoRTBoaaAQxmCQy0Bh3IEh9oCDhUIDnUEHCoRHOoKOFQmONQTcKhCcKgv4FCN4NBAwKEGwaGhgEMtgkMjAYc6BIfGAg71CA5NBBwaEByaCjg0Ijg0E3BoQnBoLuDQjODQQsChBcGhpYBDK4JDKwGHNgSH1gIO7QgObQQcOhAc2go4dCI4tBNw6EJwaC/g0I3g0EHAoQfBoaOAQy+CQycBhz4Eh84CDv0IDl0EHAYQHLoKOAwiOHQTcBhCcOgu4DCM4NBDwGEEwaGngMMogkMvAYcxBIfeAg7jCA59BBwmEBz6CjhMIjj0y2K3jVDLf392pOfNj/R//7kx909YR7EejYYdKx5dYEOTmuujotp0zF/yVJ2xG4fMqX7s4rxz5v/3t6zD1qmC+eNx068wy35VsLjv45H+7zvAf70hf//h+X9MxZhteHaP88K9v/aRFIn9o5Z9KO/Z7/8u2ynncbZT1kv+19ocy9favMi4XwQ8+5utwfGMdsfd2NvAmH1xUJa4bdp/MbU4SODfDov5e2DM48K9uB08YScDnq/bjSfpCcsn6QnLJ+n69euXE/t9wEt6e/gjfn2DY+CHZPH+iTI45pmI/7sh8YBtn5xYGNsj/6ncyXvkn+vYrx8s+xV7C/e/nblmOyGDs/jv0xCLdw0L1xC/tcbumLaWeOEOdng3ws32BRpI73n1LV6gd5v713HYP4ZmSf46GljUkc+xjmGEOhpa1HGPYx3DCXU0sqgjv2MdIwh1NLaoo4BjHSMJdTSxqKOgYx2jCHU0taijkGMdowl1NLOoo7BjHWMIdTS3qKOIYx1jCXW0sKijqGMd4wh1tLSo417HOsYT6mhlUUcxxzomEOpobVFHccc6JhLqaGNRRwnHOiYR6mhrUUdJxzomE+poZ1FHKcc6HiDU0d6ijtKOdUQR6uhgUUcZxzoeJNTR0aKOso51TCHU0cmijnKOdTxEqKOzRR3lHeuYSqiji0UdFRzreJhQR1eLOio61jGNUEc3izoqOdbxCKGO7hZ13OdYx3RCHT0s6qjsWMejhDp6WtRxv2MdMwh19LKoo4pjHY8R6uhtUUdVxzpmEuroY1FHNcc6HifU0deijuqOdcwi1NHPoo4ajnXMJtTR36KOmo51zCHUMcCijlqOdcwl1DHQoo7ajnXMI9QxyKKOOo51PEGoY7BFHXUd65hPqGOIRR31HOtYQKhjqEUd9R3rWEioY5hFHQ0c63iSUMdwizoaOtbxFKGOERZ1NHKsYxGhjpEWdTR2rONpQh2jLOpo4ljHYkIdoy3qaOpYxzOEOsZY1NHMsY4lhDrGWtTR3LGOZwl1jLOoo4VjHdGEOsZb1NHSsY7nCHVMsKijlWMdSwl1TLSoo7VjHc8T6phkUUcbxzqWEeqYbFFHW8c6XiDU8YBFHe0c61hOqCPKoo72jnW8SKjjQYs6OjjWsYJQxxSLOjo61vESoY6HLOro5FjHSkIdUy3q6OxYx8uEOh62qKOLYx2rCHVMs6ijq2MdrxDqeMSijm6Odawm1DHdoo7ujnW8SqjjUYs6ejjWscaiDsxLKm5alZj/xpwLzFfAWH+Mk8cYc4zPxthmjAvGmFqMR8VYToyDxBhCjL/D2DWM+8KYKYw3wlgdjHPBGBGMr8DYBFzXxzVxXE/GtVhcx8Q1QFw/w7UnXLfBNQ9cL8C5dpynxjlenB/FuUWcl8M5LZwPwrkUnIfAd3h8/8V3R3zvwncWfN7HZ2V8zsRnNHy+wWcDvK/iPQnHcxwLcRzBaxD7L577NVkS97Gxf82/fWqL+UOpf0jmOVyYP4S+2+5ra/3Xe+P1UjyR3wc8u5ttbTZ9dN3G65avuRLef6+5hK852+MpnqP4E1b9zJHD82S7ndcttrHO8vVQIpHfBzx//Ur4Q8DXwzivh3UO28DN9nj7RvCPtyF//+HZHW/fcDjeruftX3GdtXtcyHrC/vWmgEPF8OTfxgYBh+oEh40CDjUJDpsEHGoTHN4ScKhLcNgs4FCf4PC2gENDgsMWAYfGBId3BByaEhy2Cjg0Jzi8K+DQkuCwTcChNcHhPQGHtgSH7QIO7QkO7ws4dCQ47BBw6Exw+EDAoSvBYaeAQ3eCw4cCDj0JDrsEHHoTHD4ScOhLcNgt4NCf4PCxgMNAgsMeAYfBBIdPBByGEhz2CjgMJzh8KuAwkuCwT8BhNMHhMwGHsQSH/QIO4wkOnws4TCQ4HBBwmExw+ELAIYrgcFDAYQrB4UsBh6kEh0MCDtMIDl8JOEwnOBwWcJhBcPhawGEmweGIgMMsgsM3Ag5zCA5HBRzmERyOCTjMJzgcF3BYSHD4VsBhV1jyb+OEgMMiwv7wnYDDYoLDSQGHJQSH7wUcogkOpwQclhIcfhBwWEZwOC3gsJzg8KOAwwqCwxkBh5UEh58EHFYRHM4KOKwmOPws4LCG4HBOwGEtweEXAYd1BIfzCvO7CQ6/CjhsIDhcEHDYRHC4KOCwmeBwScBhC8HhNwsHZIqU9OLydpCZgLwAzJXHPHHMkcb8YMyNxbxQzInEfEDMhcM8MMyBwvwfzH3BvA/MecB4f4x1xzhvjHHG+F6MbcW4ToxpxHg+jGXDOC6MYcL4HYxdwbgNjFnA9Xpcq8Z1WlyjxPU5XJvCdRlck8D5eJyLxnlYnIPE+Tece8J5F5xzwPdtfNfE9yx8x8Dna3y2xOcqfKbA+yneS3AcxTEErx/sO3CLvdnm4JT37PN2kNNhu503LbZx2fL1UDKR3wc8f/1K+EPA18M4eSiXHbaBm23ezu/+t5NceTs3didbH+yL6HvCxyVV7xXe/hXXWbvHhVwh7F9/CDgw8nauCjgw8nb+FHBg5O1cE3Bg5O1cF3Bg5O14t/77HRh5OyECDoy8nVABB0beTpiAAyNvJ1zAgZG3k0LAgZG3k1LAgZG3k0rAgZG3k1rAgZG3k0bAgZG3EyHgwMjbSSvgwMjbSSfgwMjbuUXAgZG3k17AgZG3k0HAgZG3EyngwMjbySjgwMjbySTgwMjbySzgwMjbySLgwMjbuVXAgZG3k1XAgZG3k03AgZG3k13AgZG3c5uAAyNvJ4eAAyNv53YBB0beTk4BB0beTi4BB0beTm4BB0bezh0CDoy8nYCAAyNv504BB0beTh4BB0bezl0CDoy8nbwCDoy8nbsFHBh5O/kEHBh5O/cIODDydvILODDydgoIODDydgoKODDydgoJODDydgoLODDydooIODDydooKODDydu4VcGDk7RQTcGDk7RQXcGDk7ZQQcGDk7ZQUcGDk7ZQScGDk7ZQWcGDk7ZQRcGDk7ZQVcGDk7ZQTcGDk7ZQXcGDk7VQQcGDk7VS0cECmSCkvLm8HmQnIC8BcecwTxxxpzA/G3FjMC8WcSMwHxFw4zAPDHCjM/8HcF8z7wJwHjPfHWHeM88YYZ4zvxdhWjOvEmEaM58NYNozjwhgmjN/B2BWM28CYBVyvx7XqG9dpTcP1OVybwnUZXJPA+Xici8Z5WJyDxPk3nHvCeRecc8D3bXzXxPcsfMfA52t8tsTnKnymwPsp3ktwHMUxBK8f7Dtwi73Z5uCU8+zzdv5wyNv5w2IblSxfD6US+X3A89evhD8EfD2Mk4di4xD/Zpu3c5//7SRX3s6NLtv6YF9E3xM+Lql6K/P2r7jO2j0upPKtyb+N+wUcGHk7VQQcGHk7VQUcGHk71QQcGHk71QUcGHk7NQQcGHk7NQUcGHk7tQQcGHk7tQUcGHk7dQQcGHk7dQUcGHk79QQcGHk79QUcGHk7DQQcGHk7DQUcGHk7jQQcGHk7jQUcGHk7TQQcGHk7TQUcGHk7zQQcGHk7zQUcGHk7LQQcGHk7LQUcGHk7rQQcGHk7rQUcGHk7bQQcGHk7bQUcGHk77QQcGHk77QUcGHk7HQQcGHk7HQUcGHk7nQQcGHk7nQUcGHk7XQQcGHk7XQUcGHk73QQcGHk73QUcGHk7PQQcGHk7PQUcGHk7vQQcGHk7vQUcGHk7fQQcGHk7fQUcGHk7/QQcGHk7/QUcGHk7AwQcGHk7AwUcGHk7gwQcGHk7gwUcGHk7QwQcGHk7QwUcGHk7wwQcGHk7wwUcGHk7IwQcGHk7IwUcGHk7owQcGHk7owUcGHk7YwQcGHk7YwUcGHk74wQcGHk74wUcGHk7EwQcGHk7EwUcGHk7kwQcGHk7ky0cENBR2ovL20FmAvICMFce88QxRxrzgzE3FvNCMScS8wExFw7zwDAHCvN/MPcF8z4w5wHj/THWHeO8McYZ43sxthXjOjGmEeP5MJYN47gwhgnjdzB2BeM2MGYB1+txrRrXaXGNEtfncG0K12VwTQLn43EuGudhcQ4S599w7gnnXXDOAd+38V0T37PwHQOfr/HZEp+r8JkC76d4L8FxFMcQvH6w78At9mabg3M8o33eDnI6bLcTP9sjqW08YPl6KJ3I7wOev34l/CHg62GcPJQHHLaBm23eTpT/7SRX3k44/rD1wb6Ivid8XFL1Psjbv+I6a/e4kAcJ+9cUAQdG3s5DAg6MvJ2pAg6MvJ2HBRwYeTvTBBwYeTuPCDgw8namCzgw8nYeFXBg5O3MEHBg5O08JuDAyNuZKeDAyNt5XMCBkbczS8CBkbczW8CBkbczR8CBkbczV8CBkbczT8CBkbfzhIADI29nvoADI29ngYADI29noYADI2/nSQEHRt7OUwIOjLydRQIOjLydpwUcGHk7iwUcGHk7zwg4MPJ2lgg4MPJ2nhVwYOTtRAs4MPJ2nhNwYOTtLBVwYOTtPC/gwMjbWSbgwMjbeUHAgZG3s1zAgZG386KAAyNvZ4WAAyNv5yUBB0bezkoBB0bezssCDoy8nVUCDoy8nVcEHBh5O6sFHBh5O68KODDydtYIODDydl4TcGDk7awVcGDk7bwu4MDI21kn4MDI23lDwIGRt7NewIGRt/OmgAMjb2eDgAMjb2ejgAMjb2eTgAMjb+ctAQdG3s5mAQdG3s7bAg6MvJ0tAg6MvJ13BBwYeTtbBRwYeTvvCjgw8na2CTgw8nbes3BApkgZLy5vB5kJyAvAXHnME8ccacwPxtxYzAvFnEjMB8RcOMwDwxwozP/B3BfM+8CcB4z3x1h3jPPGGGeM78XYVozrxJhGjOfDWDaM48IYJozfwdgVjNvAmAVcr8e1alynxTVKXJ/DtSlcl8E1CZyPx7lonIfFOUicf8O5J5x3wTkHfN/Gd018z8J3DHy+xmdLfK7CZwq8n+K9BMdRHEPw+sG+A7fYm20OTlnPPm8HOR2224mf7ZHUNrZbvh7KJPL7gOevXwl/CPh6GCcPZbvDNnCzzdt53/92kitvJwX+sPXBvoi+J3xcUvXu4O1fcZ21e1zIDsL+9YGAAyNvZ6eAAyNv50MBB0bezi4BB0bezkcCDoy8nd0CDoy8nY8FHBh5O3sEHBh5O58IODDydvYKODDydj4VcGDk7ewTcGDk7Xwm4MDI29kv4MDI2/lcwIGRt3NAwIGRt/OFgAMjb+eggAMjb+dLAQdG3s4hAQdG3s5XAg6MvJ3DAg6MvJ2vBRwYeTtHBBwYeTvfCDgw8naOCjgw8naOCTgw8naOCzgw8na+FXBg5O2cEHBg5O18J+DAyNs5KeDAyNv5XsCBkbdzSsCBkbfzg4ADI2/ntIADI2/nRwEHRt7OGQEHRt7OTwIOjLydswIOjLydnwUcGHk75wQcGHk7vwg4MPJ2zgs4MPJ2fhVwYOTtXBBwYOTtXBRwYOTtXBJwYOTt/CbgwMjbuSzgwMjb+V3AgZG3c0XAgZG384eAAyNv56qAAyNv508BB0bezjUBB0beznUBB0bejpf13+/AyNsJEXBg5O2ECjgw8nbCBBwYeTvhAg6MvJ0UAg6MvJ2UAg6MvJ1UFg7IFEFWTJWY/0ZmAvICMFce88QxRxrzgzE3FvNCMScS8wExFw7zwDAHCvN/MPcF8z4w5wHj/THWHeO8McYZ43sxthXjOjGmEeP5MJYN47gwhgnjdzB2BeM2MGYB1+txrRrXaXGNEtfncG0K12VwTQLn43EuGudhcQ4S599w7gnnXXDOAd+38V0T37PwHQOfr/HZEp+r8JkC76d4L8FxFMcQvH6w78At9mabg4PMkkGWeTsfOOTtfGCRt5Pa8vVQNpHfBzx//Ur4Q8DXwzh5KDYO8W+2eTtp/G8nufJ2UuIPWx/si+h7wsclVW8Eb/+K66zd40Iisib/NtJabsP2NT870vPmRPq//1xz33mR9s9nOoHnk5EbdIuAAyM3KL2AAyM3KIOAAyM3KFLAgZEblFHAgZEblEnAgZEblFnAgZEblEXAgZEbdKuAAyM3KKuAAyM3KJuAAyM3KLuAAyM36DYBB0ZuUA4BB0Zu0O0CDozcoJwCDozcoFwCDozcoNwCDozcoDsEHBi5QQEBB0Zu0J0CDozcoDwCDozcoLsEHBi5QXkFHBi5QXcLODByg/IJODByg+4RcGDkBuUXcGDkBhUQcGDkBhUUcGDkBhUScGDkBhUWcGDkBhURcGDkBhUVcGDkBt0r4MDIDSom4MDIDSou4MDIDSoh4MDIDSop4MDIDSol4MDIDSot4MDIDSoj4MDIDSor4MDIDSon4MDIDSov4MDIDaog4MDIDaoo4MDIDaok4MDIDbpPwIGRG1RZwIGRG3S/gAMjN6iKgAMjN6iqgAMjN6iagAMjN6i6gAMjN6iGgAMjN6imgAMjN6iWgAMjN6i2gAMjN6iOgAMjN6iugAMjN6iegAMjN6i+gAMjN6iBZW5QOS8uNwiZCcgLwFx5zBPHHGnMD8bcWMwLxZxIzAfEXDjMA8McKMz/wdwXzPvAnAeM978x1t00jHHG+F6MbcW4ToxpxHg+jGXDOC6MYcL4HYxdwbgNjFnA9Xpcq8Z1WlyjxPU5XJvCdRlck8D5eJyLxnlYnIPE+Tece8J5F5xzwPdtfNfE9yx8x8Dna3y2xOcqfKbA+yneS3AcxTEErx/sO3CLvSXM9vCTA2SRH3IjqwU5HQm3k9Tj4m8jqT41zGr3eiiXyO8Dnr9+Jfwh4OthnFyXhg7bwM02N6iR/+0kV25QKvxh64N9EX1P+Lik6m3M27/iOmv3uJDGhP2riYADI2+nqYADI2+nmYADI2+nuYADI2+nhYADI2+npYADI2+nlYADI2+ntcLnB4JDGwEHRt5OWwEHRt5OOwEHRt5OewEHRt5OBwEHRt5ORwEHRt5OJwEHRt5OZwEHRt5OFwEHRt5OVwEHRt5ONwEHRt5OdwEHRt5ODwEHRt5OTwEHRt5OLwEHRt5ObwEHRt5OHwEHRt5OXwEHRt5OPwEHRt5OfwEHRt7OAAEHRt7OQAEHRt7OIAEHRt7OYAEHRt7OEAEHRt7OUAEHRt7OMAEHRt7OcAEHRt7OCAEHRt7OSAEHRt7OKAEHRt7OaAEHRt7OGAEHRt7OWAEHRt7OOAEHRt7OeAEHRt7OBAEHRt7ORAEHRt7OJAEHRt7OZAEHRt7OAwIOjLydKAEHRt7OgwIOjLydKQIOjLydhwQcGHk7UwUcGHk7Dws4MPJ2pgk4MPJ2HhFwYOTtTBdwYOTtPCrgwMjbmSHgwMjbeUzAgZG3M1PAgZG387iAAyNvZ5aAAyNvZ7aFAzJFyntxeTvITEBeAObKY5445khjfjDmxmJeKOZEYj4g5sJhHhjmQGH+D+a+YN4H5jxgvD/GumOcN8Y4Y3wvxrZiXCfGNGI8H8ayYRwXxjBh/A7GrmDcBsYs4Ho9rlXjOi2uUeL6HK5N4boMrkngfDzOReM8LM5B4vwbzj3hvAvOOeD7Nr5r4nsWvmPg8zU+W+JzFT5T4P0U7yU4juIYgtcP9h24xd5sc3CQWTIwS9z9/eTzIKfDdjvxsz2S2sYcy9dD+UR+H/D89SvhDwFfD+Pkocxx2AZutnk7c/1vJ8QibyfEIm8n5O8/PLt9F31P+Lik6p1n4Yp/Oyzm78Qe55Jv5fe+T2S184u92T7/84P//P/1AO+f/U7q7rHHLpdjXux9k7JZ4LivxD7uJo9P//i3LR5HySlayDtOx23U7nGUnKInBRwYOUVPCTgwcooWCTgwcoqeFnBg5BQtFnBg5BQ9I+DAyClaIuDAyCl6VsCBkVMULeDAyCl6TsCBkVO0VMCBkVP0vIADI6domYADI6foBQEHRk7RcgEHRk7RiwIOjJyiFQIOjJyilwQcGDlFKwUcGDlFLws4MHKKVgk4MHKKXhFwYOQUrRZwYOQUvSrgwMgpWiPgwMgpek3AgZFTtFbAgZFT9LqAAyOnaJ2AAyOn6A0BB0ZO0XoBB0ZO0ZsCDoycog0CDoycoo0CDoycok0CDoycorcEHBg5RZsFHBg5RW8LODByirYIODByit4RcGDkFG0VcGDkFL0r4MDIKdom4MDIKXpPwIGRU7RdwIGRU/S+gAMjp2iHgAMjp+gDAQdGTtFOAQdGTtGHAg6MnKJdAg6MnKKPBBwYOUW7BRwYOUUfCzgwcor2CDgwcoo+EXBg5BTtFXBg5BR9KuDAyCnaJ+DAyCn6TMCBkVO0X8CBkVP0uYADI6fogGUui+2/j3yKeQ65JhPuSN5+IY9kflb7zJMvLPJFbGtI2Jek/v3ZkZ63K7P/+8819++fxf65OGixj5hd9u/ckP/pQILtJtXf+/3f9x/b+zLrTWzwy6z2jztkEQjl2q9DWeN+EfD831xesAscXrAPJPMLNl3Wv0KEbPsVZdmv2Jtt8NBXFgcGC6sQi/6H/P2HRb+reH/tW7YHnyoW2ziczG8ysD/ssG987RiI9PX/QXjWYYtjxhFSeNY3wd+H/3qA989+J3V3HBe+cHgzP/ovejPHcdfijfZGzQcd9vljlm/mITF//08HEmw3qf7avJnfzHbu8zjb+eYmj2lJPU/VvL9ev7b7UZjFfat59lYhCX8I+HqYF3I4mcGqen8dVG3BbA7Exy1fPGihiW3Uso9+X7TXr18/mtjvA17S28Af8fv6bcwHzhNZvX+++30bc9SJ/7sTiXQw4btPUh045u+JmGueiJBvLZ60E5Z4tjsedqBvHT+du3zl+8jyK99TkfY1fZc1+evYbVnHIoc6ThLq+Niyjqcd6vieUMceyzoWO9RxilDHJ5Z1PONQxw+EOvZa1rHEoY7ThDo+tazjWYc6fiTUsc+yjmiHOs4Q6vjMso7nHOr4iVDHfss6ljrUcZZQx+eWdTzvUMfPhDoOWNaxzKGOc4Q6vrCs4wWHOn4h1HHQso7lDnWcJ9TxpWUdLzrU8SuhjkOWdaxwqOMCoY6vLOt4yaGOi4Q6DlvWsdKhjkuEOr62rONlhzp+I9RxxLKOVQ51XCbU8Y1lHa841PE7oY6jlnWsdqjjCqGOY5Z1vOpQxx+EOo5b1rHGoY6rhDq+tazjNYc6/iTUccKyjrUOdVwj1PGdZR2vO9RxnVDHScs61jnU4WVL/jq+t6zjDYc6Qgh1nLKsY71DHaGEOn6wrONNhzrCCHWctqxjg0Md4YQ6frSsY6NDHSkIdZyxrGOTQx0pCXX8ZFnHWw51pCLUcdayjs0OdaQm1PGzZR1vO9SRhlDHOcs6tjjUEUGo4xfLOt5xqCMtoY7zlnVsdagjHaGOXy3reNehjlsIdVywrGObQx3pCXVctKzjPYc6MhDquGRZx3aHOiIJdfxmWcf7DnVkJNRx2bKOHQ51ZCLU8btlHR841JGZUMcVyzp2OtSRhVDHH5Z1fOhQx62EOq5a1rHLoY6shDr+tKzjI4c6shHquGZZx26HOrIT6rhuWcfHDnXcRqjDy2JXxx6HOnIQ6gixrOMThzpuJ9QRalnHXoc6chLqCLOs41OHOnIR6gi3rGOfQx25CXWksKzjM4c67iDUkdKyjv0OdQQIdaSyrONzhzruJNSR2rKOAw515CHUkcayji8c6riLUEeEZR0HHerIS6gjrWUdXzrUcTehjnSWdRxyqCMfoY5bLOv4yqGOewh1pLes47BDHfkJdWSwrONrhzoKEOqItKzjiEMdBQl1ZLSs4xuHOgoR6shkWcdRhzoKE+rIbFnHMYc6ihDqyGJZx3GHOooS6rjVso5vHeq4l1BHVss6TjjUUYxQRzbLOr5zqKM4oY7slnWcdKijBKGO2yzr+N6hjpKEOnJY1nHKoY5ShDput6zjB4c6ShPqyGlZx2mHOsoQ6shlWcePDnWUJdSR27KOMw51lCPUcYdlHT851FGeUEfAso6zDnVUINRxp2UdPzvUUZFQRx7LOs451FGJUMddlnX84lDHfYQ68lrWcd6hjsqEOu62rONXhzruJ9SRz7KOCw51VCHUcY9lHRcd6qhKqCO/ZR2XHOqoRqijgGUdvznUUZ1QR0HLOi471FGDUEchyzp+d6ijJqGOwpZ1XHGooxahjiKWdfzhUEdtQh1FLeu46lBHHUId91rW8adDHXUJdRSzrOOaQx31CHUUt6zjukMd9Ql1lLCsw8toX0cDQh0lLesIcaijIaGOUpZ1hDrU0YhQR2nLOsIc6mhMqKOMZR3hDnU0IdRR1rKOFA51NCXUUc6yjpQOdTQj1FHeso5UDnU0J9RRwbKO1A51tCDUUdGyjjQOdbQk1FHJso4IhzpaEeq4z7KOtA51tCbUUdmyjnQOdbQh1HG/ZR23ONTRllBHFcs60jvU0Y5QR1XLOjI41NGeUEc1yzoiHeroQKijumUdGR3q6Eioo4ZlHZkc6uhEqKOmZR2ZHeroTKijlmUdWRzq6EKoo7ZlHbc61NGVUEcdyzqyOtTRjVBHXcs6sjnU0Z1QRz3LOrI71NGDUEd9yzpuc6ijJ6GOBpZ15HCooxehjoaWddzuUEdvQh2NLOvI6VBHH0IdjS3ryOVQR19CHU0s68jtUEc/Qh1NLeu4w6GO/oQ6mlnWEXCoYwChjuaWddzpUMdAQh0tLOvI41DHIEIdLS3ruMuhjsGEOlpZ1pHXoY4hhDpaW9Zxt0MdQwl1tLGsI59DHcMIdbS1rOMehzqGE+poZ1lHfoc6RhDqaG9ZRwGHOkYS6uhgWUdBhzpGEeroaFlHIYc6RhPq6GRZR2GHOsYQ6uhsWUcRhzrGEuroYllHUYc6xhHq6GpZx70OdYwn1NHNso5iDnVMINTR3bKO4g51TCTU0cOyjhIOdUwi1NHTso6SDnVMJtTRy7KOUg51PECoo7dlHaUd6ogi1NHHso4yDnU8SKijr2UdZR3qmEKoo59lHeUc6njIog6sD1/BtOiY/8aa41ivG2tdY51orLGM9Ymxti/WxcWasliPFWuZYh1QrKGJ9SexdiPWPcSagVhvD2vVYZ03rJGG9cWwNhfWtcKaUFhPCWsRYR0frIGD9WOw9grWLcGaH1gvA2tNYJ0GrHGA9QGQrY9cemS6Iw8dWeLI4UaGNfKfkZ2M3GFk9iLvFlmxyFlFRinyPZGNiVxJZDIiz/BGFmC2vzLokN+G7DPkhiFzC3lVyHpCThIyhpDPg2wb5MIgUwV5JMjyQA4GMiSQv4DsAsz7x5x5zDfHXG3Mc8YcYcyvxdxUzOvEnEjMJ8RcPMxjwxwwzJ/C3CPM28GcF8wXwVwLzFPAGH+Mj8fYcozLxphmjAfGWFqMQ8UYTox/xNhBjLvDmDWM98JYKYwzwhgdjG/B2BCMq8CYBFzPx7VwXEfGNVhcv8S1P1w3wzUnXK/BtQ5cJ8A5dpyfxrldnBfFOUWcj8O5LJwHwjkUnH/Ad3d878V3RnzfwncVfM7HZ2R8vsRnM3yuwWcCvJ/ivQjHcRwDcfzAaw/77d87f4J9PolbisNmfzqW1f61MjWb/9dKaMxrJeEt4NndLGsLsemj6zYezpa8xz7053hW/89LVdMOOzyf07LZHfsqev8d+/479v27jn2hlvs8XicWr98Q3B+vE9vXcPxtJNWnR7LZHVcrJvL7gOevXwl/CPh6GOe4+ojlNlzf92yfy8MWx+LpvOcyroN2jwuZTnguHxVwqBie/NuYIeBQneDwmIBDTYLDTAGH2gSHxwUc6hIcZgk41Cc4zBZwaEhwmCPg0JjgMFfAoSnBYZ6AQ3OCwxMCDi0JDvMFHFoTHBYIOLQlOCwUcGhPcHhSwKEjweEpAYfOBIdFAg5dCQ5PCzh0JzgsFnDoSXB4RsChN8FhiYBDX4LDswIO/QkO0QIOAwkOzwk4DCY4LBVwGEpweF7AYTjBYZmAw0iCwwsCDqMJDssFHMYSHF4UcBhPcFgh4DCR4PCSgMNkgsNKAYcogsPLAg5TCA6rBBymEhxeEXCYRnBYrTBOjODwqoDDDILDGgGHmQSH1wQcZhEc1go4zCE4vC7gMI/gsE7AYT7B4Q0Bh4UEh/UCDrvCkn8bbwo4LCLsDxsEHBYTHDYKOCwhOGwScIgmOLwl4LCU4LBZwGEZweFtAYflBIctAg4rCA7vCDisJDhsFXBYRXB4V8BhNcFhm4DDGoLDewIOawkO2wUc1hEc3hdwWE9w2CHgsIHg8IGAwyaCw04Bh80Ehw8FHLYQHHYJOGwlOHwk4LCN4LBbwGE7weFjAYcdBIc9Ag47CQ6fKFzHITjsFXDYTXD4VMBhD8Fhn4DDXoLDZwIO+wgO+wUc9hMcPhdwOEBwOCDgcJDg8IWAwyGCw0EBh8MEhy8FHI4QHA4JOBwlOHwl4HCc4HBYwOEEweFrAYeTBIcjAg6nCA7fCDicJjgcFXA4Q3A4JuBwluBwXMDhHMHhWwGH8wSHEwIOFwgO3wk4XCI4nBRwuExw+F7A4QrB4ZSAw1WCww8CDtcIDqcFHLwUyb+NHwUcQgkOZwQcwgkOPwk4pCQ4nBVwSE1w+FnAIYLgcE7AIR3B4RcBh/QEh/MCDpEEh18FHDIRHC4IOGQhOFwUcMhKcLgk4JCd4PCbgEMOgsNlAYecBIffBRxyExyuCDgECA5/CDjkIThcFXDIS3D4U8AhH8HhmoBDfoLDdQGHggQHL/u/36EwwSFEwKEowSFUwKEYwSFMwKEEwSFcwKEUwSGFgEMZgkNKAYdyBIdUAg4VCA6pBRwqERzSCDhUJjhECDhUITikFXCoRnBIJ+BQg+Bwi4BDLYJDegGHOgSHDAIO9QgOkQIODQgOGQUcGhEcMgk4NCE4ZBZwaEZwyCLg0ILgcKuAQyuCQ1YBhzYEh2wCDu0IDtkFHDoQHG4TcOhEcMgh4NCF4HC7gEM3gkNOAYceBIdcAg69CA65BRz6EBzuEHDoR3AICDgMIDjcKeAwiOCQR8BhCMHhLgGHYQSHvAIOIwgOdws4jCI45BNwGENwuEfAYRzBIb+AwwSCQwEBh0kEh4IWDmGmVTItOua/Z2TzvMdMm2na46bNMm22aXNMm2vaPNOeMG2+aQtMW2jak6Y9Zdoi0542bbFpz5i2xLRnTYs27TnTlpr2vGnLTHvBtOWmvWjaCtNeMm2laS+btsq0V0xbbdqrpmF9eqzNjnXJsSY31qPGWsxYhxhr8GL9Way9inVHseYm1pvEWotYZxBr7GF9OaythnXFsKYW1pPCWkpYRwhr6GD9GKydgnVDsGYG1ovAWglYJwAZ+ciHRzY6csGRiY08aGQhIwcYGbjIf0X2KXI/kXmJvEdkHSLnDxl3yHdDthlyvZBphTwnZBkhxwcZNshvQXYJcjuQWYG8BmQVYJ4+5qhjfjbmJmNeLuakYj4m5iJiHh7moGH+FeYeYd4N5pxgvgXmGmCcPcaYY3w1xhZjXC3GlGI8JcYSYhwdxpBh/BTGDmHcDMaMYLwExgrgOjmuEeP6KK4N4roYrgnhegiuBeA8OM4B4/wnzv3hvBfO+eB8B77r43vuje94puGzPT7X4jMdPs/gvRzvYziG4/iF1y7229hbqOU+f7/543DWuPsX69Fo2LHi0QU2NKm5PiqqTcf8JU/VGbtxyJzqxy7OOxdz30ez2W/n0Wz+t1HI8nhUKZHfBzx//Ur4Q8DXw7yQ6dmS/3hk4+Dw76fAc3ksq/VzGWqzvxTmPZd/32ydC2dP/m0UucnnMilnvB9Vi/k7/uOS2kyYxX2rWfSnqMDzXpGQKXWvgEN1gkMxAYeaBIfiAg61CQ4lBBzqEhxKCjjUJziUEnBoSHAoLeDQmOBQRsChKcGhrIBDc4JDOQGHlgSH8gIOrQkOFQQc2hIcKgo4tCc4VBJw6EhwuE/AoTPBobKAQ1eCw/0CDt0JDlUEHHoSHKoKOPQmOFQTcOhLcKgu4NCf4FBDwGEgwaGmgMNggkMtAYehBIfaAg7DCQ51BBxGEhzqCjiMJjjUE3AYS3CoL+AwnuDQQMBhIsGhoYDDZIJDIwGHKIJDYwGHKQSHJgIOUwkOTQUcphEcmgk4TCc4NBdwmEFwaCHgMJPg0FLAYRbBoZWAwxyCQ2sBh3kEhzYCDvMJDm0FHBYSHNoJOOwKS/5ttBdwWETYHzoIOCwmOHQUcFhCcOgk4BBNcOgs4LCU4NBFwGEZwaGrgMNygkO3/197bwJuY/l//9/HlCQhnTiGTpIoydAg8zzP8zzP8zyPIUmSJJEkSZIkSUiSJEmSpJKEJEmSkKT6v5fO+dif8yX7vvtZ3++6rv++rpXTOfs561mvvfdz9n6e+163AIeFBA7tBDgsInBoL8BhMYFDBwEOSwgcOgpwWErg0EmAwzICh84CHJYTOHQR4LCCwKGrAIeVBA7dBDisJnDoLsBhDYFDDwEOawkcegpwWEfg0EuAw3oCh94CHDYQOPQR4LCRwKGvAIdNBA79FK7jEDj0F+CwhcBhgACHrQQOAwU4bCNwGCTAYTuBw2ABDjsIHIYIcNhJ4DBUgMPnBA7DBDjsInAYLsBhN4HDCAEOewgcRgpw2EvgMEqAw34Ch9ECHA4QOIwR4HCQwOE+AQ6HCBzGCnA4TOAwToDDEQKH8QIcjhI43C/A4RiBwwQBDscJHB4Q4HCCwGGiAIdTBA4PCnA4TeAwSYDDGQKHhwQ4nCVwmCzA4U8Ch4cFODjCmlpTBDgkI3B4RIBDCgKHqQIcUhE4PCrAITWBwzQBDmkIHB4T4JCWwGG6AId0BA6PC3BIT+AwQ4BDRgKHJwQ4ZCJwmCnAIZbAYZYAh8wEDk8KcIgjcJgtwCEbgcNTAhxyEDjMEeAQT+DwtACHnAQOcwU45CJweEaAQ24Ch3kCHPIQODwrwOFWAof5Cut0Ezg8J8AhP4HDAgEOBQgcnhfgUIjAYaEAhzsJHF4Q4HA3gcMiAQ5FCBxeFOBQlMBhsQCH4gQOLwlwKEngsESAQ2kCh5cFOJQlcFgqwKE8gcMrAhwqEjgsE+BQmcDhVQEOVQkclgtwqE7g8JoAh5oEDisEONQmcHhdgENdAoeVAhzqEzisEuDQkMBhtQCHxgQObwhwaErgsEaAQ3MChzcFOLQkcFgrwKE1gcNbAhzaEjisE+DQnsDhbQEOHQkc1gtw6Ezg8I4Ah64EDhsEOHQncHhXgENPAoeNAhx6Ezi8J8ChL4HDJgEO/Qkc3hfgMJDAYbMAh8EEDh8IcBhK4LBFgMNwAocPBTiMJHDY6sEhuamEaW7C/99h2xYwFTQVMhU23Wm6y3S36R5TEdO9pqKmYqbiphKmkqZSptKmMqaypnKm8qYKpoqmSqbKpiqmqqZqpuqmGqaaplqm2qY6prqmeiasT4+12bEuOdbkxnrUWIsZ6xBjDV6sP4u1V7HuKNbcxHqTWGsR6wxijT2sL4e11bCuGNbUwnpSWEsJ6whhDR2sH4O1U7BuCNbMwHoRWCsB6wSgIx/98OhGRy84OrHRB40uZPQAowMX/a/oPkXvJzov0feIrkP0/KHjDv1u6DZDrxc6rdDnhC4j9Pigwwb9LeguQW8HOivQ14CuAszTxxx1zM/G3GTMy8WcVMzHxFxEzMPDHDTMv8LcI8y7wZwTzLfAXAOMs8cYc4yvxthijKvFmFKMp8RYQoyjwxgyjJ/C2CGMm8GYEYyXwFgBXCfHNWJcH8W1QVwXwzUhXA/BtQCcB8c5YJz/xLk/nPfCOR+c78BnfXzOxWc8fL7Be3u8r8V7Oryfwd9y/B3DMRzHL7x28bxNvCVL8pwv0L5m330F5+ZdWbvCijFjGrfIU/hQ5SGrek8tt+/ktGP2892xzt2eOfrXCO6fP/P/9LnUdpEel9qnjzL7HY9KXOD78S66/Ur6RXxUm7mYfJkv//HoI08Pz9+fEo/lvljvxzI5tku876Uey228x/I/N1/O2wiP5ccCHIoROpa2C3AoR+DwiQCHCgQOOwQ4VCJw+FSAQxUCh50CHKoROHwmwKEGgcPnAhxqETh8IcChDoHDLgEO9QgcvhTg0IDAYbcAh0YEDl8JcGhC4LBHgEMzAoevBTi0IHDYK8ChFYHDPgEObQgc9gtwaEfg8I0Ahw4EDgcEOHQicPhWgEMXAoeDAhy6ETh8J8ChB4HDIQEOvQgcvhfg0IfA4bAAh34EDj8IcBhA4HBEgMMgAocfBTgMIXA4KsBhGIHDTwIcRhA4HBPgMIrA4WcBDmMIHI4LcBhL4PCLAIfxBA4nBDhMIHA4KcBhIoHDKQEOkwgcfhXgMJnA4bQAhykEDr8JcJhK4HBGgMM0AoffBThMJ3A4K8BhBoHDHwIcNie//B5/CnCYRXg+/CXAYTaBg8vyf5/DHAKHGAEOcwkckglwmEfgkFyAw3wChxQCHBYQOKQU4LCQwCGVAIdFBA5XCHBYTOCQWoDDEgKHKwU4LCVwSCPAYRmBw1UCHJYTOKQV4LCCwOFqAQ4rCRzSCXBYTeBwjQCHNQQO6QU4rCVwyCDAYR2BQ0YBDusJHK4V4LCBwCGTAIeNBA7XCXDYROAQK8BhM4HD9QIcthA4ZBbgsJXAIYsAh20EDnECHLYTOGQV4LCDwCGbAIedBA7ZBTh8TuCQQ4DDLgKHGwQ47CZwiBfgsIfA4UYBDnsJHHIKcNhP4HCTAIcDBA65BDgcJHC4WYDDIQKH3AIcDhM43CLA4QiBQx4BDkcJHPIKcDhG4HCrAIfjBA63CXA4QeCQT4DDKQKH2wU4nCZwyC/A4QyBwx0CHM4SOBQQ4PAngUNBAQ6OsMZUIQEOyQgcCgtwSEHgcKcAh1QEDncJcEhN4HC3AIc0BA73CHBIS+BQRIBDOgKHewU4pCdwKCrAISOBQzEBDpkIHIoLcIglcCghwCEzgUNJAQ5xBA6lBDhkI3AoLcAhB4FDGQEO8QQOZQU45CRwKCfAIReBQ3kBDrkJHCoIcMhD4FBRgMOtBA6VBDjkI3CoLMAhP4FDFQEOBQgcqgpwKETgUE2Aw50EDtUFONxN4FBDgEMRAoeaAhyKEjjUEuBQnMChtgCHkgQOdQQ4lCZwqCvAoSyBQz0BDuUJHOoLcKhI4NBAgENlAoeGAhyqEjg0EuBQncChsQCHmgQOTQQ41CZwaCrAoS6BQzMBDvUJHJoLcGhI4NBCgENjAoeWAhyaEji0EuDQnMChtQCHlgQObQQ4tCZwaCvAoS2BQzsBDu0JHNoLcOhI4NBBgENnAoeOAhy6Ejh0EuDQncChswCHngQOXQQ49CZw6CrAoS+BQzcBDv0JHLoLcBhI4NBDgMNgAoeeAhyGEjj0EuAwnMChtwCHkQQOfTw4JDeVNM1N+P/tmZ37xLTD9Klpp+kz0+emL0y7TF+adpu+Mu0xfW3aa9pn2m/6xnTA9K3poOk70yHT96bDph9MR0w/mo6afjIdM/1sOm76xXTCdNJ0yoT16bE2O9Ylx5rcWI8aazFjHWKswYv1Z7H2KtYdxZqbWG8Say1inUGssYf15bC2GtYVw5paWE8KaylhHSGsoYP1Y7B2CtYNwZoZWC8CayVgnQB05KMfHt3o6AVHJzb6oNGFjB5gdOCe6381ofcTnZfoe0TXIXr+0HGHfjd0m6HXC51W6HNClxF6fNBhg/4WdJegtwOdFehrQFcB5uljjjrmZ2NuMublYk4q5mNiLiLm4WEOGuZfYe4R5t1gzgnmW2CuAcbZY4w5xldjbDHG1WJMKcZTYiwhxtFhDBnGT2HsEMbNYMwIxktgrACuk+MaMa6P4togrovhmhCuh+BaAM6D4xwwzn/i3B/Oe+GcD8534LM+PufiMx4+3+C9Pd7X4j0d3s/gbzn+juEYjuMXXrt43ibeknk+5/Fa3h17/v4F2tfsu6/g3Lwra1dYMWZM4xZ5Ch+qPGRV76nl9p2cdizhvh9n9vf5OHP0Hn09j0clL/D9eBfdfiX9Ij6qzVzMtsyX/3jkwyHg96fEY7kv1vuxTOHzfOnHeyz/c/Pl3C/L5ffoL8ChGKFjaYAAh3IEDgMFOFQgcBgkwKESgcNgAQ5VCByGCHCoRuAwVIBDDQKHYQIcahE4DBfgUIfAYYQAh3oEDiMFODQgcBglwKERgcNoAQ5NCBzGCHBoRuBwnwCHFgQOYwU4tCJwGCfAoQ2Bw3gBDu0IHO4X4NCBwGGCAIdOBA4PCHDoQuAwUYBDNwKHBwU49CBwmCTAoReBw0MCHPoQOExWuJ5F4PCwAIcBBA5TBDgMInB4RIDDEAKHqQIchhE4PCrAYQSBwzQBDqMIHB4T4DCGwGG6AIexBA6PC3AYT+AwQ4DDBAKHJwQ4TCRwmCnAYRKBwywBDpMJHJ4U4DCFwGG2AIepBA5PCXCYRuAwR4DDdAKHpwU4zCBwmCvAYXPyy+/xjACHWYTnwzwBDrMJHJ4V4DCHwGG+AIe5BA7PCXCYR+CwQIDDfAKH5wU4LCBwWCjAYSGBwwsCHBYROCwS4LCYwOFFAQ5LCBwWC3BYSuDwkgCHZQQOSwQ4LCdweFmAwwoCh6UCHFYSOLwiwGE1gcMyAQ5rCBxeFeCwlsBhuQCHdQQOrwlwWE/gsEKAwwYCh9cFOGwkcFgpwGETgcMqhes4BA6rBThsIXB4Q4DDVgKHNQIcthE4vCnAYTuBw1oBDjsIHN4S4LCTwGGdAIfPCRzeFuCwi8BhvQCH3QQO7whw2EPgsEGAw14Ch3cFOOwncNgowOEAgcN7AhwOEjhsEuBwiMDhfQEOhwkcNgtwOELg8IEAh6MEDlsEOBwjcPhQgMNxAoetAhxOEDh8JMDhFIHDNgEOpwkcPhbgcIbAYbsAh7MEDp8IcPiTwGGHAAdHWGPqUwEOyQgcdgpwSEHg8JkAh1QEDp8LcEhN4PCFAIc0BA67BDikJXD4UoBDOgKH3QIc0hM4fCXAISOBwx4BDpkIHL4W4BBL4LBXgENmAod9AhziCBz2C3DIRuDwjQCHHAQOBwQ4xBM4fCvAISeBw0EBDrkIHL4T4JCbwOGQAIc8BA7fC3C4lcDhsACHfAQOPwhwyE/gcESAQwEChx8FOBQicDgqwOFOAoefBDjcTeBwTIBDEQKHnwU4FCVwOC7AoTiBwy8CHEoSOJwQ4FCawOGkAIeyBA6nBDiUJ3D4VYBDRQKH0wIcKhM4/CbAoSqBwxkBDtUJHH4X4FCTwOGsAIfaBA5/CHCoS+DwpwCH+gQOfwlwaEjg4OL+73NoTOAQI8ChKYFDMgEOzQkckgtwaEngkEKAQ2sCh5QCHNoSOKQS4NCewOEKAQ4dCRxSC3DoTOBwpQCHrgQOaQQ4dCdwuEqAQ08Ch7QCHHoTOFwtwKEvgUM6AQ79CRyuEeAwkMAhvQCHwQQOGQQ4DCVwyCjAYTiBw7UCHEYSOGTy4JDcVMo0N+H/B9g53oGmQabBpiGmoaZhpuGmEaaRplGm0aYxpvtMY03jTONN95smmB4wTTQ9aJpkesg02fSwaYrpEdNU06OmaabHTNNNj5tmmJ4wzTRhfXqszY51ybEmN9ajxlrMWIcYa/Bi/VmsvYp1R7HmJtabxFqLWGcQa+xhfTmsrYZ1xbCmFtaTwlpKWEcIa+hg/RisnYJ1Q7BmBtaLwFoJWCcAHfnoh0c3OnrB0YmNPmh0IaMHGB246H9F9yl6P9F5ib5HdB2i5w8dd+h3Q7cZer3QaYU+J3QZoccHHTbob0F3CXo70FmBvgZ0FWCePuaoY3425iZjXi7mpGI+JuYiYh4e5qBh/hXmHmHeDeacYL4F5hpgnD3GmGN8NcYWY1wtxpRiPCXGEmIcHcaQYfwUxg5h3AzGjGC8BMYK4Do5rhHj+iiuDeK6GK4J4XoIrgXgPDjOAeP8J8794bwXzvngfAc+6+NzLj7j4fMN3tvjfS3e0+H9DP6W4+8YjuE4fuG1i+dt4i2Z53N+d6wxiT1//wLta/bdV3Bu3pW1K6wYM6ZxizyFD1Uesqr31HL7Tk47Zj/H/ftn8ffBNtF6XOd5PCp1ge/Hu+j2K+kX8VFt5mL6Zbn8xyMfDiG/H4/lvtiw50zifS/1WMZ6ZMD+J0/4N3G7f/n4/tfv9tguphihb+h63vP8vKnfdjHlCBwyC3CoQOCQRYBDJQKHOAEOVQgcsgpwqEbgkE2AQw0Ch+wCHGoROOQQ4FCHwOEGAQ71CBziBTg0IHC4UYBDIwKHnAIcmhA43CTAoRmBQy4BDi0IHG4W4NCKwCG3AIc2BA63CHBoR+CQR4BDBwKHvAIcOhE43CrAoQuBw20CHLoROOQT4NCDwOF2AQ69CBzyC3DoQ+BwhwCHfgQOBQQ4DCBwKCjAYRCBQyEBDkMIHAoLcBhG4HCnAIcRBA53CXAYReBwtwCHMQQO9whwGEvgUESAw3gCh3sFOEwgcCgqwGEigUMxAQ6TCByKC3CYTOBQQoDDFAKHkgIcphI4lBLgMI3AobQAh+kEDmUEOMwgcCgrwGFz8svvUU6AwyzC86G8AIfZBA4VBDjMIXCoKMBhLoFDJQEO8wgcKgtwmE/gUEWAwwICh6oCHBYSOFQT4LCIwKG6AIfFBA41BDgsIXCoKcBhKYFDLQEOywgcagtwWE7gUEeAwwoCh7oCHFYSONQT4LCawKG+AIc1BA4NBDisJXBoKMBhHYFDIwEO6wkcGgtw2EDg0ESAw0YCh6YCHDYRODRTuI5D4NBcgMMWAocWAhy2Eji0FOCwjcChlQCH7QQOrQU47CBwaCPAYSeBQ1sBDp8TOLQT4LCLwKG9AIfdBA4dBDjsIXDoKMBhL4FDJwEO+wkcOgtwOEDg0EWAw0ECh64CHA4ROHQT4HCYwKG7AIcjBA49BDgcJXDoKcDhGIFDLwEOxwkcegtwOEHg0EeAwykCh74CHE4TOPQT4HCGwKG/AIezBA4DBDj8SeAwUICDI6y3NEiAQzICh8ECHFIQOAwR4JCKwGGoAIfUBA7DBDikIXAYLsAhLYHDCAEO6QgcRgpwSE/gMEqAQ0YCh9ECHDIROIwR4BBL4HCfAIfMBA5jBTjEETiME+CQjcBhvACHHAQO9wtwiCdwmCDAISeBwwMCHHIROEwU4JCbwOFBAQ55CBwmCXC4lcDhIQEO+QgcJgtwyE/g8LAAhwIEDlMEOBQicHhEgMOdBA5TBTjcTeDwqACHIgQO0wQ4FCVweEyAQ3ECh+kCHEoSODwuwKE0gcMMAQ5lCRyeEOBQnsBhpgCHigQOswQ4VCZweFKAQ1UCh9kCHKoTODwlwKEmgcMcAQ61CRyeFuBQl8BhrgCH+gQOzwhwaEjgME+AQ2MCh2cFODQlcJgvwKE5gcNzAhxaEjgsEODQmsDheQEObQkcFgpwaE/g8IIAh44EDosEOHQmcHhRgENXAofFAhy6Ezi8JMChJ4HDEgEOvQkcXhbg0JfAYakAh/4EDq8IcBhI4LBMgMNgAodXBTgMJXBYLsBhOIHDawIcRhI4rIjz80jm+ft3xzq3Lzb6++9JuH/SHAXa1+y7r+DcvCtrV1gxZkzjFnkKH6o8ZFXvqeX2nZx2zH7+umcOX06l7T+7bL+Se+5XaY/77oqN/r4ro88b85//uOi3KZPg4fy2cync38+RlBf6pZ77UMr5P/9DfEo6jk8Jd/lfa195vta+jj3/jXjnf/NlkD+z33E38bYq4bm4Ou68p7e5x4vm3O9OnvDvqoTtUrjzT/CkOxnvorqde5D2ej5Iez0fpL/++uv0hb4f7y7th/9E5nsjAfyaOPffUN5IeCQiv7cmArDvg5MIxvfI/0n85T3y7wncrx2e+5V4SxG9z6PmE/NGXPT7tMbjr4YH15hosyY+MX1Z4oX7RsBfI9x8X6DdMzk3w+MF2sfu/1jA8+PNuMuf4wmPHH0Dc6wl5JjpkaNfYI63CDlmeeToH5hjHSHHkx45BgTmeJuQY7ZHjoGBOdYTcjzlkWNQYI53CDnmeOQYHJhjAyHH0x45hgTmeJeQY65HjqGBOTYScjzjkWNYYI73CDnmeeQYHphjEyHHsx45RgTmeJ+QY75HjpGBOTYTcjznkWNUYI4PCDkWeOQYHZhjCyHH8x45xgTm+JCQY6FHjvsCc2wl5HjBI8fYwBwfEXIs8sgxLjDHNkKOFz1yjA/M8TEhx2KPHPcH5thOyPGSR44JgTk+IeRY4pHjgcAcOwg5XvbIMTEwx6eEHEs9cjwYmGMnIccrHjkmBeb4jJBjmUeOhwJzfE7I8apHjsmBOb4g5FjukePhwBy7CDle88gxJTDHl4QcKzxyPBKYYzchx+seOaYG5viKkGOlR45HA3PsIeRY5ZFjWmCOrwk5VnvkeCwwx15Cjjc8ckwPzLGPkGONR47HA3PsJ+R40yPHjMAc3xByrPXI8URgjgOEHG955JgZmONbQo51HjlmBeY4SMjxtkeOJwNzfEfIsd4jx+zAHIcIOd7xyPFUYI7vCTk2eOSYE5jjMCHHux45ng7M8QMhx0aPHHMDcxwh5HjPI8czgTl+JOTY5JFjXmCOo4Qc73vkeDYwx0+EHJs9cswPzHGMkOMDjxzPBeb4mZBji0eOBYE5jhNyfOiR4/nAHL8Qcmz1yLEwMMcJQo6PPHK8EJjjJCHHNo8ciwJznCLk+Ngjx4uBOX4l5NjukWNxYI7ThByfeOR4KTDHb4QcOzxyLAnMcYaQ41OPHC8H5vidkGOnR46lgTnOeuTAvKTSCcINcy4wXwFj/TFOHmPMMT4bY5sxLhhjajEeFWM5MQ4SYwgx/g5j1zDuC2OmMN4IY3UwzgVjRDC+AmMTcF0f18RxPRnXYnEdE9cAcf0M155w3QbXPHC9AOfacZ4a53hxfhTnFnFeDue0cD4I51JwHgKf4fH5F58d8bkLn1nwfh/vlfE+E+/R8P4G7w3wdxV/k3A8x7EQxxG8BvH8xWN/Nu7CfHzY/xE9+9Qe84dS+86VSvqcudTdMX8I++77XPsz+rznXi+lL/D9eOd3883ms4+hHn95vubKuP//NZf0Ned7PMVjFDlhNZo5cnicfH3+8vBwWf1eD2Uu8P14F91+Jf0iPqrNOK8HHw6RN9/jbUzW//Xjbcx//uP8jrfYd9/jbTLe8+v8zvptF5Ms6+X3SC7AoViKy++RQoBDOQKHlAIcKhA4pBLgUInA4QoBDlUIHFILcKhG4HClAIcaBA5pBDjUInC4SoBDHQKHtAIc6hE4XC3AoQGBQzoBDo0IHK4R4NCEwCG9AIdmBA4ZBDi0IHDIKMChFYHDtQIc2hA4ZBLg0I7A4ToBDh0IHGIFOHQicLhegEMXAofMAhy6EThkEeDQg8AhToBDLwKHrAIc+hA4ZBPg0I/AIbsAhwEEDjkEOAwicLhBgMMQAod4AQ7DCBxuFOAwgsAhpwCHUQQONwlwGEPgkEuAw1gCh5sFOIwncMgtwGECgcMtAhwmEjjkEeAwicAhrwCHyQQOtwpwmELgcJsAh6kEDvkEOEwjcLhdgMN0Aof8AhxmEDjcIcBhc/LL71FAgMMswvOhoACH2QQOhQQ4zCFwKCzAYS6Bw50CHOYRONwlwGE+gcPdAhwWEDjcI8BhIYFDEQEOiwgc7hXgsJjAoagAhyUEDsUEOCwlcCguwGEZgUMJAQ7LCRxKCnBYQeBQSoDDSgKH0gIcVhM4lBHgsIbAoawAh7UEDuU8OKBTpKw737eDzgT0BWCuPOaJY4405gdjbizmhWJOJOYDYi4c5oFhDhTm/2DuC+Z9YM4DxvtjrDvGeWOMM8b3YmwrxnViTCPG82Es27lxXCaM38HYFYzbwJgFXK/HtWpcp8U1Slyfw7UpXJfBNQmcj8e5aJyHxTlInH/DuSecd8E5B3zexmdNfM7CZwy8v8Z7S7yvwnsK/D3F3xIcR3EMwesHzx1wS7z59uCUcv59O+jp8PWJ7Pa4lEd5z9dD2Qt8P95Ft19Jv4iPajNOH0r5AA/cfPt2KkTvc7n6ds49nbz/Vsf9ve9Jt7tU3oq859f5nfXbLqYi4flVSYADo2+nsgAHRt9OFQEOjL6dqgIcGH071QQ4MPp2qgtwYPTt1BDgwOjbqSnAgdG3U0uAA6Nvp7YAB0bfTh0BDoy+nboCHBh9O/UEODD6duoLcGD07TQQ4MDo22kowIHRt9NIgAOjb6exAAdG304TAQ6Mvp2mAhwYfTvNBDgw+naaC3Bg9O20EODA6NtpKcCB0bfTSoADo2+ntQAHRt9OGwEOjL6dtgIcGH077QQ4MPp22gtwYPTtdBDgwOjb6SjAgdG300mAA6Nvp7MAB0bfThcBDoy+na4CHBh9O90EODD6droLcGD07fQQ4MDo2+kpwIHRt9NLgAOjb6e3AAdG304fAQ6Mvp2+AhwYfTv9BDgw+nb6C3Bg9O0MEODA6NsZKMCB0bczSIADo29nsAAHRt/OEAEOjL6doQIcGH07wwQ4MPp2hgtwYPTtjBDgwOjbGSnAgdG3M0qAA6NvZ7QAB0bfzhgBDoy+nfsEODD6dsYKcGD07YwT4MDo2xkvwIHRt3O/AAdG384EDw7oFCnnzvftoDMBfQGYK4954pgjjfnBmBuLeaGYE4n5gJgLh3lgmAOF+T+Y+4J5H5jzgPH+GOuOcd4Y44zxvRjbinGdGNOI8XwYy4ZxXBjDhPE7GLuCcRsYs4Dr9bhWjeu0uEaJ63O4NoXrMrgmgfPxOBeN87A4B4nzbzj3hPMuOOeAz9v4rInPWfiMgffXeG+J91V4T4G/p/hbguMojiF4/eC5A26Jt2SezEs6/74d9HT4+kR2e1zK4wHP10O5C3w/3kW3X0m/iI9qM04fygMBHrj59u1MjN7ncvXtnNtl77/VcX/ve9LtLpX3Qd7z6/zO+m0X8yDh+TVJgAOjb+chAQ6Mvp3JAhwYfTsPC3Bg9O1MEeDA6Nt5RIADo29nqgAHRt/OowIcGH070wQ4MPp2HhPgwOjbmS7AgdG387gAB0bfzgwBDoy+nScEODD6dmYKcGD07cwS4MDo23lSgAOjb2e2AAdG385TAhwYfTtzBDgw+naeFuDA6NuZK8CB0bfzjAAHRt/OPAEOjL6dZwU4MPp25gtwYPTtPCfAgdG3s0CAA6Nv53kBDoy+nYUCHBh9Oy8IcGD07SwS4MDo23lRgAOjb2exAAdG385LAhwYfTtLBDgw+nZeFuDA6NtZKsCB0bfzigAHRt/OMgEOjL6dVwU4MPp2lgtwYPTtvCbAgdG3s0KAA6Nv53UBDoy+nZUCHBh9O6sEODD6dlYLcGD07bwhwIHRt7NGgAOjb+dNAQ6Mvp21AhwYfTtvCXBg9O2sE+DA6Nt5W4ADo29nvQAHRt/OOwIcGH07GwQ4MPp23hXgwOjb2SjAgdG3854AB0bfziYBDoy+nfcFODD6djYLcGD07XzgwcFOE7ry7nzfDjoT0BeAufKYJ4450pgfjLmxmBeKOZGYD4i5cJgHhjlQmP+DuS+Y94E5Dxjvj7HuGOeNMc4Y34uxrRjXiTGNGM+HsWwYx4UxTBi/g7ErGLeBMQu4Xo9r1bhOi2uUuD6Ha1O4LoNrEjgfj3PROA+Lc5A4/4ZzTzjvgnMO+LyNz5r4nIXPGHh/jfeWeF+F9xT4e4q/JTiO4hiC1w+eO+CWePPtwcmf2b9vBz0dvj6R3R6X8tji+Xoof4Hvx7vo9ivpF/FRbcbpQ9kS4IFb8iQ+l+L9YfQ+l6tvJwX+4/23Ou7vfU+63aXybuU9v87vrN92MVsJz6+PBDgw+na2CXBg9O18LMCB0bezXYADo2/nEwEOjL6dHQIcGH07nwpwYPTt7BTgwOjb+UyAA6Nv53MBDoy+nS8EODD6dnYJcGD07XwpwIHRt7NbgAOjb+crAQ6Mvp09AhwYfTtfC3Bg9O3sFeDA6NvZJ8CB0bezX4ADo2/nGwEOjL6dAwIcGH073wpwYPTtHBTgwOjb+U6AA6Nv55AAB0bfzvcCHBh9O4cFODD6dn4Q4MDo2zkiwIHRt/OjAAdG385RAQ6Mvp2fBDgw+naOCXBg9O38LMCB0bdzXIADo2/nFwEOjL6dEwIcGH07JwU4MPp2TglwYPTt/CrAgdG3c1qAA6Nv5zcBDoy+nTMCHBh9O78LcGD07ZwV4MDo2/lDgAOjb+dPAQ6Mvp2/BDgw+nZctv/7HBh9OzECHBh9O8kEODD6dpILcGD07aQQ4MDo20kpwIHRt5NKgAOjb+cKAQ6Mvp3UAhwYfTtXCnBg9O2kEeDA6Nu5SoADo28nrQAHRt/O1QIcGH076QQ4MPp2rvHggE6RCu583w46E9AXgLnymCeOOdKYH4y5sZgXijmRmA+IuXCYB4Y5UJj/g7kvmPeBOQ8Y74+x7hjnjTHOGN+Lsa0Y14kxjRjPh7FsGMeFMUwYv4OxKxi3gTELuF6Pa9W4TotrlLg+h2tTuC6DaxI4H49z0TgPi3OQOP+Gc08474JzDvi8jc+a+JyFzxh4f433lnhfhfcU+HuKvyU4juIYgtcPnjvglnjz7cEp4fz7dj4K6Nv5yKNvJ73n66HCBb4f76Lbr6RfxEe1GacPxYdD5M23bydD9D6Xq28nJf7j/bc67u99T7rdpfJm5D2/zu+s33YxGbNdfo9rBTgw+nYyCXBg9O1cJ8CB0bcTK8CB0bdzvQAHRt9OZgEOjL6dLAIcGH07cQIcGH07WQU4MPp2sglwYPTtZBfgwOjbySHAgdG3c4MAB0bfTrwAB0bfzo0CHBh9OzkFODD6dm4S4MDo28klwIHRt3OzAAdG305uAQ6Mvp1bBDgw+nbyCHBg9O3kFeDA6Nu5VYADo2/nNgEOjL6dfAIcGH07twtwYPTt5BfgwOjbuUOAA6Nvp4AAB0bfTkEBDoy+nUICHBh9O4UFODD6du4U4MDo27lLgAOjb+duAQ6Mvp17BDgw+naKCHBg9O3cK8CB0bdTVIADo2+nmAAHRt9OcQEOjL6dEgIcGH07JQU4MPp2SglwYPTtlBbgwOjbKSPAgdG3U1aAA6Nvp5wAB0bfTnkBDoy+nQoCHBh9OxUFODD6dioJcGD07VQW4MDo26kiwIHRt1NVgAOjb6eaAAdG3051AQ6Mvp0aAhwYfTs1BTgw+nZqCXBg9O3UFuDA6NupI8CB0bdTV4ADo2+nnmffTkV3vm8HnQnoC8BcecwTxxxpzA/G3FjMC8WcSMwHxFy4c/PATJj/g7kvmPeBOQ8Y74+x7hjnjTHOGN+Lsa0Y14kxjRjPh7FsGMeFMUwYv4OxKxi3gTELuF6Pa9W4TotrlLg+h2tTuC6DaxI4H49z0TgPi3OQOP+Gc08474JzDvi8jc+a+JyFzxh4f433lnhfhfcU+HuKvyU4juIYgtcPnjvglnjz7cFBZ8lqz74d9HT4+kR2e1zKo77n66HiBb4f76Lbr6RfxEe1GacPpX6AB26+fTsNove5XH07qfAf77/VcX/ve9LtLpW3Ie/5dX5n/baLaUh4fjXy9PB9ze+Ode6r2Ojvv8fu+3Ws/+PZWODxZPQGNRHgwOgNairAgdEb1EyAA6M3qLkAB0ZvUAsBDozeoJYCHBi9Qa0EODB6g1oLcGD0BrUR4MDoDWorwIHRG9ROgAOjN6i9AAdGb1AHAQ6M3qCOAhwYvUGdBDgweoM6C3Bg9AZ1EeDA6A3qKsCB0RvUTYADozeouwAHRm9QDwEOjN6gngIcGL1BvQQ4MHqDegtwYPQG9RHgwOgN6ivAgdEb1E+AA6M3qL8AB0Zv0AABDozeoIECHBi9QYMEODB6gwYLcGD0Bg0R4MDoDRoqwIHRGzRMgAOjN2i4AAdGb9AIAQ6M3qCRAhwYvUGjBDgweoNGC3Bg9AaNEeDA6A26T4ADozdorAAHRm/QOAEOjN6g8QIcGL1B9wtwYPQGTRDgwOgNekCAA6M3aKIAB0Zv0IMCHBi9QZMEODB6gx4S4MDoDZoswIHRG/SwAAdGb9AUAQ6M3qBHBDgweoOmCnBg9AY9KsCB0Rs0TYADozfoMQEOjN6g6QIcGL1BjwtwYPQGzRDgwOgNesKDA7pRKrnzvUHoTEBfAObKY5445khjfjDmxmJeKOZEYj4g5sJhHhjmQGH+D+a+YN4H5jxgvD/GumOcN8Y4Y3wvxrZiXCfGNGI8H8ayYRwXxjBh/A7GrmDcBsYs4Ho9rlXjOi2uUeL6HK5N4boMrkngfDzOReM8LM5B4vwbzj3hvAvOOeDzNj5r4nMWPmPg/TXeW+J9Fd5T4O8p/pbgOIpjCF4/eO6AW+ItabdHND1AHv0h57pa0NOR1OdS20V6XGqfZmbzez1UusD34110+5X0i/ioNuP0uswM8MDNtzdoVvQ+l6s36Ar8x/tvddzf+550u0vlfZL3/Dq/s37bxTxJeH7NFuDA6Nt5SoADo29njgAHRt/O0wIcGH07cwU4MPp2nhHgwOjbmSfAgdG386wAB0bfznwBDoy+necEODD6dhYIcGD07TwvwIHRt7NQgAOjb+cFAQ6Mvp1FAhwYfTsvCnBg9O0sFuDA6Nt5SYADo29niQAHRt/OywIcGH07SwU4MPp2XhHgwOjbWSbAgdG386oAB0bfznIBDoy+ndcEODD6dlYIcGD07bwuwIHRt7NSgAOjb2eVAAdG385qAQ6Mvp03BDgw+nbWCHBg9O28KcCB0bezVoADo2/nLQEOjL6ddQIcGH07bwtwYPTtrBfgwOjbeUeAA6NvZ4MAB0bfzrsCHBh9OxsFODD6dt4T4MDo29kkwIHRt/O+AAdG385mAQ6Mvp0PBDgw+na2CHBg9O18KMCB0bezVYADo2/nIwEOjL6dbQIcGH07HwtwYPTtbBfgwOjb+USAA6NvZ4cAB0bfzqcCHBh9OzsFODD6dj4T4MDo2/lcgAOjb+cLAQ6Mvp1dAhwYfTtfCnBg9O3s9uCATpHK7nzfDjoT0BeAufKYJ4450pgfjLmxmBeKOZGYD4i5cJgHhjlQmP+DuS+Y94E5Dxjvj7HuGOeNMc4Y34uxrRjXiTGNGM+HsWwYx4UxTBi/g7ErGLeBMQu4Xo9r1bhOi2uUuD6Ha1O4LoNrEjgfj3PROA+Lc5A4/4ZzTzjvgnMO+LyNz5r4nIXPGHh/jfeWeF+F9xT4e4q/JTiO4hiC1w+eO+CWePPtwUFnyaq48/ePpp8HPR2+PpHdHpfy+Mrz9VD5At+Pd9HtV9Iv4qPajNOH8lWAB26+fTt7oveJ8ejbifHo24n5z3+c33MX+550u0vl/dqDK3538oR/L7RdSL9VtPfdm82PX+LN9/Hf97//+P+9QcK/8VHePfHYFXLMS7zvpdjsD3yuJG73L49P//W7Pbaj9BR9wztOnzf1247SU3RAgAOjp+hbAQ6MnqKDAhwYPUXfCXBg9BQdEuDA6Cn6XoADo6fosAAHRk/RDwIcGD1FRwQ4MHqKfhTgwOgpOirAgdFT9JMAB0ZP0TEBDoyeop8FODB6io4LcGD0FP0iwIHRU3RCgAOjp+ikAAdGT9EpAQ6MnqJfBTgweopOC3Bg9BT9JsCB0VN0RoADo6fodwEOjJ6iswIcGD1FfwhwYPQU/SnAgdFT9JcAB0ZPkcv+f58Do6coRoADo6comQAHRk9RcgEOjJ6iFAIcGD1FKQU4MHqKUglwYPQUXSHAgdFTlFqAA6On6EoBDoyeojQCHBg9RVcJcGD0FKUV4MDoKbpagAOjpyidAAdGT9E1AhwYPUXpBTgweooyCHBg9BRlFODA6Cm6VoADo6cokwAHRk/RdQIcGD1FsQIcGD1F1wtwYPQUZRbgwOgpyiLAgdFTFCfAgdFTlFWAA6OnKJsAB0ZPUXYBDoyeohwCHBg9RTcIcGD0FMULcGD0FN0owIHRU5Qzu5+H92s77u+ukaTbXaqrotONl3e/0EeyL5t/58lN0fOK8c2QdF8u9ft3xzoXGxf9/ffY/V+P838scmX3fx7i5ss28r6XylLecfYpxkW/TxUcZ5+Suej3qaLj7FNyF/0+VXL/b/bpUj6VXfT7nyFF2D75HneqOI5PVcfxqeY4j2V1F/1jeR3psazhOD41HcenluP41HYcnzqO41PXcXzqOY5PfcfxaeA4Pg0dx6eR4/g0dhyfJo7j09RxfJo5jk9zx/Fp4Tg+LR3Hp5Xj+LR2HJ82juPT1nF82jmOT3vH8engOD4dHcenk+P4dHYcny6O49PVcXy6OY5Pd8fx6eE4Pj0dx6eX4/j0dhyfPo7j09dxfPo5jk9/x/EZ4Dg+Ax3HZ5Dj+Ax2HJ8hjuMz1HF8hjmOz3DH8RnhOD4jHcdnlOP4jHYcnzGO43Of4/iMdRyfcY7jM95xfO53HJ8JjuPzgOP4THQcnwcdx2eS4/g85Dg+kx3H52HH8ZniOD6POI7PVMfxedRxfKY5js9jjuMz3XF8HnccnxmO4/OE4/jMdByfWY7j86Tj+Mx2HJ+nHMdnjuP4PO04PnMdx+cZx/GZ5zg+zzqOz3zH8XnOcXwWOI7P847js9BxfF5wHJ9FjuPzouP4LHYcn5ccx2eJ4/i87Dg+Sx3H5xXH8VnmOD6vOo7Pcsfxec1xfFY4js/rjuOz0nF8VjmOz2rH8XnDcXzWOI7Pm47js9ZxfN5yHJ91juPztuP4rHccn3ccx2eD4/i86zg+Gx3H5z3H8dnkOD7vO47PZsfx+cBxfLY4js+HjuOz1XF8PnIcn22O4/Ox4/hsdxyfTxzHZ4fj+HzqOD47HcfnM8fx+dxxfL5wHJ9djuPzpeP47HYcn68cx2eP4/h87Tg+ex3HZ5/j+Ox3HJ9vHMfngOP4fOs4Pgcdx+c7x/E55Dg+3zuOz2HH8fnBcXyOOI7Pj47jc9RxfH5yHJ9jjuPzs+P4HHccn18cx+eE4/icdByfU47j86vj+Jx2HJ/fHMfnjOP4/O44Pmcdx+cPx/H503F8/nIcH2wQ5X2TbOjnE0PySUbySU7ySUHySUnySUXyuYLkk5rkcyXJJw3J5yqST1qSz9Ukn3Qkn2tIPulJPhlIPhlJPteSfDKRfK4j+cSSfK4n+WQm+WQh+cSRfLKSfLKRfLKTfHKQfG4g+cSTfG4k+eQk+dxE8slF8rmZ5JOb5HMLyScPyScvyedWks9tJJ98JJ/bST75ST53kHwKkHwKknwKkXwKk3zuJPncRfK5m+RzD8mnCMnnXpJPUZJPMZJPcZJPCZJPSZJPKZJPaZJPGZJPWZJPOZJPeZJPBZJPRZJPJZJPZZJPFZJPVZJPNZJPdZJPDZJPTZJPLZJPbZJPHU8f3zXPsLbhN9miv/+bdv+92fxz1CXkOOCRY21gjnqEHN965HgrMEd9Qo6DHjnWBeZoQMjxnUeOtwNzNCTkOOSRY31gjkaEHN975HgnMEdjQo7DHjk2BOZoQsjxg0eOdwNzNCXkOOKRY2NgjmaEHD965HgvMEdzQo6jHjk2BeZoQcjxk0eO9wNztCTkOOaRY3NgjlaEHD975PggMEdrQo7jHjm2BOZoQ8jxi0eODwNztCXkOOGRY2tgjnaEHCc9cnwUmKM9IccpjxzbAnN0IOT41SPHx4E5OhJynPbIsT0wRydCjt88cnwSmKMzIccZjxw7AnN0IeT43SPHp4E5uhJynPXIsTMwRzdCjj88cnwWmKM7IcefHjk+D8zRg5DjL48cXwTm6EnI4bJHf/9dgTl6EXLEeOT4MjBHb0KOZB45dgfm6EPIkdwjx1eBOfoScqTwyLEnMEc/Qo6UHjm+DszRn5AjlUeOvYE5BhByXOGRY19gjoGEHKk9cuwPzDGIkONKjxzfBOYYTMiRxiPHgcAcQwg5rvLI8W1gjqGEHGk9chwMzDGMkONqjxzfBeYYTsiRziPHocAcIwg5rvHI8X1gjpGEHOk9chwOzDGKkCODR44fAnOMJuTI6JHjSGCOMYQc13rk+DEwx32EHJk8chwNzDGWkOM6jxw/BeYYR8gR65HjWGCO8YQc13vk+Dkwx/2EHJk9chwPzDGBkCOLR45fAnM8QMgR55HjRGCOiYQcWT1ynAzM8SAhRzaPHKcCc0wi5MjukePXwBwPEXLk8MhxOjDHZEKOGzxy/BaY42FCjniPHGcCc0wh5LjRI8fvgTkeIeTI6ZHjbGCOqZ45YjxzYJ9uyv4/81/K5tGY6D063Xh5H4vdsfYeMS76+++x+38b6/9YTIu5/Dkye+Y4GJDjMUKOLJ45vgvIMZ2QI84zx6GAHI8TcmT1zPF9QI4ZhBzZPHMcDsjxBCFHds8cPwTkmEnIkcMzx5GAHLMIOW7wzPFjQI4nCTniPXMcDcgxm5DjRs8cPwXkeIqQI6dnjmMBOeYQctzkmePngBxPE3Lk8sxxPCDHXEKOmz1z/BKQ4xlCjtyeOU4E5JhHyHGLZ46TATmeJeTI45njVECO+YQceT1z/BqQ4zlCjls9c5wOyLGAkOM2zxy/BeR4npAjn2eOMwE5FhJy3O6Z4/eAHC8QcuT3zHE2IMciQo47PHP8EZDjRUKOAp45/gzIsZiQo6Bnjr8CcrxEyFHIM4e73j/HEkKOwp45YgJyvEzIcadnjmQBOZYSctzlmSN5QI5XCDnu9syRIiDHMkKOezxzpAzI8SohRxHPHKkCciwn5LjXM8cVATleI+Qo6pkjdUCOFYQcxTxzXBmQ43VCjuKeOdIE5FhJyFHCM8dVATlWEXKU9MyRNiDHakKOUp45rg7I8QYhR2nPHOkCcqwh5CjjmeOagBxvEnKU9cyRPiDHWkKOcp45MgTkeIuQo7xnjowBOdYRclTwzHFtQI63CTkqeubIFJBjPSFHJc8c1wXkeIeQo7JnjtiAHBsIOap45rg+IMe7hBxVPXNkDsixkZCjmmeOLAE53iPkqO6ZIy4gxyZCjhqeObIG5HifkKOmZ45sATk2E3LU8syRPSDHB4QctT1z5AjIsYWQo45njhsCcnxIyFHXM0d8QI6thBz1PHPcGJDjI0KO+p45cgbk2EbI0cAzx00BOT4m5GjomSNXQI7thByNPHPcHJDjE0KOxp45cgfk2EHI0cQzxy0BOT4l5GjqmSNPQI6dhBzNPHPkDcjxGSFHc88ctwbk+JyQo4VnjtsCcnxByNHSM0e+gBy7CDlaeea4PSDHl4QcrT1z5A/IsZuQo41njjsCcnxFyNHWM0eBgBx7CDnaeeYoGJDja0KO9p45CgXk2EvI0cEzR+GAHPsIOTp65rgzIMd+Qo5OnjnuCsjxDSFHZ88cdwfkOEDI0cUzxz0BOb4l5OjqmaNIQI6DhBzdPHPcG5DjO0KO7p45igbkOETI0cMzR7GAHN8TcvT0zFE8IMdhQo5enjlKBOT4gZCjt2eOkgE5jhBy9PHMUSogx4+EHH09c5QOyHGUkKOfZ44yATl+IuTo75mjbECOY4QcAzxzlAvI8TMhx0DPHOUDchwn5BjkmaNCQI5fCDkGe+aoGJDjBCHHEM8clQJynCTkGOqZo3JAjlOEHMM8c1QJyPErIcdwzxxVA3KcJuQY4ZmjWkCO3wg5RnrmqB6Q4wwhxyjPHDUCcvxOyDHaM0fNgBxnCTnGeOaoFZDjD0KO+zxz1A7I8Schx1jPHHUCcvxFyDHOM0fdgBzYsSjvG5xjvGeOegE5Ygg57vfMUT8gRzJCjgmeORoE5EhOyPGAZ46GATlSEHJM9MzRKCBHSkKOBz1zNA7IkYqQY5JnjiYBOa4g5HjIM0fTgBypCTkme+ZoFpDjSkKOhz1zNA/IkYaQY4pnjhYBOa4i5HjEM0fLgBxpCTmmeuZoFZDjakKORz1ztA7IkY6QY5pnjjYBOa4h5HjMM0fbgBzpCTmme+ZoF5AjAyHH45452gfkyEjIMcMzR4eAHNcScjzhmaNjQI5MhBwzPXN0CshxHSHHLM8cnQNyxBJyPOmZo0tAjusJOWZ75ugakCMzIcdTnjm6BeTIQsgxxzNH94AccYQcT3vm6BGQIyshx1zPHD0DcmQj5HjGM0evgBzZCTnmeeboHZAjByHHs545+gTkuIGQY75njr4BOeIJOZ7zzNEvIMeNhBwLPHP0D8iRk5Djec8cAwJy3ETIsdAzx8CAHLkIOV7wzDEoIMfNhByLPHMMDsiRm5DjRc8cQwJy3ELIsdgzx9CAHHkIOV7yzDEsIEdeQo4lnjmGB+S4lZDjZc8cIwJy3EbIsdQzx8iAHPkIOV7xzDEqIMfthBzLPHOMDsiRn5DjVc8cYwJy3EHIsdwzx30BOQoQcrzmmWNsQI6ChBwrPHOMC8hR6DLnwFr0uTzWosea77i/b47Cnjn+s6Gnz50kn7tIPneTfO4h+RQh+dxL8ilK8ilG8ilO8ilB8ilJ8ilF8ilN8ilD8ilL8ilH8ilP8qlA8qlI8qlE8qlM8qlC8qlK8qlG8qlO8qlB8qlJ8qlF8qlN8qlD8qlL8qlH8qlP8mlA8mlI8mlE8mlM8mlC8mlK8mlG8mlO8mlB8mlJ8mlF8mlN8mlD8mlL8mlH8mlP8ulA8ulI8ulE8ulM8ulC8ulK8ulG8ulO8ulB8ulJ8ulF8ulN8ulD8ulL8ulH8ulP8hlA8hlI8hlE8hlM8hlC8hlK8hlG8hlO8hlB8hlJ8hlF8hlN8hlD8rmP5DOW5DOO5DOe5HM/yWcCyecBks9Eks+DJJ9JJJ+HSD6TST4Pk3ymkHweIflMJfk8SvKZRvJ5jOQzneTzOMlnBsnnCZLPTJLPLJLPkySf2SSfp0g+c0g+T5N85pJ8niH5zCP5PEvymU/yeY7ks4Dk8zzJZyHJ5wWSzyKSz4skn8Ukn5dIPktIPi+TfJaSfF4h+Swj+bxK8llO8nmN5LOC5PM6yWclyWcVyWc1yecNks8aks+bJJ+1JJ+3SD7rSD5vk3zWk3zeIflsIPm8S/LZSPJ5j+SzieTzPslnM8nnA5LPFpLPhySfrSSfj0g+20g+H5N8tpN8PiH57CD5fEry2Uny+Yzk8znJ5wuSzy6Sz5ckn90kn69IPntIPl+TfPaSfPaRfPaTfL4h+Rwg+XxL8jlI8vmO5HOI5PM9yecwyecHks8Rks+PJJ+jJJ+fSD7HSD4/k3yOk3x+IfmcIPmcJPmcIvn8SvI5TfL5jeRzhuTzO8nnLMnnD5LPnySfv0g+LjnHJ4bkk4zkk5zkk4Lkk5Lkk4rkcwXJJzXJ50qSTxqSz1Ukn7Qkn6tJPulIPteQfNKTfDKQfDKSfK4l+WQi+VxH8okl+VxP8slM8slC8okj+WQl+WQj+WQn+eQg+dxA8okn+dxI8slJ8rmJ5JOL5HMzySc3yecWkk8ekk9eks+tJJ/bSD75SD63k3zyk3zuIPkUIPkUJPkUIvkUJvncSfK5i+RzN8nnHpJPEZLPvSSfoiSfYiSf4iSfEiSfkiSfUiSf0iSfMiSfsiSfciSf8iSfCiSfiiSfSiSfyiSfKiSfqiSfaiSf6iSfGiSfmiSfWiSf2iSfOiSfuiSfeiSf+iSfBiSfhiSfRiSfxiSfJiSfpiSfZiSf5iSfFiSfliSfViSf1iSfNiSftiSfdiSf9iSfDiSfjiSfTiSfziSfLiSfriSfbiSf7iSfHiSfniSfXiSf3iSfPiSfviSffiSf/iSfASSfgSSfQSSfwSSfISSfoSSfYSSf4SSfESSfkSSfUSSf0SSfMSSf+0g+Y0k+40g+40k+95N8JpB8HiD5TCT5PEjymUTyeYjkM5nk8zDJZwrJ5xGSz1SSz6Mkn2kkn8dIPtNJPo+TfGaQfJ4g+cwk+cwi+TxJ8plN8nmK5DOH5PM0yWcuyecZks88ks+zJJ/5JJ/nAn2SJfEp0L5m330F5+ZdWbvCijFjGrfIU/hQ5SGrek8tt+/ktGP281wu+n1a4LlPvvuyMs65/dmiv39ju+/ebP5snyc9hgtJPi+QnispXPT7tIi0Tyld9Pv0ImmfUrno92kxaZ+ucNHv00ukfUrtot+nJaR9utJFv08vk/YpjYt+n5aS9ukqF/0+vULap7Qu+n1aRtqnq130+/QqaZ/Suej3aTlpn65x0e/Ta6R9Su+i36cVpH3K4KLfp9dJ+5TRRb9PK0n7dK2Lfp9WkfYpk4t+n1aT9uk6F/0+vUHap1gX/T6tIe3T9S76fXqTtE+ZXfT7tJa0T1lc9Pv0Fmmf4lz0+7SOtE9ZXfT79DZpn7K56PdpPWmfsrvo9+kd0j7lcNHv0wbSPt3got+nd0n7FO+i36eNpH260UW/T++R9imni36fNpH26SYX/T6977FPyRP2BeMucCtvqmCqaKpkqmyqYqpqqmaqbqphqmmqZaptqmOqa6pnqm9qYGpoamRqbGpiampqZmpuamFqaWplam1qY2pramdqb+pg6mjqZOps6mLqaupm6m7qYepp6mXqbepj6mvqZ+pvGmAaaBpkGmwaYhpqGmYabhphGmkaZRptGmO6zzTWNM40HjxME0wPmCaaHjRNMj1kmmx62DTF9IhpqulR0zTTY6bppsdNM0xPmGaaZpmeNM02PWWaY3raNNf0jGme6VnTfNNzpgWm500LTS+YFpleNC02vWRaYnrZtNT0immZ6VXTctNrphWm100rTatMq01vmNaY3jStNb1lWmd627Te9I5pg+ld00bTe6ZNpvdNm00fmLaYPjRtNX1k2mb62LTd9Ilph+lT007TZ6bPTV+Ydpm+NO02fWXaY/ratNe0z7Tf9I3pgOlb00HTd6ZDpu9Nh00/mI6YfjQdNf1kwmvjZ9Nx0y+mE6aTplOmX02nTb+Zzph+N501/WH60/SXCSd3Y0zJTMlNKUwpTalMV5hSm640pTFdZUprutqUznSNKb0pgymj6VpTJtN1pljT9abMpiymOFNWUzZTdlMO0w2meNONppymm0y5TDebcptuMeUx5TXdarrNlM90uym/6Q5TAVNBUyFTYdOdprtMd5vuMRUx3WsqaipmKm4qYSppKmUqbSpjKmsqZypvqmCqaKpkqmyqYqpqqmaqbqphqmmqZaptqmOqa6pnqm9qYGpoamRqbGpiampqZmpuamFqaWplam1qY2pramdqb+pg6mjqZOps6mLqaupm6m7qYepp6mXqbepj6mvqZ+pvGmAaaBpkGmwaYhpqGmYabhphGmkaZRptGmO6zzTWNM403nS/aYLpAdNE04OmSaaHTJNND5ummB4xTTU9appmesw03fS4aYbpCdNM0yzTk6bZpqdMc0xPm+aanjHNMz1rmm96zrTA9LxpoekF0yLTi6bFppdMS0wvm5aaXjEtM71qWm56zbTC9LpppWmVabXpDdMa05umtaa3TOtMb5vWm94xbTC9a9poes+0yfS+abPpA9MW04emraaPTNtMH5u2mz4x7TB9atpp+sz0uekL0y7Tl6bdpq9Me0xfm/aa9pn2m74xHTB9azpo+s50yPS96bDpB9MR04+mo6afTMdMP5uOm34xnTCdNJ0y/Wo6bfrNdMb0u+ms6Q/Tn6a/TPjjF2NKZkpuSmFKaUplusKU2nSlKY3pKlNa09WmdKZrTOlNGUwZTdeaMpmuM8WarjdlNmUxxZmymrKZsptymG5Ah7/pRlNO002mXKabTblNt5jymPKabjXdZspnut2U33SHqYCpoKmQqbDpTtNdprtN95iKmO41FTUVMxU3lTCVNJUylTaVMZU1lTOVN1UwVTRVMlU2VTFVNVUzVTfVMNU01TLVNtUx1TXVM9U3NTA1NDUyNTY1MTU1NTM1N7UwtTS1MrU2tTG1NbUztTd1MHU0dTJ1NnUxdTV1M3U39TD1NPUy9Tb1MfU19TP1Nw0wDTQNMg02DTENNQ0zDTeNMI00jTKNNo0x3WcaaxpnGm+63zTB9IBpoulB0yTTQ6bJpodNU0yPmKaaHjVNMz1mmm563DTD9IRppmmW6UnTbNNTpjmmp01zTc+Y5pmeNc03PWdaYHretND0gmmR6UXTYtNLpiWml01LTa+YlpleNS03vWZaYXrdtNKEtemxbjzWdMd661gLHeuUYw1xrO+NtbexLjbWrMZ60ljrGeswY41krF+MtYWx7i/W5MV6uVjLFuvMYg1YrM+KtVOxrinWHMV6oFirE+toYo1LrD+JtSGxbiPWVMR6h1iLEOsEYg0/rK+Hte+wLh3WjMN6blhrDeugYY0yrB+Gtb2w7hbWxMJ6VVhLCus8YQ0mrI+EtYuwrhDW/MF6PFgrB+vYYI0ZrP+CtVmwbgrWNMF6I1gLBOt0YA0NvAHG2hNYFwJrNmA9Bax1gHUIsEYA+vvRrY/ee3TSoy8eXe7oWUcHOvrJ0R2OXm90bqMPG13V6JFGxzP6l9GNjN5idAqj7xddvOjJPddha0L3K3pZ0ZmKPlN0jaIHFB2d6M9EtyV6J9EJib5GdCmi5xAdhOgHRHcfevXQeYc+OnTFoccNHWvoP0M3GXrD0OmFvi10YaGnCh1S6HdC9xJ6kdBZhD4hdP2ghwcdOeivQbcMel/QyYK+FHSZoGcEHSDo50B3Bnot0DmBPgh0NaBHAR0H6B9ANwDm7WNOPea7Yy465oljDjfmV2PuM+YlY84w5vNiri3mwWKOKuaPYm4n5l1iTiTmK2IuIeb5YQ4e5sdh7hrmlWHOF+ZjYa4U5jFhjhHm/2BuDubNYE4L5ptgLgjmaWAOBeY3YO4B5gVgzD7G02OsOz4PYYw4xm9jbDXGPWNMMsYLYywvxtliDCzGp2LsKMZ1YswlxkNirCLGEWKMH8bfYWwcxq1hTBnGe2EsFsZJYQwTxhdh7A/G5WDMDMazYKwJxnZgXATGLGA8Aa7f43o5rk/jejCuv+J6J64v4noerp/hehWuD+F6DK5/4HoDzu/jfDrOX+N8Mc7P4nwozj/ifB/Or+F8Fs4f4XwNzo/gfAQ+/+PzNj7f4vMkXir4bJh4S/jTee7zI8Yh4Lo/rrPjujauI+O6La6T4rokrgPiuhuuc+G6Eq7j4LoJrlPgugDOw+O8N84z47wuzqPivCXOE+K8HM6D4bwTzvMknle50f39Of0m9/eYmZtNuU23mPKY8ppuNd1myme63ZTfdIepgKmgqZCpsOlO012mu033mIqY7jUVNRUzFTeVMJU0lTKVNpUxlTWVc//zFh/xda2Efx/ptPGDEz9csS3yfnX+4WeN/+FnLRP+PfpwmnF7ftg1JfJnbf9hu77/8LMRCf+Ozt346qL57no18mdtUlzcr2uKi2/XKdXF/br9w89e/4efrU91cb9zT7iLbPdsmotnWJzm4r9zX9qL/85v/+FnBa+++M+KX31xv6HpL75d9gwXz5A7w8V/Z7NrL/47W/3Dz178h5+tuPbifidiL77djOsvnmHu9Rf/nZ9mufjv/OIiP0uZ8G+ehH/b9OvXoW//Vu169ejdpn+Xtt07tOrVt007+2dgh779uvTq2WpQ3za9e3fom7D7545juCVL+BfHPBzv4l1Ut5jUEdv5bz+6fOqkv9Bre3du+xgX6v93/sTjfMj2qRJ3JGL7yH1J/L34m3FVxNdXJ/EP3P/y/3b/M/7DPic+NpHH/3gX1S0lDjfImfBSP5c9V8LXA/p36d6l/5Ay556q5f7zTK117ona8O/nadJfGJPk/8td5PtpIvY7RcR9omcyuHzi70yeGCbi68hbiiT/Jt7nuoR/r4zwT/w3mvGMu949uXN51UI9MiTZHrfExwY58yV83bNX/y4dh7Tq0LPPgA4DOrRv1XtA2+5d2rXqOKBnu/54ybdr07174us+a8I2/8uv+8r/8nVfOfF5nzJs+xSJ26cK2/6Cr/vIfUn8eeJzomLEthWTeCbep1LEfSpF3Ae3tO6/X6eR3ok/SxbxswpJfpb8Av6JP0txAV+8djNEfJ0x4et/ebyqfDmPV4nHnMTXH445tyR83btvl4Ft+neoee6lUiHhlVL73AulYsLrpJy9TJLaRaJJij8p8qSYI9GmcBe/RW4XExHlXx7GKv/bw1hcwr+X+zCWI+Hrc4ephMfp/MGrS8/+Hfr2bNP9joR7/S8fuKr9ywNXtX954EmZuP0VYdtf8MAVuS+JvzfxWVAhYtsKSTwvdeCKvE/liPtUjrgPbuyDW+LPUl5gnyIPIPg6NmIb3KpE7HtMkp9VjfhZ5JuopK9wj8erSuokOTy3T5bR/U//xN+VeMDM687niHw+JN7fReQIfN4lj3y9/eebSb4X+fuvdP/qdRITk+T3JfolzZf4OOGPReIRL+EghD8Itf/+MvFvROSeRv72yKNR5M/dBZwin3X/5m9K4v+nvMDvvdj2Sb+X9NENOyqepx3plZR25O9P5y78NiByu8h9THq/5BfZ36TeyS7gnXjff5k5WeK2KS7g+0+ZL/RKTOsu/rYm6REw8nf8P3ifUO3fvk/In/Dv5X6fkPhRsn2Xvh3sxTiwg703sLMa/RN9EzlcF/F7Qt4ZZArb/r+OKi7JvkT+3qTvYJyHR+It8rFKekv8vUkfp9RJ/o3x94+52H7EXODOiR8ZMkV8L5FH4pE28rHs36FTh76t+gywt+gdevZPurdpIpx8XqWJ218Vtv0FH9U0EV9fldQw4d8LveOPucj/J0vy7z/dN+Yffm/aC/ws8XcmPhqR+5uY4/8DaO2FyqUpGwA=",
|
|
1881
|
-
"debug_symbols": "rd3fjl1bea39e1nHHMze3z9j9NzKVhSRhERICCJCtvQp4t4/V9V8f8Mg2SJknzD7WuDeylXzscumjaf99y//+pt//q9//6ff/v7f/vCfv/zD//nvX/75j7/93e9+++//9Ls//Muv//TbP/z+27/9719eH/+x8pd/OH/+1S/r8x/OL/9wf/uH/fEPO375h/XtnF8v9fXSXy/X18v99fLth+WvfonX18v6evl2SX17ia+X/Hr5dsv17aW/Xr7dcv35W958WP/0pz/+5jcf2d99nN8++v/49R9/8/s//fIPv/+v3/3uV7/831//7r8+/0f/+R+//v3n659+/cdv/+3rV7/85vf/+u3124X/9tvf/ebj9OdfPT/69eMf2tnvH3yv7Yevvv/WC+6z3hecV//wgv3jC6LrfUFc6YI4119cED++YOdcsPv64QV/20dwxw8v+Mnn4ETM5yDzh5+D/t/+FH7yEeR13hd0rOcjuP7m98F6rfk6rld/94W8//Z3Ql0576WO56exVv7FFeun76Y9n8nIv+eDWH3ma7Gu+u79VPWXH8RP3g97r7lj7+snd/zkTZl3zlck73o+n/FXP5W/+Y7+yR31/+Dn0v8PPqfXT+44dc8d51o//rn85OPo/fImjx/e8PoZZms+iJ0dP3yH7p/e8XruuMod1/nLK9ZP3uSvmJ/I/fqe91x/ecdP3qPX1fNhXPeqH9/xk/dX1MCW63l37dp/eUP+7N11zzt0x2v/+I6fvEPX6vkw1rrr77sjXvNxrNj3j+/4yTv0+DX421v177phvfZ+fg39yc/k/Iz5Vc+vG9/9jnz+np/IVX/fl/Va813BvuL1wzviJ2/QdV3PLxrnx2+NiP/tl+RvvOEnn4uf3fC3flGj/9df1J9+Os/zDj/7x5/On/7KdXyXUd//Fv9Xv/rF+dlnoxD/7dNxnvdGn//BJdf1csn93beNf3XJz77hOdf7hvrus1F/+Ytf/uwTuq/LLxmv5ze1b79X/8UVP3lr1PMrV317uz+/Bq/X/+DDCJ/P/d2b/K8/jJ9d8Xz/uvK7b+L/+oqfvEGv6hjiv50rfvQVyetn3//1HuS/nb97n//1JT//SPyB4vr2DeX1911y+W7jqrPWjy6pn31T/91vS1E//J76p1+Zvn1lru/e5v+TL+59+TDO+uEV9ZO3aV8bLH3V+uEX9+eXVORzyXe/EP71JT/5bbrPNV+WPue7r8rf/mHcfc/no+/rdf6un0t/e5PNJd27/p53+9/2J66fvkt7+bpc/e278x99GP2zP7/f9/MpfdUPPqU/veH4FahPr7/rhr/py1r/25/Fz99af8vP4md/8ty3P73G66/+bPCP3/7x1//y2z/+5d8iffyVzsefmj/+TufjO/qPv9T5fL3fr+frNV/v1/V+3e/XeL/m+7Xer+/78n1fvu/L9331vq/e99X7vnrfV+/76n1fve+r9331vq/e9/X7vn7f1+/7+n1fv+/r9339vq/f9/X7vn7fd73vu973Xe/7rvd91/u+6+O+bwRc/X693q/f7suP//58vd4ff7v27fN8r/frt/vy2xfrjvdrvl/r4/urb6/9fr3er/f79Xz8Rv2rX87Hj//2bjkff0H37VeTk+/Xbz++vt1z+v367cfXt4/n3O/X8/W6Xq85fNxUH4f4unK9cv5NfX2w375L+vrovn3XM4d7DufrA1vrNYc1hz2HmEPOoebQc/j4QD/S1z2H90917W8X9udhzyHmkHOoOfTHH7I/Dtcc7jmc9+Hjrzq/DmsOew4xh5xDzWFujrk55uaYm3Nuzrk55+acm3Nuzrk55+acm3Nuzrm55uaam2turrm55uaam2turrm55uaam3tu7rm55+aem3tu7rm55+aem3tu7rn5mpuvufmam6+5+Zqbr7n5mpuvufmam6+5+Z6b77n5npvvufmem++5+Z6b77n5npvvufnMzWduPnPzmZvP3Hzm5jM3n7n5zM3nffN+veaw5rDnEHPIOdQceg7XHO45zM1rbl5z85qb19y85uY1N6+5ec3Na25ec/Oem/fcvOfmPTfvuXnPzcPgHgb3MLiHwT0M7mFwD4N7GNzD4B4G9zC4h8E9DO5hcA+Dexjcw+AeBvcwuIfBPQzuYXAPg3sY3MPgHgb3MLiHwT0M7mFwD4N7GNzD4B4G9zC4h8E9DO5hcA+Dexjcw+AeBvcwuIfBPQzuYXAPg3sY3MPgHgb3MLiHwT0M7mFwD4N7GNzD4B4G9zC4h8E9DO5hcA+Dexjcw+AeBvcwuIfBPQzuYXAPg3sY3MPgHgZjGIxhMIbBGAZjGIxhMIbBGAZjGIxhMIbBGAZjGIxhMIbBGAZjGIxhMIbBGAZjGIxhMIbBGAZjGIxhMIbBGAZjGIxhMIbBGAZjGIxhMIbBGAZjGIxhMIbBGAZjGIxhMIbBGAZjGIxhMIbBGAZjGIxhMIbBGAZjGIxhMIbBGAZjGIxhMIbBGAZjGIxhMIbBGAZjGIxhMIbBGAZjGIxhMIbBGAZjGIxhMIbBGAZjGIxhMIbBGAZjGIxhMIbBGAZjGIxhMIbBGAZjGIxhMIbBGAZjGIxhMIbBGAZjGIxhMIbBGAZzGMxhMIfBHAZzGMxhMIfBHAZzGMxhMIfBHAZzGMxhMIfBHAZzGMxhMIfBHAZzGMxhMIfBHAZzGMxhMIfBHAZzGMxhMIfBHAZzGMxhMIfBHAZzGMxhMIfBHAZzGMxhMIfBHAZzGMxhMIfBHAZzGMxhMIfBHAZzGMxhMIfBHAZzGMxhMIfBHAZzGMxhMIfBHAZzGMxhMIfBHAZzGMxhMIfBHAZzGMxhMIfBHAZzGMxhMIfBHAZzGMxhMIfBHAZzGMxhMIfBHAZzGMxhMIfBHAZzGMxhMIfBHAZzGMxhMIfBHAZrGKxhsIbBGgZrGKxhsIbBGgZrGKxhsIbBGgZrGKxhsIbBGgZrGKxhsIbBGgZrGKxhsIbBGgZrGKxhsIbBGgZrGKxhsIbBGgZrGKxhsIbBGgZrGKxhsIbBGgZrGKxhsIbBGgZrGKxhsIbBGgZrGKxhsIbBGgZrGKxhsIbBGgZrGKxhsIbBGgZrGKxhsIbBGgZrGKxhsIbBGgZrGKxhsIbBGgZrGKxhsIbBGgZrGKxhsIbBGgZrGKxhsIbBGgZrGKxhsIbBGgZrGKxhsIbBGgZrGKxhsIbBGgZrGKxhsIbBGgZ7GOxhsIfBHgZ7GOxhsIfBHgZ7GOxhsIfBHgZ7GOxhsIfBHgZ7GOxhsIfBHgZ7GOxhsIfBHgZ7GOxhsIfBHgZ7GOxhsIfBHgZ7GOxhsIfBHgZ7GOxhsIfBHgZ7GOxhsIfBHgZ7GOxhsIfBHgZ7GOxhsIfBHgZ7GOxhsIfBHgZ7GOxhsIfBHgZ7GOxhsIfBHgZ7GOxhsIfBHgZ7GOxhsIfBHgZ7GOxhsIfBHgZ7GOxhsIfBHgZ7GOxhsIfBHgZ7GOxhsIfBHgZ7GOxhsIfBHgZ7GOxhsIfBHgZ7GOxhsIfBHgavYfAaBq9h8BoGr2HwGgavYfAaBq9h8BoGr2HwGgavYfAaBq9h8BoGr2HwGgavYfAaBq9h8BoGr2HwGgavYfAaBq9h8BoGr2HwGgavYfAaBq9h8BoGr2HwGgavYfAaBq9h8BoGr2HwGgavYfAaBq9h8BoGr2HwGgavYfAaBq9h8BoGr2HwGgavYfAaBq9h8BoGr2HwGgavYfAaBq9h8BoGr2HwGgavYfAaBq9h8BoGr2HwGgavYfAaBq9h8BoGr2HwGgavYfAaBq9h8BoGr2HwGgavYfAaBq9h8BoGr2HwGgavYfAaBq9h8BoGr2HwGgavYfAaBq9h8BoG72HwHgbvYfAeBu9h8B4G72HwHgbvYfAeBu9h8B4G72HwHgbvYfAeBu9h8B4G72HwHgbvYfAeBu9h8B4G72HwHgbvYfAeBu9h8B4G72HwHgbvYfAeBu9h8B4G72HwHgbvYfAeBu9h8B4G72HwHgbvYfAeBu9h8B4G72HwHgbvYfAeBu9h8B4G72HwHgbvYfAeBu9h8B4G72HwHgbvYfAeBu9h8B4G72HwHgbvYfAeBu9h8B4G72HwHgbvYfAeBu9h8B4G72HwHgbvYfAeBu9h8B4G72HwHgbvYfAeBu9h8B4G72HwHgbvYfAeBu9h8B4G72HwHgbvYfAeBs8weIbBMwyeYfAMg2cYPMPgGQbPMHiGwTMMnmHwDINnGDzD4BkGzzB4hsEzDJ5h8AyDZxg8w+AZBs8weIbBMwyeYfAMg2cYPMPgGQbPMHiGwTMMnmHwDINnGDzD4BkGzzB4hsEzDJ5h8AyDZxg8w+AZBs8weIbBMwyeYfAMg2cYPMPgGQbPMHiGwfPJYHwczvvwyeDnYc1hzyHmkHOoOfQcrjnMzT03X3PzNTdfc/M1N19z8zU3X3PzNTdfc/M1N99z8z0333PzPTffc/M9N99z8z0333PzPTefufnMzWduPnPzmZvP3Hzm5jM3n7n5vG/+9v/Iv5yW03YKp3Qqp3a6nG4nGUvGkrFkLBlLxpKxZCwZS8aSsWVsGVvGlrFlbBlbxpaxZWwZISNkhIyQETJCRsgIGSEjZKSMlJEyUkbKSBkpI2WkjJRRMkpGySgZJaNklIySUTJKRstoGS2jZbSMltEyWkbLaBmXjEvGJeOSccm4ZFwyLhmXjEvGLeOWccu4Zdwybhm3jFvGLeOWcWQcGUfGkXFkHBlHxpFxZOB84XzhfOF84XzhfOF84XzhfOF84XzhfOF84XzhfOF84XzhfOF84XzhfH1w/tE5Wp8Nnfdpf/WO1mdH5336yPg6lVM7XU6305nTJ+dfp4+fR32etlM4pVM5tdPldDudOX1y/nWSkTJSRspIGSkjZaSMlFEySkbJKBklo2SUjJJRMkpGy2gZLaNltIyW0TJaRstoGZeMS8Yl45JxybhkXDIuGZeMS8Yt45Zxy7hl3DJuGbeMW8Yt45ZxZBwZR8aRcWQcGUfGkXFknMn4Kvx8nZbTdgqndCqndrqcbicZS8aSsWQsGUvGkrFkLBlLxpKxZWwZW8aWsWVsGVvGlrFlbBkhA+cb5xvnG+cb5xvnG+cb5xvnG+cb5xvnG+cb5xvnG+cb5xvnG+cb5xvnG+cb5xvnG+cb5xvnG+cb5xvnG+cb5xvnG+cb5xvnG+cb5xvnG+cb5xvnG+cb5xvnG+cb5xvnG+cb5xvnG+cb5xvnG+cb5xvnG+cb5xvnG+cb5xvnG+cb5xvnG+cb5xvngfPAeeA8cB44D5wHzgPngfPAeeA8cB44D5wHzgPngfPAeeA8cB44D5wHzgPngfPAeeA8cB44D5wHzgPngfPAeeA8cB44D5wHzgPngfPAeeA8cB44D5wHzgPngfPAeeA8cB44D5wHzgPngfPAeeA8cB44D5wHzgPngfPAeeA8cB44D5wHzgPngfPAeeA8cB44D5wHzgPngfPAeeA8cB44D5wHzgPngfPAeeA8cB44D5wHzgPngfPAeeA8cJ44T5wnzhPnifPEeeI8cZ44T5wnzhPnifPEeeI8cZ44T5wnzhPnifPEeeI8cZ44T5wnzhPnifPEeeI8cZ44T5wnzhPnifPEeeI8cZ44T5wnzhPnifPEeeI8cZ44T5wnzhPnifPEeeI8cZ44T5wnzhPnifPEeeI8cZ44T5wnzhPnifPEeeI8cZ44T5wnzhPnifPEeeI8cZ44T5wnzhPnifPEeeI8cZ44T5wnzhPnifPEeeI8cZ44T5wnzhPnhfPCeeG8cF44L5wXzgvnhfPCeeG8cF44L5wXzgvnhfPCeeG8cF44L5wXzgvnhfPCeeG8cF44L5wXzgvnhfPCeeG8cF44L5wXzgvnhfPCeeG8cF44L5wXzgvnhfPCeeG8cF44L5wXzgvnhfPCeeG8cF44L5wXzgvnhfPCeeG8cF44L5wXzgvnhfPCeeG8cF44L5wXzgvnhfPCeeG8cF44L5wXzgvnhfPCeeG8cF44L5wXzgvnhfPCeeG8cN44b5w3zhvnjfPGeeO8cd44b5w3zhvnjfPGeeO8cd44b5w3zhvnjfPGeeO8cd44b5w3zhvnjfPGeeO8cd44b5w3zhvnjfPPllb15+l2OnP64Px9Wk77/ZjiZ1frfUqncmqny+l2OnP64Px9Wk4ySkbJKBklo2SUjJLRMlpGy2gZLaNltIyW0TJaxiXjknHJuGRcMi4Zl4xLxiXjknHLuGXcMm4Zt4xbxi3jlnHLuGUcGUfGkXFkHBlHxpFxZBwZnnS9POr62fJ6n7ZTOKVTObXT5TTv3c+219dpyfh8/DU/T9spnPL9vOvlEdjLM7Cfra/36XY6c/rg/H1aTvv9tOxn9+t9yveDs1+lr6/T5XQ7nTl90v11ev+/x0v1a+l+LeWvpf211L+W/tdSAFsaYEsFbOmALSWwpQW21MCWHthSBFuaYEsVbOmCLWWwpQ221MGWPthSCFsaYUslbOmELaWwpRW21MKWXthSDFuaYUs1bOmGLeWwpR221MPW9Tw3+zw4+zw5+zw6+zw7+zw8+zw9+93jszKeB2g9QasqtnTFlrLY0hZb6mJLX2wpjC2NsaUytnTGltLY0hpbamNLb2wpji3NsaU6tnTHlvLY0h5b6mNLf2wpkC0NsqVCtnTIlhLZ0iJbamRLj2wpki1NsqVKtnTJljLZ0iZb6mRLn2wplC2NsqVStnTKllLZ0ipbamVLr2wpli3NsqVatnTLlnLZ0i5b6mVLv2wpmC0Ns6VitnTMlpLZ0jJbamZLz2wpmi1Ns6VqtnTNlrLZ0jZb6mZL32wpnC2Ns6VytnTOltLZ0jpbamdL72wpni3Ns6V6tnTPlvLZ0j5b6mdL/2wpoC0NtKWCtnTQlhLa0kJbamhLD20poi1NtKWKtnTRljLaup8n5Z9H5Z9n5Z+H5Z+n5Z/H5Z/n5Z8H5r97Yl4GzhXTlmbaUk1bumlLOW1ppy31tKWfthTUlobaUlFbOmpLSW1pqS01taWnthTVlqbaUlVbumpLWW1pqy11taWvthTWlsbaUllbOmtLaW1prS21taW3thTXlubaUl1bumtLeW1pry31taW/thTYlgbbUmFbOmxLiW1psS01tqXHthTZlibbUmVbumxLmW1psy11tqXPthTalkbbUmlbOm1LqW1ptS21tqXXthTblmbbUm1bum3r4Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pw8boxHjvHYMR49xuPHeAQZjyHjUWQ8jozvJBnvjP16NBmPJ+MRZTymjEeV8bgyHlnGY8t4dBl8GS/CjBdjxosy48WZ8SLNeLFmvGgzXrwZL+KMF3PGizrjxZ3xIs94sWe86DNe/BkvAo0Xg8aLQuPFofEi0XixaLxoNF48Gi8ijReTxotK48Wl8SLTeLFpvOg0XnwaL0KNF6PGi1LjxanxItV4sWq8aDVevBovYo0Xs8aLWuPFrfEi13ixa7zoNV78Gi+CjRfDxoti48Wx8SLZeLFsvGg2XjwbL6KNF9PGi2rjxbXxItt4sW286DZefBsvwo0X48aLcuPFufEi3XixbrxoN168Gy/ijRfzxot648W98SLfeLFvvOg3XvwbLwKOFwPHi4LjxcHxIuF4sXC8aDhePBwvIo4XzhfOF84XzhfOF84XzhfOF84XztfjxflOjCPjUeM8bpxHjvPYcR49zuPHeQQ5OF84XzhfOF84XzhfOCer2mxVm65q81VtwqrNWLUpqzZn1Sat2qxVm7Zq81Zt4qrNXLWpqzZ31Sav2uxVm75q81dtAqvNYLUprDaH1Sax2ixWm8Zq81htIqvNZLWprDaX1Saz2mxWm85q81ltQqvNaLUprTan1Sa12qxWm9Zq81ptYqvNbLWprTa31Sa32uxWm95q81ttgqvNcLUprjbH1Sa52ixXm+Zq81xtoqvNdLWprjbX1Sa72mxXm+5q811twqvNeLUprzbn1Sa92o/16tFePd6rR3z1mK8e9dXjvnrkV4/96tFfPf6rR4D1GLAeBdbjwHokWI8F69FgPR6sR4T1nQnrUWF958KS8diwHh3W48N6hFiPEetRYuH8kWI9VqxHi/V4sR4x1mPGetRYjxvrkWM9dqxHj/X4sR5B1mPIehRZjyPrkWQ9lqxHk/V4sh5R1mPKelRZjyvrkWU9tqxHl/X4sh5h1mPMepRZjzPrkWY91qxHm/V4sx5x1mPOetRZjzvrkWc99qxHn/X4sx6B1mPQehRaj0PrkWg9Fq1Ho/V4tB6R1mPSelRaj0vrkWk9Nq1Hp/X4tB6h1mPUepRaj1PrkWo9Vq1Hq/V4tR6xFrPWptba3FqbXGuza216rc2vtQm2NsPWptjaHFubZGuzbG2arc2ztYm2NtPWptraXFubbGuzbW26rc23tQm3NuPWptzanFubdGuzbm3arR2P++6R3z32u+/0dzIeAd5jwHsUeI8D75Hg4ZyCa3NwbRKuzcK1abg2D9cm4tpMXJuKa3NxbTKuzca16bg2H9cm5NqMXJuSa3NybVKuzcq1abk2L9cm5trMXJuaa3NzbXKuzc616bk2P9cm6NoMXZuia3N0bZKuzdK1abo2T9cm6tpMXZuqa3N1bbKuzda16bo2X9cm7NqMXZuya3N2bdKuzdq1abs2b9cm7trMXZu6a3N3bfKuzd616bs2f9cm8NoMXpvCa3N4bRKvzeK1abw2j9cm8tpMXpvKa3N5bTKvzea16bw2n9cm9NqMXpvSa3N6bVKvzeq1ab02r9cm9trMXpvaa3N7bXKvze616b02v9cm+NoMX5via3N8bZKvnY/t8tFdPr7LR3j5nfFSxuO8fKSXj/Xy0V7inPBrM35tyq/N+bVJvzbr16b92rxfm/hrM39t6q/N/bXJvzb716b/2vxfmwBsM4BtCrDNAbZJwDYL2KYB2zxgmwhsM4FtKrDNBbbJwDYb2KYD23xgmxBsM4JtSrDNCbZJwTYr2KYF27xgmxhsM4NtarDNDbbJwTY72KYH2/xgmyBsM4RtirDNEbZJwjZL2KYJ2zxhmyhsM4VtqrDNFbbJwjZb2KYL23xhmzBsM4ZtyrDNGbZJwzZr2KYN27xhmzhsM4dt6rDNHbbJwzZ72KYP2/xhm0BsM4htCrHNIbZJxDaL2KYR2zxim0hsM4ltKrHNJbbJxDab2KYT23xim1BsM4ptSrFdj9/2Edw+httHcfs4br+T3Mp4NLeP5/YR3c7TqLvmadRd8zTqrnkaddc8jbprnkbdNU+j7pqnUXfN06i75mnUXS3jknHJuGRcMi4Zl4xLxiXjknHJuGXcMm4Zt4xbxi3jlnHLuGXcMo6MI+PIODKOjCPjyDgyjox5GnX3PI26e55G3T1Po+6ep1F3z9Oou+dp1N3zNOrueRp19zyNuvslY8lYMpaMJWPJWDKWjCVjyVgytowtY8vYMraMLWPL2DK2jC0jZISMkBEyQkbICBkhI2SEjJSRMlJGykgZKSNlpIyUkTJKRskoGSWjZJSMklEySgbOG+eN88Z547xx3jhvnDfOG+eN88Z547xx3jhvnDfOG+eN88Z547xx3jhvnDfOG+eN88Z547xx3jhvnDfOG+eN88Z547xx3jhvnDfOL5xfOL9wfuH8wvmF8wvnF84vnF84v3B+4fzC+YXzC+cXzi+cXzi/cH7h/ML5hfOvFtz+PIVTfj1/vj8daO/TR8bX6XK6nc6c5qnz/dWH+zptp3fbdV/Tdt3XtF33NW3XfU2rfV/Tat/XtNr3Na32fU2rfV/Tat9XykgZKSNlpIyUkTJKRskoGSWjZJSMklEySkbJaBkto2W0jJbRMlpGy2gZLeOSccm4ZFwyLhmXjEvGJeOSccm4Zdwybhm3jFvGLeOWccu4Zdwyjowj48g4Mo6MI+PIODKOjGm173ta7fueVvu+p9W+72m173ta7fueVvu+p9W+72m173ta7ft+yVgylowlY8lYMpaMJWPJWDKWjC1jy9gytowtY8vYMraMLWPLCBkhI2Tg/Mb5jfMb5zfOb5zfOL9xfuP8xvmN8xvnN85vnN84v3F+4/zG+Y3zG+c3zm+c3zi/cX7j/Mb5jfMb5zfOb5zfOL9xfuP8xvmN8xvnN85vnN84v3F+4/zG+Y3zG+c3zm+c3zi/cX7j/Mb5jfMb5zfOb5zfOL9xfuP8xvmN8xvnN85vnN84v3F+4/zG+Y3zg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84PzM5zHaziP13Aer+E8XsN5vIbzeA3n8RrO4zWcx2s4j9dLxpKxZCwZS8aSsWQsGUvGkrFkbBlbxpaxZWwZW8aWsWVsGVtGyAgZISNkhIyQETJCRsgIGSkjZaSMlJEyUkbKSBkpI2WUjJJRMkpGySgZJaNklIyS0TJaRstoGS2jZbSMltEyWsYl45JxybhkXDIuGZeMS8Yl45Jxy7hl3DJuGbeMW8Yt45Zxy7hlHBlHxpFxZBwZR8aRcWQcGThfOF84XzhfOF84XzhfOF84XzhfOF84XzhfOF84XzhfOF84XzhfOF84XzhfOF84XzhfOF84XzhfOF84XzhfOGeFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4+OzDfTzpHZ99uPfpcrqdzvsU89R5xDx1HjFPnUfMU+cR89R5xDx1HjFPnUfMU+fx2Yd7n86clowlY8lYMpaMJWPJWDKWjCVjy9gytowtY8vYMraMLWPL2DJCRsgIGSEjZISMkBEyQkbISBkpI2WkjJSRMlJGykgZKaNklIySUTJKRskoGSWjZJSMltEyWkbLaBkto+e9+9mHe59kfHD+YSmIzz7c+7Sc9pdzID77cO9TOpVTO11Ot9OZ06dd4nyeltP+MhfEVwvu61RO7XQ53U7vFkM805XPduUzXvmsVz7zlc9+5TNg+SxYPhOWWnChBRdacKEFF1pwoQUXWnChBRdacKEFF1pwoQUXWnChBRdacKEFF1pwoQUXWnChBRdacKEFF1pwoQUXWnChBRdacKEFF1pwoQUXWnChBRdacKEFF1pwoQUXWnChBRdacKEFF/nszT6Ds8/i7DM5+93mrIxndfaZnX12Z5/hWcuzWnChBRdacKEFF1pwoQUXWnChBRdacKEFF1pwoQUXWnChBRdacKEFF1pwoQUXWnChBRdacKEFF1pwoQUXWnChBRdacKEFF1pwoQUXWnChBRdacKEFF1pwoQUXWnChBRdacKEFF1pwoQUXWnChBRdacKEFF1pwoQUXWnChBRdacKEFF1pwoQUXWnChBRdacKEFF1pwoQUXWnChBRdacKEFF1pwoQUXWnChBRdacKEFF1pwoQUXWnChBRdacKEFF1pwoQUXWnChBRdacKEFF1pwoQUXWnChBRdacKEFF1pwoQUXWnChBRdacKEFF1pwoQUXWnChBRdacFHPwvQzMf1sTD8j08/K9Hcz0zKeoelnafqZmsa5kc2wshlmNsPOZhjaDEubYWozbG2Gsc2wthnmNsPeZhjcDIubYXIzbG6G0c2wuhlmN8PuZhjeDMubYXozbG+G8c2wvhnmN8P+ZhjgDAucYYIzbHCGEc6wwhlmOMMOZxjiDEucYYozbHGGMc6wxhnmOMMeZxjkDIucYZIzbHKGUc6wyhlmOcMuZxjmDMucYZozbHOGcc6wzhnmOcM+ZxjoDAudYaIzbHSGkc6w0hlmOsNOZxjqDEudYaozbHWGsc6w1hnmOsNeZxjsDIudYbIzbHaG0c6w2hlmO8NuZxjuDMudYbozbHeG8c6w3hnmO8N+ZxjwDAueYcIzbHiGEc+w4hlmPKOfTflnVP5ZlX9m5Z9d+WdY/rtleRnPtvwzLo9zk55h0zOMeoZVzzDrGXY9w7BnWPYM055h2zOMe4Z1zzDvGfY9w8BnWPgME59h4zOMfIaVzzDzGXY+w9BnWPoMU59h6zOMfYa1zzD3GfY+w+BnWPwMk59h8zOMfobVzzD7GXY/w/BnWP4M059h+zOMf4b1zzD/GfY/wwBoWAANE6BhAzSMgIYV0DADGnZAwxBoWAINU6BhCzSMgYY10DAHGqxwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl3ueRs09T6PmnqdRc8/TqLnnadTc89R57nnqPPc8dZ57njrPPU+d594ytowtI2SEjJARMkJGyAgZISNkhIyUkTJSRspIGSkjZaSMlJEySkbJKBklo2SUjJJRMkpGyWgZLaNltIyW0TJaRstoGS3jknHJuGRcMi4Zl4xLxiXjknHJuGXcMm4Zt4xbxi3jlnHLuGXcMo6MI+PIODKOjCPjyDgyjox56jxjnjrPmKfOM+ap84x56jxjnjrPmKfOM+ap84x56jxjnjrPeMlYMpaMJWPJWDKWjCUD54HzwHngPHAeOA+cB84D54HzwHngPHAeOA+cB84D54HzwHngPHAeOA+cB84D54HzwHngPHAeOA+cB84D54HzwHngPHAeOA+cB84D54HzwHngPHAeOA+cB84D54HzwHngPHAeOA+cB84D54HzwHngPHAeOA+cf7Xg9udpOe0vX0F+WuHep4+Mr1M5tdPldDudOX1y/nV6t13TNmraRk3bqGkbNW2jpm3UtI2atlHTNmraRk3bqGkbNW2jpm3UtI2atlHTNmraRk3bqGkbNW2jpm3UtI2atlHTNmraRk3bqGkbNW2jpm3UtI2atlHTNmraRk3bqGkbNW2jpm3UtI2atlHTNmraRk3bqGkbNW2jpm3UtI2atlHTNmraRk3bqGkbNW2jpm3UtI2atlHTNmraRk3bqGkbNW2jpm3UtI2atlHTNmraRk3bqGkbNW2jpm3UtI2atlHTNmraRk3bqGkbNW2jpm3UtI2atlHTNmraRk3bqGkbNW2jpm3UtI2atlHTNmraRk3bqGkbNW2jpm3UtI2atlHTNmraRk3bqGkbNW2jpm3UtI2atlHTNmraRk3bqGkbNW2jpm3UtI2atlHTNmraRk3bqGkbNW2jpm3UtI2atlHTNmraRk3bqGkbNW2jpm3UtI2atlHTNmraRk3bqGkbNW2jpm3UtI2atlHTNmraRk3bqGkbNW2jpm3UtI2atlHTNmraRk3bqGkbNW2jpm3UtI2atlHTNmraRk3bqGkbNW2jpm3UtI2atlHTNmraRk3bqGkbNW2jpm3UtI2atlHTNmraRk3bqGkbNW2jpm3UtI2atlHTNmraRk3bqGkbNW2jpm3UtI2atlHTNmraRk3bqGkbNW2jpm3UtI2atlHTNmraRk3bqGkbNW2jpm3UtI2atlHTNmraRk3bqGkbNW2jpm3UtI2atlHTNmraRk3bqGkbNW2jpm3UtI2atlHTNmraRk3bqGkbNW2jpm3UtI2atlHTNmraRk3bqGkbNW2jpm3UtI2atlHTNmraRk3bqGkbNW2jpm3UtI2atlHTNmraRk3bqGkbNW2jZuO8cd44b5w3zhvnjfPGeeO8cd44b5w3zhvnjfPGeeO8cd44b5w3zhvnjfPGeeO8cd44b5w3zhvnjfPGeeO8cd44b5w3zhvnjfPGeeO8cd44b5w3zhvnjfPGeeO8cd44b5w3zhvnjfPGeeO8cd44b5w3zhvnjfML5xfOL5xfOL9wfuH8wvmF8wvnF84vnF84v3B+4fzC+YXzC+cXzi+cXzi/cH7h/ML5hfML5xfOL5xfOL9wfuH8wvmF8wvnrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl599uI8nvfOzD/c+lVM7XU731xPheeap8zzz1Hmeeeo8zzx1nmeeOs8zT53nmafO87MP9z5dTjJaxiXjknHJuGRcMi4Zl4xLxiXjknHLuGXcMm4Zt4xbxi3jlnHLuGUcGUfGkXFkHBlHxpFxZBwZ551Rr7FL1GvsEvUau0S9xi5Rr7FL1GvsEvUau0S9xi5Rr7FL1OslY8lYMpaMJWPJWDKWjCVjyVgytowtY8vYMvb7vVuffbj3ScYH5x+Wgvrsw71PZ04fnH84B+qzD/c+badwSqdyaqfL6f7yFdRnH+7r9GmXWJ+nD/K+TuGUTuXUTu8WQ2nBlRZcacGVFlxpwZUWXGnBlRZcacGVFlxpwZUWXGnBlRZcacGVFlxpwZUWXGnBlRZcacGVFlxpwZUWXGnBlRZcacGVFlxpwZUWXGnBlRZcacGVFlxpwZUWXGnBlRZcacGVFlxpwZUWXGnBlRZcacGVFlxpwZUWXGnBlRZcacGVFlxpwZUWXGnBlRZcacGVFlxpwZUWXGnBlRZcacGVFlxpwZUWXGnBlRZcacGVFlxpwZUWXGnBlRZcacGVFlxpwZUWXGnBlRZcacGVFlxpwZUWXGnBlRZcacGVFlxpwZUWXGnBlRZcacGVFlxpwZUWXGnBlRZcacGVFlxpwZUWXGnBlRZcacGVFlxpwZUWXGnBlRZcacGVFlxpwZUWXGnBlRZcacGVFlxpwZUWXGnBlRZcacGVFlxpwZUWXGnBlRZcacGVFlxpwZUWXGnBlRZcacGVFlxpwZUWXGnBlRZcacGVFlxpwZUWXGnBlRZcacGVFlxpwZUWXGnBlRZcacGVFlxpwZUWXGnBlRZcacGVFlxpwZUWXGnBlRZcacGVFlxpwZUWXGnBlW3Uso1atlHLNmrZRi3bqGUbtWyjlm3Uso1atlHLNmrZRi3bqGUbtWyjlm3Uso1atlHLNmrZRi3bqGUbtWyjlm3Uso1atlHLNmrZRi3bqGUbtWyjlm3Uso1atlHLNmrZRi3bqGUbtWyjlm3Uso1atlHLNmrZRi3bqGUbtWyjlm3Uso1atlHLNmrZRi3bqGUbtWyjlm3Uso1atlHLNmrZRi3bqGUbtWyjlm3Uso1atlHLNmrZRi3bqGUbtWyjlm3Uso1atlHLNmrZRi3bqGUbtWyjlm3Uso1atlHLNmrZRi3bqGUbtWyjlm3Uso1atlHLNmrZRi3bqGUbtWyjlm3Uso1atlHLNmrZRi3bqGUbtWyjlm3Uso1atlHLNmrZRi3bqGUbtWyjlm3Uso1atlHLNmrZRi3bqGUbtWyjlm3Uso1atlHLNmrZRi3bqGUbtWyjlm3Uso1atlHLNmrZRi3bqGUbtWyjlm3Uso1atlHLNmrZRi3bqGUbtWyjlm3Uso1atlHLNmrZRi3bqGUbtWyjlm3Uso1atlHLNmrZRi3bqGUbtWyjlm3Uso1atlHLNmrZRi3bqGUbtWyjlm3Uso1atlHLNmqxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1zd8zRq3fM0at3zNGrd8zRq3fM0at3z1Hnd89R53fPUed3z1Hnd89R53beMW8Yt45Zxyzgyjowj48g4Mo6MI+PIODLmqfM689R5nXnqvM48dV5nnjqvM0+d15mnzuvMU+d15qnzOvPUeZ2XjCVjyVgylowlY8lYMpaMJWPJ2DK2jC1jy9gytowtY8vYMraMkBEyQkbICBkhI2SEjJARMlJGykgZKSNlpIyUkTJSRsooGSWjZJSMklEySkbJKBklo2W0jJbRMlpGy2gZLaNltIxLxiXjknHJuGTg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84PwM5/0azvs1nPdrOO/XcN6v4bxfw3m/hvN+Def9Gs779ZKxZCwZS8aSsWQsGUvGkrFkLBlbxpaxZWwZW8aWsWVsGVvGlhEyQkbICBkhI2SEjJDx2YLbn6czp88WXH6eltNHxtcpnNKpnNrpcrqd3m3Xto3atlHbNmrbRm3bqG0btW2jtm3Uto3atlHbNmrbRm3bqG0btW2jtm3Uto3atlHbNmrbRm3bqG0btW2jtm3Uto3atlHbNmrbRm3bqG0btW2jtm3Uto3atlHbNmrbRm3bqG0btW2jtm3Uto3atlHbNmrbRm3bqG0btW2jtm3Uto3atlHbNmrbRm3bqG0btW2jtm3Uto3atlHbNmrbRm3bqG0btW2jtm3Uto3atlHbNmrbRm3bqG0btW2jtm3Uto3atlHbNmrbRm3bqG0btW2jtm3Uto3atlHbNmrbRm3bqG0btW2jtm3Uto3atlHbNmrbRm3bqG0btW2jtm3Uto3atlHbNmrbRm3bqG0btW2jtm3Uto3atlHbNmrbRm3bqG0btW2jtm3Uto3atlHbNmrbRm3bqG0btW2jtm3Uto3atlHbNmrbRm3bqG0btW2jtm3Uto3atlHbNmrbRm3bqG0btW2jtm3Uto3atlHbNmrbRm3bqG0btW2jtm3Uto3atlHbNmrbRm3bqG0btW2jtm3Uto3atlHbNmrbRm3bqG0btW2jtm3Uto3atlHbNmrbRm3bqG0btW2jtm3Uto3atlHbNmrbRm3bqG0btW2jtm3Uto3atlHbNmrbRm3bqG0btW2jtm3Uto3atlHbNmrbRm3bqG0btW2jtm3Uto3atlHbNmrbRm3bqG0btW2jtm3Uto3atlHbNmrbRm3bqG0btW2jtm3Uto3atlHbNmrbRm3bqG0btW2jtm3Uto3atlHbNmrbRm3bqG0btW2jtm3Uto3atlHbNmrbRm3bqG0btW2jtm3Uto3atlHbNmrbRm3bqG0btW2jtm3Uto3atlHbNmrbRm3bqL1xvnG+cb5xvnEeOA+cB84D54HzwHngPHAeOA+cB84D54HzwHngPHAeOA+cB84D54HzwHngPHAeOA+cB84D54HzwHngPHAeOA+cB84D54HzwHngPHAeOA+cB84D54HzwHngPHAeOA+cB84D54HzwHngPHAeOA+cB84D54HzwHngPHAeOA+cB84D54HzwHngPHAeOA+cB84D54HzwHngPHAeOA+cB84D54HzwHngPHAeOA+cB85Z4ZoVrlnhmhWuWeGaFa5Z4ZoVrlnhmhWuWeGaFa5Z4ZoVrlnhmhWuWeGaFa5Z4ZoVrlnhmhWuWeGaFa5Z4ZoVrlnhmhWuWeGaFa5Z4ZoVrlnhmhWuWeGaFa5Z4ZoVrlnhmhWuWeGaFa5Z4ZoVrlnhmhWuWeGaFa5Z4ZoVrlnhmhWuWeGaFa5Z4ZoVrlnhmhWuWeGaFa5Z4ZoVrlnhmhWuWeGaFa5Z4ZoVrlnhmhWuWeGaFa5Z4ZoVrlnhmhWuWeGaFa5Z4ZoVrlnhmhWuWeGaFa5Z4ZoVrlnhmhWuWeGaFa5Z4ZoVrlnhmhWuWeGaFa5Z4ZoVrlnhmhWuWeGaFa5Z4ZoVrlnhmhWuWeGaFa5Z4ZoVrlnhmhWuWeGaFa5Z4ZoVrlnhmhWuWeGaFa5Z4ZoVrlnhmhWuWeGaFa5Z4ZoVrlnhmhWuWeGaFa5Z4ZoVrlnhmhWuWeGaFa5Z4ZoVrlnhmhWuWeGaFa5Z4ZoVrlnhmhWuWeGaFa5Z4ZoVrlnhmhWuWeGaFa5Z4ZoVrlnhmhWuWeGaFa5Z4ZoVrlnhmhWuWeGaFa5Z4ZoVrlnhmhWuWeGaFa5Z4ZoVrlnhmhWuWeGaFa5Z4ZoVrlnhmhWuWeGaFa5Z4ZoVrlnhmhWuWeGaFa5Z4ZoVrlnhmhWuWeGaFa5Z4ZoVrlnhmhWuWeGaFa5Z4ZoVrlnhmhWuWeGaFa5Z4ZoVrlnhmhWuWeGaFa5Z4ZoVrlnhmhWuP/twH09692cf7n0Kp3Qqp/56Irx7njrvnqfOu+ep8+556rx7njrvnqfOu+ep8/7sw71P5SRjy9gytoyQETJCRsgIGSEjZISMkBEyUkbKSBkpI2WkjJSRMlJGyigZJaNklIySUTJKRskoGSWjZbSMltEyWkbLaBkto2W0jEvGJeOSccm4ZFwyLhmXjEvGJeOWccu4vXdv790vu8Sff/XL//31H3/763/+3W/+85d/+O9v//hv//X7f/nTb//w+/c//un/+4/5b/75j7/93e9+++//9B9//MO//OZf/+uPv/mn3/3hXz7+u19eH//xAc3/Wf2rvf7x2/94+Vd7/Wr3x7/a/lWuX+W3f/XnP//jn/9/",
