@aztec/protocol-contracts 3.0.0-nightly.20251219 → 3.0.0-nightly.20251221
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/artifacts/AuthRegistry.json +29 -29
- package/artifacts/ContractClassRegistry.json +24 -24
- package/artifacts/ContractInstanceRegistry.json +35 -35
- package/artifacts/FeeJuice.json +32 -32
- package/artifacts/MultiCallEntrypoint.json +20 -20
- package/artifacts/Router.json +22 -22
- package/package.json +4 -4
|
@@ -36,7 +36,7 @@
|
|
|
36
36
|
}
|
|
37
37
|
},
|
|
38
38
|
"bytecode": "JwACBAEoAAABBIBGJwAABEYnAgEEACcCAgQAHwoAAQACAEUlAAAAQSUAAABsLQIBRScCAgRFJwIDBAE7DgADAAIsAABDADBkTnLhMaApuFBFtoGBWF0oM+hIeblwkUPh9ZPwAAAAJwBEBAMmJQAAA/QeAgACAB4CAAMAHgIABAknAgUBASQCAAQAAACSJQAABBoeAgAEAQoiBEMGFgoGBxwKBwgABCoIBAcnAgQBAAoqBgQIJAIACAAAAMUnAgkEADwGCQEnAgYAACsCAAgAAAAAAAAAAAIAAAAAAAAAAC0IAQknAgoEBQAIAQoBJwMJBAEAIgkCCi0KCgstDgYLACILAgstDgYLACILAgstDgYLACILAgstDggLLQgBCAAAAQIBLQgBCgAAAQIBLQgBCwAAAQIBLQgBDAAAAQIBJwINAAEtCAEOJwIPBAQACAEPAScDDgQBACIOAg8tCg8QLQ4NEAAiEAIQLQ4HEAAiEAIQLQ4GEC0ODggtDgkKJwIHBAItDgcLLQ4EDCcCBwQAJwIJBAEtCgcBIwAAAZ0MIgFEAiQCAAIAAANuIwAAAa8tCwoCLQsCAwAiAwIDLQ4DAi0IAQMnAgcEBQAIAQcBJwMDBAEAIgICBycCDQQEACIDAg4/DwAHAA4tCwgCLQsLBy0OAggtDgMKLQ4HCy0OBQwAKgMJBS0LBQIKKgIGAwoqAwQFJAIABQAAAiAlAAAELB4CAAMGLwoAAgAEHAoEBQQcCgUCAAIqBAIFLAIAAgAtXgmLgro3tDuZoTFhGP0g1C9RZsnp8T+16mWpbR4KbQQqBQIEHAoEBgQcCgYFAAIqBAUGBCoGAgQcCgQHARwKBwYAHAoGBwECKgQGCCwCAAQAMDPqJG5QbomOl/Vwyv/XBMsLtGAxP7cgsp4TnlwQAAEEKggECRwKCQoEHAoKCAACKgkICgQqCgIJHAoJCgEcCgoCABwKAgoBAioJAgsEKgsECRwKCQsEHAoLBAAcCgQJBRYKCgQcCgIKBRwKBAIFBCoKCQQcCggJBRYKBwgcCgYHBRwKCAYFBCoHCQgcCgUJBQwqAwkFKQIAAwUAAVGAJAIABQAAA1UjAAADPQQqBwgCBCoGAwQAKgIEAy0KAwEjAAADbQQqCgQFBCoCAwQAKgUEAi0KAgEjAAADbSYtCwsCDCoBAgMkAgADAAADhCMAAAPmLQsKAwAiAwINACoNAQ4tCw4HLQsIDQAiDQIPACoPARAtCxAOACoHDg8tCwwHLQIDAycABAQFJQAABD4tCAUOACIOAhAAKhABES0ODxEtDg0ILQ4OCi0OAgstDgcMIwAAA+YAKgEJAi0KAgEjAAABnSgAAAQEeEYMAAAEAyQAAAMAAAQZKgEAAQXaxfXWtEoybTwEAgEmKgEAAQVP30qK18/w0zwEAgEmKgEAAQW6uyHXgjMYZDwEAgEmLQEDBgoABgIHJAAABwAABFQjAAAEXS0AAwUjAAAEnC0AAQUAAAEEAQAAAwQJLQADCi0ABQsKAAoJDCQAAAwAAASXLQEKCC0ECAsAAAoCCgAACwILIwAABHMnAQUEASY=",