|
|
1881
|
+
"debug_symbols": "rd3djl3JeaXre6ljHayI72fO0K00GoZsy4aAgmTIcgMbhu59MzPX90xKQBHVcp9oRZXEGMnM9ZJJasx3/PdP//r7f/6vf/+nP/zx3/70nz/99n/990///Oc//PzzH/79n37+07/87i9/+NMfv/3b//7p9fEfK3/67fnrb35an/9wfvrt/e0f9sc/7Pjpt+vbOb9e6uulv16ur5f76+XbD8vf/BSvr5f19fLtkvr2El8v+fXy7Zbr20t/vXy75frrt7z5sP7pL3/+/e8/sr/7OL999P/xuz///o9/+em3f/yvn3/+zU//53c//9fn/+g//+N3f/x8/cvv/vztv3395qff//Ffv71+u/Df/vDz7z9Of/3N86Nfv/xDO/v9g++1/fDV96+94D7rfcF59S9esH/5guh6XxBXuiDO+ZsL4pcv2DkX7L5+8YJf9xHc8YsX/OBzcCLmc5D5i5+D/p/+FH7wEeR13hd0rOcjuH71+2C91nwd16u/+0Lev/6dUFfOe6nj+WmslX9zxfrhu2nPZzLyH/kgVp/5Wqyrvns/1fW3H8QP3g97r7lj7+sHd/zgTZl3zlck7+rvvqavf+yO/sEd9f/g59L/Dz6n1w/uOHXPHedav/xz+cHH0fvlTR6/eMPrR5it+SB2dvziO3T/8I7Xc8dV7rj+7peb9YM3+SvmJ3K/vuc942/v+MF79Lp6PozrXvXLd/zg/RU1sOV63l27/u6TkT96d93zDt3x2r98xw/eoWv1fBhr3fWP3RGv+ThW7PuX7/jBO/T4NfjbW/UfumG99n5+Df3Bz+T8iPlVz68b3/2OfP6Rn8hV/9iX9VrzXcG+4vWLd8QP3qDrup5fNM4vvzUi/qdfkl95ww8+Fz+64dd+UaP/x1/UH346z/MOP/uXP50//JXr+C6jvv8t/u9+9Yvzo89GIf7bp+M8740+/xeXXNfLJfd33zb2r/+G51zvG+q7z0atv/nx+aNP6L4uv2S8nt/Uvv1e/TdX/OCtUc+vXPXt7f78GvztO+lf/2GEz+f+7k3+9x/Gj654vn9d+d038X9/xQ/eoFd1DPHfzhW/9BXJ60ff//Ue5L+dv3uf//0lP/5I/IHi+vYN5fWPXXL5buOqs9YvXVI/+qb+u9+Won7xe+offmX69pW5vnub/998ce/Lh3HWL15RP3ib9rXB0letX/zi/viSinwu+e4Xwr+/5Ae/Tfe55svS53z3Vfn1H8bd93w++r5e5x/6ufS3N9lc0r3rH3m3/7o/cf3wXdrL1+Xqb9+d/9KH0T/68/t9P5/SV/3Cp/SHNxy/AvXp9Q/d8Ku+rPU//Vn8+K31a34WP/qT57796TVef/dng//97R9/9y9/+PPf/i3Sx1/pfPyp+ePvdD6+o//4S53P1/v9er5e8/V+Xe/X/X6N92u+X+v9+r4v3/fl+75831fv++p9X73vq/d99b6v3vfV+75631fv++p9X7/v6/d9/b6v3/f1+75+39fv+/p9X7/v6/d91/u+633f9b7vet93ve+7Pu77RsDV79fr/frtvvz478/X6/3xt2vfPs/3er9+uy+/fbHueL/m+7U+vr/69trv1+v9er9fz8dv1L/56Xz8+G/vlvPxF3TffjU5+X799uPr2z2n36/ffnx9+3jO/X49X6/r9ZrDx031cYivK9cr59/U1wf77bukr4/u23c9c7jncL4+sLVec1hz2HOIOeQcag49h48P9CN93XN4/1TX/nZhfx72HGIOOYeaQ3/8IfvjcM3hnsN5Hz7+qvPrsOaw5xBzyDnUHObmmJtjbo65OefmnJtzbs65OefmnJtzbs65OefmnJtrbq65uebmmptrbq65uebmmptrbq65uefmnpt7bu65uefmnpt7bu65uefmnpuvufmam6+5+Zqbr7n5mpuvufmam6+5+Zqb77n5npvvufmem++5+Z6b77n5npvvufmem8/cfObmMzefufnMzWduPnPzmZvP3HzeN+/Xaw5rDnsOMYecQ82h53DN4Z7D3Lzm5jU3r7l5zc1rbl5z85qb19y85uY1N++5ec/Ne27ec/Oem/fcPAzuYXAPg3sY3MPgHgb3MLiHwT0M7mFwD4N7GNzD4B4G9zC4h8E9DO5hcA+Dexjcw+AeBvcwuIfBPQzuYXAPg3sY3MPgHgb3MLiHwT0M7mFwD4N7GNzD4B4G9zC4h8E9DO5hcA+Dexjcw+AeBvcwuIfBPQzuYXAPg3sY3MPgHgb3MLiHwT0M7mFwD4N7GNzD4B4G9zC4h8E9DO5hcA+Dexjcw+AeBvcwuIfBPQzuYTCGwRgGYxiMYTCGwRgGYxiMYTCGwRgGYxiMYTCGwRgGYxiMYTCGwRgGYxiMYTCGwRgGYxiMYTCGwRgGYxiMYTCGwRgGYxiMYTCGwRgGYxiMYTCGwRgGYxiMYTCGwRgGYxiMYTCGwRgGYxiMYTCGwRgGYxiMYTCGwRgGYxiMYTCGwRgGYxiMYTCGwRgGYxiMYTCGwRgGYxiMYTCGwRgGYxiMYTCGwRgGYxiMYTCGwRgGYxiMYTCGwRgGYxiMYTCGwRgGYxiMYTCGwRgGYxiMYTCGwRgGYxiMYTCGwRgGYxiMYTCHwRwGcxjMYTCHwRwGcxjMYTCHwRwGcxjMYTCHwRwGcxjMYTCHwRwGcxjMYTCHwRwGcxjMYTCHwRwGcxjMYTCHwRwGcxjMYTCHwRwGcxjMYTCHwRwGcxjMYTCHwRwGcxjMYTCHwRwGcxjMYTCHwRwGcxjMYTCHwRwGcxjMYTCHwRwGcxjMYTCHwRwGcxjMYTCHwRwGcxjMYTCHwRwGcxjMYTCHwRwGcxjMYTCHwRwGcxjMYTCHwRwGcxjMYTCHwRwGcxjMYTCHwRwGcxjMYTCHwRwGcxjMYTCHwRwGcxjMYbCGwRoGaxisYbCGwRoGaxisYbCGwRoGaxisYbCGwRoGaxisYbCGwRoGaxisYbCGwRoGaxisYbCGwRoGaxisYbCGwRoGaxisYbCGwRoGaxisYbCGwRoGaxisYbCGwRoGaxisYbCGwRoGaxisYbCGwRoGaxisYbCGwRoGaxisYbCGwRoGaxisYbCGwRoGaxisYbCGwRoGaxisYbCGwRoGaxisYbCGwRoGaxisYbCGwRoGaxisYbCGwRoGaxisYbCGwRoGaxisYbCGwRoGaxisYbCGwRoGaxisYbCGwRoGaxisYbCHwR4GexjsYbCHwR4GexjsYbCHwR4GexjsYbCHwR4GexjsYbCHwR4GexjsYbCHwR4GexjsYbCHwR4GexjsYbCHwR4GexjsYbCHwR4GexjsYbCHwR4GexjsYbCHwR4GexjsYbCHwR4GexjsYbCHwR4GexjsYbCHwR4GexjsYbCHwR4GexjsYbCHwR4GexjsYbCHwR4GexjsYbCHwR4GexjsYbCHwR4GexjsYbCHwR4GexjsYbCHwR4GexjsYbCHwR4GexjsYbCHwR4GexjsYbCHwR4GexjsYbCHwR4GexjsYfAaBq9h8BoGr2HwGgavYfAaBq9h8BoGr2HwGgavYfAaBq9h8BoGr2HwGgavYfAaBq9h8BoGr2HwGgavYfAaBq9h8BoGr2HwGgavYfAaBq9h8BoGr2HwGgavYfAaBq9h8BoGr2HwGgavYfAaBq9h8BoGr2HwGgavYfAaBq9h8BoGr2HwGgavYfAaBq9h8BoGr2HwGgavYfAaBq9h8BoGr2HwGgavYfAaBq9h8BoGr2HwGgavYfAaBq9h8BoGr2HwGgavYfAaBq9h8BoGr2HwGgavYfAaBq9h8BoGr2HwGgavYfAaBq9h8BoGr2HwGgavYfAaBq9h8BoGr2HwHgbvYfAeBu9h8B4G72HwHgbvYfAeBu9h8B4G72HwHgbvYfAeBu9h8B4G72HwHgbvYfAeBu9h8B4G72HwHgbvYfAeBu9h8B4G72HwHgbvYfAeBu9h8B4G72HwHgbvYfAeBu9h8B4G72HwHgbvYfAeBu9h8B4G72HwHgbvYfAeBu9h8B4G72HwHgbvYfAeBu9h8B4G72HwHgbvYfAeBu9h8B4G72HwHgbvYfAeBu9h8B4G72HwHgbvYfAeBu9h8B4G72HwHgbvYfAeBu9h8B4G72HwHgbvYfAeBu9h8B4G72HwHgbvYfAeBu9h8B4G72HwHgbvYfAeBu9h8AyDZxg8w+AZBs8weIbBMwyeYfAMg2cYPMPgGQbPMHiGwTMMnmHwDINnGDzD4BkGzzB4hsEzDJ5h8AyDZxg8w+AZBs8weIbBMwyeYfAMg2cYPMPgGQbPMHiGwTMMnmHwDINnGDzD4BkGzzB4hsEzDJ5h8AyDZxg8w+AZBs8weIbBMwyeYfAMg2cYPJ8MxsfhvA+fDH4e1hz2HGIOOYeaQ8/hmsPc3HPzNTdfc/M1N19z8zU3X3PzNTdfc/M1N19z8z0333PzPTffc/M9N99z8z0333PzPTffc/OZm8/cfObmMzefufnMzWduPnPzmZvP++Zv/4/8y2k5badwSqdyaqfL6XaSsWQsGUvGkrFkLBlLxpKxZCwZW8aWsWVsGVvGlrFlbBlbxpYRMkJGyAgZISNkhIyQETJCRspIGSkjZaSMlJEyUkbKSBklo2SUjJJRMkpGySgZJaNktIyW0TJaRstoGS2jZbSMlnHJuGRcMi4Zl4xLxiXjknHJuGTcMm4Zt4xbxi3jlnHLuGXcMm4ZR8aRcWQcGUfGkXFkHBlHBs4XzhfOF84XzhfOF84XzhfOF84XzhfOF84XzhfOF84XzhfOF84XzhfO1wfnH52j9dnQeZ/2V+9ofXZ03qePjK9TObXT5XQ7nTl9cv51+vh51OdpO4VTOpVTO11Ot9OZ0yfnXycZKSNlpIyUkTJSRspIGSWjZJSMklEySkbJKBklo2S0jJbRMlpGy2gZLaNltIyWccm4ZFwyLhmXjEvGJeOSccm4ZNwybhm3jFvGLeOWccu4ZdwybhlHxpFxZBwZR8aRcWQcGUfGmYyvws/XaTltp3BKp3Jqp8vpdpKxZCwZS8aSsWQsGUvGkrFkLBlbxpaxZWwZW8aWsWVsGVvGlhEycL5xvnG+cb5xvnG+cb5xvnG+cb5xvnG+cb5xvnG+cb5xvnG+cb5xvnG+cb5xvnG+cb5xvnG+cb5xvnG+cb5xvnG+cb5xvnG+cb5xvnG+cb5xvnG+cb5xvnG+cb5xvnG+cb5xvnG+cb5xvnG+cb5xvnG+cb5xvnG+cb5xvnG+cb5xvnG+cb5xvnEeOA+cB84D54HzwHngPHAeOA+cB84D54HzwHngPHAeOA+cB84D54HzwHngPHAeOA+cB84D54HzwHngPHAeOA+cB84D54HzwHngPHAeOA+cB84D54HzwHngPHAeOA+cB84D54HzwHngPHAeOA+cB84D54HzwHngPHAeOA+cB84D54HzwHngPHAeOA+cB84D54HzwHngPHAeOA+cB84D54HzwHngPHAeOA+cB84D54HzwHngPHAeOA+cB84D54nzxHniPHGeOE+cJ84T54nzxHniPHGeOE+cJ84T54nzxHniPHGeOE+cJ84T54nzxHniPHGeOE+cJ84T54nzxHniPHGeOE+cJ84T54nzxHniPHGeOE+cJ84T54nzxHniPHGeOE+cJ84T54nzxHniPHGeOE+cJ84T54nzxHniPHGeOE+cJ84T54nzxHniPHGeOE+cJ84T54nzxHniPHGeOE+cJ84T54nzxHniPHGeOE+cJ84T54nzxHniPHFeOC+cF84L54XzwnnhvHBeOC+cF84L54XzwnnhvHBeOC+cF84L54XzwnnhvHBeOC+cF84L54XzwnnhvHBeOC+cF84L54XzwnnhvHBeOC+cF84L54XzwnnhvHBeOC+cF84L54XzwnnhvHBeOC+cF84L54XzwnnhvHBeOC+cF84L54XzwnnhvHBeOC+cF84L54XzwnnhvHBeOC+cF84L54XzwnnhvHBeOC+cF84L54XzwnnhvHBeOC+cF84L543zxnnjvHHeOG+cN84b543zxnnjvHHeOG+cN84b543zxnnjvHHeOG+cN84b543zxnnjvHHeOG+cN84b543zxnnjvHHeOP9saVV/nm6nM6cPzt+n5bTfjyl+drXep3Qqp3a6nG6nM6cPzt+n5SSjZJSMklEySkbJKBkto2W0jJbRMlpGy2gZLaNlXDIuGZeMS8Yl45JxybhkXDIuGbeMW8Yt45Zxy7hl3DJuGbeMW8aRcWQcGUfGkXFkHBlHxpHhSdfLo66fLa/3aTuFUzqVUztdTvPe/Wx7fZ2WjM/HX/PztJ3CKd/Pu14egb08A/vZ+nqfbqczpw/O36fltN9Py352v96nfD84+1X6+jpdTrfTmdMn3V+n9/97vFS/lu7XUv5a2l9L/Wvpfy0FsKUBtlTAlg7YUgJbWmBLDWzpgS1FsKUJtlTBli7YUgZb2mBLHWzpgy2FsKURtlTClk7YUgpbWmFLLWzphS3FsKUZtlTDlm7YUg5b2mFLPWxdz3Ozz4Ozz5Ozz6Ozz7Ozz8Ozz9Oz3z0+K+N5gNYTtKpiS1dsKYstbbGlLrb0xZbC2NIYWypjS2dsKY0trbGlNrb0xpbi2NIcW6pjS3dsKY8t7bGlPrb0x5YC2dIgWypkS4dsKZEtLbKlRrb0yJYi2dIkW6pkS5dsKZMtbbKlTrb0yZZC2dIoWyplS6dsKZUtrbKlVrb0ypZi2dIsW6plS7dsKZct7bKlXrb0y5aC2dIwWypmS8dsKZktLbOlZrb0zJai2dI0W6pmS9dsKZstbbOlbrb0zZbC2dI4WypnS+dsKZ0trbOldrb0zpbi2dI8W6pnS/dsKZ8t7bOlfrb0z5YC2tJAWypoSwdtKaEtLbSlhrb00JYi2tJEW6poSxdtKaOt+3lS/nlU/nlW/nlY/nla/nlc/nle/nlg/rsn5mXgXDFtaaYt1bSlm7aU05Z22lJPW/ppS0FtaagtFbWlo7aU1JaW2lJTW3pqS1FtaaotVbWlq7aU1Za22lJXW/pqS2FtaawtlbWls7aU1pbW2lJbW3prS3Ftaa4t1bWlu7aU15b22lJfW/prS4FtabAtFbalw7aU2JYW21JjW3psS5FtabItVbaly7aU2ZY221JnW/psS6FtabQtlbal07aU2pZW21JrW3ptS7FtabYt1bal27YOzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzs/jxnjkGI8d49FjPH6MR5DxGDIeRcbjyPhOkvHO2K9Hk/F4Mh5RxmPKeFQZjyvjkWU8toxHl8GX8SLMeDFmvCgzXpwZL9KMF2vGizbjxZvxIs54MWe8qDNe3Bkv8owXe8aLPuPFn/Ei0HgxaLwoNF4cGi8SjReLxotG48Wj8SLSeDFpvKg0XlwaLzKNF5vGi07jxafxItR4MWq8KDVenBovUo0Xq8aLVuPFq/Ei1ngxa7yoNV7cGi9yjRe7xote48Wv8SLYeDFsvCg2XhwbL5KNF8vGi2bjxbPxItp4MW28qDZeXBsvso0X28aLbuPFt/Ei3HgxbrwoN16cGy/SjRfrxot248W78SLeeDFvvKg3XtwbL/KNF/vGi37jxb/xIuB4MXC8KDheHBwvEo4XC8eLhuPFw/Ei4njhfOF84XzhfOF84XzhfOF84XzhfD1enO/EODIeNc7jxnnkOI8d59HjPH6cR5CD84XzhfOF84XzhfOFc7KqzVa16ao2X9UmrNqMVZuyanNWbdKqzVq1aas2b9UmrtrMVZu6anNXbfKqzV616as2f9UmsNoMVpvCanNYbRKrzWK1aaw2j9UmstpMVpvKanNZbTKrzWa16aw2n9UmtNqMVpvSanNabVKrzWq1aa02r9UmttrMVpvaanNbbXKrzW616a02v9UmuNoMV5vianNcbZKrzXK1aa42z9UmutpMV5vqanNdbbKrzXa16a4239UmvNqMV5vyanNebdKr/VivHu3V4716xFeP+epRXz3uq0d+9divHv3V4796BFiPAetRYD0OrEeC9ViwHg3W48F6RFjfmbAeFdZ3LiwZjw3r0WE9PqxHiPUYsR4lFs4fKdZjxXq0WI8X6xFjPWasR431uLEeOdZjx3r0WI8f6xFkPYasR5H1OLIeSdZjyXo0WY8n6xFlPaasR5X1uLIeWdZjy3p0WY8v6xFmPcasR5n1OLMeadZjzXq0WY836xFnPeasR531uLMeedZjz3r0WY8/6xFoPQatR6H1OLQeidZj0Xo0Wo9H6xFpPSatR6X1uLQemdZj03p0Wo9P6xFqPUatR6n1OLUeqdZj1Xq0Wo9X6xFrMWttaq3NrbXJtTa71qbX2vxam2BrM2xtiq3NsbVJtjbL1qbZ2jxbm2hrM21tqq3NtbXJtjbb1qbb2nxbm3BrM25tyq3NubVJtzbr1qbd2vG47x753WO/+05/J+MR4D0GvEeB9zjwHgkezim4NgfXJuHaLFybhmvzcG0irs3Etam4NhfXJuPabFybjmvzcW1Crs3ItSm5NifXJuXarFyblmvzcm1irs3Mtam5NjfXJufa7Fybnmvzc22Crs3QtSm6NkfXJunaLF2bpmvzdG2irs3Utam6NlfXJuvabF2brmvzdW3Crs3YtSm7NmfXJu3arF2btmvzdm3irs3ctam7NnfXJu/a7F2bvmvzd20Cr83gtSm8NofXJvHaLF6bxmvzeG0ir83ktam8NpfXJvPabF6bzmvzeW1Cr83otSm9NqfXJvXarF6b1mvzem1ir83stam9NrfXJvfa7F6b3mvze22Cr83wtSm+NsfXJvna+dguH93l47t8hJffGS9lPM7LR3r5WC8f7SXOCb8249em/NqcX5v0a7N+bdqvzfu1ib8289em/trcX5v8a7N/bfqvzf+1CcA2A9imANscYJsEbLOAbRqwzQO2icA2E9imAttcYJsMbLOBbTqwzQe2CcE2I9imBNucYJsUbLOCbVqwzQu2icE2M9imBtvcYJscbLODbXqwzQ+2CcI2Q9imCNscYZskbLOEbZqwzRO2icI2U9imCttcYZssbLOFbbqwzRe2CcM2Y9imDNucYZs0bLOGbdqwzRu2icM2c9imDtvcYZs8bLOHbfqwzR+2CcQ2g9imENscYptEbLOIbRqxzSO2icQ2k9imEttcYptMbLOJbTqxzSe2CcU2o9imFNv1+G0fwe1juH0Ut4/j9jvJrYxHc/t4bh/R7TyNumueRt01T6PumqdRd83TqLvmadRd8zTqrnkaddc8jbprnkbd1TIuGZeMS8Yl45JxybhkXDIuGZeMW8Yt45Zxy7hl3DJuGbeMW8Yt48g4Mo6MI+PIODKOjCPjyJinUXfP06i752nU3fM06u55GnX3PI26e55G3T1Po+6ep1F3z9Oou18ylowlY8lYMpaMJWPJWDKWjCVjy9gytowtY8vYMraMLWPL2DJCRsgIGSEjZISMkBEyQkbISBkpI2WkjJSRMlJGykgZKaNklIySUTJKRskoGSWjZOC8cd44b5w3zhvnjfPGeeO8cd44b5w3zhvnjfPGeeO8cd44b5w3zhvnjfPGeeO8cd44b5w3zhvnjfPGeeO8cd44b5w3zhvnjfPGeeP8wvmF8wvnF84vnF84v3B+4fzC+YXzC+cXzi+cXzi/cH7h/ML5hfML5xfOL5xfOP9qwe3PUzjl1/Pn+9OB9j59ZHydLqfb6cxpnjrfX324r9N2erdd9zVt131N23Vf03bd17Ta9zWt9n1Nq31f02rf17Ta9zWt9n2ljJSRMlJGykgZKaNklIySUTJKRskoGSWjZJSMltEyWkbLaBkto2W0jJbRMi4Zl4xLxiXjknHJuGRcMi4Zl4xbxi3jlnHLuGXcMm4Zt4xbxi3jyDgyjowj48g4Mo6MI+PImFb7vqfVvu9pte97Wu37nlb7vqfVvu9pte97Wu37nlb7vqfVvu+XjCVjyVgylowlY8lYMpaMJWPJ2DK2jC1jy9gytowtY8vYMraMkBEyQgbOb5zfOL9xfuP8xvmN8xvnN85vnN84v3F+4/zG+Y3zG+c3zm+c3zi/cX7j/Mb5jfMb5zfOb5zfOL9xfuP8xvmN8xvnN85vnN84v3F+4/zG+Y3zG+c3zm+c3zi/cX7j/Mb5jfMb5zfOb5zfOL9xfuP8xvmN8xvnN85vnN84v3F+4/zG+Y3zG+c3zm+c3zg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/w3m8hvN4DefxGs7jNZzHaziP13Aer+E8XsN5vIbzeL1kLBlLxpKxZCwZS8aSsWQsGUvGlrFlbBlbxpaxZWwZW8aWsWWEjJARMkJGyAgZISNkhIyQkTJSRspIGSkjZaSMlJEyUkbJKBklo2SUjJJRMkpGySgZLaNltIyW0TJaRstoGS2jZVwyLhmXjEvGJeOSccm4ZFwyLhm3jFvGLeOWccu4Zdwybhm3jFvGkXFkHBlHxpFxZBwZR8aRgfOF84XzhfOF84XzhfOF84XzhfOF84XzhfOF84XzhfOF84XzhfOF84XzhfOF84XzhfOF84XzhfOF84XzhfOFc1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIULVrhghQtWuGCFC1a4YIWLzz7cx5Pe8dmHe58up9vpvE8xT51HzFPnEfPUecQ8dR4xT51HzFPnEfPUecQ8dR6ffbj36cxpyVgylowlY8lYMpaMJWPJWDK2jC1jy9gytowtY8vYMraMLSNkhIyQETJCRsgIGSEjZISMlJEyUkbKSBkpI2WkjJSRMkpGySgZJaNklIySUTJKRsloGS2jZbSMltEyet67n32490nGB+cfloL47MO9T8tpfzkH4rMP9z6lUzm10+V0O505fdolzudpOe0vc0F8teC+TuXUTpfT7fRuMcQzXflsVz7jlc965TNf+exXPgOWz4LlM2GpBRdacKEFF1pwoQUXWnChBRdacKEFF1pwoQUXWnChBRdacKEFF1pwoQUXWnChBRdacKEFF1pwoQUXWnChBRdacKEFF1pwoQUXWnChBRdacKEFF1pwoQUXWnChBRdacKEFF1pwkc/e7DM4+yzOPpOz323OynhWZ5/Z2Wd39hmetTyrBRdacKEFF1pwoQUXWnChBRdacKEFF1pwoQUXWnChBRdacKEFF1pwoQUXWnChBRdacKEFF1pwoQUXWnChBRdacKEFF1pwoQUXWnChBRdacKEFF1pwoQUXWnChBRdacKEFF1pwoQUXWnChBRdacKEFF1pwoQUXWnChBRdacKEFF1pwoQUXWnChBRdacKEFF1pwoQUXWnChBRdacKEFF1pwoQUXWnChBRdacKEFF1pwoQUXWnChBRdacKEFF1pwoQUXWnChBRdacKEFF1pwoQUXWnChBRdacKEFF1pwoQUXWnChBRdacKEFF1pwoQUXWnChBRdacKEFF/UsTD8T08/G9DMy/axMfzczLeMZmn6Wpp+paZwb2Qwrm2FmM+xshqHNsLQZpjbD1mYY2wxrm2FuM+xthsHNsLgZJjfD5mYY3Qyrm2F2M+xuhuHNsLwZpjfD9mYY3wzrm2F+M+xvhgHOsMAZJjjDBmcY4QwrnGGGM+xwhiHOsMQZpjjDFmcY4wxrnGGOM+xxhkHOsMgZJjnDJmcY5QyrnGGWM+xyhmHOsMwZpjnDNmcY5wzrnGGeM+xzhoHOsNAZJjrDRmcY6QwrnWGmM+x0hqHOsNQZpjrDVmcY6wxrnWGuM+x1hsHOsNgZJjvDZmcY7QyrnWG2M+x2huHOsNwZpjvDdmcY7wzrnWG+M+x3hgHPsOAZJjzDhmcY8QwrnmHGM/rZlH9G5Z9V+WdW/tmVf4blv1uWl/Fsyz/j8jg36Rk2PcOoZ1j1DLOeYdczDHuGZc8w7Rm2PcO4Z1j3DPOeYd8zDHyGhc8w8Rk2PsPIZ1j5DDOfYeczDH2Gpc8w9Rm2PsPYZ1j7DHOfYe8zDH6Gxc8w+Rk2P8PoZ1j9DLOfYfczDH+G5c8w/Rm2P8P4Z1j/DPOfYf8zDICGBdAwARo2QMMIaFgBDTOgYQc0DIGGJdAwBRq2QMMYaFgDDXOgwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKF6xwwQoXrHDBChescMEKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwuedp1NzzNGrueRo19zyNmnueRs09T53nnqfOc89T57nnqfPc89R57i1jy9gyQkbICBkhI2SEjJARMkJGyEgZKSNlpIyUkTJSRspIGSmjZJSMklEySkbJKBklo2SUjJbRMlpGy2gZLaNltIyW0TIuGZeMS8Yl45JxybhkXDIuGZeMW8Yt45Zxy7hl3DJuGbeMW8Yt48g4Mo6MI+PIODKOjCPjyJinzjPmqfOMeeo8Y546z5inzjPmqfOMeeo8Y546z5inzjPmqfOMl4wlY8lYMpaMJWPJWDJwHjgPnAfOA+eB88B54DxwHjgPnAfOA+eB88B54DxwHjgPnAfOA+eB88B54DxwHjgPnAfOA+eB88B54DxwHjgPnAfOA+eB88B54DxwHjgPnAfOA+eB88B54DxwHjgPnAfOA+eB88B54DxwHjgPnAfOA+eB88D5Vwtuf56W0/7yFeSnFe59+sj4OpVTO11Ot9OZ0yfnX6d32zVto6Zt1LSNmrZR0zZq2kZN26hpGzVto6Zt1LSNmrZR0zZq2kZN26hpGzVto6Zt1LSNmrZR0zZq2kZN26hpGzVto6Zt1LSNmrZR0zZq2kZN26hpGzVto6Zt1LSNmrZR0zZq2kZN26hpGzVto6Zt1LSNmrZR0zZq2kZN26hpGzVto6Zt1LSNmrZR0zZq2kZN26hpGzVto6Zt1LSNmrZR0zZq2kZN26hpGzVto6Zt1LSNmrZR0zZq2kZN26hpGzVto6Zt1LSNmrZR0zZq2kZN26hpGzVto6Zt1LSNmrZR0zZq2kZN26hpGzVto6Zt1LSNmrZR0zZq2kZN26hpGzVto6Zt1LSNmrZR0zZq2kZN26hpGzVto6Zt1LSNmrZR0zZq2kZN26hpGzVto6Zt1LSNmrZR0zZq2kZN26hpGzVto6Zt1LSNmrZR0zZq2kZN26hpGzVto6Zt1LSNmrZR0zZq2kZN26hpGzVto6Zt1LSNmrZR0zZq2kZN26hpGzVto6Zt1LSNmrZR0zZq2kZN26hpGzVto6Zt1LSNmrZR0zZq2kZN26hpGzVto6Zt1LSNmrZR0zZq2kZN26hpGzVto6Zt1LSNmrZR0zZq2kZN26hpGzVto6Zt1LSNmrZR0zZq2kZN26hpGzVto6Zt1LSNmrZR0zZq2kZN26hpGzVto6Zt1LSNmrZR0zZq2kZN26hpGzVto6Zt1LSNmrZR0zZq2kZN26hpGzVto6Zt1LSNmrZR0zZq2kZN26hpGzVto6Zt1LSNmrZR0zZq2kZN26hpGzVto6Zt1LSNmrZR0zZq2kZN26hpGzVto6Zt1LSNmrZR0zZq2kZN26hpGzVto6Zt1LSNmrZR0zZqNs4b543zxnnjvHHeOG+cN84b543zxnnjvHHeOG+cN84b543zxnnjvHHeOG+cN84b543zxnnjvHHeOG+cN84b543zxnnjvHHeOG+cN84b543zxnnjvHHeOG+cN84b543zxnnjvHHeOG+cN84b543zxnnjvHHeOL9wfuH8wvmF8wvnF84vnF84v3B+4fzC+YXzC+cXzi+cXzi/cH7h/ML5hfML5xfOL5xfOL9wfuH8wvmF8wvnF84vnF84v3DOCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xwyQqXrHDJCpescMkKl6xw+dmH+3jSOz/7cO9TObXT5XR/PRGeZ546zzNPneeZp87zzFPneeap8zzz1Hmeeeo8P/tw79PlJKNlXDIuGZeMS8Yl45JxybhkXDIuGbeMW8Yt45Zxy7hl3DJuGbeMW8aRcWQcGUfGkXFkHBlHxpFx3hn1GrtEvcYuUa+xS9Rr7BL1GrtEvcYuUa+xS9Rr7BL1GrtEvV4ylowlY8lYMpaMJWPJWDKWjCVjy9gytowtY7/fu/XZh3ufZHxw/mEpqM8+3Pt05vTB+YdzoD77cO/TdgqndCqndrqc7i9fQX324b5On3aJ9Xn6IO/rFE7pVE7t9G4xlBZcacGVFlxpwZUWXGnBlRZcacGVFlxpwZUWXGnBlRZcacGVFlxpwZUWXGnBlRZcacGVFlxpwZUWXGnBlRZcacGVFlxpwZUWXGnBlRZcacGVFlxpwZUWXGnBlRZcacGVFlxpwZUWXGnBlRZcacGVFlxpwZUWXGnBlRZcacGVFlxpwZUWXGnBlRZcacGVFlxpwZUWXGnBlRZcacGVFlxpwZUWXGnBlRZcacGVFlxpwZUWXGnBlRZcacGVFlxpwZUWXGnBlRZcacGVFlxpwZUWXGnBlRZcacGVFlxpwZUWXGnBlRZcacGVFlxpwZUWXGnBlRZcacGVFlxpwZUWXGnBlRZcacGVFlxpwZUWXGnBlRZcacGVFlxpwZUWXGnBlRZcacGVFlxpwZUWXGnBlRZcacGVFlxpwZUWXGnBlRZcacGVFlxpwZUWXGnBlRZcacGVFlxpwZUWXGnBlRZcacGVFlxpwZUWXGnBlRZcacGVFlxpwZUWXGnBlRZcacGVFlxpwZUWXGnBlRZcacGVFlxpwZUWXGnBlRZcacGVFlxpwZUWXGnBlRZc2UYt26hlG7Vso5Zt1LKNWrZRyzZq2UYt26hlG7Vso5Zt1LKNWrZRyzZq2UYt26hlG7Vso5Zt1LKNWrZRyzZq2UYt26hlG7Vso5Zt1LKNWrZRyzZq2UYt26hlG7Vso5Zt1LKNWrZRyzZq2UYt26hlG7Vso5Zt1LKNWrZRyzZq2UYt26hlG7Vso5Zt1LKNWrZRyzZq2UYt26hlG7Vso5Zt1LKNWrZRyzZq2UYt26hlG7Vso5Zt1LKNWrZRyzZq2UYt26hlG7Vso5Zt1LKNWrZRyzZq2UYt26hlG7Vso5Zt1LKNWrZRyzZq2UYt26hlG7Vso5Zt1LKNWrZRyzZq2UYt26hlG7Vso5Zt1LKNWrZRyzZq2UYt26hlG7Vso5Zt1LKNWrZRyzZq2UYt26hlG7Vso5Zt1LKNWrZRyzZq2UYt26hlG7Vso5Zt1LKNWrZRyzZq2UYt26hlG7Vso5Zt1LKNWrZRyzZq2UYt26hlG7Vso5Zt1LKNWrZRyzZq2UYt26hlG7Vso5Zt1LKNWrZRyzZq2UYt26hlG7Vso5Zt1LKNWrZRyzZq2UYt26hlG7Vso5Zt1LKNWrZRyzZq2UYt26hlG7VsoxYrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwhUrXLHCFStcscIVK1yxwtU9T6PWPU+j1j1Po9Y9T6PWPU+j1j1Pndc9T53XPU+d1z1Pndc9T53Xfcu4Zdwybhm3jCPjyDgyjowj48g4Mo6MI2OeOq8zT53XmafO68xT53XmqfM689R5nXnqvM48dV5nnjqvM0+d13nJWDKWjCVjyVgylowlY8lYMpaMLWPL2DK2jC1jy9gytowtY8sIGSEjZISMkBEyQkbICBkhI2WkjJSRMlJGykgZKSNlpIySUTJKRskoGSWjZJSMklEyWkbLaBkto2W0jJbRMlpGy7hkXDIuGZeMSwbOD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzg/OD84Pzs9w3q/hvF/Deb+G834N5/0azvs1nPdrOO/XcN6v4bxfLxlLxpKxZCwZS8aSsWQsGUvGkrFlbBlbxpaxZWwZW8aWsWVsGSEjZISMkBEyQkbICBmfLbj9eTpz+mzB5edpOX1kfJ3CKZ3KqZ0up9vp3XZt26htG7Vto7Zt1LaN2rZR2zZq20Zt26htG7Vto7Zt1LaN2rZR2zZq20Zt26htG7Vto7Zt1LaN2rZR2zZq20Zt26htG7Vto7Zt1LaN2rZR2zZq20Zt26htG7Vto7Zt1LaN2rZR2zZq20Zt26htG7Vto7Zt1LaN2rZR2zZq20Zt26htG7Vto7Zt1LaN2rZR2zZq20Zt26htG7Vto7Zt1LaN2rZR2zZq20Zt26htG7Vto7Zt1LaN2rZR2zZq20Zt26htG7Vto7Zt1LaN2rZR2zZq20Zt26htG7Vto7Zt1LaN2rZR2zZq20Zt26htG7Vto7Zt1LaN2rZR2zZq20Zt26htG7Vto7Zt1LaN2rZR2zZq20Zt26htG7Vto7Zt1LaN2rZR2zZq20Zt26htG7Vto7Zt1LaN2rZR2zZq20Zt26htG7Vto7Zt1LaN2rZR2zZq20Zt26htG7Vto7Zt1LaN2rZR2zZq20Zt26htG7Vto7Zt1LaN2rZR2zZq20Zt26htG7Vto7Zt1LaN2rZR2zZq20Zt26htG7Vto7Zt1LaN2rZR2zZq20Zt26htG7Vto7Zt1LaN2rZR2zZq20Zt26htG7Vto7Zt1LaN2rZR2zZq20Zt26htG7Vto7Zt1LaN2rZR2zZq20Zt26htG7Vto7Zt1LaN2rZR2zZq20Zt26htG7Vto7Zt1LaN2rZR2zZq20Zt26htG7Vto7Zt1LaN2rZR2zZq20Zt26htG7Vto7Zt1LaN2rZR2zZq20Zt26htG7Vto7Zt1LaN2rZR2zZq20Zt26htG7Vto7Zt1LaN2rZR2zZq20Zt26htG7Vto7Zt1LaN2rZR2zZq20Zt26htG7Vto7Zt1LaN2hvnG+cb5xvnG+eB88B54DxwHjgPnAfOA+eB88B54DxwHjgPnAfOA+eB88B54DxwHjgPnAfOA+eB88B54DxwHjgPnAfOA+eB88B54DxwHjgPnAfOA+eB88B54DxwHjgPnAfOA+eB88B54DxwHjgPnAfOA+eB88B54DxwHjgPnAfOA+eB88B54DxwHjgPnAfOA+eB88B54DxwHjgPnAfOA+eB88B54DxwHjgPnAfOA+eB88B54JwVrlnhmhWuWeGaFa5Z4ZoVrlnhmhWuWeGaFa5Z4ZoVrlnhmhWuWeGaFa5Z4ZoVrlnhmhWuWeGaFa5Z4ZoVrlnhmhWuWeGaFa5Z4ZoVrlnhmhWuWeGaFa5Z4ZoVrlnhmhWuWeGaFa5Z4ZoVrlnhmhWuWeGaFa5Z4ZoVrlnhmhWuWeGaFa5Z4ZoVrlnhmhWuWeGaFa5Z4ZoVrlnhmhWuWeGaFa5Z4ZoVrlnhmhWuWeGaFa5Z4ZoVrlnhmhWuWeGaFa5Z4ZoVrlnhmhWuWeGaFa5Z4ZoVrlnhmhWuWeGaFa5Z4ZoVrlnhmhWuWeGaFa5Z4ZoVrlnhmhWuWeGaFa5Z4ZoVrlnhmhWuWeGaFa5Z4ZoVrlnhmhWuWeGaFa5Z4ZoVrlnhmhWuWeGaFa5Z4ZoVrlnhmhWuWeGaFa5Z4ZoVrlnhmhWuWeGaFa5Z4ZoVrlnhmhWuWeGaFa5Z4ZoVrlnhmhWuWeGaFa5Z4ZoVrlnhmhWuWeGaFa5Z4ZoVrlnhmhWuWeGaFa5Z4ZoVrlnhmhWuWeGaFa5Z4ZoVrlnhmhWuWeGaFa5Z4ZoVrlnhmhWuWeGaFa5Z4ZoVrlnhmhWuWeGaFa5Z4ZoVrlnhmhWuWeGaFa5Z4ZoVrlnhmhWuWeGaFa5Z4ZoVrlnhmhWuWeGaFa5Z4ZoVrlnhmhWuWeGaFa5Z4ZoVrlnhmhWuWeGaFa5Z4ZoVrlnhmhWuWeGaFa5Z4ZoVrlnhmhWuWeH6sw/38aR3f/bh3qdwSqdy6q8nwrvnqfPueeq8e546756nzrvnqfPueeq8e546788+3PtUTjK2jC1jywgZISNkhIyQETJCRsgIGSEjZaSMlJEyUkbKSBkpI2WkjJJRMkpGySgZJaNklIySUTJaRstoGS2jZbSMltEyWkbLuGRcMi4Zl4xLxiXjknHJuGRcMm4Zt4zbe/f23v2yS/z1Nz/9n9/9+Q+/++eff/+fP/32v7/947/91x//5S9/+NMf3//4l//vP+a/+ec//+Hnn//w7//0H3/+07/8/l//68+//6ef//QvH//dT6+P//iA5n+t/s1e//vb/3j5V3v9ZvfHv9r+Va7f5Ld/9de//u+//v8=",
|
|
1882
1882
|
"verification_key": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOQAAAAAAAAAAAAAAAAAAAATUiD6rF1GoioxneipVJZiT0AAAAAAAAAAAAAAAAAAAAAAAQLXRmUujJfGSnn5WBmMAAAAAAAAAAAAAAAAAAAACZfY0YvPFUftV5jEK/gLhFPAAAAAAAAAAAAAAAAAAAAAAAaVSpWwiDrYHjB7aXizBwAAAAAAAAAAAAAAAAAAABPLVEmuUMaMf8tbORvEWWW4AAAAAAAAAAAAAAAAAAAAAAAEnOk8m2ucOrlalBbChTSAAAAAAAAAAAAAAAAAAAAdabd4Av+nZ8EAEU83H+H8ucAAAAAAAAAAAAAAAAAAAAAABI6LJ6X+H8TujewDg7TWAAAAAAAAAAAAAAAAAAAAB7PxjTUJGm32XVytGUni9PpAAAAAAAAAAAAAAAAAAAAAAAo51PZQLEovXKAkNS2dWkAAAAAAAAAAAAAAAAAAAAn2P8pYQH9CRw9lTxV3vnPUQAAAAAAAAAAAAAAAAAAAAAAB/y0N3JG0IBiPyIgsiYcAAAAAAAAAAAAAAAAAAAAr3clChMN6L6EYBvtx+2E9zoAAAAAAAAAAAAAAAAAAAAAACKHzM1DiQ7mWU9FlYVklQAAAAAAAAAAAAAAAAAAAGA7hp6XmZnFnGLLKZfvaDpuAAAAAAAAAAAAAAAAAAAAAAAd2Nb7NA0IHuW5oSbhhu8AAAAAAAAAAAAAAAAAAAClToxMv/ogrljQgcOWBWrZlgAAAAAAAAAAAAAAAAAAAAAAE8TN0ZqWHJsdO4T8T0JcAAAAAAAAAAAAAAAAAAAAx2IHIgwknMFr/yrYJdUhRTMAAAAAAAAAAAAAAAAAAAAAAAmo+zlguwLyT5CdlaPlHQAAAAAAAAAAAAAAAAAAABXKzefMl8+Oo0YfeX1z0JvdAAAAAAAAAAAAAAAAAAAAAAAnZI9Cwnk0X41sL5LDzVAAAAAAAAAAAAAAAAAAAABwwQhwemUvkQC5t1EeFh1iXgAAAAAAAAAAAAAAAAAAAAAAFtfGaeFSpSHcMnasTEzoAAAAAAAAAAAAAAAAAAAAJzF9LwqADNbKcfUoT8KtTa8AAAAAAAAAAAAAAAAAAAAAAA518y3hD5iLVkztpJIXywAAAAAAAAAAAAAAAAAAAB5J8PjTkTM7ZuCKjl4o1N0dAAAAAAAAAAAAAAAAAAAAAAAGAYYZQRXqMgE23QeNvXEAAAAAAAAAAAAAAAAAAACDqQDTFOp4DIDArZuFIzoM8wAAAAAAAAAAAAAAAAAAAAAACWWBWtbJb0b3DJB/sUm/AAAAAAAAAAAAAAAAAAAAzddxH9m3Wxos0sgmUx2zSUoAAAAAAAAAAAAAAAAAAAAAACslai25UE7q+UTCKPoK+AAAAAAAAAAAAAAAAAAAAHM1aKnqJyJ+N9Jj3r7o/xhWAAAAAAAAAAAAAAAAAAAAAAAfkdHgtJC4yI5oeoLuXjMAAAAAAAAAAAAAAAAAAAAxAS0ZCrxv0U0x/h8lRV6mEgAAAAAAAAAAAAAAAAAAAAAAHcYuSfB9m6v8yRm0osl3AAAAAAAAAAAAAAAAAAAAPFVFOO73n+NuQ/x5iC+ITrwAAAAAAAAAAAAAAAAAAAAAABf4eQU4+WLhHW7IX34NcwAAAAAAAAAAAAAAAAAAALpOBlbrAgGbjNDJntSA/FkzAAAAAAAAAAAAAAAAAAAAAAAlEgajx5Dh/zvV9joj3BoAAAAAAAAAAAAAAAAAAACv9QEDS+OBfwK23MZtDdpwYAAAAAAAAAAAAAAAAAAAAAAAIB79wawABJOXvTqwzZBfAAAAAAAAAAAAAAAAAAAAmn03XbBnCX34MCqiiKuTXGoAAAAAAAAAAAAAAAAAAAAAAC+IxtPvPZef5V0EDr8XlgAAAAAAAAAAAAAAAAAAAKdo9T3kRhOWwNKjuXi72wjcAAAAAAAAAAAAAAAAAAAAAAAZD5IPKu+/E4bP2TYXun0AAAAAAAAAAAAAAAAAAAApHyIIzQc5hcCEpp8jFyMoDwAAAAAAAAAAAAAAAAAAAAAAHztzZaX8XyVz+XYZgQ8OAAAAAAAAAAAAAAAAAAAAsGUfagzDvBIIJEvQo543RaMAAAAAAAAAAAAAAAAAAAAAAAZZnuDBdXVAL3rhWyysCgAAAAAAAAAAAAAAAAAAAD46YaUYIWJw5yVmhaf6o/emAAAAAAAAAAAAAAAAAAAAAAAISgfz+gAWpI/Sez7EksgAAAAAAAAAAAAAAAAAAADzH6ZzemaOpbklKPIiggQK0AAAAAAAAAAAAAAAAAAAAAAALNgqnyQ1J0Bm6eTiguFhAAAAAAAAAAAAAAAAAAAAw+4K8nhp3pVV8i7t+kZrIE8AAAAAAAAAAAAAAAAAAAAAAB3Q0dkdIVGMUkAEcYzGPQAAAAAAAAAAAAAAAAAAANhrcfME7GI5AweLR0R+PYyTAAAAAAAAAAAAAAAAAAAAAAAef+WV4vZlHwa3nUrH+UUAAAAAAAAAAAAAAAAAAACQ4fDOGz3mM79CYedNEet82QAAAAAAAAAAAAAAAAAAAAAAGSlogqaBQ/18FDUy5CwNAAAAAAAAAAAAAAAAAAAAhLIW5lrmDyFuvNhQB2Z0r08AAAAAAAAAAAAAAAAAAAAAACOG3B5CN5z+d9TonjtW3gAAAAAAAAAAAAAAAAAAADtXKZLdHuv9YcVhnEZ/M6wJAAAAAAAAAAAAAAAAAAAAAAAg1Z8e/1SUSsJKEBb6UjwAAAAAAAAAAAAAAAAAAADwjRth7LTfioA5OblpawqcaAAAAAAAAAAAAAAAAAAAAAAAGSqWue7akIUYNAFWvfwVAAAAAAAAAAAAAAAAAAAA2Xm3HyG+pUbRnnjxrDFOIs0AAAAAAAAAAAAAAAAAAAAAACeONkKnQjj9f2/shkxggwAAAAAAAAAAAAAAAAAAAE/K3n3As5ptnsXdPIWfNiDeAAAAAAAAAAAAAAAAAAAAAAADGUH7x1WNJu+OAE2D8GYAAAAAAAAAAAAAAAAAAAA5BVPfFvW1BT6+NU8dtbeh4gAAAAAAAAAAAAAAAAAAAAAAFENmlQfcfMM1WqCG1DeoAAAAAAAAAAAAAAAAAAAAzVxVqB8NLAHHJRvYeXjw+DAAAAAAAAAAAAAAAAAAAAAAACGaY6AJfMdysRQYb07WEQAAAAAAAAAAAAAAAAAAAFlkhroEL9k3hvdCdluMelMmAAAAAAAAAAAAAAAAAAAAAAAvKg6VnXHkKYJTRXX6gygAAAAAAAAAAAAAAAAAAADTno5N4NeKRvWZT6OiA7gQoAAAAAAAAAAAAAAAAAAAAAAAH0HEuBWQD3sSxoOnAfocAAAAAAAAAAAAAAAAAAAAoTxfmNROYw6SlDhE2yV1MpsAAAAAAAAAAAAAAAAAAAAAAC/i7S9P9B9QwnBJq/8yxwAAAAAAAAAAAAAAAAAAABy03T+xVpSkU/biY4Gums09AAAAAAAAAAAAAAAAAAAAAAADwFQHAIclbgXy8yERsGoAAAAAAAAAAAAAAAAAAADn4bL1s4d63fM+B89hNoZTHQAAAAAAAAAAAAAAAAAAAAAAGodS/AK1n0yt5FhD7aTXAAAAAAAAAAAAAAAAAAAAVDiFkkDSZch5/N4a/FUy+78AAAAAAAAAAAAAAAAAAAAAACRcJWsHz1p0Eg/HLRDvBAAAAAAAAAAAAAAAAAAAAD1E17e+Y9+CiE0CZgExFc0uAAAAAAAAAAAAAAAAAAAAAAAMNHrg1LZPbpg/rWYYrpIAAAAAAAAAAAAAAAAAAAAjrVAtQee2NudKp5zgZi+MLAAAAAAAAAAAAAAAAAAAAAAALymiDk423gX4RDqjbomuAAAAAAAAAAAAAAAAAAAAD0fs0vCdFkH0jRlwUOOm8FMAAAAAAAAAAAAAAAAAAAAAAAt9f9Ie59EOTPQlXNJBuwAAAAAAAAAAAAAAAAAAAJW12Le0pjsF32UrDRDvFG0mAAAAAAAAAAAAAAAAAAAAAAAJnjvVoKAKt/4YBAEFubMAAAAAAAAAAAAAAAAAAAAhKa86Y39aYioyRA+GDR4qfwAAAAAAAAAAAAAAAAAAAAAAABW40lFdduLM7Jnc0ZRZAAAAAAAAAAAAAAAAAAAAIiuIgQjcJdGqRQ4LS8ISw34AAAAAAAAAAAAAAAAAAAAAABuRdReSC609i8AclZUJKgAAAAAAAAAAAAAAAAAAAEghQcfr5CAAodWMy3Q4H20ZAAAAAAAAAAAAAAAAAAAAAAAwXomSsUju2yLm6ZIHeoQAAAAAAAAAAAAAAAAAAAA47Y2iN1GGtRjHNFxgsRNLLQAAAAAAAAAAAAAAAAAAAAAABh9kSXmW6JFXIlAenjZ5AAAAAAAAAAAAAAAAAAAAKtPXy1l5LhHA0mkfMX/VDm4AAAAAAAAAAAAAAAAAAAAAABuE04M5Mh9AXrr2ovgwhAAAAAAAAAAAAAAAAAAAACjt0afkbIQNnJQ/30VSHGTOAAAAAAAAAAAAAAAAAAAAAAAEPQY7Ewrfs3NCr0XQFVoAAAAAAAAAAAAAAAAAAACTMJUq50xXPRaG2ctKAHM4VAAAAAAAAAAAAAAAAAAAAAAAJhUixAiTMGRq/5ZzYZSUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABiCnpVZLxDte4B38lz2I/emwAAAAAAAAAAAAAAAAAAAAAALVp9rujKzsbPYdmbQNNPAAAAAAAAAAAAAAAAAAAAMqcLEj2vbnKoJlsvyPJB+sAAAAAAAAAAAAAAAAAAAAAAAAE6WkTujFYKcUEqUKqh4gAAAAAAAAAAAAAAAAAAAGvMegX/lalrKJQkxfczZw2WAAAAAAAAAAAAAAAAAAAAAAAAxDcm91tv2g3iLODg36sAAAAAAAAAAAAAAAAAAAAdCgnXF47JO614WPluZPC0jQAAAAAAAAAAAAAAAAAAAAAAL5tuC04sAZaN5cMkgqp9AAAAAAAAAAAAAAAAAAAAFLmaKhz1vbFNGPy31tW7G0MAAAAAAAAAAAAAAAAAAAAAABibwBFKqYLGRXSxHbsAPgAAAAAAAAAAAAAAAAAAAIFYESpGMQpiuEn23VYsLIaUAAAAAAAAAAAAAAAAAAAAAAASkF6WwsjbCGXWk491oyQ="
|
|
1883
1883
|
},
|
|
1884
1884
|
{
|
|
@@ -2130,7 +2130,7 @@
|
|
|
2130
2130
|
}
|
|
2131
2131
|
},
|
|
2132
2132
|
"bytecode": "H4sIAAAAAAAA/+29C5hlV1UuOlft3dW1q6prd/W7q1+7+pFn58lDRFBCEtKBBEJoEvKCvIomIUl3+pF+pbvTkAb0iEfIuR4RrhyvcvEK6FG4KveqICpe5XB8HR8XUURFkaMSBDxeLsphwhpdf/31r7nXWnvs7g2p+X3de9WaY/5jzDHHHPO55szCN0M7/92zd/c9M/v2verBr/93166Zl3/9VZZHNfPfxflvfD8Z5gaj7YRSIatAOzdRBR5Z6D+PodB/Ho3Qfx7N0H8ei0L/eQyH/vNYHPrPYyT0n0cr9J/HaOg/j7HQfx7jof88loT+85gI/efRDv3nsTRU51GHz2Q4M3yWlaf9BvbzxLsq/JaH/pfRitB/HitD/3msCv3nsTr0n8ea0H8ea0P/eUyF/vNYF/rPY33oP48Nof88Nob+89gU+s+jE/rPYzr0n8fm0H8eW0L/eWwN/eexLfSfxzmh/zzODf3ncV7oP4/zQ/95XBD6z+PC0H8e20P/eVwU+s/j4tB/HpeE/vO4NPSfx2Wh/zwuD/3n8bTQfx5PD/3n8YzQfx7PDP3n8R2h/zyeFfrP4ztD/3k8O/Sfx3eF/vN4Tug/j+eG/vP47tB/Ht8T+s/jeaH/PK4I/efx/NB/HleG/vO4KvSfx9Wh/zxeEPrP45rQfx47Qv95XBv6z+OFof88XhT6z+O60H8e14f+83hx6D+Pl4T+87gh9J/HS0P/edwYqvOow+dl4czw2RnODJ+Xhxp8biKGcUND3HAQNwTEBfu4oB4XvOOCdFwwjgu6ccE1LojGBcu4oBgX/OKCXFwsiwtZcXEpLv7ExZm4eBIXN+LiQ1wciJP3cXI9Tn7Hyek4eWyTu9Nf/xcnL+PkYpz8i5NzcfIsTm7Fyac4ORQnb+LkSpz8iJMTcfIgDu7j4DsOjuPgNQ4u4+AvDs7i4CkObuLgIw4OYuc9dq5j5zd2TmPnMXbunvf1f7FzFDsvsXMRG//YOMfGMzZusfGJjUN03tG5RucXnVN0HrFyx8oXK0c03mhYsdBfHoqDFW7B/psf2/TN1yN59BAkq7AfJBshdtXSP/apEQaslD58I31MM1Iv/U2WvlUv/TfMN4bvhfQoi+E28t8fgbQ/QjyN5pNA80miMXnr6Tt8b4/5nRwPc/NoGAFkG62HvQzzZKFB7xC/FXoq+ywjPOPH+bO6MQ40xi+juKaQ0+IWQZzpP7q+C4COy3aE4kyWGH6E4hoQ9/b818oE5aqgo3f0aC/P66O9XPGtaC9NivOwF8RgezGMGD5JccMQ92cUtxji/hx4PwOeH82fe/RJp314zTboG10C5o9YJq+FBv3GYHoy3Y8IeotrQRzqPoZReN8QWIspndE/Pf+dyH+xbCx9W/AfJv5KbmWbmcBqiHdGH/VzEchsmFcCbccevrTvj//3j735/b/+k/vf/a4fmvzEkreNbR89cerU59f94/ofefLUj1vaq0CWLJQu72FLf7Xi/d2/0Lj1NT/7ld1j17z+Zw5+4v998YEl6+/6yKY3vevW33jLpr971Rss7QtU2s9+/9tPtH/mrf+pc+HHvzx8zb//+1d98dpFz/rExx9d+2uv++rfPfmEpb1Gpf39W7/6Zx9oP3Hk0Js/ePRZ5y2/671P/PEXPvebH/vp9hc//b6H//gZlnYH5LlOP+vaeumXWvoXQvoqe3It/YvqpT8t/3X10g9Z+uvhZcceTv7ET/7ZFW/++KV/9dXR77v+rscPPe3f/cHN/3Bkzbu3feb+961/76SlfbFK+5f7r3zL/tUPPvMfRn7nzZf92LoNn/rSuz/wt/98eOZZf/+3n/356S9a2peItGsuP/c79/zw76745Hmb//R5H37vxf9h7Ze2PueTv7jjx578ym/9S5jV2Q2Q5wpldjrPL62Xvmnpb6yXvmHpXwYvO+k0p5tiS7uzHu/T6V9enreFRZb2Jp02e/3mff+x9ebs+o+87qIPjI9+5O+ueOfzr/z4xx7/vk3t977T0t4s0l7wnNaT7/q+46fCX7z7v//AP1/wS8+7aHLjFZMX/7e3/9G6h/betvZJS/sKYxQq5Xm9pb8F0pPsyWDpbw3zZS+b9rZ6vE/X79ur8z6d9o7qaU/XkVcaWKik89O28qp66VuW/s566Uct/V310o9Z+rvrpT/tG++pl36Zpb+3XvoVln4G0lfoC3Qs/avxZSgVtlvaXfV4X2rpX1Mv/WWW/j5IX2VsZenvr8f/Ckv/2nrpr7T0D9RLf5Wlf7Be+hdY+ofqpb/B0u+ul36npd9TL/1dlv7heunvsfR766W/19Lvq5d+xtLvr5f+1Zb+QL30uyz9I/XSv8bSH6yX/j5Lf6he+gcs/eF66R+09EfqpX/I0h+tl363pX+0Xvo9lv5YvfR7Lf3xeun3WfoT9dLvt/SP1Ut/wNKfrJf+EUv/unrpD1r619dLf9jSP14v/VFLf6pe+mOW/g3wshNKhc9b2jeqtOk5hDda2jeptOk5hP8Q507iHNCb84mfuNS1Jk96YP99D9y3//A1M/tf/s2nK3c/tH/m0H6cw4v64bnUFv09Sn+P0d88v2jv1TxlmWBzhksIL4TZucEJ4tMJpcKGjPBC0HO8ht8iWSryOz3HO0H8OH84xxvj2kKWNsXFwH2VtuDTFnwU1j5HrGOOWPsdsY46Ynnm8bAj1kFHrCOOWAccsWYcsTx171mHjg8o1h5HLE+b8NS9p33tdcTyrNueNvGwI5anjz7piDWo7aP1t63vgH2NrODX+PA749MKPfWzslS+JgS/FP2SBP3SkvhjgJ33i6+aufvArut27woUuKt6VYGI64luZ0I0xs3oH79fT+8aghZDzN6q/DnP3gtm9t/zmp137do1c+/XM7mPUzDSlQXvU0ZlnfE2SdoJpcJQGaNE/DNtlFGry/LnXKvX7b7r3ivv2rPvwAMzuHUGzZS5ZISK71SZZiAZvhsluivp7x0iXRDYuO1rkt53QqmwzKximYi0uOWAvYTiVkDcBMWtBKxXAx0HzifmJw6JnxidxWU6lhXLajnFLYW4FcCby7wt+FjehgT9UsJSQz4rl278GiIdD1lTw+oyNdHyEcJsM7REyNxHj7Fi0D2G5W9pPX7LU80aYpo8putJEWdYVkeHC7AsbZPoP5v/tokuhluJx6SQF9/htp+/ItlRt2wnvegR8UwufIf4rdCTXWapclPduF79bxm9ozzsr1m36PeGC7AsbZPov5z/tsP8NoHtZJmQF9+hnTxJsqNu2U5q6rH0lk/Db4We7DJLlRvmj+1kWT1+zyujd5RHtd2oW2wDhwuwLG2T6K271ya6GNhOlgt58R3ayb+S7KhbtpOaelxf1k4MvxV6ssssVW7Kr6pys7RK3zxtXFbfCuuYI9ZRR6yHHbH2OWIdH1Csg45YRxyxDjhizThiHXLE8rT7QdXX6xyxPG31hCPWI45Ynrr3zOMeR6xBtdXHHbF2OWLZ1gY1/8J9HewLVB1bIJ7Jie8QvxV66ltlKb2osYHlb0U9fpMZpUd+iMnzQCtFnGHZ3OtwAZalbRL9C3OFtokuBu4TrxTy4jvsE1+d404IeXl+oKo9pubKMB3bY83yurqsPRp+K/Rk/1nKPpReLH8r6/G7qkz5ojym61UizrBW538PF2BZ2ibR30r2uApkYntcJeTFd2iPL8/myo66ZTupqcfnl7UTw2+FnuwyS5Ub5o/tZFU9fleU0TvKY7peLeIMy7aKDRdgWdom0e8iO1kNMrGdrBby4ju0k7vJb6G8PF9V1h+2RXqjGxHpOvaQ/uzwJ3osz5st/ep66Zdb+jX10l9l6dfWS39FLK89VF74KTSvh9m2wkVhtl7imqmlbRL9/z0ym24/+RHeuhjCbJnW/MR8bVk/Yvhen4Hzp7OcP57rGROytCkuBu7Ljgk+Y4KPwjrliDXjiPWoI9Y+R6wjjlh7HbEOOmJ55vGAI9ag2tceR6xjjlgnHLE87ctTX4ccsTzty7MOHXXE8rQJT79q897jIo77AePwvkK7XHp3Eh7jwe1ynX7AOPEr0ku13UnYG2KtICq+y8Lc3GNcg97x7qSr6e86u5Nq7tqYMquYEpEWtw6wWxS3HuLGKG4DYFXdnWT5qbo7CctqHcVhL3s98OYyV3wsb0OCfglhjYt0Vi7d+D2Va6kqJ0urdlFxPS07KqjjPZw2xJqIa4huR4FomcDN6B+/X0PvGiHtnlIDxDImEwM3QIi1k/gsNEALDdDpsNAAhcFqgBoiHU8P8bRRDB17SJ8ItSxOTX06V9yEkBenhjBvi7rkr0n0N8JU2GdyfpHWphDzWvj8Aw+89saZ/Xvvm3lkRu3971Z1rqe/XyzSqWAmwR8QxzASenJOpZ2h4beCLuZOKBVOO0M1SlEH2lVzhmwQqBVExXdZqO8MX0x/13GGNT+BruwMRygOnSE7yl6coeWnqjPEsmJniJWYnSGW+ZjgY3kbEvTjhJVyZN34LXRZvhkWuiwQFrosYbC6LJxuUZhfqy1tk2iX5YbZY22es3uZZVxo678ZFtp6CAttfRistl55GV6n7udUCfJODrDSx+Z+qUePclOPnvDl0ftenGfSBnhYR7iOW6tVtNfB0jaJ/oqh2XSX588xz9vy+Nzb3HTXA/fde9f+masfevjAzIGZe1+8e//MviseuvfqR2Ye2l95uPcC+vsakU4FU2rNjQ9jqiNqQVWyUYrjDSYYh90gnorlj/wwDjcJNSkOm8NFFIebX4cpDjciLoZnDspxmW5juveVcFyjYVYf6GjNEeDHvzw/a07MNoMxDRut0V89NCvjztzzK0fADpQPOQhh1qY2kOydUCqU7joYfivMb3jqdB02ED/On8+RAqgVRMV3WBs47kx0HTbR+04oFTpmFYre4qYBm48U2Axx6yluC2BV7TpYfqp2HbCspiluI8RtBt5c5hsEH8ubOlJgI2FtEOm461DEryHScbcwo/c4n7lO8Ob5zFeC57h5qlgP60KxHuxvNRBjfVt8DD3a681lPY3ht8L8sq/jaTYRP85fPU+DloJcbiJUo0FaDDeBZEjPZ0hy6Y2JdBxMY02S+SB0ml5DnTTM1zKSW1k7vuNOLaY3OsVnaY98lgo+3K+J4RaKm0zEqQ+D+cOWGHhdU30AoDaW80EDaxKYUwIzlt2qxixe/HcO0ClLt9bJymAbyINp8e9FRBuD3THQJNrvA7t6lOwKazHb1cYucqfsamMo5rO0Rz5LBR81uGbb2STyqlprLudpiGPb2SzypVprxtwqMGP5LGnMpePyj8E8/rnwvsogsqzHN/wWyVLX459L/Dh//IHJefX4vTyj9MgPMU0e0/X5Is6w7G6x4QIsS9sk+v+YZ6pNdDHwBybnC3nxHX5g8tahubKjbrOCX8Pld1y/MO9WPsYH/c1OkOcdQ3Pzgn6qEeb7Net5sq/6HlgZfif5KkzPZafqSd38nyPyOBHm64Y/QFT2fW6CTzuRn36VJx+4hH4Wy/M9VJ7nQZzy0ffkv02iPw/K86epPFVdVHrmdqmqnpcJPv3WM7cv5zvyQSw+rPFCwmI/aOVker4A0l9I6bZDHNLhqOtCeL9d8Fb4htHNBj80pPOmbBB5NYl+CdjgR2ra4PkUh20FtosoB+oBy+yeoPM1LOhT+fotGHXeOjUX09KjrrAs2P8a/X8BzDumtJyYL2wPeAunsocLRb6UTreH7rxRzzsKeA+HtC02if4PhE65XcD0qh7xR8wXdJGd6zem5ztNMV2vfkTJ3K1OfrJinbSPMtl2/3nxbLpPUZ1M2QjKzOOIqnpeKvj0W888RtjuyAexuF24mLBYz1ZOpueLIO5iSncJxCEdtgsXw/tLBG+FX7ZdeHJI563IBo1Xk+j/FGzwi4lxccoGt1Mc6pTbhW7+cC3Rm9zDId3eNon+K4l2QdVX9LXcLhj9vybaBeOL+Uq1C8oWLxL5Ujq9mLC2CSzUM7cLSqeY/22U/9O205jNf6pdsPRqPuI2isP5iPMorgNx3GedhrjzKQ7nI3huZAvEsb/bCnFoIzwfMZHID64r8nwfztttojg8HKFDcXgowTTF4bzdZorDwwS2UNwUxG2FvNq8HS9mr83f97imJ7chpeZFs4LfEMq1B7h2zGvOGxz5INbVxGejI5+Nifx0BB8rL6wv/ViDNfxWmF9368yTTRM/zl+9lRH0NqwVRMV3WZibe4w7E2uwW+h9J5QKW9UsqwWeyVIeCT16h+JwxqDqGqzlp+oaLJYVtzDo8c8B3lzm04JPJ38eEvS8njst0lm5dOPXEOl4vTKj90VrsIbRJPpnQwt9J/VQFK8OyMe9BJO9aAdJh2Qw+u8GGXZOacxmQb42FWC+tDGrjysaGjMITJWvzZQvlmGaZDD6q0XvpxHm25+ysWn6G9e3NxfIp8qJZcX6VJSfDuXH6F+UKKeOkMHkimFHFxmYZnOBDC8RMgiPfuXuPYdzjx4o8HenvDbNmue16o7AKQqmjWiFZpFqZ8UmkW4T/d0SMsWc2xzE6c94H5jZP1OQd26tRgt4DgUduA9u6WKw1qcD7/vRb+jkz62gvVQnlAoZW67x4/zx/sFpIUtbxGH5sh2l+MQytX5/XqYv2797b1GRlu1QZEIsTh8IKxPvYngqm0G17iMbQQf+RlR8l9J8t9L2+IaIm5NOKBW2qAV8C2rAzNv0ynQtY6jafbT8VO0+diBuK8VNQ9w24M1l3hF80Mky/TRhdUQ6K5du/FT3krcBslco6j5yN8voD0BzfPPU3HzyDWlvhDjeotcJc9PG0ONAdLKsJzH8b82B6FJCNRqkxYD3TiF9aoteDNeKdBzYk5xP7zuhVLhALSdYsDic3mRvgVOTHYrDadc3AB0H5UksP9Ha75maxWU6lhVr3YUUh9a9neLQE19EcTjIv5ji0MteQnHoZS+lOBzAX0ZxuKx7OcXhcvDT8mf2FD9I04E122s5HWhYE2G+vvmsbtUNU1v12yL9+gSf1T3yWS34jIt07B1r6rF0P4s3MPf6qYTawKz0olphS9sWcdP5s9md2cnKfJz2ja1RNC3fhyvmn1lWr2f7ivlJIYu66+1BoOO4hng3lMA66oj1mCPWEUesvY5YM45Ynnn0LEfPPD7siOWZx8OOWI86Yh1yxNrniHXCEeugI5anTXjWR8865GkTnvo64Ih13BHLU/f7HbE8dX/MEctTX56+cI8jlqe+BtUXeurL0+c8FfpMnjbh2W576v51jliedu+p+0ccsTx175lHTz/h2Qfw1Nfjjlin8l+bY8J5CF5NUmP+iQQfTD9RAkvNH6TyWHTkhdNJ0ybiM4huR4FomcDN6B+/fwa9awhaxMajgcosZmwj7E4oFS7PCC8EPa1k+F6LGWqncAfe8bTS+UIW9QXWa4GO4xriXeprrqOOWIcdsR51xDrkiLXPEeuEI9ZBRyxPmzjiiDXjiOVpE576OuCI5amv/Y5Ynvp6zBHL01b3OmI9FcrxmCOWp74826E9jlie+hrUdshTX57+3tO+PH2OZ330tAnPPpOn7l/niOVp9566f8QRy1P3nnn09BOD2v963BGLp0lwXM3TJGoMuy3BB9NvK4HVEVipPPZ5msREvIzodhSIlgncjP7x+8voXbdpEt6VcypnZtMiNXcVzZvqQawJ4hmf+ePyqjN1mH4ywWd5j3yWCz7jIp3lu0c9jqH+UE58h/itMD/PdaaX1C45pRe1G8zS8m6wGPiQsI7g0xF8FrAWsM4WVmq3J/8aH36XasrK+JG6fBCLD3/rQHr2vx3i001v6hNjxrJvGGK4E2j4cEI8tCII3rdAPNL/bJ4g7gL/r/lHEuqLKDx85f3NtKyYFmVtEv0vw+ErP59jKj2zb1TfiHDZIV+FyW2axYVQruyWCxlSWFheK4neymK4gN7wuOw+DGXHh7wYTZH9dEgGLKNAGDGw/Rj9r9ewn48207Ky/awMOv/vBPv5LbIf1HHKflZSHNpPJ8zFxDjeIV+1T4TpU30vPkRXyZ6F+b421T1vh2Id9bgT/3xeOsPAX8KgHtSXMGsoDr+EmaI4PDyI2wY8MGgLxV0CcagPDg36G3UUzfD3wPaZLhBPLEM+hAcPOOED5vBAGx4WriFZ+V2qLV1TgIXHFKiDuJpE/6H8tpBYH/+mOTdfeFC26aRHW3taRngh6H4+f/UxVY9f8qsPzB/389W3oO0w38c+AHQcV2aoj3EHHbGOO2I97Ih11BHrpCPWPkesYwMq115HrBlHrMcdsXY5Yp1yxPLU1xFHLM/6eMIRy9PuPX2hZznud8TyLEdP/+Wpr0cdsfY4Ynnqy7MOefYnPPV1yBFrwa+ePb/qqfvXOWJ52r2n7h9xxPLUvWcePf3EAUcsT3159ldf44h1Kv+1uYeic3cwDvlsSvBRh8WpeT+cc+CxtNHE0ONlSI2M8EwefIf4LZKlIr/kZUiqfFKXE7VFHJ+uU3drQnyeJqyycx8Zpe+WR8ctAybi5UR3Q4FoQwI3o3/8/nJ6V7RlwLCtGuHUEy8foRpTqlXLR0an+Kzskc/KknyW98hneUk+q3vks7okn/U98lkv+PRxOnS8rBs7W9OhPR6BNpZyKYjJB2htE3HsgocLsCwtL3sdXfTNX9V08nJ62WY4Qj6yaC4dytuBNHzGfQy4xHZ80VwZOhDHywPY1PIS7a8umk13Mn9Wy1T2NZv60I/Pt8c7Otn28az/CrZR+gAow2+F+b6tju2vIn6cP2zeyh+Px54UtYKo+C4Lc3OPcQ16x5slJihdnYM219D7TigV1quNIhb4pgLUjVowW0lx6JmqHrRp+al60CaWFVs+tjx8vzWW+SrBx/I2JOhXE9Yqkc7KpRu/hki3nDAyeo9eZZ3g3ST6t+eeRJ3TrnhhjeKNnyZ70dnbLIPRvxNk4PO/V0Eala/lIA/q3/7G+nR7Af8PgGf98UWafxD8OX9oq0VnoK8iGYz+3aADPtN9jUgfCt6xba+huDUJ2iWUF3UvO9oin/8+1SXvXP5G/9OJ8l8pZMDPx3d0kYFplhTI8HNCht7Of2fPzqXEJbFS4BQF00YU+gPUT8FSWy7SFdUYTNvr+e+TBTyHgg58L5Gli8FatZr9g9L9EcNvBe39OqFUyNhyjR/nj6cUVEvRFnFFtbQbnx7Pfy/qqChnwekDpc3EuxiiJduhB9Z9nQYaHqZPh7ny8rvUMN3oFJ+VPfJZWZLP8h75LC/JZ3WPfFaX5LO+Rz7qxHLGUsOmGO7Lf/nClj8Ax35HwSUwQwWYN5IMapZQ7eozejXbd67Io/rY6PwSvFGX3BBeUFHW1JWuyF9dD3thRVlvOMOyTgtZ1Vng5odGRL760eQYfkvkoU6T0+1a3npDYN7fjlpBVHyXhbm5x7hUyxLDC+jvOkNgvgi1E0qFi3mfKga1T5Uvg7wU4ng/KX7bVnUIbPmpOgTGsrqE4nAP76XAm8v8QsHH8jYk6LcTlrpA2MqlG79U7TYMlS6GN4k06tq4rOA3hPm1NgbuuG13xLpIYJlN88W8nVAqrCzrjQy/FXqqQ6e9Uepi2Rg475cIWdoiDic7MQ75XCL4KKzNjlhbHLG2OmJtc8KK4dYFrAWsBawFrJJYFodt9kUUh+3nK/NfNSIq+lYP5UvtqcH02xJ8pnrkMyX4pPbM8K/x4XdFe4SQp+UH227Wm7og/qIEH0zPtwV1IB0uej5zWPPE0TumvTP/5Yve/zN8x/Sdw8V5RD1bvljmEeBhcVUW9WPf+70bZvlgP8VkNNyi+oP0d+W/qs0u+jYJMbqVwZVUBtsgTpWBycPfdr4NyuAFVAYdkAvHE0X1piP4sY0MC3rEYxt5US4TLp0o+c4t4If6QJnvLeD3EuB3B93WhXbXyZ97tLuVyu6wvrLdle13l7FT1ImyU56l6ggs1GnRWTHDgh7xmkR/qyjzsnbO5Wr0d5QsVyd/IssVdcXlqmYTVTuUsgMsr07+3A7zy3yasKYFVgfelSnXjsDncn1NolwtPZYrysXlavSvLVmupst+lGsHCMqUK9Jzuar2W+0TbYf57eQqwlI+GnVaplzRVthHG/0jiXK19GX9sNEfHgA/jLoqU65IX7Vc2Q9juZ5HcWqVgesR8kn5aLUxL+Wjjf6UKHPu87NfKJJP6c15QfPCAjFWiPSB0mb0bkUBluHEdzgxzyq37A4HPQVqeFwlvl+oXFXTDvDu4+nypRdCDL8V5ptEnanHbl1Pnno8V8hSpipNl+TjaKoxvKBAjEykD4SViXcY1yE54jtcEzVT5W2vmBa3vaoRNo8UlOfrAE3RDGZR78LwmkT/o4lWqNtojb31pYIee8adUJz/SylOrSgxH2wdUV/cOhr9u0q2jsa7H60j6ohbR1wNawh61vflgv4yoOFZpcshLlWlLyU+3VwH239H8FGjb9UbV9uTy9ijsi/sDVxCcWo0p2zB6PoxU4L5YVtI1aUYWDcp20HdtEN3O8F6eQnxSfmlGFK2gLMLNhs2AtjIBzET4VxLP1Qv/d2WvlEv/UWWT97qGINhY9lWsJl7UCcWVFfB8FskS0V+p7sKi4gf54+7CsNCljbFxXA/0HFcQ7wbSmDNOGI96oi1xxHrmCPWCUesg45Ynvo65IjlaV9HHLGOOmJ52sQ+JyxL7yXXcUcsT5t42BHL0yYOO2J5+lXPuu1lqzEMql/1tAlP/+VZhzxtwlNfBxyxPPW11xHL01Y95Vpot8+evjz7q54+2rMP8Jgjlqf/GlSb8PQTg9oOeY5hPPP4ekesBb/67eG/vMoxC/Pn3AZFX4Pqcwa1X7jfEcuzPj7miOVZjoPYX83C/DnsQbEvT7/6iCOWp58Y1HkmT7k8dT+ofsKzT/5UGNd6ttsnB1Quz3GtZzl61kfPMYznvK8nlqdNcB3K8r9xnfQWeL4N4pHebolS69gV1m7vHYc0ATAQu+Y69L0Z4YUwt68RCH+8gF8MLRHXLCHLe1Z++I6rtnzt9ozSmyz8rszYRK1pm64Wk+ydUCrcrfaQGG+Lw/X5RRSHejEZ4u8FJN9wTfnK6A/x24Kev4orWxaTYa4toL2rPWH8VXPqROL4XHSy8HABPd/8Z/Q/kStefT2Du4+XF/BD+VInGWP68wuwcI8bHhh4d4HsPwWy89ku6kwRdSyS0Xc7dcDkSZ1/MiHSrS/gg3nFsr4zzM2r0f+syKuqf1h3DMfiKtSdMbWHC3XEe7jwK86GoC+z2x33hfKp2ri/7XyKQx1fSHFYr3gfqdrrh3bH+7s2Cayoh48mbsycLMET6cvU646Qg+vGR0rW63MK+KF8qXqN6avW61cVyP7/VKzX5wj5BqFeY1nfGebm1eh/5ylWr1NfsdSt1x2SoSNkKFuvLW3UA9+uezHEGS4eers2f24S/Z8n7PmSMF/WlH677TvnW0px729q3/kFFIf7aXm//mVCDygXn8Vm9H8Devgw2KDlJZBcPdr6FcrWce8w23pqj3kMXBZPE/S479x00iZ6Lhf8G7FQp/yJkOloWNAjHn8D8QXRLph86N8uI9m3V5R9o5BdHRSNderJXMFmg/hJFrdT2xM8OS36meECesPjr73/f6GvlM9HPY0TptH/W8IfKP9Z9Svfi0S+lE4vpjiUHU8vM2zG7LF+Pv9sf9lu5d8O8/0htzdYNy4iPqqPUdb+0YY+OaRxFxXg3pP/sn0tzQtG2ZeqN+fBu6rtObc3aF8XUZzq36vvV7gfqdpdlIvHh0a/BvSQam+c7HmZ9wkhVdt+/rYF2wP2h8pmUafc3piOhoP2M4bXJPotUAbc3uB3WHzi2/kVZa9T3z5E7c15QFdmXIS45xG9+Yui9sbwmkR/kdBXRjywHqCeuL0x+ksT/kCNp1LtTbfxlMmjdMrjKXWLlqqfRtdj/Vyu6ifmn+tn2fNUU74VbZfbG/SHqS/4LyA+5wk+Ze0fbeg91N6cQ7iIhXaRskesN2P5M9vjlQl7TNWzGFjnyn7V/IayRx7zoOwpezS6Hu3xJmWPmH+2x1ReY6haV3ksjraaskdun88RfNSJEnzKDaaNeX3H0Fy6CcDI8l9bE8DxfwWdlz6SwPBbJEtFfqe/M5wkfpw/K7tqZzMvgWfWCqLiuyzMzT3G8YraKNFdTX/XOZu55kUOU+rCNgsWh9eNLKE4nE2aoLgNgPVqoOPA+cT8VD2bGctqHcXhasl64M1lPin4WN6GBP1ywlIXh1m5dOPXEOnUlTH4HluKccG7SfT3Q0tx81SxHsYTerDwRiEnl4XFx2D2WvMikMmynsbwW6Enz3ba0ywnfpw/H09jXJYSqtEgLYalIBnSj9LfXHrXinQc2NNsoPedUCps5H4TBjVnzNbUgbhJipsGrDcAHQflaSw/sTbcQ2sFQWBxO4pyK0/ToTh1j4m6rmYzxeF9IVsoDs+L2UpxqZNT0bOfQ3Ho2Xmd2/L+htyTmG2wp+qEcoFbWFX+C/2WQeu3XE9/1+m3bKT3nVAqbGKPgUF5DLamaYjjfstmwKrab7H89NJv6VAcetxp4M1lXrXfsoGw+t1vUeni3y2RZpz+tvgYemyJSt+Hbvit0JN3O13rNxA/zp/VTzXDYGnbIm4UnjEO+ajRvsLiHUnLS8rc42Fs3FGZLBBjSKQPlJarKg/g1d1u6Hx5ktZkGQ5pM28S/XvEpGMqfQxlzP5MN3a9mr1yEymzXy5kURve+LK8iZJ8HE01husLxFCtaCCsTLzDOGWq2JrsKOA9HPSIkE3V6D+YWE8YEenjiPPT2VzefK07plWydkhWphkhWY3+QyDrTpIVTZX75J1ZUeZVqWmSHWkToXSVMnyvoziniR/nr17/EUuatYKo+C5lxd1qzpX0d53+4xZ63wmlwlaziq0iUs2ojlAczmp3KA53nlbtP1p+qvYfsax4lLcZ4s4B3lzm04JPJ38eEvSbCWtapLNy6cavIdKNEEZG79UOSMRoEv2fJOa9kBePKZT3WCnkVOMH9jQ17fUVZT2N4bfC/LKv42m2ED/OXz1Pg5aCXG4mVKNBWgw3g2RIz93JDv29SqTjYBrj46C/kBd3tL6/zJ/VHuU2yd0B7JTPbov0Rqf4LO2Rz1LBxyy5BeluobixMD+vFoceayfF4UrDrRS3TuSL56MU5oYE5kYRF8vukdZcummgywp+Y2iId6zTaSGrlR16AO7Cqtq2JcEH0/OcIKbrNT9KZtWvwptyvjoymyb+2wpxytvb/GaT6B8ZnU33NapveKOfyaj0zHWxqp7bgk+/9cx1apsjH8TaCfTxn/pGCvVs5ZRa37d050Ec0mGPANfA1R4MhW8Y3WxwaUvnrcgGjRffunAb2ODy1tz8l7XBbRSHvcvpMFfO1No/lgHnq+g7taJ8TeV5UeO+aZFeyc4zRtsSsseQ+oaNe679sHnk2c1+tpD94L4KZT+2DtMk+qvAfs4h+8EeWj/yn6rX2JOz0VeqXiv/wemwjq4oIcO5Qua2SI97hzhdr7ahZO5mG08n21D7tjqAy9+xGP1FYBvfQbaB/pP39qLM3Aesquelgk+/9cz9u/Md+SAWt29q/xbq2cpJfZ92IaXbDnFFt3Dj/i+1l1Hhl23fdrR03ops0Hjx3vZlYIMvIhvE9CkbTO1R5T2Oaj+iKoOM5B4uoC/a93ujaN9S9RX34LEvN/qXA2aZfb9qtJyyxar7flO8Uc87CngPB53/Ilu5PaFT9W0q5od1avSvSuhU6Sil0277hXl/KuaZv8nbLLBSV0wpnWL+N1P+jf7ViX7YNpFe9R2mSRbVD0P6NUSv6pjqm3Ade6BkH5L7Nji3cBvF4dwC72fB9Qwei+FeF97PgnMLHYpTe13U6vt5FKe+PcC5hSbl9XD+0OO6g9wvM02yoX6zgt8QyrWnuEI/SnymHflMJ/hsduSDWFfmv2rMxsvQVecNMH1qbDjWI58xwYexzCfHgH0i/r7F6P8d1Otf2zAXc6uQbwze7UjkleszYlmZna0r8rbW45e8Ig/zx0vd5whZ1BkQRWWKfNRu1KpyjYXZead8Fv+qmbsP7Lpu965AoUl/X1Ug4jqi21EgWiZwM/rH79fRu4agRewzVfXOJp9lPfJZJvj0e6pzGfHpQDoc7ryLhjupKeUY7s5/eUo5wHDnJ2m4k3KlHfjb+KW2Y1j6oi0ORa73feB6d1J3eJzyjPlkGRGzKfjGcEuBDD9HXZWarlF2VQxrguSJz9bVGKG/K/LdomzWAjc9KINa/B+juDKL//F5iuJw+MYfp+AwZD3F4RBiA8WpTyGx3llo0N+o22hn7yux2WAizC+TaYrD+sNb2KcErpUzds/70dQbfotkqcgvU21PI8zPX72FcawJrBVExXdZmF/iGUiG73hQMEbp6mzBqbkNt6O8vQW1rYVrKA5OuaZhra+6BQc/CKmyBQfLapricIDJ22awzNcJPpa3IUHPn7GtE+msXLrxa4h044RR1ArFd5sE7ybRfwJatjsLWrYs6BrFravJXtS6sgxG/+eJ1nUdpFH5QjtA/dvfWJ9uL+D/xZz/NzaQtDT/IPhz/tBWhwvkXUcyGP3fiEmbRphfn5U9cq8bbXsDxW1I0PJ2Q7XdC22RD/Hb2CXvXP5G/w+J8p8SMqQ2sbIMTDNSIMMXhAyipbhy957DBduSeZzEnp1LiUtiSuAUBdNGtFizXtYO1w71rsgCYs5t2e30sPOBmf1FW7K5FWwV8BwKOowXyBbCbKtWs39Quj9i+K2gvV8nlAoZW67x4/zx1INqKdoirqiWduPT4y77oo6KchacPlDaTLyLIZrznmwunZrZ6sC7oukLbAgR4578t0n0zbxjoVY81O4PbFjKrOzjEIWHW+oEY7Xqj8N/ww5Ehw7O4iqYrzzdCfOzCHDjP7VDSK1sG323lcZO/qxOSOIZOZwO4FWCDsThtMS7Kq7Q8i4Bo1+ZsJftoTiPMVQ9fayTP5/N08fuy3/59LENoIczcPrYFQunj80/few8KIN+nj7WEbKr+oZ1akdiB02ZXQiIex7RqxVSpC/ahXC50Bf7s6q7EJ6R8AdnYxfCWTp97Pln+/SxTv7cj9PHOvAuZf9oQ08n+8f2fJp4npvgyWmRT5H98ykRRn9twv7VjkrU0yrCNPrrEvavdJmy/259hFQfiesGyo47HgybMXu0/6uV/WP+2f5TeY2h6klwnfxZneh6DsWh/2Xfqvq8HXiXsn+0oS0Vd3zzVwdG/8qK9qVWU8vaVyd/rrqrbgvFqb4rl6NqZ2K4J//ltuvVJftbJleP9nzWT5Pk0/JV/zblP1M77pT/VO0l+8+HE/0tHJNcQLJvqyh7R8iu6hvWqaWJryGmiee2BE9Oi/W67C0dRn800d6oJWPUE7c3Rn+84ng91d50G6/zlyKoF26LUPbUeN3oeqyfK1T9xPxz/UzlNQbWTWp8r9ob9IdbKQ7rBvdlys7zdBvffxVOwIqhnl4PfSoDWQxbzWk16ddo3prbJy7N2m+Z29E+8Rtf/qMPvPDyB3m5PgYro8gilv+bR2dlyID2bbCt4odg4cxksMBfki6CuFvDLMZP5Rg2JTsMdJ1QKlxoeVkMuFY2gXAtL2qKE6eSeXcbpucJf+P7LtDNO+HzZMRm2WJ4NeEZ7Y+TbhYDXoX6LLdnGJaVD8YNg6zvHq1Hh7bAO3/ZfxjGTyV4NQkDfYrhse1a2eHZSeyLoJhO2wG+4y1NmH60AKtoF6a9axL9B6Dd4V2YY0K+lJ2iTGMUh/PrrAfFR81HKz3w1hlMZ2VoNlxzCaT0maCG3wrz81xnyWWc+BXpxfJX8yClpRmlR37qvFbT9YSIMyzb5TlcgMVnxxr9R3Mj4i/QY+BbHdWBTOqUw1gnfpXqt1qaK1POiNsO8/PO9ojrTLjV8GOjc/MyBnENkfba/LdJ9M+fmk33X8n3YFvN5cO2ab8WeGxh6YsWotm/GP0fgH/hxXDVF7kWMMcKZGgKvjHcUiDDn1Bb1o9TREdIHpO5E8qFMkvG9eTOvlDWfxm+15Jxt9PF2H/VO/U0e7KMP0B5TNdtEWdY9vVo0aF8lrZJ9H9D/qtNeUIeFofy4jv0X58m/6UO8Kvrv1I+vh9+MgY+tQR1i36rW7kqPpje6Hq0sdPp27XSh02Wfmk9/k9y3zMGbE++RO3JJMRx3w19Kx8qOQrtyf+g9gT9sdnMRCi2IbX9usinh5D2EeozhfECrKI+MJ9OaPRfS/SBlQ9LfYk0LvhlBfyVj7U8F2EF8c7osf/NJ1S1iXaJoB0RvDqhVJg0LP6iTfnYHuvSMqsLy0SkxalDPi1uBdC/BOg48PwIyhxt5aM0Xx0EFvtrlI0xlc3dTrSWZ1WObaLF0zRZX7cWyGC4+LXXy/Nfvudh09gs/sr8eYR4VSzb5Vx+GLj8WHccVPmZXLH8vlSz/PgED/TJPPekzp6O+jr/LOlLzb9ZOBv64vmZbvqyODywmdPxJz58SkwnlAqvsvQr66V/2NKvqpf+EM/JfRzq2yWkD57jw/rL42Zck+T0MfA4yuiflvOMtvA9+U5jVaZmDyOUvqJtf3dGeCHocYvht0iWivwy1o/x4/zxVtc1QpY2xcWwG+g4riHeDSWwHnHE2ueINeOI5ZnHg45YRxyxTjhieer+cUeshXKshnXKEcvTJvY6Yh11xPL0X8cdsTx172mrnrofVP/laaue9nXYEcuzHD3ty7MOedrXMUesPY5Ynnkc1L6cZx49+xODWo6D2JeLz6ucsGIY1H6OZx9zoT/x7VGHPP2Ep1xe9hWfVzphxfCYI5an7j37APvgGfVnc3C4BsHrxUb72zQPXHOu7AqeizIMxF5bEzsjvBD0PJzhjwt+JldLxJXZP3r+pd/1Xz7dfttvZ5TeZOF3vMdMfb6u5vR6PC7ouWpvNB4eEwPOu66lONyfaDLE+dYLSL6axwc8t4z+EL8t6O8Auipl0RZ8Wo5YkzWxJsN8X2j1UO234DUeta4Wy/H68bl0aG9cN2uuhV5Wtm4avtccudq7kpojXy1kaVNcDLuBjuMa4t1QAusRR6x9jlgzjlgPO2IdcsTa44h10BHrsCOWp03sdcKKzyucsGI47ijXSiesGI45Yp1wxPKs2487Ynn6Qs/6eMQRy7McTzliedqEp+696nZwzqOnTRx1xBpUP+Ep11Ohz7TQpp093XvWx/2OWF55jM+rnLA85YrBqz/hncdT8JyF2fGhmkezMT5/N/bCfKyt9uxVGN8+ncerhoHYa2piZ4QXgh6rG35qf1lLxJWZR7v4Oz5xyW/+wcj9GaU3Wfgdz6OpOZXUPFrNeapL1Twaz5XhPNoaisN5NJNBzaPVnBO9tIz+EF/NH/M8Wi9z9y1HrMmaWDaPptrH8fxvnEfjvb/LRH5wHo33n+8cn6V5yfhcLLTJoj3ZMfBtzu1E3KTAjLzvGZ99j/7KvlF/CcTx/v2VIp39je/Q1jHNOMQj/e2gm1tIvnF4xnyifFxemC5ivnK8mG5Zgg7LJbX3m29nwvlR/o6vW7lMhPn2xd8h4RxuQ7zj+jIm8jsu0nHbgW1ZBX/TLtt2GH4rzM9znXne5cSvSC89trsTGaVHfqqOmK5Xizj2W8MFWJa2SfT7crtRfZWivfQor+r3RHt8KMcdKZC3E0qFq3v8LuEVaq2xQvoX99gPmuDvGh4DX3WY6iz2P/jqIfQlqb5IW6Tn9Qn8Xo7bi3Ehg2rP8HvMry2ZS4f9pqzg1/LB71JrXuaH4q/1yfPjsK+Z2f+y19y1d+bel83cs3dmf4Mk4JMy+PKUdSSRCiYlHxY/Qn/zadtt+ntS4HTjOV6AHULPq2rTZb0tr6rVvEwouaqG+WNvO1mPXyej9MgPMU0e0/V6EWdY6qoIxLK0fFXEW8jbrqc8IY/1Ql58h972+8mToLzcW1Z6bwvctkjPOmLbjqHH8mqUtUfDb4We7D9L2YfSi7IPS6vKlfVftlxTWCl/UEZ/is8ZLufpQS9ny9/6evw6Zcob5TFdbxBxhqWuaVFXxvAVKe8jv8PXTCGPDUJefId+5yepl4fyRrpOKBVGlK4rpH+muj6rQvrvsPR46VuVslYjPuwhvX98Fhf7G+rEihhuyH/5uqM3rp1N9/Pk83GUVsZP9HZKSPmTwgzfq9+gTkhJ9Rtq+oulZdpLlIdH6Kzb+M/6ncMFWDzja/S/TvWXfS7ySPVzYsD6+yGyoX6fTPPtxmdcpOP6VdP+FpWtX9wvr1mfk/1ypRdl77zbDeNY/2Xt9FsRq9/9szNgf6X9+9myvx77n0vLlDfKY7qeEnHcrheNC4uuUfwc+XdeSUIeane3uiw1+vfPJMaF3DZVHReqE+K69YM+P655lu0HGf2zoR/0TyX6Qak8pk64UmOilN2MCdmV7icpztMftUryKZOfFJ+zmZ9UXcAyuDEh1xRhreuC9VLCwvTrKG4sIXPVE4Axfeqk4ake+UyV5HOm8rOW4vArFfZdquzWJWTA9Hx5OF/2qX6ND79jPkrmbj5y1ZLZNJiuyEdem/82if488JFrc0ylZ85/qi9R80uh0n0Jvli8176EsotUX6LmXM/pvkS3uR7Wtboe2LDs+t2ycz1Gf25e1t5zPZtpledM1ZMJRz6ItZP4FNXHS6g+roe4MvXR6JdCfby8RH1UuhlL5AdPk+a4lF9O1ZWpBL2yddWOs60bRgxW7/Cq6X74FcNvBV0nOqFUOO1XOsSvqN6Iy5ivmNl32eXPuurry5SH9+xnnRruUmQK8jN9oL85XZStSTQTgkcMbD/riI7L3d4zfhmZutF2i1f1ZgPRVu2XYPqxAqyi03atfPjE+qvyeq5O21X1E21oRyKvE5RuokD2GD9S8L4TSoURk/f0qckl+BbpDE/RL9LZdT3ojMdcdXXGeRgJejyfmm/kL8TRN7L/q7czM/uLsv7P8FsiD3X8n9oZq3x/bztjs09llB75ISbrep2IY/81XIBlabn9fiX1q7gvjDzKjke+sWPxDO2esfLpbd4s+1S3/tK91F+agjjuL6EcvObxr2tm0+2i/lKqnnF7o35DKKc/bI94zKnGZWpsy3WmKTBj4JNojX5Pnvced5nLGz3wtAYuF/TfeyuMSVWZGv3noUwPJMqU+wFYpqlxXMo/tRP0yr+oNcXU2Ke3MWR5X274raD9UCeUY2h5V2NA5auq9mUN91OQIZS/W1+W06m+7NICHkV1j+1qit5368sqmYpoq/ZlcZ6T5wLQFlP2qdomPiG8Zj+ww3W/EfS8BOu+DTKW6Tfy/gDG53lrvN1D6WYnxCP990I/8/n5xg9VFssK5AuhXFmoLz36vT7IO3fHHPkglulW7SWJ/zqhVPi0WquskP4/qRtnKqQ/X91MUCH9L6p+fIX0P6/a9grpT6r9TxXS36HmYSqkP2+E6Cumf5qln66X/rOWfnO99Dss/ZZ66T9o6bfWS/8WS7+tXvovW/pz6qV/wtKfWy/9k5b+vHrpM0uPN95XaZss/fZ66Rsm74X4Ushk+OZXzwf6Kn4VebUIq6LsWUp2lI/9+IXAD/NYhHVhRawREVenTC4IxflC/PGELCxnDLuArpc8x7DXCSs+r3bCiuGYo1wTTlgxvMZRrrYj1lJHrGVOWDE85CjXckestY5YUwOKtdIRa4Mj1iZHrI4j1rQj1mYnrBhe7yjXFiesGB51lGurE1YMr3WUy6vtiM/bHLHOccQ61xGrMaBY1r+fENg8Z9UQfBoJPqn1lAbgqDkh+26H5yFi6IQyIeu6D+SfaQ48tXcVZea9q++EOfD/j+bAMb3N5yhdj+XP6otuPmkCv+jmeWy+Zdvk+lpCLsRjfTXEOy5nJU+T8vHaiVlZmvnzCPBE/p1QKmxX5WtY6kbzCmOV7SiThQa9Q3yvk4lVHVO6t7wvErK0KS6GB4GO4xri3VAC66gj1mOOWEccsfY6Ys04Yh10xPLU10lHrD2OWIccsTx1P6j2ddgRa58j1vEBxfK01QOOWJ6697Sv/Y5YxxyxPNs0zzrkqfsTTljxeZUTlnceH3fE2uWIdcoJy9J7yTWofRNPX+jZz/H0E57+a1D7hVaO42Gu7QZ47nGsNoT1AeXEd4jfCvPrkddYDWWoM1aLz7xnSfFRY8KM0neTayzMzmHk+7+umrn7wK7rdu8KFPhos6sKRLyQ6HYUiJYJ3Iz+8fsL6Z3KGmJHlT6+epZPfG/TEQ/RFERN05NbMA1LTfPwVEvVKbVxwYexcNuUOuDP8syf8XZCqXCtpR+tl/7ZattahfTX97g16WU9bk26psetSdeV+Xyg5sGnLy7rCg3f6/MBdQBt6tOxVUKWtohjG10l+KwSfNoi7ogj1klHrD2OWIccsQ46Yu11xJpxxDrsiLXPEev4gGJ52uoBRywv3at2bVBs1bM+nnDEGtT6+JgjlmcdGlTdP+KI5eknTjpiefpoT9176mtQ7cuzb+JZjp66fyr4icedsOLzmCPWckesiQHEiuF+R7najlieul8xoHKtdMKK4SFHLE+bWO2EFcMDjnJ5laO3XJ62Ooi+MIbdjlhethqDVzl6yzWI+vK21aWOWJ4+2tN/nXLE8ux/7XfE8pxT8OyTe44VPOceuX9vc9e4roXrN3wEiNFflHe+erx47AaeTzcMxK55SeQNGeGFoNcS+LgW5GdytURcmQs/L//HQ2953nPO/2pG6U0WfsdLoeoYkNSxRjWP3rA7HufoB49iiQFthC8DxeVfk0Fd+FnzqJjry+gP8duC/nagq1IWCmtHTSy7pFP1y8/WeusieMYj5GzttUn0T8vrvjoOTR2lDPdfzjtCDmWapHTqSokYeI0xhk7Q4WsUDM90vljwQp+ItM+GfF+9ca6svN5pz82C/CwjORmjSDe83o953/pH/9fi//FT/775c3/y5O6DX77gid++5s2/8p7nvPXjF333Yy/7qx/6x+s570MJ2VW+Vhbkq1GQrzK6mRDYbPOpSyktHzEom+cLcDEdtzOrSM5OKBUmyrYz3JbUbDOzVD9A6aXHdnRJWd9r8qhrCVC32EYMh7Qf52sJbszrYJvoYuDLQatcS3B9e67sqj9SppwRNzUH02O/aUm3T8Ne0Z7FRd2ar8e0KAcf9fZm+DTsthxTfYLF5cvtDrYnMXD7aenNHpiG2yKjvxN88s6puZhLRJ5TfmYV8GC+MdxSIMMM9YVrXswq92KtCTpPzTC/Tx7DC/NfTztuhZ7842l/pS4yV+MWpsf+yY1Aw+W3VtDvTNCrIzGxPnFfRR3JyVjIe0eC94YuvPnYWHXMOmMh7xsSvDd14c1XVOAVdJa2x+OZbuzxeKabejye6SV8mf3LcscQdXiYfKeNbYrq3IvyX9PXMMjEfnEY0jXEu1TbMQxyoFzvWTYr+4mKsl9XgPmR9izm68i/ZZSnTigVXm7ph+qlf635NN5zi7LxFuVOKBXWYJ4sqD6c4bdIlro+UW1Nx/zxvsNhIUtbxHEZVbU7jDvihKXKfhDkiuGoI9brHLE88zjjiHXYEeu4I9YBRyxPfZ1wxHq9I9ajjlj7HLE8dX/QEWuvI5ZnHh93xNrliGVrUGU+n8K2oUJbWvrzKR7PZPX4nW67h4gf54/b7kVCFvX5FM/TKj6qj5BR+m5yOX4+ZZCriW5HgWiZwM3oH79fTe9U1hAbP5/iIkA6M79hwu6EUmFDWfMz/FbQRd4JpUKWqpbqq0bL+2IhS5viYuCtPYsFn8WCj8I65oh11BHrYUesfY5YxwcU66Aj1hFHrAOOWDOOWI86YnnWIc9yPOmItccR64Qjlmfd9rQvT7k8y9FTLk8/4WkTnuV42BHL09+bXz1TU5pV+zSpPKolBceurom4nuh2JkRj3Iz+8fv19K6oq2uB1R6fefcEq5PVrYq619m6IcFrXKSzfFlXfDHJ3gmlwqmM8ExOfIf4rTA/z3W64soMlV7UIZeWti3i+OvxJYLPEsGnLeKOOGKddMTa44h1yBHroCPWXkesGUesRx2xjjlieep+UG31hCPWPkcsT/vylMuzHD3l8vSrnjbhWY6HHbE8dX98QLE8/cQBRywv3cfnUSesGDxtdVD7E55YC32AhT5AP/3qQh9goQ+w0AdY6AN0w/LU16Da6mOOWJ76GlQ/8YgjlmcdOumINaht7aD2TTzz6NmP9ixHT90/FfzE445YDzlhxedNjlhe8/fxueOEFcP9jli7nbDi83JHrBUDKldnQOVa7YQVg6dNeJbjmCPWhCNW2xHLS18xvNZRrmlHrEG11YX6eHbyOKj2tdAOLdi9kutBR7k8+5ie5bjUCSuGBxzl8my3Peu2l74GuT6ecsTyHIvud8TyXLfynJ/wnDfx3M9kcx180sv2fANjj3sC32h77lrwMgtzsUdrYmeEF/L0+A7xxwU/k6sl4sqcMHfgr1de/4c/e/sLM0pvsvC7IcCP/8YEvdq7aLpC31BBV4+rE+bw0vAY8Gv6UYrDfasmgzphbqymfGX0h/htQc8nzJUtC4W1oyaWnTCH/QKrO2dqj++Z4pPCUqfOGb3pY1jQI16T6J+Z+6T4961Tc/mpz+uCeDdE9DG8LP8dF3Hsq7BcK9h3s6yvYn9U0++e3hvdIn6cPyvXlG9U9YNP++qlrvUDq4/tzqKq7U4r9GQ7WUovmD8uyzEhS5viYmD9qzZpTPD5VsHC+p/6/qFMuSo+6A8XE5/FjnzQF7SIT8uRD2LtJD6jjnwQy053435EDJ1QKnxXj32kVerUNgsWh+Mxtik8LY7tAE9X5LLDk824r4onnaE9c2jQ36iHKMuOjbO4TGdhQvAp019N1cEhIb/lDWXG0xMfmNQ88SRBtC/svyL9E3Ay1+7J4jwW7aVtCtlj4JMIjX4/jZlwrqOCHcqTCA2rx372QNl4WTu2vEZ+J2raMfeNl4h8WNyEyIfy9TwWQf+8hOKw7Z+gOPSDtwEdYsagxvZ8SuJwIl8o31AJPqnPVYcEnz72n5eUaWMQ/0z3n3vsU45nYb4tqPEv16sxEcd+bDikx9Lsx34od0CefbLog98yOVf2fvRZsHx6nLsa79ZOvYPaqVGIU+2UycG3iZ+Eduqd1E5hei5frkvYFsZQNIcxDLjqlFSW7ydg3M2n/Ko8L07IjDYXwnyb57bV6P8Palv5hONOKBdU22pYXKeQrke+pU/JMvxWmF+/6/ivceJXVD/jOzuZNP9E/7rdd9175V179h14YGYIocP8HhNqBVHxXRbm5h7jGvSO6a6hv3eIdEFgx/gee2OVe0zcg8ceE/eA8Uz3VwMdB9UrsvzE2vbE6Cwu07GsWFarKQ57RWuAN5e54mN5GxL0SwhrXKSzcunGryHScas7ItJ17OH3b/3qn32g/cSRQ2/+4NFnnbf8rvc+8cdf+Nxvfuyn21/89Pse/uNnssxByFy0omDx6tdk53c8azPuiDUhsEw3uOupQn1YXtaTGX4r9FT/TnuyNvHj/HHelwpZ2iKO/dNSwWep4KOwFjlhxXDrAtYC1gLWAtZZwOKZCfS1Foft1A35r41aUuepqjPXFyXkw/RGV+ZA0ZrtTen7hAzf60DRCeJXpJce2+8lqfYUMU0e1Z7yLi4bVQ0XYFnaJtF/jWYaPOw66uwrNNOg+kFlyhlx22F+3q18zrTd4/gKZyQWL9M8i+4d4hkJo98LMxKjy+bKrGYkQoEO0IZC0HkaARlCqF5fYx7eu2GWD+bL8mC4LLOasbA7itTMUoPi0BZ4FrSojFZSGTUgTpUR3w1l9LdBGa3Jn9XdUGXuMFT82IaGC+gbJJ/Rb8hlwt0aSr7RAn5qFi2Gewr4TQO/O3J+yu7QjxoO5qUTSoXlyu6wPrPdqRn21OGK3eyUbRHtlHfoDAks1CnPFFr64aDrveE1iX67KPMydh4Dl6vRX1KyXJ38iSxX1BWXq9r9hPRlVlrUTi21qtQkrKbAQp1yuXary4bHdevZiXLFdrch5OJyNfrnlixXe+5HuaKuuFxVe430ZXbUIabJrVYSRygOfSLzUf4b9V2mzNV901zm14oy574/+4Vu7UsIc2ecbad8PuP8sv27987kU86BQmqKOD4vKRBjmUgfEliYJuU+cRK96J6F4aCnK9l9Gv0NQuUp9xuDMmXLjw0ValaZ0osWht8KunvQCaVCVtat8VRfqpqluuRnwVRjuKZAjEykD12w7G+8bqPMTdYp76ZUZb2LopYDb7pD+jsTLUfZtXWjVyNk7PUYvcr/BMVhutECPtiiob64RTP6XSVbNOPdjxYNdcQtWtkZdKNXI24c1fMNeEspHxinZpLKVkNzr+zqMK0aWan8NnrIL9sX6ncpxRXNpIQw1xaMrh+jYMwP24K6KV7Nphi9ulkc19K514pNKNsJlj+vxHTrdaVsAUeOPBOi9tWkRkBqzyHaMI/Kjf6U8AGGuaRL3sr4O+zmmDxqvxv7O/XNqrJHo+vRHpecbd/E/gftjPftqb15PPJDfePeH6VflrXq93mYHveiouw/DHb2axvm8uu2X7bIdt9+Bm3X5EnZ7sJ+7tmAeii7n5vtwXCLfJ+yebSlB2hWvQ83AW/NCM9kxneIP8g3AcfwENBxXEO8G0pgHXPE8rxx92FHLM9bTD1vtvXE8rwR9Ygj1qDe3ut5S+4eRyzP+uh5Q7GnfXnq65Ajlqd9DepN5p42Mai3Q3vWbc/66FmHTjpiedbHp4J9HXbE8uwD8BV/2F/mK/6q7hzB9GVWtVK3Was89vmKPxNxC9HtTIjGuBn94/db6F1D0GKwYsJhBqtKrVoo1aphftHCLg7hcaj30vy3jzdrvyUjvBD0UMzwB/lm7SzM/xRpUG5HPemI5XmT7yFHLM+bj/c6Ys04Yi3cOn32bPWpcOu0p8856oj1VNC9503Rnnn0vHXaE8uzbh9wxPLSfXwedcKKwdNWB7UP4Ik1qO22p+49+wCePtqzPzGotrrQbp+9Nm2hT14N66Qj1kKfvBrWQr/w7NnXIPYLY/DU16Da6mOOWJ768vQ5nrp/xBHLsw6ddMQaVB89qG2aZx49+76e5eip+6eCn3jcEeshR6z7nbDi8yYnrBh2O8rluT7kqa+ljlgrHLFWO2JNO2HF4GkTyx2xvHQfg1fd9qyPnnUoPnecsGLwqo8xfLvbV3wec8SacMRqO2J51sfXOso17Yjl5aNjGFS7H9Q8fru3td5yLfRNvvXbjhgedJTLsz/hqS+vPnkMDzjK5dnWetZHzzHMoLYdpxyxPOcU9jtiea5bec4zec5/ee4vLNoyjvt9cY8wH39v9N+VV8YerzR4oo/Xoj2REV7I0+M7xB8X/Hq9jvNDV7fGn7P1+b+ZUXqThd8NAX78pz6VTR3CWfPT5B8c8Os4f7CM/hC/Leg9r+N8aU2sMtdx9ntPv9Vl+2T8eXldjnLYp/tnWhb7DP3qAZAlZxteOACy2Cf/LxGyGL9uR5SYrSrZUwfGcr6qfvYzJPj08fuQ0bL+/lvh+5AY+MDhXtr9BawFrCIsPkLC8NWv8eF3zEcdR9Ht+qo9K2bTYLqig3dflf/yQZHPWzmbbl+OqY5gQxmVH8iC/saN6/0w4CINX19l9IfAl/P1VcOUZ8wny4jl2RT5ioH770Z/jPrvNa/Bk9dX8fEzaHPs62vyLX0S5Nm6fq/a9VVsiagVRMV3WZibe4xr0Dumu5r+rnN9Vc2e/Cazik0i0uI6gM2HIE1D3GKK2wxYrwY6DpxPzE/ErHJ9FZZVh+JwZDINvLnMW4KP5W1I0I8SlhpNWLl049cIxb0Sw1DpYnijSOPZmvTjOqs+XKY3WdYbna3L9NR1apa2LeL46++qB8Yh1pQj1npHrI2OWJNOWDHcuoC1gPUUxlIjiNSs3ivzXzW70SD5qs7MYHqjK3PYYE2/Pla2HTF8r8MG1Sxz6rBBdV1mm+JiYPtQ7dW44LOAtYB1trBS/cQy9VPxQX9g9epM+yscQ+Ksy1+u0DyLrsXhWRejvwxmXT6zYq7MKBfOjCod8KqTylOPh0GPxbFOlauSlF0h/Z35L9sV5l3ZQtlr1J6kMmpAnCqjO/Nfvs9jCsroizQzhrP1fJIAjpdT/NiGhgU94rEN/QvMjKWu6Bou4Fc0U3htAb+vAr8zcEXXpLI7rM+9Ho6WWi3uZot85Q/qmMeDQ4IP6rvMlT9KvzyTO5LbK9oD9wHZNorkU3pzvvKnVSDGUpE+JLAwTSpLOPFY5sofnOJhlZ82DaHyVJHFsHDlz7fclT9XF4iRifShC5b93e3KH25VUipWqjJvVdSq8Nq50W8SJl3GY4Yw37OkZtxQntSVR+qKgeECPkWX2HGLZvTnQF5TLZrx7keLhjriFk3NEKgeutF3u7aBqxpfsoxxqOMql5DGUPbKH+6pKXtpJPKb0o+yLyy3JRSnRunKFuxdP3rVmB+2hVTZxsC6aQt6LG8eDeG3OWwnWPf4pr6yl1gqW8Ce6F8WrGcjLtoCry8vBizVm+NrU4z+KuEDDLPVJW+sc7WvDbs5vH8Iuxh8HRDKjqtFhs2YPdrjqLJHzD/bYyqvMZTpbfNe1RiUzS2mOLU6V9ZuUtel4B4K21+h6qa14dZdm6R8dEKpsD4jPJMZ3yF+K8yvg3W6a+r6MOVLLO/LhCxtiouBv2tV144tE3wU1jFHrKOOWA87Yu1zxDo+oFgHHbGOOGIdcMSaccR61BHLsw55luNJR6w9jlgnHLE867anfXnWIU+/+lTQ/WFHLE8fzddZYH+Gr7NQfYfJBB9MP1kCKzWmUXns83UWJuI6otuZEI1xM/rH79fRu4agxaBurSwzdZDaXKA+STpTt2P2sYt9MiM8kxPfIf4gd7GzMH+4MyhNwUlHLM8m/ZAjlmcXaK8j1kL389vDVhe6n9WwFrqf1bA8u59PhakLz7rtOd3gpfv4POqEFYOnrQ5qH8ATa6HdXmi3v1XajoV2e6HdXmi3vz11P6i2+pgjlqe+PH2Op+4fccTyrEMnHbEG1UcPan/CM4+efV/PcvTU/VPBTzzuiOW15SM+b3LE8ponj88dJ6wY7nfE2u2EFZ+XO2KtcMRa7Yg17YQVw1NB92OOWBOOWG1HLC99xfBaR7mmHbG86lAMg2r3g5rHb3df6C3XQtvxrd92xPCgo1yefTlPfS11worhAUe5PNtaz/ropa9BbjtOOWJ5jvn2O2J5rul4zgN4zk/sdcSyOQU+pvgD+d7FHo93fH3q4LceD9l5fUZ4IU+P7xB/XPAzudRBbmWOhX/7Lz791lNDt/1TRulNFn43BPjoD5Fe7cUzXeH4ooKuHlOfZxlvdSw8f2aIezBNBnUs/ERN+croD/Hbgp6PhS9bFgrrxppYdiy8unpgIsyvS2wP6rO+VkLmIcGHj4X/YF6X1fHnZ0oW20f8KwMgix0L/2tnUZY+XpdR+vAx9n01ffzpfcVlP7tM+WFVF/lwqF7q9QLWAtaZwPI88LYditsU/lQ4Bjxw6q9XzabBdEUHLN2Z/zaJ/sia2XR/m2OWORqEfUoW5h6lwO2spcej2JGGj2I3+r8HX85HsY9SnjGfLCOWp7omJwY+it3ov0B95pqHEMuj2PnIEfV5esoPp67DUeXXYx4qHw7OB6hNQxwfSL0Z4vjg8C0Ql1HcVohbT3HbIE7VRQsN+ht1FGX5vXWzuEwXiCeWYYfisG2cprg+XLmyvYxPQvxBv3KF56wG5Wq6445YDztiHXXEOumI5XmV37EBlWuvI5bn9Y6PO2LtcsQa1OswjzhiedbHE45Ynnbv6QsH9VpTT5/jaROHHbE8db9nQOV61BHL0yY8+yYnHbE8y3FQ/ZenfXnWx0H10Z5YnvZ1wBHLdG/jdHXZU0ZxyGc4wQfTDxeki884H8XjJqOJoccxfukTffmypMX1+CUvS1LlU/WyJD66tezYtKpcjkfAmIgXEt2OAtEygZvRP35/Ib1rCFrEVqdE8hRV1RtoMX3qptvRHvmMCj59nHYZL1uFzta0S4+3wo+Vcakoj7qXhqulVdmiA9F5itjoj+V7adphfnWte/9I1Nmh1XPpiu7n63Y3xGOr58qwGOIalBbdPJ8ae2r1bLrXw7Od6B1tXC1zch2tuszZEPlWfEZ75KOWQRhL6SyG+/JfXt74gVw3UYdFJ+0OFWDyEoY6dkpNvxt9t5OxWZdYNyZK8EZdcrvQrijrUkGPW1L4eC6Ub2lFWW84w7K2hKzjgjf7fsxXP7pPht8Seajj+1N6+YZg+W+1m2/57G3UCqLiuyzMzT3GNegd072A/q5z8+0yet8JpULlxS0+TG4a4toUtxmwqt58a/mJXqzKzbdYVh2Kw8XIaeDNZb5U8LG8DQn6ScJaKtJZuXTjl6rdhqHSxfAmkSZ16F+ZWhsDD0ImHbGWCSyzadx8XMGmV5b1RobfCj3VodPeaDnx4/xx3lcIWdoijn3MCsFnheCjsKYcsdY7Ym10xBp3worh1gWsBawFrAWsklhqMm4ZxWH7yTcFq1saM4pD+VI3iWL68QSfRT3yWST4qHuXsoJf48PvmI+S2fLDbTfmp+pHJZh+GeUHZ3925r9Rli+s1jxx9I5p78x/m0T/Wtic+KXVxXlEPVu+WOYe76oZj/LyXTXYx2G7UfUH6e/Kf1WbzRugsKwNo1sZ/BuVgbqvbLGQh+8r2wllkOXP6i4hPme926T5XURv5VR29u80fS5TpOUbSTH9kgJ+qA+U+d4CfqPAL3V/m/Hu0e5WKrvD+sp2V7bfXcZOUSfKTnmWSs0Go055lsrSDwt6xGsS/UpR5mXtnMvV6NeULFcnfyLLNXUvn5pNVO1Qyg6wvEwn7TC/zItmXxELdVqmXBcLfC7XLYlyVbPmKBeXq9GfU7Jcne7Yk+WKuipTrmpxMdV+Y7maTtRHx3xLsPLRqVllVa5oK+yjjf6yRLmqmf2UHzb6pw+AH07dVafKNXVXXbdyZT+M5co3Q6tVhro+Wq3KpXy00T9PlDn3+dkvFMmn9OZ8M/TSAjFWiPQhgYVpUlnCiXlWuWV3OOgpUFa50V8jVK6qKcqzsI+k/D6Sqs1iH0w1hhcUiJGJ9KELVkZxylRxhSd1syq20I/RaA1NiEcKyvOpnr/RW/Uq6l0YXpPob0m0Qt1Ga+ytVwp6rPYmj8r/SorDdEsK+GDriPri1tHo7yzZOhrvfrSOqCNuHfEGrYagZ32vFvR4yxfPKuHxKqkqvZL4dHMdbP/KTtXoW/XGG4n8dhuVsX2p43MmRLrUTInR9WOmBPPDtpCqSzGwblK2g7pph+52gvWyzLFDZW0BZxd4Nkw1G2gLRUdUqJEP5p0/Wz0ufIBhqj0a6Od73cuijvZI7RlS9mh03+q3nlue2kSPelJ7oLgt6GY3qVumcZTFn46vFbiqzTf6KcBqEEZ8tqOGmkT/loQ9rhMypGY31gv6dUBj8kyQDJh2QqQzX6Hs0eh6tMcJZY+YH7bHDRDXEPSsm42CfgPQ8Aw/rjZPURz6Tv60GvmuBdlf0Z5LhzszsoJfk5XfsayIxUcyLHPkg1i3EB+s7zjj/u41s7isEzWMM73zsT6/BjPuP0Uz7pie+7kW9z6oZz+/sTi96XKC/lb+HPsXfESvyifSrynI5/tBzg9DfQhB7+zpsd61Vb1D38f1bgriGoKe652qp+h3uO+BdbJNWKpNQZtkn2w6Gg66DAyvSfS/kpilwXZ6Lck+VlH2smNISxvL4p/zBnAizG9j1hFP1YapsmqH4raCsdS+YPaXWI6NoNtDpjebaIa0f+b282NQVh/cqDFDgQztApmHC+inSAaj/53EGFr5AdXush/4fcC047rKYk4WYP5hoq+h6in2P7hebxL0WF4mj7LTTRSHsnO7uAH4M+0E8cc4tHPmGxLycpvaTV5ubyzu76G9+ov8eYTwKvrqRqqszhfyli2rdiJ/jGXpmmG+PabqCOrjb9dozEUVMT8n2nTVV7kN8P++oD8SA/dHYmC/jD4D6+G7qU+C8i8l+c1u/6nkfJRh9dbWZ3+h2noc15Vp65GefYIar6AtpdobHg9i/eMVdTUWLduWTkBe9y7pnl/EvTvo/Bb5YS730/nNC1T5YTWGS+k8NQ5Sfhh1voHilP9U9mh0/bBHzzFfN7/H9oi+bh3FYX3mXc3d7CZljzhvcC/17ZAP14Fu5V6ki+ECevbrRr8SbJX7Nh0hQ+r432lB3xEyT4T55TFNcZhuXQEfrJeor2vD3Lwa/XpRL5X9d/LnHsdek8r+UUds/5shriHoWd9bBP1moDGdtIkeda989TTFoW1y3VD+rGzdsLRRD5eQry7bBmQCS81Hsq82+u0JX63qYMr+u/kjnhNGXXIfFNNZ2ShbNbp+2Crmh221A3ENQV/XN7SJHvWkbNV4dusLrCrRF0iVbdm+j5Ufrveuozg1lkvJNSXkUrtKphJ8JnrkMyH4jIt0WcGv8eF3zEfJrPo2nB9VPutK5mcd5WedY36UzN3mVF+8djZNkW/DtNzeGf1r1s6me2n+rOZE2W7K2i5vDVkHOlA++wbIfwj96HOGRWe7z8n9SuzjlJkzRNvDttNoAsnYD31hfWZ9pfxgDGXGL1gnTAdqfniS4tDepoiP1/zr58e7yz+ZyG/VuZiyfQD0uYYdwrdXH4BtYRriuA+QmsNSfVLlL7mM0b9iufCaldEfSvQdlR2k7KYj6DFfvH6LttGhOJQ91Xd08iEDbTc8BlJ9x7J2k5orxDba2u9UP9eeVVkjfaMAZxPhsN2NwntMx/1NiwtAr+yOy2K4gN7weOz97xPzDNNdZNhAMmzuIsM0yWD0TwgZUvqPYVy8y/LfEcKvWG+aGeGZPPgO8VtB20cnlAoZ68/4KTuIwfK+RciSmlPIKA75bBF8FNaYIxb2LXsory2sDwwWtxWwOxS3DehvpLhzIO4WwODQoL8xP9Guf2njLC7TsaxYXlsBn21sWqSdFthnqz5M1+OXrA/sk2KoWh868LxQH+Zf/TBo9aEDcSa30lEIpXVUqr5g2VTQ/3TZ+mL4XvVF2Z6qL5a/rfX4deKc7WiY76tw7gZ1h3w2kwy9lh/vLUDsM11+NfcXJMtP9b89y68DGFXKT60H8TxKJ8zPT0fkR+1FNrpUP69MOSk+HSGzmmPEub8/pLm/zRCn5oh47s/oPwNzf39Cc384BuqEuXFoW3gtF+fZ6HocOzbU2LEDBDx2nMbEobisWX9Ij/6Pywz9BM/l4fxTh/ioebGy80+4z+D941r+DHA3irRct5F+s5DD6K3O4RVlSGNpm0T/ORhL8RVlymZRLp5PMfp/SMynGN8QQqm10W2CHv2LyTMR5ut5G8UV9ekNO4T5fQbLn8VVaRdUncD8cJ3AvlJD0LNuzhX05wAN2/25ELeZsLh+xXCtwErJuqkHWbkcsazOJSyjRbvE/LBdGv3XSu4bMJ33o/yxzS5T/mosUFanPKZBPW6luA7EbSE+yvcWrW+wraAP+UNqv1KndqhvDtU3rcqnG52V/+n1h7zM1V7dSZBT+f1rCzCXASb7OpWH1CkK3b6bTK1Nr0ikw/nqEcGrYw9fSwfDs2/2Fgtehsvf9E6Bnq7eqGXJWJ4uQZ1klVE+8dvKKn3ejPBC0H16w2+F+bqo06dX35Mqu7f8rarHbxP26dGOsE+PukM+Vl7q2yXsA2+l+qDqWOo7D6O/YGo23bkFmCFU76+hPF8anYvr/U295VPV3TLf1E+E+WXCZwusgvw0BD3vnTL6y6Fupr5l8vnePvuCahfxu2huF1Pfz8fAZbFG0OM39aaTNtFzuRTZF5Y198PV+Q4rBT6f7/BcKAP+lgm/pV1Fso9XlF19h8X1mOsG12N1FXXq5KUlgNUQGHfnv3wKzwsSbWu3fYVsE92+czZ5JsJ8nfNavzrZSNUXo+vHuizmh+tL2bP0U3aivqdUe9WWUBzaI8+VYB8NzwX4WO57+SyY+Bt11gnpsO6XZn73ez75uU/yFdUB8jraA/73Xt6c/IFbrt/RL/zfXfzfv/Sxj+76wX7h//XIDVcP/Z/fv6lf+D/8pRc/4/Vrtny+G3604zfDDQBoP5jO+jZ8DkEnlAqjKL8F1Xcz/FaYX+fr9N3Knr2g9h1YWp7bjOFWoCvyZap+L2AtYFXBwm8FY/g+6Hcfo9NpsR7xWR+ZkCVLyMLpY7A6gnfC8VkGi0QeLG44Ebc4ETeSiGsl4tTZJxaHfZ2dFDcuMGO+3ppPovA4NoZOKBX+0eTBcYH5tkC4pnvV11bjKTUeWU1Ya7pg3UBYmH4NYXU75+VGwsL0/I18t+/AXkpY6htXw+q2XsCnwmN6S8vjsek8IpbXD4OwmIbLMoY3EJ7RviPHMFvCvWAV2rnA7Tti8bk9TIe/Icxvj2Ngv4BYryQ+am9/j/kbKyMn4rdIlrr9htR5QDFwv2GDkIX3XcfAbYTaA71B8FnAWsA6W1jqW49e/UjRPmr0uTHg3OUv03yD+oYc096Z/7LvHQVf/mHqQ6Hf4H3hKDP3j5S/WJ/I/xLBp9967setZW2BtRPo4z91fhj60jvzX7X/fiOlK9q73Ah6Db/bNyMbCaObDf7elM6bskHk1ST6z0M//r+RDaoz0pR98jx00U12RfaJZXYn0avzfJTN8ncbfyrmTDNKr74FiYHX84z+zxNzjsq/peYcu51lx/rGPPO5S0MCC/PDc65Kp+rcAdbpZxLz0A2Rfhx4WtxKisN5nNUUh3MgaygO5yDXUpz6XlbNY6+iOFyf47ZArbtE+3nTutn33ephDHfmv1wP/ylhW8p3pM516gj6TSLfE2G+PXUoLvV9UgfiuB2azv9GPXRArlflv/wNyVdKrjc57U0bPdvnN3TyZ7WHm+u58hkdeMf1XJ0X0hH4fF7Ioty4VD1HPzFNsi+pKPsqITu3e1ynfi/RT+K2ZkOCJ6dFPsOhWhvaFvrKiEfZc0yMfhlg3lHQ1mO+Um2N8h8bRb6UTlPfq2J/0bAZsx9nHGP+uX6m8hpDXV+p9kLxHjr1PSnbAfIpa/9oQ788NZeuX33nVxbIgxgjQdfBTigVSs+pGH4rzNdNnTmVbmXB/Rc1RuQyj4HHvFXHYgtYC1hnGqvf56FwHxvnbXE8+3zqR6v9Spj2zvyX58d/AeZUrs6f1Xi2zHkwPc4Zl15rXpgzXsBawDp787z98H0xlJl/VHMDgzT/WOSv7y8x76HGAzx2egf46wfJX2N6nntQvjw1N1nWN95J9GquTM3N81zZ/opjwtT8o9EfTIwJ+z3/iHk+W/OPxxPzEktE+kGff2xQHM4/cr8J5x/Rfmz+Ue2JuY0weKyMccMQx2fY4f1PvG9zBOKWUhzuGZykONwTw7ev4zkIfCs47iFdAXp4K+kBy7xJGDgXsTiR11GKwzq0iOJQtyMUhzoaozj0ccMUh2XSojh1O619s9HNH8dwZ/7L/vidCR+j2pDUXvuOoOfv2mPwnIcuc45wB+Qqmod+N+hhYR56LtaZmof+uZrz0Osqyt4Qsqv6iXXq/sTYskyfA3FXEb1qH1VfiNvHX0r0OdR4OtXnMPoPncU+h1oDOEvn38l5aMw/189UXmOoOkdveWqH+f6Q56jV/QBsB8inrP2jDdl8Td3vAv6XX79ox+df+g8b63wXgPtwLZ3N1aA8Fcr3V1F+C2quxvBbJEtFfqfnatTdh5g//qZztB6/D2eUHvkhZov4jdXj1+D1CS6b+M/6mcMFslhavnPlM9TXGxdp+JujGHiuAuMa4t3QWcJSd5iiHvH7qD+lveCs404oFS7nfrlhIHZNW7i5bN0y/FboydZP1y31LSLmj8eJ40IWVV73A12vZX9iQLH2OWIddsR61BHLU18HHbGOOGIdcMSaccTyzOPRAZXrYUcsz/roWY57HbE869BxRyzPcvS01ZOOWJ72dcwR6/WOWJ52P6g+xzOPjzti7XLEOuWI5akvz76Jp30Nar/Q0+4HtS+3xxHrkCPWU6EvN6h279k3WWjTqmENal9uUH2hZ1/O0xd6lqOnvga1//UaR6xB7X/td8TyrNuedchTX57tkGcdGlTde/ovz3m5QZ0b8rQvz77voPYxB7HtiM8tJ6wYrO2YKMDGZ7U22krwyYTMDcEH9yiM5+9wrchwRsJ8XVRYhyp915Hht0iWivyyVPmoe48t70uELGpfJZdVap0S+SispiMW771oCiy17pdReqRX+hoLs/sfD+y/74H79h++aubuA7uu270rUGjS31cViHgT0d1YIFpD4Gb0j9/fRO8aghaxJ8L8ohkukDsAHr7jYsL0zQSfrEc+meAzLtJx1UbTqVDVzi9btQ2/FebnuU7VVqaq9GJ5bwlZ2hQXw26gq+N6Me4RR6yDjljHHbFmHLEedsQ66oh1xBHrhCPWMUesPY5YnuXoqS9PW93riOVpq/scsQbVT3jWR0/dD6qtPuaI5WkTnrbqqa9HHbE8fbRnH+CkI5Zn2+FZhwbVvp4K/qsf7ZD15fFoavwUd5iuq1oEcQ1KmwHPJtEf3DCbrkWfOmTA255HCC8LlcY02zPCC0GPoQy/RbJU5Hd6DDVE/Dh/PIZqCFnaFBfDg0DHcQ3xLoV11BHrMUesI45Yex2xZhyxTjpi7XHEOuSIddARa1DL0dNWPeujp1wPO2Ltc8Q67ojlaRP7HbE8beKYI5anvjz9l6dcJxyxPMvRU65BbTs8y9FT95512zOPjzti7XLEOuWI9VRotz3rdj/aWltXw/HYCPFRY5+hBB9Mz+MiTJflvyMknz13QqkwlBGeyYnvEL8V5ue5Ar8spX+lF15TxLRtiouBP+1VfDLBJxNYKbkcl6ZNxAuJbkeBaJnAzegfv7+Q3ilVILa6WWxE8LKQUm27IH0M4wk+yuxtGmY06OrHy+dVqx+mtzjFJ+uRTyb4sF7VdFIM9+W/fEPcY/kUEp4c0hD8EKuMa6m5ZF96Nw4v2ffqWtSSfcq1DAtZ2B5iuAPoOK4h3qVsq+GI5dQULDJ9LBKRSlesR7SrGykOT9i4BTA4NOhvzE/E/6WNs7hMx7KijZncqi7ztpiqdRnTDxVgqZsTY7gN4pHeTr7psUwvUGXK9jJcE7ts/U6dssZ1n7cvdUI6/G9Xvr313NvuurhqPTL6xYJebe8xXdU8fea8ceARiLfFqW1gFqdOu4vpLyD5FteUr4z+EF/5R+56lS2LyaDbmRjwxBrEMroAMjUhTvFpEv1/huWXn6MT57gNsXcfStBlBb9KZpTH3rUEfUPQG+9RQW9xuJsS9Yo0qC/EakE80v9Knne+SR3TtwV/rDOhQO6i3aKM1RDvjD7m8xc2zM1Dzb5L1ssN3O9/xvZnL3nFOY/164bvJb/xiy/59L/sOafOSV5qa2ZZey1q92K4Pf/tsU0ZUn4slE+flWnvavrwr5Vt7wy/FbRf64RS4XR/doT4cf64jWrV4/dv8TRZO9G0aEyFukM+3JY1RBrVzhlGTD+9aW4+ao4D/q1HG/xXXoaOAZf/P0HL/4shjqeSuA+I9J+C9ufPwLcarqU3feGYd7GIt79N30OCFp9Vf0HpDemtvIpOyhymvBr9Z2BsunNKY5bdPmH0nxXjXcNUp+6pOmP0qZPLUB71Fc0YpUPZsU3nd6p8MqJFGWK4XchU9HdL4BTJMCJw1PimRbKq/jPWm9TpllhvPgFlaW3WiODfz/FsRnGYt5uAjoMas2Jf86PUZwwCS+mHx00ebbe9XwTvmW+DaIeJlr/+QRl76Q9z/2KRkMH+XpyQPyOc1OnjXN/Ub1l5MyGvakt65YNYN+e/PbZ561JzrbEc2htncYvaPNVn4DZvxcbZdMvy525tnsVxvy2GV8A79uncD0KMGHh+3XzkMOAjzQjlyejX5vnAtk35EMOKeV9H+hyBuFQ70iT67wR9biR9or74UzD24wH+HgVZkDaG2wt0cA7IsWVjMS8cpxblMWKct1HToQxIxxh12zXVv+K6W6Z/xXUV0yke7I+L2m6zjbEu8eqE4SDeDQn6kYL8BsG71QV3scBR/r1FcZmIY9+D+UW/xX0O9Avot9qJ+pKFufkapXyNJPKViXRcz1H2xQnZlf7Qf9SdQ3jjX37tT77/6Np/7NccxXPfefB7x5/xMz/bL/z3jf3+83/5nSOvrDIHYuWsPpFl21JzsTHcAvFI/+K8PHqcYwicH+U3UuMzngtl+W8skH8X+O8bqV6o8YmqM0Xt76KSshj9zdCe3gHtaQh6/NDjTQNNddMA+jXu7yp/qz4xMPpuY0vTSTvM96/MW61tok65T2M6Gg56fG94bA93QxnwTSDKN1uc2gqj2kJeZ1XrY5HmONWrmv3bxaofYYHXKDGP6rNuXvfkU9MxDsuS5/sxqDGk5TXKfKLEuqfyD1xf1bxKqr+o6p3hD1q9M9tvh/nlwvZW1oaL+nOKH+oB22qz4aI5eazTOOZ6HY0RhiFOzWmxPzX6t4FvP0W+HXXM9qD8BMsSQrn9CmosPy7SWbn0uJ65CMsX5cR3iK/Wn+vM1au+aWquvmY/ocltLPJT5bA0aJ2q+XweK6r5ntQ4KeVPVP3juqnmEVQbkhrPGW+cMy/Tb1J1C9NyO/m/Qt16f6LfVNQ3CkGPA5g+5ftQVqX7UYpTY397HkvwUXKlTj5ScqFPxrTMu1seyrZVTn3ERaqtwjLhOqL0kjoRSZ3GhKdgcR1Rt9NUbdtGKU618d3atvcXtFGYD/R/PL5VdQzbvrrjw+/a9gNr1v3Ww+P9Gn8uaq57W+dn7ryuyvhT+ZUhwkU98Hx7DC/Lf8usc9dsO0vv2+S2s9d17rJtp+qvc1uA8yy8L0nNwagbwM4UlhqbcFnW7CeU7gfxnoWatpPcs6DaNzW+4nEjtj+s/14+9x9ELKz/qf5xmXJVfFSfvt9rd0U3/nrwUUc0qD3HvfJR+5fVuiyO3z5DbaOaD8O0RfNhSzbNpvvsxrk0JvvnoB/6ZZozwTxXqMstNSa3oOY+2G5VP9DisG/D9oF9G/4WZAJkwL0QHNR8itFFfk/bNIvLdBZQl2W+h+F9phnh8dyx0X+FyovX4juhXFBzx4b17WQLdcr7/hLlrco49d0Aj21SY1M1J6d8ZZF/Q3zlk24jfNRHao1M5dnS4tp7ynex7SP9UvBdGzfNlVGNaZUPtvfd5tFTa9yWtsdbXcfYnjEoe+Z6oE7RZd+m6kEb4tgnLoU4Hs9gUHXE9FDFJ3I5qr4Otms85lPr7theWv7q7iHOANNksryjXPyNBdanJr2ruaf2tO7U3hLsb/Hcm9FfvmkujtoDo8YbRq/2zjcEX/WdxVhFrBHCWtwDFs5bMP3imnIprGHCUt9gqH57LLttedmcyXXm76Q90jXHhWdtnflGaA+eu2kuvzO9zvz8nP/COvPZW2e+HsrgbK4z30f16qm6zlyln7ywzjy/XM7mOvN9Be1Rt3XmB6k/V3ed+XHw7XvIty+sM38zLKwzL6wzh1B9nflNULd+NNFvWlhnnu+TF9aZZ+m/VdeZf7SgjcJ81FlntrbvfwL6JERJ2tIEAA==",
|
|
2133
|
-
"debug_symbols": "tf3druw4kp8P30sfz4EYQUYE51YMY9Aet40GGj1Ge+YFXgzm3v/JkMgna5eTSytz1Unvp6tqx6Mv/iRRkdJ//ul//uV//Mf//pe//v1//dv//dM//7f//NP/+Mdf//a3v/7vf/nbv/3rn//9r//298c//c8/HeN/irQ//bP+0+NP+9M/t/GnX3/G9Wc//9Tj+rNcf8r1p15/1uvPdv151dOrnl719KpXr3r1qlevevWqV6969apXr3r1qlevevWq16567arXrnrtqteueu2q16567arXrnrtqmdXPbvq2VXPrnp21bOrnl317KpnVz276vlVz696ftXzq55f9fyq51c9v+r5Vc+venHVi6teXPXiqhdXvbjqxVUvHvV8/BnXn/38sx/Xn4965RggE3TCo2QZx0p/1Cz5H9sEnxAT+glyHBNG5RggE3RCndAm2ASfEBP6BeWYMCuXWbmMyn1AndAmjMptgE+ICY/KMkCOCWWCTNAJdUKbYBN8QkyYlXVW1ll5DCQZ22eMpBPqhDbBJviEmNAvGAPqhDJhVq6zcp2V66xcZ+U6K9dZuc7KbVZus3Kbldus3GblNiu3WbnNymOIydgFY4wljEF2QpkgE3RCndAm2ASfMCvbrOyzss/KPiv7rOyzss/KPiv7rOyzss/KMSvHrByzcszKMSvHrByzcszKMSvHrNxn5T4r91m5z8p9Vu6zcp+V+6zcZ+V+VdbjmFAmyASdUCe0CTbBJ8SEWbnMymVWLrNymZXLrFxm5TIrjzGoMiAm9AvGGDyhTJAJOqFOaBNswqwss7LMymMMahtQJsiEa3Sr1gltgk3wCTHhGt1ajwllgkyYleusXGflMQbVBviEmNAvGGPwhDJBJuiEOqFNmJXbrNxm5TEGdeyCMQZPKBOuPNQxmuoj+XWMnTo23Rg7J9QJbYJN8AkxoV8wxs4JZcKsHLNyzMoxK8esHLNyzMoxK/dZuc/KfVbus3Kflfus3GflPiv3WblfletxTCgTZIJOqBPaBJvgE2LCrFxm5TIrl1m5zMplVi6zcpmVy6xcZuUyK8usLLOyzMoyK8usPMZObQNsgk+ICf2CMXZOGJVtgEzQCXVCm2ATfEJM6BeMsXPCrFxn5TF2qg+oE0blGGATfEJM6BeMsXNCmTAulsoAnVAnjOslHWATfMK4BBvLk9eIA/IiMaFMkAk6YVQey5xXigk2wSfEhH5BXi4mlAkyQSfMyj4r50XjWMG8akyIC/I6sQ4YdfqAx9+yscpjfFn+K58QE/oFY3ydUCY86tg4Esb4OqFOaBNsgk+ICf2ENsbXCWWCTNAJo7INaBNG5T7AJ8SEfsEYXyeUCY/KfgzQCXVCm2ATfEJM6BeM8XVCmTAry6w8xpeXAW3CqCwDfEJM6BeM8eVjBcf4OkEm6IQ6oU0YlX2AT4gJ/YIxvk4oE2SCTqgT2oRZuc7KY3x5DOgXjPF1wqhcB8gEnRATxt8a+2KMlBirPEZK6IA6oU2wCT4hJvQLxkg5oUyQCbOyz8o+K48BEmN5xgA5oV8wTlInlAmj4FjBcZI6oU5oE2yCTxiVx5qOQZQwBtEJZYJM0Al1QptgE3zCrNyvyjYGUT8GlAky4VG5lwF1QpvwqNx1wKNyrwMelbsN6BeMQXRCmSATdMKoMxZjDJkTYkK/YAyZE8oFmneaMkgW5b3mWKRxSJejDfJFsahPGof1RWVSy382lqyVRbJIF9VFbZEt8kWxqE+y5bDlsOWw5bDlsOXIC6zjMZjM8+/GoPF3x222jaP2orpo/N0y9tmI+It8USzqk8ZRfFHWG1s38u+OrRv5d8eyRCzqk3r+3bElczbgJFmki+qitigdY91yTuCkdIy1zFmBQZ7TAidlvT5o/F05Bvmi/Lt10Pi78lgjzxv/k8oiWTTqiQyqi9qidOggXxSLlkOWQ5ZDlkN0Ub22s0tbZIt8USya+8jzuB97xrVde8bzuB97wdUXxaJ+bWevx6KySBbporqoXfvDqy3yuRdqLFr7KMdM7pkcH7k/2tpHOT5yz+T4yK3R1vaztf1sbb8cH7kXbO0jW/sox0fuBVv7yNY+suWw5fDl8OXwtY/yKB43WJ5H8UmyKJdgbIM8ik9qi2yRL4pF/aLIo/iksmg4tAzSRXVRW2SLfNFwjJvUyKM9KY/2k8oiWaSL6qK2yBb5ouUoy5FHu+qgskgWpaMOqovaonS0Qb4oFvVJmg4blPXGttK6qC2yRVmvDxr1xq1o5AioY1vlCDipLJJFwzHubyJHwEltkS0ajjrWI4/7cb8Ref4Y9xmR5486liDHQht/I88fJ9VFbZEt8kWxaDjGzUTk+DhpOMble+T4OEkX1UVtkS1KRwyKRX1Sjo+TyiJZpIvqorbIFi2HL0eeZ8ZdROR55qSyaDhs7K0895xUFw2Hja2R56NxMxF5PjopFvVJOZJPKovSMY6rHMkn1UVtkS3yRbGoX9RzJJ9UFskiXVQXtUW2yBfFonQ89lbPkXxSWZT7ow7SRXVRW2SLfFE6YlCflCP5pLJIFumiuiiXuQ+KRX1SjtqTyiJZpIvqorbIFi2HLocuR12Ouhx1Oepy1OWoy1GXoy5HXY66HG052nK05WjL0ZajLUdbjrYcbTnacthy2HLYcthy2HLYcthy2HLYcthy+HL4cvhy+HL4cvhy+HL4cvhy+HLEcsRyxHLEcsRyxHLEcsRyxHLEcvTl6MvRl6MvR1+Ovhx9Ofpy9OXo01GO4wALKKCCFWyggQ4GiK1gK9gKtoKtYCvYCraCrWAr2ASbYBNsgk2wCTbBJtgEm2BTbIpNsSk2xabYFJtiU2yKrWLLRBjTJw8UUMF2BdkDDXQwwL6wHWABBVSwgtgatoatYWvYDJthM2yGzbAZNsNm2AybYXNsjs2xOTbH5tgcm2NzbI4tsAW2wBbYAltgC2yBLbAFto6tY+vYOraOrWPr2Dq2jq0vWzkOsIACKljBBhroYIDYCraCrWAr2Aq2gq1gK9gKtoJNsAk2wSbYBJtgE2yCTbAJNsWm2BSbYlNsik2xKTbFptgqtoqtYqvYKjaypJAlhSwpZEkhSwpZku0nZUx0luxAmajgsI1J25KtKBMNzFaKlhhgX5hZcmEBBUxbT6xgAw10MMC+MLPkwgIKiM2xOTbH5tgcm2MLbIEtsAW2wBbYAltgyyzx3EOZJSdmllxYQAEVzBaVkthAA7NRRRID7BPPRpgLs/El266OVeFqdTkxwKwwduzV8HJiAbPpxRIVrGAD0+aJDgbYF2YSjJnski0uZUw0l2xymehgbt/zr/WFOeYvLKCAClYwW3WORAMdDLAvzDF/YQEFVLCC2Cq2iq1iq9gathzzPXdWju6e+zhH94UGOhhgX5ij+8ICCqggNsNm2AybYTNsjs2xOTbH5tgcm2NzbI7NsQW2wBbYAltgC2yBLbAFtsDWsXVsHVvH1rF1bB1bx9ax9WXLFpuJBRRQwQo20EAHA8RWsBVsBVvBVrAVbAVbwVawFWyCTbAJNsEm2ASbYBNsgk2wKTbFptgUm2JTbIpNsSk2xVaxVWwVW8VWsVVsFVvFVrFVbA1bw9awNWxkiZIlSpYoWaJkiZIlSpYoWaJnlmiighVsoIEOBtgXnllyYgHTZokKVjBtNdFABwPsC88sObGAAipYQWyB7cySSAywL8zWvPFssWSD0UQBFaxgAw10MMA+MVuOJhZQwLRZos2FrGc+jFNoPfPhxFEh+3ezvWiighVsoIFjeccDq5KtRhP7wmyXvbCAAipYwQYaiE2wZQPteFRWsgVpYgHTpokKVjBtNdFABwNMW27qbOnLjuZsQ5KSmzqb+C5soIGjruTmy4ZaybXIllrJxcmmWklbttVeKKCCwya5ONlee6GBDqYtlze7ayUXJ/trR8dlyQ4l0Vyc7LHVVGSX7YUNNNDBAPvC7LjVXIbsub1Q1+F5jvkTG8jx6w4GuEZhPcf8iQUUEFtgC2yBjTGf7U6iuc2yGffEHPMX5grlf5tj/kIFK9hAAx0MsE/MNqiJBRRw2MajrZLtUBMbaKCDAQ7beOhVsjVqYgEFVLCCDTTQwQCxCbbMh6qJAiqYtpaYNks0MG2eGGDackNlPlxYQAEVrGADDXQwQGwVW8VWsVVsFVvFVrFVbBVbxdawNWwNW8PWsDVsDVvD1rA1bIbNsBk2w2bYDJthM2yGzbA5Nsfm2BybY8vm/fGI9oEGOhjgOsdml9fEAgqoYAUbaOA6o2eP1+PmMHGdpbOrS1qOwsyHCw10MMA+MTu8JmYruSSu7WvHWmM7AuwLzzF/Yrana6KAClZw7U0r2IqDAa69aXKABZS1DOeYP7GCDbS1DOcPak4MEBtj3hjzxpg3xrwx5o0xb7qOHVO2pLIllS15tvnnMlS2ZGVLMuaNMW+MeWPMG2PeGPPGmLfGfjvH/IlsycaWbOy3HPMXsiUZ88aYN8a8MeaNMW+MeWPMG2PejP1mbEljSxpb0tiSOebHs+ySrXATc0u2RAUr2MBct1yGHPMXBtgX5pi/sIACKpi2XMgc8xfm9cOJfY3CHPOjt6Fkw9xEARVkD3X2UGcPdY71zrF+JsFAPw5w7SE/BFSwgg000MEA1/GQfXUy2sRLNtZNrOCoO9o5SvbWPeanEh0MsC/MfLiwgAIqWMG8akvxOXtwYl94zh6cWEABFaxgAw3EptgUW8VWsVVsFVvFVrFVbBVbxVaxNWzMOZ5dehdia9gatoatYWvYGjbDZtgMm2EzbIbNsBk2w2bYHJtjc2yOzbE5Nsfm2BybYwtsgS2wBbbAFtgCW2ALbIGtY+vYOraOrWPr2Dq2jq1j68t29iReWEABFaxgAw10MEBsBVvBVrAVbAVbwVawFWwFW8Em2ASbYBNsgk2wCTayJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmypJMlnSzpZEknSzpZ0smSTpZ0sqSTJZ0s6WRJJ0s6WdLJkk6WdLKkkyWdLOlkSSdLOlnSyZJOlnSypJMlnSzpZEknSzpZ0smSTpZkI6WMJtaSnZQTFaxgAw10MMC+MO9QLsRWsVVsFVvFVrFVbBVbxdawZZbkQ+PsrpTRAVuyvXJiBRtooIMBpu1858QBFjBtKc47lAsrmDZLNNDBAPMp+LjMP/stLyyggApWsIEGOhgLMzWyGyC7LMXOf6pgBRtooIMBjm2WTXLZbTmxgMM2fnZYsuFyYgWHzfPdH3mHcqGDAeY2K/nGjwMsoIAKVrCBBjoYC3MGwzVRQAVzLWpiAw3MtWiJAeY2s3xLyQEWMG35PpO8Q7mwgg000MEA0xb5KpQDLKCAClZw/jBHzlbK8TBEzlZKScyrigsLKKCCFWzg/DWOnF2VFwbYF+ZVRTmxgAIqWMEGGuhgLDT2vLHnjT1v7Hljzxt73tjzxp439ryz55097+x5Z887e97Z886ed/a8s+edPR/s+WDPB3s+2PPBng/2fLDngz3f2fOdPd/Z850939nznT3f2fOdPd/Z833t+bNTspxYQAEVrGADDXRw7flyjvmeKKCCFRz7Io5EAx0McKzF+BGmnD2RFxZQQAUr2EADfWGO7vFbYsnux4kCKljBBuZatEQHA+wL8+x/YQEFVLCCDcRWseXZfzSSSXY/Xphn/wvT5okCKpi23EN59u+5A/LsP5oTJLsfJwbYF56vDDqxgMPW8yg5Xxx0YgUbaKCDAfaF52uETiwgNsfm2BybY3Nsju18sVBu3/PVQicWMG25zc4XDJ1YwQYa6ODDpkdu6pEPF458mFhAARWsYAMNdBBbX7bsftSjJBZQwLRpYtossYEGOhhgX1gOsIACps0TK5i2SDTQwQCHreSi56uKLiyggApWsIEGDluGeXZVTkxbbp18fdGFBRRQwVTURAMdDLAvrKnITVILKKCCFWxg2nJD5VuNLgywL8x3G11YQAEVrGADsTVs+a6jfOdbNlhemO87unDY8hSaDZYTFRy2PBdmg6XmqS4bLFVyQ40AmRhgXzgCZGIB80SV1BbZIl8Ui/qkHMHXS+UOsID5PCNJF9VFbZEt8j/Nt9NlRUvMzeCJ9Xw9lmS74kW2aGyDmhSL+qQciSeVRbIoJZFYwdzWPdFAX5gDTo/EUWG0s8j5NrALRwVNGgXGb5zlfCXYhQH2hTmyLixzk6gs0kV1UVtki/raiDlkrpf65YLmMuWQuTAXNLdFDpkLc0mz2HwVmKx3gcl6GZist4HJeh2YrPeByfn6rwtzLXNB5gu/ZL3xS7In8KLxt3Mv5MF/Ultki3xRLEpJYh73Fw7LWXycOCcqOIrW3Juex03uwjjAUSGXPWRtmFCwgg3Msrk3w8EA+9rgOZIuLCC2jq1j69g6to6tY+vLlv19Ewu4bNnfN7GCDTTQr0M93zB2Hr7ZCnhhOcACysI8T9VchBxMF1Ywry+SbJEvikV9Ul7unlQWySJdVBcthy6HLocuhy5HnqNGS5DkG8MmCpgrE4kVHBux5pbLAXehgwH2hTnkLizgsI2mDMl2vYkVTFsubw7GCx0ctpb7IYfoiTlEL8xgT5JFuqguaotsUVbMYyNHXsvdmSOv5fJ7BRto4FjSdr4fNMC+MEfphQXMC62klOWWz1F6YQMNdDDAvjBH6YUFFBBbx9axdWwdW45Sy02WozQxO/ImFlBABYdtPKGW7MibaKCDAfaFOUwvLKCACmIr2PJUOWZhJTvyJgaYtrFfsyNvYgHTZokKVrCBaTtfBpu2cThn752O+UDJ3ruJAio46npuvrxMzdmb7L3TnJHJ3jvNuZfsvZvYF2YEXJi28020AipYwbTl8ua4z1mAbLjTnFzMhjuNXJwc93lzmw13EwVUsIINNDBt51tyY2EO9jFlLtllN1FABVORi36elE800MGYQ76dQZCYJ+YLCyigghVs4KibN+7ZT3dhBsGFeVmRWzKD4EIFR928cc9+uoljLfKeOPvpJgaYtlyGTIILCyigghVsYNryOMskuDDAPjF77yYWME81JTHPzJa4rgPscDDAvvC8Nj6xgALmdUBNrGADDczrAE8McF332XnRfGIBBVSwgg3MW5xczbxq7ok55i8soIAKVrCBuS9SkWP+wgD7whzzcmIBBVSwgg000MFYmAN9dIZLdtlNVDDXoic20EAfL849EgPsA/OAGWN+YgFlYO75MeYnVrCBBjoYYNrGwMkuu4kFFFDBCuaezyVz9ryz54M9H+z5YM8Hez7Y88GeD/Z8sOeDPR/s+c6e7+z5zp7v7PnOnu/s+c6e7+z5vvZ8drhFntGzw21iG1gTDezrPxgja2IBZWG+EXf0B0s2mk00MHdhLkO+GffCvjDfjnv0xAKOXZjTRtloNrGCw5ZTQdloNtHBAPvCfGPuhQUUUMEKYmvYGraGrWEzbHnY5xxUNo/VfC1/No/V8f47yeaxiX1hHuAX5vJGooAKVrCBwya5zc73V58YYF94vsX6xAIKqGAFG4gtsAW2wHa+2fpILKCAClawgWnLA/F8z/WJMTHO11efmP+BJgaYm3occtnvNbGAuTgtUcEK5uJ4ooFpi8QAhy1vH7Lfq2YEZb9Xzfua7PeaOGx55s1+r4kNNNDBAPvCfLn1hWnLhcwXXOdURvZ71Zy0yH6vmmf/7OyqecLOzq6JfWEO3gsLKKCCWSy3eo7NC/vCHJsXFlBABbNY7oAcWXljnA1WExtoYP61XPkcbxf2hTneLiyggApWsIEGYnNsji2wBbbAFtgCW2ALbIEtsAW2jq1j69g6to6tY+vYOraOrS9bNlhNLKCAClawgQY6GCC2gq1gK9gKtoKtYCvYCraCrWATbIJNsAk2wSbYBJtgE2yCTbEpNsWm2BSbYlNsik2xKbaKrWKr2Cq2iq1iq9gqtoqtYmvYGraGrWFr2Bq2hq1ha9gaNsNm2AybYTNshs2wkSWdLOlkSSdLOlnSyZJOlnSypJMlnSzpZEknSzpZ0smSTpZ0sqSTJZ0s6WRJJ0s6WdLJkk6WdLKkkyWdLOlkSSdLOlnSyZJOlnSypK8s0WNliR4rS/RYWaLHyhI9VpbosbJEj5Uleqws0WNliR4HtoKtYCvYCraCrWAr2Aq2MyoiUUAFK9hAAx0MsC88o+JEbIpNsSk2xabYFJtiU2wVW8VWsVVsFVvFVrFVbBVbxdawNWwNW8PWsDVsDVvD1rA1bIbNsBk2w2bYDJthM2yGzbA5Nsfm2BybY3Nsjs2xOTbHFtgCW2ALbIEtsAW2wBbYAlvH1rF1bB1bx9axdWwdW8fWl60cB1hAARWsYAMNdDBAbAVbwVawFWwFW8FWsBVsBVvBJtjIkkKWFLKkkCWFLClkSSFLCllSyJJClhSypJAlhSwpZEkhSwpZUsiSQpYUsqSQJYUsKWRJIUsKWVLIkuy1quPhjmavVR3PqTR7rer4XI1mV1Udj3E0W57q9Z0uARUcijHFodnyNNFABwPsC3OQXVhAARXEFtgCWw6RMTuj2bA0sU3MJqQ6nnVoNiFNFDAreOKoMJ5UaDYhTTTQwQD7wjzsLyyggApiK9gKtoKtYCvYBJtgE2yCTbAJNsEm2ASbYFNsii0P+9FbrtmENLGCDTTQwQD7wjzsLywgtoqtYssT4HjCpNk3VMcTJs2+oeq5u3MwXOhggH1hnuouLKCAClYQm2EzbIbNsDk2x+bYHJtjc2yOzbE5NscW2AJbYAtsgS2wBbbAFtgCW8fWsXVsOY7Hcz3NxqWJDTTQwQD7xGxpmlhAARWsYAPT5okOxsJzdEdiVuiJo8J4tqjZxTTRwQD7whzHFxZQQAUriE2wCbYcx+P5pmbL04U5ji8soIAKVrCBBjqITbFVbBVbjuPxuFWzSWpiBRtooC88v/BWE7NCS8wKuVtyzF9ooIMB9oU55i8soIAKYjNshi3HfOQBk2P+wr4wx/yFBRRw1O25N3Mc99x8OY5PzHF84agwHqzq+Y3FCxWsYAMNdDDAvjDH8YXYOrYcxz13S47jCxuYthxkOY4vTFuucY7j8dBNz+8wXviwtfFMTbNpaqKCdaAkNtAGaqIPrIkxsCX2gUOcXVMTCyigghVsoIEOBohNsAk2wSbYBFt+o/vITZKf5R4PhTQbrdp4/KPZaTWxgmMhS26S/Er3hQ4G2BfmF7pLbr78KHfJzZff5c6vhdb8NPeFAfaF+Y3uCwsooIIVTJslGuhg2nKT5KcZT8yPM15YwLTlNstPNF5YwXVpmZ1UEx3MC9nckjl4T8zBe2EBBVQwbbmz8tONFxroYIB9YX79+8ICCqggtsAW2AJbYAtsHVvH1rF1bB1bx9axdWwdW1+27LuaWEABFaxgAw10MEBsBVvBVrAVbAVbwVawFWwFW8Em2ASbYBNsgk2wCTbBJtgEm2JTbIpNsSk2xabYFJtiU2wVW8VWsVVsFVvFVrFVbBVbxdawNWwNW8PWsDVsDVvD1rA1bIbNsBk2w2bYDJthy8++jkezmj1aE/vC/PjrhRXMv1YSY2Ge0fNMlm1VExuY/60k9oU5pC8soIAKVrCBBjqIrS9bNlBNLKCAClawgQY6GCC2gq1gK9gKtoKtYCvYCraCrWATbIJNsAk2wSbYBJtgE2yCTbEpNsWm2BSbYlNsik2xKbaKrWKr2Cq2iq1iq9gqtoqtYmvYGraGrWFr2Bq2hq1ha9gaNsNm2AybYTNshs2wGTbDZtgcm2NzbI7NsTk2x+bYHJtjC2yBLbAFtsAW2AJbXh7kh+rtzJIT+8IzQDxRQAVT0RMbaOBQjI4PzW6siX1ivvNsYgEFVLCCDTTQwQCxFWwFW8FWsBVsBVvBVrAVbAWbYBNsgk2wCTbBJtgEm2ATbIpNsSk2xabYFJtiU2yKTbFVbBVbxVaxVWwVW8VWsVVsFVvD1rA1bA1bw9awNWwNW8PWsBk2w2bYDJthM2yGzbAZNsPm2BybY3Nsjs2xOTbH5tgcW2ALbIEtsAW2wBbYAltgC2wdW8fWsXVsHVvH1rGRJU6WOFkSZEmQJUGWBFkSZEmQJUGWBFkSZEmQJUGWBFkSZEmQJUGWBFkSZEmQJUGWBFkSZEmQJUGWBFkSZEmQJUGWBFkSZEmQJUGWBFkSZEmQJUGWBFkSZEmQJUGWBFkSZEmQJUGWBFkSZEmQJUGWBFkSZEmQJUGWBFkSZEmQJUGWBFkSZEmQJUGWBFkSZEmQJUGWBFkSZEmQJUGWBFkSZEmQJUGWBFkSZEmQJUGWBFkSZEmQJUGWBFkSZEmQJUGWBFkSZEmcWVISDXQwbZrYF55ZcmLaWqKAaYvECjbQQAfT1hP7xGzfa+Onq5rte200hGq2700cttHZqdm+N7GBwzZ+Z6nZvjcxwGEbfZma7XsTCyigghVsoIEOBohNsAk2wSbYBFtGRbbyZB9ey8fO2YfXam6zDIULK9jAsZD5XDr78CYG2BdmKFw4bC03aoZCy82XoXBhBRuYtlzeDIWWy5ChYGfdvjBDYfzaTrMPr+VD4+zDmzhs+fw4+/CaZbEMhRNzdOfD0myoa/l0MhvqJlZwLE4+s8wmuea5vDliLxRQwQo20EAHA+wLA1tgC2yBLbAFtsAW2AJbYOvYOraOrWPr2Dq2jq1j69j6tNVskptYQAEVrGADDXQwQGwFW8FWsBVsBVvBVrAVbAVbwSbYBJtgyxE7nrHW7KKb2EADHQywL8yz/3jqWbOLbqKA9Tp+a7bOTTTQwQD7whzdFxZQQAWxVWwVW8VWsVVsDVvD1rA1bA1bw9awNWwNW8Nm2AybYTNshs2wGTbDZtgMm2NzbI7NsTk2x+bYHJtjc2yBLbAFtsAW2AJbYAtsgS2wdWwdW8fWsXVsGSDj2XjN1rmJDg5bnP9tn5itcxOHbTxrrtk6N3HYxsPomq1zExuYNkt0MMC+MAPkwgIKqGAFG4itYCvYCjbBJtgEm2ATbIJNsAk2wSbYFJtiU2yKTbEpNsWm2BSbYqvYKraKrWKr2Cq2iq1iq9gqtoatYWvYGraGrWFr2Bq2hq1hM2yGzbAZNsNm2AybYTNshs2xOTbH5tgcm2NzbI7NsTm2wBbYAltgC2yBLbAFtsAW2Dq2jq1j69g6to6tY+vYOra+bHIcYAEFVLCCDTTQwQCxkSVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKluiZJZ7oYIBpe8xS1XpmyYkFHLbRflrPXssLK9jAYRudqPXstRwNofXstRytn/XstTwxs+TCAgqoYAUbaKCD2DJLxmt76tlreWEBBVSwgg000MEAsSk2xZZZMl5qVM8WzQsr2EADHQywL8wsubCA2Cq2zJLRcFvPds4LDXQwwL4ws+TCAgqoILbMktHeW892zgt9YabGhVkhj76RD3bkwTXyYaKBDsbAPPpGPlw48mFiAQVUsIINNNBBbI4tsAW2wBbYIm05RKKBacvjNxwMMG25UfsBFlBABSvYQAMdDHDZskVzYgEFVLCCWWzs2Oy1tNG6XLPX0kbrcs1ey4kVbOBYyNHFXLPXcmKAfeEY6BOHreQyjIE+UcEKNtDAtOWiS4B9oR5gAQVUsIINNBCbYtO05TarB1jAYRvNgjV7LScO23iPS81ey4nDNt5GXLPXcuKwja6emr2WF46BPrGAAipYwQYa6CC2hs2wGTbDZtgMm2EzbIbNsBk2x+bYHJtjc2yOzbE5Nsfm2AJbYAtsgS2wBbbAFtgCW2DLUJA8fjMULhRQwbTlYZShcKGBDgbYJ2aT58QCCqhgBRtooIMBYivYCraCLVNjtJfVbNy08VS5ZuPmhZkP41FyzcbNiQIqWMEGGph1R2xnM+a5A7IZ89y+2Yw5sYEGjjUeD65rNmNO7AtzzF+4jh2r2KqCFWyggQ7GWoZzzCe2AyygrGXIMX9hBbEx5o0xb4x5Y8wbY94Y82brSDVjSxpb0tiSOebPZTC2pLElGfPGmDfGvDHmjTFvjHljzBtj3s4xn8vgbElnSwZbMtiSOebHmxtrNmNOzC2ZdXPMX2igg7lueaznmD8xx/yFBRRQwQo2MG05cHLMX7gO8GzGtNH0ULMZc6KACq5DI5sxJxroYIDrsM9mzIlrZ3kRUMEKNtBABwNch0a2Xdpo3ajZdjmxgqNuze2Qw7/mkuXlwYUB9oV5eXBhAQVUsIJZtyYG2BdmKFyYdXMtMhQuVLCCeUkViQY6GGBfmKFwYQEFXNf2zrW9c22frZRWT+wLc/iP5o+arZQTBRxr0fKIyuF/YQPHWrTcQzn8LwywL8zhf2EBBVSwgg3Edj71zGU4n3qeWEABFaxgAw10MEBsHVvH1rF1bB1bx9axdWwdW1+2s2nywgIKqGAFG2iggwFiK9gKtoKtYCvYCraCrWAr2Ao2wSbYBJtgE2yCTbAJNsEm2BSbYlNsik2xKTbFptgUm2Kr2Cq2iq1iq9gqtoqtYqvYKraGrWFr2Bq2Nhud6tk0eaGBOY5rYoB9YabG6Nyq2TQ5UcAcx5FYwQYa6GCAfeGZGicWUEBsjs2xOTbH5tgcW2ALbIEtsAW2wBbYAltgC2wdW8fWsXVsHVvH1rF1bB1bX7ZsmpxYQAEVrGADDXQwQGwFW8FWsBVsBVvBVrAVbAVbwSbYBJtgE2yCTbAJNsEm2ASbYlNsik2xKTbFptgUm2JTbBVbxVaxVWwVW8VWsVVsFVvF1rA1bA1bw9awNWwNW8PWsDVshs2wGTaypJMlnSzpZEknSzpZ0smSTpZ0sqSTJZ0s6WRJJ0s6WdLJkk6WdLKkkyWdLOlkSSdLOlnSyZJOlnSypJMlnSzpZEknSzpZ0smSTpZ0sqSTJZ0s6WRJX1nSjpUl7VhZ0o6VJe1YWdKOlSXtWFnSjpUl7VhZ0o6VJe04sBVsBVvBVrAVbAVbwVawFWwFm2ATbIJNsAk2wSbYBJtgE2yKTbEpNsWm2BSbYlNsik2xVWwVW8VWsVVsFVvFVrFVbBVbw9awNWwNW8PWsDVsDVvD1rAZNsNm2AybYTNshs2wGTbD5tgcm2NzbI7NsTk2x+bYHFtgC2yBLbAFtsAW2AJbYAtsHVvH1rF1bB1bx9axdWwdG1lSyJJClhSypJAlhSwpZEkhSwpZUsiSQpYUsqSQJYUsKWRJIUsKWVLIkkKWFLKkkCWFLClkSSFLCllSyJJClhSypJAlhSwpZEkhSwpZUsiSQpYUsqSQJYUsKWRJIUsKWVLIkkKWFLKkkCWFLClkSSFLCllSyJJClhSypJAlhSwpZEkhSwpZUsiSQpYUsqSQJYUsKWRJIUsKWVLIkkKWFLKkkCWFLClkSSFLCllSyJJClhSypJAlhSwpZEkhS8qZJX3gmSUnFnDYxs9tWnZ2Thy28f6dlp2dEw0ctvGWx5adnROHbfxgp2Vn58QCps0SFUxbS2yggWnLFcosuXDYxt1ty87OicM2bmlbdnZOVHDYxg80WnZ2TjTQwQD7wsySCwsooILYCraCrWAr2Ao2wSbYBJtgE2yCTbAJNsEm2DI1xi9OWnZr2ngnX8tuTRtv32vZrTkxwL4w82G8k69lt+ZEARWs4LCNRv+W3ZoTHQywL8x8uHDYItci8+FCBSvYQAMdDLAvzHy4EJthy3yI3HyZDxc2MG25oTIfeh60mQ8XDtto5WnZrTlx2Hoev5kPFypYwQYa6GCAfWHmw4XYAltgC2yBLbAFtsAW2Dq2jq1j69g6to6tY+vYOra+bNmtObGAAipYwQYa6GCAaRsHYnZrTiyggGlriRVsoIEOBtgXZj5cWEABsQk2wSbYBJtgE2yKTbEpNsWm2BSbYlNsik2xVWwVW8VWsWVqjJ6nlh2YNp6AtOzAnJgVIlFABSvYQAN9YSbBaJVq2VV5HQQ55s99nGP+QgMdfKyxjwaqll2VF44xP7GAHKmMeWXMK2NeGfPKmFfGvDLmNThSgyM1OFLPMX8i6zbGvI9eqpZdlRN94Fk3wL6wH2CuW+63MeYnKljBBhroYIBpGwdBdlVOlLmzspXSR1NUy1bKiQ000OcOyFbKiWtnZSvlxAIKqODaWbU00EAHA1w7q8oBFlDAXItINNDBXIvcDmNIPx72DhxDemIBBVSwgg000BfWrFsSCyigglk316I20EAH87Ijd2wO9BNzoF9YQAEVrGADDRwPWVrasj3ywgIKqGAFG2iggwFic2yOzbE5Nsfm2BybY3Nsji2wBbbAFtgCW2ALbIEtsAW2jq1j69g6to6tY+vYOraOrS/b+V7LCwsooIIVbKCBDgaIrWAr2Aq2gq1gK9gKtoItH6GO52/tfK/lifkI9cIcWS1RQAXTpokNNDBHliUG2BfmI9TxiK+d77W8UEAFK9hAAx0MsC+s2Cq2iq1iq9gqtoqtYqvYKraGrWFr2Bq2hq1ha9gatoatYTNshs2wGTbDZtgMm2EzbIbNsTk2x+bYHJtjc2yOzbE5tsAW2AJbYAtsgS2wBbbAFtg6to6tY+vYOraOrWPr2Dq2vmznCzUvLKCAClawgQY6GCC2gq1gK9gKtoKtYCvYCraCrWATbIJNsAk2wSbYBJtgE2yCjSwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxsiTIkiBLgiwJsiTIkiBLgiwJsiTIkiBLgiwJsiTbRL2cqGAF09YTDcy7jkgMsC/MLMmnRmeb6IVj3fIR1NkmemEFh81SnFly4bCN32e1bBOd2BfmHIhkhZwDuVBABSvYQAMdDLAvrNgqtoqtYqvYKraKrWKr2Cq2hq1ha9gatoatYWvYGjbLurlbLCvUxKzQEhtooIO5vLmHcgr0xJwCvbCAAqYtDyOvYAOHTXPHjnyYGGBfOPJhYgEFVLCCDcQW2AJbYOvYOraOrWPr2Dq2jq1j69j6smXr58QCCqhgBRtooIMBYivYCraCrWAr2Aq2gq1gK9gKNsEm2ASbYBNsgk2wCTbBJtgUm2JTbIpNsSk2xabYFJtiq9gqtoqtYqvYKraKrWKr2Cq2hq1ha9gatoatYWvYGraGrWEzbIbNsBk2w2bYDJthM2yGzbE5Nsfm2BybYyNLOlnSyZJOlnSypJMlnSzpZ5aUxAo20EAHA+wLzyw5MW01UUAF0yaJDTQwbZYYYL/QsvXTx8+kLFs/JwqoYAUbaKCDAfaFBVvBVrBlloxfYtlxpkYu5JkEJwqoYAUb+FQhl+zEAPvCTILxOyrLxs2JAipYwQYa6GCAfWHFVrFlEoxfYlk2bk6sYAMNdHDYxk+qLBs3L8wkuLCAAipYwQYa6CC2hi2TYExzWzZuThQwbbmPMwnGd3QtGzcnpi13SybBhWnLDZVJcGImwYUFFFDBCjbQQAexObbAFtgCW2ALbIEtsAW2wBbYOraOrWPr2Dq2jq1j69g6tr5s2bg5sYACKljBBhroYIDYCraCrWAr2PKqYjS+WTZuTjTQwZU72bh5oRxgAQVUsIINNDDXog8886Emjgp2JFawgQY6GGBfmEkwevasVLZvZY0ra3yO+RP7whzz497JssFyooAKsjcbtsbebOzNxt5s7E1jb55jPpfhHPMnKsjezDF/LkOO+QsdxMaYL4z5wpgvjPnCmC+M+eIcO86WdLaksyVzzJ/LEGzJYEsy5gtjvjDmC2O+MOYLY74w5kuw384xfyJbsrMlO/stx/yFbEnGfGHMF8Z8YcwLY14Y88KYF8a8HGu/ydFAAx0MMLfkGDjZYDkxt2RNFFDBCua65TLkmL/QwQD7whzzFxZQwLTlQuaYvzCvH87/IOYozFZKHy+ft3xJ5sQCCrj2kGgFG2iggwGuoy/bLq8dUNlDlT1U2UO1gg000MF1PGSDpY8uW8sGy4kKjrqe2yHzwXPJMh8udDDAvjDz4cICCqhg1s2jJJPgwgD7wkwCz6Mkk+BCARXMOYUTG2iggwH2hZkEFxZQwNw6LdFABwPMtRhXNtk0ObGAAo45sZqHZ84uXthAAx0MsE88X3F5YW4dT6xgAw10MBbmOPYsliN2NP1atjz6eP23ZcvjRAdHhfHdasuWxwtzxIYkFlDAsbyjK9iy5XFiAw10MMC+MMfxaO+1bHmcKKCCFWzg2OqSi54j9twOOWIvZOvkiB29wpbNjRMr2EADcy0sMcC+MM/zF+ZapC3H8YUKDlvPHZDj+EIDh63nCuU4vrAvzHEcuedzHPfcLTmOe27UHMc9t06e5y9sYNbNdctxfGKO4wsLmHVz3XLEngdXjtgLHYyFOUwvHAOn5JKdH/A9sYFjF5ZcsvMDvicG2BeeH/A9sYACKljB3Ki5zfIkfGGfeHY0XpgrH4kCKljBsRaj68+ub3Kf6GCAfeH5Te4TCyiggnZ9Kt2yjdH7+U8D7Atz8F74qBtH/rUxeCcqWMEGGuhgXF9jt2xuvHAM3okFFFDBCjbQQF84Bm8cJxZQQAVzLSSxgQY6ONYih3Q2N144Bu/EAgqoYAUbGEOhiX2hHWABBVRw1M3TzPnR7gsNdDDAvjA/2p2ng/Oj3RcKqGAFG5hrMUZLNizGkesWAiqYFfI4y+/zXmiggwH2hf0ACyiggtg6to6tY+vY+rJlw+LEAuaxY4kNNNDB3Dqe2BeWAyyggApWsIFpi0QHA+wLJW256OfoPlFABevcWe0c3Sca6GCAfaEeYAEFHHVHO7JlE+JEB0fd0YNs2YQYo8XYsglxYgEFHGuRZ4ZsQpzYQAPTlnuopi03VO0L2wEWUEAFK9hAAx3ElmM+r0CyCXFiAQVUsIINNNDBYcvL22xCDMk19gMsoIAKVrCBBjoYILZIWx5cmQ8XCqhgBRtooIMBDpvmQTDyYWIBBVSwgg00cNg0D9qRDxP7xGxCnFhAARWsYKZRSTTQwQD7wnKAWdcSc3k90cGsoIl9oRxgAQVUsIINNDC3wziUs4UwxlvyLFsIJwqoYAUbaOBYi/HuPMsWwol9YSbBhcNWc5NkElyoYAUbaKCDaZPEtOVqZhJcWEABFaxgW/uisYcaeyiT4MK+MJPgwgIKqODYF5LLm+f5CwPMtchDLsf8hbkWWSHH/IUK5lrkjs0xf6GBYy3yoUU2C07sC3PMX1jAYWu5dXLMX1jBBhroYIB9YY7ufCaRDYBVzn+a/22ucY7YxGz1m5hLZokC5pJ5YgUbmEsWiQ4G2Bfmef7CAgqYtp5YwQYa6GCAfa5xNvVFzkFnU9/ECjZw1M3psWzqmxhgX5jX6yW3WV6vXyigghVsoIG+cIyLntOE2Q43McC+cIyLiQUUUMEKNhCbYTNshs2xOTbH5tgcm2NzbI7NsUXWzUMuBNSFeXbKecRsRZuYdfNA7A4G2CdmK9rEAgqoYAUbGFOcTWcX5lF9YQGzbiQqmHV74qibk5LZdDbRwQD7wnHOmlhAARWsIDbBJtgEm2BTbIpNsSk2xabYFJtiU2yKrWKr2Cq2mnVLYlbITV3XkZqNZBMLmPtCExWsYAMNdDBtJ/aFOQpzRjbfNzhRwFzelpgVLLEvPEdWrsU5svLQOEfWiQpy7OTIyvvNbCSb6OAaAdlIdmEwAgJbYAtsgS3awp7iPJRz6F3oYK7m+d/2idnlNXGIc+Y0u7wmDnHOnGaX18QGDlvOnGaX18QA+8IxICcWUMC0aWIFG2iggwGuXdjPoZcLeQ49T6xgAw10MMC+UNfOyn6uiQIqWOdg6OfQO9FABwPsC8+hd2IBBWwzxLJza6LPQ6PXNaSzc+vCdoAFFFDBCjbQQAexNWyGzbAZNsNm2AybYTNshs2wOTbH5tgcm2NzbDlMz2Mn2OqxTqw9FKxgAw10MMAVjtmNNbGA2Dq2jq1j69g6to6tT5sfxwEWUEAFKzij2LMba6KDAfaFOeYvzC15ooC5L1KRY/7CBua+aAPPE6slCpjLK4kzHD17tCYa6OAc3X6s0e3HeWI9cY5uP9bo9mONbs8erauYYlNsii1H94nnQRuJfeF50J6Yq5n/7XnQnqhghuOR2MAMx5LoYIAzij2bjCYWUEAFK9jAGcWeTUYTA+wL8wC/sIDswj6vH/zotnZAd5Cd1dfOKscBFlDAtbPKunL0sq4cvRwGzij2bCea2BeWAyyggApWsC3MO5/cF9kMNLGCDTTQwQD7wpzXuLCA2BSbYlNsik2xKTbFVrHlvEYefdlONFHBCjbQQAcD7AtzXuNCbA1bw9awNWwNW8PWsDVshs2wGTbDZtgMm2EzbIbNsDk2x+bYHJtjc2yOzbE5NscW2AJbYAtsgS2wBbbAFtgCW8fWsXVsHVvH1rF1bB1bx9aXLZuMJhZQQAUr2EADHQwQW8FWsBVsBVvBVrAVbAVbwVawCTbBJtgEm2ATbIJNsAk2wabYFJtiU2yKTbEpNsWm2BRbxUaWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqW6Jklkpg2TaxgAw10MMC+8MySEwsoILYzSyyxgQamrSYG2BeeWRKJBRRw2EYPhmdT1MQGGuhggH1hZsmFBRQQW8PWsDVsDVvD1rAZNsNm2AybYTNshs2wGTbD5tgcm2NzbI7NsTk2x+bYHFtgC2yBLbAFtsAW2AJbYAtsHVvH1rF1bB1bx9axdWwdW1+27LuaWEABFaxgAw10MEBsBVvBVrAVbAVbwVawFWwFW8Em2ASbYBNsgk2wCTbBpmsc1zMfPLGCDTTQwQD7wjMfTiyggNgqtoqtYqvYKraKrWFr2Bq2hq1ha9gatoatYWvYDJthM2yGzbAZNsNm2AybYXNsjs2xOTbH5tgcm2NzbI4tsAW2wBbYAltgC2yBLbAFto6tY+vYOraOrWPr2Dq2jq0vWzsOsIACKljBBhroYIDYCraCrWAr2Aq2gq1gK9gKtoJNsAk2wSbYBJtgE2xnPkhigH1hpsaFBRRQwUyjlthAA9OmiQH2hWdURGIFG2iggwFmsVy381LixALmovfEMbF05KLnXPyFDTTQwQD7wpyLv7CAAmLLufgjN0nOxV9ooIMB9oU5rXlhAQVcJ4nGpUTjUiKbuPqRmySnNS8MsC/Mac0LCyigghVsILbAFtgCW8fWsXVsHVvH1pct+5j66Drx7GOa2MCxOOMnrZ4vSJsYYF+YU9cXFlBABSvYQGyKLR82jRYWz96kPlpYPBuS5j/NxWmJuTjjej0bkiYWUEAFK9jAXJzcUHlUXxhg2sZwyoakPlpN3M7Gi9x8Z+NFSdS16HlUX8gK5UGrWTcP2gsLKKCCFWyggQ4GmLZc9DxoNRc9D9oLBVRw2GquWx60FxroYIB9YR60FxYwi+WGyqn20V7m2YXUR5+YZxdSH79C9exCmqhgBX1hzpmPfi7PzqKJWcESUzw2Sb4CrI/OLc9XgE0UMG09sYINtFU3R8v1TwPsC3O0XFjWGudouVDBCrJu+UjnXKF8YHtiZY3zCs9OzC6ZXLK8wrvQQAcDzG6W3Dp5LWe5HfJa7sIKNtDArJurmddyF/aFeS13YQEFVHDYxhNSzx6iiQY6GGBfmNdyFxZwKPLxT75Ha2IDDXQwwL4wL+AuLKCA2Dq2vIDLxzTZvDTRwQD7xGxemljmVs/mpYkKrp119iblA9DsQop81JldSBMbaGAujiUG2BfmNdeFBRRQwQqmrSUa6GCAfWFec11YQF3rlhda+Sgum4wmxlqhvKQ6MW/PLixgLnpus7zmurCCueg90UCnAraKrWFr2PKa60J2S2O3NHZLY7c0bA3FeRWUC3leBeWS5Qll/GrAz3aiCxWsYAMNdDDAvjBPKBdiyxNKySM1TygXVrCBBjoYYF+YJ5QLC4itY+vY8owzfkjhZ8fShQ4G2CeeHUsXFlBABSvYQAOz7jhSz36j8WM6P/uNLjTQwQD7wjx9XVhAARVMhSWmwhMdDLAvzHPW+FWGn61HFwqoYAUbaKCDAfaFFVvFVrFVbBVbxZYNSaUnOjgUkjsgrwbHb0D87De6sIKj2OgS97Pf6EIHA+wL82rwwgIKqGAFUeSxLnlo5LEuud/yWL+wgAIqmHVbYi5v7u48qi/sF8bZk3NhAbOuJypYwQYa6GCAaYuBeVF2YQEFVLCCDTQwFT2xL8zBcGEBBVSwgg000EFsgi3HxXhNVpxNOxcKqGAFG2hrq6uDAbKz8gAfL8+KfBdSHz/CiXwX0oV553NhAXNxNFHBCjbQQAcD7AvPY/3EAgqoYAUbaGCsdTvvh+rA887nRF0rdN75nNhAA3PRW2KAfeF555Mb9bzzOVFWhcAW2AJbYMsT1YXslmC3dHZLZ7d0bP1U/Nd//dOf/vZv//rnf//rv/39X/79H3/5y5/++T/XP/i/f/rn//aff/o/f/7HX/7+73/657//x9/+9k9/+v/9+W//kf/R//0/f/57/vnvf/7H498+jqy//P1/Pv58FPxff/3bXwb91z/xt4/Xf7U8HrnZ9dfL4+EZJcrx2yLldZE6bkOyxGN2dxVw+c3fl9d/X0fnX/79x/MRFsDL/bXQeqy1qCov16K+LjIm3M4KRdffr3r3r2u+ne1ci8etCEsg7TclbFNiNDtd24FFeNS6+fetzI3wmGxZf/+xV39TIDbbsdrajI/J1pcl+m5fytoMj+mLlyV2WzLnpK7tEPXlliybQ1JkzCllDXk8/aVG7b+tsTssta3FYHOW+MaK9Lkijwd0+npFNjXG9wiuGuMTAquG/TI6226vjtnda682eVlic2Tlu1uywuNWi/WwfrtCrAEaVl5XuLsa/no1dhszPwN2bkw/+qsSsokaqTFzQlotL0uUTzeFbI5MOfo6ustB5NZfIlc3CzHmB86F6P56IXZ5KTK3xAM5KrTV+ytSxizltSKtvFyRzYElhObxssB+hHVbB8VT9P+6R+Pz0NvVqFpmjceD59fnDz22+S1riDxtDdFfamyOzhZzj9jRnirU+wdGbevAaE+j7NcDQzeH5+PWq68anSNc45c12SyHcEaWxxQoO/b+Utw8xLc17m4N/4GtEZ9ujf1AWZeK44MurwbKpkLNl6qfx3jY8fIYr5vjU0usq0U9nmv4/Rrq6wrjN+f2X2vox2fVWj89q+4q3DuV3F6N12fVu1uzPp2NvrdHDl81Sn1do39+9dqOH7h8Lds7gZnCjyv61+vSNifGx1T6PMof2F5ev+5rWFs1+vG6Rv34KG/t06N8V+HeUX57NV4f5dutqcfaI6pv7hFblzuPGfPXdyW2O8fn+w7PVfHnm4q4f4TWUlYOl/o6Q00+PjJMPz0ydhXuHRm3V+O9/Htswrq2pvXXW9M/35rx8daMj7em/8Fb8+nY9PLW2eTxF+diVDle7xHXj2+8/fPw9I/D0z8OT/88PPcb89NLx1a4dS/t9VxKbKJzvKln3tuEv47f2BxafR2d5Xg+p8Y3JitrK2uy0qK8nKzcb1Fni8Z7O+XebEi03WzIsW4qni/bfi1hHw+S8E8Hya7CvUFyezVeD5LtxtQebEx7q0S+wveandKXcxl9c0Js2WF3HhXd+nsltN4osT+wbk2z9Y+js38cnd0/nt/q8eH81nYZ7k0WluP4dLYwI/r1wwmdK2LP15wa8W6R9maRuu41x/t9N0Xqp9OO+3VZExnjCwtvrousWZ3xxvt3i3hbRfq7u0bXfcl4r/WmyO4W/vGYZN3DP7i8nC7blrk7b/dFkT73z+NJdX+ziK5nWY+nzvZmkZtTiGU3e3d3DrHsnsHcnETcLkfI2iLxdCH3++W4W8SOd4usc8wD7b0ijzHBA/Sj+KbMdhe3FWz9+fLhmwdbcLA9j+PvFbFOkdcD8P7Z+/VDy91ThPy4SpZwf3nS2l8h33quU3YPl+7eSO6L1LUqtfayKbKfvm9r5NXN2vTPHwTvHjHdfBK8K3HzUfDtNdk8C95v0fWwTDzqWzWU4+NxivB3axwf13hqHXke+d+rsS7yHuVe19g9ZLp58/BFjVt3D/t1qXVN41eLz2u8eYypdB5rxOt9u31CY2sav7hsrr63C+JrzuFxcfY6Pmr7fOfua/zAzvXCumwGbt11Oh2+ZtEfVzzvbtR1haixOcq2D5zWzdnjruT1YrTNlXfJn6ad69J9cz+zW47KrOvT4fH7zbE7z7X13Ku233Qw/HKe2z2puTmjVNoPNDy1zzue2g+0PP1Az9N2i96bVtrXuDevVKx8PvT3R8etaaHy+VOn8vljp2+syevsMPvwEnk/ZO2Yx0Z9rvG969vm6/lX213f2g+0nubF0qdP77er8/yk4fEE/fXquPzE6ugfvToSM0KaHrvVaX/kkfZ4hibrbqxt7qTcdyepdYIRSsjvtunnbVDbpVgVnk+Vv1uK3ZOo8jjG6rr+OJ6mQ+0bRY78ye419RDPV0LfKdLj6YnWUzPUd7aIr/3SN/sl6h9a4rENpLM92uuNWn9io9Yf2KjbInePke2w83UDMj6k+l7A/2bCXOu7RdYk5vhQ0JtFfF1DjI9ZvFnE1mEyvoDwukivPxDwuwdMPxLwlt/ouVbHdquza9xo+eKHa3167a8Oti+KrCmEBz/9lufXIpupnfEBgHmuqeX1iUJ2z6seO2fN29mm9U2O7X3V2rCP/+7lzbsc8untnRybqwCRsq4UH1N/TxOy7ZciX4QJv286nm6sfp2m/qJM4zB53LnEyzLbQ3a8+WTuY+ux2cf+8YyoHPHxnaLsJszv3U9sS9z8RcjtNfHNmvjHM6LbGjdnRL+qcXxc496El+x+s/SbO9b23ja9OTP7RY1bM7NS+seTd1/UuHUHv1+XupJZnx++/1pD5I9ejlszxPdrvDnmbs4Qyy5O784Qf3Gw3zxA7A/eMfdmd2X7O6ibs7tfLMit2V3Rz0//u98P3Z3d3S7HzdndLy7unCvexwPzFxd32ZDy6RXitkgV5pnlqanKvnFp53W1YHp9faDq509TpX78NHVb4ua1g37+NPWLi+V1nntc3r8+3+5+zXQ7PnZXyxZrttuib66Wd0V8bdQHlveKlONY16d1e92+W5KmTBPb+xf/YVz8P51lvnvxv9Zo3AjYpoxun0e0/9fziO9tl7pauaU+XSL+vsjHqbg97B+X9etIeWzZt4aOlLIO2bI54+2eNd080TT/gRNNs8836XbXrsnmx17Wdw/5IkyeFX37flcq97tib48cWRc1o+SmSWzXV72mSJ9eL/LLC0q+mlEUJwe0vzktWZ9mEuzVtKTsnlw97gL0/3kXcL/EvauAr2bhb26P4we2h//A84BtkZtbZN/N+LQyx/HciPi9pshD7anMpstTtpfxt3srd2Us1iXB+KToy2n0XQlmR8eXJd8r4SxFf1li32J98IKf4+2O8fWio0eR133a+9/Cuq7r1uf5u1+nV3e/pLrZ6SHx+Y9QJT7uB9iWuHkNHp//DnW/Re91euxr3Ov0kPi8C/CLGvfuBfZH2L139fTy8dHRP3/fz/01eX2Z2T9tqN6O+rouYqLqZtR3+/zOu3/+Y2np8fl+/fjn0vfXZDPqt1v03p23Hj8wo7pfjluPy/Son97G6NE+v+3eLsfN25jd5rh7Z7itce/OUHfPlm5u0nJ8fme4XY57m3T/9oy1NcKeftX1u3f6bd9hdOtn0/s3wN26btEfeCWffv5OPv38pXz6A2/l227Qm5ctx8dXLSrl46uWL2rcy9HPLzi+uPu69yPK/ev97v38cVvj5q8ft+9Pu/l7wds1Nj8X3Ne492vB7bOc2ze0261687eC+yW5e4xst8nN3wru3/T3+drcPVb363LzWPUfOFb9B45V/4Fj1X/iWN1v1Xs/Sb3/ytWXV1K6+xHVrZuf7es5yxovjyuZ5075X19Iuev3U94Mp/XVE9R9iVszp1r94+enu41xrEPjl3c0/boxfuB1ffoT7+vbvzX11iWM7l/DMOfUftOYXu9XWJdi9vR44HcVti+GW0dGaSJPNb7zAlk6qJvo6xpteyNIlD74ufnq/hFGy1N9vkD+9Qjb1mjG79H89SujtPXdo+BbXYZqdw+wzdW+fXxZuC1x82rffmCo7LforS7DbY2bXYZf1Tg+rnGvy1Dt7kxne2+b3uwy/KLGrS5D9R+4h/LP76H263Kvy1C9/tHLcavL8H6NN8fczS5D3f1y6m6X4RcH+70DxOIP3jH3ugx1+8jmZpfhFwtyq8tQ4/NZ090bW25P8cXHs6bbq6Cn3wjpm9dR60HtU7vU7yr4TzwD/6LKzUfgunuT6TfuwnZl7j0C35e49Qj8ixJ3HoHvJ5Ru3k7WP3bS4hvHiP7IMaI/c4zo58eIfn6M6MfHyO4S1ddsweORyVMq6y/vmt0+/7l1i7wtUazRgfbItafnpSq/lLFPpwz2JW5NGdTdr4t+Znvwha3HUxh5vT12z6Iej8nXTH+UV/3j2xJ3v5JSdx+HuveZlG2Je5MG+xK3Zg32W+PmtMEXm/TevEEt/vm8wReHWV9fQXvw83XI7w6z3U1qcV6aGs9755e3kG8nLm+9a2C/HLJe0CEPfr0c2yKNdvbWNkW2G9afLne9PL8M79cNuzv73syzbYl7eSb2x+bZb7fHU8PD7/N9W0bb6kH1WjaxKNvJjMqESHu68K3l3SLxA0WeL+K/V+Rpbsb76yK6/aGBreH3mKjhqqj/8lHH3UekNJT7s+fG7d8V2b42dd3kSTz1gnyvSJS+ijy/1PabRVgSaT9QRI9Nke0vWxqP7J8vw38tsvvxU7N129rs6Tj51i6uxONjnjjePU5i5Vo/6pvbpK6DTarttsludWw15z6mnOp7G7Z2Xnzao71XxMSfWo3bT6zOZhffzpPYhNLugdXNF6nX7fMqPZioFXu9ILsX/nnzWcRbf3oaEL/U2P0ylWZO/c1rNn65JGi791MdnIiP54asX2t88XOSdTX+2Krt9dpsN+u6A1Z9+nXM7zfrtkh/mkTfHCTfOZ/b6/N5ix841nYPWHtfdxgPbpsrFNu2Z63rHHn+WJ7oLzto9+zp5qXwdpPc+5ZC3b2479Zb+/cb9Rv7d1umHZRpdXObsvsRFCn9mPh5GsRh31kUXgJY3OtmomI3K2+yWvBMfzPv8muRbZPoOmJreerY/1aRVlaiPFDfXJKnt7xV9TeXRNcnHpp2e3PD6vqUtVXdFNk+zDLjQineLeKrpfmB5c0i9Dc98N0ivl4S9cD2ZpFu60WP/alT/JsD2VdSP6Yen19s9r0y8fRZv2jvxsrj7oLZz+eU/F2Z+HxyKz6f3IrPJ7f226MxpRSmm72z/bhTieCHos+X97/kbPjHp8D9cvSnn4l2bS+LbL9rsibIuryePtmXWKvSxV5Owu73jLMq4fH2Ad/XjwIevJtl7/rxrNS2xL1Zqd3rAG/OSn1je+xO5l+Vccq0+naZ1injmznD3j/fO/3TvdN2P5z9mb3zvD2iv793jDL93XNOP7h87EXau2WUbyI+RuDra6W2e0p175yzLXHvnLMv8QPnnM77sEu3+nrvtM8fdG1LPK5NDn5s6aW+V4R5xwdLe7PI+kbuuLx575TRnd8s9O0pY9vD+EO3xbJmC0Sf2m5+f1t8t0iRN4vUdUKXWo83i7S6+lyblfeKPLbDCurjeZrtlyLbvbPecSDHb7LkuFtCCttD9HUHQBPdPiS+1Z3etk+qbnan71aGF4PIUXcr8+mHAtrulYuPef41HxW2W4z4fHNsizRZV/RNfnNP/Z0iRPQv94/fKcJbwpr/5lbrlyLbNwTeurbZl7h3baMf97t8sTXWM64W2jdbY/+S8NX9U0M3RXy3JOsyoByvppP3i9HWRbS139w0fmddWlvvKm/R3i7y9Nb0/naRNYNkv3lQ/Z2jPVaIPB7XbYrsfob1I0Xu9u+07Yeo7l1u7krcvNzclrh1ubnfGjf7d77YpPf6d1rbnrrv9e98caJZ36J9XBvVzYlmV6QLRXZnq6Z/9Op058FUic2S7JqzOW+OzjmKyC8vT9i+IdDXmyTVnz/i/J0ita4J7fr8nY7fF4mPT3nbEvdOefbx29L2W6PxYc/nxoHfbQ37/ALAPr8AsPrHbg2rfBfn+Qdmv9sa9vnWsM+3xsftrtuB/1iR1TekUd7LMeWXHVp/M5HwSxEvf3COPf7awaX78ebqPEVQF3uzSF/XmfV49wShfTWpPYpslsTtB24Rd59Oun9PtN07PNd2kc3q7KZIqfHU/OB+v4IVXk/YXq/J7kVnt7dpyA9sU982pqzjrEh9/gXyLzcS219m3dumu8UQfnWnWl4vhu+bohtPwY43i/TqzMxsiuxe63c7jHZFOufd8VV79m8t3yhix8zW/nxT9N0i6+Ul9vwSle8VWTeK3Z77D38tsnv81Ndlc3/+AVDz+yWeX2R7PHcf/lpkvzLByvR3N6trrLV5alj/XpFgB8fze8Z/t1n/6CK/eY2b7vbOrois9+SIPG+TbxXR9XE7ef6N9++K7ILgMWm95gJreR1JdnzaibWtcHcawI6PpwG2Je5NA+xL3JoG2G+Nm9MAX2zSe9MAVn5iGmB7jFWGTOuvTza2/40WTU+9vf4KnJXdNrn3wlLbvg/73gtAbPeivXsvANmWuPcCkPtr4ps12U6s3Hphqf3Ap6i+WI5bLyy13dv67v303rZTRDe/WLIvcvOLJdsid1+dul+Sm18s2Re5+c1Dk93vCW9/8/CrMje/nvJFmbufTvyqzM2PsOw38M2PsOyL3PwIy3YE3XtpxHYg33zV7r7GvVftmn78ERbTH/gIy3Y5bm7S/a699xGWL47Vux9h+aLM3Y+wfFXm5kdY9tdqt15R8sXl3p13lHxxh/R0v/f8+6xf7ktyTvazydZ9iVuTrVbjDy1xc752v0FXM/hj29bXN3q7qdZ7E2DW5PMJMNv+MOtHJhUr7zazzUSr7R5dSXu6uGmvP05tuycL3tetr/ffvAzwG0VCi6wL6GhvFvHVNxL9ueXjO0V6WT8V7aVvtsm21ere2N0vx/ol0+N5aX9zZYT5HumbIqZ/7Moogaj92CxH+2OXo8ZajnbslsM/Xg7zj1N1+xOoW6m63xr2lKq2GXS7VP2RIrdni1w/ni3albg5W7QtcW+2aLs17s4W7Tfpzdki/4EHAvuzjNlqkvTnH0T/eoRsP+R2c6Jn//jq3kTP7unVzYmekI8nem6vyWaiZ7tFb070xOeflP5iOe5N9OyuD2/e2+1+NXV7omdb5O5Ez67I7Yme7ZLcnejZFrk70dPrj0z09B/5TO4XZW5P9PQf+drufgPfnejZFrk70RPx8axEHJ9P9MTx8USP756T3AsD374n4uZEz3Y57m7S/gMTPf1Hvrb7RZnbEz39R762u7/MujfRs79SuzXRs7uVvzel4OUHfsri5Qd+yrLvQbV1Itbnjfq9HtSy2iWqPr92+XuNrOuHmPU37+b8VhGX9ZGCOF53PPruSdaPFLl7d+Pbj1fdurvZlrh3d7MvcevuZr81bt7dfLFJ793duPzApzC+aP/mnQ79N41XvxwhEn9wETH66qPLm0X6c+vHu0Vi3Z7oIZvV0R+Ya3X9gbnW7eooHyLXo222ye61fKXx+uUH11efM/+qyGqaeHCXl0V2k09HPL1cbJNpurtetPUNh2r9dfeGa//41s93r7G7ebW3e/P53dscr/ITtzlflLl7f/LVgeKMnh6vZim9/sTRVj9+bcb+MLk39+O7h1A3535894rBe3M/2xL35n7ur8nruZ8vBt6tuR/fXfvenPvZj7ybky77IjcnXXz/KYd7ky77Jbk56fJVkNyc6PgqSG7OUOxX6eYMxb7IzRmKbdDfu53eHvY3Zyj2NW7OUGyfZN07Z5n9wAzFbjlubtL9rr03Q/HFsXp3huKLMndnKL4qc3OGYn+rdGuG4ou7rVszFPXjhpgvfgZ9Zym+eH8JOd9+88L+77wExXgdi3V9s0jEek93P9p7RX5zQyCvV6dtm1Nvvo5lW+TeZ2H2JW59FuaLEnc+C7PfL87Ltf3t1+T8pkh9t4hQRF/vF4+PewT2JW71CHj0P7TEzfeq7TcoP2vxp19QfXOvrCvWx0PkdxPkeUneLhKNaZb2dhHufHdF9q9Du5ft+zeq3cr2/esmV40u9uYbK9fPKLv4yy/LbF9HemtbfPFG01vbYv/m2/XTuOb29jt418tmW7TjzSJ8aOeB776DN5wl6e++lzjWzn3Ue/ttwE83m/X9bcIvjt59f3VtvGSjdfmJIm++v7oyt1mf5za/V4SXEFbfHWz7ItzQhL8uErtnWN7XpUwcx+sfc8buR1TVVvfmY4nbyyv3r5bE15KU3ZLs3nNl67Kq2dOEk95fjjjWax3iMN8sx37Sam7Wxyn0dS967L6VxUvOn+cApH3nGOnrpqru3q0au67n28fI7uWBt4+RL5bk3jEi7eNjZLcct4+R3Y8v7h8j8YceI+1YT1vbsflKQejuq0MS/+9XEMYvNXY3NC7rnWy/+eZCfGdlVq9xK4dsVkZ/YGXqH7wyfKLngW+e9R6zo+v9clrtzSLCkoj/RJE43l2dNcHatPR3l4QXM+rx/obtbNj2bpFKkbe/zCiVR2nt+UL8t72+UT/+CuG+xK073/j8x1PbEjdvnrcbVHnzr/qx2aB9e1syA+D1Ozf3i1G5/X6cvl8vxu7LWHfDbPcLrLthtv/ipvCYRtrLlfmiyNMX8uz1Fqmy/czezW9/7orcmwPcl7g1B/hFiVtzgOXze/jy8T38von1zqe9YvfGP15sEf31453Y/uaqrNf16eN59cvHO7vnZb5mumscr7+Bvv36cPCR7OcSv7yQZlfC+BiCaX+rRKyRVp5fTv+dEt15T/dR3ikhB6FxVH1rKXjT93hX/3slOh8QKW+tyPhcznq61d9bCr7FV+rz5zS/UaI+tZY833L8UiJfOPvyEA8eYD4fGaXfX5OVOUX9vY1R+UDb83XCu9vzzRJx8NEReW7e/eV6JT7+JPZ2nDU+NvKbn3p9o0Rfy3A8f4HsGyVC+UrB8+Xw77bF9l0699oPI3YP+n/gEwPCMy2x2KzM7u0Kj2uldZybt1dT7F8VWU8sH9z7yyK7y6bo66q6lNdHSPSP3w68PTd2zo3Pr5CXb5RY32B6lNjsl/4Dzf/Rf6D5/8ud608799VlZHT7o48QXqovzxcdv9+w+y+00umzm9HaFxG+aWqvi+RHUT6dKOy7r1vdmyjcLsfdicK++0nT3YnCvvtx1b2Jwm0AlMKZ6sHPHxs6jl+WZPfqirkgTx8lrno7mYuuW/PyfPP2y5rsS1SOsPpeCbpi5OkbFL+W6GU7Z8rUz/Fmib5+n/J0YHxnRZ5fofn0St/vlLA1wfDbDqFvlPDCJdB2W7Q/uEgxzg3PL579XhF3bjm6vFmkH3yJTt7bM2J89cnfGyu65uMeR0p5bylo/nqebP1GicdM/jrDPX8P/TslCh9KKzXeK8Evykq8txS6BuwD31uKJly9VH+vhNHMHv29FeHoVHlvRZTv32l7a0V89fN4tXcK9MqbaTaDfftg8+Pb4X7wzqH31mIdl93bh5vhvQIqXA3Lc9d71/sl1m9Y9fnVS++WeJrM/FaJNTRUnrbFd0o8f+biqWvmOyXqmtbVdry3LdT4ys7zHMu7Jd7bqU9f63jOu29tC9p+q763U/lwvT5/uP5bJdYXPx/Pht7cqcYvAO2tpRjfDOXCor5V4unTpfH8ev5fSvTdM6UiRPfzx67L/W9axrofGR8kf29NVkdJef6q87dKGPN37w2SEp1fMx/lzRXhVyWHfFyivLsUTom3RvvjOpVtUf3jpdjs1O1znMfpjI9hPMdn++0Tqb57ntTb+hJ0b/31z1H6bkk+ntt93KsyG9JefhWg735wdOu7AvsNquus+HhmWV5u0G2RxyQBl+APfrNMb+uOtbffPDz4ThFZz5UeWN8tsrpI+nMryveK8DaEx1a2N4/VWAOvx9M88++P1btFnr6I880i650KD7T3ipSjtJXLR/HXZb7YtMGm7cd7m/ZxpD59AuZweXeVDubOHmU2+2j7fa3bW2Zb5l7zwr7EreaFL0q8bF7474//8+d//es//uVv//avf/73v/7b3//v4+/91yj1j7/++X/87S/X//1f//H3f336t//+//8/89/8j3/89W9/++v//pf/849/+9e//M//+MdfRqXx7/50XP/z3/yR6v/kj3mz//5Pfyrj//dHyD0mju3x//Xx/x/3lk3Gvxv/sYyO7cf/jH9Z8r8ej9gf/xP//b/G4v5/"
|
|
2133
|
+