|
|
39
|
-
"debug_symbols": "
|
|
39
|
+
"debug_symbols": "tZndbts6DMffJde90Acpkn2VYRiyLhsCBGmRtQc4KPruh7RF2WkhofHObppf6PofkqJIOXnd/Th8f/n17Xj++fh7d//ldff9cjydjr++nR4f9s/Hx7NaX3fB/sSYd/f5Tl95d0/6mvR9DAZqiFEh5woQHYoCKqBZ7C4sFUqolwpWILOIAVZgtzBXkOxAu/tU7nYppArmzwx+Kful7BZwC7jFHJsBK5hjM4CDVCD/COIKbIJoUCpIdMAZcggO4CAVLKczmCArTFFMQBWmKCZwC7gF3DJFMQFWmKKYABykwhSFGFAFjg6lgoQZYFr1pJD1f3I2QAepAOCgUWQNBzA5UIXiluIWcgu5hd1iy51BQZKDOpa1otCSOQM4cIVo/1wMqEIyn9mgVMhumZw3MOchGagFtDLRcggaO1oOZ1ALaqmjlSjqZ5VAFexDMRlQhWSWbGAWdb7YCiIaUAVwi60gqqvFMob66YWlgqhjyAYyA1nIKAZqKeoPRbWUaCAVkluSWdQfymbJBmZRf8hCnsEs6gah34VcLSU7uMXKphQDnp0nW6/JwlRB3GLbs2gUbNuzqM9sd1khsd1F6rzYUs5Q60dCrSiJbrF9MYFllaIBVchuybq4pMpibWeGWqICLoguiG6xAGfwjyC3TAVpwNHBBdlvl+mut7e7nbfKb8+Xw8E65ap3akd92l8O5+fd/fnldLrb/bM/vUz/9Ptpf55en/cXvappOJx/6KsK/jyeDkZvd8vdoX9ryiz17gRBmkCMeCUR+xLaaAtXDWWiJkLXbqS+RtYOilVDmWJPYxQKR3cjSYrdUGAgkViahjZjXtzIVxr4P6Sj/N10ZLT6niVQuJsOHqRDcg4tpRlKzw0ZuKEjqPmRM8AfhlJC6IYykNDWBlWCEi51jvG6zAc1miAWaHslCvSKI+ZBdQgt1aG9opvSCKPy0DnRykMHQ1dkGE4Ky9ZPJXbDGRUqeJlCTEss25alcHdZBkVKNp5mhVU2IX3ehRiaC5B7LqSBhB4VvD5xncgo116kURe1QT4vRkhNIdM7LwYLSktlEevOaBpwvZ4pj3Zaauu5JDMhXCuMWmiU2DroaqB80Bi0UBSqEmUVx01epGWs5VU+P2jQaEWSF0ZEoI0aRZoGy7ZYKLbSoBy6GnlQoVEPYO6HnrP6GoMKJfDaICibFKR1C0HepBBDa3wxlH5t5EE+gWNrWoxptVs/n05prVP3+KC8Rk0jFmxNg1K3aeRReel5uB01ZHV6k7ip/XF3MObRiOfiBZqZuesFjA5vKNKOGjrjuyceiKO5KLjMRaHQExlGo48WrrFe2w/RDNooYmgDAVdz8YPGaMgHyT4blRG7GcGRSAJuIom7JwUYDXksiydYSl9kmJJ2osWr4+j7lIzOo7AMSShLreaMN2gs8wlz2qrRahVXvfAmDWxbV2t/ox8ltHyU1cn6Rg1sGquufJsGt6emIrRNgyK1KQe8VWOZlKtz2G0aSywkG/3g2NaWIW7VaHXKq81/mwa3BxaWvE1DYm6PgLBZo+VDcON+kWW/yMb9os9Ky1M1b8tphuD50K9St+05/ca1jRiE0NX49JjK/RFTeHSMkVYfIa9rnT9/pgu+bSVtPBUWX1gh/NNz5XuFr/p2/3C8XP0m8WZSl+P+++lQ3/58OT+srj7/++RX/DeNp8vjw+HHy+VgSssPG/rnS9TvjFKkr/rDwvSWy52ugr2N01XUt/T1zZz5Dw=="