"debug_symbols": "tf3druw4kp8P30sfz4EYQUYE51YMY9Aet40GGj1Ge+YFXgzm3v/JkMgna5eTSytz1Unvp6tqx6Mv/iRRkdJ//ul//uV//Mf//pe//v1//dv//dM//7f//NP/+Mdf//a3v/7vf/nbv/3rn//9r//298c//c8/HeN/irQ//bP+0+NP+9M/t/GnX3/G9Wc//9Tj+rNcf8r1p15/1uvPdv151dOrnl719KpXr3r1qlevevWqV6969apXr3r1qlevevWq16567arXrnrtqteueu2q16567arXrnrtqmdXPbvq2VXPrnp21bOrnl317KpnVz276vlVz696ftXzq55f9fyq51c9v+r5Vc+venHVi6teXPXiqhdXvbjqxVUvHvV8/BnXn/38sx/Xn4965RggE3TCo2QZx0p/1Cz5H9sEnxAT+glyHBNG5RggE3RCndAm2ASfEBP6BeWYMCuXWbmMyn1AndAmjMptgE+ICY/KMkCOCWWCTNAJdUKbYBN8QkyYlXVW1ll5DCQZ22eMpBPqhDbBJviEmNAvGAPqhDJhVq6zcp2V66xcZ+U6K9dZuc7KbVZus3Kbldus3GblNiu3WbnNymOIydgFY4wljEF2QpkgE3RCndAm2ASfMCvbrOyzss/KPiv7rOyzss/KPiv7rOyzss/KMSvHrByzcszKMSvHrByzcszKMSvHrNxn5T4r91m5z8p9Vu6zcp+V+6zcZ+V+VdbjmFAmyASdUCe0CTbBJ8SEWbnMymVWLrNymZXLrFxm5TIrjzGoMiAm9AvGGDyhTJAJOqFOaBNswqwss7LMymMMahtQJsiEa3Sr1gltgk3wCTHhGt1ajwllgkyYleusXGflMQbVBviEmNAvGGPwhDJBJuiEOqFNmJXbrNxm5TEGdeyCMQZPKBOuPNQxmuoj+XWMnTo23Rg7J9QJbYJN8AkxoV8wxs4JZcKsHLNyzMoxK8esHLNyzMoxK/dZuc/KfVbus3Kflfus3GflPiv3WblfletxTCgTZIJOqBPaBJvgE2LCrFxm5TIrl1m5zMplVi6zcpmVy6xcZuUyK8usLLOyzMoyK8usPMZObQNsgk+ICf2CMXZOGJVtgEzQCXVCm2ATfEJM6BeMsXPCrFxn5TF2qg+oE0blGGATfEJM6BeMsXNCmTAulsoAnVAnjOslHWATfMK4BBvLk9eIA/IiMaFMkAk6YVQey5xXigk2wSfEhH5BXi4mlAkyQSfMyj4r50XjWMG8akyIC/I6sQ4YdfqAx9+yscpjfFn+K58QE/oFY3ydUCY86tg4Esb4OqFOaBNsgk+ICf2ENsbXCWWCTNAJo7INaBNG5T7AJ8SEfsEYXyeUCY/KfgzQCXVCm2ATfEJM6BeM8XVCmTAry6w8xpeXAW3CqCwDfEJM6BeM8eVjBcf4OkEm6IQ6oU0YlX2AT4gJ/YIxvk4oE2SCTqgT2oRZuc7KY3x5DOgXjPF1wqhcB8gEnRATxt8a+2KMlBirPEZK6IA6oU2wCT4hJvQLxkg5oUyQCbOyz8o+K48BEmN5xgA5oV8wTlInlAmj4FjBcZI6oU5oE2yCTxiVx5qOQZQwBtEJZYJM0Al1QptgE3zCrNyvyjYGUT8GlAky4VG5lwF1QpvwqNx1wKNyrwMelbsN6BeMQXRCmSATdMKoMxZjDJkTYkK/YAyZE8oFmneaMkgW5b3mWKRxSJejDfJFsahPGof1RWVSy382lqyVRbJIF9VFbZEt8kWxqE+y5bDlsOWw5bDlsOXIC6zjMZjM8+/GoPF3x222jaP2orpo/N0y9tmI+It8USzqk8ZRfFHWG1s38u+OrRv5d8eyRCzqk3r+3bElczbgJFmki+qitigdY91yTuCkdIy1zFmBQZ7TAidlvT5o/F05Bvmi/Lt10Pi78lgjzxv/k8oiWTTqiQyqi9qidOggXxSLlkOWQ5ZDlkN0Ub22s0tbZIt8USya+8jzuB97xrVde8bzuB97wdUXxaJ+bWevx6KySBbporqoXfvDqy3yuRdqLFr7KMdM7pkcH7k/2tpHOT5yz+T4yK3R1vaztf1sbb8cH7kXbO0jW/sox0fuBVv7yNY+suWw5fDl8OXwtY/yKB43WJ5H8UmyKJdgbIM8ik9qi2yRL4pF/aLIo/iksmg4tAzSRXVRW2SLfNFwjJvUyKM9KY/2k8oiWaSL6qK2yBb5ouUoy5FHu+qgskgWpaMOqovaonS0Qb4oFvVJmg4blPXGttK6qC2yRVmvDxr1xq1o5AioY1vlCDipLJJFwzHubyJHwEltkS0ajjrWI4/7cb8Ref4Y9xmR5486liDHQht/I88fJ9VFbZEt8kWxaDjGzUTk+DhpOMble+T4OEkX1UVtkS1KRwyKRX1Sjo+TyiJZpIvqorbIFi2HL0eeZ8ZdROR55qSyaDhs7K0895xUFw2Hja2R56NxMxF5PjopFvVJOZJPKovSMY6rHMkn1UVtkS3yRbGoX9RzJJ9UFskiXVQXtUW2yBfFonQ89lbPkXxSWZT7ow7SRXVRW2SLfFE6YlCflCP5pLJIFumiuiiXuQ+KRX1SjtqTyiJZpIvqorbIFi2HLocuR12Ouhx1Oepy1OWoy1GXoy5HXY66HG052nK05WjL0ZajLUdbjrYcbTnacthy2HLYcthy2HLYcthy2HLYcthy+HL4cvhy+HL4cvhy+HL4cvhy+HLEcsRyxHLEcsRyxHLEcsRyxHLEcvTl6MvRl6MvR1+Ovhx9Ofpy9OXo01GO4wALKKCCFWyggQ4GiK1gK9gKtoKtYCvYCraCrWAr2ASbYBNsgk2wCTbBJtgEm2BTbIpNsSk2xabYFJtiU2yKrWLLRBjTJw8UUMF2BdkDDXQwwL6wHWABBVSwgtgatoatYWvYDJthM2yGzbAZNsNm2AybYXNsjs2xOTbH5tgcm2NzbI4tsAW2wBbYAltgC2yBLbAFto6tY+vYOraOrWPr2Dq2jq0vWzkOsIACKljBBhroYIDYCraCrWAr2Aq2gq1gK9gKtoJNsAk2wSbYBJtgE2yCTbAJNsWm2BSbYlNsik2xKTbFptgqtoqtYqvYKjaypJAlhSwpZEkhSwpZku0nZUx0luxAmajgsI1J25KtKBMNzFaKlhhgX5hZcmEBBUxbT6xgAw10MMC+MLPkwgIKiM2xOTbH5tgcm2MLbIEtsAW2wBbYAltgyyzx3EOZJSdmllxYQAEVzBaVkthAA7NRRRID7BPPRpgLs/El266OVeFqdTkxwKwwduzV8HJiAbPpxRIVrGAD0+aJDgbYF2YSjJnski0uZUw0l2xymehgbt/zr/WFOeYvLKCAClYwW3WORAMdDLAvzDF/YQEFVLCC2Cq2iq1iq9gathzzPXdWju6e+zhH94UGOhhgX5ij+8ICCqggNsNm2AybYTNsjs2xOTbH5tgcm2NzbI7NsQW2wBbYAltgC2yBLbAFtsDWsXVsHVvH1rF1bB1bx9ax9WXLFpuJBRRQwQo20EAHA8RWsBVsBVvBVrAVbAVbwVawFWyCTbAJNsEm2ASbYBNsgk2wKTbFptgUm2JTbIpNsSk2xVaxVWwVW8VWsVVsFVvFVrFVbA1bw9awNWxkiZIlSpYoWaJkiZIlSpYoWaJnlmiighVsoIEOBtgXnllyYgHTZokKVjBtNdFABwPsC88sObGAAipYQWyB7cySSAywL8zWvPFssWSD0UQBFaxgAw10MMA+MVuOJhZQwLRZos2FrGc+jFNoPfPhxFEh+3ezvWiighVsoIFjeccDq5KtRhP7wmyXvbCAAipYwQYaiE2wZQPteFRWsgVpYgHTpokKVjBtNdFABwNMW27qbOnLjuZsQ5KSmzqb+C5soIGjruTmy4ZaybXIllrJxcmmWklbttVeKKCCwya5ONlee6GBDqYtlze7ayUXJ/trR8dlyQ4l0Vyc7LHVVGSX7YUNNNDBAPvC7LjVXIbsub1Q1+F5jvkTG8jx6w4GuEZhPcf8iQUUEFtgC2yBjTGf7U6iuc2yGffEHPMX5grlf5tj/kIFK9hAAx0MsE/MNqiJBRRw2MajrZLtUBMbaKCDAQ7beOhVsjVqYgEFVLCCDTTQwQCxCbbMh6qJAiqYtpaYNks0MG2eGGDackNlPlxYQAEVrGADDXQwQGwVW8VWsVVsFVvFVrFVbBVbxdawNWwNW8PWsDVsDVvD1rA1bIbNsBk2w2bYDJthM2yGzbA5Nsfm2BybY8vm/fGI9oEGOhjgOsdml9fEAgqoYAUbaOA6o2eP1+PmMHGdpbOrS1qOwsyHCw10MMA+MTu8JmYruSSu7WvHWmM7AuwLzzF/Yrana6KAClZw7U0r2IqDAa69aXKABZS1DOeYP7GCDbS1DOcPak4MEBtj3hjzxpg3xrwx5o0xb7qOHVO2pLIllS15tvnnMlS2ZGVLMuaNMW+MeWPMG2PeGPPGmLfGfjvH/IlsycaWbOy3HPMXsiUZ88aYN8a8MeaNMW+MeWPMG2PejP1mbEljSxpb0tiSOebHs+ySrXATc0u2RAUr2MBct1yGHPMXBtgX5pi/sIACKpi2XMgc8xfm9cOJfY3CHPOjt6Fkw9xEARVkD3X2UGcPdY71zrF+JsFAPw5w7SE/BFSwgg000MEA1/GQfXUy2sRLNtZNrOCoO9o5SvbWPeanEh0MsC/MfLiwgAIqWMG8akvxOXtwYl94zh6cWEABFaxgAw3EptgUW8VWsVVsFVvFVrFVbBVbxVaxNWzMOZ5dehdia9gatoatYWvYGjbDZtgMm2EzbIbNsBk2w2bYHJtjc2yOzbE5Nsfm2BybYwtsgS2wBbbAFtgCW2ALbIGtY+vYOraOrWPr2Dq2jq1j68t29iReWEABFaxgAw10MEBsBVvBVrAVbAVbwVawFWwFW8Em2ASbYBNsgk2wCTayJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmypJMlnSzpZEknSzpZ0smSTpZ0sqSTJZ0s6WRJJ0s6WdLJkk6WdLKkkyWdLOlkSSdLOlnSyZJOlnSypJMlnSzpZEknSzpZ0smSTpZkI6WMJtaSnZQTFaxgAw10MMC+MO9QLsRWsVVsFVvFVrFVbBVbxdawZZbkQ+PsrpTRAVuyvXJiBRtooIMBpu1858QBFjBtKc47lAsrmDZLNNDBAPMp+LjMP/stLyyggApWsIEGOhgLMzWyGyC7LMXOf6pgBRtooIMBjm2WTXLZbTmxgMM2fnZYsuFyYgWHzfPdH3mHcqGDAeY2K/nGjwMsoIAKVrCBBjoYC3MGwzVRQAVzLWpiAw3MtWiJAeY2s3xLyQEWMG35PpO8Q7mwgg000MEA0xb5KpQDLKCAClZw/jBHzlbK8TBEzlZKScyrigsLKKCCFWzg/DWOnF2VFwbYF+ZVRTmxgAIqWMEGGuhgLDT2vLHnjT1v7Hljzxt73tjzxp439ryz55097+x5Z887e97Z886ed/a8s+edPR/s+WDPB3s+2PPBng/2fLDngz3f2fOdPd/Z850939nznT3f2fOdPd/Z833t+bNTspxYQAEVrGADDXRw7flyjvmeKKCCFRz7Io5EAx0McKzF+BGmnD2RFxZQQAUr2EADfWGO7vFbYsnux4kCKljBBuZatEQHA+wL8+x/YQEFVLCCDcRWseXZfzSSSXY/Xphn/wvT5okCKpi23EN59u+5A/LsP5oTJLsfJwbYF56vDDqxgMPW8yg5Xxx0YgUbaKCDAfaF52uETiwgNsfm2BybY3Nsju18sVBu3/PVQicWMG25zc4XDJ1YwQYa6ODDpkdu6pEPF458mFhAARWsYAMNdBBbX7bsftSjJBZQwLRpYtossYEGOhhgX1gOsIACps0TK5i2SDTQwQCHreSi56uKLiyggApWsIEGDluGeXZVTkxbbp18fdGFBRRQwVTURAMdDLAvrKnITVILKKCCFWxg2nJD5VuNLgywL8x3G11YQAEVrGADsTVs+a6jfOdbNlhemO87unDY8hSaDZYTFRy2PBdmg6XmqS4bLFVyQ40AmRhgXzgCZGIB80SV1BbZIl8Ui/qkHMHXS+UOsID5PCNJF9VFbZEt8j/Nt9NlRUvMzeCJ9Xw9lmS74kW2aGyDmhSL+qQciSeVRbIoJZFYwdzWPdFAX5gDTo/EUWG0s8j5NrALRwVNGgXGb5zlfCXYhQH2hTmyLixzk6gs0kV1UVtki/raiDlkrpf65YLmMuWQuTAXNLdFDpkLc0mz2HwVmKx3gcl6GZist4HJeh2YrPeByfn6rwtzLXNB5gu/ZL3xS7In8KLxt3Mv5MF/Ultki3xRLEpJYh73Fw7LWXycOCcqOIrW3Juex03uwjjAUSGXPWRtmFCwgg3Msrk3w8EA+9rgOZIuLCC2jq1j69g6to6tY+vLlv19Ewu4bNnfN7GCDTTQr0M93zB2Hr7ZCnhhOcACysI8T9VchBxMF1Ywry+SbJEvikV9Ul7unlQWySJdVBcthy6HLocuhy5HnqNGS5DkG8MmCpgrE4kVHBux5pbLAXehgwH2hTnkLizgsI2mDMl2vYkVTFsubw7GCx0ctpb7IYfoiTlEL8xgT5JFuqguaotsUVbMYyNHXsvdmSOv5fJ7BRto4FjSdr4fNMC+MEfphQXMC62klOWWz1F6YQMNdDDAvjBH6YUFFBBbx9axdWwdW45Sy02WozQxO/ImFlBABYdtPKGW7MibaKCDAfaFOUwvLKCACmIr2PJUOWZhJTvyJgaYtrFfsyNvYgHTZokKVrCBaTtfBpu2cThn752O+UDJ3ruJAio46npuvrxMzdmb7L3TnJHJ3jvNuZfsvZvYF2YEXJi28020AipYwbTl8ua4z1mAbLjTnFzMhjuNXJwc93lzmw13EwVUsIINNDBt51tyY2EO9jFlLtllN1FABVORi36elE800MGYQ76dQZCYJ+YLCyigghVs4KibN+7ZT3dhBsGFeVmRWzKD4EIFR928cc9+uoljLfKeOPvpJgaYtlyGTIILCyigghVsYNryOMskuDDAPjF77yYWME81JTHPzJa4rgPscDDAvvC8Nj6xgALmdUBNrGADDczrAE8McF332XnRfGIBBVSwgg3MW5xczbxq7ok55i8soIAKVrCBuS9SkWP+wgD7whzzcmIBBVSwgg000MFYmAN9dIZLdtlNVDDXoic20EAfL849EgPsA/OAGWN+YgFlYO75MeYnVrCBBjoYYNrGwMkuu4kFFFDBCuaezyVz9ryz54M9H+z5YM8Hez7Y88GeD/Z8sOeDPR/s+c6e7+z5zp7v7PnOnu/s+c6e7+z5vvZ8drhFntGzw21iG1gTDezrPxgja2IBZWG+EXf0B0s2mk00MHdhLkO+GffCvjDfjnv0xAKOXZjTRtloNrGCw5ZTQdloNtHBAPvCfGPuhQUUUMEKYmvYGraGrWEzbHnY5xxUNo/VfC1/No/V8f47yeaxiX1hHuAX5vJGooAKVrCBwya5zc73V58YYF94vsX6xAIKqGAFG4gtsAW2wHa+2fpILKCAClawgWnLA/F8z/WJMTHO11efmP+BJgaYm3occtnvNbGAuTgtUcEK5uJ4ooFpi8QAhy1vH7Lfq2YEZb9Xzfua7PeaOGx55s1+r4kNNNDBAPvCfLn1hWnLhcwXXOdURvZ71Zy0yH6vmmf/7OyqecLOzq6JfWEO3gsLKKCCWSy3eo7NC/vCHJsXFlBABbNY7oAcWXljnA1WExtoYP61XPkcbxf2hTneLiyggApWsIEGYnNsji2wBbbAFtgCW2ALbIEtsAW2jq1j69g6to6tY+vYOraOrS9bNlhNLKCAClawgQY6GCC2gq1gK9gKtoKtYCvYCraCrWATbIJNsAk2wSbYBJtgE2yCTbEpNsWm2BSbYlNsik2xKbaKrWKr2Cq2iq1iq9gqtoqtYmvYGraGrWFr2Bq2hq1ha9gaNsNm2AybYTNshs2wkSWdLOlkSSdLOlnSyZJOlnSypJMlnSzpZEknSzpZ0smSTpZ0sqSTJZ0s6WRJJ0s6WdLJkk6WdLKkkyWdLOlkSSdLOlnSyZJOlnSypK8s0WNliR4rS/RYWaLHyhI9VpbosbJEj5Uleqws0WNliR4HtoKtYCvYCraCrWAr2Aq2MyoiUUAFK9hAAx0MsC88o+JEbIpNsSk2xabYFJtiU2wVW8VWsVVsFVvFVrFVbBVbxdawNWwNW8PWsDVsDVvD1rA1bIbNsBk2w2bYDJthM2yGzbA5Nsfm2BybY3Nsjs2xOTbHFtgCW2ALbIEtsAW2wBbYAlvH1rF1bB1bx9axdWwdW8fWl60cB1hAARWsYAMNdDBAbAVbwVawFWwFW8FWsBVsBVvBJtjIkkKWFLKkkCWFLClkSSFLCllSyJJClhSypJAlhSwpZEkhSwpZUsiSQpYUsqSQJYUsKWRJIUsKWVLIkuy1quPhjmavVR3PqTR7rer4XI1mV1Udj3E0W57q9Z0uARUcijHFodnyNNFABwPsC3OQXVhAARXEFtgCWw6RMTuj2bA0sU3MJqQ6nnVoNiFNFDAreOKoMJ5UaDYhTTTQwQD7wjzsLyyggApiK9gKtoKtYCvYBJtgE2yCTbAJNsEm2ASbYFNsii0P+9FbrtmENLGCDTTQwQD7wjzsLywgtoqtYssT4HjCpNk3VMcTJs2+oeq5u3MwXOhggH1hnuouLKCAClYQm2EzbIbNsDk2x+bYHJtjc2yOzbE5NscW2AJbYAtsgS2wBbbAFtgCW8fWsXVsOY7Hcz3NxqWJDTTQwQD7xGxpmlhAARWsYAPT5okOxsJzdEdiVuiJo8J4tqjZxTTRwQD7whzHFxZQQAUriE2wCbYcx+P5pmbL04U5ji8soIAKVrCBBjqITbFVbBVbjuPxuFWzSWpiBRtooC88v/BWE7NCS8wKuVtyzF9ooIMB9oU55i8soIAKYjNshi3HfOQBk2P+wr4wx/yFBRRw1O25N3Mc99x8OY5PzHF84agwHqzq+Y3FCxWsYAMNdDDAvjDH8YXYOrYcxz13S47jCxuYthxkOY4vTFuucY7j8dBNz+8wXviwtfFMTbNpaqKCdaAkNtAGaqIPrIkxsCX2gUOcXVMTCyigghVsoIEOBohNsAk2wSbYBFt+o/vITZKf5R4PhTQbrdp4/KPZaTWxgmMhS26S/Er3hQ4G2BfmF7pLbr78KHfJzZff5c6vhdb8NPeFAfaF+Y3uCwsooIIVTJslGuhg2nKT5KcZT8yPM15YwLTlNstPNF5YwXVpmZ1UEx3MC9nckjl4T8zBe2EBBVQwbbmz8tONFxroYIB9YX79+8ICCqggtsAW2AJbYAtsHVvH1rF1bB1bx9axdWwdW1+27LuaWEABFaxgAw10MEBsBVvBVrAVbAVbwVawFWwFW8Em2ASbYBNsgk2wCTbBJtgEm2JTbIpNsSk2xabYFJtiU2wVW8VWsVVsFVvFVrFVbBVbxdawNWwNW8PWsDVsDVvD1rA1bIbNsBk2w2bYDJthy8++jkezmj1aE/vC/PjrhRXMv1YSY2Ge0fNMlm1VExuY/60k9oU5pC8soIAKVrCBBjqIrS9bNlBNLKCAClawgQY6GCC2gq1gK9gKtoKtYCvYCraCrWATbIJNsAk2wSbYBJtgE2yCTbEpNsWm2BSbYlNsik2xKbaKrWKr2Cq2iq1iq9gqtoqtYmvYGraGrWFr2Bq2hq1ha9gaNsNm2AybYTNshs2wGTbDZtgcm2NzbI7NsTk2x+bYHJtjC2yBLbAFtsAW2AJbXh7kh+rtzJIT+8IzQDxRQAVT0RMbaOBQjI4PzW6siX1ivvNsYgEFVLCCDTTQwQCxFWwFW8FWsBVsBVvBVrAVbAWbYBNsgk2wCTbBJtgEm2ATbIpNsSk2xabYFJtiU2yKTbFVbBVbxVaxVWwVW8VWsVVsFVvD1rA1bA1bw9awNWwNW8PWsBk2w2bYDJthM2yGzbAZNsPm2BybY3Nsjs2xOTbH5tgcW2ALbIEtsAW2wBbYAltgC2wdW8fWsXVsHVvH1rGRJU6WOFkSZEmQJUGWBFkSZEmQJUGWBFkSZEmQJUGWBFkSZEmQJUGWBFkSZEmQJUGWBFkSZEmQJUGWBFkSZEmQJUGWBFkSZEmQJUGWBFkSZEmQJUGWBFkSZEmQJUGWBFkSZEmQJUGWBFkSZEmQJUGWBFkSZEmQJUGWBFkSZEmQJUGWBFkSZEmQJUGWBFkSZEmQJUGWBFkSZEmQJUGWBFkSZEmQJUGWBFkSZEmQJUGWBFkSZEmQJUGWBFkSZEmQJUGWBFkSZEmcWVISDXQwbZrYF55ZcmLaWqKAaYvECjbQQAfT1hP7xGzfa+Onq5rte200hGq2700cttHZqdm+N7GBwzZ+Z6nZvjcxwGEbfZma7XsTCyigghVsoIEOBohNsAk2wSbYBFtGRbbyZB9ey8fO2YfXam6zDIULK9jAsZD5XDr78CYG2BdmKFw4bC03aoZCy82XoXBhBRuYtlzeDIWWy5ChYGfdvjBDYfzaTrMPr+VD4+zDmzhs+fw4+/CaZbEMhRNzdOfD0myoa/l0MhvqJlZwLE4+s8wmuea5vDliLxRQwQo20EAHA+wLA1tgC2yBLbAFtsAW2AJbYOvYOraOrWPr2Dq2jq1j69j6tNVskptYQAEVrGADDXQwQGwFW8FWsBVsBVvBVrAVbAVbwSbYBJtgyxE7nrHW7KKb2EADHQywL8yz/3jqWbOLbqKA9Tp+a7bOTTTQwQD7whzdFxZQQAWxVWwVW8VWsVVsDVvD1rA1bA1bw9awNWwNW8Nm2AybYTNshs2wGTbDZtgMm2NzbI7NsTk2x+bYHJtjc2yBLbAFtsAW2AJbYAtsgS2wdWwdW8fWsXVsGSDj2XjN1rmJDg5bnP9tn5itcxOHbTxrrtk6N3HYxsPomq1zExuYNkt0MMC+MAPkwgIKqGAFG4itYCvYCjbBJtgEm2ATbIJNsAk2wSbYFJtiU2yKTbEpNsWm2BSbYqvYKraKrWKr2Cq2iq1iq9gqtoatYWvYGraGrWFr2Bq2hq1hM2yGzbAZNsNm2AybYTNshs2xOTbH5tgcm2NzbI7NsTm2wBbYAltgC2yBLbAFtsAW2Dq2jq1j69g6to6tY+vYOra+bHIcYAEFVLCCDTTQwQCxkSVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKluiZJZ7oYIBpe8xS1XpmyYkFHLbRflrPXssLK9jAYRudqPXstRwNofXstRytn/XstTwxs+TCAgqoYAUbaKCD2DJLxmt76tlreWEBBVSwgg000MEAsSk2xZZZMl5qVM8WzQsr2EADHQywL8wsubCA2Cq2zJLRcFvPds4LDXQwwL4ws+TCAgqoILbMktHeW892zgt9YabGhVkhj76RD3bkwTXyYaKBDsbAPPpGPlw48mFiAQVUsIINNNBBbI4tsAW2wBbYIm05RKKBacvjNxwMMG25UfsBFlBABSvYQAMdDHDZskVzYgEFVLCCWWzs2Oy1tNG6XLPX0kbrcs1ey4kVbOBYyNHFXLPXcmKAfeEY6BOHreQyjIE+UcEKNtDAtOWiS4B9oR5gAQVUsIINNBCbYtO05TarB1jAYRvNgjV7LScO23iPS81ey4nDNt5GXLPXcuKwja6emr2WF46BPrGAAipYwQYa6CC2hs2wGTbDZtgMm2EzbIbNsBk2x+bYHJtjc2yOzbE5Nsfm2AJbYAtsgS2wBbbAFtgCW2DLUJA8fjMULhRQwbTlYZShcKGBDgbYJ2aT58QCCqhgBRtooIMBYivYCraCLVNjtJfVbNy08VS5ZuPmhZkP41FyzcbNiQIqWMEGGph1R2xnM+a5A7IZ89y+2Yw5sYEGjjUeD65rNmNO7AtzzF+4jh2r2KqCFWyggQ7GWoZzzCe2AyygrGXIMX9hBbEx5o0xb4x5Y8wbY94Y82brSDVjSxpb0tiSOebPZTC2pLElGfPGmDfGvDHmjTFvjHljzBtj3s4xn8vgbElnSwZbMtiSOebHmxtrNmNOzC2ZdXPMX2igg7lueaznmD8xx/yFBRRQwQo2MG05cHLMX7gO8GzGtNH0ULMZc6KACq5DI5sxJxroYIDrsM9mzIlrZ3kRUMEKNtBABwNch0a2Xdpo3ajZdjmxgqNuze2Qw7/mkuXlwYUB9oV5eXBhAQVUsIJZtyYG2BdmKFyYdXMtMhQuVLCCeUkViQY6GGBfmKFwYQEFXNf2zrW9c22frZRWT+wLc/iP5o+arZQTBRxr0fKIyuF/YQPHWrTcQzn8LwywL8zhf2EBBVSwgg3Edj71zGU4n3qeWEABFaxgAw10MEBsHVvH1rF1bB1bx9axdWwdW1+2s2nywgIKqGAFG2iggwFiK9gKtoKtYCvYCraCrWAr2Ao2wSbYBJtgE2yCTbAJNsEm2BSbYlNsik2xKTbFptgUm2Kr2Cq2iq1iq9gqtoqtYqvYKraGrWFr2Bq2Nhud6tk0eaGBOY5rYoB9YabG6Nyq2TQ5UcAcx5FYwQYa6GCAfeGZGicWUEBsjs2xOTbH5tgcW2ALbIEtsAW2wBbYAltgC2wdW8fWsXVsHVvH1rF1bB1bX7ZsmpxYQAEVrGADDXQwQGwFW8FWsBVsBVvBVrAVbAVbwSbYBJtgE2yCTbAJNsEm2ASbYlNsik2xKTbFptgUm2JTbBVbxVaxVWwVW8VWsVVsFVvF1rA1bA1bw9awNWwNW8PWsDVshs2wGTaypJMlnSzpZEknSzpZ0smSTpZ0sqSTJZ0s6WRJJ0s6WdLJkk6WdLKkkyWdLOlkSSdLOlnSyZJOlnSypJMlnSzpZEknSzpZ0smSTpZ0sqSTJZ0s6WRJX1nSjpUl7VhZ0o6VJe1YWdKOlSXtWFnSjpUl7VhZ0o6VJe04sBVsBVvBVrAVbAVbwVawFWwFm2ATbIJNsAk2wSbYBJtgE2yKTbEpNsWm2BSbYlNsik2xVWwVW8VWsVVsFVvFVrFVbBVbw9awNWwNW8PWsDVsDVvD1rAZNsNm2AybYTNshs2wGTbD5tgcm2NzbI7NsTk2x+bYHFtgC2yBLbAFtsAW2AJbYAtsHVvH1rF1bB1bx9axdWwdG1lSyJJClhSypJAlhSwpZEkhSwpZUsiSQpYUsqSQJYUsKWRJIUsKWVLIkkKWFLKkkCWFLClkSSFLCllSyJJClhSypJAlhSwpZEkhSwpZUsiSQpYUsqSQJYUsKWRJIUsKWVLIkkKWFLKkkCWFLClkSSFLCllSyJJClhSypJAlhSwpZEkhSwpZUsiSQpYUsqSQJYUsKWRJIUsKWVLIkkKWFLKkkCWFLClkSSFLCllSyJJClhSypJAlhSwpZEkhS8qZJX3gmSUnFnDYxs9tWnZ2Thy28f6dlp2dEw0ctvGWx5adnROHbfxgp2Vn58QCps0SFUxbS2yggWnLFcosuXDYxt1ty87OicM2bmlbdnZOVHDYxg80WnZ2TjTQwQD7wsySCwsooILYCraCrWAr2Ao2wSbYBJtgE2yCTbAJNsEm2DI1xi9OWnZr2ngnX8tuTRtv32vZrTkxwL4w82G8k69lt+ZEARWs4LCNRv+W3ZoTHQywL8x8uHDYItci8+FCBSvYQAMdDLAvzHy4EJthy3yI3HyZDxc2MG25oTIfeh60mQ8XDtto5WnZrTlx2Hoev5kPFypYwQYa6GCAfWHmw4XYAltgC2yBLbAFtsAW2Dq2jq1j69g6to6tY+vYOra+bNmtObGAAipYwQYa6GCAaRsHYnZrTiyggGlriRVsoIEOBtgXZj5cWEABsQk2wSbYBJtgE2yKTbEpNsWm2BSbYlNsik2xVWwVW8VWsWVqjJ6nlh2YNp6AtOzAnJgVIlFABSvYQAN9YSbBaJVq2VV5HQQ55s99nGP+QgMdfKyxjwaqll2VF44xP7GAHKmMeWXMK2NeGfPKmFfGvDLmNThSgyM1OFLPMX8i6zbGvI9eqpZdlRN94Fk3wL6wH2CuW+63MeYnKljBBhroYIBpGwdBdlVOlLmzspXSR1NUy1bKiQ000OcOyFbKiWtnZSvlxAIKqODaWbU00EAHA1w7q8oBFlDAXItINNDBXIvcDmNIPx72DhxDemIBBVSwgg000BfWrFsSCyigglk316I20EAH87Ijd2wO9BNzoF9YQAEVrGADDRwPWVrasj3ywgIKqGAFG2iggwFic2yOzbE5Nsfm2BybY3Nsji2wBbbAFtgCW2ALbIEtsAW2jq1j69g6to6tY+vYOraOrS/b+V7LCwsooIIVbKCBDgaIrWAr2Aq2gq1gK9gKtoItH6GO52/tfK/lifkI9cIcWS1RQAXTpokNNDBHliUG2BfmI9TxiK+d77W8UEAFK9hAAx0MsC+s2Cq2iq1iq9gqtoqtYqvYKraGrWFr2Bq2hq1ha9gatoatYTNshs2wGTbDZtgMm2EzbIbNsTk2x+bYHJtjc2yOzbE5tsAW2AJbYAtsgS2wBbbAFtg6to6tY+vYOraOrWPr2Dq2vmznCzUvLKCAClawgQY6GCC2gq1gK9gKtoKtYCvYCraCrWATbIJNsAk2wSbYBJtgE2yCjSwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxsiTIkiBLgiwJsiTIkiBLgiwJsiTIkiBLgiwJsiTbRL2cqGAF09YTDcy7jkgMsC/MLMmnRmeb6IVj3fIR1NkmemEFh81SnFly4bCN32e1bBOd2BfmHIhkhZwDuVBABSvYQAMdDLAvrNgqtoqtYqvYKraKrWKr2Cq2hq1ha9gatoatYWvYGjbLurlbLCvUxKzQEhtooIO5vLmHcgr0xJwCvbCAAqYtDyOvYAOHTXPHjnyYGGBfOPJhYgEFVLCCDcQW2AJbYOvYOraOrWPr2Dq2jq1j69j6smXr58QCCqhgBRtooIMBYivYCraCrWAr2Aq2gq1gK9gKNsEm2ASbYBNsgk2wCTbBJtgUm2JTbIpNsSk2xabYFJtiq9gqtoqtYqvYKraKrWKr2Cq2hq1ha9gatoatYWvYGraGrWEzbIbNsBk2w2bYDJthM2yGzbE5Nsfm2BybYyNLOlnSyZJOlnSypJMlnSzpZ5aUxAo20EAHA+wLzyw5MW01UUAF0yaJDTQwbZYYYL/QsvXTx8+kLFs/JwqoYAUbaKCDAfaFBVvBVrBlloxfYtlxpkYu5JkEJwqoYAUb+FQhl+zEAPvCTILxOyrLxs2JAipYwQYa6GCAfWHFVrFlEoxfYlk2bk6sYAMNdHDYxk+qLBs3L8wkuLCAAipYwQYa6CC2hi2TYExzWzZuThQwbbmPMwnGd3QtGzcnpi13SybBhWnLDZVJcGImwYUFFFDBCjbQQAexObbAFtgCW2ALbIEtsAW2wBbYOraOrWPr2Dq2jq1j69g6tr5s2bg5sYACKljBBhroYIDYCraCrWAr2PKqYjS+WTZuTjTQwZU72bh5oRxgAQVUsIINNDDXog8886Emjgp2JFawgQY6GGBfmEkwevasVLZvZY0ra3yO+RP7whzz497JssFyooAKsjcbtsbebOzNxt5s7E1jb55jPpfhHPMnKsjezDF/LkOO+QsdxMaYL4z5wpgvjPnCmC+M+eIcO86WdLaksyVzzJ/LEGzJYEsy5gtjvjDmC2O+MOYLY74w5kuw384xfyJbsrMlO/stx/yFbEnGfGHMF8Z8YcwLY14Y88KYF8a8HGu/ydFAAx0MMLfkGDjZYDkxt2RNFFDBCua65TLkmL/QwQD7whzzFxZQwLTlQuaYvzCvH87/IOYozFZKHy+ft3xJ5sQCCrj2kGgFG2iggwGuoy/bLq8dUNlDlT1U2UO1gg000MF1PGSDpY8uW8sGy4kKjrqe2yHzwXPJMh8udDDAvjDz4cICCqhg1s2jJJPgwgD7wkwCz6Mkk+BCARXMOYUTG2iggwH2hZkEFxZQwNw6LdFABwPMtRhXNtk0ObGAAo45sZqHZ84uXthAAx0MsE88X3F5YW4dT6xgAw10MBbmOPYsliN2NP1atjz6eP23ZcvjRAdHhfHdasuWxwtzxIYkFlDAsbyjK9iy5XFiAw10MMC+MMfxaO+1bHmcKKCCFWzg2OqSi54j9twOOWIvZOvkiB29wpbNjRMr2EADcy0sMcC+MM/zF+ZapC3H8YUKDlvPHZDj+EIDh63nCuU4vrAvzHEcuedzHPfcLTmOe27UHMc9t06e5y9sYNbNdctxfGKO4wsLmHVz3XLEngdXjtgLHYyFOUwvHAOn5JKdH/A9sYFjF5ZcsvMDvicG2BeeH/A9sYACKljB3Ki5zfIkfGGfeHY0XpgrH4kCKljBsRaj68+ub3Kf6GCAfeH5Te4TCyiggnZ9Kt2yjdH7+U8D7Atz8F74qBtH/rUxeCcqWMEGGuhgXF9jt2xuvHAM3okFFFDBCjbQQF84Bm8cJxZQQAVzLSSxgQY6ONYih3Q2N144Bu/EAgqoYAUbGEOhiX2hHWABBVRw1M3TzPnR7gsNdDDAvjA/2p2ng/Oj3RcKqGAFG5hrMUZLNizGkesWAiqYFfI4y+/zXmiggwH2hf0ACyiggtg6to6tY+vY+rJlw+LEAuaxY4kNNNDB3Dqe2BeWAyyggApWsIFpi0QHA+wLJW256OfoPlFABevcWe0c3Sca6GCAfaEeYAEFHHVHO7JlE+JEB0fd0YNs2YQYo8XYsglxYgEFHGuRZ4ZsQpzYQAPTlnuopi03VO0L2wEWUEAFK9hAAx3ElmM+r0CyCXFiAQVUsIINNNDBYcvL22xCDMk19gMsoIAKVrCBBjoYILZIWx5cmQ8XCqhgBRtooIMBDpvmQTDyYWIBBVSwgg00cNg0D9qRDxP7xGxCnFhAARWsYKZRSTTQwQD7wnKAWdcSc3k90cGsoIl9oRxgAQVUsIINNDC3wziUs4UwxlvyLFsIJwqoYAUbaOBYi/HuPMsWwol9YSbBhcNWc5NkElyoYAUbaKCDaZPEtOVqZhJcWEABFaxgW/uisYcaeyiT4MK+MJPgwgIKqODYF5LLm+f5CwPMtchDLsf8hbkWWSHH/IUK5lrkjs0xf6GBYy3yoUU2C07sC3PMX1jAYWu5dXLMX1jBBhroYIB9YY7ufCaRDYBVzn+a/22ucY7YxGz1m5hLZokC5pJ5YgUbmEsWiQ4G2Bfmef7CAgqYtp5YwQYa6GCAfa5xNvVFzkFnU9/ECjZw1M3psWzqmxhgX5jX6yW3WV6vXyigghVsoIG+cIyLntOE2Q43McC+cIyLiQUUUMEKNhCbYTNshs2xOTbH5tgcm2NzbI7NsUXWzUMuBNSFeXbKecRsRZuYdfNA7A4G2CdmK9rEAgqoYAUbGFOcTWcX5lF9YQGzbiQqmHV74qibk5LZdDbRwQD7wnHOmlhAARWsIDbBJtgEm2BTbIpNsSk2xabYFJtiU2yKrWKr2Cq2mnVLYlbITV3XkZqNZBMLmPtCExWsYAMNdDBtJ/aFOQpzRjbfNzhRwFzelpgVLLEvPEdWrsU5svLQOEfWiQpy7OTIyvvNbCSb6OAaAdlIdmEwAgJbYAtsgS3awp7iPJRz6F3oYK7m+d/2idnlNXGIc+Y0u7wmDnHOnGaX18QGDlvOnGaX18QA+8IxICcWUMC0aWIFG2iggwGuXdjPoZcLeQ49T6xgAw10MMC+UNfOyn6uiQIqWOdg6OfQO9FABwPsC8+hd2IBBWwzxLJza6LPQ6PXNaSzc+vCdoAFFFDBCjbQQAexNWyGzbAZNsNm2AybYTNshs2wOTbH5tgcm2NzbDlMz2Mn2OqxTqw9FKxgAw10MMAVjtmNNbGA2Dq2jq1j69g6to6tT5sfxwEWUEAFKzij2LMba6KDAfaFOeYvzC15ooC5L1KRY/7CBua+aAPPE6slCpjLK4kzHD17tCYa6OAc3X6s0e3HeWI9cY5uP9bo9mONbs8erauYYlNsii1H94nnQRuJfeF50J6Yq5n/7XnQnqhghuOR2MAMx5LoYIAzij2bjCYWUEAFK9jAGcWeTUYTA+wL8wC/sIDswj6vH/zotnZAd5Cd1dfOKscBFlDAtbPKunL0sq4cvRwGzij2bCea2BeWAyyggApWsC3MO5/cF9kMNLGCDTTQwQD7wpzXuLCA2BSbYlNsik2xKTbFVrHlvEYefdlONFHBCjbQQAcD7AtzXuNCbA1bw9awNWwNW8PWsDVshs2wGTbDZtgMm2EzbIbNsDk2x+bYHJtjc2yOzbE5NscW2AJbYAtsgS2wBbbAFtgCW8fWsXVsHVvH1rF1bB1bx9aXLZuMJhZQQAUr2EADHQwQW8FWsBVsBVvBVrAVbAVbwVawCTbBJtgEm2ATbIJNsAk2wabYFJtiU2yKTbEpNsWm2BRbxUaWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqW6Jklkpg2TaxgAw10MMC+8MySEwsoILYzSyyxgQamrSYG2BeeWRKJBRRw2EYPhmdT1MQGGuhggH1hZsmFBRQQW8PWsDVsDVvD1rAZNsNm2AybYTNshs2wGTbD5tgcm2NzbI7NsTk2x+bYHFtgC2yBLbAFtsAW2AJbYAtsHVvH1rF1bB1bx9axdWwdW1+27LuaWEABFaxgAw10MEBsBVvBVrAVbAVbwVawFWwFW8Em2ASbYBNsgk2wCTbBpmsc1zMfPLGCDTTQwQD7wjMfTiyggNgqtoqtYqvYKraKrWFr2Bq2hq1ha9gatoatYWvYDJthM2yGzbAZNsNm2AybYXNsjs2xOTbH5tgcm2NzbI4tsAW2wBbYAltgC2yBLbAFto6tY+vYOraOrWPr2Dq2jq0vWzsOsIACKljBBhroYIDYCraCrWAr2Aq2gq1gK9gKtoJNsAk2wSbYBJtgE2xnPkhigH1hpsaFBRRQwUyjlthAA9OmiQH2hWdURGIFG2iggwFmsVy381LixALmovfEMbF05KLnXPyFDTTQwQD7wpyLv7CAAmLLufgjN0nOxV9ooIMB9oU5rXlhAQVcJ4nGpUTjUiKbuPqRmySnNS8MsC/Mac0LCyigghVsILbAFtgCW8fWsXVsHVvH1pct+5j66Drx7GOa2MCxOOMnrZ4vSJsYYF+YU9cXFlBABSvYQGyKLR82jRYWz96kPlpYPBuS5j/NxWmJuTjjej0bkiYWUEAFK9jAXJzcUHlUXxhg2sZwyoakPlpN3M7Gi9x8Z+NFSdS16HlUX8gK5UGrWTcP2gsLKKCCFWyggQ4GmLZc9DxoNRc9D9oLBVRw2GquWx60FxroYIB9YR60FxYwi+WGyqn20V7m2YXUR5+YZxdSH79C9exCmqhgBX1hzpmPfi7PzqKJWcESUzw2Sb4CrI/OLc9XgE0UMG09sYINtFU3R8v1TwPsC3O0XFjWGudouVDBCrJu+UjnXKF8YHtiZY3zCs9OzC6ZXLK8wrvQQAcDzG6W3Dp5LWe5HfJa7sIKNtDArJurmddyF/aFeS13YQEFVHDYxhNSzx6iiQY6GGBfmNdyFxZwKPLxT75Ha2IDDXQwwL4wL+AuLKCA2Dq2vIDLxzTZvDTRwQD7xGxemljmVs/mpYkKrp119iblA9DsQop81JldSBMbaGAujiUG2BfmNdeFBRRQwQqmrSUa6GCAfWFec11YQF3rlhda+Sgum4wmxlqhvKQ6MW/PLixgLnpus7zmurCCueg90UCnAraKrWFr2PKa60J2S2O3NHZLY7c0bA3FeRWUC3leBeWS5Qll/GrAz3aiCxWsYAMNdDDAvjBPKBdiyxNKySM1TygXVrCBBjoYYF+YJ5QLC4itY+vY8owzfkjhZ8fShQ4G2CeeHUsXFlBABSvYQAOz7jhSz36j8WM6P/uNLjTQwQD7wjx9XVhAARVMhSWmwhMdDLAvzHPW+FWGn61HFwqoYAUbaKCDAfaFFVvFVrFVbBVbxZYNSaUnOjgUkjsgrwbHb0D87De6sIKj2OgS97Pf6EIHA+wL82rwwgIKqGAFUeSxLnlo5LEuud/yWL+wgAIqmHVbYi5v7u48qi/sF8bZk3NhAbOuJypYwQYa6GCAaYuBeVF2YQEFVLCCDTQwFT2xL8zBcGEBBVSwgg000EFsgi3HxXhNVpxNOxcKqGAFG2hrq6uDAbKz8gAfL8+KfBdSHz/CiXwX0oV553NhAXNxNFHBCjbQQAcD7AvPY/3EAgqoYAUbaGCsdTvvh+rA887nRF0rdN75nNhAA3PRW2KAfeF555Mb9bzzOVFWhcAW2AJbYMsT1YXslmC3dHZLZ7d0bP1U/Nd//dOf/vZv//rnf//rv/39X/79H3/5y5/++T/XP/i/f/rn//aff/o/f/7HX/7+73/657//x9/+9k9/+v/9+W//kf/R//0/f/57/vnvf/7H498+jqy//P1/Pv58FPxff/3bXwb91z/xt4/Xf7U8HrnZ9dfL4+EZJcrx2yLldZE6bkOyxGN2dxVw+c3fl9d/X0fnX/79x/MRFsDL/bXQeqy1qCov16K+LjIm3M4KRdffr3r3r2u+ne1ci8etCEsg7TclbFNiNDtd24FFeNS6+fetzI3wmGxZf//x8PM3BWKzHautzfiYbH1Zou/2pazN8Ji+eFlityVzTuraDlFfbsmyOSRFxpxS1pChXjVq/22N3WGpbS0Gm7NEub8ifa7I4wGdvl6RTY3xPYKrxviEwKphv4zOtturY3b32qtNXpbYHFn57pas8LjVYj2s364Qa4CGldcV7q6Gv16N3cbMz4CdG9OP/qqEbKJGasyckFbLyxLl000hmyNTjr6O7nIQufWXyNXNQoz5gXMhur9eiF1eiswt8UCOCm12f0XKmKW8VqSVlyuyObCE0DxeFtiPsG7roHiK/l/3aHweersaVcus8Xjw/Pr8occ2v2UNkaetIfrbc4hujs4Wc4/Y0Z4q2P0Do7Z1YLSnUfbrgaGbw/Nx69VXjc4RrvHLmmyWQzgjy2MKlB17fyluHuLbGne3hv/A1ohPt8Z+oKxLxfFBl1cDZVOh5kvVz2M87Hh5jNfN8akl1tWiHs81/H4N9XWF8Ztz+6819OOzaq2fnlV3Fe6dSm6vxuuz6t2tWZ/ORt/bI4evGqW+rtE/v3ptxw9cvpbtncBM4ccV/et1aZsT42MqfR7lD2wvr1/3NaytGv14XaN+fJS39ulRvqtw7yi/vRqvj/Lt1tRj7RHVN/eIrcudx4z567sS253j832H56r4803Fr/cluxv2UlYOl/o6Q00+PjJMPz0ydhXuHRm3V+O9/Htswrq2pvXXW9M/35rx8daMj7em/8Fb8+nY9PLW2eTxF+diVDle7xHXj2+8/fPw9I/D0z8OT/88PPcb89NLx1a4dS/t9VxKbKJzvKln3tuEv47f2BxafR2d5Xg+p8Y3JitrK2uy0qK8nKzcb1Fni8Z7O+XebEi03WzIsW4qni/bfi1hHw+S8E8Hya7CvUFyezVeD5LtxtQebEx7q0S+wveandKXcxl9c0Js2WF3HhXd+nsltN4osT+wbk2z9Y+js38cnd0/nt/q8eH81nYZ7k0WluP4dLYwI/r1wwmdK2LP15zaj3eLtDeL1HWvOd7vuylSP5123K/LmsgYX1h4c11kzeqMN96/W8TbKtLf3TW67kvGe603RXa38I/HJOse/sHl5XTZtszdebsvivS5fx5PqvubRXQ9y3o8dbY3i9ycQiy72bu7c4hl9wzm5iTidjlC1haJpwu53y/H3SJPE4nfLLLOMQ+094o8xgQP0I/imzLbXdxWsPXny4dvHmzBwfY8jr9XxDpFXg/A+2fv1w8td08R8uMqWcL95Ulrf4V867lO2T1cunsjuS9S16rU2sumyH76vq2RVzdr0z9/ELx7xHTzSfCuxM1HwbfXZPMseL9F18My8ahv1VCOj8cpwt+tcXxc46l15Hnkf6/Gush7lHtdY/eQ6ebNwxc1bt097Nel1jWNXy0+r/HmMabSeawRr/ft9gmNrWn84rK5+t4uiK85h8fF2ev4qO3znbuv8QM71wvrshm4ddfpdPiaRX9c8by7UdcVosbmKNs+cFo3Z4+7kteL0TZX3iV/mnauS/fN/cxuOSqzrk+Hx+83x+4819Zzr9p+08Hwy3lu96Tm5oxSaT/Q8NQ+73hqP9Dy9AM9T9stem9aaV/j3rxSsfL50N8fHbemhcrnT53K54+dvrEmr7PD7MNL5P2QtWMeG/W5xveub5uv519td31rP9B6mhdLnz69367O85OGxxP016vj8hOro3/06kjMCGl67Fan/ZFH2uMZmqy7sba5k3LfnaTWCUYoIb/bpp+3QW2XYlV4PlX+bil2T6LK4xir6/rjeJoOtW8UOfInu9fUQzxfCX2nSI+nJ1pPzVDf2SK+9kvf7Jeof2iJxzaQzvZorzdq/YmNWn9go26L3D1GtsPO1w3I+JDqewH/mwlzre8WWZOY40NBbxbxdQ0xPmbxZhFbh8n4AsLrIr3+QMDvHjD9SMBbfqPnWh3brc6ucaPlix+u9em1vzrYviiyphAe/PRbnl+LbKZ2xgcA5rmmltcnCtk9r3rsnDVvZ5vWNzm291Vrwz7+u5c373LIp7d3cmyuAkTKulJ8TP09Tcj+ukG+CBN+33Q83Vj9Ok39RZnGYfK4c4mXZbaH7HjzydzH1mOzj/3jGVE54uM7RdlNmN+7n9iWuPmLkNtr4ps18Y9nRLc1bs6IflXj+LjGvQkv2f1m6Td3rO29bXpzZvaLGrdmZqX0jyfvvqhx6w5+vy51JbM+P3z/tYbIH70ct2aI79d4c8zdnCGWXZzenSH+4mC/eYDYH7xj7s3uyvZ3UDdnd79YkFuzu6Kfn/53vx+6O7u7XY6bs7tfXNw5V7yPB+YvLu6yIeXTK8RtkSrMM8tTU5V949LO62rB9Pr6QNXPn6ZK/fhp6rbEzWsH/fxp6hcXy+s897i8f32+3f2a6XZ87K6WLdZst0XfXC3vivjaqA8s7xUpx7GuT+v2un23JE2ZJrb3L/7DuPh/Ost89+J/rdG4EbBNGd0+j2j/r+cR39sudbVyS326RPx9kY9TcXvYPy7r15Hy2LJvDR0pZR2yZXPG2z1runmiaf4DJ5pmn2/S7a5dk82PvazvHvJFmDwr+vb9rlTud8XeHjmyLmpGyU2T2K6vek2RPr1epH5ngrQc4uSA9jenJevTTIK9mpaU3ZOrx12A/j/vAu6XuHcV8NUs/M3tcfzA9vAfeB6wLXJzi+y7GZ9W5jieGxG/1xR5qD2V2XR5yvYy/nZv5a6MxbokGJ8UfTmNvivB7Oj4suR7JZyl6C9L7FusD17wc7zdMb5edPQo8rpPe/9bWNd13fo8f/fr9Orul1Q3Oz0kPv8RqsTH/QDbEjevwePz36Hut+i9To99jXudHhKfdwF+UePevcD+CLv3rp5ePj46+ufv+7m/Jq8vM/unDdXbUV/XRUxU3Yz6bp/feffPfywtPT7frx//XPr+mmxG/XaL3rvz1uMHZlT3y3HrcZke9dPbGD3a57fd2+W4eRuz2xx37wy3Ne7dGeru2dLNTVqOz+8Mt8txb5Pu356xtkbY06+6fvdOv+07jG79bHr/Brhb1y36A6/k08/fyaefv5RPf+CtfNsNevOy5fj4qkWlfHzV8kWNezn6+QXHF3df935EuX+9372fP25r3Pz14/b9aTd/L3i7xubngvsa934tuH2Wc/uGdrtVb/5WcL8kd4+R7Ta5+VvB/Zv+Pl+bu8fqfl1uHqv+A8eq/8Cx6j9wrPpPHKv7rXrvJ6n3X7n68kpKdz+iunXzs309Z1nj5XEl89wp/8vrOXe/flLlzXBaXz1B3Ze4NXOq1T9+frrbGMc6NH55R9OvG+MHXtenP/G+vv1bU29dwuj+NQxzTu03jel2v8K6FLOnxwO/q7B9Mdw6MkoTearh39gUdFA30dc12vZGkCh98HPz1f0jjJan+nyB/OsRtq3RjN+j+etXRmnru0fBt7oM1e4eYJurffv4snBb4ubVvv3AUNlv0VtdhtsaN7sMv6pxfFzjXpeh2t2ZzvbeNr3ZZfhFjVtdhuo/cA/ln99D7dflXpehev2jl+NWl+H9Gm+OuZtdhrr75dTdLsMvDvZ7B4jFH7xj7nUZ6vaRzc0uwy8W5FaXocbns6a7N7bcnuKLj2dNt1dBT78R0jevo9aD2qd2qd9V8J94Bv5FlZuPwHX3JtNv3IXtytx7BL4vcesR+Bcl7jwC308o3bydrH/spMU3jhH9kWNEf+YY0c+PEf38GNGPj5HdJaqv2YLHI5OnVNbfJlndPv+5dYu8LVGs0YH2yLWn56Uqv5SxT6cM9iVuTRnU3a+LfmZ78IWtx1MYeb09ds+iHo/J10x/lFf949sSd7+SUncfh7r3mZRtiXuTBvsSt2YN9lvj5rTBF5v03rxBLf75vMEXh1lfX0F78PN1yO8Os91NanFemhrPe+eXT2tsJy5vvWtgvxyyXtAhD369HNsijXb21jZFthvWny53vTy/DO/XDbs7+97Ms22Je3km9sfm2W+3x1PDw+/zfVtG2+pB9Vo2sSjbyYzKhEh7uvD99QOG94vEDxR5voj/XpGnuRnvr4vo9ocGtobfY6Lm6Z7ml68N7T4ipaHcnz03bv+uyPa1qesmT+KpF+R7RaL0VeT5pbbfLMKSSPuBInpsimx/2dJ4ZP98Gf5rkd2Pn5qt29ZmT8fJt3ZxJR4f88Tx7nESK9f6Ud/cJnUdbFJtt012q2OrOfcx5VTf27C18+LTHu29Iib+1GrcfmJ1Nrv4dp7EJpR2D6xuvki9bp9X6cFErdjrBdm98M+bzyLe+tPTgPilxu6XqTRz6m9es/HLBVvbvZ/q4ER8PDdk/Vrji5+TrKvxx1Ztr9dmu1nXHbDq069jfr9Zt0X60yT65iD5zvncXp/PW/zAsbZ7wNr7usN4cNtcodi2PWtd58jzx/Kk/nJDvXv2dPNSeLtJ7n1Loe5e3Hfrrf37jfqN/bst0w7KtLq5Tdn9CIqUfkz8PA3isO8sCi8BLO51M1Gxm5U3WS14pr+Zd/m1yLZJdB2xtTx17H+rSCsrUR6oby7J01veqvqbS6LrEw9Nu725YXV9ytqqbopsH2aZcaEU7xbx1dL8wPJmEfqbHvhuEV8viXpge7NIt/Wix/7UKf7NgewrqR9Tj88vNvtemXj6rF+0d2PlcXfB7OdzSv6uTHw+uRWfT27F55Nb++3RmFIK083e2X7cqUTwQ9Hny/tfV8c/PgXul6M//Uy0a3tZZPtdkzVB1uX19Mm+xFqVLvZyEna/Z5xVCY+3D/i+fhTw4N0se9ePZ6W2Je7NSu1eB3hzVuob22N3Mv+qjFOm1bfLtE4Z38wZ9v753umf7p22++Hsz+yd5+0R/f29Y5Tp755z+sHlYy/S3i2jfBOxa7y+Vmq7p1T3zjnbEvfOOfsSP3DO6bwPu3Srr/dO+/xB17bE49rk4MeWXup7RZh3fLC0N4usb+SOy5v3Thnd+c1C354ytj2MP3RbLGu2QPTwzW3x3SJPO/l7Reo6oUt9Oty+V6TV1efanqYev1XksR1WUB+/mWY7bj++7+sdB3L8Jktul5DC9hB93QHQRLcPiW91p7ftk6qb3em7leHFIHLU3cp8+qGAtnvl4mOef81Hhe0WIz7fHNsiTdYVfZPf3FOXbxQhon+5f/xOEd4S1vw3t1q/FNm+IfDWtc2+xL1rG/243+WLrbGecbXQvtka+5eEr+6fGrop4rslWZcB5Xg1nbxfjLYuoq395qbxO+vS2npXeYv2dpGnt6b3t4usGST7zYPq7xztsULk8bhuU2T3M6wfKXK3f6dtP0R173JzV+Lm5ea2xK3Lzf3WuNm/88Umvde/09r21H2vf+eLE836Fu3j2qhuTjS7Il0osjtbNf2jV6c7D6ZKbJZk15zNeXN0zlFEfnl5wvYNgb7eJKn+/BHn7xSpdU1o1+fvdPy+SHx8ytuWuHfKs4/flrbfGo0Pez43Dvxua9jnFwD2+QWA1T92a1jluzjPPzD73dawz7eGfb41Pm533Q78x4qsviGN8l6OKb/s0PqbiYRfinj5g3Ps8dcOLt2PN1fnKYK62JtF+rrOrMe7Jwjtq0ntUWSzJG4/cIu4+3TS/Xui7d7hubaLbFZnN0VKjafmB/f7FazwesL2ek12Lzq7vU1DfmCb+rYxZR1nRerzL5B/uZHY/jLr3jbdLYbwqzvV8noxfN8U3XgKdrxZpFdnZmZTZPdav9thtCvSOe+Or9qzf6t+o4gdM1v7803Rd4usl5fY80tUvldk3Sh2e+4//LXI7vFTX5fN/fkHQK3fL/H8Itvjufvw1yL7lQlWpr+7WV1jrc1Tw/r3igQ7OJ7fM/67zfpHF/nNa9x0t3d2RWS9J0fkeZt8q4iuj9vJ82+8f1dkFwSPSes1F1jL60iy49NOrG2Fu9MAdnw8DbAtcW8aYF/i1jTAfmvcnAb4YpPemwaw8hPTANtjrDJkWn99srH9b7Roeurt9VfgrOy2yb0Xltr2fdj3XgBiuxft3XsByLbEvReA3F8T36zJdmLl1gtL7Qc+RfXFctx6Yant3tZ376f3tp0iuvnFkn2Rm18s2Ra5++rU/ZLc/GLJvsjNbx6a7H5PePubh1+Vufn1lC/K3P104ldlbn6EZb+Bb36EZV/k5kdYtiPo3ksjtgP55qt29zXuvWrX9OOPsJj+wEdYtstxc5Pud+29j7B8caze/QjLF2XufoTlqzI3P8Kyv1a79YqSLy737ryj5Is7pKf7veffZ/1yX5Jzsp9Ntu5L3JpstRp/aImb87X7DbqawR/btr6+0dtNtd6bALMmn0+A2faHWT8yqVh5t5ltJlpt9+hK2tPFTXv9cWrbPVnwvm59vf/mZYDfKBJaZF1AR3uziK++kejPLR/fKdLL+qloL32zTbatVvfG7n451i+ZHs9L+5srI8z3SN8UMf1jV0YJRO3HZjnaH7scNdZytGO3HP7xcph/nKrbn0DdStX91rCnVLXNoNul6o8UuT1b5PrxbNGuxM3Zom2Je7NF261xd7Zov0lvzhb5DzwQ2J9lzFaTpD//IPrXI2T7IbebEz37x1f3Jnp2T69uTvSEfDzRc3tNNhM92y16c6InPv+k9BfLcW+iZ3d9ePPebverqdsTPdsidyd6dkVuT/Rsl+TuRM+2yN2Jnl5/ZKKn/8hncr8oc3uip//I13b3G/juRM+2yN2JnoiPZyXi+HyiJ46PJ3p895zkXhj49j0RNyd6tstxd5P2H5jo6T/ytd0vytye6Ok/8rXd/WXWvYme/ZXarYme3a38vSkFLz/wUxYvP/BTln0Pqq0TsT5v1O/1oJbVLlH1+bXL32tkXT/ErL95N+e3irisjxTE8brj0XdPsn6kyN27G99+vOrW3c22xL27m32JW3c3+61x8+7mi0167+7G5Qc+hfFF+zfvdOi/abz65QiR+IOLiNFXH13eLNKfWz/eLRLr9kQP2ayO/sBcq+sPzLVuV0f5ELkebbNNdq/lK43XLz+4vvqc+VdFVtPEg7u8LLKbfDri6eVim0zT3fWirW84VOuvuzdc+8e3fr57jd3Nq73dm8/v3uZ4lZ+4zfmizN37k68OFGf09Hg1S+n1J462+vFrM/aHyb25H989hLo59+O7Vwzem/vZlrg393N/TV7P/Xwx8G7N/fju2vfm3M9+5N2cdNkXuTnp4vtPOdybdNkvyc1Jl6+C5OZEx1dBcnOGYr9KN2co9kVuzlBsg/7e7fT2sL85Q7GvcXOGYvsk6945y+wHZih2y3Fzk+537b0Zii+O1bszFF+UuTtD8VWZmzMU+1ulWzMUX9xt3ZqhqB83xHzxM+g7S/HF+0vI+fb8wv5vvQTFeB2LdX2zSMR6T/fzd1S++SaVpxsCeb06bducevN1LNsi9z4Lsy9x67MwX5S481mY/X5xXq7tb78m5zdF6rtFhCL6er94fNwjsC9xq0fAo/+hJW6+V22/QflZi3u8u1fWFevjIfK7CfK8JG8XicY0S3u7CHe+uyL716Hdy/b9G9VuZfv+dZOrRhd7842V62eUXfzll2W2ryO9tS2+eKPprW2xf/Pt+mlcc3v7HbzrZbMt2vFmET6088B338EbzpL0d99LHGvnPuq9/Tbgp5vN+v424RdH776/ujZestG6/ESRN99fXZnbrM9zm98rwksIq+8Otn0RbmjCXxeJ3TMs7+tSJo7j9Y85Y/cjqmqre/OxxO3llftXS+JrScpuSXbvubJ1WdXsacJJ7y9HHOu1DnGYb5ZjP2k1N+vjFPq6Fz1238riJefPcwDS6jeOkb5uquru3aqx63q+fYzsXh54+xj5YknuHSPSPj5Gdstx+xjZ/fji/jESf+gx0o71tLUdm68UhO6+OiTx/34FYfxSY3dD47Leyfabby7Ed1Zm9Rq3cshmZfQHVqb+wSvDJ3oe+OZZ7zE7ut4vp9XeLCIsifhPFInj3dVZE6xNS393SXgxox7vb9jOhm3vFqkUefvLjFJ5lNaeL8R/O6cY9eOvEO5L3Lrzjc9/PLUtcfPmebtBlTf/qh+bDdq3tyUzAF6/c3O/GJXb78fp+/Vi7L6MdTfMdr/Auhtm+y9uCo9ppL1cmS+KPH0hz15vkSrbz+zd/Pbnrsi9OcB9iVtzgF+UuDUHWD6/hy8f38Pvm1jvfNordm/848UW0V8/3ontb67Kel2fPp5Xv3y8s3te5mumu8bx+hvo268PBx/Jfi7xywtpdiWMjyGY9rdKxBpp5fnl9N8p0Z33dB/lnRJyEBpH1beWgjd9j3f1v1ei8wGR8taKjM/lrKdb/b2l4Ft8pT5/TvMbJepTa8nzLccvJfKFsy8P8eAB5vORUb6xJitzivp7G6Pygbbn64R3t+ebJeLgoyPy3Lz7y/VKfPxJ7O04a3xs5Dc/9fpGib6W4Xj+Atk3SoTylYLny+HfbYvtu3TutR9G7B70/8AnBoRnWmKxWZnd2xUe10rrODdvr6bYvyqynlg+uPeXRXaXTdHXVXUpr4+Q6B+/HXh7buycG59fIS/fKLG+wfQosdkv/Qea/6P/QPP/lzvXn3buq8vI6PZHHyG8VF+eLzp+v2H3X2il02c3o7UvInzT1F4XyY+ifDpR2Hdft7o3UbhdjrsThX33k6a7E4V99+OqexOF2wAohTPVg58/NnQcvyzJ7tUVc0GePkpc7ydz0XVrXp5v3n5Zk32JyhFW3ytBV4w8fYPi1xK9bOdMmfo53izR1+9Tng6M76zI8ys0n17p+50StiYYftsh9I0SXrgE2m6L9gcXKca54fnFs98r4s4tR5c3i/SDL9HJe3tGjK8++XtjRdd83ONIKe8tBc1fz5Ot3yjxmMlfZ7jn76F/p0ThQ2mlxnsl+EVZifeWQteAfeB7S9GEq5fq75Uwmtmjv7ciHJ0q762I8v07bW+tiK9+Hq/2ToFeeTPNZrBvH2x+fDvcD9459N5arOOye/twM7xXQIWrYXnuen9c0t4usX7Dqs+vXnq3xNNk5rdKrKGh4u2tEs+fuXjqmvlOibqmdbUd720LNb6y8zzH8m6J93bq09c6nvPuW9uCtt+q7+1UPlyvzx+u/1aJ9cXPx7OhN3eq8QtAe2spxjdDubCob5V4+nRpPL+e/5cSffdMqQjR/fyx61+eB+2nl4Xp5fbemqyOkvL8VedvlTDm794bJCU6v2Y+ypsrwq9KDvm4RHl3KZwSb432x3Uq26L6x0ux2anb5ziP0xkfw3iOz/bbyYy+e57U2/oSdG/99c9R+m5JPp7bfdyrMhvSXn4VoO9+cHTruwL7DarrrPh4ZllebtBtkcckAZfgD36zTG/rjrW33zw8+E4RWc+VHljfLbK6SPpzK8r3ivA2hMdWtjeP1VgDr8fTPPPvj9W7RZ6+iPPNIuudCg+094qUo7SVy0fx12W+2LTBpu3He5v2caQ+fQLmcHl3lQ7mzh5lNvto+32t21tmW+Ze88K+xK3mhS9KvGxe+O+P//Pnf/3rP/7lb//2r3/+97/+29//7+Pv/dco9Y+//vl//O0v1//9X//x9399+rf//v//P/Pf/I9//PVvf/vr//6X//OPf/vXv/zP//jHX0al8e/+dFz/89/8ker/5I95s//+T38q4//3R8g9Jo7t8f/18f8f95ZNxr8b/7GMju3H/4x/WfK/Ho/YH/8T//2/xuL+fw=="
|
|
2134
2134
|
},
|
|
2135
2135
|
{
|
|
2136
2136
|
"name": "sync_private_state",
|
|
@@ -2288,7 +2288,7 @@
|
|
|
2288
2288
|
}
|
|
2289
2289
|
},
|
|
2290
2290
|
"bytecode": "H4sIAAAAAAAA/+29CZhdV3Umuk/VVamuVNLVPA9XtqzBlmcMBozxbBlLsmzNg22VbWHLkiUhlSYL22BwZoeAQzppOg8yAEmHhORBh5AvyUuT6RGaJJ10QkJDGJJ0IGFwEsj0OdAcfJfqr7/+s+8+566SLnbt75Pq3rPX+tfaa6+99nj2zcLzaUbr79FTB++/9/CRfccHh/bee3ToW//nT7NWbi1UTFlbMYeXPp/T36LoAc7eb/1rhjRB/SSxHP8bnuhnwFL84dv8Wagq//ny5zwVyx/6TBHgR10Md+K3/k2Gz2tJfkX9n+hU/xkRna1ubgT6pn342tFPvOdjT3/gt39m6L3v/pHpn5zyY5PXTHriqae+uvAri/7zs0/9lPHeBLhZSNarz/hvVrKv/VDvzod+6d8PTb71Te8/8cm/2HBsyqLBjyz9nnfv/J23Lv3ivd9lvLco3i/8wDueaLz/be9qXvTxr/fd+pYv3ftPt024+pMff/3833ryuS8++4zx3qp4/3jnc5/+YOOZR08+/eHTV6+aOfi+Zz7xD3/3ex/7hcY/fe7nX/eJq4x3LZS5Slu6rRr/NON/DfDXQrm2kKfbq/Gf0X9dNf4e418PD5v24Y0//TOfvv7pj1/2V89N+r71g28+eeX3/8m2Lz86770X/M3DP7/ofdONd4Pi/fzQjW8dmvvIS7/c/4dPX/4TCxd/5mvv/eDf/vOpvVd/6W+/8MvL/sl47xC8865Y+fLDP/pHsz616rz/fd1vvu+SH57/teXXfOpX1v7Es//+0X8NwzbbCGUuUWdnynxnNf6a8d9Vjb/X+DfBw2acx0LFmbJvrib7DP+WdNmWJhjvVs2bvem8o/+p/nS2/iNPXvzBgUkf+eL177zhxo9/7M3ft7Txvnca7zbBe+E19Wff/X2PPxU++96//8F/vvDXrrt4+pLrp1/yv97xZwsPHtk1/1nj3W6CQqkyLzL+HcBPukeT8e8Mo3VP5d1VTfaZ9r27vOwzvHeX5z3TRu4xsFDK5md85d5q/HXj31ONf5LxDwJ/ib6wafz3VeO/zPjvr8Z/ufE/AA+bISm9wnj3guwStrvO+F8L/CV0v974H6zGf4vxP1SNf7Px76vGP2j8D1fjv9/491fjf8D4D1Tj32v8j1Tjf63xH6zG/6DxH6rG/5DxH67Gv8/4XwcPmyEpneE9Uk32AeM/Wo3/EeMfqsZ/0PiPVeM/ZPzHq/EfNv4T1fiPGP/JavxHjf9UNf4h43+0Gv8x4z9djf+48b++Gv8p43+sGv9p43+8Gv9jk8Lzc+1/nf/8g3z+Pa+VeWxo34F9Q6du3Tu05flPNx46OLT35NAEADB5+L2HvvfS9xp9N7wJBXzM0y7ZfL+PdGymsW8caNFPJH0Qu5/0bIaktDgjvBBGljMQfp10KSkvywjP5HH5rM6s7HWhS0PksY3rQk5dyGmIvAOOWCccsR5xxDrmiOVZxqOOWIcdsYYcsQ46Yg06Ynna3rMNnexSrH2OWJ4+4Wl7T//a74jl2bY9feJhRyzPGH3aEatb+0cb+9rYAccaWcFfk8PPTE6dsKqOe1S5+oW8GP3ECP2kRPx8XN1ofW6Nq2/ae9+xB9cdejBQ4qHuTQUqLiK6zRHVGDejf/x8ET3rFbSY8uLNaX1uFe+WvUP3P7R58MEH9z7wrUIeZQ5GurHgOQ9IkcYG45NI02ZISj0pTon4ddKlqlMqp1GNLbeqbU+3rLru0OADNw4ePnrswF6eZuEUga2CqPhM1WkGmuGzXqK7kb6vFXxBYOf5VnMD9LwZktIU84opItPypgL2RMprQF6d8qYB1gNAx4nLieXJ5X1j/jAu07GuWFdTKW8y5DVANtf5JCHHytYj6CcT1iTBZ/XSTl6v4OMpa2xandISrRx5aggZXI9jEDFmdXvEsPJNriZvZkb8KA8xTR+z9YDIMyxro30FWMZbI/r/1vrbILo87SQZA0JffGb2yZeYfpF0R9uyn3RiR8QzvfAZ4tdDR36ZxeoNy8d+UjH+zkixO+rD8Zpti3GvrwDLeGtE/5HW30YY3Sewn0wR+uIz9JNfJ93RtuwnFe14faqfGH49dOSXWazesHzsJ1Oqybsuxe6oj+q70bbYB/YVYBlvjej/sPW3QXR5Yj+ZKvTFZ+gnv9/63F+gbzMkpRNqTMN+hnYpc6Qi1c8Mvx46qvcsZkfV3tS4zHgbIo+XnRtCTkPIaYi8E45YxxyxHnbEOuCIdbJLsQ47Yg05Yh10xBp0xDriiOXp991or1g/VBYrT56+esoR65AjlqevepZxnyNWt7btxxyx7nPEsmMKPM4z/Dz1h9Ftr+zcBPFMT3yG+HXSpaS8LGYXNWa08k2rJm96RvwoDzFNH7P1dJFnWLbK2FeAZbw1op/XMmiD6PLEY+rpQl98hmNqm0BPFfry+kJZf0R+thHysT92Ul+IZ3riM8Svh478P4v5h7KLlW96NXnTUuoX9TFbzxB5hjWz9b2vAMt4a0S/ivxxBujE/jhD6IvP0B/Pz0bqjrZlP6lox5tT/cTw66Ejv8xi9YblYz+ZUU3eTSl2R33M1jNFnmHNan3vK8Ay3hrRX0V+MhN0Yj+ZKfTFZ+gnl7Vw+wv0bYa0xG3EMBAb7ZJeD9k/pPqZ4ddDR/Wexeyo2puVb1Yledmz7BsoDzFNH7P1bJFnWLa32VeAZbw1or+R/AxlsG9YHuqLz9DPrqV4hLZlP6lmx3BDqp8Yfj104pfDfqLqTbU3K9/savKuT7E76mO2niPyDGtu63tfAZbx1oh+I/nJHNCJ49EcoS8+Qz+5vYU7VejL6++x9oK4DcFvdMrnSsS9e1WdluB/nfHPqcZ/0up4Ljzk9jQPnpfwt8tT25Ph10mXqu1pHsnj8vEa7HyhS4Py8vQQ0HFer3jWE8E65Ih1wBFr0BHrYUesI45Y+xyxDjtiHXXE8vSJ/U5YKk52otdJR71mO2Hl6YQj1ilHrEFHrMccsTxjoWd7HHLE8qzHxx2xPH3C0/ZebTs4l9HTJ445YnVrnPDU68UwZhrv086d7T3b4yOOWF5lzD/PccLy1CtPXuMJ7zLy/h3OLbPW336hQ4l5qy1tncEzPfEZ4tdJl5LysphdsHw8T14gdGlQXp54nrxAyFkg5CisQ45YBxyxBh2xPMt42BFryBHrlCOWp+0fc8Qar8dyWI87Ynn6xH5HrGOOWJ7x66QjlqftPX3V0/bdGr88fdXTv446YnnWo6d/ebYhT/864Yi1zxHLs4zdOpbzLKPneKJb69HT9l5jufzzHCesPHXrOMdzjDk+nnhhtCHPOOGpl5d/5Z9nO2Hl6VFHLE/be44BrK/lc2OGn6cO18CWZYRneuIzxK+H0XXptQamzqBZ+RZUk9dMqQfUx2y9UOQZlt1Z0leAZbw1or+1VaiGkMFn9CwP9cVnePbqhtaXqULfTvcikJ9thHzsjxXrqzfVHw2/Hjry/yzmH8ouyj+MV9Ur2z+1XmNYvC5s+XnqF3wl7NFItb/h10NH9Z3F7KLipJVvUTV5U7kNozzENH3M1otFnmEtaX3vK8Ay3hrR76F4sBh02kkyFgt98RnGg12tL/0F+jZDUrpN2boE/yv6w2jbleBfb/xLqvHfbPxLq/Fv6if6kvy3Gv+yavzbjf+8avwbjP/8avw3Gf/yavzrrO1cAA85Tq2A5yXa8YbUOGX4ddKlapxaQfK4fNxPrBS6NEQet9GVQs5KIach8oYcsU47Yu1zxDriiHXYEWu/I9agI9ZRR6wDjlgnuxTL01cPOmJ52V71693iq57t8ZQjVre2x0cdsTzbULfa/pAjlmec8OxrPWO0p+097dWt/uU5NvGsR0/bvxjixGNOWPnnxY5YSxyxlnYhVp5e66hX0xHL0/azulSvZY5YfU5YefL0ifMcsc53xPKsR0+9PH21G2Nhnh5yxPL0Va969NQrT91qL09fXe6I5dm2veJXnh53xBp0xHrEEctzTcFzTO45V/Bce7Txva1j47p31vrbH0b7Zdm9OMQzPfEZ4tdJl5LysphdsHy817iqmrwpGfGjPMQ0fczWq0WeYV3Y+t5XgGW8NaKf0zJsg+jyxHuNq4W++Az3Gqe3cPsL9G2GpLRmIIy2FfsZ2qVEPaxJ9TPDr4eO6j2L2RHLx3tFFwpdGpSXpweBjvN6xbOeCNYxR6xHHbGGHLH2O2INOmIddsTytNdpR6x9jlhHHLE8bd+t/nXUEeuAI9bJLsXy9NWDjlietvf0r0ccsU44Ynn2aZ5tyNP2p5yw8s9znLC8y/iYI9Z9jliPO2Hln1c6YeXJ0/ae/aNnLPQc53jGCc/41a3jQqtHO2eOcYPPOafeHarOmRvdgODLWn87XHtIviud1x7mVJMXXXtQdulwznvmrvTYXB71UXNQjk0Xtb73FWAZb43on6S1B5TB7z2k+me+9vBYC3eq0Jf7tLJrYchvdC80OQOCj9tXRf+bkNq+eM2lYnuOrrkou5RZc1H274bx1lhhmf+tjshJXSNU/rf6BSpnQPBxe0J7l/Dv5N/VM/x66Kj9ZjF/Unaxsl8kdGmIPD4XcJGQc5GQ0xB5JxyxjjliPeyIdcAR62SXYh12xBpyxDroiDXoiHXcEcuzDXnW42lHrH2OWKccsTzbtqd/ebYhz7j6YrD9UUcszxjNawA4nuknOWXHoshvdGrclP9rhqR0V38YPfYowb/V+NdU47/D+C+uxn+jjasugYdZ669hXwrPS4zx3pgRXgh6TGn4ddKlpLwzY8pLSR6Xj8eUlwldGiKP36G8TMi5TMhpiLwhR6zTjlj7HLGOOGIddsTa74g16Ih13BHrhCOWp+271VdPOWIdcMTy9C/PmHPMEevFYPujjlieZTzZpViebfugI5aX7fPPi5yw8uTpq906BvDE8rTXeL893m+P99vj/XY7rPF++zu/386Tp7261VcfdcTytJdnzPG0/SFHLM825Nlvd2uM7tbxhGcZPce+nvXoafsXQ5x4zAkr/9zniHWhI5bXOnn++SInrDy91hHrISes/PMSR6xZjljnOWKtccLK04vB9osdsZY6YjUdsTztdbEjlpeverahPHWr33drGV/osdBbr/G+4zu/78jTg456eY7lPO213BHrfEcsz77Wsz162qtb+47HHbEGHbEeccQ67IjluQ7guT7heT6H7xm6FPKy1t/+MNovcznNkJQmZ4RneuIzxK+TLiXlZTG7YPnMLlb2y4UuDcrLE9/Xc7mQc7mQM441jnWusPgsp+HnqT+M9v8S7W15avs2/HroKJ5kMbuouGdlv0Lo0hB5vG54hZBzhZDTEHknHLGOOWI97Ih1wBHrZJdiHXbEGnLEOuiINeiIddwRa58jlmd7POWI5elfnvY64ojl6V+ebcgzrnr6hGdc7da27dkePdvQaUcsz/b4YvCvo45YnmMAfvcOx8v87l3ZMTvyG92A4Mtaf/tJvyyUGkO/NSM80xOfIX49jC5zlTG7sr+yi5X9SqFLQ+TxOuyVQs6VQk5D5A05Yp12xNrniHXEEeuwI9Z+R6xBR6zjjlgnHLE8bd+tvnrKEeuAI5anf3nGnGOOWC8G2x91xPIs48kuxfJs2wcdsbxsn39e5ISVJ09f7dYxgCeWp708+21P23uOATxjtOd4olt91dO/xvvtF0bbHh+Tj/sX5x11xBofF5bD6sZxYZ487dWtvvqoI5anvTxjjqftDzliebYhz76jW2N0t/ZpnmX0HPt61qOn7V8MceIxJ6z8c58TVp5e66jXhU5YeXrIUS/P/SFPey13xJrliHWeI9YaJ6w8efrEEkcsT9t7tW3P9ujZhvLPFzlh5cmrPebpxeBfix2xljpiNR2xPO11sSOWVyz0jNF56la/79YyvtD7Wm+9xscm3/l9R54edNTLczzhaS/PMfn5jliefa1ne/S0V7f2HY87Yg06Yj3iiOW5b+W5zuS5/uV5vpDfncWzrVnrb38Y7Ze5nGZISpMywjM98Rni10mXkvKymF3UOWkr+0uELg3KyxO/2/gSIeclQs441jhWGSw7o4/tjn9zsGzbR36jGxB83PaxbZRoi2tS277h10NHsSaL2V/Zxcp+ldClIfJ4LHSVkHOVkNMQeYcdsU46Yj3siHXMEeu0I9YBR6wTXarXfkesQUesxxyx7nPEetwRy9NeQ45Ynu3xlCOWp997xkLPenzEEcsz5nj6xFFHLE/b7+tSvY47Ynn6hOfYxLPf9qzHbo1fnv7l2R67NUZ7Ynn610FHLLM9r1UYfp76iS8LpeZOizPCMz3xGeLXSZeS8rKYXdRc2cr+UqFLQ+TxGYSXCjkvFXIaIu+EI9YxR6yHHbEOOGKd7FKsw45YQ45YBx2xBh2xjjtiebYhz3o87Yi1zxHrlCOWZ9v29C9PvTzr0VMvzzjh6ROe9XjUEcsz3vN9Nzg24vtuyo7PkN/oBgRf1vrbH0aPUUqMl57KCM/0xGeIXw+jy1xlfKbsr+xiZX+Z0KUh8hbCZ8xDOS8Tchoib8gR67Qj1j5HrCOOWIcdsfY7Yg06Yh13xDrhiOVp+2711VOOWAccsTz9y1Mvz3r01Mszrnr6hGc9HnXE8rT9yS7F8owTBx2xvGyff17khJUnT1/t1vGEJ5anvcbHAONjgPExwPgYoB3W+BhgfAwwlvbqVl991BHL017dGicOOWJ5tqFu7Ts8bd+tYxPPMnqOoz3r0dP2L4Y48ZgTVv65zxHrQkcsr/X7/PNFTlh5eq0j1kNOWPnnJY5Ys7pUL6969NbrPCesPHn6hGc9LnbEWuqI1XTE8rTXxY5YaxyxutVXx9vjuSljt/rXeD807vdKrwcd9fIcY3rW43JHrPMdsTz7bc+27Wmvbm2PjztiDTpiPeKI5blv5bk+4blu4nmeie/XmAV5WeuvnQvEWJfLaYakVMsIz/TEZ4hfD6Pbdwl5Z84FLiR5XD6zi5V9kdClQXl54rsUFgk5i4Scs4Wl6iv/1wxJaUt/GG2PEvz7zZ6L4SH7EvYDJep2XqovGX6ddKnqS0tJHpePfakpdGmIvFgd9YpnPQVYeRpywmpX9+dKrzwdc8LKPw84YeXJs4yDjlhHHbFOOmIddMTytNcpR6zXO2Idd8Q64IjlafvDjlj7HbE8y/iYI9Z9jlg2N7D+C8dOWeuvGhek96XZZzPCMz3xGeLXw+g+skrfrcZUWD6zS2djk+wzGfGjPMQ0fdRYgftdm5f2FWAZb43o39R6+Uf1e9NJhuWhvvjM7DPhW/8e7x+pO9qW/aTiGG9Kqp/wGK+aX8bHeGrsbeVrVpM3kGJ31MdsvVzkGZbtm/YVYBlvjeh/iPxkOejEc5PlQl98hn7y/S3cqULfSwk31l4QtyH42UbIx/7YhOdl6wvxTE98hvj10JH/ZzH/UHax8i2vJm9ySv2iPmbrC0WeYdn6dl8BlvHWiP5d5I8Xgk7sjxcKffEZ+uM7yB+bgLWAcJsCtylwG4Lf6JTPMU4kfU7VaQn+dxn/hdX4Vxv/RdX4f8X411Tj/2X1LmoJ/jca/8uq8d9t/FdX419l/C+vxn+l8b+iGv8XjP+V1fjXGv811fg/bPyvqsb/VuO/thr/143/1dX4nzH+66rxP2v811fjz4z/RuAvEdObxn9zNf5e0/cmfCh0MnzrE24A+qzgr2FxnsmqE1bV/lPpjvpxHL8J5GEZi7BuKonVL/Kq1MmNobhciD8Q0YX1zBPPJ6uWOU/7nbDyz+c5YeXphKNeTSesPN3vqNdyR6wLHbEucsTqc8Ra4oi1xhHrpV2KtcwR62WOWFc7Yr3cEesVjlivdMLK0+sd9brGCStPxx31epUj1sWOWE1HrGsdsV7tiHWdI9b0LsW6vvXZ1hWwX1pBcvqEnL6IHOQ3un7B17QPXzv6ifd87OkP/PbPDL333T8y/ZNTfmzymklPPPXUVxd+ZdF/fvapnzZe7O9KjD+3dbiONtP4l1Xjn2H851Xjn97hOtlNvKYSkPfaD/XufOiX/v3Q5Fvf9P4Tn/yLDcemLBr8yNLveffO33nr0i/e+91qPaWE7OvVekqJvYlRd3uFUN5uL6skOyxVaykldH9WraX0JPOHfrWWUoL/pWotpQT/y3gtJQDv8j/71Yn/8l/fUvt///zZQye+fuEzv3/r07/xc9e87eMXX/uGTX/1I19Zr9ZRyuylqHWUKusIr67GP5XXUb4NGpLSK9UaSgnZ/Z2toWSf6XC+PsBrMAF5v/AD73ii8f63vat50ce/3nfrW7507z/dNuHqT3789fN/68nnvvjsDxvvLYr3j3c+9+kPNp559OTTHz599aqZg+975hP/8He/97FfaPzT537+dZ8446+3VtN7svGvrcY/y/hvC0L3aMq+vVbfrD//zfrU7ExuCBPhs7XDPE0Iw2tKm4kmTzWiv3baMN/ylrwB4gnwuZ/4S9pkPpbBkloDM/x6GF32KmtgPSSPy8fn1mpClwbl5YnPMdSEnJqQo7Aed8QadMQ67oh1wBFryBFrvyPWYUcszzIedMTqVv/a54h1whHrlCOWp3952uuII5anf3m2oWOOWJ4+4RlX+V0IzONxwAR4XqJf7kkdBxh+PYzul6uMAyaQvCK7TP7Wvxmtz8eG9h3YN3Rq3aHBB24cPHz02IG9OJrAEQJLyQgVn2VhZOkxr5ee9RLdzfR9reALAjvPt5qbSM+bISndZl5xm8i0vNcANo+sboe8GuWtA6wHgI4TlxPLk//9xvxhXKZjXbGuXkN5uIp1O8jmOp8g5FjZegR9H2FNEHxWL+3kvZhbqaon422IPG6nqbOCKtGj0frcih437b3v2IPrDj0YKNXo+00FKs4jurUFqmUCN6N//HwePVOmQOzYBDHFZfLEHRDmbSY54x3QeAd0Jo13QKG7OqBewcfLQ7xslKemfXjjT//Mp69/+uOX/dVzk75v/eCbT175/X+y7cuPznvvBX/z8M8vet+MXNZbaSkM9WV/trJNaFO+GtH/aWOY7+0teXkrnNvKb7XCG44d2H/X3qEj+/Ye3/uteH40UGrXdNbT9w2CTyVzCdWUzbwVg1NyMDT8etDV3AxJ6UwwVLMULF+1YMgOgVYJwT8YbqDvVYJhHz1vhqRUOhhyF47BkANlJ8HQylM2GGJdcTDERszBUHkpyrGy9Qj6CYQVC2Tt5I0PWZ5P40MWSONDltBdQxbmmxBGt2rjrRHtR1pDgw5b84jTN6zjeF//fBrv6yGN9/Whu/p6FWUywhjLpRKUHZ1gfX7oxrcOzX3kpV/u/8OnL/+JhYs/87X3fvBv//nU3qu/9Ldf+OVlX+swomztMBJuyfn+kiZ4fK4dP1uvVXTWwXhrRP/X9WG+z8ME74JWfivabB08sO+BwaG9Nx983bG9x/Y+sOHQ0N6j1x984Objew8OlZ7u3ULfbxV8Kk0KwwXmC6CwkHnitcDZre/20inTsIGM/gsto+QGm9d6m1M5nekzQPwhjO6m5pDuzZCUkrspw6+TLlW7qTkkj8tXrZtid0arICo+47CBeWejm5pHz5shKZXupvooD7up2ZTXSTdl5SnbTWFdcTc1F/K4m8I6nyPkWNl6BP1cwpoj+LibKpLXK/h4CJLRc1w7myVk89pZNun5v7ltFy4otgNeO8eY9l0N+tnelp+nDv11W2qkMfx6GF33VSLNPJLH5asWadBTUMpWQjUapMW0FTRDev7OtVcTfJwMp0Y6L2h5Ue59k1ufp4bR5ZpKeitvx2c8gEJ+o1NyJncoZ7KQY548Efh2UF5/JK8OmFMpbwrw8R5aA/J2Ut40wJxMedMjmDMEZl53H540jJf/awKd8nTrnawO8MUM5MXvE4g2T7tbf2tEezH41VLyK2zF7Fdz2+gd86u5oVjO5A7lTBZyuLfKE/vOPFFWy5sPfFzPCyCPfWehKJe6FIkxFwvMvH5+cdJIuibQccRfDs/LTFhSI77h10mXqhF/Ocnj8vFk7oJq8rZkxI/yENP0MVuvEHmGtbL1va8Ay3hrRP+KVn3yy1x54otsVgh98Rkecr+K/ARtmxX8NVx+xu0Ly94MI+VgvNkM+ry6IObhSArjmk2WOVZ9BHYhb6BYhfxcd81htToufzOMLuPUMNo2k+BzkX8vj8iZFCnPWNXnJJKDcRbrcwPV5wWQxzE6/7ys9blG9D8H9Xkn1adqi8rO3C+VtfNUIWes7cz9ywpHOYjFL7msIiy2s9WT2Xkl5K0ivtWQh3Q461oFz1cL2QrfMNr54H2TdNmKfNBk1Yj+h8AH91b0wRWUh31FM4zU0/RAOyD9sqDL1VdAX1SuAzDrXLJgJKbxo62wLjj+Gv0hwFy2QOuJ5cL+gBeClT+sEuVSNl0d2stGO68tkN0X4r5YI/rjwqbcLyC/akczSZeVbXTn9o38Rjcg+DqNI0rndm3yiZJt0l50Zt89BW3ySWqTMR9BnXkeUdbOk4WcsbYzzxFWO8pBLO4XLiEstrPVk9l5DeRdQnyXQR6/iN5LPEiPGAo/tV94ZpIuW5EPmqwa0d8DPvgjkXlxzAdXUx7atBlG6tkuHvLFSKZ3X4j3tzWi//FIv6DaK8Za7heM/l2RfsHkYrli/YLyxTWiXMqmlxDWEoGFduZ+QdkUy7+Eym/0703sF4xfrUfsojxcj7iA8uZDHo9Z8aLRFZSH6xG8NoIXI3O8wx/GQB/h9YiJkfL0Awav9+G63TzKmwJ58ymvAXkLKA/X7RZSHh4v4Yu2Z0DeYiirrdvxxumvtZ53uKcnj7zE1kWzgr8hpPUHfFwL5cxxlINYN5OcuY5yeMcB5cwXcqy+FhBfMySl5D1Yw6+H0W23yjrZApLH5au2M4LRhq2CqPgsCyNLj3lnYw+24lXupfdgOSLhHixHpHWAVXYP1spTdg8W64r3YDHi8x4s1vkCIcfK1iPoFxLWAsFn9dJOXq/g4/3KjJ4X7cEaRo3oPw099HIaoShZ2KJ4lGC6F50gYR2M/nOgw7wFGrNWUK55BZhfg92bv56kMYPAVOVaSOViHRaQDkb/BTH66Q2j/U/52AL6jqPBhQX6qXpiXbE9FZWH68novxKpp/lCB/yZkLVtdGCahQU6/KPQQUT0Gw8dPtWK6IESH7LniMyW573q+QKnKBl+7oXmkepkxTzBx+9X9gid8pJbzZ15ZfTA3qG9BWXvEbopmT1BJx6DG1+erPep2I8njxsMvx50lGqGpJSx55o8Lh8felURXf2YAdYv+1FMTl6ntq7UqtNNQ4eOFFVp6oAiE2qFUDywyMLIqkCeF7MblBs+shOgVRAVn8Us3662Pd5XqfiLUaWHj3xMD4ePPLTsZPho5Sk7fMS64uEjNnQePmKdzxdyMMgy/QLCig392slTw0s+BshRoWj4yMMso5/XWpnFI3wsy75fCJ/5iN4YTESnp0aS7+yJ6DRCNRqkxTQNNEP62BG9PN0m+DhxJFlBz5shKZ21iejrgI6TiiRWntzbVy4YxmU61hVbXUokUZPUdZSHk/z1lIfLkhsoD4+D3EF5TcjbSHm4rXsn5eF28F2tzxwprmxFig4P3srlQMOaGkbbG5dQ2a97xTNePkP+2RE50zqUM03IGQg6kuapQzsmj7P4AHOnr0qoA8zKLqoXNt6GyONJuC2r/0rL7759NGrySGx8HYbtWvGt3Zem2tXw66RLVbtOJHlcPrZrv9ClQXl5ehDoOK9XPOuJYB1zxHrUEWvIEWu/I9agI5ZnGT3r0bOMDztieZbxqCPWcUesI45YBxyxTjliHXbE8vQJz/Y46Ijl6ROe9jroiHXSEcvT9o84Ynna/oQjlqe9PGPhPkcsT3t1ayz0tJdnzPH0r24dM3n6hGe/7WX7/POAE1aePP3e0/aHHLE8/d6zjJ5xwnMM4Gmvxxyx7Pc8bI0J1yF4N0nN+SdG5CD/xAQstX4QK2PRlRdOtxqbilcR3doC1TKBm9E/fn4VPesVtIiN19CkbGZU/Pm4KzLCC0EvKxm+12aGOimsNjPU26DG2xB5/HOQqW9xNkTeMUeso45Yxx2xjjhiHXDEOuWIddgRy9MnhhyxBh2xPH3C014HHbE87fWII5anvR51xPL01f2OWC+GejzhiOVpL89+aJ8jlqe9urUf8rSXZ7z39C/PmOPZHj19wnPM5GX7/POAE1aePP3e0/aHHLE8/d6zjJ5xolvHX485YvEyCc6reZlEzWGXROQg/5IELDUfjpVxjJdJTMXLiW5tgWqZwM3oHz+/nJ61WybhUzmrWnHLlkUqniqSp8H4lBYuBzXDyHKUXalD/v6InHqHcuqJci7tUM6lQs6A4MsK/pocfhZb2b+U5Mx2lINYfAkVLoU14TM34VizVn4wvwALb5reAzR8SRq+PB+E7B2Qj/TXttpQviz6ttZRUfVmBl4Ccd1AXFfkRV1rRH9dY5jvxhamsrPVu/IDfnlmtpCrMLltla27utAhhoX1NYXorS76Cuj5VTqjXw91x5dNGE2R/7DOWEeBMPLE/mP0d1bwn00DcV3Zf6YEXf7zwH+2kv+gjWP+M4Xy1HsQKmbySd2yMXOa0E/J4cs8ZwvdszA6bsWGCQ3Bb3TWl56tK7inUR6eup9OeesgbwblrYc87oPw7TW+kOIOyEN7cOql72ij3PffDr7PdIFkxk7yq2u9re5xnMLD0+mkKz+LDU+nF2Dh69LqQqAa0d/Qunkvb49HB0aWCy/sNZt06GtXpvTviF8nXUrKi54+x/LxdtYSoUtD5J0Pnzn+pkw5MO+wI9ZJR6yHHbGOOWKddsQ64Ih1okv12u+INeiI9Zgj1n2OWI87Ynnaa8gRy7M9nnLE8vR7z1joWY+POGJ51qNn/PK013FHrH2OWJ728mxDnuMJT3sdccTy9K/xuHpubJ9/HnDCypOn33va/pAjlqffe5bRM04cdMTytJfnePV+R6zHW39t7aHo/g/MQznzInLUpVVq3Q/XHHgubTR5snWEij/K0psRnumDzxC/HkbHnCrrCOrHFFT9xH4kRW3n8y0fnRwNWEBYqWsfGfG3K6Pj1qWpeAXRbSxQrUfgZvSPn19Bz4q2Lg3bmhEuPTUJE80YM63aPpoRkTOlQzlTEuXUO5RTT5QzrUM50xLlzO5QzuxEOUs7lLNUyOkVcnBbiu9qzhNu0WRTRuqkbgbFZWML1Xwz6E1ThvlqU0baALc57K0M9cIK39OMvzXHXUADnpcIyckXmRh+PYxuG1W6gAbJ4/JheEy/5olbIloFUfFZFkZHrww0w2e8qT+R+NYKviCwe8NwzU2n582QlEpvONUpDzecplBeJxfGWXnKXhiHdcWbQxi5+MI4rPOGkGNl6xH00wirIfisXtrJ6xV8dcLI6HnRhXG88Wv0S1oZ6r5hJQtbFB9gMt1t851pWAejPw904HtsG8CjylUHfdD+9h3b0+4C+S+DyLpiipYfhHwuH/pqX4G+DdLB6C8EG/DdxNMFfyh4xr49nfKmR2j7qCz4Xfki32NsUbWo7Fz/Rn95pP6nCB1MrzytbaMD0/QV6HCV0KGze4w5snMtcU1METhFyayRe6x5L1uHW4d6VuQBnd5j3F8gsyfoxL+vYXwhDPdqFccHyeMRw68HHf2aISll7Lkmj8vHU1LVUzREXlErbSenw3uMiwYqKlgwfyDeTDzLE768e7ZOCSo5UzqUMyVRzlicnFNypnUoZ1qinNkdylEnxhhLTZvyZA7MJyO3QmBfVnBJfk8B5l2kg1oFVKfCjD62KqVsiStEyxNkx378IfWgu9GvFPS4erWEdEX9VpbUdeNZ1nW+0HVAyOYuh38utBmSUnKXY/h1UYYqXU7MLt9WrPW33BQYPZatgqj4LAsjS495sZ4lT7fQ9ypT4NX0vBmSUukp8BLKwynwCsrrZAps5Sk7Bca64inwKsjjKTDW+Uohx8rWI+hXEdZKwWf10k5erHUbhuLLv98seGJ7HymtNk88cFvliKV+SNN8eg08L+HTs1OjkeHXQ0dt6Ew0WkPyuHxc9kuELg2Rh4udmIdyLhFyFNZCR6xFjliLHbEWOGHlaec41jjWONY4ViKWOlO0mvKw/7yn9XdqGB27eFau9sMXRPRD/gUROUs7lLNUyBkQfFXHCo2IzlYe7LvZbuoHnFdH5CD/aipP0XtpH56iZar30vK0p/WXf8j+yqnDfL82pbiMaGcrF+vcDzIsr8S4ZiAfex9ePCwHxymmo+EWtR8cw93a+qz67BmUh3VtGO3q4HepDhZAHtcB6sM/3bgI6uCjVAfIj/OJonaj5LGP9BXQ8y9KGP0fiK0Tpd+SAnloD7Tz2gJ5fyxWlJTfmewO/W628jtsr+x3qePuVD81myg/5VUqdaYJ/YBXqYy/L+g64N+5MvpPizpP9XOuV6P/bGK9OsUTWa9oK65XtZqo+qGYH2B98ftzWOcp72FjXafU6zyBz/X695F6VQdnUE+uV6P/SmK9mi3Hol7RVin1qs58xvpv9Y57I4zuJxuE1e630VLqNfarP0b/b5F6VSv7sThs9M91QRxGW6XUa+xqmnb1ynEY6/UCylO7DFVjtGGlxmij72+NG7DOeczPcaFIv6Lf63Pc0FxZoMYswR+IN6NnswqwDCd/hgvzbHIrbl/QS6Bs8jNNXphcNVPUR4UoK48tPVb8ycfkjRD+ycdOfzw2NvT8tmKtv+q1cm5msaZU5kdqnVw1T7cUqJEJ/kBYmXiGecpVcU/UXJWPvXIPndFMAV2IZwoq8qmRv9HbCLRodGF4NaJfJpoHY6IOOILiaH2ZoMeRMf8GIpbhMspDviUFcrB3xMjPvaPRr4KyxnpHkz0WvSPaiHtHvLGsV9Czva8Q9JcDDa8qXQF5sSZ9GclpFzrY/5Wfqtm3Go2r48kp/qj8C33iEspTsznlC0Y3FislWB72hVhbyhPbJuY7aJtGaO8n2C4vITmxuJSnmC/g6oKthvUDNspphqS00vh7qvHfZ/y91fgvtnLyUcc8GTbWbQmfuR9tYkkNFQy/TrpUHSpMIHlcPh4q9AldGpSXp9cCHef1imc9EaxBR6zjjlj7HLFOOGKdcsQ67Ijlaa8jjlie/jXkiHXMEcvTJw44YRm/l14nHbE8feJhRyxPnzjqiOUZVz3btpev5qlb46qnT3jGr0FHLE+f8LTXQUcsT3vtd8Ty9FVPvTzt9WLotz3t5Tle9YzRnmOARx2xPONXt/qEZ5zo1n7Icw7jWcbXO2KNx9UXRvzyqscsjF5z6xZ7dWvM6dZx4SOOWJ7t0bOv9azHbhyvZmH0Gna3+JdnXD3kiOUZJ7p1nclTL0/bd2uc8ByTvxjmtZ799uku1ctzXutZj57t0XMO47nu64nl6RPchrLWd9wn3QGfd0E+0tuvDKl97BJ7tw8MAE8ADMSuuA/9QEZ4IYwcawTCHyiQl6e6yKsl6PJzs3/z7pvO/+bujPhNF36WMjdRe9pmq4mkezMkpfvUGRKTbXm4Pz+B8tAupkP+982LR+rXV1G/FPshfkPQ7wS6MnUxPYz0BfR3O5eD55D47pR2d4cU3UzbV0DPvxxn9CtbbVK9PbMC+OsF8lC/FcIODcG/ogCr6I2N8wp0vxh057td1C0C6loko18l6PFIMJ+3wjKsojzk6y+Qg2XFut4TRpbV6F8iyqran8nu8AzXZHWGC23EZ7jUWSmkT3k7Bc+w8a3MeIZtBeWhjVdRXtkfj00932W8+Ct8KXcixe7GSW3X84Ue3DZuTmzXzQJ5qF+sXSN/mXadp3sLdL+9ZLtuCv26oV1jXe8JI8tq9He9yNq12cSzXVd9W021a3wb6Tr6dc1LIM9w8VcGL2p95nPngxF/VmdfY/Ztd/aVf+USz7ReTnnIt5Ly1JlZ0+EKYQfUi+9iM/p9YIe3gA9aWQLp1aGvX698Hc+Rs69fCXm9gp7r4iWC/kqgMZs0iJ7rBb8jFtqUXxEyG/UJesTj9wKGRL9g+mF8u4J0X11S97lCd/XLnNimnpn0/GfzQXxPpEkyV0dkMi/Gmb4Cen5nxOgfF/aKxXy00wTCNPo3RuKBip/qVx5itl8jyqVsyu8JoO54T55hM2aH7fMGzxsV8lT2HR2r/0YYHQ+5v8G2sYbkqDFGqv+jDz0xSeMW9TfLWp/Zv56J+JdqNxfAs7L9Ofc36F9rKE+N79U7KjyOVP0u0vP80OjfkdjfOPnzjHP93gvfmob9AcdD5bNY19zfqNs51gh8vi3jPZH+Bt9uvoR0X1FS9yrt7T7qby4AuibJXBGRybwYL4r6G8OrEf0vRvqbC0B3npup/sboP1ByPhXrb9rNp0wfZVOeT6Hu5guqfRpdh+1zpmqfWH5un7Gy5oltE5srqf4m9gZ/7H7dC4ScVP9HH9pA/U2TcBEL/SLmj02gsXpif/zdiD/G2lme2Obtbgtttj4rf+Q5TxPyYv5odB3641blj1h+9sfU+31T2yrPxdFXY/7I/XNTyMEYwv6IftSEsr560ki6iYCRtf7angCuDZSwefKVBIZfJ11KyjvznmE/yePyWd2Vu5sZd0bYKoiKz7IwsvSYxztqvUR3M32vcjdzxR9yKH03cx/l4d3MEylvHWA9AHScuJxYnrJ3M2Nd8d3MuFvCdzNjnfcLOVa2HkFfJ6x+wWf10k5er+DjnbqMnmNPoXb/akT/ZegpFi4otgPuwDGmfb9Q6Ml1YfkhDPtrxR8CmZ4aaQy/HjqKbGciTZ3kcfl8Io1JmUaoRoO0mPAHspCev/MPod0m+DhxpJlDz5shKblGmn7Kw0jzOqDjpCKNlSe3zUraKwgCi/vR1EhjeRip11FeA/LWUx7+XsgGysP7Yu6gPPyJxY2Uh1cq3Ul5uBdgv9lRo7LXW0p1eKZghP4h6PofH7d027hlPX2vMm6ZS8+bISl17bjFyuM5bsGI6zlumUNYYz1uUXxZGDnD4nrqI9oQOu6Jkn9P2/DroaPodqbVzyF5XD6zg1phMN5G0O3GPmMeylGzfYXFJ5LqiTp3eBkbf+8vUKNH8Afi5aaacpAPgy8v0poufSHu5jWiv6TVOap7AxV/nlLc/mx3dp26vQoTMbevC13UgTe0IdfhWXLVPK0vUEP1ooGwMvEM85Sr4qxsbYHsvqBnhOyqRn+NcNVGGKkj8ueYb62PlH0H0PWG0eVjXTeSrooGdTX6G0DXeaQr2p7HwRtBF25Sd5LuzZCUkpuU4ddJl6pN6k6Sx+WrNn5k70OrIGoQtEHktWs5N9L3KuPHTfS8GZLSZvOKzSLT8rYAdkZ5WyGPZ1XbAKvs+NHKU3b8iHW1hfLwFxe3gmyu8zuFHCtbj6C/i7DuFHxWL+3k9Qq+jDAyeo7rXncI2fymxC6IHLzuhbLuCCOTih4818oT2zuE0ZGmor9uT400hl8Po+u+SqTZRPK4fNUiDXoKStlGqEaDtJi2gWZIz9+59pYIPk6GUyOdh1pelHvf3tbnqWG0904ivVGHWMxuCH6jU3ImdyhnspBjnoz1sIPyaqKs/N5OnjZT3msgbyfl3S7KpWbljLk+grlB5OX6/du0kXQYjbKCv3nqFc/YpncKXa3uMALwbEu1tk0ROchvdAOCr9PyKJ3VuAp/KeeJacM8GeWpaN9sfa4R/efmD/M9Se1tM/CbjsrO3BbL2nmSkDPWduY2tcVRDmKhDfN/2wiL7dxsfTY740hoG/FthzykwxHBNni+XchW+IbRzgefmabLVuSDJqtG9L8LPvgjFX1wC+Xh6JL7Q9MD7YD0zaDL1VdAX1SuH4/M++4U/Ep3/h30LRHd88S+iPw8ch0Ln0eZ7fznPeQ/WyFP+Q+/D2j07wf/+VnyHxyhjUX5Y+0aR3I2+4q1axU/mA/b6MwEHbYJnRuC3+jULKtT31A6t/OND5FvbIc85Rv8HovR/yj4xq+Sb2D8NB2VnXkMWNbOk4WcsbYzj+92OMpBLO7fdhEW29nqyeyM7yrvIr7dkId02L/tgue7hWyFn9q/fWyaLluRD5qsGtE/Bj74B5E5TcwHd1Ae2pRXUnYIO6g6yEjvvgL6HVQuo/9T0b/F2usOwORYbvR/Dph8ztLkYrnUbDnmiztFuZRNd4X2stHOawtk9wVd/iJf+UzEpsY/oaA8bFOj/3zEpspGMZuqNrZLlGuqKPNuwrpLYKGdU2yK5edzFEb/xcg4bIvgV2MHHkOqcRjS869Mqjamxibcxr6aOIbksQ2uLeyiPFxb4Lk+7mfwXAx3/LdSHq4t8DrHOsjj/g/3d7ZT3gbIQ9+3tYUalfU5Oi9Tcd9Bnpfh8ztFa2j4N4S0/pTvlEE5Y7FuouTc5SgHsW5s/VVzNv6V57LrBsgfmxvWOpRTE3IYy2JynnBMxO+3nNGz5WR5u37b4pGYm4V+eBfO2khZuT0jltWZtQ+MfWOxL2f4ddKlpLwsFnOxfLzVvVXo0hB5RXWKcmK/e5Wq1+QwfAaxtYp/0977jj247tCDgVKNvt9UoOJColtboFomcDP6x88X0jO17YzYZ6vpnUs5UzuUM1XIGeulzqkkp2i6s2r6ME8W2i8pn9f6zEvK+2G6c1ELU013ipod+lrsOIbJKzriMKFAv8sg9M6j4fAEUebzIjpvBhksN087CnS4qqVDh6FYDlV4KRSHdHydF4Yy3hzGIU6veMY+t1HIYayibtLsykO6a0p2k+jbayNl5W0j1IXtoOSo8K7sEJPT6FBOQ8iJdftVY4nSmacSIYyMF7dRLNkCeWpIYweNa0S/A2LJukgs4WUoHmpwfC3qJ4tiyaYC/e6MxBI1NLwtojNOAVlunnYU6LCVYglvBTVDWlKxhLcmMP7NIP3L9oXIf7b6whkkZ6y3/dRyP8cXtR21NSJHbam1a48PTNcyVXvkfg3pl0F7fJDao8dWXVGbCCFtu2uzkFMUg0KI90FGfyjSB7Ub+semakX64cEqpJ8OZS7CCuKZ0WP/x8sXW4l2S4SW9Ubffmnrs8Ui3lJuhqS03fx5u8jkLQ3UyfJwGfEOoOPER5RQ57y+305XsASBpaabOwowVZvfTbRW5h6By9tF2I7ZXjsLdOA6DmG07xnuD04fxn8z9TO4XF6ibneoLSlLXH9sO06q/kyvvP5+q2L98TEndW00z6e4Pn70HNmL5/yYzoW9ePm5nb0sz8rbI/j4EKrJ+3Xw13cQXg1ksf/zlcm4PcP8IRRvib0T+oqprXOQU8Po/pWvTEVsNT7mfm5egV6qnBgnt5HeRvur5Ku83doMSel6q+NdpBNi766InRFeCHrZ0fAHhDzTqy7yUq45X33ZK//H5xo/9vsZ8Zsu/IznwXcL+nmC3mx1D/CXsNWr1BUwJtvy0B93Ux6uGZgO6przuyvql2I/xG8IepRdpi4aQs5GR6wtFbHs+nW1ncoxN0/cD6m+P6/H/03jdKz3uaRr2TiE/GXiEI83jPbPKQ5VHD++RI0DOQ7tqoidGoe431P1Whd5KXHokpd98tLf+5P+h7MwOt72imcp2/jqJdYO2/llKg5xrEF/3EV5GIdMBxWHKvYpl6XYD/Ebgp7jUGpdNIScjY5YWypiWRxSY3AVh9jPt4vyYBziOcbnYcz26ekjsVLG3SGMjpNbInnbBGYu+x8Kxp/2MhLOI3mOpo4V2Xd8hr6OPLz2YPR/B7b5W9IP5/+B8PgohdruzDG/NL2YbnuELnV8z1uy6th0ar2oY1q8XqSOuOOz2HqR0XGf9B9QB/8c6UsXkC5l+1LkN7qUV4U2CR1UO8X1wN+dMZIObZQV/LVy8DMuh6qffOvbLllobX3fundo00ODR/Y+sGnv/Uf2DvWSBryDwa1qJ2mkkmnJI5MN9J1fYONV4W0Cp51MtUsxGz6zXLWDxZadLXQ+l3LmdyhnvpCjonunHql0brdi3pgxzIM+UbSDxSsSRv//zBvmm9HCjO06KjvjVSxV7DxnXM6YylnZoZyVQs5Yt4OVJKeoHax0agd3Qju4MKEdsLwQ0nZYkJ9HwNvaYHEdI3/scP7GBDmxF0RSXwJIKU9Mzrksj2GplxOwDu6K6LWDsHa2wbqTsNQBfOWDrHPZkxnIHzsBsqNDOTsS5Zyt8mynPJyRcCxWdbczogPy84xOrfJUjZFK53YxcgPFSPWiUOy0i9G/GmLknZEYyb77QrPzLkc5iMWnpIrq826qz92Ql1KfRr8S6nNPQn0q22yOlAdPE6XEw5QXpHZE6NWqoeoHzL6422F11OHORvIVxYZfJ11Kyjtz+Pxeksflw0Pes1qfWzPd6/cevfyKq2/61jT31OEhtqnhTkOhoD/TB/rOfLlufBp6p5CRJ/afXUTH9W7PGT9Fp3a07fJVu+GV17L9GvIXnSAsOi1k9cMne4+02rk6LaTGUehDPJZVfTi3O6brFWWYVMB3fdD6YZnXRsps9KciZd7Rpsw85lbjPY5NTNcrytAfRvsAYqSMX3Ala2EYWa6yK40LhZyxXn1bSHKK+rvvov5OvWiKbf7G1mderZ4F/d33Rvq7s1X+dm0ay8I+heVSJyNDGH0KxL6/rVX2Dk9TyBO5RSdtuP3+MNWpKnusTs+8XQF1+p8S6jTWPmJjERUntkTo1VhHrbGM3YmU7LMpPor4are3ylhEnSJRO3llxyKG+xkoEOrfbizCfGossr1ARlHb4/EBj2XajUWUTkW0ZcciuM7BFwaUXQNUu8DmnxVfnGyaLltAD3XKpuiSqp4wui0q+o2kH+MXrT/UgrYNnz637z8H44zpdLoOdVhQoF8IaXWB/GdrPZZ37sbiDZ4QRq/fYL3eAJ8xz+QUxeSG4I+d8t/VoZzYKYd2vn5t63O7MdGvU/+pLjerCT14bPzLc4f5fpP6T+SP7S/wukXscgf1VmzsWl3cDVZ68RuPZXe1lT78lt9fzBjW5WOkC/Y5q0iXsm8oIj+PD5DP2lJ/GG2PEvE3+UV5w6+H0WWuMj5QdaTsoi79MN6GyMMLQIrkrBJyMsJqp5fji/KWfxHRrS1QLRO4Gf3j5xfRMzXEQOxc1u45w3LQDJ+iqQN3rc2QltTUgUMMVg8387JNC/mLXv7F7l4dTFGh7wLCKtuVI//GAqya0D1PPL0z+n+jOqo4PNsYewmxwwOwG1NDT9F9dKhXXeSlHFK94isn33rdNauf4y7UdOFn7DdqCnmBoDdb4fJQCVutV4dUcYkiT2qarQ6pmg7qkGrFF4DWp9gP8RuCnu/eKruli3lrK2LZwVI1lThXMaloeZfvdDX6b0aWOlVsUi+dxy5f4JjGZeSYk6dm0OmblAzP7D9RyOKp15kX42cO88xaMlLXzUJXixG9ERlBPMtCsW1YRo/gvSaM1G1Lgm7qpWHE6CnQM8dQ0xv227LTm9SXpVd0KGeFkDOWL8ajzHbTr3kzh3kwnhRNv17V+szTr5+G6dfCFqaa5vA0Ul1Gg2OWshdIcDwx+ia0K75AQh21ehVgsp+hDC5Xnng8Y/QXtHTocMwhx5y89IPTZI6teXpNQZkwTuO9iWwDtYW1OUKvlp3RJzlmq3tRGato+4xl72ojm8frRXfZ4neUHbts6e42svkYlnopj335s7OHdbiC2u/twKPq/XbCtO//Y9Yw5lUlMdcVYN4ycxjzaooJGOsXh5Hyyo4/kH98uaH8cgOPCZScxUJORljt9BqD5Ya5ROe53DCXnpVZbjA3x+taX0L4twNGr3jGbo78Rqfk9Hcop1/IiWG9RGAZ/TpBX/SD406uYSouIrrNEdUYt51rLKJnRa5hqZdk5p95xYmrhnWcKjBqkTL1imdc1TUhS8m5qkM5Vwk5vJl/gEZHKL9EtPxui374a0oc+Suu9n13auQv2sxCvdSvKKas9hz769nr//SXdr8mI37ThZ9xk1SHt64S9B1emfhmtdqDGyx5UhszarUHZ9K82lNxVfDNKfZD/Iag59Wesqum6hrFsli22oM3fMfa8tmKGWMhJ4YVu3bQbNMn6FVMMvrjMGvkHz9W9g7iWU8YHY/42jbEmlWgu5Jt+HlqCH6jG8OYOKFsTKyH0WWuMhpW7UPZhTf6kVdt3PMVRWUPu3Y7FvrmQBjtv1nBX5PDz1gOttVZJGesDnWk+HlVOYjFBwTG6vCIjYk67IO3qtfTLamdKPYLdcUEX5Om7K9erFDXs1wHnzn10nceB8xdMozLdJbUai73S2VXc9Wqn1ptwFXWn5qpZeKKo9qR4ZWfD8IqzXtmFpeR5zpVVyx/7iysWL6QfLyKH2+o6Mc89lKHjtRhfyuHitf86w3qCkGOi4ivYhmvoKrxjFrxV2PK9ZSHOtQS5MTGTbVEOYs6lLNIyBnLfgtltotT/z/FKTy8puKUrb3wyY2fhDj1schuEOrI31PG9SYv9Tpxo/+jyG6QKvNNEZ1RRiCMPHFsNfo/pdhacR4rYyv3ueqa7w7lJq+CG36ddCkp78y4X4171fXn5X7Lnc8scURX+whZGFl6zOulZxOI7lb6vlbwBYGd53d4Af027hUxle0V+UJ5fF3kAaDjpHpFK0/eKr8xfxiX6VjX2CtP2GPya27tzkpY2XoE/RbCKtr77E2Qp1YkeDau+PLvtwgez9mW5zkFNVLjaFRxhDkzNRoZfj101IbORCN1Jkv9qIBqVzxqwjxc/cQ8lBN7DRKxbnfCytPOcaxxrHGscaxzgJUyK8V+imfBGAd5tlh2kxz5Y5vxKzqUs0LIGRB8VfvkRkRntbLAdiv7ozrIzxeTFs1KV83SMlNnpUb/DMxKL5o1Umc1Kw1BrwBgPRgG8/aDDpZXYnwxNR8DH4YfiWC78vggNg7JP9t5RnXVFJ8NQl9IraOXUh3VIE/VEZ8jNfrXQx29vPVZnRnjc6Sxs1Eoj9thXwE9v0Jn9Ne2dMIdwdg5c5ZXdK52WYG8G0Ce/aa48jvctQ+hst/NVH6HcYb9Tq1+qXgWixdqFa8RRvsw7wKrc4LqTGlG/H1B1wG+P4X060Wdp/o516vRb0ysV7PlWNQr2orrVe2wq9dPY36A9RVbneSzyK8RWFjXXK/t2rLhcdvaFalXfm+F9eR6Nfp7EuvVbDkW9Yq24npV4w91VjPmB9g/mE3UbsIGylPv2sTiN/pBSp1j/RTF74dFnav3J2oJ+hWdcW0t7Nqq46ahQ0f2tpYdA6XYMmH+veho7gzBH4g3o2f8O5IqfMYW20120SEaDp9G/zph8lj4zVPK8W2s7rFYuDZ8r+Pb7cIaLxXFmllsKnMOXDVPtxaokQn+QFiZeBaCPlIde5soFt2UqdS5MKTntyWM/o2RnqPd/iZHPjVyx97R6FX5+XJh5Cu6XBh7NHSjZVRWo/+exB7NaeYjezS0UcrKaOxtZ/UmklotVZf/8ug0dgFzu2Zo4ZVDHfKqmZXyl9jILGYf5V/qp0nUOYLYLBjPdoTgOwvG8rAvxOo2T2wbdbkZ1jePWnFVi1eesC3xJW1q1pPqC7jawSshGxNxjV5dToc+zLNyo3+PiAGGqc5PxfxR2QLjOK/aqbfF1XkYPEth2IHoOvTHKZ6rMnmq2lZjlzCqGVbRKg7aG89/nK2VPz7f9mHws6KfgE5dUTL6X4v4ripDzHfbrbJxLFU/BHC2d+/5vBvGN94xxvjGZ5PwHBefLyn6WUZOPAZEO6Se6YzFndSYir70U+TzOK24jGSqITw+Y59HfqNTcvo7lNMv5MSwLhNYRq/G0GP8yp6peD7RbY6oxrgZ/ePn59OzXkGLSVVTrUDvENKqCfmLqgnDG87G+Tc2cLhxOWGV3WRC/qI3PpXueeLjbUb/j62w2+HrfM+kvLpS8QjbMxnhhRCiR9jUgSN+nY8vLmmGePr/bq4PXLP8ht/LiN904WfcXFUYvFzQd/gLoz8UG1ap1/n4Vb/UXxiteAz8h1Lsh/jqqDK/ztfJ6zp3VsRKeZ1vrGMSLwH8ixiWnW1dLM481wW6nBkKzT73utjwqU/oEusPsO/kvgV1jx1uOFuHKK7oUM4VQs5YH6K4guQUbZzPnD3Mg21dTXPyZL9jwpuUH4dLYea0Pqslw6L+PQvxcQfrh0fukWZTgX4LwT/5yD2XGcupdF4PMgJh5InHJEbfbOnQT7qW7GvkkXs+CB0br1SUm7xzYfher9puInlcvmpH7nk7n39nWe39ZGFk6TGv3QbFzfS9ypH7iqOTu80r7haZloe/1MSTdmwNPDHfA1gPAB0nNfnGF9HKHLnHurqH8nC0dS/I5jrfJORY2XoE/WbC2iT4rF7ayVMbLTxDUXz59wsFj+eL1GxHD6zY1bcVF6KSfyHM8OuhozZ0JhrFFpDzxGXfJnRRx+B4Rl716tb883ZHrJ2OWF7X0+afNzphBccyjmONY30nYqW8jI39gfW5Z2u2qeRc2qGcS4WcAcFXte9rRHRWV+Cz3cpe5lR0mVUWimd/h2ZrmamzP6P/DZj9HZk9Umc1+8uTmmljPRgG83a4iTpZbaKiXXkTVa1wIv2e1t/YMT7lC6l19BjVUezIL+rD5+DeC3X0Bpqh46pu0Zm/0EYet8PUo+1G/xTM0GNH29cVyEv91V6j/16QdxaOtk9XfodxJuWorIpnsXihVsvU4SE+Kos25nFp2WPv6qhs7Ni70b9d+AP3RewbRfopuzkflS36FYNpgj8Qb0bPphVgGU7+DBdAUo7KqjN9HCL+izB5rMryNH5U9jvuqOzNBWpkgj8QViaehdD+qCz3KjETK1NVfcnifcKlYxE2dnWpGglg9caOyvIPPKhrdlmOevkjT9yjGf0HEns0p5GU7NHQRtyjpa6cGH27407c1GIvFaqZTWozTD0qyyM176OJ7F/qRWR19Cs2qnY6mji5m48m8nWb2B1tJTmpR1rbHWU8VLCvVoTL+1zrAUutJvNxQ6P/nyIGGKY6AxDzR+W/6hpPdfyf4x3qHju6bXQd+uMk5Y9Y/pRZXuzcS2pbVS+S8hV42BfErokv64+4rzmTZnwYO1aTzLIrD8gf+33T/g7l9As5MazVAivWFsb4mKGpuJDoNkdUY9yM/vHzhfSsV9BiUtV0e4HeIaRVE/LH3GEsFryUnEs6lHOJkMPHXya2hr4d3mb9ptjmW4ebwG/KCC8EPZsq+o0w1EttpqUcN3zHr7xk51M9u/4xFnZjQ0L1e0aXCHqzFW5ql7DVG1TXZLLVcUM+iojdi+mgjhtWPA75hhT7Ib66n4Y348reRIx5d1XEsuOG6nb0sxUz+LjhQKstq2N1Z0sXO0I0vQt0seOGc86hLkrOpR3KuVTI8by7sBHRud2i/7I5wzxZ0G/OxRb9jf6tc4f5lkeWZ4qGUziGwIMo3N5NHh7LU7/fx/qtBp/iY3mbqMxYTqXzZpDBcvO0o0CHS6jvrti/ymN5PA3CVWJuJ+qAkLpZVrUTozvbB8X4OCseFOPDSXsgjw+RDULeBMq7D/J2Ut79kMfLmJh4SRNtlPve2xcO4zJdIJllD5+pJb8r4TPmma78jOse+WNHlzd1KGeTkKOWPnG8GjuMZv5Z8Uho8o4AvxZT8fWfMzsCsfuFvq1Y668aM/N0H/OKjkOjnCuFnLJ6jcEP3F1EdEU/epQJ3Iz+8fOL6FnRNNa+n8u3A85WE8MhSbvhw3YaPsRO9XPXifT/Zc4w3y74zDs9iMVvc6Ad7yL91TmbflH2sQgRhl8nXaqGiNT9+nKn1ItOBWSEis9iLYX3BpmfW3+VU+oVg/tGNfi2ZHm4Ts4DBRxw8okuHEg9AHSc1EDBylP2lDrW1Z2Uhx3SXSCb6/x2IcfK1iPo1xGW2pq2emknr1fwTSCMjJ5jhLlDyK4R/XGYACynCYCSVeZSNqYp2iN+NDIJwfePVbn4GAgPerA97S6Q/xaIrI/P0fKDkM/lQ1/tK9C36EqpJ8EGsZ8aVP7I77Chb/N7SOsjtBy/8LvyxTuIfkObsnP9G/33Rur/NUIH0ytPa9vooGiUDk8LHURPceOhw6cKTn3w+IojO9cS18RrBE5RMmvkHmvey9bh1qGeFXlAXvLWi7bDw9UDe4eKTrxwWYt60Z6g00DQuuXpXB1imlBNXvQQE5av6iGmolbaTk6Hh5iKBioqWDB/IN5MPAsttZv15z+fy9/42tShnKJX0/B70UqiVQR3EO+GALWs4M7BngLMlN0BtdJl9O0229mW6mBMTHbsLOW2krqqO+DwoAqvCKJ+O0rqmvIKlKeu64WuA0I2h04s11iETsOvizJUCZ0xu3xbsdbfclM5PnaGVkFUfJaFkaXHPI6Q3NneQt+rTOUq7k/ew2vFmNRaMe8574G8bZQ3CFhlp3J49UuZqRzW1b2UhzeT7QHZXOc7hBwrW4+g30VYOwSf1Us7ebHWbRiKL/9+s+CJvdib0mrzxAOQXY5YdwusDs8EzE6NRoZfDx21oTPR6B6Sx+Xjst8rdGmIPF5aulfIuVfIUVjbHbF2OmLtdsTa6IQVHMs4jjWONY71wsdSe4d8tgv7T35B+1ycz1naoZylQs5Yn89ZSuXBvpvtps4i3h2Rg/x3U3lw2Rg38vrnapnqtYA87Wn9rRH9k3AOaPLc4jKina1crHOHR/MH1NF8HOOkjEtwDHdr67Pqs/k2faxrPrtRVAezqQ7US/LrhD78kvx+qIN5VAfIz79Yr9qNksc+0ldAz+f7jH5xSyf1Anbs9Snlk2jntQXyloG82OtqTq+EzFZ+h+2V/S513J3qp/waEvopr1Kp1z7QD3iV6sw1jEHXgeHxufU1os5T/Zzr1egvTaxXp3gyu+yFDmo1Mfbap/ID9btwjTC6zotWXxEL6zqlXtX2GtfrKyL1qg6DoJ5cr0b/qsR6NVuORb2irVLqVZ2FivXfsde0sJ/kSxFUjI6tKqt6Vb+ew/W6NlKvamU/FoeN/vYuiMNoq5R6VbsfqfXKcRjrlS/CULsMVWO0YaXGaKPfJuqcx/wcF4r0K7o20/EijB0FaswS/IF4M3o2qwDLcPJnuDCfchoCl0DZ5EZ/jzC5aqaoT8qx14qvhSVvhBi+17HX2NDz24q1/qpjr9zMYk2pzDFWx4swbilQIxP8gbAy8QzzvF7c3U5HLdGFeKagIp8a+Ru9jUCLRheGVyP6w5FeKDYKDmF0tN4j6NVbBKr8eyhP7SixHOwdMfJz72j0JxJ7R5M9Fr3jHiDg3nEQ8noFPdv7PkE/CDS8qoRvX8Sa9B6S0y50sP8rP1WzbzUaj11i0G5Wxv6FPsFvcKjZnPIFoxuLlRIsD/vCHsjrFfRsm5jvoG0aob2fYLu8l+TE4lKeYr6Aqwu8GqZe4k85d4IxAN/YeVXrM4/A3i5igGF6/4aX6RP7DS/123QxfzS6br/kpd2ONa+o4lCTryuNnQFq5zexvjn2lma738bk4el2wFLlfXXrc43ofybij8qGsTNA7X6Dkn0Od3p3Up6qD+WPRjcWv8+J5WF/xB2SXkHPttkt6HHMxZdM4W7zdsrDdsxvMWL58Xdy580cSYeXIGUFf01XflZ0QVIQ+vAJEPU3VQ5ixc6MYbv6DYrzOyFPtZNrW59rRP9JWHH/77Tijvz8ZrDl/Ta0s6eWFPPz79Sqy6dUG+GbX1Q5kf7VBeX8fdDzLdAeQhhZR6ZXh+2uUbbdqf4/1u5iK+9oE7Xiyr+DrGIy+mRRTO4L8XjIMflPI6s02Bfxju7mkrqr/qRdHPn11iHFqaQDx7Oi/kDVlVqB2lmA1SP0x3bL9d4rZCt6nJ+qsX0N8pH+81BX37NEY4YCHbYV6NxXQM9zaKP/P5E5tIoD6P/8IpHRfxEw+Ue42mHeWID5pchYQ7VT7GPLzsVMH+WnPBdD3blfvAfkM+1tJB/z0M9Zbojoy31qO325v7G83nnP/83r6F9adu8nvJKxujdWVzcIfVPralukfIxlfLUw2h9jbQTt8Y2CdYAJJTGzFib26WqssgvwTY9YjFTL0DzO4Xb4GzQmwX5mO+l/5uYt0D+2HuUzxs4+W/YiRWWb2EWKsTE5xnDV30ynPPV75JnQoWxfimPTH54xEndHBDf/fB7p0W6Md3XrM8fheaLeYzaM2bzdvMb0UXF4N+Upnz3b/ojlZ3+MlTVPKbuHOK9jf1T9h/JHHmfF/CZPMX/cAWX9Lhrb7Y7ITC0bx9i+AvqiGLsGfDVlfyDmq3sE/b1CZ7VGu4fyYqfMjVaNj/LEl24b/ZWJ8dhpf2B6N+8P8NsGaOM9lIe+yaf0VZtNbRvGm9vhborVuxJxM4Gl4iTHaqO/MRKrVRuM+X+7ubDpo9o/nwJWsWoMT2ZN9zzpmaeqsaFB9Ggn5at8MhTLj+PCDQljgVjdtlt75dimxpGqH+Y56o6IHNRLXaS/IyJnTody5gg5Y7kGiTLV2IbLU3YtBPl5TXWnY3mUznwEI084bt1Lc5gR8xvBy/2d0T8Bc7KHWp/VXhX7Tarv8hmF2BpSCPF9L6d9hgnneszJ40qM43zOQb0zjr6HfafRBNJxLOyF7TllzqjiRsy+2CZ4LxBtuY3y0N9S3r9PHYfgXvPKGe31V++Xp/oHv6ePYxReU9styqt8wejGYgxwNk/dsy/g+GAX5WH9301y1NhRxUuu46KxI+9ZGf1bSo4dY37jOXZU6/xjGEO62m9iY8eyfsMxRN0AgP13bI0sCyP7SdXnWj2029vogTLY80nwHPleTmXmMRJjv4LorZx9BfSGx2OR90TWGXa10eGVpMPuNjrsIh2M/r8KHWL2z1NsTNgfRrfFEu2mlhGe6YPPEL8etH80Q1LK2H4mT/lBnrgtq/aEeTyXKfvWJWJtdsTCsWUH9VX6xm2eV2Ac4+tV90Ae3zaDqZe+Y3lyv/7+JcO4TMe6Yn3hfi772C7Bq24AOVftYVc1edH2oOYAZdsDr1u+2NvDLsrrtvag1pWUjfLUDGkppb1UvHVmWWp7MXyv9qJ8T7WXDm/xaU4Lz49jOFatgc9oO5Szm3TotP5id6ad7frr9M601LmJZ/1h2ypTf2rtbzZ8xjwsT2ztD/nP1trfbJJTtPb3JVr7U3PT2Nqf0T8Ha39fjaz98foe+lZsvc7oOpw79nbzueDYOXXu273WnxoF608Z4F4reLltI/1uoYfR874x0/D5tTNtdP7zf9VFzMpnUa+i9ZQaYJ7t82to59i7RLH1FKd3iZad63eJ2O8HIa/d/m+ebhNYMV23daAr1yPW1SBhqdtPsDzsl0Y/R/jlGJ4bWFZ2PW0P5KWsp7WzKc9p0I6xcwO8nqZib+p6GsaQL1H/pc7sZ5SHMvFZ7EYpPsdn7yKtgPrns7pbQU8V928rwFwdiXWqDLFbT3ZEyoz6xO4xVnz4/le/kNW0D9+MJ8MzX5koZPE5W6O9HOw0a4nWJWN92qTYOzr9YbRflxnzZoQXgh7TG349jLZFlTG9GgMrv7fyVZwDLsUxPfoRjumL3llIfafolfOHeYraGI5TX9b6zG3s+vnDfNcWYIZQfryG+jwwfSRurC3mqdN3+tDmsb35TZSn9lxNB3W+AOn57JTR3wZtM/Yuk9N50n/o5r19fm9V+Zfa22e/KXo3xfBqRL8Z6oDfZcLfFuD90y0ldU89M49tg9tx6hwp1u5R7/Nan7nd3x3pW9V7WrG+VfXFqb8RwO8aIp/FuzGcW8t9WSwPtxfv2MVza+XP6t06PJvOsRfnyrdR7FXvDaTc8lR0x8Cy1me+Y+BQxL/O5R0DyGdtX/mX0XXoXzOUf2F52L9ibSlPZce1fMdJ7I4BjIX8KwU4B8BxyCryL9VPIq/9FCb3k2+I+MvuSBnzVLaP4neYU88Xxd4R47NW9wg7oF57W395zeh7EscLTueZrj/XZ5r5/P0eyOP3PdS6Jtq06Lx7XwjR80K8xvZMZLyg9oNV20rRXcVd1d6wTX1s2vOf1Ty/6BdZlEzmxb6n6Ea/ovnnjwt7cTwrej9sOWEa/bsi8UD1qXfBs7Lv5PHZXvWeU+xc+tiN58MN53rtn/uP2J0gReezkBblpPo/+tCHyP+xP7+TZMbGscyLcor8v+iuhA9G/L/dvHwJYRr9h0qufcX8v90YITZGip17j92J4zQ+v/lcj8/Z/2Pjc4y/HFvb3dIc83/0ofdMG4mL92Ion222PvNdMB8t6V+x935Sx6Cxu2pU7OX1GTV25Xos6meWhZF2MPr/mTjecrprZua5jud814wa38bi51jcNfOpxPUZXlvaUlL31PaGbeoZ6m9w7sv9zZaITObFdl3U3xge9w3/J9Lf4NxMrQdxf2P0Xyw5X4/1N+3m67wepO4MUnP52Hzd6Dpsn7PG+k7Admtl3N+oOyBU20i5EzDV/9GHnmj5f2d2PflEBroYdq+grNFfo/mPln/WQb79rSXo8cnf+fqfffA1VzwynfjzZHWU79nk9f+v84d1yIC2tmBY9wz2uE0HS7yHg/c0Yz81u4Vh+019QNcMSenlVpaJgGt1EwjXytIPAOYb6r7IqYIf/QDlTgPbTFowjIXYrFueHiA8o51KtpkIeCXac+D6RiyrH8zrA11nLKhGh77A53k5fhjG7IisGmFgTDG83Herto2Fv7b3j179qb/7VLu2URX/e6+oTf/BHevXjhX+H038+6997Hcf/KGxwv/r/o039/y3H1g6Vvg/+rUNV71p3vlfLRObzBemAK3xWZuZCs9LtJlJqL+lXnqG+HXSpaS8M/vzU0kel4/fMWgIXRqUlydei2gIOQ0hZxxrHKsMFo8XNkCfeH3r89QwOr5PIV0yoUsW0YX581R1XGJ5fZG8iZG8/khePZI3CcowhfImA99myhsQmHm5ti58/rPFwtlA1wxJ6SHTZw7gWmwLhGu2nwsAKWMr5J9LWPPaYPG6CvLPI6z5bbDuIizkn09YC9pg3UlYyL+AsBa2weL3tpHfeK3dWT39DbS73TQWNR41Fn0d4RntHhqLLgK8TseihjUg9MkK/oYwuj/OE8cFxOI7gBYKOR2Wb3KKnohfJ12qjhsWkTwuH48bFgtdGpSXJ+4jFgs5i4WccaxxrHOFZT6ObaLTOILxYCHJmQN8uG70RlpDxLjbK3j3tP5y7P0DiOVvpjEUxg3TcarQmcdHKl4sipR/ipAz1nbmMdAURzmIxWvSSwgL7ZynPa2/ZmeMpUuIbynkIV0v0CyB50uFbIVvGO188O0LdNmUD6KsGtF/AHzwR8kHkZ99EP1zCuXxXBn1VP6JdbaH6E3vPkGPeDWif2erLGofwfjRVqgXv7Nh9D8JmLyPoOIbjvV4rVz5ouq7lU2XEFaPwMLy8F6Wsim2zx4qv9H/rLApj8eQX6338XuwuI4zl/JwDWQe5U2DvPmUh2PRBZQ3A/L4Pr6ZkMd9wSzIQ/9Zt3D4ebt2mKc9rb/cDn854lsqdqgxoNE3Bf1SUe6pYbQ/NSkP+dgnm5DH/dCy1ne0QxP0snNyNaL/DbBDbM/a9OpwT2yS2hNbBgS8pn0e5PUKeq6L8wX9eUDTbH1uEL1q5ypmNOEZt3OzUZ+gR7wa0X800s4xTiwj3aeU1H2O0J37PW5Tb4+Mk7ivWRyRybwopy+U60P/JNLXqLEh6sV9jdH/WSQeKFvG+hoVP5aIcimbLqU81Uep9ml0Y/E7dlh+bp+xsuapaqxshNHtZyHlYdtg/1drQan+jz70RtpLG6ux8z0F+iBGf9BtsBmSUvKaiuHXw2jbVFlTaVcXPH5Rc0Su8zzxnLfsXGwcaxzrbGPF1kyrxhGMBzzGxnVbnM/20Tga9yV6Be+e1l9eHz+9cJiv3vqs5rM8vh+DNePkvebxNeNxrHGsc7fOOxaxL08p649qbaCb1h+L4vUlCeseaj7Ac6c9EK8vp3iN/Lz2oGJ5bG0yNTbuIXq1VqbW5nmt7OoWUeqcMLb+aPSvBMyzvf6IZT5X6483CJuqtYfvlPXHXsrD9UceN+H6I/qPrT9WPZ/JZ2LQJnwmBm3CZ2LQJnwmBm2izsTMoLzJkDeT8gYgbxbYYSvZAeucz5jiWsTESFknUZ46m6ps2095aKPJlIcxro/ysE7qlIe2NZvYvTzt4nGe9rT+cjy+PxJjVB+i5s1G3xT02G+ZPp7r0Lymt6z1vew69H6ww/g69Eiss7UOfTwS72Pr0AtL6t4rdFftE9vUJZG5ZcqYA3H5t6xU/6jGQtw/viEy5lDz6diYw+jfdA7HHGoPQJ2BwPG8YTPmWKxDY/m5fcbKmqeya/RWpkYYHQ95jRr9fzHJmSPkpPo/+pCt11R9L+Dtv33x2q/e+eUlVd4LwHO4xmdrNahPifr976i/JbVWY/h10qWkvDNrNXWSx+Xje/smVZP3mxnxozzErJO8ydXk9fL+BNdN/s/GmX0Fuhhvjeh/lsZ6A4KnQXl54rUKzOsVz3rOEdYUgYV2tDrJ2+E76Sw427gZktIVPC43DMSu6AvbUtuW4ddDR75+pm1NJnlcPp4nDghdVH29Fug6rftTXYp1wBHrqCPWcUcsT3sddsQacsQ66Ig16IjlWcZjXarXw45Ynu3Rsx73O2J5tqGTjlie9ejpq6cdsTz964Qj1usdsTz9vltjjmcZH3PEus8R63FHLE97eY5NPP2rW8eFnn7frWO5fY5YRxyxPP2+W8dy3er3nmMTz3p8MfRp3TqW69ZY6DmW84yFnvXoaS9PX/Ucf93viNWt469HHLE827ZnG/K0l2c/5NmGutX2nvHLc13ugCNWt/qX59i3W8eYnrb36jvyz3UnrDxZ3zG1ABs/q73RekROJnTuFXLwjMJA6xnuFRlOfxhtixL7UMm/Z2/4ddKlpLwsVj9YPt73miJ0Uecqua5i+5QoR2HVHLH47EVNYKl9v4z4kV7Za3IYPv94bGjfgX1Dp27ae9+xB9cdejBQqtH3mwpU3Ep0dxWo1itwM/rHz7fSs15Bi9hTw+iq6SvQOwCe+nmjhuCvReRkHcrJhJwBwcdNG12nRFNbndq0Db8eRpe5StNWrqrsYmWvC10alJenh4CuSujFvEOOWIcdsU46Yg06Yj3siHXMEWvIEeuUI9YJR6x9jlie9ehpL09f3e+I5emrBxyxujVOeLZHT9t3q68+6ojl6ROevuppr+OOWJ4x2nMMcNoRa58jlmcb6lb/ejHEr7Hoh2wsj1dT46u4v79opMwJkNdLvBnIrBH9KxcP83180UjZGci2z/2El4VSc5o1GeGFoOdQhl8nXUrKOzOH6iF5XD6eQ/UKXRqUl6cHgY7zesWzGNYxR6xHHbGGHLH2O2INOmKddsTa54h1xBHrsCNWt9ajp696tkdPvR52xDrgiHXSEcvTJx5xxPL0iROOWJ728oxfnnqdcsTyrEdPvbq17/CsR0/be7ZtzzI+5oh1nyPW445Ynvbq1n7bs22PRV9r+2o4H+snOWru0xORg/w8L0K+rPW3n/Szz82QlHoywjM98Rni18PoMpeQl8Xsr+zCe4rI26C8PPGrvUpOJuRkAiuml+PWtKl4EdGtLVAtE7gZ/ePnF9EzZQrEVr8s1i9kWYqZtlHAn6eBiBzl9rYMMyno5sfb52WbH/JbnpKTdSgnE3LYrmo5KU97W3/5F+Juai0n4c0hvUIeYqWElopb9smncXjLvtPQorbsY6GlT+jC/pCnu4GO83rFs5hv9TpiOXUFE8weE0SmshXbEf3qLsrDGzbwV9w59dJ3LE+O//1LhnGZjnVFHzO9VVvmYzFl2zLy9xRgqV9OzNMuyEd6u/mmwzq9UNUp+0tfRezU9h27ZY3bPh9faoZ4+skb31F/1a7BS8q2I6OfKOjV8R6zVcXbZ1YNgIxAsi1PHQOzPHXbXc7/ZvKTir9svSrFfoiv4iMPvVLrYnrQ/Uye8MYaxDK6ADrVIE/JqRH9EGy/HKcb57gPsWdvitBlBX+VzqiPPasL+l5Bb7InCXrLw9OUaFekQXshVh3ykf7JVtmtTjCmG39DyMc2Ewr0Ljotyli94pnR5+U8vXhkGSqOXTK72TFPHCPwL8owO/ULejxxbInrfxI87xVYE4nP6H+Q6gV93/gbQj6261Cgt7oZK+avaqs1t893Lx7WuU44qbH+A1etecWU7SveMFa/nD7ld37ljs/96+EVVW5IU0deU+NA0XgiT7tbfzvsq3tU/xDS+bOUcUTFvvGbqeMIw68H3V80Q1I6M09gf+fycd9frybvG/ktvRZPiuaqaDuUw2OEXsGjxg+GkfM/u2RkOSrOr77RoQ/+B2/v5wmPVfzs4mFcLHvRDefYryP9L0C//j6IjYZr/BhHp4bR7YPbtNm7R9DiZzUOU3ZDequvohtI+6isRv9BmPPPW6AxU4+lGP2HxDqCYarbDFWbMfrYjXCoj3o7aTLxoe7Yz/AzVT8Z0aIOedotdCr6Xhc4RTr0Cxw1b6yTrmpegu0mdmsotpufhbq0PqtfyB/LdYKM8rBsW4GOUy99R51zjLfTWDwILGUfno969N32fAI8Z7m9RNtHtLHb4juZZ/D4YoLQwb5PjOifEU7sVndub+pvqr6Z0Ff1JZ3KQaxtrb8d9nkLY2vYeT38ZUKfp8YM3Of9FfR5n0vs8yyPx2152g7POKbzOAgx8sT7FhYj+wAfafqpTEb/BdG3qRhiWHnZ/47s2Q95sX6kRvT9S4b5vkz2RHvxK3YcxwN8nwS6IG2edhfY4OtQr/+4uFgWzjOLyphj/MtiTYc6IB1jVO3X1PiK227K+IrbKvIpGRyPi/pu843JbfLVzc1BPOsR9P0F5Q1Cdr0N7kSBo+J7nfIykcexB8uLcYvHHBgXMG79ZaS9ZGFkuSZRufoj5coEH7dz1H1iRHdlP4wfVdcQvvvz3/zzHzg9/ytjtUbxqnee+N6Bq97/S2OF//OT//iGX39n/z1l1kCsntWrx+xbao07TzsgH+kX09y14hpD4PKouBGbn/EaM+t/V4H+L4V+ZNmSkfLU/ES1maL+d0KiLka/oiUf53WxfYkOf8Ghpn7BAeMaj3dVvFXriUbfbm5pNmmE0fGVZas9Y7Qpj2nMRn1Bz+8Nj/3hcqgD/oUVFZstTx0xUn0h71+rfcecZj21q4rj24lqHGGJ936xjOp1ed5P5tvoMQ/rktfRMak5pJU113lDwn6yig/cXtW6Smy8qNqd4XdbuzPfb4TR9cL+lurDReM5JQ/tgH21+XDRmjy2aZxz3blkGA/tjvEUeTmeGv1DENs3U2xHG7M/qDjBuoSQdg5EzeUHBJ/VS4f7xBOwflFPfIb4al+/ylq9GpvG1uorjhNq3MeiPFUP04K2qVrP57miWu+JzZNi8US1P26bah1B9SGx+ZzJxjXzlHGTalvIy/3kAWhbT0bGTUVjoxD0PIDpY7EPdVW2n0R5au5vnydH5Ci9YjdKKb0wJiMvy25XhtS+ymmMOEH1VVgn3EaUXWI3TalbrvB2MW4j6ld/yvZtkyhP9fHt+rYnC/ooLAfGP57fqjaGfV/V+eErL/jBeQs/+rqBsZp/Tqgt/LHm+/esKzP/VHGlh3DRDrzenqdNrb8p+9wV+87k87Dcd3a6z53ad6rxOvcFuM7C573UGow6P3K2sNTchOuy4jgheRzEZxYq+k70zILq39T8iueN2P+w/Tu5RqEbsbD9x8bHKfWq5Kgx/Vjv3RX9krKHHHX1hTrL3akcdS5c7cvi/O2D1Deq9TDkLVoP+xSMMT+0ZCSN6f5hoPltWjPBMpdoy3U1J7ek1j7Yb9U40PJwbMP+gWMbfsdmKuiAZyE4qfUUo8vl9SwdxmU6S2jLlPeM+PxuRni8dmz0H6X64r34ZkhLau0Yz0e+UHyhSn2/PKG+VR3H3sfguU1sbqrW5FSsLIpviK9i0i7CR3vE9shUmY0X995jsYt9H+k/g/vTFA/VnFbFYHvebh09tsdtvB3+Wu5k9mdMyp+5HajbiTm2qXbQgDyOidMgj+czmFQbMTuUiYlfLujXTAbWRZ54zqf23bG/tPJVPUOcAabpZGVHvfjdFWxPNXpW8UztGdupsyU43uK1tzP+uXQkjjoDEzv7rt5J6BVy1Zn8ySWx+glrYgdYuG7B9BMr6qWw+N2CMu8KfK1gXX8s95n7lw6XifvE74R95mUt/XP7DSwdKe9s7zNPb8kf32c+d/vMi6AOzuU+89XUrl6s+8xlxsnj+8yj6+Vc7jObD5fdZ74Gxhho97L7zJsgtr+aYvv4PvPzaXyfeXyfOYTy+8zboG09Ehk3je8zj47J4/vMw/TfqfvMjxT0UViOKvvM1vf9X7HlZhD8pQQA",
|
|
2291
|
-
"debug_symbols": "tb3Rruw4cmD7L/XsBzHIYJD+lcHA6PH0DBpodBtt+wIXhv/9JkOKWHlO3eTRztz10md1VZ1YEqWIlKiQ+F+//e8//6///L//8pe//Z+///tv//w//uu3//WPv/z1r3/5v//y17//65/+4y9//9vjn/7Xb8f6H6u//XP9p9+s/fbP+vhDzz/6+Yedf4zzj+l/jOP8o5x/yPlHPf84o4wzyjijjDPKOKOMM8o8o8wzyjyjzDPKPKPMM8o8o8wzyjyjzDNKOY7rz3L9Kdef9fqzXX/q9We//rTrz3H9ecUrV7xyxStXvHLFK1e8csUrV7xyxStXvHLFkyueXPHkiidXPLniyRVPrnhyxZMrnlzx6hWvXvHqFa9e8eoVr17x6iOerT/t+nNcf87zz/aIV44FJUACHiFLXfCIWfw/1oAeYAEjYF6gK/JYUAIkoAa0AA3oARYwAuYFPSL3iNxX5LmgBrSAFXmNRO8BFvCILA7zAjsCSoAE1IAWoAE9wAIiskXkEZFX2sgan5U4J9SAFqABPcACRsC8YCXSCRF5RuQZkWdEnhF5RuQZkWdEnldkOY6AEiABNaAFaEAPWJHnghEwL1hZdkIJkIAa0AI0oAdE5BKRS0SWiCwRWSKyRGSJyBKRJSJLRJaILBG5RuQakWtErhG5RuQakWtErhG5RuQakVtEbhG5ReQWkVtEbhG5ReQWkVtEbhFZI7JGZI3IGpE1ImtE1oisEVkjskbkHpF7RO4RuUfkHpF7RO4ReeVglQUjYF6wcvCEEiABNaAFaEAPiMgWkS0irxysuqAESMAjcjsWtAAN6AEWMALmBSsHTygBEhCRZ0SeEXledUOmBYyAq27U4wgoARJQA1qABvQACxgBa5sfVb2uHDyhBEhADWgBGtADLGAERGSJyBKRJSKvHGxtQQvQgB5gASNgXrBy8IQSIAERuUbkGpFXDjZbYAEjYP2slgesHDyhBEhADWgBGtADLGAERGSNyBqRNSJrRNaIrBFZI7JGZI3IGpF7RO4RuUfkHpF7RO4RuUfkHpF7RO4R2SKyRWSLyBaRLSJbRLaIbBHZIrJF5BGRR0QeEXlE5BGRR0QeEXlE5BGRR0SeEXlG5BmRZ0SeEXlG5BmRZ0SeEXlekdtxBJQACagBLUADeoAFjICIXCJyicglIpeIXCJyicglIpeIXCJyicgSkSUiS0SWiCwRWSKyRGSJyBKRJSLXiFwjco3INSLXiFwjco3INSLXiBw52CIHW+RgixxsnoN1QQvQgB5gASNgXuA56FACJCAia0TWiKwRWSOyRmSNyD0i94jcI3KPyD0i94jcI3KPyD0i94hsEdkiskVki8gWkS0iW0S2iGwR2SLyiMgjIo+IPCLyiMgjIo+IPCLyiMgjIs+IPCPyjMgzIs+IPCPyjMgzIs+IPK/IehwBJUACakAL0IAeYAEjICKXiFwiconIJSKXiFwiconIJSKXiFwiskRkicgSkSUiS0SWiCwRWSKyRGSJyDUi14hcI3KNyDUi14hcI3KNyDUi14jcInKLyC0iRw5q5KBGDmrkoEYOauSgRg5q5KBGDmrkoEYOauSgRg5q5KBGDmrkoEYOauSgRg5q5KBGDmrkoEYOauSgRg5q5KBGDqrn4FhQAiSgBrQADegBFjAC5gUjIo+IPCLyiMgjIo+IPCLyiMgjIo+IPCPyjMgzIs+IPCPyysF+LOgBFjAC5gl95eAJJUACakAL0IAeYAErcl0wL1g5eEIJkIAa0AI0oAdYQEQuEVkiskRkicgSkSUiS0SWiCwRWSKyROQakWtErhG5RuQakWtErhG5RuQakWtEbhG5ReQWkVtEbhG5ReQWkVtEbhG5RWSNyBqRNSJrRNaIrBFZI7JGZI3IGpF7RO4RuUfkHpF7RO4RuUfkHpF7RO4R2SKyRWSLyBaRLSJbRLaIbBHZIrJF5BGRR0QeEXlE5BGRR0QeEXlE5BGRR0SeEXlG5BmRZ0SeEXlG5BmRZ0SeEXleke04AkqABNSAFqABPcACRkBEjhy0yEGLHLTIQYsctMhBixy0yEGLHLTIQYsctMhBixy0yEGLHLTIQYsctMhBixy0yEGLHLTIQYsctMhBixy0yEGLHLTIQYsctMhBixy0yEGLHLTIQYsctMhBixy0yEGLHLTIQYsctMhBixy0yEGLHLTIQYsctMhBixy0yEGLHLTIQYsctMhBixy0yEGLHLTIQYsctMhBixy0yEGLHLTIQYsctMhBixw0z8G+YATMCzwHHUqABNSAFqABPSAij4g8IrLnYFlQAiSgBrQADegBFjAC5gnjOAJKgATUgBagAT3AAkZARC4RuUTkEpFLRC4RuUTkEpFLRC4RuURkicgSkSUiS0SWiCwRWSKyRGSJyBKRa0SuEblG5BqRa0SuEblG5BqRa0SuEblF5BaRW0RuEblF5BaRW0RuEblF5BaRNSJrRNaIrBFZI7JGZI3IGpE1ImtE7hG5R+QekXtE7hG5R+QekXtE7hG5R2SLyBaRLSJbRLaIbBHZIrJFZIvIFpFHRB4R2XPQFtSAFrAizwU9wAJGwLzAc9ChBEhADWgBEXlG5BmRZ0SeV+R5HAElQAJqQAvQgB5gASMgIpeIXCJyicglIpeIXCJyicglIpeIXCLyykE7FpQACXhEtrKgBWjAeoJXF1jACFgP8dp6bHoElAAJqAEtQAN6gAWMgIjcInKLyC0it4jcInKLyC0it4jcInKLyBqRNSJrRNaIrBFZI7JGZI3IGpE1IveI3CNyj8g9IveI3CNyj8g9IveI3COyRWSLyBaRLSJbRLaIbBHZIrJFZIvIIyKPiDwi8ojIIyKPiDwi8ojIKwetL5gXrBw8YUVe5+HKwRNqQAvQgB5gASNgnvB49n4klSRJqkktSZN6kiWNpHSUdJR0lHSUdJR0lHSUdJR0lHSUdEg6JB2SDkmHpEPSIemQdEg6JB01HTUdNR01HTUdNR01HTUdNR01HS0dLR0tHS0dLR0tHS0dLR0tHS0dmg5Nh6ZD06Hp0HRoOjQdmg5NR09HT0dPR09HT0dPR09HT0dPR0+HpcPSYemwdFg6LB2WDkuHpcPSMdIx0jHSMdIx0jHSMdIx0jHSMdIx0zHTMdMx0zHTMdMx0zHTMdOReV4yz0vmeck8L5nnJfO8ZJ6XzPOSeV4yz0vmeck8L5nnJfO8ZJ6XzPOSeV4yz0vmeck8L5nnJfO8ZJ6XzPOSeV4yz0vmeck8L5nnJfO8ZJ6XzPOSeV4yz0vmeck8L5nnJfO8ZJ6XzPOSeV4yz0vmeck8L5nnJfO8ZJ6XzPOSeV4yz0vmeck8L5nnJfO8ZJ6XzPOSeV4yz0vmeck8L5nnJfO8ZJ6XzPOSeV4yz0vmeck8L5nnJfO8ZJ6XzPOSeV4yz0vmeck8L5nnJfO8ZJ6XzPOSeV4yz0vmeck8L5nnJfO8ZJ6XzPOSeV4yz0vmeck8L5nnJfO8ZJ6XzPOSeV4yz0vmeck8L5nnknkumeeSeS6Z55J5LpnnknkumeeSeS6Z55J5LpnnknkumeeSeS6Z55J5LpnnknkumeeSeS6Z55J5LpnnknkumeeSeS6Z55J5LpnnknkumeeSeS6Z55J5LpnnknkumeeSeS6Z55J5LpnnknkumeeSeS6Z55J5LpnnknkumeeSeS6Z55J5LpnnknkumefeKDTEyZJG0gxaeX5RSZKkmtSSNCkdPR09HT0dlg5Lh6XD0mHpsHRYOiwdlg5Lx0jHyvNRnSSpJrUkTepJljSSZtDK84vSMdMx0zHTMdMx0zHTMdMxw+FNRReVJEmqSS1Jk3qSJY2kdJR0lHSUdJR0lHSUdJR0lHSUdJR0SDokHZIOSYekQ9Ih6ZB0SDokHTUdNR01HTUdNR01HTUdNR01HTUdLR0tHS0dLR0tHS0dLR0tHS0dLR2aDk2HpkPToenQdHien13FljSSlmN14XpD0kUlSZJqUkvSpJ5kSSMpHZYOS4elw9Jh6bB0WDosHZYOS8dIx0jHSMdIx0jHSMdIx0jHSMdIx0zHTMdMx0zHTMdMx0zHTMdMxwyHNy5dVJIkqSa1JE3qSZY0ktJR0lHSUdJR0lHSUdJR0lHSUdJR0iHpkHRIOiQdkg5Jh6RD0iHpkHTUdNR01HTUdNR01HTUdNR01HTUdLR0tHS0dLR0tHS0dLR0tHS0dLR0aDo0HZoOTYemQ9Oh6dB0aDoyz1vmecs8b5nnLfO8ZZ63zPOWed4yz1vmecs8b5nnLfO8ZZ63zPOWed4yz1vmecs8b5nnLfO8ZZ63zPOWed4yz1vmecs8b5nnLfO8ZZ63zPOWed4yz1vmecs8b5nnLfO8ZZ63zPOWed4yzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM8975nnPPO+Z5z3zvGee98zznnneM8975nnPPO+Z5z3zvGee98zznnneM8975nnPPO+Z5z3zvGee98zznnneM8975nnPPO+Z5z3zvGee98zznnneM8975nnPPO+Z5z3zvGee98zznnneM8975nnPPO+Z5z3zvGee98zznnneM8975nnPPO+Z5z3z3Ju2ZnGqSS1Jk3qSJY2kGbTy/KKSlI6ejp6Ono6ejp6Ono6eDkuHpcPSYemwdKw8n82pJ1nScnSnGbTy/KKSJEk1qSVpUk+ypHSMdMx0zHTMdMx0zHTMdMx0zHTMdMxweJPXRSVJkmpSS9KknmRJIykdJR0lHSUdJR0lHSUdJR0lHSUdJR2SDkmHpEPSIemQdEg6JB2SDklHTUdNR01HTUdNR01HTUdNR01HTUdLR0tHS0dLR0tHS0dLR0tHS0dLh6ZD06Hp0HRoOjQdmg5Nh6ZD09HT0dPR09HT0dPR09HT0dPR0+F5vl4e9Vaxi0qSJNWklqRJPcmSRlI6RjpGOkY6RjpGOkY6RjpGOkY6RjpmOmY6ZjpmOmY6ZjpmOmY6ZjpmOLyR7KKSJEk1qSVpUk+ypJGUjpKOko6SjpKOko6SjpKOko6SjpIOSYekQ9Ih6ZB0SDokHZIOSYekw/N8OpUkSarrpfXi2EAFO2jgAGfi+U78iQUUEFvD1rA1bA1bw9awKTbFptgUm2JTbIpNsSk2xdaxdWwdW8fWsXVsHVvH1rF1bIbNsBk2w2bYDJthM2yGzbANbAPbwDawDWwD28A2sA1sA9vENrFNbBPbxDaxTWwT28Q20+b9boEFFLCCDVSwgwYOEFvBVrAVbAVbwVawFWwFW8FWsAk2wSbYBJtgE2yCTbAJNsFWsVVsFRu1ZFJLJrVkUksmtWRSSya1ZFJLJrVkUksmtWRSSya1ZFJLJrVkUksmtWRSSya1ZFJLJrVkUksmtWRSSya1ZFJLJrVkUksmtWRSSya1ZFJLJrVkUksmtWRSSya1ZFJLJrVkUksmtWRSSya1ZFJLJrVkUksmtWRSSya1ZFJLJrVkUksmtWRSSya1ZFJLJrVkUksmtWRSSya1ZFJLJrVkUksmtWRSS2bWEjmylsiRtUSOrCVyZC2RI2uJHFlL5MhaIkfWEjmylshxYCvYCraCrWAr2Aq2gq1gK9gKNsEm2ASbYBNsgk2wCTbBJtgqtoqtYqvYKraKrWKr2Cq2iq1ha9gatoatYWvYGraGrWFr2BSbYlNsik2xKTbFptgUm2Lr2Dq2jq1j69g6to6tY+vYOjbDZtgMm2EzbIbNsBk2w2bYBraBbWAb2Aa2gW1gG9gGtoFtYpvYJraJbWKb2Ca2iW1io5YUakmhlpSzljTHCjZQwQ4aOMCZeNaSEwuI7awlh2MDFeyggQOciWctObGAAmITbIJNsAk2wSbYKraKrWKr2Cq2iq1iq9gqtoqtYWvYGraGrWFr2Bq2hq1ha9gUm2JTbIpNsSk2xabYFJti69g6to6tY+vYOrazlnRHAwc4E89acmIBBaxgAxXEZtgM21lL5sKzlpxYQAEr2EAFO2jgALFNbBOb15Li+ea15MIGLpuIYwcNHOAM9PbDwAIKWMEGKthBA92mjjPRa8mFbuuOAlawgQp20MABzkSvJRdiE2yCTbAJNsEm2ASbYKvYKraKrWKr2Cq2iq1iq9gqtoatYWvYGraGrWFr2Bq2hq1hU2yKTbEpNsWm2BSbYlNsiq1j69g6to6tY+vYOraOrWPr2AybYTNshs2wGTbDZtgMm2Eb2Aa2gW1gG9gGtoFtYBvYBraJbWKb2Ca2iW1im9gmtoltpq0eB1hAASu4bP6FOO9zDOyJngzqtLy1LvSz3j8e5117gQJWsIEKdtDAAc5ExabYFJtiU2yKTbEpNsWm2Dq2jq1j69g6to6tY+vYOraOzbAZNsNm2AybYTNshs2wGbaBbWAb2Aa2gW1gG9gGtoFtYJvYJraJzc/6OhwbqGAHDRyg29Yvszf8BRZQwAo2UMEOGjhAbAWb/4L6Rw29+S9w2VpxbKCCHTRwgDPRf0HX9/zEuwADBXRbd2yggm7z7fVf0AsHOBP9F/TCAi6b+r75L+iFDVSwgwYOcCZ6LbmwgNgaNq8l6kPiteTCDvperC+wejPg4zLb0SP4QHl90PM/ULCDBg5wJnp9WB8QEu8ADBSwgg1UsIMGDnAmGjbD5vVB/bB4fbhw2brvsdeHCzto4ABnoteH9dkK8a7AQAEr2EAFO2jgAGfixDaxeX3ofrC8PlzoNnVUsIMGus2HxOuDozcKBhZQwAou23o5XbxbMLCDBg5wJnp9uLCAAlYQW8Hm9WG9BS/eORg4QN+3dU5682BgATvoEdYx9ibAxx2Yo29Od6xgAxXs4Ao2fCM9pS+ciZ7SFxZQwGUbvhee0hcq2EEDBzgTz49tn1hAAbEptvOz2z4k54e3TzTQbdVxJp4f4D7RbT6Snv7DR8fTf/UqifcGBirYQQNHoif69I30RL+wgg1UsCd6Fq5eIfHOvcClmL69nm/TTw3Ptwsr2EAFe6B31z3uZR07aOAAZ6LnxYUFFLCCDcRWsBVsBVvBJtj8F3I9MBdvoxOf7PA+usddtuMAZ6J/+fqojgUUsIINVNDjrgPgnXKPW3ZHj+Bb5t+5vrCBHsGH2r92faGBA5yJ/tXrC93me+xfvr5w2YrvvH/9+kIFV9yyTiPviHvMCjgK6NvbHT2C76Z/5/rCDhrocX0c/JvzJ/pX5y90m4+Of3n+wgpiM2yGzbD5V+gvnHksBkdzcDQHR3NwNAdH079Afx5C/+L8eQj9m/PnwZoczcnR9C/Pn8dicjQnR3NyNCdHc+bR9Ga487h5N1ygxMHyfrjABlocQm91O4+b97oFShxC73Y7B8rb3QIV7KDFwfKWt8A8mt70dh4s73oLFBCbYBNsgk3yaHpLmRQfEk+GCw30zfHR8WQ40ZPhwgIKWMEGKtjBZRPfHE+RC2eifxb+wgIKuGziA+WJc6GCHTRwgDPRE+fCAgqIzbB54vjMn3ecBRroNj81PHFO9MS50G0+6p44F1awgW4bjh7XR9KXbzjR0+nCAq641c9fT6frU/Yrrs8/eLtZYAcNXLbqe+zp5Og9Z4EFdFt3dMVwdMV0XAq/EfN+M2nnXxvgTPR8u7CAAlZw2dr5UX4F3eZiz7cLBzgTPd8uLOCy+Q2T958FNlDBDho4wJnov4UXFhBbxea/hX5P5p1ogR10my9N4L+QF85EXxnCb9q8E+1xheQoYAUbqGAH3WaOA5yJXiouLKCAFWyggh3EptgUW8fWsXVsHZuXCr/B8060wA76WeK76aXiwpnopeLCAgq4bN2Pm5eKCxXsoIEDnIleFLofYy8KFzZQwQ4aOMCZ6KXiwgJim9gmtoltYpvYJraZNu85CyyggBVsoIIdNHCA2Aq2gq1gK9gKtoKtYCvYCraCTbAJNsEm2ASbYBNsgk2wCbaKrWKr2Cq2iq1iq9gqtoqtYmvYGraGrWFr2Bq2hq1ha9gaNsWm2BSbYlNsik2xKTbFptg6to6tY+vYOraOrWPr2Dq2js2wGTbDZtgMm2EzbIbNsBm2gW1go5ZMasmklkxqyaSWTGrJpJZMasmklkxqyaSWTGrJpJZMask8a0l1NHBcWI+zgByOBRSwgg1UsIMGDnAmFmwFW8FWsBVsBVvBVrAVbAWbYBNsgk2wCTbBJtgEm2ATbBVbxVaxVWwVW8VWsVVsFVvF1rA1bA1bw9awNWwNW8PWsDVsik2xKTbFptgUm2JTbIpNsXVsHVvH1rF1bB1bx9axdWwdm2EzbIbNsBk2w2bYDJthM2wD28A2sA1sA9vANrANbAPbwDaxTWwT28Q2sU1sE9vENrHNtBVqSaGWFGpJoZYUakmhlpSzlnRHAwfotrHwrCUnFtBt5ljBBirYQQOXbU1dV280u9BryYXLZr69XksurGADFezgsq3Pw1ZvNAuciV5L1sdCqzeaBQpYQY+rjh7BB8rrw4UF9Ag+UF4fLmygb+907KCBA1y24Tvk9eHCAgq44g4fPs/5NXVdvSHsQs/5C/1ouuLM+RMr2EAFO2ig23xQPedP9Jy/sIACVrCBCnbQQGyGbWAb2Aa2gc1zfviB9ewefmA9uy+ciZ7dFxZQwAo2UMEOYpvYZtrOpSYvLKCAFWyggh00cIDYCraCrWAr2Aq2gq1gK9gKtoJNsAk2wSbYBJtgE2yCTbAJtoqtYqvYKraKrWKr2Cq2iq1ia9gatoatYWvYGraGrWFr2Bo2xabYFJtiU2yKTbEpNsWm2Dq2jq1j69g6to6tY+vYOraOzbAZNsNm2AybYTNshs2wGbaBbWAb2Aa2gW1gG9ioJUItEWqJUEuEWiLUEqGWCLVEzlrSHTto4ABn4Llk5oUFFLCCDXTbdOyggW7zVSPPWuJ41pITCyhgBRuoYAcNxFawncvbFscCCrhs62lfrecytycquGzTd+hc2tb/2rmU7eFYwUeEuh7/VP+oXWAHDRzgTFz1oR7nspwFFLCCDVSwgwYOcCYqNsWmblPHCjbQbX4SaAcNdJsfAJ2J/QAL6DYf6lUfavGRXJWgFh9qX/r2wgHORF8At/jw+RK4xffCF8Etvjm+DG5xmy+Ee6GCHXSbb44viHvhTPRFcS9cNvHtXen/OMMcl2I1Ulfvgavim7PSv4orVvoHDnAmrvQPLKCAbvNtmA3seXp6zl84wDx/vfEtsIACVrCBCnbQwAFiK9hWzj/qgaOAFVw7VM//VsEOGjjAmbhyPrCAAlYQm2ATtzVHAwc4E+sBFtBt6ljBBirYQQMHOBO9PlxYQGwNm9eH9YyqeuNbYAfdNhzdNh1noteH5ofF68OFy9Z8oLw+XNhABTto4ABnoteHCwuIrWPr2Dq2jq1j69g6NsNm2AybYTNshs2wGTbDZtgGtoFtYBvYBraBbWAb2Aa2gW1im9gmtoltYpvYJraJbbpNHGegN8kFFlDiJ1SPCjZQwQ4aOMCZeNaSE30vqmP+SnvjW/V1rL3xLXAmen24sIACVtDHQR1zfL0d7trNyh57zl9YQR/f7qhgBw0cKLC1AyyggBVsoOY2eM5faOAAZ27DmfMnFhAbOa/kvJLzSs4rOa/kvCrnTmckOyPZGckz530bOiPZGUlyXsl5JeeVnFdyXsl5JefVOG5nzp/ISBojaRy3M+dPZCTJeSXnlZxXcl7JeSXnlZxXcl4Hx20wkpORnIzkZCTPnDfHBrrN0+nM+RMNHOCyXSupH2ABBaxgAxXs4LKtB/jVGwADPecd/UrBs9Bb/epaa7Z6q1+ggh3MI9TLAPMIdTnAAgpYwTxC/nG9wA4aOMA8+3o9wAIK6HvRHDtooI+Oj4PXB/Ut8/pwYQEFrGADFeygJZ6zBy4+Zw9OFLCCDVSwgwYOcCZ2bB1bx9axdWwdW8fWsXVsHZthM2yGzbAZNsNm2AybYTNsA9vANrANbMw59oFtYBvYBraBbWKb2Ca2iW1im9gmtoltYptpO9sNLyyggBVsoIIdNHCA2Aq2gq1gK9gKtoKtYCvYCraCTbAJNsEm2ASbYBNsgk2wCbaKrWKr2Cq2iq1iq9gqtoqtYmvYGraGrWFr2Bq2hq1ha9gaNmqJUUuMWmLUEqOWGLXEqCVGLTFqiVFLjFpi1BKjlhi1xKglRi0xaolRS4xaYtQSo5YYtcSoJUYtMWqJUUuMWmLUEqOWGLXEqCVGLTFqiVFLjFpi1BKjlhi1xKglRi0xaolRS4xaYtQSo5YYtcSoJUYtMWqJUUsGtWRQSwa1ZFBLBrVkUEsGtWRQSwa1ZFBLBrVkUEsGtWRQSwa1ZFBLBrVkUEsGtWRQSwa1ZFBLBrVkUEsGtWRQSwa1ZFBLBrVkUEsGtWRQSwa1ZFBLBrVkUEsGtWRQSwa1ZFBLBrVkUEsGtWRQSwa1ZFBLBrVkUEsGtWRQSwa1ZFBLBrVkUEu87bKunsjqbZeBHTRwgDPR71AuLKCAFcTWsXVsHVvH1rEZNsNm2AzbWUuKo9uGYwcNHOBM9DuUCwu4bN4C4M2YgQ1ctu5iv0O50EC3TceZ6HcoFxbQj5s4VrCBCnbQwAHmM+yzGfPCAvrTdXX0vTj/aQcNHOBMXFUjsIA+Zs2xgg10m4v9DuVCA91WHWei36FcWEDvHOiOFWyggh00cIDZp3C2XV5YQN+LExXsoO+FOQ5wJvodireEeINloI/ZdKxgA5fNmzS8wTLQwAHORJ/BuLCAy+Y9I95gGdhABTtooL8v4ofbryr8acnZSllOrGADFeyggQP091D8fDhfcjqxgAL6S0MnNlDBDho4wJl4vuR0YgE58oMjPzjygyM/OPKDIz858pMjPznykyM/OfKTIz858pMjPznyM4588/7JwALGkW/ePxnYQAU7aGAc+XZ2Sq4j385OyXJiBRuoYAcNHGAc+XbkC1HtyBei2pEvRLWzU/I4sYEKdtDAAc7EeoAF9NHxPfacv7CDBvqxqI4z0XP+wgL6S2R+WM5XGE9soIIdNHCAM/F8hfFEP8bm2EAFO2jgAH0vxkL/9b+wgAJWsIEKdtDAAWIzbP7rv1q7mnc/BlZw2Ybvsf/6X9jBZRt+hPzXf/gB8F//4cfYf/0vLKCAFWyg27pjBw0c4Ez0SnBhAQWsYAOxTWwT28Q20+bdj4EFdNtwrGADl23NOTbvfgw0cIAz0a8JLly2WR0FrGADFeyggQOciX5NcCE2weazluv17ebdj4EKus2HxGct14OT5t2PgTPRZy0vLKCAFWyggg9b89z0z+wFjoXFcSauqhFYQFnom76qRmADFeyggQOcieo2dSyg23x0tIINVLCDrjDHmdgPsIACLkXxIVkFJFDBDho4wGUrPlCrgAQWUMAKNlDBDho4QGwD23CbZ8AQsIJu89NzKNhBt/kBGG7zQR1u84GaB1hAASvYQL/odRpJ86Kzj/KkkiRBxYMPxwo2cP1aqVNPsqSRNIP8x/0kjzgd1zCsRpLm/Yr1/PcjaQadjxCcSpIk1aSWpEkuKY4GrrFe3SrN2xQv9DS8cG3mehe5eethEw/mqXWhtw44eQDfUM+sCwsoYAVbDInmcGoOp+Zwag6n5nB6Ip2D6ClzDqKnzHrzuHkfYaDvqh9YT5kTPWXEj6anjO+TZ8xJNaklaVJP8oi+IZ4A1TfEE8A1fv6fpEnrb/um+cl/0kiaQX7mn1SSXOKH0M/7C5el+nFbP5yBHVxB/Wh5g1/zU8Mb/AJXBHXSGBjv7ws0cIAe1v/a+i0MLKDEgHt/X2ADsRVsBVvBVrAJNsEm2ASbYBNsgk2wCTaZiWevj1Oe1N4KGFjBBmqi/05V3wRPpgsN9J4Hpxnk17YnlSRJqkktSZN6kiWlQ9PR09HT0dPhv1H1xAYq6HlQHA1cg1h95DzhTvSEu7CAAlawgZ50fo6eWXeigcu2HnU3b9e70H+jLvT09uPgKXphBb2XzkmTepIljaQZ5Pnoqenfomue4d6S15pv/zRwgDPQW/LaehG+eUteoIAVbKA3Yzot2Xqi3rwjL3CAS7YejTfvyAssoMvUsYIu644KdtCvs5xG0gzyFD2pJEmSRzRH31IfC8+5NT/YvL8usIACri3tvoOedBcq2EED/eR0mkH+s3eS57eTJNWklqRJPcklJw5wJvrP4IW+ma70S8kL/VrIaSTNIL+k7H5o/JLyQgF9RHxMPV0vdJUPr6frhb6xPpCerj5l4n1yzec+vE+urZebmvfJBQpYwQYq2EED3ebb6+lqfip5uvpduPfJNb8ZbuePp2/k+et5YgcNHOBM9J/QC1cwv0X2hrfADho4wBnoDW+BHqw4+l8TxwHORM+5Cx/75innX3e7qCa1JE3qSZY0kmbQyraL0iHpkHRIOiQdkg5Jh6RD0lHTUdNR01HTUdNR01HTUdOxks0rlDe1XVSTWpIm9SRLGkkzaP10XpQOTYemQ9Oh6dB0aDo0HZqOno6ejp6Ono6ejp6Ono6eDk+M9QZF82ay5rMu3kzWpp9z/os1/b/1S7/h1JI06RGp+19ZJ6+TN25dtP47n7TwXqxAA9eG+ISB92J5ZfZvsV1UkiSpJrUkTepJljSS0iHp8Ku39fW55p1WzecsvNPKS5Y3Wl00g9bZeVFJkqSa1JI0qSelo6ajpqOlo6WjpaOlo6XDfxTWV/Ca91W16fvn90Y+S+J9VYEVbKCCHTRwgDPRfy0uxNaxdWx+ivr0jPdVBXbQwAHOxPVrEVhAASuIzbAZNsO2ksJnkL2t6qSVEheVJEmqSR6xOPqW+tnt6xX6ye3rFZ4kSY+/7ZNp57qkJ2lST7KkcZG3QalPMHnDk/qskjc8BXbQd7E7DnAmer5dWEABK9hABTuIrWDzxFtv4DRveAosoFezw7GCXs+Koxc0cfSK5jvvPyIXDtALp4v9d+RCL53m6DYX+0+J393buYLH+d8q2EEDBzgT/bfF5we8iUl9/sObmNSnN7yJKXCAa3t9psObmAILKGAFPa4fY/+p8CkIb0xSvwX1xqRAASvYQAU7aOAA3ebD58l4YQHd5oPqyXhhAxX0X2sfM0/GCwe4xvfczfPr+CcWUBb6kJxfxz+xgQp20MB1NM/hy6/jN8uv4zdvTFKf//DGpMAKNtACvdlI/ebNm40C/XGNkyWNoJWCfvvgbUIX1aSWpEk9yZJG0gxamXeRb4w6ClhBv5jy7Tmv2E400I/PcJyJ51XbiWs3qpMk1aSWpEk9yZJG0gzyH8aT0tHS0dLR0tHS0dLR0tHS0dKh6dB0aDo0HZoOTYemwy/qfPbCG38CZ6Lnqt9xeeNPoIDrkPjtojf+BK6j4xMB3vgTaOAAZ6Lnqk8aeONPoNv8mHmuNt8yz1W/+/fGn8AOLptfTXrjT+BMXLna3btS9SJJqkktSZM8oieLZ55fw3sbj64u9eZtPIENVNC31IN5Pl44wBnobTyB61e+Oa1f+enkruG4XH5p6609gcvl99re2qP9DDDA5fI989Ye9dtib+0JfMT1Z6czFvVtM1e6ajNXumozV7pq3pajfuXnbTmBCnbQwAHORM9cf9bubTmBArbYMF+r+6SeZOeqv827cy6aQc2Dq2MBBVy74rfk3psTuHbF79m9NyfQQP8RLo4zMRfJayy42Vhws7HgZmPBzcaCm40FNxsLbjYW3GwsuNlYcLOx4GZjwc3GgpuNBTcbC242FtxsLLjZWHCzseBmY8HNxoKbzTt21KcxvGMnsIE+kn4sPIUvNNBvkfy08hQ+cRxgAf1WzMXD78X8/DgXtvLT/VzY6sQO+v2Yn+Se3hfOxHmABRSwgg1UsIPYJrYZNr0W3DyxgAJWsIEKdtDAAc7Egq1gO29qm2MFG6hgBw0c4Ew8b25PLKDb1LGCDbRELwfr8wbqHTu6WhfUv20WWMEG+vZOxw4aOMCZ6PXhwgIKWMEGYmvYGraGrWFTbH6JvWY81L9tFrhsa/JDvbsnUEE/8mcEAwc4E8/6cGIBPa44ru2dfj74z/b0g+U/2yf6z/aFBfTt7Y4VbKCCHXSbb4Pn/IUz0XP+wgIKuH65Dx8o/+m+UMEOGjjAmTgPsIACYpvYptv8WMwOGug2H9RzXmqNWTknpk50mzoK6Lbu2EAFO2jgAGdiOcACCoitYCvYCraCrWAr2ASbYBNsgk2wCTbBJtgEm2Cr2Cq2iq1iq9gqtoqtYqvYKraGrWFr2Bq2hs0v+1cHjHrHTqCBA1wZu27P9FwY88ICCljBBirYQUvsvhfD0bd3OjbQ7+gOxw4aOMCZaAdYQL9RLI6Mr7HHNhP9Uv3CAvrtp2+65/yFDVSQozmwDY7m4GhOjubkaE6O5pnzvg1nzp/I0ZwcTc/5cxs85y+cgXKkTY4CCljBBirYwTx35BhgjqSUAyy5DUXACmIj54WcF3JeyHkh54WcF3Jezpz3bZAKNlDBDvpIVscB+kiukumNQYEFFND3zYN5zl+oYAcNHOBM9Jy/0G3DUcA8wf3TZX3N4an3DwUaOEBODb/Jv5CDpRws5WBpAxXkYCkHSzlYysHqHKzOweqciJ0TsXNqePqvKUX15qLAmejpLz4Onv7iW7YuDwIr2EAFO2jgAGeiFwXxU8OLwoUNVNDj+qnhReHCAc5Ev/j3qyBvQAoUsIINVLCDeUnlHx47r2n9w2OBAvpedMcG+l4Mxw4a6HsxHWeip/+FPm90OApYwQYq2EEDBzgTPf0vxCbXXIJ6B9JFPekR9NzxleQXzSBP8er/4Tl/d6KAvv3NsYEKLpOP0Mrwi0bSDFrpfVFJkqSa1JI0KR0tHS0dLR2aDk2HpkPToenQdGg6NB2aDk1HT0dPh+d09QH1nL6wgT5e5thBP95nhAHORM/05gfZM/1Ct/k555l+YQOXbbWNqHc1BS7bmmRU72oKnIl+UdD8oPpFwYXL1jxHPP8vXLbme+H5f2EH1/zQGXYkzSB/TnZSSZIkj+gj4D/xzffKf+LXVKR6V1NgAQVcW7qmE9W7mgIV7KCBy7b6k9Tbmi70HL+wgAJW0G3dUcEOGjjAmeg5fmEBBawgNsHmP/Gr+0n9Q2OBA3TbGlRvhOrdx8zz/0KftS2OFfR5Wx8oz/8LO2jgAGei/8RfWEABK4itYWvYGraGrWFTbIpNsSk2xabYFJtiU2yKrWPr2Dq2jq1j69g6to6tY+vYDJth88qwnkSoN1AFNlDBdcvil3HnapwXDnAm+lO4CwsoYAUb6Hvh6LcA3VPEbwEu9O31k9ZvAS5soIIdNHAE+mfC+upKU2+gOofEPwh27rF/ECzQwAH6+K66421VgQUUMI+md1YFKthBAweYR9P7qwJLbo4IWMEGsm+e82tiX73NKnDZVvOdeqPVhZ7zFxZw2cyDec5f2EAFO2jgAGei5/x6wqLekhVY82B5oq+nAuq9WIEdNHDkAWgcLOVgKQdLOVhnop/YQA4Wia4kupLoSqIria4kupLoSqJ7K1Y3Pz09pS8coA+Uj4OntPmWeUpfKGAFG6hgBw0cif6zbn5q+M/6hRVs4Io7/NTwn/ULDRygX0T4X/NEv7CAAlawgQp20AK9xcxPnR5P7NS/DHbR6svpTi1Jk3z7q6OBA1ztP+sE8060i0rS2nifUfdWtMAG6vnkUL0Z7SJLGkkzaCX8RSVJkmpSS0qHpEPSIemQdNR01HTUdNR01HTUdNR01HTUdHh2+/3D2bN2YQH9ue1wrKCPmB8RT/QLO2jXY1X1NUUD/ZnlugLxJrfAAsr1sFW9yS3QbeaoYAfXZb4b/DL/pBnkl/knlSRJ8oi+V57M/nDBW9a6P1HwlrXAAgro7XwezJP5QgU7aKD3DfpJ61fuJ/qV+4XretoHYGX4RTWpJWlST7KkkTSD/Jr9pHTMdMx0zHTMdMx0zHTMdMxw+He/uj/u8Ia3QAEr2EAFO2igD5s5zkT/kb/QbeooYAXdNhwV7KDb1nngDW/XP/VXZX3X/E3Zk1Zy+aMK72YLHOBM9CS+sIArjf2xhnezBTZQwQ4aOMCZ2A6wgNgatuY2H5umYAfd5nvcBjgT1W0+/FpAASvoNh/Slc3mU97+oS7zGUHvh7twpW5gAVdcn+L0fjjzS1Tvh7Pim9M9rtvWz3aggQN0m2+OHWABBVw2n7nzJjjzmTtvgjOfYfMmOPNJMW+CM3GFt6Se6D2pFxZQwAo20G2+DaODI09O/9k+cXLK+s/2hQJWcCl86sk/yRXYwbVD1XdzDnAGepdcYAEFrGADFeyggQN02xpU/yRXYAEFrGAD3aaOHTRwgDPRf9ovLKCAFWwgNsHm9cGrhvffBc5Erw8+WeT9d+YTQN6AF7hsPm/kLXiBy+azPt6EF2jgAGei14cLCyhgBRuIrWFr2Bq2hk2xKTbFptgUm2JTbIpNsSm2jq1j69g6to6tY+vYOraOrWMzbIbNsBk2w2bYDJthM2yGbWDzAuITgt6bF1jBBnoX7YkdNHCAM/Hsoj2xgAJW0PeiOs74AZ3nxX5zLKCAFWyggh30cVjp5B/UOsfBP6h17qb34gUq2EEf3+44wJnoOX9hHk3v3AusYAMV7KCBI7fBc/5Ez/kLCyi5DWfOn9hAbOT8JOcnOT/J+UnOT3J+tjx3ZmMkGyPZGMkz530bGiPZGElyfpLzk5yf5Pwk5yc5P8n5qRy3M+dPZCSVkewctzPnT2QkyflJzk9yfpLzk5yf5Pwk5yc5P43jZoykMZLGSBojeea8ORrotuE4E8+cP7GAy6a+DZ7zFzZQwQ4aOMCZOP2+2TdyFtBnCH0k/UrhzELP+dXgq960FzjAeWE/jjhC/TgKKGAFG6hgB+MIdW/aC5yJ5QALKGAFG6ig70VznIleHy700VFHPxa+ZV4fLmyggh00cIAz0evDhR7XHBuoYAc97nAc4Ez0SnBhuW56uzftBVawgQp20MABzkTPeT2xgg1UcO3FenTRvT0vcIAz0Tvwz5OrF1DACjZQwQ5aomd395PAs/tCASvYQAV9e2WhZ2z3uJ6x3c8dz9gLG+gR/IzyjL3Qx8FPAs/YC2eiZ2z3I+8Ze6GAFWyggh10m58anscXzkBvxAssoID+Koo49hgHb7kLHKDHXUfeW+4CCyhgBdderMnu7i13gR00cNnMbZ7HJ3oeX7hsa/Kxe8tdYAXdpo4KdtBtxdFt3dFta1C95c7MR8d/5y8U0OP6vnkeX2jgAFfc4fvmv91+cnkbXWADFbTE80U13/TzRbUTBfQXv3wvvIv2QgU7aOAAZ+L5UtuJBVwbOXzM/Ef4wg4auHZ++MHyH+ETPU0vLKDvhf+18/W1ExuoYAcNHOBM9N7aC1fcw08NT97hg+rJe2EHDfS9OP/aTPTkvbCAAlawgWsvDj9Y3jxzoYEDnIHeURdYQAEr2EDfixMHOBM9eS/0veiOAlawgb4X4thBAwc4E8/XUE8soIB+LMyxgwYOcCZ6ml7o01hOklSTWpIm9SSfaHIaSTPIf3tPKkmS5Fs+HH0bp+NM9MvqC8v1ong/v5x1YQUbqGAHDRzgTDzfDj8RW8fWsXVsHVvH1rF1bJ670wfOf2IvrGAD/bGGD5RfQF9o4ABnol9AX1hAAd3mp45n9IUKdtBt1XGAM9Ez+sKSB+vM6BMr2EAFO2gg58PM86Ge77o1xwo20PdCHX0vuqOBA5yJntFrRr17O1yggBVcTViru797O9zwJPR2uEADBzgTV0YHFlDACjYQm7fJebU6++QuHOBMrAdYQAEr2EC3DcdlK77H3it34QBnorfLXVhAASvYQAWxedfcmvvuZ9vchTPRG+cuLKCAFWyggm7zk8AfrF04wJnoz9YuLKCAFXSbn7RdwQ4aOMCZaAdYQH/+7VSTWpIm9SQLGv5s0Ed21YDhP/DeEheo12dFurfEBRo4wJno3xO6sIACVnCNgPhJPP1Bph+FOcAZ6O1ygQUUsIK+F81RwQ4a6DZ1nInlAAsoYAUb6Lbu6DZzNHCAM9FrwIUFlDgW3i4X2EAFO2jgAGei14AL6/W9rX59IexEBT3udDRwxa1nhJno2X7h2gu/EfLGuMAKeruvHwDP9gs7aOAA3eaj49l+YQEFrGADFeygx1317fpamJ9GnqvV99hz9UID15athxHd29ou9Fz1mRRvawsUcG1Z83FY2RqoYAcNHOBM9Dxuvr2jgAJWsIEK9tzj4XF9qOcBFlBAj+un/Wyggh206wN2/fxw2IUz8Pxw2IUFFLCCDfTR6Y4DnImexxf6XpijgBVs4MqACzto4ABnon/Q78ICCuij45vuGXuhgb4X03EmesZeuPZi9Qd3b3YLXHuxJjG7N7sFKrhsaz6ze7Nb4ABnoufxhQUU0G3VsYEKdtDAAa4x85TW88u3vm9+/b6eGXbvcAtUsIMGDnAm+vW7F1LvcAsUsIJu85E8P915YgcNHOBMPD/deWIBBVxx/VfbO9yGT6R6h1vgAGeiZ/eFBRTQj4XvsWf3hQp2cO2F/+R731vgTPTf7gsLKGAFG6ig74Xnm/92O3rfW6DvhTkKWEHfi+GooO/FdDRwgMvmk6Pe/hZYQAEr2EAFl83nM70FLnCAM9F/uy8soI9Zc8wj711v53HrYuAA88h751tgAQXMI99rAxXsYB75XgeYR763AyyggBVsYB75s9dsnljAtb1+9+hfUwvs/AcGDnAmeteVX12dbVcXDnAGeudVYAEFrGADFeyggQPEVrAVbAVbwVawFWwFW8FWsInHNUcBa6IfeR8ob5cK9LjD0cABzsR2gAUUsIINVDCPmzdGXagHWECPOx0ruOLW8z9Ycf0i0j8UFmjgAGfiOvsCCyhgBRuIrWPr2Dq2js2wGTbDZtgMm2EzbIbNsBm2gW1gG9i8DdKvq70xaq6X3ro3Rl2n0eRMnZyp3vfoNcobowIbqGAHDXTbiTPQG6Om/wh7Y1SggL693dEjmONMPDOrOpY4NbzZKbCCDfS4w7GDBmYGeLPThXKA2ASbYBNsoon+bSG/JfBOpEADl7id/+1M9NS7cIn97sA7kQKX2C/zvRMpUMFl86t470QKHOBM1AMsoIBu80PoCXmhgh00cIAcwjP1fCPP1PPxPVPvRA5W52B1DtaZeifORONgWQEFrGCLZBhn6p3YQQMHOBPP1DuxgAJqFDHvLgq0PDVGprR3F104D7CAAlawgQp20EBsM23zOMACCljBBirYQQMHiK1gK9gKtoKtYCvYPE393JmSoz4lf1inVLCBCnbQwAFmcfROpMACYqvYKraKrWKr2Cq2iq1ha9gatoatYWtZir0TKdDAAc5Ez/kLfSRPFNCPhSvOH+ETFfRjsWr1PH9YzVFA314/Qj2L4+wKdtDAzO5Jds/zh/XEzO5Jdk+yexo2w2bYDNuZ3Q+04zxpp+NMPE/aE704+n/rJ+2FFfTiWBwV9OIojgYOMEqxeStNYAEFrGADFYxSbN5KEzjAmegn+IUFjENoR43rBztqlGI7qoEDnIntAAsoYBwsO/LK0Y68crSjdTBKsXkrTeBM1AMsoIAVbKAm+r1IP7GCDVSwgwYOcCb6fN+FBcRm2AybYTNshs2wGbaBzWcEuh83nxG4sIINVLCDBg5wJvos4IXYJraJbWKb2Ca2iW1im2nzBpvAAgpYwQYq2EEDB4itYCvYCraCrWAr2Aq2gq1gK9gEm2ATbIJNsAk2wSbYBJtgq9gqtoqtYqvYKraKrWKr2Cq2hq1ha9gatoatYWvYGraGrWFTbIpNsSk2xabYFJtiU2yKrWPr2Dq2jq1j69g6to6tY+vYDJthM2yGzbAZNsNm2AybYRvYqCWFWlKoJYVaUqglhVpSqCWFWlKoJYVaUqglhVpSqCWFWlKoJYVaUqglhVpSqCVCLRFqiVBLhFoi1BKhlgi1RKglQi0RaolQS4RaItQSoZYItUSoJUItEWqJUEuEWiLUEqGWCLVEqCVCLRFqiVBLhFoi1BKhlgi1RKglQi0RaolQS4RaItQSoZYItUSoJUItEWqJUEuEWiLUEqGWCLVEqCVCLRFqiVBLhFoi1BKhlgi1RKglQi0RaolQS4RaItQSoZbIWUuao9vUsYEKdtDAAc7Es5acWEABsZ21ZDgq2EG3dccBzkSvJasLzLzTKFDAZVufUzDvNApUsIMGDnAmei25sIACYpvYJraJbWKb2Gba/HNcgQUUsIINVLCDBg4QW8FWsBVsBVvBVrAVbAVbwVawCTbBJtgEm2ATbIJNsAk2wVaxVWwVW8VWsVVsFVvFVrFVbA1bw9awNWwNW8PWsDVsDVvDptgUm2JTbIpNsSk2xabYFFvH1rF1bB1bx9axdWwdm2Ue17M+TMcGKthBAwc4E89rjRMLKCC2gW1gG9gGtoFtYJvYJraJbWKb2Ca2iW1im9hm2s7epAsLKGAFG6hgBw0cILaCrWAr2Aq2gq1gK9gKtoKtYBNsgk2wCTbBJtgEm2ATbIKtYqvYKraKrWKr2Cq2iq1iq9gatoatYWvYGraGrWFr2Bq2hk2xKTbFptgUm2JTbIpNsSm2jq1j69g6to6tY+vYzvrQHAc4E8+qcWIBBaygVyNzVLCDblPHAc7E81LicGyggh00cIAezPftvJQ4sYBr09c7GHY2Og3fdC8VFyrYQQMHOAO90SmwgAJW0G3mqGAHDRzgTPRScWEBBcwfCeVSQrmU8PansfqtzdufAgc4E71UXFhAASvYQAWxCTbBJtgqtoqtYqvYKraKzWeQz930GeQLO7gmJf2U8/acwJnoz4cuLKCAFWyggh3ENrD5k6D1WpX5R6Wmp4j32cQ/9c1ZF+neZzP9/PU+m0ABK9hABTu4Nme9bGXeZxM4E33O3FPE+2zmegvJvM9mrtd+zPtspp/K3mdzbrr32QTmDnkbzewe16fELxSwgg1UsIMGDnAm+pR49033KXG/EfPmmsAKNtBtvm8+UX6hgQOciT5RfmEBBfRgPlA+4+33ZP51qOk3V/51qNl9oHya+8IGKjgS/YmN3795I06gR/Bj7M9mvCL6F56m+ZD485YLK+iH0MfhzJYTO2gZ98yW85/OxDNbTiyg5B6f33g6sYEKsm/nN518h86POp2Ye3w2+Kz2UzsbfFYXqJ0NPhcaOMCZ6Cf4aty0s5Wnedzz8c+JCnbQQI87HWfi+fjnxAIKWMEGLtvq9zT/+lKggQOciX6uX1hAAZditYma9xAFdtDAAc5EP8EvLKCAFcTWsHkGrO5S808uBQ5wJvqToAsLKDnqysFSDpZysDwvVieqnc1Aq6HOzmagCztooG+Onxr+zPJEf2Z5YQEFrGADFXSbn6meQxcOcCZ6Dl1YQAFb7psnjvr564lz4cwd8sS5sIAC+qb7mHkbwoUK+qb76eltCBcOIqTt7Au6sIACVrCBCnbQwLSdjUMn+sXIehfNvKtnzPOfej9id6xgAxXsoIEDnIl+MXJhAbH5xch6Z8zG2bN3ooIdNHCAM9HvWy4soIDYGraGze9b1qtx5o1DgQOciWcn34kFFLCCDVQQm2I7O0aHo/+307GDBg5wJvpdx4UFFLCCDVyn0Vpxx84OoPUanZ0dQBfORM+3C9dJe/gZ5fl2YQUbqGAHDRzgTPSEvBDbxDaxTWwT28TmCXn4ae8J6Xg2A623+uxs+1mfsbOz7edCBT2YORo4wJnoqXdhAQWsYAMVROG/Let9QzsbZtZKM3Y2zFwoYAUbuOKuFwftbI1Z38+zszXmRP8VubCAAq64a8EMO1tjLlSwgwYOcCZ6f+p6ydDONpoLBaxgAxXsoIGu8APrv0MXFlDACjZQwQ4aOEBsA5vnRfEzyvPiwgo2UMEOWo764GANDtbkYPkJXvz09N+W9S3D4Z/YCSyggL4507GBCnbQwAHORD/XL3TbcBSwgg1UsIMGzmvfxtkitDrrx9kMdGHLHfKrwQs7aKB3hBXHmXh2u53oHVbiKGDNCBVbxVaxVWx+YXghh6VxWBqHpXFYGrYzY+2///uffvvr3//1T//xl7//7V/+4x9//vNv//xf+Q/+/bd//h//9du//ekff/7bf/z2z3/7z7/+9Z9++3/+9Nf/9P/o3//tT3/zP//jT/94/NvHgP35b//78ecj4P/5y1//vOi//4m/fbz+q+XxAFWvv/7gMTNEOX4MUl4HaS1CPGbSMoDJD39fXv/9um4I/e8/5q3ZACv396KufsprLx7ztC/3or0Osq6gzgiFv9/q3b9e/ROP5148rmPZAtEfQvRNiDwUj+l5AoxyN4AvLeYBHjfwGeAxNj8EGJuBbD0ilMfU18sQc3cwJcfhcVP9MsRuKP127RqI0V4OZdmckyLrZsljPE6OpxOizR9jyKfHY7sjM3bk8eSkvt6RTQz1ZYM8xvqod8boP6Wn7o7quhq8jqrKyxCbM8s/d+QRHhf17EeftyP4K8NnhF5eR7i7G/Z6N3aDaUfUifVp6VchZFNrpI0oFKKtvAxRPh0K2ZyZcsw8u8tBzW0/1dy62Yg1d3RuxLTXG7ErmCIxEg/krHg88r2/I2U15l47ouXljmxOLBlxSOvxMsA+w2bPk+Kp9v98RMfnRW8X4/EYMGI8nvK9/gGpx7Z+S6bI02g8fuR/jLE5O31Z4fNH5NCnCO3+idE0Twx9yrKfT4y6OT2nL3x9xZic4Y/H5D/G2GyH8JMspsToXzgmmSXtuXL+7phszs9iWTDKY2KCGPXH82slwssYXbk8WW/7PUX58USv4xvOjvnp2bHfl5mXKWW9VfFyX9ru970YFfDpslWq/RhDPj0/tmfpzRK4jXEzW5p+ni2tfzwauyO7mnniyK4+jddHdldLi+XVX7GnI9t+uu6aux/pGrcU0p5+Y+v88XpeN7W0+YpI123N0xn2c4ztdqiWvFiYm+3YnKXrO2l5Vf+Ucz/H+MqR6S+PjLaPrzp0dw1nvsLytSGPxx6vN2R3nyNSckh+KKk/xdgMyeP0zMNbnq7jvjQg965edH549bL9eZlHpIscw17+vPRdMfVvFZ0xHjPUr2NsTtO1XG9cRcl8PsHK/Rj+us8ZY02QvIzRPv+R6/rpj9zu7Fqrn8eelFbfO8tr3sKuz1O9jNHH7to2L2DW0kHvxbC8i13LjbwXwz/AdsZ4PKV6PR672vF4/sWV1HO+/RzF5NNju88Wi3kBeUwMv5dx/rbrFWOTcbYbj1kz5R78dCHVv7AdeWP/uFcZr7dje0GXNz/r2vTpIvnHe0kb29mzmrNnz/ejX4jRfMmcs6KPp8z/Ocb4hhuoUf7IM+wxYZUzonWUt86wWvPHurZ2vIwx2h97hj1+n/MXrm+yZewuTXXEkZX+w63xjxf7Y3OWPp5WS05hDX0rxvSldc/LbOubGPPzM2weH/8+bWupcmQfv7rHy1o6N7W0lJFbUh4XIu3F+THrp7cd+/rDz8Ljad3LvJ+b8ZBOPR7PDyF+irE905mpfUwCHe9lbed60ERexpjj48cI5V41ntJfbkU5tg9lej5ZWvNgDOn4QhDvSour22MTRHZpq1FOH0+Un55q/HRHWY7dbXr+6M+n37g1UXc752YtSjX94Vr9p9nK4+OL0+2oinAj18ru0Njnhawc49Od2f429Hx6KDbby5pcyv40ywE5nm48fn60sHvixO9tO15PqJfdA6fHbW0+WxB7nk76+cFX3RXlo/Ao83j6yf15NmhXEOshljem+roglu0TG515+1HW+kIvqnvZPTiqByXxx5P15y3Z3e33Y+ZkzjxePw4s4xvOkvnxWbJ9AnX3LNk9g7p/luxL2hR+e6duStruWdRj0jav755/s6T+VI/k49n+/Xa0nJmW52vm323Htri2Mpjz2/xkiW1nQvK+/TErvHl8/Q3nq3x+vtbvOF/rt5yv+0d9mo/6en/58LZtbzKz2WX04+UTobJ7MPW40+b+7jhe/2Ztg1TmyX+40PtdkP55a8Bucvlmb8AuxM3mgNt7sukOuDuk7ejvHpfD+L3aXJDsHk3dbcQprX7+VHq/O5Zzw4+piN3ubH4nhkic8A/U1+VsHyRvKIbsfsObfX7C755Q3TzhdyFunvC392TXDrMb0nrkcan13ePS8ynIGGXTaqW7q1ZtPBd6bpUaXzhXW8kbrEfmbeqqfkO3lH7eLqXf0C+lf2xJfIxjyyHt8/WQ9uPzId3NSdztQPu47+r+nrw9pE9nqZX3fmUefzNvaOTYHZe+uxy611vYv6Gg9s8Lav+8oPZvKKj7Ef30AlMLLYqPivn6AtM21bR3y3mVYZuSbLs2Lmarjuef258r8n48jPEYb47pvabNspsjlnZ0Zrza6xjj8zPd5sdn+i7EzTP99p5szvTtiNY5GNH+XgwV2mPqy87LsntGpf426HWn3OebMfJ52zbG/gy71Rdcxud3UuPzO6ndE6qbXS1l94TqXlPudivuNRuV3fOpez3OZfd4qpd8s6Q/X1LWMd4Nom8GaXlfuRZP2wT5uFl6vy85d7HWw31zXyTn6ta6pu8GyUcy/fl+8GtBat53rNUDXwaRYzc5dRx5IbX46eD83Au/C3O7oX4fZObDrlrmm0F47v947N/fDHKzsVWOzQl7t7NVdo+qbjaCb7eDBqY5ni7Lfr8dd4P0490g+UPzwP5ekMdFZl6oPth2YXaHWLOwzecLiS+ebIOT7TmPvxakT4K8TsAv/Ia/vB+S7ZtS2cJo9vpXa3/NfO99lN2jqru3h/sgLfeltfn6RlW2T6ss2xEek/+v92b7sOrelbfs3jS6d221DXH3va27e2KbPdmOaD54FxvtrRiV8+PxI2Hvxjg+jlG5IHnO/a/FyMu8R7jXMXbPqG7eRfwixq27iP2+tJZT9q2Pz2O8eY5VmTzEGK+Pbd1NP3YagEw27xhuN8RoH7T+unzsni7dPrj2Bx9cK+zLJnHbbgLyyEfl5TGP+O6g5jViHZuzbPeE6t6DYdk9nyr+aaWrecBe39Fst6Mxmfr8KtnP27H9ndN8xNV0014q29en7s0wyTc8nJLPH07J5w+n5BseTu1H9N4M0z7GvRkm2T2aupv6+7Pj3lvju8c5N4/sLsTdI3t7T17XDh0fXiPvU5bXyJpZf/P6Vi2fbenu+nb/ROjek3rp8vmT+u3uPD85kE13uvzi9ambu6N/9O7IiBKiz+89/n537I880x4PxvJNLtPNnVSfux+p/IGR53eVfxoOOz6ew9huRUZ4/qn8/Vbsfm2Fn0p5mhvu90OUY/R8aeAYo70X5DELw9Opp/anrwRZfWR5MXU8ze5+ZVDzPfTHT95mUO0PDfEYSJkMqr7clV8EuXlk7DuOjH3DkSn79xZzwlyavvcb8cOse23vBsmZ0LVE/JtBLC9D+u7lo32QnqfJ43Hs5lJ32Df8RozxB/9GrDWEc3f6Znd2z6qK+nqY1/7MNl+dbL8IcqvVXXbPq/rMdqy1MsVmd+r20uhWq7s/J3h9a3ardVi2rxDcu0PcPq662TrssxW7YnKvdfgXYZTT5HF7Nl6HKdtr35w1sz7Hy2Ncj88nVevx+aRqPT6eVN2GuHdLcn9PbLMnn0+qbmPcnFT9VYzj4xj35szqMW/e9Op7Y3pzcvcXMW5N7tbda1U35/9+EePWJMB+X1pW5vr8BP9326F/9HbcmmS+H+PNnLs5yVx371PdnWT+xcl+7wS5nTDvHph7E8R19w7T3QniX2zIrQniKh///Ffpn08Qb7fj5gTxLy7ujCvex1P3Fxd3dfcm1d0rxG2Qm/ff20s7a/mtXGuvT9Qqn1877L57dvPaYRfi5rXD7T3ZTFTvL5bzd67M+fr39jueL22vlvvTZzKev1j2u6vl7WfgclAfWN4LUo4jr0/b9rp9O3dfmWnu71/8j87F/9OvzFcv/nOP1o3Apl9m7h9p6P/fI42vjUvL5m5pT5eIvw/yDVVx/zm4PFMeI/tW6kjhZdmy+cVrH7+iWvX4hh+aNj8f0u2hzfnqx1Gu757yRZg8K/Xt+11p3O9KfztzJC9qVshN5ozdwy/JeXym8euXZhSFT9Ucdb45LdmeZhL6q2nJuvvi3925zW2Q75iHvz0i8g0j0us3jMguyM0R2TdFPu3McTz3M36tt/Ko/SnMplm0bB9x3G7R3IV5XBNkg/M8Xs7Gb0MwP9pnL++FMLZivgrxi07tg9UNjrcbz+fTx1Rft3v/4q3Z/CLrqM9TeD/NsNbd21U3+0Wqff6qarWPX1Xdhrh5GX57TzbTCdsRvdcvso9xr1+kbr//d3M2YR/j3mzC/gy71XNSd29G3Tw7diHunh239+T1dMT4tBNgn/YtL2RGq5u0337+7+bd9/z8deo6P36dehvi5oG9vSebtN+O6M277/kNs6r77bj1yKzuLpZv3srsvv5399Z7ux33bmXqL97fu3N3uI9x7+6wHR/3qbbjG/pUt9txb0h/8aGNHI7Rn94P+/3XOjZn+r0Xsvcr4Ny6cmnH5+9St+Pjd6m3Ie6VsPt7Yu8N6M1G1+Pj65ZWPn+T+hcx7k1jfvzLtPsS3Bdex9wub3TzRcrtmnL33qPcrg9y883D2zE2Lx7uY9x777DWb7mn3Y3qzbcO91ty9xzZjsnNtw73Kx19vjd3z9X9vtw7V7fr0Nw8V2/H2Jyr+xj3ztVdjPvn6n5U777c+vHtT6ufvpa6XQqrZL48LmWeO+5/GtK6/TQ1H5Or7dVj1H0Iv1T7/2mi+DHE7h2qm1OFu8E48tT46RNOPw3Gd3zjr33HN/7q8emQ7r7O2fPDBf2H/vZ2P0JeifWnRwS/i7B9SJ97UfTp0+m/W91sez9KF7VKfRmjte2N4L1VE3aPg++dor9YMo6nQF3r65WWmsrHGbsNcS9jdwst3RyOTcbKyMmbB77svZgfn+Pz43N8fMM5Pr7hHN++9XTzHN8u4Sf5Dpc8+GlD7H4MpVtB9XWM/eJoTy1TVp6/lvBzpvT2caZsQ9zLlN3HI76hcPw4HOX1N733q/g1emGV+7jfreJ3O8b4PMbzW09fWU2w9pzweDzF4Df255UAd09K62BNn/H8FPx3QbaLpeR1voynSbWvBRllZpDnzwx9MQhbIvoNQZ7WoPnK8ojalRXObL53cBplpKmNd4/wyALwvBbO+4tOtrdGpE2+/TLH5tDcXYRzbNJm1O0U8J1PuLWx/5o2PeRPS9H8fkN2zSNqEcT0eY2Qn+Zvd+uMVJ7+1B/ezfnpx2r3DOrxBDvr+/E8gftzjLHvuBCaJZ5fBBtfGVZl3benlprfD+s2yHzq7399kuwXBL29Muk2ih5E0c2Ci21u1/jhHcrnQzx+/PXcLiv69JJtq69/O7eLR9b8xJ7W+e6ijfkq2QP1vRgzlzvTae3NI2NZBIqN43gzynj6PPjQ12Ni8ukV/DbCrSv4/ZJp86nXadZXDTm6XYtKcp2SKS+vE38RIs/TKf3V/dB+CTljT4aNNzN3zHyo9eDNbaruvvB37+J7H+LWxbceH3flfWE4dusj/yKKEUXbu1F0EsVe3xfpbj2qm4dmG+Leodm9N/Uth+Z5OMZ8+9B0osw36+E8+KmaRV7X9+1ScvcK4j7ErYq43xc+w1Jmb5sR2X2c794EzzbE47fqoDnHSnsvCLdXDxZ9M0guu7B+796qz9N4wjV39Xm7JtZ3LfElea0o9akR4/dLfN0NUuTNINqyQUZ7eS/IYxeyqB3P90c/Bdk9kpHCamNSX68BrdvnmDcfIuh2jZ+7DxF2e0MPtxxttzefPqX6jg8pbVehpx79dOn8hRi8RaX2w0rlPx2Wdnz8y9k+frSj7eNP/uwHI2etdNS5GYy2+6HJeZ7eRt0E2fX55exKL8erG+f9Zmhenz0eqhxv7ovmgrSP2St9O8jTR2Xm20HyAyr9h6nen871Xc/PyKzVuYvx8ZVI//hCZPvps5sPV/afT7v3cEV/sVDwrYcrtv12c84htOevSv28aqrq53dV+vld1efvOm0HQ/mQ9fP07u8GY7so9r3B2Ia4Nxifv+a0HYze+AxcL5vB0M8HQz8fjI+fkm+PyMyfpvb8ZaAvrdk+8xHTI8br1dLVvuEzkj6T/enVz65/vBfestLNZnzHNal9wzXpfvn4koe3SHtexfqnn/zd601PX7F5muQ2+8Jm9Hztu/y4aOwXVrG/+6uwDTKphGtlDUa1lS8E6Uek3Xy+aPhqkGx77M/tl78Lsu3ifHphsz/3X9pXtiR/Kmef7+6O1bgunPbUiPC1IIOBHc+fB/j5gcrof3CQH968eP7awU8Duw8i2dkq8jwmXwpS85uU8vwBqN8f4m9Y2m/X6H93smx8eo2635ObF6m/GI6bV6nzG65S90uU33sdTufnX03X+fFX07ch7r1Lcn9PNqfpftH3W6/D9ePzj53tV32/+TGafZCbH6PZBrn7Rtx+S25+jOZXi9jf/BjNL8Lc/RLlr8Lc/KbNfmRuftNmH+TmN22KfPwBlm323HxrcR/j3luLvXz88bRevuHjadvtuDmk+0N775s2vzhX737T5hdh7n7T5ldhbn7TZn858DSBV9+9osgvczwVpd+H2F655jKKj6dE+vJ6scvH8wH7ELfmA7rYHxri3pTCLwY022YeY9teDuiutereXXjfnqQ378J7/YbnKdsvL8y8DbDnT8n+/MXj7bK2ls9kHo/hy1sxZsn+zPn8ad2fY/TdE6p7J/p+M7LhbcpmQYltDOGWVebc7Mr8Q3elUjqeX2773Wa08oduRssVB6Yeu834uE1lH+Je+Wkft6nsvpkw+1P12SwTsPssx71b3W2EW3e6289p3LzR3ca4eZ/btXzDfW45Pr7P7Vo/vs/t+vH3fLYh7t3n3t+TzX3udkRv3ufq+Pw+d/dls9v3udsgd+9z9x+Mu3mfu92Su/e5pX7Lfe4+zO373F+EuXufux2Zu/e52yB373NL+fimbJc9d+9ztzFu3udun1jdu8/dfoLy7n2ufcOQyjfc5+7P1dv3ufswt+9zfxHm5n3u9lrg1m3u/mrizl3u7vuCN++nxnfcT41vuJ+y7cpJ+QJQfR7Rnx/gb5sASnYgtfq8SsBXYrTsh24/vF/+U4yxe9/NJNdxHMfrZoTx8ccHxscfHxjf8PGB8Q0fH+jzG65Wt092+qDjdxwvD8ouhnB5Vo8i78UYeZlYD3m9HX27M3fTdvdd7tvNCLu51LvrjBX5lrl/2TdEseKxPZeQH2PYNyxCZd+wCJV9vgiVfb4IlX3DIlT2DYtQ2TcsQmXfsAiVfcMiVPYNi1DZNyxCZd+wCJV9wyJU9g2LUNk3LEJl37AIlX3DIlT2DYtQ2TcsQmXfsQiVfcMiVPYNi1DZNyxCZd+xCJV9wyJU9vkiVPYdi1DZ54tQ/ery4dYiVPYdi1DZ54tQlfJ53499wyJU9vkiVPb5IlT2DYtQ7Uf03nyofcMiVEW+o+9HvqPvR76j70e+o+9HvqfvR76nYUe+o2FHvqNhp3zesFO+oWGnfN6wY58vQmXfsQiVtW/ogfqOhh35noYd+Z6GHfmWhp3tNNGticz9RNOdiczta263tmH/otytlqH9K9TUeB3Pc25feQ+78zJ3n/XNIGPkt8yeVzf64svcuRDWA1/vjm47ZW6+Eb4Ncm+xpn2IW4s1/SLErcWatsfF8kpi/Za/eXB/CNLeDSIEqa+Pi9nHPSr7ELeaQ8zqHxri5qX7fkB5IcOeXqb84lHJq1Wx+W4Fed6St4OMvO1+4NtBWPtlG+T4uLT/4mssd2r7Lz4MlTGm9De/LZXTIVPs5dvL8ulQ7L/UdeuXdvsFtXyjS+35zu4rX1Djs2U69Hgvxsxnlw9880tuw9iOd78oN/KoPsK9+0W5pxvM9vZ4DGK8Pi7br/Qpb8fr0yTI+zHe+9Jf47lSe36u9KUYfLSo2eYc28fg9mXY6xi2fYdq5sXLOI7XLx7a3N2/9GzSbY/nei+v03+1JZZbsnkFcuwe6GjPCyntT9NL9f52DNYYGUe3zXbsp6hiWB8/mroJsnubOj/z8XzHL/qFU2TmHVTbffxs7JZGvXuKjMM+P0V+tSU3T5H56Smy3Y7bp0gp33CK7B4ufX6K6JHNHPrjJ6B+OkW2K0hJLpii8vxTNX6KsbsMMsmv2tjzNxTHF/Yle8q1HLLZF/uGfRl/7L7wOPeB7/3aPaZB8yM/tfX3YgjbIfYNMcbx5r7kNKo+r5b0te3gm1b1eHtMJ2Oqb8ZoxOib7x5vF2LIryiI6PP19k9vpMjHS/vsQ9y6vx2fL2WzDXHvFnk7npUvDFZ7vSjF2D1WuvWpsu1WNG6x2xybrdDPK9julambFWy/zIfwFEb05b7sYyhLJPbX49H6/uORt9Yb2Qa5N8u3D3Frlu8XIe7M8m3Xs7l1l75fEefOXXr9eE6+fjwnv18p7vkzNMfzGn5fWm/uqP0pymb1vLpd/PLusnXbMDfP0W2Ie+foPsSdc3S/AufN9fe2MT5f5fH+OfKrVStvniPyPeeIfH6OyOfniHx8juyeu46DL3LLczPsT1cNffsGVx4Ysaf1Ce5vBe1fZT6vUSJfCDFzGw4pb4UYeTv641d8fzcWu46pmy3XY/dtv7st17sH2cLzI+ljszPb3j4jcbvpq+nsXwXJp4MPnq9av8fuCZKMmde2pbw+Q8b2bSmp+Tb++iTe0+l+HHcHtln2K7XndZu+cKI1yxUKHiE2x8a+obd/2Df09v/yANvTAdaXB3j80WcJnwWW/nxj+vPAjruvB+4mlPZB8rG6lL4LIt8wT7dbiOrmPN1uO27P023Xobo7T7ddiOrWPN2+CBR+rR78vDTAT0Vg7JaiypP1aQGpVm9X53urg43di4Ejx3PM111XY/fCVC30kBd9nk0et/ek8CJMeb4p/OmY7EM0cqW9F4J+Gnn6Hvjvzoy5vd9nNul4M0T20/enU/wrO/L82cinj7Z+JUTPq/4fe4u+EMIKF3SbsZjHHx2kdH7l+nPDxZeCWM4nFZvyZpB5sOqMvHdkpLPohb2XKzXn+B5nSnlvK2gbe569/UKINui0fF6gpczb19qsqP64nBvvbEQpnbUAx1vZVmrm6wPf2woVLsOavRei0wE/5ns7wslZ5b0dqay6U/WtHbFsBLLW3wkwG98yem8njpxu/WF5yN9l+u6p0+dn9zz4ytV7A5Gn9jT9cCQ3AbYXB48QfC77mC9nfuauOWx9aDuDzM03FHazHB/PLzyuMLgaf3qs8dPl1ty9CiXP73S/vmArn0+lbYOsWbCDWbD6ZpipeZ0xn9+6+VoQyScTD2zvBsmHifP5geTXgvDi/2OU+5vn6shSPofWzbl6N8jT5+6/GCQ/QvDA/l6Q+xOdvxjae5PIv9iWuzPAvwpzcwp4bld5vz0y2zD3poD3IW5NAf8ixIdTwPee+W6vX7IZsDzPuvz8lfrtZT4LQ/Y63wox8hFnef7V/kqIaSzjdpR3QjzmfSpzyPWtrWAhuLWG4nshJguplrd25HFJzVvM872tYIns0p7XhP9CiPb0xu7zpNFPIeZuSalvuFupeSn0uJJ4bzDakXvy3Jzx7ni+F6IK873y/A7lrPdD5NeT6vMnXN8N8fTk+ksh8lqqytMV7ldC1Jx2etDxVoiWtbf+cIn8la3oT4vRy+ch3juovMJZn2+EvzQWvEjW6nsHlfXj6/P68V8KUfjCh755UPMjsg98ayvWErZMOLW3QjytpDuer/J/CjF360g9HnKxBNTTQudlfOFXVfhV1ff2JFuWy/Oi3l8K0XlK/V6SlDH5NNhR3twR3lE+5OMQ5d2tMEK8le2P33PGotnHW/HzQf2fj//7p3/9yz/+5a9//9c//cdf/v63f3/8zf9ewf7xlz/9r7/++fq//+c///avT//2P/7ff4t/87/+8Ze//vUv//df/u0ff//XP//v//zHn1ek9e9+O67/+R+21tI1Vf2f//RbWf9/7ZM9rpQf/7/6v9f173tf/379hd7b+Kfeta5/4H9jLa/3+J/5P/97bfL/Bw=="
|
|
2291
|
+
"debug_symbols": "tb3Rruw4cmD7L/XsBzHIYJD+lcHA6PH0DBpodBtt+wIXhv/9JkOKWHlO3eTRztz10md1VZ1YEqWIlKiQ+F+//e8//6///L//8pe//Z+///tv//w//uu3//WPv/z1r3/5v//y17//65/+4y9//9vjn/7Xb8f6H6u//XP9p9+s/fbP+vhDzz/6+Yedf4zzj+l/jOP8o5x/yPlHPf84o4wzyjijjDPKOKOMM8o8o8wzyjyjzDPKPKPMM8o8o8wzyjyjzDNKOY7rz3L9Kdef9fqzXX/q9We//rTrz3H9ecUrV7xyxStXvHLFK1e8csUrV7xyxStXvHLFkyueXPHkiidXPLniyRVPrnhyxZMrnlzx6hWvXvHqFa9e8eoVr17x6iOerT/t+nNcf87zz/aIV44FJUACHiFLXfCIWfw/1oAeYAEjYF6gK/JYUAIkoAa0AA3oARYwAuYFPSL3iNxX5LmgBrSAFXmNRO8BFvCILA7zAjsCSoAE1IAWoAE9wAIiskXkEZFX2sgan5U4J9SAFqABPcACRsC8YCXSCRF5RuQZkWdEnhF5RuQZkWdEnldkOY6AEiABNaAFaEAPWJHnghEwL1hZdkIJkIAa0AI0oAdE5BKRS0SWiCwRWSKyRGSJyBKRJSJLRJaILBG5RuQakWtErhG5RuQakWtErhG5RuQakVtEbhG5ReQWkVtEbhG5ReQWkVtEbhFZI7JGZI3IGpE1ImtE1oisEVkjskbkHpF7RO4RuUfkHpF7RO4ReeVglQUjYF6wcvCEEiABNaAFaEAPiMgWkS0irxysuqAESMAjcjsWtAAN6AEWMALmBSsHTygBEhCRZ0SeEXledUOmBYyAq27U4wgoARJQA1qABvQACxgBa5sfVb2uHDyhBEhADWgBGtADLGAERGSJyBKRJSKvHGxtQQvQgB5gASNgXrBy8IQSIAERuUbkGpFXDjZbYAEjYP2slgesHDyhBEhADWgBGtADLGAERGSNyBqRNSJrRNaIrBFZI7JGZI3IGpF7RO4RuUfkHpF7RO4RuUfkHpF7RO4R2SKyRWSLyBaRLSJbRLaIbBHZIrJF5BGRR0QeEXlE5BGRR0QeEXlE5BGRR0SeEXlG5BmRZ0SeEXlG5BmRZ0SeEXlekdtxBJQACagBLUADeoAFjICIXCJyicglIpeIXCJyicglIpeIXCJyicgSkSUiS0SWiCwRWSKyRGSJyBKRJSLXiFwjco3INSLXiFwjco3INSLXiBw52CIHW+RgixxsnoN1QQvQgB5gASNgXuA56FACJCAia0TWiKwRWSOyRmSNyD0i94jcI3KPyD0i94jcI3KPyD0i94hsEdkiskVki8gWkS0iW0S2iGwR2SLyiMgjIo+IPCLyiMgjIo+IPCLyiMgjIs+IPCPyjMgzIs+IPCPyjMgzIs+IPK/IehwBJUACakAL0IAeYAEjICKXiFwiconIJSKXiFwiconIJSKXiFwiskRkicgSkSUiS0SWiCwRWSKyRGSJyDUi14hcI3KNyDUi14hcI3KNyDUi14jcInKLyC0iRw5q5KBGDmrkoEYOauSgRg5q5KBGDmrkoEYOauSgRg5q5KBGDmrkoEYOauSgRg5q5KBGDmrkoEYOauSgRg5q5KBGDqrn4FhQAiSgBrQADegBFjAC5gUjIo+IPCLyiMgjIo+IPCLyiMgjIo+IPCPyjMgzIs+IPCPyysF+LOgBFjAC5gl95eAJJUACakAL0IAeYAErcl0wL1g5eEIJkIAa0AI0oAdYQEQuEVkiskRkicgSkSUiS0SWiCwRWSKyROQakWtErhG5RuQakWtErhG5RuQakWtEbhG5ReQWkVtEbhG5ReQWkVtEbhG5RWSNyBqRNSJrRNaIrBFZI7JGZI3IGpF7RO4RuUfkHpF7RO4RuUfkHpF7RO4R2SKyRWSLyBaRLSJbRLaIbBHZIrJF5BGRR0QeEXlE5BGRR0QeEXlE5BGRR0SeEXlG5BmRZ0SeEXlG5BmRZ0SeEXleke04AkqABNSAFqABPcACRkBEjhy0yEGLHLTIQYsctMhBixy0yEGLHLTIQYsctMhBixy0yEGLHLTIQYsctMhBixy0yEGLHLTIQYsctMhBixy0yEGLHLTIQYsctMhBixy0yEGLHLTIQYsctMhBixy0yEGLHLTIQYsctMhBixy0yEGLHLTIQYsctMhBixy0yEGLHLTIQYsctMhBixy0yEGLHLTIQYsctMhBixy0yEGLHLTIQYsctMhBixw0z8G+YATMCzwHHUqABNSAFqABPSAij4g8IrLnYFlQAiSgBrQADegBFjAC5gnjOAJKgATUgBagAT3AAkZARC4RuUTkEpFLRC4RuUTkEpFLRC4RuURkicgSkSUiS0SWiCwRWSKyRGSJyBKRa0SuEblG5BqRa0SuEblG5BqRa0SuEblF5BaRW0RuEblF5BaRW0RuEblF5BaRNSJrRNaIrBFZI7JGZI3IGpE1ImtE7hG5R+QekXtE7hG5R+QekXtE7hG5R2SLyBaRLSJbRLaIbBHZIrJFZIvIFpFHRB4R2XPQFtSAFrAizwU9wAJGwLzAc9ChBEhADWgBEXlG5BmRZ0SeV+R5HAElQAJqQAvQgB5gASMgIpeIXCJyicglIpeIXCJyicglIpeIXCLyykE7FpQACXhEtrKgBWjAeoJXF1jACFgP8dp6bHoElAAJqAEtQAN6gAWMgIjcInKLyC0it4jcInKLyC0it4jcInKLyBqRNSJrRNaIrBFZI7JGZI3IGpE1IveI3CNyj8g9IveI3CNyj8g9IveI3COyRWSLyBaRLSJbRLaIbBHZIrJFZIvIIyKPiDwi8ojIIyKPiDwi8ojIKwetL5gXrBw8YUVe5+HKwRNqQAvQgB5gASNgnvB49n4klSRJqkktSZN6kiWNpHSUdJR0lHSUdJR0lHSUdJR0lHSUdEg6JB2SDkmHpEPSIemQdEg6JB01HTUdNR01HTUdNR01HTUdNR01HS0dLR0tHS0dLR0tHS0dLR0tHS0dmg5Nh6ZD06Hp0HRoOjQdmg5NR09HT0dPR09HT0dPR09HT0dPR0+HpcPSYemwdFg6LB2WDkuHpcPSMdIx0jHSMdIx0jHSMdIx0jHSMdIx0zHTMdMx0zHTMdMx0zHTMdOReV4yz0vmeck8L5nnJfO8ZJ6XzPOSeV4yz0vmeck8L5nnJfO8ZJ6XzPOSeV4yz0vmeck8L5nnJfO8ZJ6XzPOSeV4yz0vmeck8L5nnJfO8ZJ6XzPOSeV4yz0vmeck8L5nnJfO8ZJ6XzPOSeV4yz0vmeck8L5nnJfO8ZJ6XzPOSeV4yz0vmeck8L5nnJfO8ZJ6XzPOSeV4yz0vmeck8L5nnJfO8ZJ6XzPOSeV4yz0vmeck8L5nnJfO8ZJ6XzPOSeV4yz0vmeck8L5nnJfO8ZJ6XzPOSeV4yz0vmeck8L5nnJfO8ZJ6XzPOSeV4yz0vmeck8L5nnJfO8ZJ6XzPOSeV4yz0vmeck8L5nnknkumeeSeS6Z55J5LpnnknkumeeSeS6Z55J5LpnnknkumeeSeS6Z55J5LpnnknkumeeSeS6Z55J5LpnnknkumeeSeS6Z55J5LpnnknkumeeSeS6Z55J5LpnnknkumeeSeS6Z55J5LpnnknkumeeSeS6Z55J5LpnnknkumeeSeS6Z55J5LpnnknkumefeKDTEyZJG0gxaeX5RSZKkmtSSNCkdPR09HT0dlg5Lh6XD0mHpsHRYOiwdlg5Lx0jHyvNRnSSpJrUkTepJljSSZtDK84vSMdMx0zHTMdMx0zHTMdMxw+FNRReVJEmqSS1Jk3qSJY2kdJR0lHSUdJR0lHSUdJR0lHSUdJR0SDokHZIOSYekQ9Ih6ZB0SDokHTUdNR01HTUdNR01HTUdNR01HTUdLR0tHS0dLR0tHS0dLR0tHS0dLR2aDk2HpkPToenQdHien13FljSSlmN14XpD0kUlSZJqUkvSpJ5kSSMpHZYOS4elw9Jh6bB0WDosHZYOS8dIx0jHSMdIx0jHSMdIx0jHSMdIx0zHTMdMx0zHTMdMx0zHTMdMxwyHNy5dVJIkqSa1JE3qSZY0ktJR0lHSUdJR0lHSUdJR0lHSUdJR0iHpkHRIOiQdkg5Jh6RD0iHpkHTUdNR01HTUdNR01HTUdNR01HTUdLR0tHS0dLR0tHS0dLR0tHS0dLR0aDo0HZoOTYemQ9Oh6dB0aDoyz1vmecs8b5nnLfO8ZZ63zPOWed4yz1vmecs8b5nnLfO8ZZ63zPOWed4yz1vmecs8b5nnLfO8ZZ63zPOWed4yz1vmecs8b5nnLfO8ZZ63zPOWed4yz1vmecs8b5nnLfO8ZZ63zPOWed4yzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM8975nnPPO+Z5z3zvGee98zznnneM8975nnPPO+Z5z3zvGee98zznnneM8975nnPPO+Z5z3zvGee98zznnneM8975nnPPO+Z5z3zvGee98zznnneM8975nnPPO+Z5z3zvGee98zznnneM8975nnPPO+Z5z3zvGee98zznnneM8975nnPPO+Z5z3z3Ju2ZnGqSS1Jk3qSJY2kGbTy/KKSlI6ejp6Ono6ejp6Ono6eDkuHpcPSYemwdKw8n82pJ1nScnSnGbTy/KKSJEk1qSVpUk+ypHSMdMx0zHTMdMx0zHTMdMx0zHTMdMxweJPXRSVJkmpSS9KknmRJIykdJR0lHSUdJR0lHSUdJR0lHSUdJR2SDkmHpEPSIemQdEg6JB2SDklHTUdNR01HTUdNR01HTUdNR01HTUdLR0tHS0dLR0tHS0dLR0tHS0dLh6ZD06Hp0HRoOjQdmg5Nh6ZD09HT0dPR09HT0dPR09HT0dPR0+F5vl4e9Vaxi0qSJNWklqRJPcmSRlI6RjpGOkY6RjpGOkY6RjpGOkY6RjpmOmY6ZjpmOmY6ZjpmOmY6ZjpmOLyR7KKSJEk1qSVpUk+ypJGUjpKOko6SjpKOko6SjpKOko6SjpIOSYekQ9Ih6ZB0SDokHZIOSYekw/N8OpUkSarrpfXi2EAFO2jgAGfi+U78iQUUEFvD1rA1bA1bw9awKTbFptgUm2JTbIpNsSk2xdaxdWwdW8fWsXVsHVvH1rF1bIbNsBk2w2bYDJthM2yGzbANbAPbwDawDWwD28A2sA1sA9vENrFNbBPbxDaxTWwT28Q20+b9boEFFLCCDVSwgwYOEFvBVrAVbAVbwVawFWwFW8FWsAk2wSbYBJtgE2yCTbAJNsFWsVVsFRu1ZFJLJrVkUksmtWRSSya1ZFJLJrVkUksmtWRSSya1ZFJLJrVkUksmtWRSSya1ZFJLJrVkUksmtWRSSya1ZFJLJrVkUksmtWRSSya1ZFJLJrVkUksmtWRSSya1ZFJLJrVkUksmtWRSSya1ZFJLJrVkUksmtWRSSya1ZFJLJrVkUksmtWRSSya1ZFJLJrVkUksmtWRSSya1ZFJLJrVkUksmtWRSS2bWEjmylsiRtUSOrCVyZC2RI2uJHFlL5MhaIkfWEjmylshxYCvYCraCrWAr2Aq2gq1gK9gKNsEm2ASbYBNsgk2wCTbBJtgqtoqtYqvYKraKrWKr2Cq2iq1ha9gatoatYWvYGraGrWFr2BSbYlNsik2xKTbFptgUm2Lr2Dq2jq1j69g6to6tY+vYOjbDZtgMm2EzbIbNsBk2w2bYBraBbWAb2Aa2gW1gG9gGtoFtYpvYJraJbWKb2Ca2iW1io5YUakmhlpSzljTHCjZQwQ4aOMCZeNaSEwuI7awlh2MDFeyggQOciWctObGAAmITbIJNsAk2wSbYKraKrWKr2Cq2iq1iq9gqtoqtYWvYGraGrWFr2Bq2hq1ha9gUm2JTbIpNsSk2xabYFJti69g6to6tY+vYOrazlnRHAwc4E89acmIBBaxgAxXEZtgM21lL5sKzlpxYQAEr2EAFO2jgALFNbBOb15Li+ea15MIGLpuIYwcNHOAM9PbDwAIKWMEGKthBA92mjjPRa8mFbuuOAlawgQp20MABzkSvJRdiE2yCTbAJNsEm2ASbYKvYKraKrWKr2Cq2iq1iq9gqtoatYWvYGraGrWFr2Bq2hq1hU2yKTbEpNsWm2BSbYlNsiq1j69g6to6tY+vYOraOrWPr2AybYTNshs2wGTbDZtgMm2Eb2Aa2gW1gG9gGtoFtYBvYBraJbWKb2Ca2iW1im9gmtoltpq0eB1hAASu4bP6FOO9zDOyJngzqtLy1LvSz3j8e5117gQJWsIEKdtDAAc5ExabYFJtiU2yKTbEpNsWm2Dq2jq1j69g6to6tY+vYOraOzbAZNsNm2AybYTNshs2wGbaBbWAb2Aa2gW1gG9gGtoFtYJvYJraJzc/6OhwbqGAHDRyg29Yvszf8BRZQwAo2UMEOGjhAbAWb/4L6Rw29+S9w2VpxbKCCHTRwgDPRf0HX9/zEuwADBXRbd2yggm7z7fVf0AsHOBP9F/TCAi6b+r75L+iFDVSwgwYOcCZ6LbmwgNgaNq8l6kPiteTCDvperC+wejPg4zLb0SP4QHl90PM/ULCDBg5wJnp9WB8QEu8ADBSwgg1UsIMGDnAmGjbD5vVB/bB4fbhw2brvsdeHCzto4ABnoteH9dkK8a7AQAEr2EAFO2jgAGfixDaxeX3ofrC8PlzoNnVUsIMGus2HxOuDozcKBhZQwAou23o5XbxbMLCDBg5wJnp9uLCAAlYQW8Hm9WG9BS/eORg4QN+3dU5682BgATvoEdYx9ibAxx2Yo29Od6xgAxXs4Ao2fCM9pS+ciZ7SFxZQwGUbvhee0hcq2EEDBzgTz49tn1hAAbEptvOz2z4k54e3TzTQbdVxJp4f4D7RbT6Snv7DR8fTf/UqifcGBirYQQNHoif69I30RL+wgg1UsCd6Fq5eIfHOvcClmL69nm/TTw3Ptwsr2EAFe6B31z3uZR07aOAAZ6LnxYUFFLCCDcRWsBVsBVvBJtj8F3I9MBdvoxOf7PA+usddtuMAZ6J/+fqojgUUsIINVNDjrgPgnXKPW3ZHj+Bb5t+5vrCBHsGH2r92faGBA5yJ/tXrC93me+xfvr5w2YrvvH/9+kIFV9yyTiPviHvMCjgK6NvbHT2C76Z/5/rCDhrocX0c/JvzJ/pX5y90m4+Of3n+wgpiM2yGzbD5V+gvnHksBkdzcDQHR3NwNAdH079Afx5C/+L8eQj9m/PnwZoczcnR9C/Pn8dicjQnR3NyNCdHc+bR9Ga487h5N1ygxMHyfrjABlocQm91O4+b97oFShxC73Y7B8rb3QIV7KDFwfKWt8A8mt70dh4s73oLFBCbYBNsgk3yaHpLmRQfEk+GCw30zfHR8WQ40ZPhwgIKWMEGKtjBZRPfHE+RC2eifxb+wgIKuGziA+WJc6GCHTRwgDPRE+fCAgqIzbB54vjMn3ecBRroNj81PHFO9MS50G0+6p44F1awgW4bjh7XR9KXbzjR0+nCAq641c9fT6frU/Yrrs8/eLtZYAcNXLbqe+zp5Og9Z4EFdFt3dMVwdMV0XAq/EfN+M2nnXxvgTPR8u7CAAlZw2dr5UX4F3eZiz7cLBzgTPd8uLOCy+Q2T958FNlDBDho4wJnov4UXFhBbxea/hX5P5p1ogR10my9N4L+QF85EXxnCb9q8E+1xheQoYAUbqGAH3WaOA5yJXiouLKCAFWyggh3EptgUW8fWsXVsHZuXCr/B8060wA76WeK76aXiwpnopeLCAgq4bN2Pm5eKCxXsoIEDnIleFLofYy8KFzZQwQ4aOMCZ6KXiwgJim9gmtoltYpvYJraZNu85CyyggBVsoIIdNHCA2Aq2gq1gK9gKtoKtYCvYCraCTbAJNsEm2ASbYBNsgk2wCbaKrWKr2Cq2iq1iq9gqtoqtYmvYGraGrWFr2Bq2hq1ha9gaNsWm2BSbYlNsik2xKTbFptg6to6tY+vYOraOrWPr2Dq2js2wGTbDZtgMm2EzbIbNsBm2gW1go5ZMasmklkxqyaSWTGrJpJZMasmklkxqyaSWTGrJpJZMask8a0l1NHBcWI+zgByOBRSwgg1UsIMGDnAmFmwFW8FWsBVsBVvBVrAVbAWbYBNsgk2wCTbBJtgEm2ATbBVbxVaxVWwVW8VWsVVsFVvF1rA1bA1bw9awNWwNW8PWsDVsik2xKTbFptgUm2JTbIpNsXVsHVvH1rF1bB1bx9axdWwdm2EzbIbNsBk2w2bYDJthM2wD28A2sA1sA9vANrANbAPbwDaxTWwT28Q2sU1sE9vENrHNtBVqSaGWFGpJoZYUakmhlpSzlnRHAwfotrHwrCUnFtBt5ljBBirYQQOXbU1dV280u9BryYXLZr69XksurGADFezgsq3Pw1ZvNAuciV5L1sdCqzeaBQpYQY+rjh7BB8rrw4UF9Ag+UF4fLmygb+907KCBA1y24Tvk9eHCAgq44g4fPs/5NXVdvSHsQs/5C/1ouuLM+RMr2EAFO2ig23xQPedP9Jy/sIACVrCBCnbQQGyGbWAb2Aa2gc1zfviB9ewefmA9uy+ciZ7dFxZQwAo2UMEOYpvYZtrOpSYvLKCAFWyggh00cIDYCraCrWAr2Aq2gq1gK9gKtoJNsAk2wSbYBJtgE2yCTbAJtoqtYqvYKraKrWKr2Cq2iq1ia9gatoatYWvYGraGrWFr2Bo2xabYFJtiU2yKTbEpNsWm2Dq2jq1j69g6to6tY+vYOraOzbAZNsNm2AybYTNshs2wGbaBbWAb2Aa2gW1gG9ioJUItEWqJUEuEWiLUEqGWCLVEzlrSHTto4ABn4Llk5oUFFLCCDXTbdOyggW7zVSPPWuJ41pITCyhgBRuoYAcNxFawncvbFscCCrhs62lfrecytycquGzTd+hc2tb/2rmU7eFYwUeEuh7/VP+oXWAHDRzgTFz1oR7nspwFFLCCDVSwgwYOcCYqNsWmblPHCjbQbX4SaAcNdJsfAJ2J/QAL6DYf6lUfavGRXJWgFh9qX/r2wgHORF8At/jw+RK4xffCF8Etvjm+DG5xmy+Ee6GCHXSbb44viHvhTPRFcS9cNvHtXen/OMMcl2I1Ulfvgavim7PSv4orVvoHDnAmrvQPLKCAbvNtmA3seXp6zl84wDx/vfEtsIACVrCBCnbQwAFiK9hWzj/qgaOAFVw7VM//VsEOGjjAmbhyPrCAAlYQm2ATtzVHAwc4E+sBFtBt6ljBBirYQQMHOBO9PlxYQGwNm9eH9YyqeuNbYAfdNhzdNh1noteH5ofF68OFy9Z8oLw+XNhABTto4ABnoteHCwuIrWPr2Dq2jq1j69g6NsNm2AybYTNshs2wGTbDZtgGtoFtYBvYBraBbWAb2Aa2gW1im9gmtoltYpvYJraJbbpNHGegN8kFFlDiJ1SPCjZQwQ4aOMCZeNaSE30vqmP+SnvjW/V1rL3xLXAmen24sIACVtDHQR1zfL0d7trNyh57zl9YQR/f7qhgBw0cKLC1AyyggBVsoOY2eM5faOAAZ27DmfMnFhAbOa/kvJLzSs4rOa/kvCrnTmckOyPZGckz530bOiPZGUlyXsl5JeeVnFdyXsl5JefVOG5nzp/ISBojaRy3M+dPZCTJeSXnlZxXcl7JeSXnlZxXcl4Hx20wkpORnIzkZCTPnDfHBrrN0+nM+RMNHOCyXSupH2ABBaxgAxXs4LKtB/jVGwADPecd/UrBs9Bb/epaa7Z6q1+ggh3MI9TLAPMIdTnAAgpYwTxC/nG9wA4aOMA8+3o9wAIK6HvRHDtooI+Oj4PXB/Ut8/pwYQEFrGADFeygJZ6zBy4+Zw9OFLCCDVSwgwYOcCZ2bB1bx9axdWwdW8fWsXVsHZthM2yGzbAZNsNm2AybYTNsA9vANrANbMw59oFtYBvYBraBbWKb2Ca2iW1im9gmtoltYptpO9sNLyyggBVsoIIdNHCA2Aq2gq1gK9gKtoKtYCvYCraCTbAJNsEm2ASbYBNsgk2wCbaKrWKr2Cq2iq1iq9gqtoqtYmvYGraGrWFr2Bq2hq1ha9gaNmqJUUuMWmLUEqOWGLXEqCVGLTFqiVFLjFpi1BKjlhi1xKglRi0xaolRS4xaYtQSo5YYtcSoJUYtMWqJUUuMWmLUEqOWGLXEqCVGLTFqiVFLjFpi1BKjlhi1xKglRi0xaolRS4xaYtQSo5YYtcSoJUYtMWqJUUsGtWRQSwa1ZFBLBrVkUEsGtWRQSwa1ZFBLBrVkUEsGtWRQSwa1ZFBLBrVkUEsGtWRQSwa1ZFBLBrVkUEsGtWRQSwa1ZFBLBrVkUEsGtWRQSwa1ZFBLBrVkUEsGtWRQSwa1ZFBLBrVkUEsGtWRQSwa1ZFBLBrVkUEsGtWRQSwa1ZFBLBrVkUEu87bKunsjqbZeBHTRwgDPR71AuLKCAFcTWsXVsHVvH1rEZNsNm2AzbWUuKo9uGYwcNHOBM9DuUCwu4bN4C4M2YgQ1ctu5iv0O50EC3TceZ6HcoFxbQj5s4VrCBCnbQwAHmM+yzGfPCAvrTdXX0vTj/aQcNHOBMXFUjsIA+Zs2xgg10m4v9DuVCA91WHWei36FcWEDvHOiOFWyggh00cIDZp3C2XV5YQN+LExXsoO+FOQ5wJvodireEeINloI/ZdKxgA5fNmzS8wTLQwAHORJ/BuLCAy+Y9I95gGdhABTtooL8v4ofbryr8acnZSllOrGADFeyggQP091D8fDhfcjqxgAL6S0MnNlDBDho4wJl4vuR0YgE58oMjPzjygyM/OPKDIz858pMjPznykyM/OfKTIz858pMjPznyM4588/7JwALGkW/ePxnYQAU7aGAc+XZ2Sq4j385OyXJiBRuoYAcNHGAc+XbkC1HtyBei2pEvRLWzU/I4sYEKdtDAAc7EeoAF9NHxPfacv7CDBvqxqI4z0XP+wgL6S2R+WM5XGE9soIIdNHCAM/F8hfFEP8bm2EAFO2jgAH0vxkL/9b+wgAJWsIEKdtDAAWIzbP7rv1q7mnc/BlZw2Ybvsf/6X9jBZRt+hPzXf/gB8F//4cfYf/0vLKCAFWyg27pjBw0c4Ez0SnBhAQWsYAOxTWwT28Q20+bdj4EFdNtwrGADl23NOTbvfgw0cIAz0a8JLly2WR0FrGADFeyggQOciX5NcCE2weazluv17ebdj4EKus2HxGct14OT5t2PgTPRZy0vLKCAFWyggg9b89z0z+wFjoXFcSauqhFYQFnom76qRmADFeyggQOcieo2dSyg23x0tIINVLCDrjDHmdgPsIACLkXxIVkFJFDBDho4wGUrPlCrgAQWUMAKNlDBDho4QGwD23CbZ8AQsIJu89NzKNhBt/kBGG7zQR1u84GaB1hAASvYQL/odRpJ86Kzj/KkkiRBxYMPxwo2cP1aqVNPsqSRNIP8x/0kjzgd1zCsRpLm/Yr1/PcjaQadjxCcSpIk1aSWpEkuKY4GrrFe3SrN2xQv9DS8cG3mehe5eethEw/mqXWhtw44eQDfUM+sCwsoYAVbDInmcGoOp+Zwag6n5nB6Ip2D6ClzDqKnzHrzuHkfYaDvqh9YT5kTPWXEj6anjO+TZ8xJNaklaVJP8oi+IZ4A1TfEE8A1fv6fpEnrb/um+cl/0kiaQX7mn1SSXOKH0M/7C5el+nFbP5yBHVxB/Wh5g1/zU8Mb/AJXBHXSGBjv7ws0cIAe1v/a+i0MLKDEgHt/X2ADsRVsBVvBVrAJNsEm2ASbYBNsgk2wCTaZiWevj1Oe1N4KGFjBBmqi/05V3wRPpgsN9J4Hpxnk17YnlSRJqkktSZN6kiWlQ9PR09HT0dPhv1H1xAYq6HlQHA1cg1h95DzhTvSEu7CAAlawgZ50fo6eWXeigcu2HnU3b9e70H+jLvT09uPgKXphBb2XzkmTepIljaQZ5Pnoqenfomue4d6S15pv/zRwgDPQW/LaehG+eUteoIAVbKA3Yzot2Xqi3rwjL3CAS7YejTfvyAssoMvUsYIu644KdtCvs5xG0gzyFD2pJEmSRzRH31IfC8+5NT/YvL8usIACri3tvoOedBcq2EED/eR0mkH+s3eS57eTJNWklqRJPcklJw5wJvrP4IW+ma70S8kL/VrIaSTNIL+k7H5o/JLyQgF9RHxMPV0vdJUPr6frhb6xPpCerj5l4n1yzec+vE+urZebmvfJBQpYwQYq2EED3ebb6+lqfip5uvpduPfJNb8ZbuePp2/k+et5YgcNHOBM9J/QC1cwv0X2hrfADho4wBnoDW+BHqw4+l8TxwHORM+5Cx/75innX3e7qCa1JE3qSZY0kmbQyraL0iHpkHRIOiQdkg5Jh6RD0lHTUdNR01HTUdNR01HTUdOxks0rlDe1XVSTWpIm9SRLGkkzaP10XpQOTYemQ9Oh6dB0aDo0HZqOno6ejp6Ono6ejp6Ono6eDk+M9QZF82ay5rMu3kzWpp9z/os1/b/1S7/h1JI06RGp+19ZJ6+TN25dtP47n7TwXqxAA9eG+ISB92J5ZfZvsV1UkiSpJrUkTepJljSS0iHp8Ku39fW55p1WzecsvNPKS5Y3Wl00g9bZeVFJkqSa1JI0qSelo6ajpqOlo6WjpaOlo6XDfxTWV/Ca91W16fvn90Y+S+J9VYEVbKCCHTRwgDPRfy0uxNaxdWx+ivr0jPdVBXbQwAHOxPVrEVhAASuIzbAZNsO2ksJnkL2t6qSVEheVJEmqSR6xOPqW+tnt6xX6ye3rFZ4kSY+/7ZNp57qkJ2lST7KkcZG3QalPMHnDk/qskjc8BXbQd7E7DnAmer5dWEABK9hABTuIrWDzxFtv4DRveAosoFezw7GCXs+Koxc0cfSK5jvvPyIXDtALp4v9d+RCL53m6DYX+0+J393buYLH+d8q2EEDBzgT/bfF5we8iUl9/sObmNSnN7yJKXCAa3t9psObmAILKGAFPa4fY/+p8CkIb0xSvwX1xqRAASvYQAU7aOAA3ebD58l4YQHd5oPqyXhhAxX0X2sfM0/GCwe4xvfczfPr+CcWUBb6kJxfxz+xgQp20MB1NM/hy6/jN8uv4zdvTFKf//DGpMAKNtACvdlI/ebNm40C/XGNkyWNoJWCfvvgbUIX1aSWpEk9yZJG0gxamXeRb4w6ClhBv5jy7Tmv2E400I/PcJyJ51XbiWs3qpMk1aSWpEk9yZJG0gzyH8aT0tHS0dLR0tHS0dLR0tHS0dKh6dB0aDo0HZoOTYemwy/qfPbCG38CZ6Lnqt9xeeNPoIDrkPjtojf+BK6j4xMB3vgTaOAAZ6Lnqk8aeONPoNv8mHmuNt8yz1W/+/fGn8AOLptfTXrjT+BMXLna3btS9SJJqkktSZM8oieLZ55fw3sbj64u9eZtPIENVNC31IN5Pl44wBnobTyB61e+Oa1f+enkruG4XH5p6609gcvl99re2qP9DDDA5fI989Ye9dtib+0JfMT1Z6czFvVtM1e6ajNXumozV7pq3pajfuXnbTmBCnbQwAHORM9cf9bubTmBArbYMF+r+6SeZOeqv827cy6aQc2Dq2MBBVy74rfk3psTuHbF79m9NyfQQP8RLo4zMRfJayy42Vhws7HgZmPBzcaCm40FNxsLbjYW3GwsuNlYcLOx4GZjwc3GgpuNBTcbC242FtxsLLjZWHCzseBmY8HNxoKbzTt21KcxvGMnsIE+kn4sPIUvNNBvkfy08hQ+cRxgAf1WzMXD78X8/DgXtvLT/VzY6sQO+v2Yn+Se3hfOxHmABRSwgg1UsIPYJrYZNr0W3DyxgAJWsIEKdtDAAc7Egq1gO29qm2MFG6hgBw0c4Ew8b25PLKDb1LGCDbRELwfr8wbqHTu6WhfUv20WWMEG+vZOxw4aOMCZ6PXhwgIKWMEGYmvYGraGrWFTbH6JvWY81L9tFrhsa/JDvbsnUEE/8mcEAwc4E8/6cGIBPa44ru2dfj74z/b0g+U/2yf6z/aFBfTt7Y4VbKCCHXSbb4Pn/IUz0XP+wgIKuH65Dx8o/+m+UMEOGjjAmTgPsIACYpvYptv8WMwOGug2H9RzXmqNWTknpk50mzoK6Lbu2EAFO2jgAGdiOcACCoitYCvYCraCrWAr2ASbYBNsgk2wCTbBJtgEm2Cr2Cq2iq1iq9gqtoqtYqvYKraGrWFr2Bq2hs0v+1cHjHrHTqCBA1wZu27P9FwY88ICCljBBirYQUvsvhfD0bd3OjbQ7+gOxw4aOMCZaAdYQL9RLI6Mr7HHNhP9Uv3CAvrtp2+65/yFDVSQozmwDY7m4GhOjubkaE6O5pnzvg1nzp/I0ZwcTc/5cxs85y+cgXKkTY4CCljBBirYwTx35BhgjqSUAyy5DUXACmIj54WcF3JeyHkh54WcF3Jezpz3bZAKNlDBDvpIVscB+kiukumNQYEFFND3zYN5zl+oYAcNHOBM9Jy/0G3DUcA8wf3TZX3N4an3DwUaOEBODb/Jv5CDpRws5WBpAxXkYCkHSzlYysHqHKzOweqciJ0TsXNqePqvKUX15qLAmejpLz4Onv7iW7YuDwIr2EAFO2jgAGeiFwXxU8OLwoUNVNDj+qnhReHCAc5Ev/j3qyBvQAoUsIINVLCDeUnlHx47r2n9w2OBAvpedMcG+l4Mxw4a6HsxHWeip/+FPm90OApYwQYq2EEDBzgTPf0vxCbXXIJ6B9JFPekR9NzxleQXzSBP8er/4Tl/d6KAvv3NsYEKLpOP0Mrwi0bSDFrpfVFJkqSa1JI0KR0tHS0dLR2aDk2HpkPToenQdGg6NB2aDk1HT0dPh+d09QH1nL6wgT5e5thBP95nhAHORM/05gfZM/1Ct/k555l+YQOXbbWNqHc1BS7bmmRU72oKnIl+UdD8oPpFwYXL1jxHPP8vXLbme+H5f2EH1/zQGXYkzSB/TnZSSZIkj+gj4D/xzffKf+LXVKR6V1NgAQVcW7qmE9W7mgIV7KCBy7b6k9Tbmi70HL+wgAJW0G3dUcEOGjjAmeg5fmEBBawgNsHmP/Gr+0n9Q2OBA3TbGlRvhOrdx8zz/0KftS2OFfR5Wx8oz/8LO2jgAGei/8RfWEABK4itYWvYGraGrWFTbIpNsSk2xabYFJtiU2yKrWPr2Dq2jq1j69g6to6tY+vYDJth88qwnkSoN1AFNlDBdcvil3HnapwXDnAm+lO4CwsoYAUb6Hvh6LcA3VPEbwEu9O31k9ZvAS5soIIdNHAE+mfC+upKU2+gOofEPwh27rF/ECzQwAH6+K66421VgQUUMI+md1YFKthBAweYR9P7qwJLbo4IWMEGsm+e82tiX73NKnDZVvOdeqPVhZ7zFxZw2cyDec5f2EAFO2jgAGei5/x6wqLekhVY82B5oq+nAuq9WIEdNHDkAWgcLOVgKQdLOVhnop/YQA4Wia4kupLoSqIria4kupLoSqJ7K1Y3Pz09pS8coA+Uj4OntPmWeUpfKGAFG6hgBw0cif6zbn5q+M/6hRVs4Io7/NTwn/ULDRygX0T4X/NEv7CAAlawgQp20AK9xcxPnR5P7NS/DHbR6svpTi1Jk3z7q6OBA1ztP+sE8060i0rS2nifUfdWtMAG6vnkUL0Z7SJLGkkzaCX8RSVJkmpSS0qHpEPSIemQdNR01HTUdNR01HTUdNR01HTUdHh2+/3D2bN2YQH9ue1wrKCPmB8RT/QLO2jXY1X1NUUD/ZnlugLxJrfAAsr1sFW9yS3QbeaoYAfXZb4b/DL/pBnkl/knlSRJ8oi+V57M/nDBW9a6P1HwlrXAAgro7XwezJP5QgU7aKD3DfpJ61fuJ/qV+4XretoHYGX4RTWpJWlST7KkkTSD/Jr9pHTMdMx0zHTMdMx0zHTMdMxw+He/uj/u8Ia3QAEr2EAFO2igD5s5zkT/kb/QbeooYAXdNhwV7KDb1nngDW/XP/VXZX3X/E3Zk1Zy+aMK72YLHOBM9CS+sIArjf2xhnezBTZQwQ4aOMCZ2A6wgNgatuY2H5umYAfd5nvcBjgT1W0+/FpAASvoNh/Slc3mU97+oS7zGUHvh7twpW5gAVdcn+L0fjjzS1Tvh7Pim9M9rtvWz3aggQN0m2+OHWABBVw2n7nzJjjzmTtvgjOfYfMmOPNJMW+CM3GFt6Se6D2pFxZQwAo20G2+DaODI09O/9k+cXLK+s/2hQJWcCl86sk/yRXYwbVD1XdzDnAGepdcYAEFrGADFeyggQN02xpU/yRXYAEFrGAD3aaOHTRwgDPRf9ovLKCAFWwgNsHm9cGrhvffBc5Erw8+WeT9d+YTQN6AF7hsPm/kLXiBy+azPt6EF2jgAGei14cLCyhgBRuIrWFr2Bq2hk2xKTbFptgUm2JTbIpNsSm2jq1j69g6to6tY+vYOraOrWMzbIbNsBk2w2bYDJthM2yGbWDzAuITgt6bF1jBBnoX7YkdNHCAM/Hsoj2xgAJW0PeiOs74AZ3nxX5zLKCAFWyggh30cVjp5B/UOsfBP6h17qb34gUq2EEf3+44wJnoOX9hHk3v3AusYAMV7KCBI7fBc/5Ez/kLCyi5DWfOn9hAbOT8JOcnOT/J+UnOT3J+tjx3ZmMkGyPZGMkz530bGiPZGElyfpLzk5yf5Pwk5yc5P8n5qRy3M+dPZCSVkewctzPnT2QkyflJzk9yfpLzk5yf5Pwk5yc5P43jZoykMZLGSBojeea8ORrotuE4E8+cP7GAy6a+DZ7zFzZQwQ4aOMCZOP2+2TdyFtBnCH0k/UrhzELP+dXgq960FzjAeWE/jjhC/TgKKGAFG6hgB+MIdW/aC5yJ5QALKGAFG6ig70VznIleHy700VFHPxa+ZV4fLmyggh00cIAz0evDhR7XHBuoYAc97nAc4Ez0SnBhuW56uzftBVawgQp20MABzkTPeT2xgg1UcO3FenTRvT0vcIAz0Tvwz5OrF1DACjZQwQ5aomd395PAs/tCASvYQAV9e2WhZ2z3uJ6x3c8dz9gLG+gR/IzyjL3Qx8FPAs/YC2eiZ2z3I+8Ze6GAFWyggh10m58anscXzkBvxAssoID+Koo49hgHb7kLHKDHXUfeW+4CCyhgBdderMnu7i13gR00cNnMbZ7HJ3oeX7hsa/Kxe8tdYAXdpo4KdtBtxdFt3dFta1C95c7MR8d/5y8U0OP6vnkeX2jgAFfc4fvmv91+cnkbXWADFbTE80U13/TzRbUTBfQXv3wvvIv2QgU7aOAAZ+L5UtuJBVwbOXzM/Ef4wg4auHZ++MHyH+ETPU0vLKDvhf+18/W1ExuoYAcNHOBM9N7aC1fcw08NT97hg+rJe2EHDfS9OP/aTPTkvbCAAlawgWsvDj9Y3jxzoYEDnIHeURdYQAEr2EDfixMHOBM9eS/0veiOAlawgb4X4thBAwc4E8/XUE8soIB+LMyxgwYOcCZ6ml7o01hOklSTWpIm9SSfaHIaSTPIf3tPKkmS5Fs+HH0bp+NM9MvqC8v1ong/v5x1YQUbqGAHDRzgTDzfDj8RW8fWsXVsHVvH1rF1bJ670wfOf2IvrGAD/bGGD5RfQF9o4ABnol9AX1hAAd3mp45n9IUKdtBt1XGAM9Ez+sKSB+vM6BMr2EAFO2gg58PM86Ge77o1xwo20PdCHX0vuqOBA5yJntFrRr17O1yggBVcTViru797O9zwJPR2uEADBzgTV0YHFlDACjYQm7fJebU6++QuHOBMrAdYQAEr2EC3DcdlK77H3it34QBnorfLXVhAASvYQAWxedfcmvvuZ9vchTPRG+cuLKCAFWyggm7zk8AfrF04wJnoz9YuLKCAFXSbn7RdwQ4aOMCZaAdYQH/+7VSTWpIm9SQLGv5s0Ed21YDhP/DeEheo12dFurfEBRo4wJno3xO6sIACVnCNgPhJPP1Bph+FOcAZ6O1ygQUUsIK+F81RwQ4a6DZ1nInlAAsoYAUb6Lbu6DZzNHCAM9FrwIUFlDgW3i4X2EAFO2jgAGei14AL6/W9rX59IexEBT3udDRwxa1nhJno2X7h2gu/EfLGuMAKeruvHwDP9gs7aOAA3eaj49l+YQEFrGADFeygx1317fpamJ9GnqvV99hz9UID15athxHd29ou9Fz1mRRvawsUcG1Z83FY2RqoYAcNHOBM9Dxuvr2jgAJWsIEK9tzj4XF9qOcBFlBAj+un/Wyggh206wN2/fxw2IUz8Pxw2IUFFLCCDfTR6Y4DnImexxf6XpijgBVs4MqACzto4ABnon/Q78ICCuij45vuGXuhgb4X03EmesZeuPZi9Qd3b3YLXHuxJjG7N7sFKrhsaz6ze7Nb4ABnoufxhQUU0G3VsYEKdtDAAa4x85TW88u3vm9+/b6eGXbvcAtUsIMGDnAm+vW7F1LvcAsUsIJu85E8P915YgcNHOBMPD/deWIBBVxx/VfbO9yGT6R6h1vgAGeiZ/eFBRTQj4XvsWf3hQp2cO2F/+R731vgTPTf7gsLKGAFG6ig74Xnm/92O3rfW6DvhTkKWEHfi+GooO/FdDRwgMvmk6Pe/hZYQAEr2EAFl83nM70FLnCAM9F/uy8soI9Zc8wj711v53HrYuAA88h751tgAQXMI99rAxXsYB75XgeYR763AyyggBVsYB75s9dsnljAtb1+9+hfUwvs/AcGDnAmeteVX12dbVcXDnAGeudVYAEFrGADFeyggQPEVrAVbAVbwVawFWwFW8FWsInHNUcBa6IfeR8ob5cK9LjD0cABzsR2gAUUsIINVDCPmzdGXagHWECPOx0ruOLW8z9Ycf0i0j8UFmjgAGfiOvsCCyhgBRuIrWPr2Dq2js2wGTbDZtgMm2EzbIbNsBm2gW1gG9i8DdKvq70xaq6X3ro3Rl2n0eRMnZyp3vfoNcobowIbqGAHDXTbiTPQG6Om/wh7Y1SggL693dEjmONMPDOrOpY4NbzZKbCCDfS4w7GDBmYGeLPThXKA2ASbYBNsoon+bSG/JfBOpEADl7id/+1M9NS7cIn97sA7kQKX2C/zvRMpUMFl86t470QKHOBM1AMsoIBu80PoCXmhgh00cIAcwjP1fCPP1PPxPVPvRA5W52B1DtaZeifORONgWQEFrGCLZBhn6p3YQQMHOBPP1DuxgAJqFDHvLgq0PDVGprR3F104D7CAAlawgQp20EBsM23zOMACCljBBirYQQMHiK1gK9gKtoKtYCvYPE393JmSoz4lf1inVLCBCnbQwAFmcfROpMACYqvYKraKrWKr2Cq2iq1ha9gatoatYWtZir0TKdDAAc5Ez/kLfSRPFNCPhSvOH+ETFfRjsWr1PH9YzVFA314/Qj2L4+wKdtDAzO5Jds/zh/XEzO5Jdk+yexo2w2bYDNuZ3Q+04zxpp+NMPE/aE704+n/rJ+2FFfTiWBwV9OIojgYOMEqxeStNYAEFrGADFYxSbN5KEzjAmegn+IUFjENoR43rBztqlGI7qoEDnIntAAsoYBwsO/LK0Y68crSjdTBKsXkrTeBM1AMsoIAVbKAm+r1IP7GCDVSwgwYOcCb6fN+FBcRm2AybYTNshs2wGbaBzWcEuh83nxG4sIINVLCDBg5wJvos4IXYJraJbWKb2Ca2iW1im2nzBpvAAgpYwQYq2EEDB4itYCvYCraCrWAr2Aq2gq1gK9gEm2ATbIJNsAk2wSbYBJtgq9gqtoqtYqvYKraKrWKr2Cq2hq1ha9gatoatYWvYGraGrWFTbIpNsSk2xabYFJtiU2yKrWPr2Dq2jq1j69g6to6tY+vYDJthM2yGzbAZNsNm2AybYRvYqCWFWlKoJYVaUqglhVpSqCWFWlKoJYVaUqglhVpSqCWFWlKoJYVaUqglhVpSqCVCLRFqiVBLhFoi1BKhlgi1RKglQi0RaolQS4RaItQSoZYItUSoJUItEWqJUEuEWiLUEqGWCLVEqCVCLRFqiVBLhFoi1BKhlgi1RKglQi0RaolQS4RaItQSoZYItUSoJUItEWqJUEuEWiLUEqGWCLVEqCVCLRFqiVBLhFoi1BKhlgi1RKglQi0RaolQS4RaItQSoZbIWUuao9vUsYEKdtDAAc7Es5acWEABsZ21ZDgq2EG3dccBzkSvJasLzLzTKFDAZVufUzDvNApUsIMGDnAmei25sIACYpvYJraJbWKb2Gba/HNcgQUUsIINVLCDBg4QW8FWsBVsBVvBVrAVbAVbwVawCTbBJtgEm2ATbIJNsAk2wVaxVWwVW8VWsVVsFVvFVrFVbA1bw9awNWwNW8PWsDVsDVvDptgUm2JTbIpNsSk2xabYFFvH1rF1bB1bx9axdWwdm2Ue17M+TMcGKthBAwc4E89rjRMLKCC2gW1gG9gGtoFtYJvYJraJbWKb2Ca2iW1im9hm2s7epAsLKGAFG6hgBw0cILaCrWAr2Aq2gq1gK9gKtoKtYBNsgk2wCTbBJtgEm2ATbIKtYqvYKraKrWKr2Cq2iq1iq9gatoatYWvYGraGrWFr2Bq2hk2xKTbFptgUm2JTbIpNsSm2jq1j69g6to6tY+vYzvrQHAc4E8+qcWIBBaygVyNzVLCDblPHAc7E81LicGyggh00cIAezPftvJQ4sYBr09c7GHY2Og3fdC8VFyrYQQMHOAO90SmwgAJW0G3mqGAHDRzgTPRScWEBBcwfCeVSQrmU8PansfqtzdufAgc4E71UXFhAASvYQAWxCTbBJtgqtoqtYqvYKraKzWeQz930GeQLO7gmJf2U8/acwJnoz4cuLKCAFWyggh3ENrD5k6D1WpX5R6Wmp4j32cQ/9c1ZF+neZzP9/PU+m0ABK9hABTu4Nme9bGXeZxM4E33O3FPE+2zmegvJvM9mrtd+zPtspp/K3mdzbrr32QTmDnkbzewe16fELxSwgg1UsIMGDnAm+pR49033KXG/EfPmmsAKNtBtvm8+UX6hgQOciT5RfmEBBfRgPlA+4+33ZP51qOk3V/51qNl9oHya+8IGKjgS/YmN3795I06gR/Bj7M9mvCL6F56m+ZD485YLK+iH0MfhzJYTO2gZ98yW85/OxDNbTiyg5B6f33g6sYEKsm/nN518h86POp2Ye3w2+Kz2UzsbfFYXqJ0NPhcaOMCZ6Cf4aty0s5Wnedzz8c+JCnbQQI87HWfi+fjnxAIKWMEGLtvq9zT/+lKggQOciX6uX1hAAZditYma9xAFdtDAAc5EP8EvLKCAFcTWsHkGrO5S808uBQ5wJvqToAsLKDnqysFSDpZysDwvVieqnc1Aq6HOzmagCztooG+Onxr+zPJEf2Z5YQEFrGADFXSbn6meQxcOcCZ6Dl1YQAFb7psnjvr564lz4cwd8sS5sIAC+qb7mHkbwoUK+qb76eltCBcOIqTt7Au6sIACVrCBCnbQwLSdjUMn+sXIehfNvKtnzPOfej9id6xgAxXsoIEDnIl+MXJhAbH5xch6Z8zG2bN3ooIdNHCAM9HvWy4soIDYGraGze9b1qtx5o1DgQOciWcn34kFFLCCDVQQm2I7O0aHo/+307GDBg5wJvpdx4UFFLCCDVyn0Vpxx84OoPUanZ0dQBfORM+3C9dJe/gZ5fl2YQUbqGAHDRzgTPSEvBDbxDaxTWwT28TmCXn4ae8J6Xg2A623+uxs+1mfsbOz7edCBT2YORo4wJnoqXdhAQWsYAMVROG/Let9QzsbZtZKM3Y2zFwoYAUbuOKuFwftbI1Z38+zszXmRP8VubCAAq64a8EMO1tjLlSwgwYOcCZ6f+p6ydDONpoLBaxgAxXsoIGu8APrv0MXFlDACjZQwQ4aOEBsA5vnRfEzyvPiwgo2UMEOWo764GANDtbkYPkJXvz09N+W9S3D4Z/YCSyggL4507GBCnbQwAHORD/XL3TbcBSwgg1UsIMGzmvfxtkitDrrx9kMdGHLHfKrwQs7aKB3hBXHmXh2u53oHVbiKGDNCBVbxVaxVWx+YXghh6VxWBqHpXFYGrYzY+2///uffvvr3//1T//xl7//7V/+4x9//vNv//xf+Q/+/bd//h//9du//ekff/7bf/z2z3/7z7/+9Z9++3/+9Nf/9P/o3//tT3/zP//jT/94/NvHgP35b//78ecj4P/5y1//vOi//4m/fbz+q+XxAFWvv/7gMTNEOX4MUl4HaS1CPGbSMoDJD39fXv/9um4I/e8/5q3ZACv396KufsprLx7ztC/3or0Osq6gzgiFv9/q3b9e/ROP5148rmPZAtEfQvRNiDwUj+l5AoxyN4AvLeYBHjfwGeDxpOmHAGMzkK1HhPKY+noZYu4OpuQ4PG6qX4bYDaXfrl0DMdrLoSybc1Jk3Sx5DFnqjNHmjzHk0+Ox3ZEZO/J4clJf78gmhvqyQR5jfdQ7Y/Sf0lN3R3VdDV5HVeVliM2Z5Z878giPi3r2o8/bEfyV4TNCL68j3N0Ne70bu8G0I+rE+rT0qxCyqTXSRhQK0VZehiifDoVszkw5Zp7d5aDmtp9qbt1sxJo7Ojdi2uuN2BVMkRiJB3JWPB7u3t+Rshpzrx3R8nJHNieWjDik9XgZYJ9hs+dJ8VT7fz6i4/Oit4vxeAwYMR5P+V7/gNRjW78lU+RpNKTajzE2Z6cvK3z+iBz6FKHfPzGa5omhT1n284lRN6fn9IWvrxiTM/zxQPzHGJvtEH6SxZQY/QvHJLOkPVfO3x2TzflZLAtGeUxMEKP+eH6tRHgZoyuXJ+ttv6coP57odXzD2TE/PTv2+zLzMqWstype7kvb/b4XowI+XbZK/bGANfn0/NiepTdL4DbGzWxp+nm2tP7xaOyO7GrmiSO7+jReH9ldLS2WV3/Fno7sz9fic/cjXeOWQtrTb+y6jnuOoZta2nxFpOu25ukM+znGdjtUS14szM12bM7S9Z20vKp/yrmfY3zlyPSXR0bbx1cduruGM19h+dqQx2OP1xuyu88RKTkkP5TUn2JshuRxeubhLU/XcV8akHtXLzo/vHrZ/rzMI9JFjmEvf176rpj6t4rOGI8Z6tcxNqfpWq43rqJkPp9g5X4Mf93njLEmSF7GaJ//yHX99Edud3at1c9jT0qr753lNW9h1+epXsboY3dtmxcwa+mg92JY3sWu5Ubei+EfYDtjPJ5SvR6PXe14PP/iSuo5336OYvLpsd1ni8W8gDwmht/LOH/b9YqxyTjbjcesmXIPfrqQ+sK+zLyxf0yhjdfbsb2gy5ufdW36dJH846WYje3sWc3Zs+f70S/EaL5kzlnRx1Pm/xxjfMMN1Ch/5Bn2uG3MGdE6yltnWK35Y11bO17GGO2PPcMev8/5C9c32TJ2l6Y64shK/+HW+KejsjlLH0+rJaewhr4VY/rSuudltvVNjPn5GTaPj3+ftrVUObKPX93jZS2dm1paysgtKY8Lkfbi/Jj109uOff3hZ+HxtO5l3s/NeEinHo/nhxA/xdie6czUPiaBjveytnM9aCIvY8zx8WOEcq8aT+kvt6Ic24cyPZ8sPX5bnoZ0fCGId6XF1e2xCSK7tNUop48nyk9PNX66oyzH7jY9f/Tn029c1Xk/52YtSjX94Vr9p9nK4+OL0+2oinAj18ru0Njnhawc49Od2f429Hx6KDbby5pcyv40ywE5nm48fn60sHvixO9tO15PqJfdA6fHbW0+WxB7nk76eV/qrigfhUeZx9NP7s+zQbuCWA+xvDHV1wWxbJ/Y6Mzbj7LWF3pR3cvuwVE9KIk/nqw/b8nubr8fMydz5vH6cWAZ33CWzI/Pku0TqLtnye4Z1P2zZF/SpvDbO3VT0nbPoh4lI6/vnn+zpP00svLxbP9+O1rOTMvzNfPvtmNbXFsZzPltfrLEtjMhed/+mBXePL7+hvNVPj9f63ecr/Vbztf9oz7NR329v3x427Y3mdnsMvrx+pH+7sHU406b+7vjeP2btQ1SmSf/4ULvd0H6560Bu8nlm70BuxA3mwNu78mmO+DukLajv3tcDuP3anNBsns0dbcRp7T6+VPp/e5Yzg0/piJ2u7P5nRgiccI/UF+Xs32QvKEYsvsNb/b5Cb97QnXzhN+FuHnC396TXTvMbkjrkcel1nePS8+nIGOUTauV7q5atfFc6LlV6qfb1u252kreYD0yb1NX9Ru6pfTzdin9hn4p/WNL4mMcWw5pn6+HtB+fD+luTuJuB9rHfVf39+TtIX06S6289yvz+Jt5QyPH7rj03eXQvd7C/g0FtX9eUPvnBbV/Q0Hdj+inF5haaFF8VMzXF5i2qaa9W86rDNuUZNu1cTFbdTz/3P5ckffjYYzHeHNM7zVtlt0c8eMOrjPj1V7HGJ+f6TY/PtN3IW6e6bf3ZHOmb0e0zsGI9vdiqNAeU192XpbdMyr1t0GvO+U+34yRz9u2MfZn2K2+4DI+v5Man99J7Z5Q3exqKbsnVPeacrdbca/ZqOyeT93rcS67x1O95Jsl/fmSss7j3SD6ZpCW95Vr8bRNkI+bpff7knMXaz3cN/dFcq5urWv6bpB8JNOf7we/FqTmfcdaPfBlEDl2k1PHkRdSi58Ozs+98Lswtxvq90FmPuyqZb4ZhOf+j8f+/c0gNxtb5dicsHc7W2X3qOpmI/h2O2hgmuPpsuz323E3yNPk4ReD5A/NA/t7QR4XmXmh+mDbhdkdYs3CNp8vJL54sg1Otuc8/lqQPgnyOgG/8Bv+8n5Itm9KZQuj2etfrf018733UXaPqu7eHu6DtNyX1ubrG1XZPq2ybEd4TP6/3pvtw6p7V96ye9Po3rXVNsTd97bu7olt9mQ7ovngXWy0t2JUzo/Hj4S9G+P4OEblguQ5978WIy/zHuFex9g9o7p5F/GLGLfuIvb70lpO2bc+Po/x5jlWZfIQY7w+tnU3/dhpADLZvGO43RCjfdD66/Kxe7p0++DaH3xwrbAvm8RtuwnIIx+Vl8c84ruDmteIdWzOst0TqnsPhmX3fKr4p5Wu5gF7fUez3Y7GZOrzq2Q/b8f2d07zEVfTTXupbF+fujfDJN/wcEo+fzglnz+ckm94OLUf0XszTPsY92aYZPdo6m7q78+Oe2+N7x7n3DyyuxB3j+ztPXldO3R8eI28T1leI2tm/c3rW7V8tqW769v9E6F7T+qly+dP6re78/zkQDbd6fKL16du7o7+0bsjI0qIPr/3+PvdsT/yTHs8GMs3uUw3d1J97n6k8gdGnt9V/mk47Ph4DmO7FRnh+afy91ux+7UVfirlaW643w9RjtHzpYFjjPZekMcsDE+nntqfvhJk9ZHlxdTxNLv7lUHN99AfP3mbQbU/NMRjIGUyqPpyV34R5OaRse84MvYNR6bs31vMCXNp+t5vxA+z7rW9GyRnQtcS8W8GsbwM6buXj/ZBep4mj8exm0vdYd/wGzHGH/wbsdYQzt3pm93ZPasq6uthXvsz23x1sv0iyK1Wd9k9r+oz27HWyhSb3anbS6Nbre7+nOD1rdmt1mHZvkJw7w5x+7jqZuuwz1bsism91uFfhFFOk8ft2XgdpmyvfXPWzPocL49xPT6fVK3H55Oq9fh4UnUb4t4tyf09sc2efD6puo1xc1L1VzGOj2PcmzOrx7x506vvjenNyd1fxLg1uVt3r1XdnP/7RYxbkwD7fWlZmevzE/zfbYf+0dtxa5L5fow3c+7mJHPdvU91d5L5Fyf7vRPkdsK8e2DuTRDX3TtMdyeIf7EhtyaIq3z881+lfz5BvN2OmxPEv7i4M654H0/dX1zc1d2bVHevELdBbt5/by/trOW3cq29PlGrfH7tsPvu2c1rh12Im9cOt/dkM1G9v1jO37ky5+vf2+94vrS9Wu5Pn8l4/mLZ766Wt5+By0F9YHkvSDmOvD5t2+v27dx9Zaa5v3/xPzoX/0+/Ml+9+M89WjcCm36ZuX+kof9/jzS+Ni4tm7ulPV0i/j7IN1TF/efg8kx5jOxbqSOFl2XL5hevffyKatXjG35o2vx8SLeHNuerH0e5vnvKF2HyrNS373elcb8r/e3MkbyoWSE3mTN2D78k5/GZxv/KBGnhgwYPrvPNacn2NJPQX01L1t0X/+7ObW6DfMc8/O0RkW8YkV6/YUR2QW6OyL4p8mlnjuO5n/FrvZVH7U9hNs2iZfuI43aL5i7M45ogG5zn8XI2fhuC+dE+e3kvhLEV81WIX3RqH6xucLzdeD6fPqb6ut37F2/N5hdZR32ewvtphrXu3q662S9S7fNXVat9/KrqNsTNy/Dbe7KZTtiO6L1+kX2Me/0idfv9v5uzCfsY92YT9mfYrZ6Tunsz6ubZsQtx9+y4vSevpyPGp50A+7RveSEzWt2k/fbzfzfvvufnr1PX+fHr1NsQNw/s7T3ZpP12RG/efc9vmFXdb8etR2Z1d7F881Zm9/W/u7fe2+24dytTf/H+3p27w32Me3eH7fi4T7Ud39Cnut2Oe0P6iw9t5HCM/vR+2O+/1rE50++9kL1fAefWlUs7Pn+Xuh0fv0u9DXGvhN3fE3tvQG82uh4fX7e08vmb1L+IcW8a8+Nfpt2X4L7wOuZ2eaObL1Ju15S79x7ldn2Qm28e3o6xefFwH+Pee4e1fss97W5Ub751uN+Su+fIdkxuvnW4X+no8725e67u9+Xeubpdh+bmuXo7xuZc3ce4d67uYtw/V/ejevfl1o9vf1r99LXU7VJYJfPlcSnz3HH/03I4dftpaj4mV9urx6j7EH6p9v/TRPFjiN07VDenCneDceSp8dMnnH4ajO/4xl/7jm/81ePTId19nbPnhwv6D/3tX4iQV2L96RHB7yJsH9LnXhR9+nT671Y3296P0kWtUl/GaG17I3hv1YTd4+B7p+gvlozjKVDX+nqlpabyccZuQ9zL2N1CSzeHY5OxMnLy5oEvey/mx+f4/PgcH99wjo9vOMe3bz3dPMe3S/hJvsMlD37akHk/htKtoPo6xn5xtKeWKSvPX0v4OVN6+zhTtiHuZcru4xHfUDh+HI7y+pve+1X8Gr2wyn3c71bxux1jfB7j+a2nr6wmWHtOeDyeYjzN//z0a797UloHa/qM56fgvwuyXSwlr/NlPE2qfS3IKDODPH9m6ItB2BLRbwhSj5dBdr8u2pUVzmy+d3AaZaSpjXeP8MgC8LwWzvuLTra3RqRNvv0yx+bQ3F2Ec2zSZtTtFPCdT7i1sf+aNj3kT0vR/H5Dds0jahHE9HmNkPFTjN0yFDz9qT+8m/PTr+buGdTjCXbW9+N5AvfnGGPfcSE0Szy/CDa+MqzKum9PLTW/H9ZtkPnU3//6JNkvCHp7ZdJtFD2IopsFF9vcrvHDO5TPh3jcX/ixPb1k2+rr387t4pE1P7Gndb67aGO+SvZAfS/GzOXOdFp788hYFoFi4zjejDKePg8+9PWYmHx6Bb+NcOsKfr9k2nzqdZr1VUOObteiklynZMrL68RfhMjzdEp/dT+0X0LO2JNh483MHTMfaj14c5uquy/83bv43oe4dfGtx8ddeV8Yjt36yL+IYkTR9m4UnUSx1/dFuluP6uah2Ya4d2h27019y6F5Ho4x3z40nSjzzXo4D36qZpHX9X27lNy9grgPcasi7veFz7CU2dtmRHYf57s3wbMN8fitOmjOsdLeC8Lt1YNF3wySyy6s37u36vM0nnDNXX3eron1XUt8SV4rSj2eLziPN4M8HeOvBdGWDTL69NT/S0Eeu5BF7fjh/uin9pZds39htTGpr9eA1u1zzJsPEXS7xs/dhwi7vaGHW46225tPn1J9x4eUtqvQU49+unT+wkr2vEWl9sNK5T/G0HZ8/MvZPn60o+3jT/7sByNnrXTUuRmMtvuhyXme3kbdBNn1+eXsSi/Hqxvn/WZoXp89Hqocb+6L5oK0j9krfTvI00dl5ttB8gMq/Yep3p/O9V3Pz8is1bmL8fGVSP/4QmT76bObD1f2n0+793BFf7FQ8K2HK7b9dnPOIbTnr0r9vGqq6ud3Vfr5XdXn7zptB0P5kPXz9O7vBmO7KPa9wdiGuDcYn7/mtB2M3vgMXC+bwdDPB0M/H4yPn5Jvj8jMn6b2/GWgL63ZPvMR0yPG69XS1b7hM5I+k/3p1c+uf7wX3rLSzWZ8xzWpfcM16X75+JKHt0h7XsX6p5/83etNT1+xeZrkNvvCZvR87bv8uGjsF1axv/ursA0yqYRrZQ1GtdUvBOlHpN18vmj4apBse+zP7Ze/C7Lt4nx6YbM/91/Or2xJ/lTOPt/dHatxXTjtqRHha0EGAzuePw/w8wOV0f/gID+8efH8tYOfBnYfRLKzVeR5TL4UpOY3KeX5A1C/P8TfsLTfrtH/7mTZ+PQadb8nNy9SfzEcN69S5zdcpe6XKL/3OpzOz7+arvPjr6ZvQ9x7l+T+nmxO0/2i77deh+vH5x8726/6fvNjNPsgNz9Gsw1y9424/Zbc/BjNrxaxv/kxml+Eufslyl+FuflNm/3I3PymzT7IzW/aFPn4Ayzb7Ln51uI+xr23Fnv5+ONpvXzDx9O223FzSPeH9t43bX5xrt79ps0vwtz9ps2vwtz8ps3+cuBpAq++e0WRX+Z4Kkq/D7G9cs1lFB9PifTl9WKXj+cD9iFuzQd0sT80xL0phV8MaLbNPMa2vRzQXWvVvbvwvj1Jb96F9/oNz1O2X16YeRtgz5+S/fmLx9tlbS2fyTwew5e3YsyS/Znz+dO6P8fouydU9070/WZkw9uUzYIS2xjCLavMudmV+YfuSqV0PL/c9rvNaOUP3YyWKw5MPXab8XGbyj7EvfLTPm5T2X0zYfan6rNZJmD3WY57t7rbCLfudLef07h5o7uNcfM+t2v5hvvccnx8n9u1fnyf2/Xj7/lsQ9y7z72/J5v73O2I3rzP1fH5fe7uy2a373O3Qe7e5+4/GHfzPne7JXfvc0v9lvvcfZjb97m/CHP3Pnc7Mnfvc7dB7t7nlvLxTdkue+7e525j3LzP3T6xunefu/0E5d37XPuGIZVvuM/dn6u373P3YW7f5/4izM373O21wK3b3P3VxJ273N33BW/eT43vuJ8a33A/ZduVk/IFoPo8oj8/wN82AZTsQGr1eZWAr8Ro2Q/dfni//KcYY/e+m0mu4ziO180I4+OPD4yPPz4wvuHjA+MbPj7Q5zdcrW6f7PRBx+84Xh6UXQzh8qweRd6LMfIysR7yejv6dmfupu3uu9y3mxF2c6l31xkr8i1z/7JviGLFY3suIT++ImrfsAiVfcMiVPb5IlT2+SJU9g2LUNk3LEJl37AIlX3DIlT2DYtQ2TcsQmXfsAiVfcMiVPYNi1DZNyxCZd+wCJV9wyJU9g2LUNk3LEJl37AIlX3HIlT2DYtQ2TcsQmXfsAiVfcciVPYNi1DZ54tQ2XcsQmWfL0L1q8uHW4tQ2XcsQmWfL0JVyud9P/YNi1DZ54tQ2eeLUNk3LEK1H9F786H2DYtQFfmOvh/5jr4f+Y6+H/mOvh/5nr4f+Z6GHfmOhh35joad8nnDTvmGhp3yecOOfb4IlX3HIlTWvqEH6jsaduR7Gnbkexp25FsadrbTRLcmMvcTTXcmMrevud3ahv2LcrdahvavUFPj9anGf+097M7L3H3WN4OMkd8ye17d6Isvc+dCWA98vTu67ZS5+Ub4Nsi9xZr2IW4t1vSLELcWa9oeF8srifVb/ubB/SFIezeIEKS+Pi5mH/eo7EPcag4xq39oiJuX7vsB5YUMs/HuUcmrVbH5bgV53pK3g4y87X7g20FY+2Ub5Pi4tP/iayx3avsvPgyVMab0N78tldMhU+zl28vy6VDsv9R165d2+wW1fKNL7fnO7itfUOOzZTr0eC/GzGeXD3zzS27D2I53vyg38qg+wr37RbmnG8z29ngMYrw+Ltuv9Clvx+vTJMj7Md770l/juVJ7fq70pRh8tKjZ5hzbx+D2ZdjrGLZ9h2rmxcs4jtcvHtrc3b/0bNJtj+d6L6/Tf7UllluyeQVy7B7oaM8LKe1P00v1/nYM1hgZR7fNduynqGJYHz+augmye5s6P/PxfMcv2u6fIjPvoNru42djtzTq3VNkHPb5KfKrLbl5isxPT5Htdtw+RUr5hlNk93Dp81NEj2zm0B8/AfXTKbJdQUpywRSV55+q8VOM3WWQSX7Vxp6/oTi+sC/ZU67lkM2+2Dfsy/hj94XHuQ9879fuMQ2aH/mprb8XQ9gOsW+IMY439yWnUfV5taSvbQfftKrH22M6GVN9M0YjRt9893i7EEN+RUFEn6+3f2rCko+X9tmHuHV/Oz5fymYb4t4t8nY8K18YrPZ6UYqxe6x061Nl261o3GK3p1Wqf78V+nkF270ydbOC7Zf5EJ7CPH1S82tLhShLJPbX49H6/uORt9Yb2Qa5N8u3D3Frlu8XIe7M8m3Xs7l1l75fEefOXXr9eE6+fjwnv18p7vkzNMfzGn5fWm/uqP0pymb1vLpd/PLusnXbMDfP0W2Ie+foPsSdc3S/AufN9fe2MT5f5fH+OfKrVStvniPyPeeIfH6OyOfniHx8juyeu46DL3LLczPsT1cNffsGVx4Ysaf1Ce5vBe1fZT6vUSJfCDFzGw4pb4UYeTv641d8fzcWu46pmy3XY/dtv7st17sH2cLzI+ljszPb3j4jcbvpq+nsXwXJp4MPnq9av8fuCZKMmde2pbw+Q8b2bSmp+Tb++iTe0+l+HHcHtln2K7XndZu+cKI1yxUKHiE2x8a+obd/2Df09v/yANvTAdaXB3j80WcJnwWW/nxj+vPAjruvB+4mlPZB8rG6lL4LIt8wT7dbiOrmPN1uO27P023Xobo7T7ddiOrWPN2+CBR+rR78vDTAT0Vg7JaiypP1aQGpdr8631sdbOxeDBw5nmO+7roauxemaqGHvOjzamm3y6EUXoQpzzeFPx2TfYhGrrT3QtBPI0/fA//dmTG39/vMJh1vhsh++v50in9lR54/G/n00davhOh51f9jb9EXQljhgm4zFvP4o4OUzq9cf264+FIQy/mkYlPeDDIPVp2R946MdBa9sPdypeYc3+NMKe9tBW1jz7O3XwjRBp2Wzwu0lHn7WpsV1R+Xc+OdjSilsxbgeCvbSs18feB7W6HCZViz90J0OuDHfG9HODmrvLcjlVV3qr61I5aNQNb6OwFm41tG7+3EkdOtPywP+btM3z11+vzsngdfuXpvIPLUnqYfjuQmwPbi4BGCz2Uf8+XMz9w1h60PbWeQufmGwm6W4+P5hccVBlfjT481frrcmrtXoeT5ne7XF2zl86m0bZA1C3YwC1bfDDM1rzPm81s3Xwsi+WTige3dIPkwcT4/kPxaEF78f4xyf/NcHVnK59C6OVfvBnn63P0Xg+RHCB7Y3wtyf6LzF0N7bxL5F9tydwb4V2FuTgHP7Srvt0dmG+beFPA+xK0p4F+E+HAK+N4z3+31SzYDludZl5+/Ur+9zGdhyF7nWyFGPuIsz7/aXwkxjWXcjvJOiMe8T2UOub61FSwEt9ZQfC/EZCHV8taOPC6peYt5vrcVLJFd2vOa8F8I0Z7e2H2eNNKfv6Sif+jdSs1LoceVxHuD0Y7ck+fmjHfH870QVZjvled3KKfeD5FfT6rPn3B9N8TTk+svhchrqSqmb4WoOe30oOOtEC1rb/3hEvkrW9GfFqOXz0O8d1B5hbM+3wh/aSx4kazV9w4q68fX5/XjvxSi8IUPffOg5kdkH/jWVqwlbJlwam+FeFpJdzxf5f8UYu7WkXo85GIJqKeFzn/qPtr/qgq/qvrenmTLcnle1PtLITpPqd9LkjImnwY7yps7wjvKh3wcory7FUaIt7L98XvOWDT7eCt+Pqj/8/F///Svf/nHv/z17//6p//4y9//9u+Pv/nfK9g//vKn//XXP1//9//859/+9enf/sf/+2/xb/7XP/7y17/+5f/+y7/94+//+uf//Z//+POKtP7db8f1P//D1lq6pqr/859+K+v/r32yx5Xy4/9X//e6/n3v69+vv9B7G//Uu9b1D/xvrOX1Hv8z/+d/r03+/wA="
|
|
2292
2292
|
},
|
|
2293
2293
|
{
|
|
2294
2294
|
"name": "public_dispatch",
|
|
@@ -2628,31 +2628,31 @@
|
|
|
2628
2628
|
"path": "std/hash/mod.nr",
|
|
2629
2629
|
"source": "// Exposed only for usage in `std::meta`\npub(crate) mod poseidon2;\n\nuse crate::default::Default;\nuse crate::embedded_curve_ops::{\n EmbeddedCurvePoint, EmbeddedCurveScalar, multi_scalar_mul, multi_scalar_mul_array_return,\n};\nuse crate::meta::derive_via;\n\n#[foreign(sha256_compression)]\n// docs:start:sha256_compression\npub fn sha256_compression(input: [u32; 16], state: [u32; 8]) -> [u32; 8] {}\n// docs:end:sha256_compression\n\n#[foreign(keccakf1600)]\n// docs:start:keccakf1600\npub fn keccakf1600(input: [u64; 25]) -> [u64; 25] {}\n// docs:end:keccakf1600\n\npub mod keccak {\n #[deprecated(\"This function has been moved to std::hash::keccakf1600\")]\n pub fn keccakf1600(input: [u64; 25]) -> [u64; 25] {\n super::keccakf1600(input)\n }\n}\n\n#[foreign(blake2s)]\n// docs:start:blake2s\npub fn blake2s<let N: u32>(input: [u8; N]) -> [u8; 32]\n// docs:end:blake2s\n{}\n\n// docs:start:blake3\npub fn blake3<let N: u32>(input: [u8; N]) -> [u8; 32]\n// docs:end:blake3\n{\n if crate::runtime::is_unconstrained() {\n // Temporary measure while Barretenberg is main proving system.\n // Please open an issue if you're working on another proving system and running into problems due to this.\n crate::static_assert(\n N <= 1024,\n \"Barretenberg cannot prove blake3 hashes with inputs larger than 1024 bytes\",\n );\n }\n __blake3(input)\n}\n\n#[foreign(blake3)]\nfn __blake3<let N: u32>(input: [u8; N]) -> [u8; 32] {}\n\n// docs:start:pedersen_commitment\npub fn pedersen_commitment<let N: u32>(input: [Field; N]) -> EmbeddedCurvePoint {\n // docs:end:pedersen_commitment\n pedersen_commitment_with_separator(input, 0)\n}\n\n#[inline_always]\npub fn pedersen_commitment_with_separator<let N: u32>(\n input: [Field; N],\n separator: u32,\n) -> EmbeddedCurvePoint {\n let mut points = [EmbeddedCurveScalar { lo: 0, hi: 0 }; N];\n for i in 0..N {\n // we use the unsafe version because the multi_scalar_mul will constrain the scalars.\n points[i] = from_field_unsafe(input[i]);\n }\n let generators = derive_generators(\"DEFAULT_DOMAIN_SEPARATOR\".as_bytes(), separator);\n multi_scalar_mul(generators, points)\n}\n\n// docs:start:pedersen_hash\npub fn pedersen_hash<let N: u32>(input: [Field; N]) -> Field\n// docs:end:pedersen_hash\n{\n pedersen_hash_with_separator(input, 0)\n}\n\n#[no_predicates]\npub fn pedersen_hash_with_separator<let N: u32>(input: [Field; N], separator: u32) -> Field {\n let mut scalars: [EmbeddedCurveScalar; N + 1] = [EmbeddedCurveScalar { lo: 0, hi: 0 }; N + 1];\n let mut generators: [EmbeddedCurvePoint; N + 1] =\n [EmbeddedCurvePoint::point_at_infinity(); N + 1];\n let domain_generators: [EmbeddedCurvePoint; N] =\n derive_generators(\"DEFAULT_DOMAIN_SEPARATOR\".as_bytes(), separator);\n\n for i in 0..N {\n scalars[i] = from_field_unsafe(input[i]);\n generators[i] = domain_generators[i];\n }\n scalars[N] = EmbeddedCurveScalar { lo: N as Field, hi: 0 as Field };\n\n let length_generator: [EmbeddedCurvePoint; 1] =\n derive_generators(\"pedersen_hash_length\".as_bytes(), 0);\n generators[N] = length_generator[0];\n multi_scalar_mul_array_return(generators, scalars, true)[0].x\n}\n\n#[field(bn254)]\n#[inline_always]\npub fn derive_generators<let N: u32, let M: u32>(\n domain_separator_bytes: [u8; M],\n starting_index: u32,\n) -> [EmbeddedCurvePoint; N] {\n crate::assert_constant(domain_separator_bytes);\n // TODO(https://github.com/noir-lang/noir/issues/5672): Add back assert_constant on starting_index\n __derive_generators(domain_separator_bytes, starting_index)\n}\n\n#[builtin(derive_pedersen_generators)]\n#[field(bn254)]\nfn __derive_generators<let N: u32, let M: u32>(\n domain_separator_bytes: [u8; M],\n starting_index: u32,\n) -> [EmbeddedCurvePoint; N] {}\n\n#[field(bn254)]\n// Decompose the input 'bn254 scalar' into two 128 bits limbs.\n// It is called 'unsafe' because it does not assert the limbs are 128 bits\n// Assuming the limbs are 128 bits:\n// Assert the decomposition does not overflow the field size.\nfn from_field_unsafe(scalar: Field) -> EmbeddedCurveScalar {\n // Safety: xlo and xhi decomposition is checked below\n let (xlo, xhi) = unsafe { crate::field::bn254::decompose_hint(scalar) };\n // Check that the decomposition is correct\n assert_eq(scalar, xlo + crate::field::bn254::TWO_POW_128 * xhi);\n // Check that the decomposition does not overflow the field size\n let (a, b) = if xhi == crate::field::bn254::PHI {\n (xlo, crate::field::bn254::PLO)\n } else {\n (xhi, crate::field::bn254::PHI)\n };\n crate::field::bn254::assert_lt(a, b);\n\n EmbeddedCurveScalar { lo: xlo, hi: xhi }\n}\n\npub fn poseidon2_permutation<let N: u32>(input: [Field; N], state_len: u32) -> [Field; N] {\n assert_eq(input.len(), state_len);\n poseidon2_permutation_internal(input)\n}\n\n#[foreign(poseidon2_permutation)]\nfn poseidon2_permutation_internal<let N: u32>(input: [Field; N]) -> [Field; N] {}\n\n// Generic hashing support.\n// Partially ported and impacted by rust.\n\n// Hash trait shall be implemented per type.\n#[derive_via(derive_hash)]\npub trait Hash {\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher;\n}\n\n// docs:start:derive_hash\ncomptime fn derive_hash(s: TypeDefinition) -> Quoted {\n let name = quote { $crate::hash::Hash };\n let signature = quote { fn hash<H>(_self: Self, _state: &mut H) where H: $crate::hash::Hasher };\n let for_each_field = |name| quote { _self.$name.hash(_state); };\n crate::meta::make_trait_impl(\n s,\n name,\n signature,\n for_each_field,\n quote {},\n |fields| fields,\n )\n}\n// docs:end:derive_hash\n\n// Hasher trait shall be implemented by algorithms to provide hash-agnostic means.\n// TODO: consider making the types generic here ([u8], [Field], etc.)\npub trait Hasher {\n fn finish(self) -> Field;\n\n fn write(&mut self, input: Field);\n}\n\n// BuildHasher is a factory trait, responsible for production of specific Hasher.\npub trait BuildHasher {\n type H: Hasher;\n\n fn build_hasher(self) -> H;\n}\n\npub struct BuildHasherDefault<H>;\n\nimpl<H> BuildHasher for BuildHasherDefault<H>\nwhere\n H: Hasher + Default,\n{\n type H = H;\n\n fn build_hasher(_self: Self) -> H {\n H::default()\n }\n}\n\nimpl<H> Default for BuildHasherDefault<H>\nwhere\n H: Hasher + Default,\n{\n fn default() -> Self {\n BuildHasherDefault {}\n }\n}\n\nimpl Hash for Field {\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n H::write(state, self);\n }\n}\n\nimpl Hash for u1 {\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n H::write(state, self as Field);\n }\n}\n\nimpl Hash for u8 {\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n H::write(state, self as Field);\n }\n}\n\nimpl Hash for u16 {\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n H::write(state, self as Field);\n }\n}\n\nimpl Hash for u32 {\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n H::write(state, self as Field);\n }\n}\n\nimpl Hash for u64 {\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n H::write(state, self as Field);\n }\n}\n\nimpl Hash for u128 {\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n H::write(state, self as Field);\n }\n}\n\nimpl Hash for i8 {\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n H::write(state, self as u8 as Field);\n }\n}\n\nimpl Hash for i16 {\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n H::write(state, self as u16 as Field);\n }\n}\n\nimpl Hash for i32 {\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n H::write(state, self as u32 as Field);\n }\n}\n\nimpl Hash for i64 {\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n H::write(state, self as u64 as Field);\n }\n}\n\nimpl Hash for bool {\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n H::write(state, self as Field);\n }\n}\n\nimpl Hash for () {\n fn hash<H>(_self: Self, _state: &mut H)\n where\n H: Hasher,\n {}\n}\n\nimpl<T, let N: u32> Hash for [T; N]\nwhere\n T: Hash,\n{\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n for elem in self {\n elem.hash(state);\n }\n }\n}\n\nimpl<T> Hash for [T]\nwhere\n T: Hash,\n{\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n self.len().hash(state);\n for elem in self {\n elem.hash(state);\n }\n }\n}\n\nimpl<A, B> Hash for (A, B)\nwhere\n A: Hash,\n B: Hash,\n{\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n self.0.hash(state);\n self.1.hash(state);\n }\n}\n\nimpl<A, B, C> Hash for (A, B, C)\nwhere\n A: Hash,\n B: Hash,\n C: Hash,\n{\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n self.0.hash(state);\n self.1.hash(state);\n self.2.hash(state);\n }\n}\n\nimpl<A, B, C, D> Hash for (A, B, C, D)\nwhere\n A: Hash,\n B: Hash,\n C: Hash,\n D: Hash,\n{\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n self.0.hash(state);\n self.1.hash(state);\n self.2.hash(state);\n self.3.hash(state);\n }\n}\n\nimpl<A, B, C, D, E> Hash for (A, B, C, D, E)\nwhere\n A: Hash,\n B: Hash,\n C: Hash,\n D: Hash,\n E: Hash,\n{\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n self.0.hash(state);\n self.1.hash(state);\n self.2.hash(state);\n self.3.hash(state);\n self.4.hash(state);\n }\n}\n\n// Some test vectors for Pedersen hash and Pedersen Commitment.\n// They have been generated using the same functions so the tests are for now useless\n// but they will be useful when we switch to Noir implementation.\n#[test]\nfn assert_pedersen() {\n assert_eq(\n pedersen_hash_with_separator([1], 1),\n 0x1b3f4b1a83092a13d8d1a59f7acb62aba15e7002f4440f2275edb99ebbc2305f,\n );\n assert_eq(\n pedersen_commitment_with_separator([1], 1),\n EmbeddedCurvePoint {\n x: 0x054aa86a73cb8a34525e5bbed6e43ba1198e860f5f3950268f71df4591bde402,\n y: 0x209dcfbf2cfb57f9f6046f44d71ac6faf87254afc7407c04eb621a6287cac126,\n is_infinite: false,\n },\n );\n\n assert_eq(\n pedersen_hash_with_separator([1, 2], 2),\n 0x26691c129448e9ace0c66d11f0a16d9014a9e8498ee78f4d69f0083168188255,\n );\n assert_eq(\n pedersen_commitment_with_separator([1, 2], 2),\n EmbeddedCurvePoint {\n x: 0x2e2b3b191e49541fe468ec6877721d445dcaffe41728df0a0eafeb15e87b0753,\n y: 0x2ff4482400ad3a6228be17a2af33e2bcdf41be04795f9782bd96efe7e24f8778,\n is_infinite: false,\n },\n );\n assert_eq(\n pedersen_hash_with_separator([1, 2, 3], 3),\n 0x0bc694b7a1f8d10d2d8987d07433f26bd616a2d351bc79a3c540d85b6206dbe4,\n );\n assert_eq(\n pedersen_commitment_with_separator([1, 2, 3], 3),\n EmbeddedCurvePoint {\n x: 0x1fee4e8cf8d2f527caa2684236b07c4b1bad7342c01b0f75e9a877a71827dc85,\n y: 0x2f9fedb9a090697ab69bf04c8bc15f7385b3e4b68c849c1536e5ae15ff138fd1,\n is_infinite: false,\n },\n );\n assert_eq(\n pedersen_hash_with_separator([1, 2, 3, 4], 4),\n 0xdae10fb32a8408521803905981a2b300d6a35e40e798743e9322b223a5eddc,\n );\n assert_eq(\n pedersen_commitment_with_separator([1, 2, 3, 4], 4),\n EmbeddedCurvePoint {\n x: 0x07ae3e202811e1fca39c2d81eabe6f79183978e6f12be0d3b8eda095b79bdbc9,\n y: 0x0afc6f892593db6fbba60f2da558517e279e0ae04f95758587760ba193145014,\n is_infinite: false,\n },\n );\n assert_eq(\n pedersen_hash_with_separator([1, 2, 3, 4, 5], 5),\n 0xfc375b062c4f4f0150f7100dfb8d9b72a6d28582dd9512390b0497cdad9c22,\n );\n assert_eq(\n pedersen_commitment_with_separator([1, 2, 3, 4, 5], 5),\n EmbeddedCurvePoint {\n x: 0x1754b12bd475a6984a1094b5109eeca9838f4f81ac89c5f0a41dbce53189bb29,\n y: 0x2da030e3cfcdc7ddad80eaf2599df6692cae0717d4e9f7bfbee8d073d5d278f7,\n is_infinite: false,\n },\n );\n assert_eq(\n pedersen_hash_with_separator([1, 2, 3, 4, 5, 6], 6),\n 0x1696ed13dc2730062a98ac9d8f9de0661bb98829c7582f699d0273b18c86a572,\n );\n assert_eq(\n pedersen_commitment_with_separator([1, 2, 3, 4, 5, 6], 6),\n EmbeddedCurvePoint {\n x: 0x190f6c0e97ad83e1e28da22a98aae156da083c5a4100e929b77e750d3106a697,\n y: 0x1f4b60f34ef91221a0b49756fa0705da93311a61af73d37a0c458877706616fb,\n is_infinite: false,\n },\n );\n assert_eq(\n pedersen_hash_with_separator([1, 2, 3, 4, 5, 6, 7], 7),\n 0x128c0ff144fc66b6cb60eeac8a38e23da52992fc427b92397a7dffd71c45ede3,\n );\n assert_eq(\n pedersen_commitment_with_separator([1, 2, 3, 4, 5, 6, 7], 7),\n EmbeddedCurvePoint {\n x: 0x015441e9d29491b06563fac16fc76abf7a9534c715421d0de85d20dbe2965939,\n y: 0x1d2575b0276f4e9087e6e07c2cb75aa1baafad127af4be5918ef8a2ef2fea8fc,\n is_infinite: false,\n },\n );\n assert_eq(\n pedersen_hash_with_separator([1, 2, 3, 4, 5, 6, 7, 8], 8),\n 0x2f960e117482044dfc99d12fece2ef6862fba9242be4846c7c9a3e854325a55c,\n );\n assert_eq(\n pedersen_commitment_with_separator([1, 2, 3, 4, 5, 6, 7, 8], 8),\n EmbeddedCurvePoint {\n x: 0x1657737676968887fceb6dd516382ea13b3a2c557f509811cd86d5d1199bc443,\n y: 0x1f39f0cb569040105fa1e2f156521e8b8e08261e635a2b210bdc94e8d6d65f77,\n is_infinite: false,\n },\n );\n assert_eq(\n pedersen_hash_with_separator([1, 2, 3, 4, 5, 6, 7, 8, 9], 9),\n 0x0c96db0790602dcb166cc4699e2d306c479a76926b81c2cb2aaa92d249ec7be7,\n );\n assert_eq(\n pedersen_commitment_with_separator([1, 2, 3, 4, 5, 6, 7, 8, 9], 9),\n EmbeddedCurvePoint {\n x: 0x0a3ceae42d14914a432aa60ec7fded4af7dad7dd4acdbf2908452675ec67e06d,\n y: 0xfc19761eaaf621ad4aec9a8b2e84a4eceffdba78f60f8b9391b0bd9345a2f2,\n is_infinite: false,\n },\n );\n assert_eq(\n pedersen_hash_with_separator([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 10),\n 0x2cd37505871bc460a62ea1e63c7fe51149df5d0801302cf1cbc48beb8dff7e94,\n );\n assert_eq(\n pedersen_commitment_with_separator([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 10),\n EmbeddedCurvePoint {\n x: 0x2fb3f8b3d41ddde007c8c3c62550f9a9380ee546fcc639ffbb3fd30c8d8de30c,\n y: 0x300783be23c446b11a4c0fabf6c91af148937cea15fcf5fb054abf7f752ee245,\n is_infinite: false,\n },\n );\n}\n"
|
|
2630
2630
|
},
|
|
2631
|
-
"
|
|
2631
|
+
"233": {
|
|
2632
2632
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/utils/array/append.nr",
|
|
2633
2633
|
"source": "/// Appends the elements of the second `BoundedVec` to the end of the first one. The resulting `BoundedVec` can have any arbitrary maximum length, but it must be\n/// large enough to fit all of the elements of both the first and second vectors.\npub fn append<T, let ALen: u32, let BLen: u32, let DstLen: u32>(\n a: BoundedVec<T, ALen>,\n b: BoundedVec<T, BLen>,\n) -> BoundedVec<T, DstLen> {\n let mut dst = BoundedVec::new();\n\n dst.extend_from_bounded_vec(a);\n dst.extend_from_bounded_vec(b);\n\n dst\n}\n\nmod test {\n use super::append;\n\n #[test]\n unconstrained fn append_empty_vecs() {\n let a: BoundedVec<_, 3> = BoundedVec::new();\n let b: BoundedVec<_, 14> = BoundedVec::new();\n\n let result: BoundedVec<Field, 5> = append(a, b);\n\n assert_eq(result.len(), 0);\n assert_eq(result.storage(), std::mem::zeroed());\n }\n\n #[test]\n unconstrained fn append_non_empty_vecs() {\n let a: BoundedVec<_, 3> = BoundedVec::from_array([1, 2, 3]);\n let b: BoundedVec<_, 14> = BoundedVec::from_array([4, 5, 6]);\n\n let result: BoundedVec<Field, 8> = append(a, b);\n\n assert_eq(result.len(), 6);\n assert_eq(result.storage(), [1, 2, 3, 4, 5, 6, std::mem::zeroed(), std::mem::zeroed()]);\n }\n\n #[test(should_fail_with = \"out of bounds\")]\n unconstrained fn append_non_empty_vecs_insufficient_max_len() {\n let a: BoundedVec<_, 3> = BoundedVec::from_array([1, 2, 3]);\n let b: BoundedVec<_, 14> = BoundedVec::from_array([4, 5, 6]);\n\n let _: BoundedVec<Field, 5> = append(a, b);\n }\n}\n"
|
|
2634
2634
|
},
|
|
2635
|
-
"
|
|
2635
|
+
"236": {
|
|
2636
2636
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/utils/array/subarray.nr",
|
|
2637
2637
|
"source": "/// Returns `DstLen` elements from a source array, starting at `offset`. `DstLen` must not be larger than the number\n/// of elements past `offset`.\n///\n/// Examples:\n/// ```\n/// let foo: [Field; 2] = subarray([1, 2, 3, 4, 5], 2);\n/// assert_eq(foo, [3, 4]);\n///\n/// let bar: [Field; 5] = subarray([1, 2, 3, 4, 5], 2); // fails - we can't return 5 elements since only 3 remain\n/// ```\npub fn subarray<T, let SrcLen: u32, let DstLen: u32>(src: [T; SrcLen], offset: u32) -> [T; DstLen] {\n assert(offset + DstLen <= SrcLen, \"DstLen too large for offset\");\n\n let mut dst: [T; DstLen] = std::mem::zeroed();\n for i in 0..DstLen {\n dst[i] = src[i + offset];\n }\n\n dst\n}\n\nmod test {\n use super::subarray;\n\n #[test]\n unconstrained fn subarray_into_empty() {\n // In all of these cases we're setting DstLen to be 0, so we always get back an empty array.\n assert_eq(subarray::<Field, _, _>([], 0), []);\n assert_eq(subarray([1, 2, 3, 4, 5], 0), []);\n assert_eq(subarray([1, 2, 3, 4, 5], 2), []);\n }\n\n #[test]\n unconstrained fn subarray_complete() {\n assert_eq(subarray::<Field, _, _>([], 0), []);\n assert_eq(subarray([1, 2, 3, 4, 5], 0), [1, 2, 3, 4, 5]);\n }\n\n #[test]\n unconstrained fn subarray_different_end_sizes() {\n // We implicitly select how many values to read in the size of the return array\n assert_eq(subarray([1, 2, 3, 4, 5], 1), [2, 3, 4, 5]);\n assert_eq(subarray([1, 2, 3, 4, 5], 1), [2, 3, 4]);\n assert_eq(subarray([1, 2, 3, 4, 5], 1), [2, 3]);\n assert_eq(subarray([1, 2, 3, 4, 5], 1), [2]);\n }\n\n #[test(should_fail_with = \"DstLen too large for offset\")]\n unconstrained fn subarray_offset_too_large() {\n // With an offset of 1 we can only request up to 4 elements\n let _: [_; 5] = subarray([1, 2, 3, 4, 5], 1);\n }\n\n #[test(should_fail)]\n unconstrained fn subarray_bad_return_value() {\n assert_eq(subarray([1, 2, 3, 4, 5], 1), [3, 3, 4, 5]);\n }\n}\n"
|
|
2638
2638
|
},
|
|
2639
|
-
"
|
|
2639
|
+
"237": {
|
|
2640
2640
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/utils/array/subbvec.nr",
|
|
2641
2641
|
"source": "use crate::utils::array;\n\n/// Returns `DstMaxLen` elements from a source BoundedVec, starting at `offset`. `offset` must not be larger than the\n/// original length, and `DstLen` must not be larger than the total number of elements past `offset` (including the\n/// zeroed elements past `len()`).\n///\n/// Only elements at the beginning of the vector can be removed: it is not possible to also remove elements at the end\n/// of the vector by passing a value for `DstLen` that is smaller than `len() - offset`.\n///\n/// Examples:\n/// ```\n/// let foo = BoundedVec::<_, 10>::from_array([1, 2, 3, 4, 5]);\n/// assert_eq(subbvec(foo, 2), BoundedVec::<_, 8>::from_array([3, 4, 5]));\n///\n/// let bar: BoundedVec<_, 1> = subbvec(foo, 2); // fails - we can't return just 1 element since 3 remain\n/// let baz: BoundedVec<_, 10> = subbvec(foo, 3); // fails - we can't return 10 elements since only 7 remain\n/// ```\npub fn subbvec<T, let SrcMaxLen: u32, let DstMaxLen: u32>(\n bvec: BoundedVec<T, SrcMaxLen>,\n offset: u32,\n) -> BoundedVec<T, DstMaxLen> {\n // from_parts_unchecked does not verify that the elements past len are zeroed, but that is not an issue in our case\n // because we're constructing the new storage array as a subarray of the original one (which should have zeroed\n // storage past len), guaranteeing correctness. This is because `subarray` does not allow extending arrays past\n // their original length.\n BoundedVec::from_parts_unchecked(array::subarray(bvec.storage(), offset), bvec.len() - offset)\n}\n\nmod test {\n use super::subbvec;\n\n #[test]\n unconstrained fn subbvec_empty() {\n let bvec = BoundedVec::<Field, 0>::from_array([]);\n assert_eq(subbvec(bvec, 0), bvec);\n }\n\n #[test]\n unconstrained fn subbvec_complete() {\n let bvec = BoundedVec::<_, 10>::from_array([1, 2, 3, 4, 5]);\n assert_eq(subbvec(bvec, 0), bvec);\n\n let smaller_capacity = BoundedVec::<_, 5>::from_array([1, 2, 3, 4, 5]);\n assert_eq(subbvec(bvec, 0), smaller_capacity);\n }\n\n #[test]\n unconstrained fn subbvec_partial() {\n let bvec = BoundedVec::<_, 10>::from_array([1, 2, 3, 4, 5]);\n\n assert_eq(subbvec(bvec, 2), BoundedVec::<_, 8>::from_array([3, 4, 5]));\n assert_eq(subbvec(bvec, 2), BoundedVec::<_, 3>::from_array([3, 4, 5]));\n }\n\n #[test]\n unconstrained fn subbvec_into_empty() {\n let bvec: BoundedVec<_, 10> = BoundedVec::from_array([1, 2, 3, 4, 5]);\n assert_eq(subbvec(bvec, 5), BoundedVec::<_, 5>::from_array([]));\n }\n\n #[test(should_fail)]\n unconstrained fn subbvec_offset_past_len() {\n let bvec = BoundedVec::<_, 10>::from_array([1, 2, 3, 4, 5]);\n let _: BoundedVec<_, 1> = subbvec(bvec, 6);\n }\n\n #[test(should_fail)]\n unconstrained fn subbvec_insufficient_dst_len() {\n let bvec = BoundedVec::<_, 10>::from_array([1, 2, 3, 4, 5]);\n\n // We're not providing enough space to hold all of the items inside the original BoundedVec. subbvec can cause\n // for the capacity to reduce, but not the length (other than by len - offset).\n let _: BoundedVec<_, 1> = subbvec(bvec, 2);\n }\n\n #[test(should_fail_with = \"DstLen too large for offset\")]\n unconstrained fn subbvec_dst_len_causes_enlarge() {\n let bvec = BoundedVec::<_, 10>::from_array([1, 2, 3, 4, 5]);\n\n // subbvec does not supprt capacity increases\n let _: BoundedVec<_, 11> = subbvec(bvec, 0);\n }\n\n #[test(should_fail_with = \"DstLen too large for offset\")]\n unconstrained fn subbvec_dst_len_too_large_for_offset() {\n let bvec = BoundedVec::<_, 10>::from_array([1, 2, 3, 4, 5]);\n\n // This effectively requests a capacity increase, since there'd be just one element plus the 5 empty slots,\n // which is less than 7.\n let _: BoundedVec<_, 7> = subbvec(bvec, 4);\n }\n}\n"
|
|
2642
2642
|
},
|
|
2643
|
-
"
|
|
2643
|
+
"239": {
|
|
2644
2644
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/utils/conversion/bytes_to_fields.nr",
|
|
2645
2645
|
"source": "use std::static_assert;\n\n// These functions are used to facilitate the conversion of log ciphertext between byte and field representations.\n//\n// `bytes_to_fields` uses fixed-size arrays since encryption contexts have compile-time size information.\n// `bytes_from_fields` uses BoundedVec for flexibility in unconstrained contexts where sizes are dynamic.\n//\n// Together they provide bidirectional conversion between bytes and fields when processing encrypted logs.\n\n/// Converts the input bytes into an array of fields. A Field is ~254 bits meaning that each field can store 31 whole\n/// bytes. Use `bytes_from_fields` to obtain the original bytes array.\n///\n/// The input bytes are chunked into chunks of 31 bytes. Each 31-byte chunk is viewed as big-endian, and is converted\n/// into a Field.\n/// For example, [1, 10, 3, ..., 0] (31 bytes) is encoded as [1 * 256^30 + 10 * 256^29 + 3 * 256^28 + ... + 0]\n/// Note: N must be a multiple of 31 bytes\npub fn bytes_to_fields<let N: u32>(bytes: [u8; N]) -> [Field; N / 31] {\n // Assert that N is a multiple of 31\n static_assert(N % 31 == 0, \"N must be a multiple of 31\");\n\n let mut fields = [0; N / 31];\n\n // Since N is a multiple of 31, we can simply process all chunks fully\n for i in 0..N / 31 {\n let mut field = 0;\n for j in 0..31 {\n // Shift the existing value left by 8 bits and add the new byte\n field = field * 256 + bytes[i * 31 + j] as Field;\n }\n fields[i] = field;\n }\n\n fields\n}\n\n/// Converts an input BoundedVec of fields into a BoundedVec of bytes in big-endian order. Arbitrary Field arrays\n/// are not allowed: this is assumed to be an array obtained via `bytes_to_fields`, i.e. one that actually represents\n/// bytes. To convert a Field array into bytes, use `fields_to_bytes`.\n///\n/// Each input field must contain at most 31 bytes (this is constrained to be so).\n/// Each field is converted into 31 big-endian bytes, and the resulting 31-byte chunks are concatenated\n/// back together in the order of the original fields.\npub fn bytes_from_fields<let N: u32>(fields: BoundedVec<Field, N>) -> BoundedVec<u8, N * 31> {\n let mut bytes = BoundedVec::new();\n\n for i in 0..fields.len() {\n let field = fields.get(i);\n\n // We expect that the field contains at most 31 bytes of information.\n field.assert_max_bit_size::<248>();\n\n // Now we can safely convert the field to 31 bytes.\n let field_as_bytes: [u8; 31] = field.to_be_bytes();\n\n for j in 0..31 {\n bytes.push(field_as_bytes[j]);\n }\n }\n\n bytes\n}\n\nmod tests {\n use crate::utils::array::subarray;\n use super::{bytes_from_fields, bytes_to_fields};\n\n #[test]\n unconstrained fn random_bytes_to_fields_and_back(input: [u8; 93]) {\n let fields = bytes_to_fields(input);\n\n // At this point in production, the log flies through the system and we get a BoundedVec on the other end.\n // So we need to convert the field array to a BoundedVec to be able to feed it to the `bytes_from_fields`\n // function.\n let fields_as_bounded_vec = BoundedVec::<_, 6>::from_array(fields);\n\n let bytes_back = bytes_from_fields(fields_as_bounded_vec);\n\n // Compare the original input with the round-tripped result\n assert_eq(bytes_back.len(), input.len());\n assert_eq(subarray(bytes_back.storage(), 0), input);\n }\n\n #[test(should_fail_with = \"N must be a multiple of 31\")]\n unconstrained fn bytes_to_fields_input_length_not_multiple_of_31() {\n // Try to convert 32 bytes (not a multiple of 31) to fields\n let _fields = bytes_to_fields([0; 32]);\n }\n\n}\n"
|
|
2646
2646
|
},
|
|
2647
|
-
"
|
|
2647
|
+
"240": {
|
|
2648
2648
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/utils/conversion/fields_to_bytes.nr",
|
|
2649
2649
|
"source": "// These functions are used to facilitate the conversion of log plaintext represented as fields into bytes and back.\n//\n// `fields_to_bytes` uses fixed-size arrays since encryption contexts have compile-time size information.\n// `fields_from_bytes` uses BoundedVec for flexibility in unconstrained contexts where sizes are dynamic.\n//\n// Together they provide bidirectional conversion between fields and bytes.\n\n/// Converts an input array of fields into a single array of bytes. Use `fields_from_bytes` to obtain the original\n/// field array.\n/// Each field is converted to a 32-byte big-endian array.\n///\n/// For example, if you have a field array [123, 456], it will be converted to a 64-byte array:\n/// [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,123, // First field (32 bytes)\n/// 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,200] // Second field (32 bytes)\n///\n/// Since a field is ~254 bits, you'll end up with a subtle 2-bit \"gap\" at the big end, every 32 bytes. Be careful\n/// that such a gap doesn't leak information! This could happen if you for example expected the output to be\n/// indistinguishable from random bytes.\npub fn fields_to_bytes<let N: u32>(fields: [Field; N]) -> [u8; 32 * N] {\n let mut bytes = [0; 32 * N];\n\n for i in 0..N {\n let field_as_bytes: [u8; 32] = fields[i].to_be_bytes();\n\n for j in 0..32 {\n bytes[i * 32 + j] = field_as_bytes[j];\n }\n }\n\n bytes\n}\n\n/// Converts an input BoundedVec of bytes into a BoundedVec of fields. Arbitrary byte arrays are not allowed: this\n/// is assumed to be an array obtained via `fields_to_bytes`, i.e. one that actually represents fields. To convert\n/// a byte array into Fields, use `bytes_to_fields`.\n///\n/// The input bytes are chunked into chunks of 32 bytes. Each 32-byte chunk is viewed as big-endian, and is converted\n/// into a Field.\n/// For example, [1, 10, 3, ..., 0] (32 bytes) is encoded as [1 * 256^31 + 10 * 256^30 + 3 * 256^29 + ... + 0]\n/// Note 1: N must be a multiple of 32 bytes\n/// Note 2: The max value check code was taken from std::field::to_be_bytes function.\npub fn fields_from_bytes<let N: u32>(bytes: BoundedVec<u8, N>) -> BoundedVec<Field, N / 32> {\n // Assert that input length is a multiple of 32\n assert(bytes.len() % 32 == 0, \"Input length must be a multiple of 32\");\n\n let mut fields = BoundedVec::new();\n\n let p = std::field::modulus_be_bytes();\n\n // Since input length is a multiple of 32, we can simply process all chunks fully\n for i in 0..bytes.len() / 32 {\n let mut field = 0;\n\n // Process each byte in the 32-byte chunk\n let mut ok = false;\n\n for j in 0..32 {\n let next_byte = bytes.get(i * 32 + j);\n field = field * 256 + next_byte as Field;\n\n if !ok {\n if next_byte != p[j] {\n assert(next_byte < p[j], \"Value does not fit in field\");\n ok = true;\n }\n }\n }\n assert(ok, \"Value does not fit in field\");\n\n fields.push(field);\n }\n\n fields\n}\n\nmod tests {\n use crate::utils::array::subarray;\n use super::{fields_from_bytes, fields_to_bytes};\n\n #[test]\n unconstrained fn random_fields_to_bytes_and_back(input: [Field; 3]) {\n // Convert to bytes\n let bytes = fields_to_bytes(input);\n\n // At this point in production, the log flies through the system and we get a BoundedVec on the other end.\n // So we need to convert the field array to a BoundedVec to be able to feed it to the `fields_from_bytes`\n // function.\n // 113 is an arbitrary max length that is larger than the input length of 96.\n let bytes_as_bounded_vec = BoundedVec::<_, 113>::from_array(bytes);\n\n // Convert back to fields\n let fields_back = fields_from_bytes(bytes_as_bounded_vec);\n\n // Compare the original input with the round-tripped result\n assert_eq(fields_back.len(), input.len());\n assert_eq(subarray(fields_back.storage(), 0), input);\n }\n\n #[test(should_fail_with = \"Input length must be a multiple of 32\")]\n unconstrained fn to_fields_assert() {\n // 143 is an arbitrary max length that is larger than 33\n let input = BoundedVec::<_, 143>::from_array([\n 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,\n 25, 26, 27, 28, 29, 30, 31, 32, 33,\n ]);\n\n // This should fail since 33 is not a multiple of 32\n let _fields = fields_from_bytes(input);\n }\n\n #[test]\n unconstrained fn fields_from_bytes_max_value() {\n let max_field_as_bytes: [u8; 32] = (-1).to_be_bytes();\n let input = BoundedVec::<_, 32>::from_array(max_field_as_bytes);\n\n let fields = fields_from_bytes(input);\n\n // The result should be a largest value storable in a field (-1 since we are modulo-ing)\n assert_eq(fields.get(0), -1);\n }\n\n // In this test we verify that overflow check works by taking the max allowed value, bumping a random byte\n // and then feeding it to `fields_from_bytes` as input.\n #[test(should_fail_with = \"Value does not fit in field\")]\n unconstrained fn fields_from_bytes_overflow(random_value: u8) {\n let index_of_byte_to_bump = random_value % 32;\n\n // Obtain the byte representation of the maximum field value\n let max_field_value_as_bytes: [u8; 32] = (-1).to_be_bytes();\n\n let byte_to_bump = max_field_value_as_bytes[index_of_byte_to_bump as u32];\n\n // Skip test execution if the selected byte is already at maximum value (255).\n // This is acceptable since we are using fuzz testing to generate many test cases.\n if byte_to_bump != 255 {\n let mut input = BoundedVec::<_, 32>::from_array(max_field_value_as_bytes);\n\n // Increment the selected byte to exceed the field's maximum value\n input.set(index_of_byte_to_bump as u32, byte_to_bump + 1);\n\n // Attempt the conversion, which should fail due to the value exceeding the field's capacity\n let _fields = fields_from_bytes(input);\n }\n }\n\n}\n"
|
|
2650
2650
|
},
|
|
2651
|
-
"
|
|
2651
|
+
"243": {
|
|
2652
2652
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/utils/point.nr",
|
|
2653
2653
|
"source": "use protocol_types::{point::Point, utils::field::sqrt};\n\n// I am storing the modulus minus 1 divided by 2 here because full modulus would throw \"String literal too large\" error\n// Full modulus is 21888242871839275222246405745257275088548364400416034343698204186575808495617\nglobal BN254_FR_MODULUS_DIV_2: Field =\n 10944121435919637611123202872628637544274182200208017171849102093287904247808;\n\n/// Converts a point to a byte array.\n///\n/// We don't serialize the point at infinity flag because this function is used in situations where we do not want\n/// to waste the extra byte (encrypted log).\npub fn point_to_bytes(p: Point) -> [u8; 32] {\n // Note that there is 1 more free bit in the 32 bytes (254 bits currently occupied by the x coordinate, 1 bit for\n // the \"sign\") so it's possible to use that last bit as an \"is_infinite\" flag if desired in the future.\n assert(!p.is_infinite, \"Cannot serialize point at infinity as bytes.\");\n\n let mut result: [u8; 32] = p.x.to_be_bytes();\n\n if get_sign_of_point(p) {\n // y is <= (modulus - 1) / 2 so we set the sign bit to 1\n // Here we leverage that field fits into 254 bits (log2(Fr.MODULUS) < 254) and given that we serialize Fr to 32\n // bytes and we use big-endian the 2 most significant bits are never populated. Hence we can use one of\n // the bits as a sign bit.\n result[0] += 128;\n }\n\n result\n}\n\n/**\n * Returns: true if p.y <= MOD_DIV_2, else false.\n */\npub fn get_sign_of_point(p: Point) -> bool {\n // We store only a \"sign\" of the y coordinate because the rest can be derived from the x coordinate. To get\n // the sign we check if the y coordinate is less or equal than the curve's order minus 1 divided by 2.\n // Ideally we'd do `y <= MOD_DIV_2`, but there's no `lte` function, so instead we do `!(y > MOD_DIV_2)`, which is\n // equivalent, and then rewrite that as `!(MOD_DIV_2 < y)`, since we also have no `gt` function.\n !BN254_FR_MODULUS_DIV_2.lt(p.y)\n}\n\n/// Returns a `Point` in the Grumpkin curve given its x coordinate.\n///\n/// Because not all values in the field are valid x coordinates of points in the curve (i.e. there\n/// is no corresponding y value in the field that satisfies the curve equation), it may not be\n/// possible to reconstruct a `Point`. `Option::none()` is returned in such cases.\npub fn point_from_x_coord(x: Field) -> Option<Point> {\n // y ^ 2 = x ^ 3 - 17\n let rhs = x * x * x - 17;\n sqrt(rhs).map(|y| Point { x, y, is_infinite: false })\n}\n\n/// Returns a `Point` in the Grumpkin curve given its x coordinate and sign for the y coordinate.\n///\n/// Because not all values in the field are valid x coordinates of points in the curve (i.e. there\n/// is no corresponding y value in the field that satisfies the curve equation), it may not be\n/// possible to reconstruct a `Point`. `Option::none()` is returned in such cases.\n///\n/// @param x - The x coordinate of the point\n/// @param sign - The \"sign\" of the y coordinate - determines whether y <= (Fr.MODULUS - 1) / 2\npub fn point_from_x_coord_and_sign(x: Field, sign: bool) -> Option<Point> {\n // y ^ 2 = x ^ 3 - 17\n let rhs = x * x * x - 17;\n\n sqrt(rhs).map(|y| {\n // If there is a square root, we need to ensure it has the correct \"sign\"\n let y_is_positive = !BN254_FR_MODULUS_DIV_2.lt(y);\n let final_y = if y_is_positive == sign { y } else { -y };\n Point { x, y: final_y, is_infinite: false }\n })\n}\n\nmod test {\n use crate::utils::point::{point_from_x_coord, point_from_x_coord_and_sign, point_to_bytes};\n use dep::protocol_types::point::Point;\n use dep::protocol_types::utils::field::pow;\n\n #[test]\n unconstrained fn test_point_to_bytes_positive_sign() {\n let p = Point {\n x: 0x1af41f5de96446dc3776a1eb2d98bb956b7acd9979a67854bec6fa7c2973bd73,\n y: 0x07fc22c7f2c7057571f137fe46ea9c95114282bc95d37d71ec4bfb88de457d4a,\n is_infinite: false,\n };\n\n let compressed_point = point_to_bytes(p);\n\n let expected_compressed_point_positive_sign = [\n 154, 244, 31, 93, 233, 100, 70, 220, 55, 118, 161, 235, 45, 152, 187, 149, 107, 122,\n 205, 153, 121, 166, 120, 84, 190, 198, 250, 124, 41, 115, 189, 115,\n ];\n assert_eq(expected_compressed_point_positive_sign, compressed_point);\n }\n\n #[test]\n unconstrained fn test_point_to_bytes_negative_sign() {\n let p = Point {\n x: 0x247371652e55dd74c9af8dbe9fb44931ba29a9229994384bd7077796c14ee2b5,\n y: 0x26441aec112e1ae4cee374f42556932001507ad46e255ffb27369c7e3766e5c0,\n is_infinite: false,\n };\n\n let compressed_point = point_to_bytes(p);\n\n let expected_compressed_point_negative_sign = [\n 36, 115, 113, 101, 46, 85, 221, 116, 201, 175, 141, 190, 159, 180, 73, 49, 186, 41, 169,\n 34, 153, 148, 56, 75, 215, 7, 119, 150, 193, 78, 226, 181,\n ];\n\n assert_eq(expected_compressed_point_negative_sign, compressed_point);\n }\n\n #[test]\n unconstrained fn test_point_from_x_coord_and_sign() {\n // Test positive y coordinate\n let x = 0x1af41f5de96446dc3776a1eb2d98bb956b7acd9979a67854bec6fa7c2973bd73;\n let sign = true;\n let p = point_from_x_coord_and_sign(x, sign).unwrap();\n\n assert_eq(p.x, x);\n assert_eq(p.y, 0x07fc22c7f2c7057571f137fe46ea9c95114282bc95d37d71ec4bfb88de457d4a);\n assert_eq(p.is_infinite, false);\n\n // Test negative y coordinate\n let x2 = 0x247371652e55dd74c9af8dbe9fb44931ba29a9229994384bd7077796c14ee2b5;\n let sign2 = false;\n let p2 = point_from_x_coord_and_sign(x2, sign2).unwrap();\n\n assert_eq(p2.x, x2);\n assert_eq(p2.y, 0x26441aec112e1ae4cee374f42556932001507ad46e255ffb27369c7e3766e5c0);\n assert_eq(p2.is_infinite, false);\n }\n\n #[test]\n unconstrained fn test_point_from_x_coord_valid() {\n // x = 8 is a known quadratic residue - should give a valid point\n let result = point_from_x_coord(Field::from(8));\n assert(result.is_some());\n\n let point = result.unwrap();\n assert_eq(point.x, Field::from(8));\n // Check curve equation y^2 = x^3 - 17\n assert_eq(pow(point.y, 2), pow(point.x, 3) - 17);\n }\n\n #[test]\n unconstrained fn test_point_from_x_coord_invalid() {\n // x = 3 is a non-residue for this curve - should give None\n let x = Field::from(3);\n let maybe_point = point_from_x_coord(x);\n assert(maybe_point.is_none());\n }\n\n}\n"
|
|
2654
2654
|
},
|
|
2655
|
-
"
|
|
2655
|
+
"254": {
|
|
2656
2656
|
"path": "/home/aztec-dev/nargo/github.com/noir-lang/poseidon/v0.1.1/src/poseidon2.nr",
|
|
2657
2657
|
"source": "use std::default::Default;\nuse std::hash::Hasher;\n\ncomptime global RATE: u32 = 3;\n\npub struct Poseidon2 {\n cache: [Field; 3],\n state: [Field; 4],\n cache_size: u32,\n squeeze_mode: bool, // 0 => absorb, 1 => squeeze\n}\n\nimpl Poseidon2 {\n #[no_predicates]\n pub fn hash<let N: u32>(input: [Field; N], message_size: u32) -> Field {\n Poseidon2::hash_internal(input, message_size, message_size != N)\n }\n\n pub(crate) fn new(iv: Field) -> Poseidon2 {\n let mut result =\n Poseidon2 { cache: [0; 3], state: [0; 4], cache_size: 0, squeeze_mode: false };\n result.state[RATE] = iv;\n result\n }\n\n fn perform_duplex(&mut self) {\n // add the cache into sponge state\n for i in 0..RATE {\n // We effectively zero-pad the cache by only adding to the state\n // cache that is less than the specified `cache_size`\n if i < self.cache_size {\n self.state[i] += self.cache[i];\n }\n }\n self.state = crate::poseidon2_permutation(self.state, 4);\n }\n\n fn absorb(&mut self, input: Field) {\n assert(!self.squeeze_mode);\n if self.cache_size == RATE {\n // If we're absorbing, and the cache is full, apply the sponge permutation to compress the cache\n self.perform_duplex();\n self.cache[0] = input;\n self.cache_size = 1;\n } else {\n // If we're absorbing, and the cache is not full, add the input into the cache\n self.cache[self.cache_size] = input;\n self.cache_size += 1;\n }\n }\n\n fn squeeze(&mut self) -> Field {\n assert(!self.squeeze_mode);\n // If we're in absorb mode, apply sponge permutation to compress the cache.\n self.perform_duplex();\n self.squeeze_mode = true;\n\n // Pop one item off the top of the permutation and return it.\n self.state[0]\n }\n\n fn hash_internal<let N: u32>(\n input: [Field; N],\n in_len: u32,\n is_variable_length: bool,\n ) -> Field {\n let two_pow_64 = 18446744073709551616;\n let iv: Field = (in_len as Field) * two_pow_64;\n let mut sponge = Poseidon2::new(iv);\n for i in 0..input.len() {\n if i < in_len {\n sponge.absorb(input[i]);\n }\n }\n\n // In the case where the hash preimage is variable-length, we append `1` to the end of the input, to distinguish\n // from fixed-length hashes. (the combination of this additional field element + the hash IV ensures\n // fixed-length and variable-length hashes do not collide)\n if is_variable_length {\n sponge.absorb(1);\n }\n sponge.squeeze()\n }\n}\n\npub struct Poseidon2Hasher {\n _state: [Field],\n}\n\nimpl Hasher for Poseidon2Hasher {\n fn finish(self) -> Field {\n let iv: Field = (self._state.len() as Field) * 18446744073709551616; // iv = (self._state.len() << 64)\n let mut sponge = Poseidon2::new(iv);\n for i in 0..self._state.len() {\n sponge.absorb(self._state[i]);\n }\n sponge.squeeze()\n }\n\n fn write(&mut self, input: Field) {\n self._state = self._state.push_back(input);\n }\n}\n\nimpl Default for Poseidon2Hasher {\n fn default() -> Self {\n Poseidon2Hasher { _state: &[] }\n }\n}\n"
|
|
2658
2658
|
},
|
|
@@ -2660,43 +2660,43 @@
|
|
|
2660
2660
|
"path": "std/array/mod.nr",
|
|
2661
2661
|
"source": "use crate::cmp::{Eq, Ord};\nuse crate::convert::From;\nuse crate::runtime::is_unconstrained;\n\nmod check_shuffle;\nmod quicksort;\n\nimpl<T, let N: u32> [T; N] {\n /// Returns the length of this array.\n ///\n /// ```noir\n /// fn len(self) -> Field\n /// ```\n ///\n /// example\n ///\n /// ```noir\n /// fn main() {\n /// let array = [42, 42];\n /// assert(array.len() == 2);\n /// }\n /// ```\n #[builtin(array_len)]\n pub fn len(self) -> u32 {}\n\n /// Returns this array as a slice.\n ///\n /// ```noir\n /// let array = [1, 2];\n /// let slice = array.as_slice();\n /// assert_eq(slice, &[1, 2]);\n /// ```\n #[builtin(as_slice)]\n pub fn as_slice(self) -> [T] {}\n\n /// Applies a function to each element of this array, returning a new array containing the mapped elements.\n ///\n /// Example:\n ///\n /// ```rust\n /// let a = [1, 2, 3];\n /// let b = a.map(|a| a * 2);\n /// assert_eq(b, [2, 4, 6]);\n /// ```\n pub fn map<U, Env>(self, f: fn[Env](T) -> U) -> [U; N] {\n let uninitialized = crate::mem::zeroed();\n let mut ret = [uninitialized; N];\n\n for i in 0..self.len() {\n ret[i] = f(self[i]);\n }\n\n ret\n }\n\n /// Applies a function to each element of this array along with its index,\n /// returning a new array containing the mapped elements.\n ///\n /// Example:\n ///\n /// ```rust\n /// let a = [1, 2, 3];\n /// let b = a.mapi(|i, a| i + a * 2);\n /// assert_eq(b, [2, 5, 8]);\n /// ```\n pub fn mapi<U, Env>(self, f: fn[Env](u32, T) -> U) -> [U; N] {\n let uninitialized = crate::mem::zeroed();\n let mut ret = [uninitialized; N];\n\n for i in 0..self.len() {\n ret[i] = f(i, self[i]);\n }\n\n ret\n }\n\n /// Applies a function to each element of this array.\n ///\n /// Example:\n ///\n /// ```rust\n /// let a = [1, 2, 3];\n /// let mut b = [0; 3];\n /// let mut i = 0;\n /// a.for_each(|x| {\n /// b[i] = x;\n /// i += 1;\n /// });\n /// assert_eq(a, b);\n /// ```\n pub fn for_each<Env>(self, f: fn[Env](T) -> ()) {\n for i in 0..self.len() {\n f(self[i]);\n }\n }\n\n /// Applies a function to each element of this array along with its index.\n ///\n /// Example:\n ///\n /// ```rust\n /// let a = [1, 2, 3];\n /// let mut b = [0; 3];\n /// a.for_eachi(|i, x| {\n /// b[i] = x;\n /// });\n /// assert_eq(a, b);\n /// ```\n pub fn for_eachi<Env>(self, f: fn[Env](u32, T) -> ()) {\n for i in 0..self.len() {\n f(i, self[i]);\n }\n }\n\n /// Applies a function to each element of the array, returning the final accumulated value. The first\n /// parameter is the initial value.\n ///\n /// This is a left fold, so the given function will be applied to the accumulator and first element of\n /// the array, then the second, and so on. For a given call the expected result would be equivalent to:\n ///\n /// ```rust\n /// let a1 = [1];\n /// let a2 = [1, 2];\n /// let a3 = [1, 2, 3];\n ///\n /// let f = |a, b| a - b;\n /// a1.fold(10, f); //=> f(10, 1)\n /// a2.fold(10, f); //=> f(f(10, 1), 2)\n /// a3.fold(10, f); //=> f(f(f(10, 1), 2), 3)\n ///\n /// assert_eq(a3.fold(10, f), 10 - 1 - 2 - 3);\n /// ```\n pub fn fold<U, Env>(self, mut accumulator: U, f: fn[Env](U, T) -> U) -> U {\n for elem in self {\n accumulator = f(accumulator, elem);\n }\n accumulator\n }\n\n /// Same as fold, but uses the first element as the starting element.\n ///\n /// Requires the input array to be non-empty.\n ///\n /// Example:\n ///\n /// ```noir\n /// fn main() {\n /// let arr = [1, 2, 3, 4];\n /// let reduced = arr.reduce(|a, b| a + b);\n /// assert(reduced == 10);\n /// }\n /// ```\n pub fn reduce<Env>(self, f: fn[Env](T, T) -> T) -> T {\n let mut accumulator = self[0];\n for i in 1..self.len() {\n accumulator = f(accumulator, self[i]);\n }\n accumulator\n }\n\n /// Returns true if all the elements in this array satisfy the given predicate.\n ///\n /// Example:\n ///\n /// ```noir\n /// fn main() {\n /// let arr = [2, 2, 2, 2, 2];\n /// let all = arr.all(|a| a == 2);\n /// assert(all);\n /// }\n /// ```\n pub fn all<Env>(self, predicate: fn[Env](T) -> bool) -> bool {\n let mut ret = true;\n for elem in self {\n ret &= predicate(elem);\n }\n ret\n }\n\n /// Returns true if any of the elements in this array satisfy the given predicate.\n ///\n /// Example:\n ///\n /// ```noir\n /// fn main() {\n /// let arr = [2, 2, 2, 2, 5];\n /// let any = arr.any(|a| a == 5);\n /// assert(any);\n /// }\n /// ```\n pub fn any<Env>(self, predicate: fn[Env](T) -> bool) -> bool {\n let mut ret = false;\n for elem in self {\n ret |= predicate(elem);\n }\n ret\n }\n\n /// Concatenates this array with another array.\n ///\n /// Example:\n ///\n /// ```noir\n /// fn main() {\n /// let arr1 = [1, 2, 3, 4];\n /// let arr2 = [6, 7, 8, 9, 10, 11];\n /// let concatenated_arr = arr1.concat(arr2);\n /// assert(concatenated_arr == [1, 2, 3, 4, 6, 7, 8, 9, 10, 11]);\n /// }\n /// ```\n pub fn concat<let M: u32>(self, array2: [T; M]) -> [T; N + M] {\n let mut result = [crate::mem::zeroed(); N + M];\n for i in 0..N {\n result[i] = self[i];\n }\n for i in 0..M {\n result[i + N] = array2[i];\n }\n result\n }\n}\n\nimpl<T, let N: u32> [T; N]\nwhere\n T: Ord + Eq,\n{\n /// Returns a new sorted array. The original array remains untouched. Notice that this function will\n /// only work for arrays of fields or integers, not for any arbitrary type. This is because the sorting\n /// logic it uses internally is optimized specifically for these values. If you need a sort function to\n /// sort any type, you should use the [`Self::sort_via`] function.\n ///\n /// Example:\n ///\n /// ```rust\n /// fn main() {\n /// let arr = [42, 32];\n /// let sorted = arr.sort();\n /// assert(sorted == [32, 42]);\n /// }\n /// ```\n pub fn sort(self) -> Self {\n self.sort_via(|a, b| a <= b)\n }\n}\n\nimpl<T, let N: u32> [T; N]\nwhere\n T: Eq,\n{\n /// Returns a new sorted array by sorting it with a custom comparison function.\n /// The original array remains untouched.\n /// The ordering function must return true if the first argument should be sorted to be before the second argument or is equal to the second argument.\n ///\n /// Using this method with an operator like `<` that does not return `true` for equal values will result in an assertion failure for arrays with equal elements.\n ///\n /// Example:\n ///\n /// ```rust\n /// fn main() {\n /// let arr = [42, 32]\n /// let sorted_ascending = arr.sort_via(|a, b| a <= b);\n /// assert(sorted_ascending == [32, 42]); // verifies\n ///\n /// let sorted_descending = arr.sort_via(|a, b| a >= b);\n /// assert(sorted_descending == [32, 42]); // does not verify\n /// }\n /// ```\n pub fn sort_via<Env>(self, ordering: fn[Env](T, T) -> bool) -> Self {\n // Safety: `sorted` array is checked to be:\n // a. a permutation of `input`'s elements\n // b. satisfying the predicate `ordering`\n let sorted = unsafe { quicksort::quicksort(self, ordering) };\n\n if !is_unconstrained() {\n for i in 0..N - 1 {\n assert(\n ordering(sorted[i], sorted[i + 1]),\n \"Array has not been sorted correctly according to `ordering`.\",\n );\n }\n check_shuffle::check_shuffle(self, sorted);\n }\n sorted\n }\n}\n\nimpl<let N: u32> [u8; N] {\n /// Converts a byte array of type `[u8; N]` to a string. Note that this performs no UTF-8 validation -\n /// the given array is interpreted as-is as a string.\n ///\n /// Example:\n ///\n /// ```rust\n /// fn main() {\n /// let hi = [104, 105].as_str_unchecked();\n /// assert_eq(hi, \"hi\");\n /// }\n /// ```\n #[builtin(array_as_str_unchecked)]\n pub fn as_str_unchecked(self) -> str<N> {}\n}\n\nimpl<let N: u32> From<str<N>> for [u8; N] {\n /// Returns an array of the string bytes.\n fn from(s: str<N>) -> Self {\n s.as_bytes()\n }\n}\n\nmod test {\n #[test]\n fn map_empty() {\n assert_eq([].map(|x| x + 1), []);\n }\n\n global arr_with_100_values: [u32; 100] = [\n 42, 123, 87, 93, 48, 80, 50, 5, 104, 84, 70, 47, 119, 66, 71, 121, 3, 29, 42, 118, 2, 54,\n 89, 44, 81, 0, 26, 106, 68, 96, 84, 48, 95, 54, 45, 32, 89, 100, 109, 19, 37, 41, 19, 98,\n 53, 114, 107, 66, 6, 74, 13, 19, 105, 64, 123, 28, 44, 50, 89, 58, 123, 126, 21, 43, 86, 35,\n 21, 62, 82, 0, 108, 120, 72, 72, 62, 80, 12, 71, 70, 86, 116, 73, 38, 15, 127, 81, 30, 8,\n 125, 28, 26, 69, 114, 63, 27, 28, 61, 42, 13, 32,\n ];\n global expected_with_100_values: [u32; 100] = [\n 0, 0, 2, 3, 5, 6, 8, 12, 13, 13, 15, 19, 19, 19, 21, 21, 26, 26, 27, 28, 28, 28, 29, 30, 32,\n 32, 35, 37, 38, 41, 42, 42, 42, 43, 44, 44, 45, 47, 48, 48, 50, 50, 53, 54, 54, 58, 61, 62,\n 62, 63, 64, 66, 66, 68, 69, 70, 70, 71, 71, 72, 72, 73, 74, 80, 80, 81, 81, 82, 84, 84, 86,\n 86, 87, 89, 89, 89, 93, 95, 96, 98, 100, 104, 105, 106, 107, 108, 109, 114, 114, 116, 118,\n 119, 120, 121, 123, 123, 123, 125, 126, 127,\n ];\n fn sort_u32(a: u32, b: u32) -> bool {\n a <= b\n }\n\n #[test]\n fn test_sort() {\n let mut arr: [u32; 7] = [3, 6, 8, 10, 1, 2, 1];\n\n let sorted = arr.sort();\n\n let expected: [u32; 7] = [1, 1, 2, 3, 6, 8, 10];\n assert(sorted == expected);\n }\n\n #[test]\n fn test_sort_100_values() {\n let mut arr: [u32; 100] = [\n 42, 123, 87, 93, 48, 80, 50, 5, 104, 84, 70, 47, 119, 66, 71, 121, 3, 29, 42, 118, 2,\n 54, 89, 44, 81, 0, 26, 106, 68, 96, 84, 48, 95, 54, 45, 32, 89, 100, 109, 19, 37, 41,\n 19, 98, 53, 114, 107, 66, 6, 74, 13, 19, 105, 64, 123, 28, 44, 50, 89, 58, 123, 126, 21,\n 43, 86, 35, 21, 62, 82, 0, 108, 120, 72, 72, 62, 80, 12, 71, 70, 86, 116, 73, 38, 15,\n 127, 81, 30, 8, 125, 28, 26, 69, 114, 63, 27, 28, 61, 42, 13, 32,\n ];\n\n let sorted = arr.sort();\n\n let expected: [u32; 100] = [\n 0, 0, 2, 3, 5, 6, 8, 12, 13, 13, 15, 19, 19, 19, 21, 21, 26, 26, 27, 28, 28, 28, 29, 30,\n 32, 32, 35, 37, 38, 41, 42, 42, 42, 43, 44, 44, 45, 47, 48, 48, 50, 50, 53, 54, 54, 58,\n 61, 62, 62, 63, 64, 66, 66, 68, 69, 70, 70, 71, 71, 72, 72, 73, 74, 80, 80, 81, 81, 82,\n 84, 84, 86, 86, 87, 89, 89, 89, 93, 95, 96, 98, 100, 104, 105, 106, 107, 108, 109, 114,\n 114, 116, 118, 119, 120, 121, 123, 123, 123, 125, 126, 127,\n ];\n assert(sorted == expected);\n }\n\n #[test]\n fn test_sort_100_values_comptime() {\n let sorted = arr_with_100_values.sort();\n assert(sorted == expected_with_100_values);\n }\n\n #[test]\n fn test_sort_via() {\n let mut arr: [u32; 7] = [3, 6, 8, 10, 1, 2, 1];\n\n let sorted = arr.sort_via(sort_u32);\n\n let expected: [u32; 7] = [1, 1, 2, 3, 6, 8, 10];\n assert(sorted == expected);\n }\n\n #[test]\n fn test_sort_via_100_values() {\n let mut arr: [u32; 100] = [\n 42, 123, 87, 93, 48, 80, 50, 5, 104, 84, 70, 47, 119, 66, 71, 121, 3, 29, 42, 118, 2,\n 54, 89, 44, 81, 0, 26, 106, 68, 96, 84, 48, 95, 54, 45, 32, 89, 100, 109, 19, 37, 41,\n 19, 98, 53, 114, 107, 66, 6, 74, 13, 19, 105, 64, 123, 28, 44, 50, 89, 58, 123, 126, 21,\n 43, 86, 35, 21, 62, 82, 0, 108, 120, 72, 72, 62, 80, 12, 71, 70, 86, 116, 73, 38, 15,\n 127, 81, 30, 8, 125, 28, 26, 69, 114, 63, 27, 28, 61, 42, 13, 32,\n ];\n\n let sorted = arr.sort_via(sort_u32);\n\n let expected: [u32; 100] = [\n 0, 0, 2, 3, 5, 6, 8, 12, 13, 13, 15, 19, 19, 19, 21, 21, 26, 26, 27, 28, 28, 28, 29, 30,\n 32, 32, 35, 37, 38, 41, 42, 42, 42, 43, 44, 44, 45, 47, 48, 48, 50, 50, 53, 54, 54, 58,\n 61, 62, 62, 63, 64, 66, 66, 68, 69, 70, 70, 71, 71, 72, 72, 73, 74, 80, 80, 81, 81, 82,\n 84, 84, 86, 86, 87, 89, 89, 89, 93, 95, 96, 98, 100, 104, 105, 106, 107, 108, 109, 114,\n 114, 116, 118, 119, 120, 121, 123, 123, 123, 125, 126, 127,\n ];\n assert(sorted == expected);\n }\n\n #[test]\n fn mapi_empty() {\n assert_eq([].mapi(|i, x| i * x + 1), []);\n }\n\n #[test]\n fn for_each_empty() {\n let empty_array: [Field; 0] = [];\n empty_array.for_each(|_x| assert(false));\n }\n\n #[test]\n fn for_eachi_empty() {\n let empty_array: [Field; 0] = [];\n empty_array.for_eachi(|_i, _x| assert(false));\n }\n\n #[test]\n fn map_example() {\n let a = [1, 2, 3];\n let b = a.map(|a| a * 2);\n assert_eq(b, [2, 4, 6]);\n }\n\n #[test]\n fn mapi_example() {\n let a = [1, 2, 3];\n let b = a.mapi(|i, a| i + a * 2);\n assert_eq(b, [2, 5, 8]);\n }\n\n #[test]\n fn for_each_example() {\n let a = [1, 2, 3];\n let mut b = [0, 0, 0];\n let b_ref = &mut b;\n let mut i = 0;\n let i_ref = &mut i;\n a.for_each(|x| {\n b_ref[*i_ref] = x * 2;\n *i_ref += 1;\n });\n assert_eq(b, [2, 4, 6]);\n assert_eq(i, 3);\n }\n\n #[test]\n fn for_eachi_example() {\n let a = [1, 2, 3];\n let mut b = [0, 0, 0];\n let b_ref = &mut b;\n a.for_eachi(|i, a| { b_ref[i] = i + a * 2; });\n assert_eq(b, [2, 5, 8]);\n }\n\n #[test]\n fn concat() {\n let arr1 = [1, 2, 3, 4];\n let arr2 = [6, 7, 8, 9, 10, 11];\n let concatenated_arr = arr1.concat(arr2);\n assert_eq(concatenated_arr, [1, 2, 3, 4, 6, 7, 8, 9, 10, 11]);\n }\n\n #[test]\n fn concat_zero_length_with_something() {\n let arr1 = [];\n let arr2 = [1];\n let concatenated_arr = arr1.concat(arr2);\n assert_eq(concatenated_arr, [1]);\n }\n\n #[test]\n fn concat_something_with_zero_length() {\n let arr1 = [1];\n let arr2 = [];\n let concatenated_arr = arr1.concat(arr2);\n assert_eq(concatenated_arr, [1]);\n }\n\n #[test]\n fn concat_zero_lengths() {\n let arr1: [Field; 0] = [];\n let arr2: [Field; 0] = [];\n let concatenated_arr = arr1.concat(arr2);\n assert_eq(concatenated_arr, []);\n }\n}\n"
|
|
2662
2662
|
},
|
|
2663
|
-
"
|
|
2663
|
+
"312": {
|
|
2664
2664
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/address/aztec_address.nr",
|
|
2665
2665
|
"source": "use crate::{\n address::{\n partial_address::PartialAddress, salted_initialization_hash::SaltedInitializationHash,\n },\n constants::{\n AZTEC_ADDRESS_LENGTH, GENERATOR_INDEX__CONTRACT_ADDRESS_V1, MAX_FIELD_VALUE,\n MAX_PROTOCOL_CONTRACTS,\n },\n contract_class_id::ContractClassId,\n hash::poseidon2_hash_with_separator,\n public_keys::{IvpkM, NpkM, OvpkM, PublicKeys, ToPoint, TpkM},\n traits::{Deserialize, Empty, FromField, Packable, Serialize, ToField},\n utils::field::{pow, sqrt},\n};\n\n// We do below because `use crate::point::Point;` does not work\nuse dep::std::embedded_curve_ops::EmbeddedCurvePoint as Point;\n\nuse crate::public_keys::AddressPoint;\nuse std::{\n embedded_curve_ops::{EmbeddedCurveScalar, fixed_base_scalar_mul as derive_public_key},\n ops::Add,\n};\nuse std::meta::derive;\n\n// Aztec address\n#[derive(Deserialize, Eq, Packable, Serialize)]\npub struct AztecAddress {\n pub inner: Field,\n}\n\nimpl Empty for AztecAddress {\n fn empty() -> Self {\n Self { inner: 0 }\n }\n}\n\nimpl ToField for AztecAddress {\n fn to_field(self) -> Field {\n self.inner\n }\n}\n\nimpl FromField for AztecAddress {\n fn from_field(value: Field) -> AztecAddress {\n AztecAddress { inner: value }\n }\n}\n\nimpl AztecAddress {\n pub fn zero() -> Self {\n Self { inner: 0 }\n }\n\n /// Returns an address's `AddressPoint`, which can be used to create shared secrets with the owner\n /// of the address. If the address is invalid (i.e. it is not a properly derived Aztec address), then this\n /// returns `Option::none()`, and no shared secrets can be created.\n pub fn to_address_point(self) -> Option<AddressPoint> {\n // We compute the address point by taking our address, setting it to x, and then solving for y in the\n // equation which defines our bn curve:\n // y^2 = x^3 - 17; x = address\n let x = self.inner;\n let y_squared = pow(x, 3) - 17;\n\n // An invalid AztecAddress is one for which no y coordinate satisfies the curve equation, which we'll\n // identify by proving that the square root of y_squared does not exist.\n let mut y_opt = sqrt(y_squared);\n if y_opt.is_none() {\n Option::none()\n } else {\n let mut y = y_opt.unwrap();\n\n // If we get a negative y coordinate (any y where y > MAX_FIELD_VALUE / 2), we pin it to the\n // positive one (any value where y <= MAX_FIELD_VALUE / 2) by subtracting it from the Field modulus\n // note: The field modulus is MAX_FIELD_VALUE + 1\n if (!(y.lt(MAX_FIELD_VALUE / 2) | y.eq(MAX_FIELD_VALUE / 2))) {\n y = (MAX_FIELD_VALUE + 1) - y;\n }\n\n Option::some(\n AddressPoint { inner: Point { x: self.inner, y, is_infinite: false } },\n )\n }\n }\n\n pub fn compute(public_keys: PublicKeys, partial_address: PartialAddress) -> AztecAddress {\n let public_keys_hash = public_keys.hash();\n\n let pre_address = poseidon2_hash_with_separator(\n [public_keys_hash.to_field(), partial_address.to_field()],\n GENERATOR_INDEX__CONTRACT_ADDRESS_V1,\n );\n\n let address_point = derive_public_key(EmbeddedCurveScalar::from_field(pre_address)).add(\n public_keys.ivpk_m.to_point(),\n );\n\n // Note that our address is only the x-coordinate of the full address_point. This is okay because when people want to encrypt something and send it to us\n // they can recover our full point using the x-coordinate (our address itself). To do this, they recompute the y-coordinate according to the equation y^2 = x^3 - 17.\n // When they do this, they may get a positive y-coordinate (a value that is less than or equal to MAX_FIELD_VALUE / 2) or\n // a negative y-coordinate (a value that is more than MAX_FIELD_VALUE), and we cannot dictate which one they get and hence the recovered point may sometimes be different than the one\n // our secret can decrypt. Regardless though, they should and will always encrypt using point with the positive y-coordinate by convention.\n // This ensures that everyone encrypts to the same point given an arbitrary x-coordinate (address). This is allowed because even though our original point may not have a positive y-coordinate,\n // with our original secret, we will be able to derive the secret to the point with the flipped (and now positive) y-coordinate that everyone encrypts to.\n AztecAddress::from_field(address_point.x)\n }\n\n pub fn compute_from_class_id(\n contract_class_id: ContractClassId,\n salted_initialization_hash: SaltedInitializationHash,\n public_keys: PublicKeys,\n ) -> Self {\n let partial_address = PartialAddress::compute_from_salted_initialization_hash(\n contract_class_id,\n salted_initialization_hash,\n );\n\n AztecAddress::compute(public_keys, partial_address)\n }\n\n pub fn is_protocol_contract(self) -> bool {\n self.inner.lt(MAX_PROTOCOL_CONTRACTS as Field)\n }\n\n pub fn is_zero(self) -> bool {\n self.inner == 0\n }\n\n pub fn assert_is_zero(self) {\n assert(self.to_field() == 0);\n }\n}\n\n#[test]\nfn compute_address_from_partial_and_pub_keys() {\n let public_keys = PublicKeys {\n npk_m: NpkM {\n inner: Point {\n x: 0x22f7fcddfa3ce3e8f0cc8e82d7b94cdd740afa3e77f8e4a63ea78a239432dcab,\n y: 0x0471657de2b6216ade6c506d28fbc22ba8b8ed95c871ad9f3e3984e90d9723a7,\n is_infinite: false,\n },\n },\n ivpk_m: IvpkM {\n inner: Point {\n x: 0x111223493147f6785514b1c195bb37a2589f22a6596d30bb2bb145fdc9ca8f1e,\n y: 0x273bbffd678edce8fe30e0deafc4f66d58357c06fd4a820285294b9746c3be95,\n is_infinite: false,\n },\n },\n ovpk_m: OvpkM {\n inner: Point {\n x: 0x09115c96e962322ffed6522f57194627136b8d03ac7469109707f5e44190c484,\n y: 0x0c49773308a13d740a7f0d4f0e6163b02c5a408b6f965856b6a491002d073d5b,\n is_infinite: false,\n },\n },\n tpk_m: TpkM {\n inner: Point {\n x: 0x00d3d81beb009873eb7116327cf47c612d5758ef083d4fda78e9b63980b2a762,\n y: 0x2f567d22d2b02fe1f4ad42db9d58a36afd1983e7e2909d1cab61cafedad6193a,\n is_infinite: false,\n },\n },\n };\n\n let partial_address = PartialAddress::from_field(\n 0x0a7c585381b10f4666044266a02405bf6e01fa564c8517d4ad5823493abd31de,\n );\n\n let address = AztecAddress::compute(public_keys, partial_address);\n\n // The following value was generated by `derivation.test.ts`.\n // --> Run the test with AZTEC_GENERATE_TEST_DATA=1 flag to update test data.\n let expected_computed_address_from_partial_and_pubkeys =\n 0x24e4646f58b9fbe7d38e317db8d5636c423fbbdfbe119fc190fe9c64747e0c62;\n assert(address.to_field() == expected_computed_address_from_partial_and_pubkeys);\n}\n\n#[test]\nfn compute_preaddress_from_partial_and_pub_keys() {\n let pre_address = poseidon2_hash_with_separator([1, 2], GENERATOR_INDEX__CONTRACT_ADDRESS_V1);\n let expected_computed_preaddress_from_partial_and_pubkey =\n 0x23ce9be3fa3c846b0f9245cc796902e731d04f086e8a42473bb29e405fc98075;\n assert(pre_address == expected_computed_preaddress_from_partial_and_pubkey);\n}\n\n#[test]\nfn from_field_to_field() {\n let address = AztecAddress { inner: 37 };\n assert_eq(FromField::from_field(address.to_field()), address);\n}\n\n#[test]\nfn serde() {\n let address = AztecAddress { inner: 37 };\n // We use the AZTEC_ADDRESS_LENGTH constant to ensure that there is a match between the derived trait\n // implementation and the constant.\n let serialized: [Field; AZTEC_ADDRESS_LENGTH] = address.serialize();\n let deserialized = AztecAddress::deserialize(serialized);\n assert_eq(address, deserialized);\n}\n\n#[test]\nfn to_address_point_valid() {\n // x = 8 where x^3 - 17 = 512 - 17 = 495, which is a residue in this field\n let address = AztecAddress { inner: 8 };\n let maybe_point = address.to_address_point();\n assert(maybe_point.is_some());\n\n let point = maybe_point.unwrap().inner;\n // check that x is preserved\n assert_eq(point.x, Field::from(8));\n\n // check that the curve equation holds: y^2 == x^3 - 17\n assert_eq(pow(point.y, 2), pow(point.x, 3) - 17);\n}\n\n#[test]\nunconstrained fn to_address_point_invalid() {\n // x = 3 where x^3 - 17 = 27 - 17 = 10, which is a non-residue in this field\n let address = AztecAddress { inner: 3 }; //\n let maybe_point = address.to_address_point();\n assert(maybe_point.is_none());\n}\n"
|
|
2666
2666
|
},
|
|
2667
|
-
"
|
|
2667
|
+
"333": {
|
|
2668
2668
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/debug_log.nr",
|
|
2669
2669
|
"source": "// TODO: Expose other wrapped functions than debug (info, warn)\n// ['silent', 'fatal', 'error', 'warn', 'info', 'verbose', 'debug', 'trace']\n\npub global SILENT_LOG_LEVEL: u8 = 0;\npub global FATAL_LOG_LEVEL: u8 = 1;\npub global ERROR_LOG_LEVEL: u8 = 2;\npub global WARN_LOG_LEVEL: u8 = 3;\npub global INFO_LOG_LEVEL: u8 = 4;\npub global VERBOSE_LOG_LEVEL: u8 = 5;\npub global DEBUG_LOG_LEVEL: u8 = 6;\npub global TRACE_LOG_LEVEL: u8 = 7;\n\n/// Utility function to console.log data in the acir simulator.\n/// Example:\n/// debug_log(\"blah blah this is a debug string\");\npub fn debug_log<let N: u32>(msg: str<N>) {\n debug_log_format(msg, []);\n}\n\n/// Same as debug_log, but allows to customize the log level.\n/// Consider changing just to 'log'\npub fn debug_log_with_level<let N: u32>(log_level: u8, msg: str<N>) {\n debug_log_format_with_level(log_level, msg, []);\n}\n\n/// Utility function to console.log data in the acir simulator. This variant receives a format string in which the\n/// `${k}` tokens will be replaced with the k-eth value in the `args` array.\n/// Examples:\n/// debug_log_format(\"get_2(slot:{0}) =>\\n\\t0:{1}\\n\\t1:{2}\", [storage_slot, note0_hash, note1_hash]);\n/// debug_log_format(\"whole array: {}\", [e1, e2, e3, e4]);\npub fn debug_log_format<let M: u32, let N: u32>(msg: str<M>, args: [Field; N]) {\n // Safety: This oracle call returns nothing: we only call it for its side effects. It is therefore always safe\n // to call.\n unsafe { debug_log_array_oracle_wrapper(DEBUG_LOG_LEVEL, msg, args) };\n}\n\n/// Same as debug_log_format, but allows to customize the log level.\n/// Consider changing just to 'log_format'\npub fn debug_log_format_with_level<let M: u32, let N: u32>(\n log_level: u8,\n msg: str<M>,\n args: [Field; N],\n) {\n // Safety: This oracle call returns nothing: we only call it for its side effects. It is therefore always safe\n // to call.\n unsafe { debug_log_array_oracle_wrapper(log_level, msg, args) };\n}\n\n/// Utility function to console.log data in the acir simulator. This variant receives a format string in which the\n/// `${k}` tokens will be replaced with the k-eth value in the `args` slice.\n/// Examples:\n/// debug_log_format(\"get_2(slot:{0}) =>\\n\\t0:{1}\\n\\t1:{2}\", [storage_slot, note0_hash, note1_hash]);\n/// debug_log_format(\"whole slice: {}\", [e1, e2, e3, e4]);\npub fn debug_log_format_slice<let M: u32>(log_level: u8, msg: str<M>, args: [Field]) {\n // Safety: This oracle call returns nothing: we only call it for its side effects. It is therefore always safe\n // to call.\n unsafe { debug_log_slice_oracle_wrapper(log_level, msg, args) };\n}\n\n// We provide two versions of the debug log oracle: one that takes args as a slice and another one that takes args as an array.\n// We do this since conversion from array to slice generates overhead in public functions, since opcodes need to be emitted for the conversion.\n// By exposing the two flavors, we avoid conversions since the AVM is able to handle both arrays an slices in this oracle.\n\nunconstrained fn debug_log_slice_oracle_wrapper<let M: u32>(\n log_level: u8,\n msg: str<M>,\n args: [Field],\n) {\n debug_log_slice_oracle(log_level, msg, args);\n}\n\n// WARNING: sometimes when using debug logs the ACVM errors with: `thrown: \"solver opcode resolution error: cannot solve opcode: expression has too many unknowns x155\"`\n#[oracle(utilityDebugLog)]\nunconstrained fn debug_log_slice_oracle<let M: u32>(log_level: u8, msg: str<M>, args: [Field]) {}\n\nunconstrained fn debug_log_array_oracle_wrapper<let M: u32, let N: u32>(\n log_level: u8,\n msg: str<M>,\n args: [Field; N],\n) {\n debug_log_array_oracle(log_level, msg, N, args);\n}\n\n#[oracle(utilityDebugLog)]\nunconstrained fn debug_log_array_oracle<let M: u32, let N: u32>(\n log_level: u8,\n msg: str<M>,\n length: u32,\n args: [Field; N],\n) {}\n"
|
|
2670
2670
|
},
|
|
2671
|
-
"
|
|
2671
|
+
"343": {
|
|
2672
2672
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/hash.nr",
|
|
2673
2673
|
"source": "mod poseidon2_chunks;\n\nuse crate::{\n abis::{\n contract_class_function_leaf_preimage::ContractClassFunctionLeafPreimage,\n function_selector::FunctionSelector,\n note_hash::NoteHash,\n nullifier::Nullifier,\n private_log::{PrivateLog, PrivateLogData},\n transaction::tx_request::TxRequest,\n },\n address::{AztecAddress, EthAddress},\n constants::{\n CONTRACT_CLASS_LOG_SIZE_IN_FIELDS, FUNCTION_TREE_HEIGHT, GENERATOR_INDEX__NOTE_HASH_NONCE,\n GENERATOR_INDEX__OUTER_NULLIFIER, GENERATOR_INDEX__SILOED_NOTE_HASH,\n GENERATOR_INDEX__UNIQUE_NOTE_HASH, NULL_MSG_SENDER_CONTRACT_ADDRESS, TWO_POW_64,\n },\n merkle_tree::root_from_sibling_path,\n messaging::l2_to_l1_message::L2ToL1Message,\n poseidon2::Poseidon2Sponge,\n side_effect::{Counted, Scoped},\n traits::{FromField, Hash, ToField},\n utils::field::{field_from_bytes, field_from_bytes_32_trunc},\n};\n\npub use poseidon2_chunks::poseidon2_absorb_in_chunks_existing_sponge;\nuse poseidon2_chunks::poseidon2_absorb_in_chunks;\nuse std::embedded_curve_ops::EmbeddedCurveScalar;\n\npub fn sha256_to_field<let N: u32>(bytes_to_hash: [u8; N]) -> Field {\n let sha256_hashed = sha256::digest(bytes_to_hash);\n let hash_in_a_field = field_from_bytes_32_trunc(sha256_hashed);\n\n hash_in_a_field\n}\n\npub fn private_functions_root_from_siblings(\n selector: FunctionSelector,\n vk_hash: Field,\n function_leaf_index: Field,\n function_leaf_sibling_path: [Field; FUNCTION_TREE_HEIGHT],\n) -> Field {\n let function_leaf_preimage = ContractClassFunctionLeafPreimage { selector, vk_hash };\n let function_leaf = function_leaf_preimage.hash();\n root_from_sibling_path(\n function_leaf,\n function_leaf_index,\n function_leaf_sibling_path,\n )\n}\n\npub fn compute_note_hash_nonce(first_nullifier_in_tx: Field, note_index_in_tx: u32) -> Field {\n // Hashing the first nullifier with note index in tx is guaranteed to be unique (because all nullifiers are also\n // unique).\n poseidon2_hash_with_separator(\n [first_nullifier_in_tx, note_index_in_tx as Field],\n GENERATOR_INDEX__NOTE_HASH_NONCE,\n )\n}\n\npub fn compute_unique_note_hash(note_nonce: Field, siloed_note_hash: Field) -> Field {\n let inputs = [note_nonce, siloed_note_hash];\n poseidon2_hash_with_separator(inputs, GENERATOR_INDEX__UNIQUE_NOTE_HASH)\n}\n\npub fn compute_nonce_and_unique_note_hash(\n siloed_note_hash: Field,\n first_nullifier: Field,\n note_index_in_tx: u32,\n) -> Field {\n let note_nonce = compute_note_hash_nonce(first_nullifier, note_index_in_tx);\n compute_unique_note_hash(note_nonce, siloed_note_hash)\n}\n\npub fn compute_siloed_note_hash(app: AztecAddress, note_hash: Field) -> Field {\n poseidon2_hash_with_separator(\n [app.to_field(), note_hash],\n GENERATOR_INDEX__SILOED_NOTE_HASH,\n )\n}\n\n/// Computes unique note hashes from siloed note hashes\npub fn compute_unique_siloed_note_hash(\n siloed_note_hash: Field,\n first_nullifier: Field,\n note_index_in_tx: u32,\n) -> Field {\n if siloed_note_hash == 0 {\n 0\n } else {\n compute_nonce_and_unique_note_hash(siloed_note_hash, first_nullifier, note_index_in_tx)\n }\n}\n\n/// Siloing in the context of Aztec refers to the process of hashing a note hash with a contract address (this way\n/// the note hash is scoped to a specific contract). This is used to prevent intermingling of notes between contracts.\npub fn silo_note_hash(note_hash: Scoped<Counted<NoteHash>>) -> Field {\n if note_hash.contract_address.is_zero() {\n 0\n } else {\n compute_siloed_note_hash(note_hash.contract_address, note_hash.innermost())\n }\n}\n\npub fn compute_siloed_nullifier(app: AztecAddress, nullifier: Field) -> Field {\n poseidon2_hash_with_separator(\n [app.to_field(), nullifier],\n GENERATOR_INDEX__OUTER_NULLIFIER,\n )\n}\n\npub fn silo_nullifier(nullifier: Scoped<Counted<Nullifier>>) -> Field {\n let value = nullifier.innermost().value;\n // Q: shouldn't we be checking whether the _whole_ nullifier is empty?\n // A: We don't have to. The init and inner circuits add contract address to non-empty nullifiers.\n // So we know we should silo it if the contract address is not empty.\n if nullifier.contract_address.is_zero() {\n value // Return `value` instead of 0 because an already-siloed nullifier's contract address is zero.\n } else {\n compute_siloed_nullifier(nullifier.contract_address, value)\n }\n}\n\npub fn create_protocol_nullifier(tx_request: TxRequest) -> Scoped<Counted<Nullifier>> {\n Nullifier { value: tx_request.hash(), note_hash: 0 }.count(1).scope(\n NULL_MSG_SENDER_CONTRACT_ADDRESS,\n )\n}\n\npub fn compute_siloed_private_log_field(contract_address: AztecAddress, field: Field) -> Field {\n poseidon2_hash([contract_address.to_field(), field])\n}\n\npub fn silo_private_log(private_log: Scoped<Counted<PrivateLogData>>) -> PrivateLog {\n let log = private_log.innermost().log;\n if private_log.contract_address.is_zero() {\n log\n } else {\n let mut fields = log.fields;\n fields[0] = compute_siloed_private_log_field(private_log.contract_address, fields[0]);\n PrivateLog::new(fields, log.length)\n }\n}\n\npub fn compute_contract_class_log_hash(log: [Field; CONTRACT_CLASS_LOG_SIZE_IN_FIELDS]) -> Field {\n poseidon2_hash(log)\n}\n\npub fn compute_app_secret_key(\n master_secret_key: EmbeddedCurveScalar,\n app_address: AztecAddress,\n app_secret_generator: Field,\n) -> Field {\n poseidon2_hash_with_separator(\n [master_secret_key.hi, master_secret_key.lo, app_address.to_field()],\n app_secret_generator,\n )\n}\n\npub fn merkle_hash(left: Field, right: Field) -> Field {\n poseidon2_hash([left, right])\n}\n\npub fn compute_l2_to_l1_hash(\n contract_address: AztecAddress,\n recipient: EthAddress,\n content: Field,\n rollup_version_id: Field,\n chain_id: Field,\n) -> Field {\n let contract_address_bytes: [u8; 32] = contract_address.to_field().to_be_bytes();\n let recipient_bytes: [u8; 20] = recipient.to_be_bytes();\n let content_bytes: [u8; 32] = content.to_be_bytes();\n let rollup_version_id_bytes: [u8; 32] = rollup_version_id.to_be_bytes();\n let chain_id_bytes: [u8; 32] = chain_id.to_be_bytes();\n\n let mut bytes: [u8; 148] = std::mem::zeroed();\n for i in 0..32 {\n bytes[i] = contract_address_bytes[i];\n bytes[i + 32] = rollup_version_id_bytes[i];\n // 64 - 84 are for recipient.\n bytes[i + 84] = chain_id_bytes[i];\n bytes[i + 116] = content_bytes[i];\n }\n\n for i in 0..20 {\n bytes[64 + i] = recipient_bytes[i];\n }\n\n sha256_to_field(bytes)\n}\n\npub fn silo_l2_to_l1_message(\n msg: Scoped<L2ToL1Message>,\n rollup_version_id: Field,\n chain_id: Field,\n) -> Field {\n if msg.contract_address.is_zero() {\n 0\n } else {\n compute_l2_to_l1_hash(\n msg.contract_address,\n msg.inner.recipient,\n msg.inner.content,\n rollup_version_id,\n chain_id,\n )\n }\n}\n\n/// Computes sha256 hash of 2 input fields.\n///\n/// @returns A truncated field (i.e., the first byte is always 0).\npub fn accumulate_sha256(v0: Field, v1: Field) -> Field {\n // Concatenate two fields into 32 x 2 = 64 bytes\n let v0_as_bytes: [u8; 32] = v0.to_be_bytes();\n let v1_as_bytes: [u8; 32] = v1.to_be_bytes();\n let hash_input_flattened = v0_as_bytes.concat(v1_as_bytes);\n\n sha256_to_field(hash_input_flattened)\n}\n\n#[inline_always]\npub fn pedersen_hash<let N: u32>(inputs: [Field; N], hash_index: u32) -> Field {\n std::hash::pedersen_hash_with_separator(inputs, hash_index)\n}\n\npub fn poseidon2_hash<let N: u32>(inputs: [Field; N]) -> Field {\n poseidon::poseidon2::Poseidon2::hash(inputs, N)\n}\n\n#[no_predicates]\npub fn poseidon2_hash_with_separator<let N: u32, T>(inputs: [Field; N], separator: T) -> Field\nwhere\n T: ToField,\n{\n let inputs_with_separator = [separator.to_field()].concat(inputs);\n poseidon2_hash(inputs_with_separator)\n}\n\n/// Computes a Poseidon2 hash over a dynamic-length subarray of the given input.\n/// Only the first `in_len` fields of `input` are absorbed; any remaining fields are ignored.\n/// The caller is responsible for ensuring that the input is padded with zeros if required.\n#[no_predicates]\npub fn poseidon2_hash_subarray<let N: u32>(input: [Field; N], in_len: u32) -> Field {\n let mut sponge = poseidon2_absorb_in_chunks(input, in_len);\n sponge.squeeze()\n}\n\n// NB the below is the same as poseidon::poseidon2::Poseidon2::hash(), but replacing a range check with a bit check,\n// and absorbing in chunks of 3 below.\n#[no_predicates]\npub fn poseidon2_cheaper_variable_hash<let N: u32>(input: [Field; N], in_len: u32) -> Field {\n let mut sponge = poseidon2_absorb_in_chunks(input, in_len);\n // In the case where the hash preimage is variable-length, we append `1` to the end of the input, to distinguish\n // from fixed-length hashes. (the combination of this additional field element + the hash IV ensures\n // fixed-length and variable-length hashes do not collide)\n if in_len != N {\n sponge.absorb(1);\n }\n sponge.squeeze()\n}\n\n// This function is unconstrained because it is intended to be used in unconstrained context only as\n// in constrained contexts it would be too inefficient.\npub unconstrained fn poseidon2_hash_with_separator_bounded_vec<let N: u32, T>(\n inputs: BoundedVec<Field, N>,\n separator: T,\n) -> Field\nwhere\n T: ToField,\n{\n let in_len = inputs.len() + 1;\n let iv: Field = (in_len as Field) * TWO_POW_64;\n let mut sponge = Poseidon2Sponge::new(iv);\n sponge.absorb(separator.to_field());\n\n for i in 0..inputs.len() {\n sponge.absorb(inputs.get(i));\n }\n\n sponge.squeeze()\n}\n\n#[no_predicates]\npub fn poseidon2_hash_bytes<let N: u32>(inputs: [u8; N]) -> Field {\n let mut fields = [0; (N + 30) / 31];\n let mut field_index = 0;\n let mut current_field = [0; 31];\n for i in 0..inputs.len() {\n let index = i % 31;\n current_field[index] = inputs[i];\n if index == 30 {\n fields[field_index] = field_from_bytes(current_field, false);\n current_field = [0; 31];\n field_index += 1;\n }\n }\n if field_index != fields.len() {\n fields[field_index] = field_from_bytes(current_field, false);\n }\n poseidon2_hash(fields)\n}\n\n#[test]\nfn poseidon_chunks_matches_fixed() {\n let in_len = 501;\n let mut input: [Field; 4096] = [0; 4096];\n let mut fixed_input = [3; 501];\n assert(in_len == fixed_input.len()); // sanity check\n for i in 0..in_len {\n input[i] = 3;\n }\n let sub_chunk_hash = poseidon2_hash_subarray(input, in_len);\n let fixed_len_hash = poseidon::poseidon2::Poseidon2::hash(fixed_input, fixed_input.len());\n assert(sub_chunk_hash == fixed_len_hash);\n}\n\n#[test]\nfn poseidon_chunks_matches_variable() {\n let in_len = 501;\n let mut input: [Field; 4096] = [0; 4096];\n for i in 0..in_len {\n input[i] = 3;\n }\n let variable_chunk_hash = poseidon2_cheaper_variable_hash(input, in_len);\n let variable_len_hash = poseidon::poseidon2::Poseidon2::hash(input, in_len);\n assert(variable_chunk_hash == variable_len_hash);\n}\n\n#[test]\nfn smoke_sha256_to_field() {\n let full_buffer = [\n 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,\n 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,\n 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70,\n 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93,\n 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112,\n 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130,\n 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,\n 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159,\n ];\n let result = sha256_to_field(full_buffer);\n\n assert(result == 0x448ebbc9e1a31220a2f3830c18eef61b9bd070e5084b7fa2a359fe729184c7);\n\n // to show correctness of the current ver (truncate one byte) vs old ver (mod full bytes):\n let result_bytes = sha256::digest(full_buffer);\n let truncated_field = crate::utils::field::field_from_bytes_32_trunc(result_bytes);\n assert(truncated_field == result);\n let mod_res = result + (result_bytes[31] as Field);\n assert(mod_res == 0x448ebbc9e1a31220a2f3830c18eef61b9bd070e5084b7fa2a359fe729184e0);\n}\n\n#[test]\nfn compute_l2_l1_hash() {\n // All zeroes\n let hash_result =\n compute_l2_to_l1_hash(AztecAddress::from_field(0), EthAddress::zero(), 0, 0, 0);\n assert(hash_result == 0x3b18c58c739716e76429634a61375c45b3b5cd470c22ab6d3e14cee23dd992);\n\n // Non-zero case\n let hash_result = compute_l2_to_l1_hash(\n AztecAddress::from_field(1),\n EthAddress::from_field(3),\n 5,\n 2,\n 4,\n );\n assert(hash_result == 0xaab2a5828156782b12a1dc6f336e2bc627eb1b9514b02d511f66296990c050);\n}\n\n#[test]\nfn silo_l2_to_l1_message_matches_typescript() {\n let version = 4;\n let chainId = 5;\n\n let hash = silo_l2_to_l1_message(\n L2ToL1Message { recipient: EthAddress::from_field(1), content: 2 }.scope(\n AztecAddress::from_field(3),\n ),\n version,\n chainId,\n );\n\n // The following value was generated by `yarn-project/stdlib/src/hash/hash.test.ts`\n let hash_from_typescript = 0x0081edf209e087ad31b3fd24263698723d57190bd1d6e9fe056fc0c0a68ee661;\n\n assert_eq(hash, hash_from_typescript);\n}\n\n#[test]\nunconstrained fn poseidon2_hash_with_separator_bounded_vec_matches_non_bounded_vec_version() {\n let inputs = BoundedVec::<Field, 4>::from_array([1, 2, 3]);\n let separator = 42;\n\n // Hash using bounded vec version\n let bounded_result = poseidon2_hash_with_separator_bounded_vec(inputs, separator);\n\n // Hash using regular version\n let regular_result = poseidon2_hash_with_separator([1, 2, 3], separator);\n\n // Results should match\n assert_eq(bounded_result, regular_result);\n}\n"
|
|
2674
2674
|
},
|
|
2675
|
-
"
|
|
2675
|
+
"356": {
|
|
2676
2676
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/meta/mod.nr",
|
|
2677
2677
|
"source": "use utils::derive_serialization_quotes;\n\npub mod utils;\n\n/// Generates the generic parameter declarations for a struct's trait implementation.\n///\n/// This function takes a struct type definition and generates the generic parameter declarations\n/// that go after the `impl` keyword. For example, given a struct with generics `N: u32` and `T`,\n/// it generates `<let N: u32, T>`.\n///\n/// # Parameters\n/// - `s`: The struct type definition to generate generic declarations for\n///\n/// # Returns\n/// A quoted code block containing the generic parameter declarations, or an empty quote if the struct\n/// has no generic parameters\n///\n/// # Example\n/// For a struct defined as:\n/// ```\n/// struct Container<T, let N: u32> {\n/// items: [T; N],\n/// count: u32\n/// }\n/// ```\n///\n/// This function generates:\n/// ```\n/// <let N: u32, T>\n/// ```\ncomptime fn get_generics_declarations(s: TypeDefinition) -> Quoted {\n let generics = s.generics();\n\n if generics.len() > 0 {\n let generics_declarations_items = generics\n .map(|(name, maybe_integer_typ)| {\n // The second item in the generics tuple is an Option of an integer type that is Some only if\n // the generic is numeric.\n if maybe_integer_typ.is_some() {\n // The generic is numeric, so we return a quote defined as e.g. \"let N: u32\"\n let integer_type = maybe_integer_typ.unwrap();\n quote {let $name: $integer_type}\n } else {\n // The generic is not numeric, so we return a quote containing the name of the generic (e.g. \"T\")\n quote {$name}\n }\n })\n .join(quote {,});\n quote {<$generics_declarations_items>}\n } else {\n // The struct doesn't have any generics defined, so we just return an empty quote.\n quote {}\n }\n}\n\n/// Generates the `where` clause for a trait implementation that constrains non-numeric generic type parameters.\n///\n/// This function takes a struct type definition and a trait name, and generates a `where` clause that\n/// requires all non-numeric generic type parameters to implement the specified trait.\n///\n/// # Parameters\n/// - `s`: The struct type definition to generate the where clause for\n/// - `trait_name`: The name of the trait that non-numeric generic parameters must implement\n///\n/// # Returns\n/// A quoted code block containing the where clause, or an empty quote if the struct has no non-numeric\n/// generic parameters\n///\n/// # Example\n/// For a struct defined as:\n/// ```\n/// struct Container<T, let N: u32> {\n/// items: [T; N],\n/// count: u32\n/// }\n/// ```\n///\n/// And trait name \"Serialize\", this function generates:\n/// ```\n/// where T: Serialize\n/// ```\ncomptime fn get_where_trait_clause(s: TypeDefinition, trait_name: Quoted) -> Quoted {\n let generics = s.generics();\n\n // The second item in the generics tuple is an Option of an integer type that is Some only if the generic is\n // numeric.\n let non_numeric_generics =\n generics.filter(|(_, maybe_integer_typ)| maybe_integer_typ.is_none());\n\n if non_numeric_generics.len() > 0 {\n let non_numeric_generics_declarations =\n non_numeric_generics.map(|(name, _)| quote {$name: $trait_name}).join(quote {,});\n quote {where $non_numeric_generics_declarations}\n } else {\n // There are no non-numeric generics, so we return an empty quote.\n quote {}\n }\n}\n\n/// Generates a `Serialize` trait implementation for a struct type.\n///\n/// # Parameters\n/// - `s`: The struct type definition to generate the implementation for\n///\n/// # Returns\n/// A quoted code block containing the trait implementation\n///\n/// # Example\n/// For a struct defined as:\n/// ```\n/// struct Log<N> {\n/// fields: [Field; N],\n/// length: u32\n/// }\n/// ```\n///\n/// This function generates code equivalent to:\n/// ```\n/// impl<let N: u32> Serialize for Log<N> {\n/// let N: u32 = <[Field; N] as Serialize>::N + <u32 as Serialize>::N;\n///\n/// #[inline_always]\n/// fn serialize(self) -> [Field; Self::N] {\n/// let mut serialized_params = [0; _];\n/// let mut offset = 0;\n///\n/// let serialized_member = Serialize::serialize(self.fields);\n/// let serialized_member_len = <[Field; N] as Serialize>::N;\n/// for i in 0..serialized_member_len {\n/// serialized_params[i + offset] = serialized_member[i];\n/// }\n/// offset += serialized_member_len;\n///\n/// let serialized_member = Serialize::serialize(self.length);\n/// let serialized_member_len = <u32 as Serialize>::N;\n/// for i in 0..serialized_member_len {\n/// serialized_params[i + offset] = serialized_member[i];\n/// }\n/// offset += serialized_member_len;\n///\n/// serialized_params\n/// }\n/// }\n/// ```\npub comptime fn derive_serialize(s: TypeDefinition) -> Quoted {\n let typ = s.as_type();\n let nested_struct = typ.as_data_type().unwrap();\n\n // We care only about the name and type so we drop the last item of the tuple\n let params = nested_struct.0.fields(nested_struct.1).map(|(name, typ, _)| (name, typ));\n\n // Generates the generic parameter declarations (to be placed after the `impl` keyword) and the `where` clause\n // for the `Serialize` trait.\n let generics_declarations = get_generics_declarations(s);\n let where_serialize_clause = get_where_trait_clause(s, quote {Serialize});\n\n let (function_body, params_len_quote, serialized_params_name) =\n derive_serialization_quotes(params, true);\n\n quote {\n impl$generics_declarations $crate::traits::Serialize for $typ\n $where_serialize_clause\n {\n let N: u32 = $params_len_quote;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n $function_body\n\n $serialized_params_name\n }\n }\n }\n}\n\n/// Generates a `Deserialize` trait implementation for a given struct `s`.\n///\n/// # Arguments\n/// * `s` - The struct type definition to generate the implementation for\n///\n/// # Returns\n/// A `Quoted` block containing the generated trait implementation\n///\n/// # Requirements\n/// Each struct member type must implement the `Deserialize` trait (it gets used in the generated code).\n///\n/// # Example\n/// For a struct like:\n/// ```\n/// struct MyStruct {\n/// x: AztecAddress,\n/// y: Field,\n/// }\n/// ```\n///\n/// This generates:\n/// ```\n/// impl Deserialize for MyStruct {\n/// let N: u32 = <AztecAddress as Deserialize>::N + <Field as Deserialize>::N;\n///\n/// fn deserialize(serialized: [Field; Self::N]) -> Self {\n/// let mut offset = 0;\n/// let mut member_fields = [0; <AztecAddress as Deserialize>::N];\n/// for i in 0..<AztecAddress as Deserialize>::N {\n/// member_fields[i] = serialized[i + offset];\n/// }\n/// let x = <AztecAddress as Deserialize>::deserialize(member_fields);\n/// offset += <AztecAddress as Deserialize>::N;\n///\n/// let mut member_fields = [0; <Field as Deserialize>::N];\n/// for i in 0..<Field as Deserialize>::N {\n/// member_fields[i] = serialized[i + offset];\n/// }\n/// let y = <Field as Deserialize>::deserialize(member_fields);\n/// offset += <Field as Deserialize>::N;\n///\n/// Self { x, y }\n/// }\n/// }\n/// ```\npub(crate) comptime fn derive_deserialize(s: TypeDefinition) -> Quoted {\n let typ = s.as_type();\n let nested_struct = typ.as_data_type().unwrap();\n let params = nested_struct.0.fields(nested_struct.1);\n\n // Generates the generic parameter declarations (to be placed after the `impl` keyword) and the `where` clause\n // for the `Deserialize` trait.\n let generics_declarations = get_generics_declarations(s);\n let where_deserialize_clause = get_where_trait_clause(s, quote {Deserialize});\n\n // The following will give us:\n // <type_of_struct_member_1 as Deserialize>::N + <type_of_struct_member_2 as Deserialize>::N + ...\n // (or 0 if the struct has no members)\n let right_hand_side_of_definition_of_n = if params.len() > 0 {\n params\n .map(|(_, param_type, _): (Quoted, Type, Quoted)| {\n quote {\n <$param_type as $crate::traits::Deserialize>::N\n }\n })\n .join(quote {+})\n } else {\n quote {0}\n };\n\n // For structs containing a single member, we can enhance performance by directly deserializing the input array,\n // bypassing the need for loop-based array construction. While this optimization yields significant benefits in\n // Brillig where the loops are expected to not be optimized, it is not relevant in ACIR where the loops are\n // expected to be optimized away.\n let function_body = if params.len() > 1 {\n // This generates deserialization code for each struct member and concatenates them together.\n let deserialization_of_struct_members = params\n .map(|(param_name, param_type, _): (Quoted, Type, Quoted)| {\n quote {\n let mut member_fields = [0; <$param_type as Deserialize>::N];\n for i in 0..<$param_type as Deserialize>::N {\n member_fields[i] = serialized[i + offset];\n }\n let $param_name = <$param_type as Deserialize>::deserialize(member_fields);\n offset += <$param_type as Deserialize>::N;\n }\n })\n .join(quote {});\n\n // We join the struct member names with a comma to be used in the `Self { ... }` syntax\n // This will give us e.g. `a, b, c` for a struct with three fields named `a`, `b`, and `c`.\n let struct_members = params\n .map(|(param_name, _, _): (Quoted, Type, Quoted)| quote { $param_name })\n .join(quote {,});\n\n quote {\n let mut offset = 0;\n\n $deserialization_of_struct_members\n\n Self { $struct_members }\n }\n } else if params.len() == 1 {\n let param_name = params[0].0;\n quote {\n Self { $param_name: $crate::traits::Deserialize::deserialize(serialized) }\n }\n } else {\n quote {\n Self {}\n }\n };\n\n quote {\n impl$generics_declarations $crate::traits::Deserialize for $typ\n $where_deserialize_clause\n {\n let N: u32 = $right_hand_side_of_definition_of_n;\n\n #[inline_always]\n fn deserialize(serialized: [Field; Self::N]) -> Self {\n $function_body\n }\n }\n }\n}\n\n/// Generates a `Packable` trait implementation for a given struct `s`.\n///\n/// # Arguments\n/// * `s` - The struct type definition to generate the implementation for\n///\n/// # Returns\n/// A `Quoted` block containing the generated trait implementation\n///\n/// # Requirements\n/// Each struct member type must implement the `Packable` trait (it gets used in the generated code).\n///\n/// # Example\n/// For a struct like:\n/// ```\n/// struct MyStruct {\n/// x: AztecAddress,\n/// y: Field,\n/// }\n/// ```\n///\n/// This generates:\n/// ```\n/// impl Packable for MyStruct {\n/// let N: u32 = 2;\n///\n/// fn pack(self) -> [Field; 2] {\n/// let mut result: [Field; 2] = [0_Field; 2];\n/// let mut offset: u32 = 0_u32;\n/// let packed_member: [Field; 1] = self.x.pack();\n/// let packed_member_len: u32 = <Field as Packable>::N;\n/// for i in 0_u32..packed_member_len {\n/// {\n/// result[i + offset] = packed_member[i];\n/// }\n/// }\n/// offset = offset + packed_member_len;\n/// let packed_member: [Field; 1] = self.y.pack();\n/// let packed_member_len: u32 = <Field as Packable>::N;\n/// for i in 0_u32..packed_member_len {\n/// {\n/// result[i + offset] = packed_member[i];\n/// }\n/// }\n/// offset = offset + packed_member_len;\n/// result\n/// }\n///\n/// fn unpack(packed: [Field; 2]) -> Self {\n/// let mut offset: u32 = 0_u32;\n/// let mut member_fields: [Field; 1] = [0_Field; 1];\n/// for i in 0_u32..<AztecAddress as Packable>::N {\n/// member_fields[i] = packed[i + offset];\n/// }\n/// let x: AztecAddress = <AztecAddress as Packable>::unpack(member_fields);\n/// offset = offset + <AztecAddress as Packable>::N;\n/// let mut member_fields: [Field; 1] = [0_Field; 1];\n/// for i in 0_u32..<Field as Packable>::N {\n/// member_fields[i] = packed[i + offset];\n/// }\n/// let y: Field = <Field as Packable>::unpack(member_fields);\n/// offset = offset + <Field as Packable>::N;\n/// Self { x: x, y: y }\n/// }\n/// }\n/// ```\npub comptime fn derive_packable(s: TypeDefinition) -> Quoted {\n let typ = s.as_type();\n let nested_struct = typ.as_data_type().unwrap();\n let params = nested_struct.0.fields(nested_struct.1);\n\n // Generates the generic parameter declarations (to be placed after the `impl` keyword) and the `where` clause\n // for the `Packable` trait.\n let generics_declarations = get_generics_declarations(s);\n let where_packable_clause = get_where_trait_clause(s, quote {Packable});\n\n // The following will give us:\n // <type_of_struct_member_1 as Packable>::N + <type_of_struct_member_2 as Packable>::N + ...\n // (or 0 if the struct has no members)\n let right_hand_side_of_definition_of_n = if params.len() > 0 {\n params\n .map(|(_, param_type, _): (Quoted, Type, Quoted)| {\n quote {\n <$param_type as $crate::traits::Packable>::N\n }\n })\n .join(quote {+})\n } else {\n quote {0}\n };\n\n // For structs containing a single member, we can enhance performance by directly returning the packed member,\n // bypassing the need for loop-based array construction. While this optimization yields significant benefits in\n // Brillig where the loops are expected to not be optimized, it is not relevant in ACIR where the loops are\n // expected to be optimized away.\n let pack_function_body = if params.len() > 1 {\n // For multiple struct members, generate packing code that:\n // 1. Packs each member\n // 2. Copies the packed fields into the result array at the correct offset\n // 3. Updates the offset for the next member\n let packing_of_struct_members = params\n .map(|(param_name, param_type, _): (Quoted, Type, Quoted)| {\n quote {\n let packed_member = $crate::traits::Packable::pack(self.$param_name);\n let packed_member_len = <$param_type as $crate::traits::Packable>::N;\n for i in 0..packed_member_len {\n result[i + offset] = packed_member[i];\n }\n offset += packed_member_len;\n }\n })\n .join(quote {});\n\n quote {\n let mut result = [0; Self::N];\n let mut offset = 0;\n\n $packing_of_struct_members\n\n result\n }\n } else if params.len() == 1 {\n let param_name = params[0].0;\n quote {\n $crate::traits::Packable::pack(self.$param_name)\n }\n } else {\n quote {\n [0; Self::N]\n }\n };\n\n // For structs containing a single member, we can enhance performance by directly unpacking the input array,\n // bypassing the need for loop-based array construction. While this optimization yields significant benefits in\n // Brillig where the loops are expected to not be optimized, it is not relevant in ACIR where the loops are\n // expected to be optimized away.\n let unpack_function_body = if params.len() > 1 {\n // For multiple struct members, generate unpacking code that:\n // 1. Unpacks each member\n // 2. Copies packed fields into member array at correct offset\n // 3. Updates offset for next member\n let unpacking_of_struct_members = params\n .map(|(param_name, param_type, _): (Quoted, Type, Quoted)| {\n quote {\n let mut member_fields = [0; <$param_type as $crate::traits::Packable>::N];\n for i in 0..<$param_type as $crate::traits::Packable>::N {\n member_fields[i] = packed[i + offset];\n }\n let $param_name = <$param_type as $crate::traits::Packable>::unpack(member_fields);\n offset += <$param_type as $crate::traits::Packable>::N;\n }\n })\n .join(quote {});\n\n // We join the struct member names with a comma to be used in the `Self { ... }` syntax\n let struct_members = params\n .map(|(param_name, _, _): (Quoted, Type, Quoted)| quote { $param_name })\n .join(quote {,});\n\n quote {\n let mut offset = 0;\n $unpacking_of_struct_members\n Self { $struct_members }\n }\n } else if params.len() == 1 {\n let param_name = params[0].0;\n quote {\n Self { $param_name: $crate::traits::Packable::unpack(packed) }\n }\n } else {\n quote {\n Self {}\n }\n };\n\n quote {\n impl$generics_declarations $crate::traits::Packable for $typ\n $where_packable_clause\n {\n let N: u32 = $right_hand_side_of_definition_of_n;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n $pack_function_body\n }\n\n #[inline_always]\n fn unpack(packed: [Field; Self::N]) -> Self {\n $unpack_function_body\n }\n }\n }\n}\n\nmod test {\n use crate::traits::{Deserialize, Packable, Serialize};\n\n #[derive(Deserialize, Eq, Packable, Serialize)]\n pub struct Empty {}\n\n #[derive(Deserialize, Eq, Packable, Serialize)]\n pub struct Smol {\n a: Field,\n b: Field,\n }\n\n #[derive(Deserialize, Eq, Serialize)]\n pub struct HasArray {\n a: [Field; 2],\n b: bool,\n }\n\n #[derive(Deserialize, Eq, Serialize)]\n pub struct Fancier {\n a: Smol,\n b: [Field; 2],\n c: [u8; 3],\n d: str<16>,\n }\n\n #[derive(Deserialize, Eq, Packable, Serialize)]\n pub struct HasArrayWithGenerics<T, let N: u32> {\n pub fields: [T; N],\n pub length: u32,\n }\n\n #[test]\n fn serde_on_empty() {\n let original = Empty {};\n let serialized = original.serialize();\n assert_eq(serialized, [], \"Serialized does not match empty array\");\n let deserialized = Empty::deserialize(serialized);\n assert_eq(deserialized, original, \"Deserialized does not match original\");\n }\n\n #[test]\n fn packable_on_empty() {\n let original = Empty {};\n let packed = original.pack();\n assert_eq(packed, [], \"Packed does not match empty array\");\n let unpacked = Empty::unpack(packed);\n assert_eq(unpacked, original, \"Unpacked does not match original\");\n }\n\n #[test]\n fn serde_on_smol() {\n let smol = Smol { a: 1, b: 2 };\n let serialized = smol.serialize();\n assert(serialized == [1, 2], serialized);\n let deserialized = Smol::deserialize(serialized);\n assert(deserialized == smol);\n\n // None of the struct members implements the `Packable` trait so the packed and serialized data should be the same\n let packed = smol.pack();\n assert_eq(packed, serialized, \"Packed does not match serialized\");\n }\n\n #[test]\n fn serde_on_has_array() {\n let has_array = HasArray { a: [1, 2], b: true };\n let serialized = has_array.serialize();\n assert(serialized == [1, 2, 1], serialized);\n let deserialized = HasArray::deserialize(serialized);\n assert(deserialized == has_array);\n }\n\n #[test]\n fn serde_on_fancier() {\n let fancier =\n Fancier { a: Smol { a: 1, b: 2 }, b: [0, 1], c: [1, 2, 3], d: \"metaprogramming!\" };\n let serialized = fancier.serialize();\n assert(\n serialized\n == [\n 1, 2, 0, 1, 1, 2, 3, 0x6d, 0x65, 0x74, 0x61, 0x70, 0x72, 0x6f, 0x67, 0x72, 0x61,\n 0x6d, 0x6d, 0x69, 0x6e, 0x67, 0x21,\n ],\n serialized,\n );\n let deserialized = Fancier::deserialize(serialized);\n assert(deserialized == fancier);\n }\n\n #[test]\n fn serde_on_contains_array_with_generics() {\n let struct_with_array_of_generics = HasArrayWithGenerics { fields: [1, 2, 3], length: 3 };\n let serialized = struct_with_array_of_generics.serialize();\n assert(serialized == [1, 2, 3, 3], serialized);\n let deserialized = HasArrayWithGenerics::deserialize(serialized);\n assert(deserialized == struct_with_array_of_generics);\n }\n\n #[test]\n fn packable_on_contains_array_with_generics() {\n let struct_with_array_of_generics = HasArrayWithGenerics { fields: [1, 2, 3], length: 3 };\n let packed = struct_with_array_of_generics.pack();\n assert(packed == [1, 2, 3, 3], packed);\n\n let unpacked = HasArrayWithGenerics::unpack(packed);\n assert(unpacked == struct_with_array_of_generics);\n }\n\n}\n"
|
|
2678
2678
|
},
|
|
2679
|
-
"
|
|
2679
|
+
"357": {
|
|
2680
2680
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/meta/utils.nr",
|
|
2681
2681
|
"source": "/// Generates serialization code for a list of parameters and the total length of the serialized array\n///\n/// # Parameters\n/// - `params`: A list of (name, type) tuples to serialize\n/// - `use_self_prefix`: If true, parameters are accessed as `self.$param_name` (for struct members).\n/// If false, parameters are accessed directly as `$param_name` (for function parameters).\n///\n/// # Returns\n/// A tuple containing:\n/// - Quoted code that serializes the parameters into an array named `serialized_params`\n/// - Quoted code that evaluates to the total length of the serialized array\n/// - Quoted code containing the name of the serialized array\npub comptime fn derive_serialization_quotes(\n params: [(Quoted, Type)],\n use_self_prefix: bool,\n) -> (Quoted, Quoted, Quoted) {\n let prefix_quote = if use_self_prefix {\n quote { self. }\n } else {\n quote {}\n };\n\n let params_len_quote = get_params_len_quote(params);\n let serialized_params_name = quote { serialized_params };\n\n let body = if params.len() == 0 {\n quote {\n let $serialized_params_name: [Field; 0] = [];\n }\n } else if params.len() == 1 {\n // When we have only a single parameter on the input, we can enhance performance by directly returning\n // the serialized member, bypassing the need for loop-based array construction. While this optimization yields\n // significant benefits in Brillig where the loops are expected to not be optimized, it is not relevant in ACIR\n // where the loops are expected to be optimized away.\n\n let param_name = params[0].0;\n quote {\n let $serialized_params_name = $crate::traits::Serialize::serialize($prefix_quote$param_name);\n }\n } else {\n // For multiple struct members, generate serialization code that:\n // 1. Serializes each member\n // 2. Copies the serialized fields into the serialize array at the correct offset\n // 3. Updates the offset for the next member\n let serialization_of_struct_members = params\n .map(|(param_name, param_type): (Quoted, Type)| {\n quote {\n let serialized_member = $crate::traits::Serialize::serialize($prefix_quote$param_name);\n let serialized_member_len = <$param_type as $crate::traits::Serialize>::N;\n for i in 0..serialized_member_len {\n $serialized_params_name[i + offset] = serialized_member[i];\n }\n offset += serialized_member_len;\n }\n })\n .join(quote {});\n\n quote {\n let mut $serialized_params_name = [0; $params_len_quote];\n let mut offset = 0;\n\n $serialization_of_struct_members\n }\n };\n\n (body, params_len_quote, serialized_params_name)\n}\n\n/// Generates a quoted expression that computes the total serialized length of function parameters.\n///\n/// # Parameters\n/// * `params` - An array of tuples where each tuple contains a quoted parameter name and its Type. The type needs\n/// to implement the Serialize trait.\n///\n/// # Returns\n/// A quoted expression that evaluates to:\n/// * `0` if there are no parameters\n/// * `(<type1 as Serialize>::N + <type2 as Serialize>::N + ...)` for one or more parameters\npub comptime fn get_params_len_quote(params: [(Quoted, Type)]) -> Quoted {\n if params.len() == 0 {\n quote { 0 }\n } else {\n let params_quote_without_parentheses = params\n .map(|(_, param_type): (Quoted, Type)| {\n quote {\n <$param_type as $crate::traits::Serialize>::N\n }\n })\n .join(quote {+});\n quote { ($params_quote_without_parentheses) }\n }\n}\n"
|
|
2682
2682
|
},
|
|
2683
|
-
"
|
|
2683
|
+
"359": {
|
|
2684
2684
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/poseidon2.nr",
|
|
2685
2685
|
"source": "use crate::constants::TWO_POW_64;\nuse crate::traits::{Deserialize, Serialize};\nuse std::meta::derive;\n// NB: This is a clone of noir/noir-repo/noir_stdlib/src/hash/poseidon2.nr\n// It exists as we sometimes need to perform custom absorption, but the stdlib version\n// has a private absorb() method (it's also designed to just be a hasher)\n// Can be removed when standalone noir poseidon lib exists: See noir#6679\n\ncomptime global RATE: u32 = 3;\n\n#[derive(Deserialize, Eq, Serialize)]\npub struct Poseidon2Sponge {\n pub cache: [Field; 3],\n pub state: [Field; 4],\n pub cache_size: u32,\n pub squeeze_mode: bool, // 0 => absorb, 1 => squeeze\n}\n\nimpl Poseidon2Sponge {\n #[no_predicates]\n pub fn hash<let N: u32>(input: [Field; N], message_size: u32) -> Field {\n Poseidon2Sponge::hash_internal(input, message_size, message_size != N)\n }\n\n pub(crate) fn new(iv: Field) -> Poseidon2Sponge {\n let mut result =\n Poseidon2Sponge { cache: [0; 3], state: [0; 4], cache_size: 0, squeeze_mode: false };\n result.state[RATE] = iv;\n result\n }\n\n fn perform_duplex(&mut self) {\n // add the cache into sponge state\n for i in 0..RATE {\n // We effectively zero-pad the cache by only adding to the state\n // cache that is less than the specified `cache_size`\n if i < self.cache_size {\n self.state[i] += self.cache[i];\n }\n }\n self.state = std::hash::poseidon2_permutation(self.state, 4);\n }\n\n pub fn absorb(&mut self, input: Field) {\n assert(!self.squeeze_mode);\n if self.cache_size == RATE {\n // If we're absorbing, and the cache is full, apply the sponge permutation to compress the cache\n self.perform_duplex();\n self.cache[0] = input;\n self.cache_size = 1;\n } else {\n // If we're absorbing, and the cache is not full, add the input into the cache\n self.cache[self.cache_size] = input;\n self.cache_size += 1;\n }\n }\n\n pub fn squeeze(&mut self) -> Field {\n assert(!self.squeeze_mode);\n // If we're in absorb mode, apply sponge permutation to compress the cache.\n self.perform_duplex();\n self.squeeze_mode = true;\n\n // Pop one item off the top of the permutation and return it.\n self.state[0]\n }\n\n fn hash_internal<let N: u32>(\n input: [Field; N],\n in_len: u32,\n is_variable_length: bool,\n ) -> Field {\n let iv: Field = (in_len as Field) * TWO_POW_64;\n let mut sponge = Poseidon2Sponge::new(iv);\n for i in 0..input.len() {\n if i < in_len {\n sponge.absorb(input[i]);\n }\n }\n\n // In the case where the hash preimage is variable-length, we append `1` to the end of the input, to distinguish\n // from fixed-length hashes. (the combination of this additional field element + the hash IV ensures\n // fixed-length and variable-length hashes do not collide)\n if is_variable_length {\n sponge.absorb(1);\n }\n sponge.squeeze()\n }\n}\n"
|
|
2686
2686
|
},
|
|
2687
|
-
"
|
|
2687
|
+
"387": {
|
|
2688
2688
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/traits.nr",
|
|
2689
2689
|
"source": "use crate::meta::{derive_deserialize, derive_packable, derive_serialize};\nuse crate::utils::field::field_from_bytes;\n\n// Trait: is_empty\n//\n// The general is_empty trait checks if a data type is is empty,\n// and it defines empty for the basic data types as 0.\n//\n// If a Field is equal to zero, then it is regarded as zero.\n// We will go with this definition for now, however it can be problematic\n// if a value can actually be zero. In a future refactor, we can\n// use the optional type for safety. Doing it now would lead to a worse devex\n// and would make it harder to sync up with the cpp code.\n// Preferred over Default trait to convey intent, as default doesn't necessarily mean empty.\npub trait Empty: Eq {\n fn empty() -> Self;\n\n fn is_empty(self) -> bool {\n self.eq(Self::empty())\n }\n\n // Requires this Noir fix: https://github.com/noir-lang/noir/issues/9002\n // fn assert_not_empty<let U: u32>(self, msg: str<U>) { // This msg version was failing with weird compiler errors.\n // // We provide a default impl but it's likely inefficient.\n // // The reason we include this function is because there's a lot of\n // // opportunity for optimisation on a per-struct basis.\n // // You only need to show one element is not empty to know that the whole thing\n // // is not empty.\n // // If you know an element of your struct which should always be nonempty,\n // // you can write an impl that solely checks that that element is nonempty.\n // assert(!self.is_empty(), msg);\n // }\n\n // This default impl is overwritten by types like arrays, because there's a much\n // more efficient approach.\n fn assert_empty<let S: u32>(self, msg: str<S>) {\n assert(self.is_empty(), msg);\n }\n}\n\nimpl Empty for Field {\n #[inline_always]\n fn empty() -> Self {\n 0\n }\n}\n\nimpl Empty for bool {\n #[inline_always]\n fn empty() -> Self {\n false\n }\n}\n\nimpl Empty for u1 {\n #[inline_always]\n fn empty() -> Self {\n 0\n }\n}\nimpl Empty for u8 {\n #[inline_always]\n fn empty() -> Self {\n 0\n }\n}\nimpl Empty for u16 {\n fn empty() -> Self {\n 0\n }\n}\nimpl Empty for u32 {\n #[inline_always]\n fn empty() -> Self {\n 0\n }\n}\nimpl Empty for u64 {\n #[inline_always]\n fn empty() -> Self {\n 0\n }\n}\nimpl Empty for u128 {\n #[inline_always]\n fn empty() -> Self {\n 0\n }\n}\n\nimpl<T, let N: u32> Empty for [T; N]\nwhere\n T: Empty,\n{\n #[inline_always]\n fn empty() -> Self {\n [T::empty(); N]\n }\n\n fn is_empty(self) -> bool {\n self.all(|elem| elem.is_empty())\n }\n\n fn assert_empty<let S: u32>(self, msg: str<S>) -> () {\n self.for_each(|elem| elem.assert_empty(msg))\n }\n}\n\nimpl<T> Empty for [T]\nwhere\n T: Empty,\n{\n #[inline_always]\n fn empty() -> Self {\n [T::empty()]\n }\n\n fn is_empty(self) -> bool {\n self.all(|elem| elem.is_empty())\n }\n\n fn assert_empty<let S: u32>(self, msg: str<S>) -> () {\n self.for_each(|elem| elem.assert_empty(msg))\n }\n}\nimpl<A, B> Empty for (A, B)\nwhere\n A: Empty,\n B: Empty,\n{\n #[inline_always]\n fn empty() -> Self {\n (A::empty(), B::empty())\n }\n}\n\nimpl<T> Empty for Option<T>\nwhere\n T: Eq,\n{\n #[inline_always]\n fn empty() -> Self {\n Option::none()\n }\n}\n\n// pub fn is_empty<T>(item: T) -> bool\n// where\n// T: Empty,\n// {\n// item.eq(T::empty())\n// }\n\n// pub fn is_empty_array<T, let N: u32>(array: [T; N]) -> bool\n// where\n// T: Empty,\n// {\n// array.all(|elem| is_empty(elem))\n// }\n\n// pub fn assert_empty<T>(item: T) -> ()\n// where\n// T: Empty,\n// {\n// assert(item.eq(T::empty()))\n// }\n\n// pub fn assert_empty_array<T, let N: u32>(array: [T; N]) -> ()\n// where\n// T: Empty,\n// {\n// // A cheaper option than `is_empty_array` for if you don't need to gracefully\n// // handle a bool result.\n// // Avoids the `&` operator of `is_empty_array`'s `.all()` call.\n// for i in 0..N {\n// assert(is_empty(array[i]));\n// }\n// }\n\npub trait Hash {\n fn hash(self) -> Field;\n}\n\npub trait ToField {\n fn to_field(self) -> Field;\n}\n\nimpl ToField for Field {\n #[inline_always]\n fn to_field(self) -> Field {\n self\n }\n}\n\nimpl ToField for bool {\n #[inline_always]\n fn to_field(self) -> Field {\n self as Field\n }\n}\nimpl ToField for u1 {\n #[inline_always]\n fn to_field(self) -> Field {\n self as Field\n }\n}\nimpl ToField for u8 {\n #[inline_always]\n fn to_field(self) -> Field {\n self as Field\n }\n}\nimpl ToField for u16 {\n fn to_field(self) -> Field {\n self as Field\n }\n}\nimpl ToField for u32 {\n #[inline_always]\n fn to_field(self) -> Field {\n self as Field\n }\n}\nimpl ToField for u64 {\n #[inline_always]\n fn to_field(self) -> Field {\n self as Field\n }\n}\nimpl ToField for u128 {\n #[inline_always]\n fn to_field(self) -> Field {\n self as Field\n }\n}\nimpl<let N: u32> ToField for str<N> {\n #[inline_always]\n fn to_field(self) -> Field {\n assert(N < 32, \"String doesn't fit in a field, consider using Serialize instead\");\n field_from_bytes(self.as_bytes(), true)\n }\n}\n\npub trait FromField {\n fn from_field(value: Field) -> Self;\n}\n\nimpl FromField for Field {\n #[inline_always]\n fn from_field(value: Field) -> Self {\n value\n }\n}\n\nimpl FromField for bool {\n #[inline_always]\n fn from_field(value: Field) -> Self {\n value != 0\n }\n}\nimpl FromField for u1 {\n #[inline_always]\n fn from_field(value: Field) -> Self {\n value as u1\n }\n}\nimpl FromField for u8 {\n #[inline_always]\n fn from_field(value: Field) -> Self {\n value as u8\n }\n}\nimpl FromField for u16 {\n fn from_field(value: Field) -> Self {\n value as u16\n }\n}\nimpl FromField for u32 {\n #[inline_always]\n fn from_field(value: Field) -> Self {\n value as u32\n }\n}\nimpl FromField for u64 {\n #[inline_always]\n fn from_field(value: Field) -> Self {\n value as u64\n }\n}\nimpl FromField for u128 {\n #[inline_always]\n fn from_field(value: Field) -> Self {\n value as u128\n }\n}\n\n// docs:start:serialize\n/// Trait for serializing Noir types into arrays of Fields.\n///\n/// An implementation of the Serialize trait has to follow Noir's intrinsic serialization (each member of a struct\n/// converted directly into one or more Fields without any packing or compression). This trait (and Deserialize) are\n/// typically used to communicate between Noir and TypeScript (via oracles and function arguments).\n///\n/// # On Following Noir's Intrinsic Serialization\n/// When calling a Noir function from TypeScript (TS), first the function arguments are serialized into an array\n/// of fields. This array is then included in the initial witness. Noir's intrinsic serialization is then used\n/// to deserialize the arguments from the witness. When the same Noir function is called from Noir this Serialize trait\n/// is used instead of the serialization in TS. For this reason we need to have a match between TS serialization,\n/// Noir's intrinsic serialization and the implementation of this trait. If there is a mismatch, the function calls\n/// fail with an arguments hash mismatch error message.\n///\n/// # Associated Constants\n/// * `N` - The length of the output Field array, known at compile time\n///\n/// # Example\n/// ```\n/// impl<let N: u32> Serialize for str<N> {\n/// let N: u32 = N;\n///\n/// fn serialize(self) -> [Field; Self::N] {\n/// let bytes = self.as_bytes();\n/// let mut fields = [0; Self::N];\n/// for i in 0..bytes.len() {\n/// fields[i] = bytes[i] as Field; // Each byte gets its own Field\n/// }\n/// fields\n/// }\n/// }\n/// ```\n#[derive_via(derive_serialize)]\npub trait Serialize {\n let N: u32;\n\n fn serialize(self) -> [Field; N];\n}\n// docs:end:serialize\n\nimpl<let M: u32> Serialize for str<M> {\n let N: u32 = M;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n let bytes = self.as_bytes();\n let mut fields = [0; Self::N];\n for i in 0..bytes.len() {\n fields[i] = bytes[i] as Field;\n }\n fields\n }\n}\n\n/// Implementation of Deserialize for BoundedVec.\n///\n/// This implementation deserializes a BoundedVec from an array of Fields. The array contains:\n/// 1. The serialized items, each taking up T::N Fields\n/// 2. The length of the BoundedVec as the last Field\n///\n/// # Type Parameters\n/// * `T` - The type of items stored in the BoundedVec, must implement Deserialize\n/// * `M` - The maximum length of the BoundedVec\n///\n/// # Fields Array Layout\n/// [item1_field1, item1_field2, ..., item2_field1, item2_field2, ..., length]\n/// Where:\n/// - itemN_fieldM: The M-th Field of the N-th item (T::N Fields per item)\n/// - length: The number of items in the BoundedVec (1 Field)\n///\n/// Total length N = T::N * M + 1, where:\n/// - T::N is the number of Fields needed to deserialize one item\n/// - M is the maximum length of the BoundedVec\n/// - +1 is for storing the length\n///\n/// # Note\n/// Not deriving this because it's not supported to call derive_deserialize on a \"remote\" struct (and it will never\n/// be supported).\nimpl<T, let M: u32> Deserialize for BoundedVec<T, M>\nwhere\n T: Deserialize,\n{\n let N: u32 = <T as Deserialize>::N * M + 1;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n let mut new_bounded_vec: BoundedVec<T, M> = BoundedVec::new();\n\n // Length is stored in the last field as we need to match intrinsic Noir serialization and the `len` struct\n // field is after `storage` struct field (see `bounded_vec.nr` in noir-stdlib)\n let len = fields[<T as Deserialize>::N * M] as u32;\n\n for i in 0..len {\n let mut nested_fields = [0; <T as Deserialize>::N];\n for j in 0..<T as Deserialize>::N {\n nested_fields[j] = fields[i * <T as Deserialize>::N + j];\n }\n\n let item = T::deserialize(nested_fields);\n new_bounded_vec.push(item);\n }\n\n new_bounded_vec\n }\n}\n\n// This may cause issues if used as program input, because noir disallows empty arrays for program input.\n// I think this is okay because I don't foresee a unit type being used as input. But leaving this comment as a hint\n// if someone does run into this in the future.\nimpl Deserialize for () {\n let N: u32 = 0;\n\n fn deserialize(_fields: [Field; Self::N]) -> Self {\n ()\n }\n}\n\n// Note: Not deriving this because it's not supported to call derive_serialize on a \"remote\" struct (and it will never\n// be supported).\nimpl<T, let M: u32> Serialize for BoundedVec<T, M>\nwhere\n T: Serialize,\n{\n let N: u32 = <T as Serialize>::N * M + 1; // +1 for the length of the BoundedVec\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n let mut fields = [0; Self::N];\n\n let storage = self.storage();\n\n for i in 0..M {\n let serialized_item = storage[i].serialize();\n\n for j in 0..<T as Serialize>::N {\n fields[i * <T as Serialize>::N + j] = serialized_item[j];\n }\n }\n\n // Length is stored in the last field as we need to match intrinsic Noir serialization and the `len` struct\n // field is after `storage` struct field (see `bounded_vec.nr` in noir-stdlib)\n fields[<T as Serialize>::N * M] = self.len() as Field;\n\n fields\n }\n}\n\n// docs:start:deserialize\n/// Trait for deserializing Noir types from arrays of Fields.\n///\n/// An implementation of the Deserialize trait has to follow Noir's intrinsic serialization (each member of a struct\n/// converted directly into one or more Fields without any packing or compression). This trait is typically used when\n/// deserializing return values from function calls in Noir. Since the same function could be called from TypeScript\n/// (TS), in which case the TS deserialization would get used, we need to have a match between the 2.\n///\n/// # Associated Constants\n/// * `N` - The length of the input Field array, known at compile time\n///\n/// # Example\n/// ```\n/// impl<let M: u32> Deserialize for str<M> {\n/// let N: u32 = M;\n///\n/// #[inline_always]\n/// fn deserialize(fields: [Field; Self::N]) -> Self {\n/// str::<Self::N>::from(fields.map(|value| value as u8))\n/// }\n/// }\n/// ```\n#[derive_via(derive_deserialize)]\npub trait Deserialize {\n let N: u32;\n\n fn deserialize(fields: [Field; N]) -> Self;\n}\n// docs:end:deserialize\n\nimpl<let M: u32> Deserialize for str<M> {\n let N: u32 = M;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n str::<Self::N>::from(fields.map(|value| value as u8))\n }\n}\n\n/// Trait for efficiently packing and unpacking Noir types into and from arrays of Fields.\n///\n/// The `Packable` trait allows types to be serialized and deserialized with a focus on minimizing the size of\n/// the resulting Field array. This trait is used when storage efficiency is critical (e.g. when storing data\n/// in the contract's public storage).\n///\n/// # Associated Constants\n/// * `N` - The length of the Field array, known at compile time\n#[derive_via(derive_packable)]\npub trait Packable {\n let N: u32;\n\n /// Packs the current value into a compact array of `Field` elements.\n fn pack(self) -> [Field; N];\n\n /// Unpacks a compact array of `Field` elements into the original value.\n fn unpack(fields: [Field; N]) -> Self;\n}\n\n#[test]\nunconstrained fn bounded_vec_serialization() {\n // Test empty BoundedVec\n let empty_vec: BoundedVec<Field, 3> = BoundedVec::from_array([]);\n let serialized = empty_vec.serialize();\n let deserialized = BoundedVec::<Field, 3>::deserialize(serialized);\n assert_eq(empty_vec, deserialized);\n assert_eq(deserialized.len(), 0);\n\n // Test partially filled BoundedVec\n let partial_vec: BoundedVec<[u32; 2], 3> = BoundedVec::from_array([[1, 2]]);\n let serialized = partial_vec.serialize();\n let deserialized = BoundedVec::<[u32; 2], 3>::deserialize(serialized);\n assert_eq(partial_vec, deserialized);\n assert_eq(deserialized.len(), 1);\n assert_eq(deserialized.get(0), [1, 2]);\n\n // Test full BoundedVec\n let full_vec: BoundedVec<[u32; 2], 3> = BoundedVec::from_array([[1, 2], [3, 4], [5, 6]]);\n let serialized = full_vec.serialize();\n let deserialized = BoundedVec::<[u32; 2], 3>::deserialize(serialized);\n assert_eq(full_vec, deserialized);\n assert_eq(deserialized.len(), 3);\n assert_eq(deserialized.get(0), [1, 2]);\n assert_eq(deserialized.get(1), [3, 4]);\n assert_eq(deserialized.get(2), [5, 6]);\n}\n"
|
|
2690
2690
|
},
|
|
2691
|
-
"
|
|
2691
|
+
"390": {
|
|
2692
2692
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/type_serialization.nr",
|
|
2693
2693
|
"source": "use crate::traits::{Deserialize, Serialize};\n\nglobal U1_SERIALIZED_LEN: u32 = 1;\nglobal BOOL_SERIALIZED_LEN: u32 = 1;\nglobal U8_SERIALIZED_LEN: u32 = 1;\nglobal U16_SERIALIZED_LEN: u32 = 1;\nglobal U32_SERIALIZED_LEN: u32 = 1;\nglobal U64_SERIALIZED_LEN: u32 = 1;\nglobal U128_SERIALIZED_LEN: u32 = 1;\nglobal FIELD_SERIALIZED_LEN: u32 = 1;\nglobal I8_SERIALIZED_LEN: u32 = 1;\nglobal I16_SERIALIZED_LEN: u32 = 1;\nglobal I32_SERIALIZED_LEN: u32 = 1;\nglobal I64_SERIALIZED_LEN: u32 = 1;\n\nimpl Serialize for bool {\n let N: u32 = BOOL_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as Field]\n }\n}\n\nimpl Deserialize for bool {\n let N: u32 = BOOL_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> bool {\n fields[0] != 0\n }\n}\n\nimpl Serialize for u1 {\n let N: u32 = U1_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as Field]\n }\n}\n\nimpl Deserialize for u1 {\n let N: u32 = U1_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u1\n }\n}\n\nimpl Serialize for u8 {\n let N: u32 = U8_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as Field]\n }\n}\n\nimpl Deserialize for u8 {\n let N: u32 = U8_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u8\n }\n}\n\nimpl Serialize for u16 {\n let N: u32 = U16_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as Field]\n }\n}\n\nimpl Deserialize for u16 {\n let N: u32 = U16_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u16\n }\n}\n\nimpl Serialize for u32 {\n let N: u32 = U32_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as Field]\n }\n}\n\nimpl Deserialize for u32 {\n let N: u32 = U32_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u32\n }\n}\n\nimpl Serialize for u64 {\n let N: u32 = U64_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as Field]\n }\n}\n\nimpl Deserialize for u64 {\n let N: u32 = U64_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u64\n }\n}\n\nimpl Serialize for u128 {\n let N: u32 = U128_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as Field]\n }\n}\n\nimpl Deserialize for u128 {\n let N: u32 = U128_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u128\n }\n}\n\nimpl Serialize for Field {\n let N: u32 = FIELD_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self]\n }\n}\n\nimpl Deserialize for Field {\n let N: u32 = FIELD_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0]\n }\n}\n\nimpl Serialize for i8 {\n let N: u32 = I8_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as u8 as Field]\n }\n}\n\nimpl Deserialize for i8 {\n let N: u32 = I8_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u8 as i8\n }\n}\n\nimpl Serialize for i16 {\n let N: u32 = I16_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as u16 as Field]\n }\n}\n\nimpl Deserialize for i16 {\n let N: u32 = I16_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u16 as i16\n }\n}\n\nimpl Serialize for i32 {\n let N: u32 = I32_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as u32 as Field]\n }\n}\n\nimpl Deserialize for i32 {\n let N: u32 = I32_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u32 as i32\n }\n}\n\nimpl Serialize for i64 {\n let N: u32 = I64_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as u64 as Field]\n }\n}\n\nimpl Deserialize for i64 {\n let N: u32 = I64_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u64 as i64\n }\n}\n\nimpl<T, let M: u32> Serialize for [T; M]\nwhere\n T: Serialize,\n{\n let N: u32 = <T as Serialize>::N * M;\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n let mut result: [Field; _] = std::mem::zeroed();\n for i in 0..M {\n let serialized_t = self[i].serialize();\n for j in 0..<T as Serialize>::N {\n result[i * <T as Serialize>::N + j] = serialized_t[j];\n }\n }\n result\n }\n}\n\nimpl<T, let M: u32> Deserialize for [T; M]\nwhere\n T: Deserialize,\n{\n let N: u32 = <T as Deserialize>::N * M;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n let mut reader = crate::utils::reader::Reader::new(fields);\n let mut result: [T; M] = std::mem::zeroed();\n reader.read_struct_array::<T, <T as Deserialize>::N, M>(Deserialize::deserialize, result)\n }\n}\n\nimpl<T> Serialize for Option<T>\nwhere\n T: Serialize,\n{\n let N: u32 = <T as Serialize>::N + 1;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n let mut result: [Field; Self::N] = std::mem::zeroed();\n\n result[0] = if self.is_some() { 1 } else { 0 };\n\n let value_serialized = self.unwrap_unchecked().serialize();\n for i in 0..<T as Serialize>::N {\n result[1 + i] = value_serialized[i];\n }\n\n result\n }\n}\n\nimpl<T> Deserialize for Option<T>\nwhere\n T: Deserialize,\n{\n let N: u32 = <T as Deserialize>::N + 1;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n if fields[0] == 1 {\n let mut value_fields = [0; <T as Deserialize>::N];\n for i in 0..<T as Deserialize>::N {\n value_fields[i] = fields[1 + i];\n }\n\n Option::some(T::deserialize(value_fields))\n } else {\n Option::none()\n }\n }\n}\n\nmod test {\n use crate::traits::{Deserialize, Serialize};\n\n #[test]\n fn u16_serialization() {\n let a: u16 = 10;\n assert_eq(a, u16::deserialize(a.serialize()));\n }\n\n #[test]\n fn i8_serialization() {\n let a: i8 = -10;\n assert_eq(a, i8::deserialize(a.serialize()));\n }\n\n #[test]\n fn i16_serialization() {\n let a: i16 = -10;\n assert_eq(a, i16::deserialize(a.serialize()));\n }\n\n #[test]\n fn i32_serialization() {\n let a: i32 = -10;\n assert_eq(a, i32::deserialize(a.serialize()));\n }\n\n #[test]\n fn i64_serialization() {\n let a: i64 = -10;\n assert_eq(a, i64::deserialize(a.serialize()));\n }\n\n #[test]\n fn option_field_serialization() {\n let opt_some = Option::some(5);\n assert_eq(Option::<_>::deserialize(opt_some.serialize()), opt_some);\n\n let opt_none = Option::none();\n assert_eq(Option::<Field>::deserialize(opt_none.serialize()), opt_none);\n }\n\n #[test]\n fn array_serialization() {\n let array = [1, 2, 3, 4];\n\n let serialized: [Field; 4] = array.serialize();\n let deserialized: [Field; 4] = Deserialize::deserialize(serialized);\n assert_eq(deserialized, array);\n }\n\n #[test]\n fn nested_array_serialization() {\n let nested_array = [[1, 2, 3, 4], [5, 6, 7, 8]];\n\n let serialized: [Field; 8] = nested_array.serialize();\n let deserialized: [[Field; 4]; 2] = Deserialize::deserialize(serialized);\n\n assert_eq(deserialized, nested_array);\n }\n\n #[test]\n fn option_array_serialization() {\n let opt_some = Option::some([2, 5]);\n assert_eq(Option::<_>::deserialize(opt_some.serialize()), opt_some);\n\n let opt_none = Option::none();\n assert_eq(Option::<Field>::deserialize(opt_none.serialize()), opt_none);\n }\n}\n"
|
|
2694
2694
|
},
|
|
2695
|
-
"
|
|
2695
|
+
"395": {
|
|
2696
2696
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/utils/field.nr",
|
|
2697
2697
|
"source": "global KNOWN_NON_RESIDUE: Field = 5; // This is a non-residue in Noir's native Field.\n\npub fn field_from_bytes<let N: u32>(bytes: [u8; N], big_endian: bool) -> Field {\n assert(bytes.len() < 32, \"field_from_bytes: N must be less than 32\");\n let mut as_field = 0;\n let mut offset = 1;\n for i in 0..N {\n let mut index = i;\n if big_endian {\n index = N - i - 1;\n }\n as_field += (bytes[index] as Field) * offset;\n offset *= 256;\n }\n\n as_field\n}\n\n// Convert a 32 byte array to a field element by truncating the final byte\npub fn field_from_bytes_32_trunc(bytes32: [u8; 32]) -> Field {\n // Convert it to a field element\n let mut v = 1;\n let mut high = 0 as Field;\n let mut low = 0 as Field;\n\n for i in 0..15 {\n // covers bytes 16..30 (31 is truncated and ignored)\n low = low + (bytes32[15 + 15 - i] as Field) * v;\n v = v * 256;\n // covers bytes 0..14\n high = high + (bytes32[14 - i] as Field) * v;\n }\n // covers byte 15\n low = low + (bytes32[15] as Field) * v;\n\n low + high * v\n}\n\n// TODO to radix returns u8, so we cannot use bigger radixes. It'd be ideal to use a radix of the maximum range-constrained integer noir supports\npub fn full_field_less_than(lhs: Field, rhs: Field) -> bool {\n lhs.lt(rhs)\n}\n\npub fn full_field_greater_than(lhs: Field, rhs: Field) -> bool {\n rhs.lt(lhs)\n}\n\npub fn min(f1: Field, f2: Field) -> Field {\n if f1.lt(f2) {\n f1\n } else {\n f2\n }\n}\n\nglobal C1: u32 = 28;\nglobal C3: Field = 40770029410420498293352137776570907027550720424234931066070132305055;\nglobal C5: Field = 19103219067921713944291392827692070036145651957329286315305642004821462161904;\n\npub fn pow(x: Field, y: Field) -> Field {\n let mut r = 1 as Field;\n let b: [u1; 254] = y.to_le_bits();\n\n for i in 0..254 {\n r *= r;\n r *= (b[254 - 1 - i] as Field) * x + (1 - b[254 - 1 - i] as Field);\n }\n\n r\n}\n\n/// Returns Option::some(sqrt) if there is a square root, and Option::none() if there isn't.\npub fn sqrt(x: Field) -> Option<Field> {\n // Safety: if the hint returns the square root of x, then we simply square it\n // check the result equals x. If x is not square, we return a value that\n // enables us to prove that fact (see the `else` clause below).\n let (is_sq, maybe_sqrt) = unsafe { __sqrt(x) };\n\n if is_sq {\n let sqrt = maybe_sqrt;\n validate_sqrt_hint(x, sqrt);\n Option::some(sqrt)\n } else {\n let not_sqrt_hint = maybe_sqrt;\n validate_not_sqrt_hint(x, not_sqrt_hint);\n Option::none()\n }\n}\n\n// Boolean indicating whether Field element is a square, i.e. whether there exists a y in Field s.t. x = y*y.\nunconstrained fn is_square(x: Field) -> bool {\n let v = pow(x, -1 / 2);\n v * (v - 1) == 0\n}\n\n// Tonelli-Shanks algorithm for computing the square root of a Field element.\n// Requires C1 = max{c: 2^c divides (p-1)}, where p is the order of Field\n// as well as C3 = (C2 - 1)/2, where C2 = (p-1)/(2^c1),\n// and C5 = ZETA^C2, where ZETA is a non-square element of Field.\n// These are pre-computed above as globals.\nunconstrained fn tonelli_shanks_sqrt(x: Field) -> Field {\n let mut z = pow(x, C3);\n let mut t = z * z * x;\n z *= x;\n let mut b = t;\n let mut c = C5;\n\n for i in 0..(C1 - 1) {\n for _j in 1..(C1 - i - 1) {\n b *= b;\n }\n\n z *= if b == 1 { 1 } else { c };\n\n c *= c;\n\n t *= if b == 1 { 1 } else { c };\n\n b = t;\n }\n\n z\n}\n\n// NB: this doesn't return an option, because in the case of there _not_ being a square root, we still want to return a field element that allows us to then assert in the _constrained_ sqrt function that there is no sqrt.\nunconstrained fn __sqrt(x: Field) -> (bool, Field) {\n let is_sq = is_square(x);\n if is_sq {\n let sqrt = tonelli_shanks_sqrt(x);\n (true, sqrt)\n } else {\n // Demonstrate that x is not a square (a.k.a. a \"quadratic non-residue\").\n // Facts:\n // The Legendre symbol (\"LS\") of x, is x^((p-1)/2) (mod p).\n // - If x is a square, LS(x) = 1\n // - If x is not a square, LS(x) = -1\n // - If x = 0, LS(x) = 0.\n //\n // Hence:\n // sq * sq = sq // 1 * 1 = 1\n // non-sq * non-sq = sq // -1 * -1 = 1\n // sq * non-sq = non-sq // -1 * 1 = -1\n //\n // See: https://en.wikipedia.org/wiki/Legendre_symbol\n let demo_x_not_square = x * KNOWN_NON_RESIDUE;\n let not_sqrt = tonelli_shanks_sqrt(demo_x_not_square);\n (false, not_sqrt)\n }\n}\n\nfn validate_sqrt_hint(x: Field, hint: Field) {\n assert(hint * hint == x, f\"The claimed_sqrt {hint} is not the sqrt of x {x}\");\n}\n\nfn validate_not_sqrt_hint(x: Field, hint: Field) {\n // We need this assertion, because x = 0 would pass the other assertions in this\n // function, and we don't want people to be able to prove that 0 is not square!\n assert(x != 0, \"0 has a square root; you cannot claim it is not square\");\n // Demonstrate that x is not a square (a.k.a. a \"quadratic non-residue\").\n //\n // Facts:\n // The Legendre symbol (\"LS\") of x, is x^((p-1)/2) (mod p).\n // - If x is a square, LS(x) = 1\n // - If x is not a square, LS(x) = -1\n // - If x = 0, LS(x) = 0.\n //\n // Hence:\n // 1. sq * sq = sq // 1 * 1 = 1\n // 2. non-sq * non-sq = sq // -1 * -1 = 1\n // 3. sq * non-sq = non-sq // -1 * 1 = -1\n //\n // See: https://en.wikipedia.org/wiki/Legendre_symbol\n //\n // We want to demonstrate that this below multiplication falls under bullet-point (2):\n let demo_x_not_square = x * KNOWN_NON_RESIDUE;\n // I.e. we want to demonstrate that `demo_x_not_square` has Legendre symbol 1\n // (i.e. that it is a square), so we prove that it is square below.\n // Why do we want to prove that it has LS 1?\n // Well, since it was computed with a known-non-residue, its squareness implies we're\n // in case 2 (something multiplied by a known-non-residue yielding a result which\n // has a LS of 1), which implies that x must be a non-square. The unconstrained\n // function gave us the sqrt of demo_x_not_square, so all we need to do is\n // assert its squareness:\n assert(\n hint * hint == demo_x_not_square,\n f\"The hint {hint} does not demonstrate that {x} is not a square\",\n );\n}\n\n#[test]\nunconstrained fn bytes_field_test() {\n // Tests correctness of field_from_bytes_32_trunc against existing methods\n // Bytes representing 0x543e0a6642ffeb8039296861765a53407bba62bd1c97ca43374de950bbe0a7\n let inputs = [\n 84, 62, 10, 102, 66, 255, 235, 128, 57, 41, 104, 97, 118, 90, 83, 64, 123, 186, 98, 189, 28,\n 151, 202, 67, 55, 77, 233, 80, 187, 224, 167,\n ];\n let field = field_from_bytes(inputs, true);\n let return_bytes: [u8; 31] = field.to_be_bytes();\n assert_eq(inputs, return_bytes);\n // 32 bytes - we remove the final byte, and check it matches the field\n let inputs2 = [\n 84, 62, 10, 102, 66, 255, 235, 128, 57, 41, 104, 97, 118, 90, 83, 64, 123, 186, 98, 189, 28,\n 151, 202, 67, 55, 77, 233, 80, 187, 224, 167, 158,\n ];\n let field2 = field_from_bytes_32_trunc(inputs2);\n let return_bytes2: [u8; 31] = field.to_be_bytes();\n\n assert_eq(return_bytes2, return_bytes);\n assert_eq(field2, field);\n}\n\n#[test]\nunconstrained fn max_field_test() {\n // Tests the hardcoded value in constants.nr vs underlying modulus\n // NB: We can't use 0-1 in constants.nr as it will be transpiled incorrectly to ts and sol constants files\n let max_value = crate::constants::MAX_FIELD_VALUE;\n assert_eq(max_value, 0 - 1);\n // modulus == 0 is tested elsewhere, so below is more of a sanity check\n let max_bytes: [u8; 32] = max_value.to_be_bytes();\n let mod_bytes = std::field::modulus_be_bytes();\n for i in 0..31 {\n assert_eq(max_bytes[i], mod_bytes[i]);\n }\n assert_eq(max_bytes[31], mod_bytes[31] - 1);\n}\n\n#[test]\nunconstrained fn sqrt_valid_test() {\n let x = 16; // examples: 16, 9, 25, 81\n let result = sqrt(x);\n assert(result.is_some());\n assert_eq(result.unwrap() * result.unwrap(), x);\n}\n\n#[test]\nunconstrained fn sqrt_invalid_test() {\n let x = KNOWN_NON_RESIDUE; // has no square root in the field\n let result = sqrt(x);\n assert(result.is_none());\n}\n"
|
|
2698
2698
|
},
|
|
2699
|
-
"
|
|
2699
|
+
"399": {
|
|
2700
2700
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/utils/reader.nr",
|
|
2701
2701
|
"source": "pub struct Reader<let N: u32> {\n data: [Field; N],\n offset: u32,\n}\n\nimpl<let N: u32> Reader<N> {\n pub fn new(data: [Field; N]) -> Self {\n Self { data, offset: 0 }\n }\n\n pub fn read(&mut self) -> Field {\n let result = self.data[self.offset];\n self.offset += 1;\n result\n }\n\n pub fn read_u32(&mut self) -> u32 {\n self.read() as u32\n }\n\n pub fn read_u64(&mut self) -> u64 {\n self.read() as u64\n }\n\n pub fn read_bool(&mut self) -> bool {\n self.read() != 0\n }\n\n pub fn read_array<let K: u32>(&mut self) -> [Field; K] {\n let mut result = [0; K];\n for i in 0..K {\n result[i] = self.data[self.offset + i];\n }\n self.offset += K;\n result\n }\n\n pub fn read_struct<T, let K: u32>(&mut self, deserialise: fn([Field; K]) -> T) -> T {\n let result = deserialise(self.read_array());\n result\n }\n\n pub fn read_struct_array<T, let K: u32, let C: u32>(\n &mut self,\n deserialise: fn([Field; K]) -> T,\n mut result: [T; C],\n ) -> [T; C] {\n for i in 0..C {\n result[i] = self.read_struct(deserialise);\n }\n result\n }\n\n pub fn finish(self) {\n assert_eq(self.offset, self.data.len(), \"Reader did not read all data\");\n }\n}\n"
|
|
2702
2702
|
},
|