|
|
40
40
|
},
|
|
41
41
|
{
|
|
42
42
|
"name": "publish_for_public_execution",
|
|
@@ -2020,7 +2020,7 @@
|
|
|
2020
2020
|
}
|
|
2021
2021
|
},
|
|
2022
2022
|
"bytecode": "H4sIAAAAAAAA/+2dB5jUVNuG39kZeu8dBum9FxGkLLv03uuyLAusLruwhWJBsHdB7BXsDXsBFcWCvRfsIgqKomDDrvzPC4mGMLObk7APv9/35bpuMmTPyf3m5CQzOUnOCcn+qaM1T0lJPS4vPS0lKyclIysvPScrNTM3JWV+/szMjNy5KbOzc/Z/TktJX5yelp+XkZ01OiJSM7I/dwiErXkCiLqW2XPn50ox0lUBfVzLqoNlrmU1YiyrG2N99WIsqx9jWYMYy6IxHA1jLDsixrJGMZY1juFoGaNc2sRY1j7Gsk4xlnW25tZuKXgKWfOoNW8/a3jO1g6rW6wbmfTg8uUTpzXvtGPgkvXzVyZu3bPqW/z9kfA/aQuZWgfxPFq4p5Jz3WXlnw0OWXHqvIn1/6bWXNdrp9uAz4+Bx8HG8IErD7viLWQKNTNIuyHsvRye8F7eB0ym8Tc3SPuYQfxPkuJvYZD2cYP4nzKIP1Y9fMKqh09a86es+UZHPXwanzeBZ8CzAethS4O0TxuUw3Ok/djKIO0mg/ifJ8Xf2iDtMwbxvxCwHj5n1bvnrfkL1vxZRz18EZ9fAi+DVwLWwzYGaV80KIdXSfuxrUHalwzif40UfzuDtC8bxP96wHr4qlXvXrPmr1vzVxz18A18fhO8Bd4OWA/bG6R9w6AcNpP2YweDtG8axP8OKf6OBmnfMoj/3YD1cLNV796x5u9a87cd9fA9fH4ffAA+DFgPOxmkfc+gHD4i7cfOBmnfN4j/44D78SNrv31szT+w5h869uMWfP4EbAWfuvZjgjWPircQqoj3bfvM67aFRi1zXsBpvj4SLM7G4j3Obd73QcgZp50vIv9chB6UwTDubYb1wZ62u1sZtof/uQouLoc3uM/DAYSfh83zfWFwBPqN6wvHkRQV75Opa7vlcp+xCtuu7QZlYFJeOwyOlr//MYw71vZ6KSevaU2298tw0e5frUvbw+bl9JXPbz7TM+k2g7La6fNMutNxJj1UJyuTtE7f135PVnZm0wL+2qDQviniE5v+842PE+43RXyQdLbiMj0JdjZIa1K2uwxPgvZkWjdMfnbuItSNXT5OVLt9nqhMPd9699QJ4vmucE/EuW73T/Zvwwc2zTez5t85frJ/j88/gB/BnvA/eZ1xFjLtqw+7fZyPvjeoRz8FvHz5ySqLH6z5j9Z8j6MsfsbnX8Cv4Lfwwet0blth8f5eeLzhguK19519O+Vn6/+/O+L9A5//BH+BvQHj1ZVGxdPUOYgnVLinnHPd7nLR/+i8ufX/FtZc12unS8CHsP4fFHPdnDP9sWfSzJ8Q8V4Oxb2X9wGTafwmzfxhg/hLkOI3aeaPGMRf0iD+WPWwuFUPS1jzkta8mKMelsKH0qAMKBuwHpo085cyKIdypP1o0sxf2iD+8qT4TZr5yxjEXyFgPSxn1bvy1ryCNS/rqIcV8aESqAyqBKyHJs38FQ3KoSppP5o081cyiL8aKX6TZv7KBvFXD1gPq1r1rpo1r27NqzjqYQ3rGaZaoHbAemjSzF/DoBzqBCyHOtZ217Tmtax5bUc51MWHeqA+aBA5eJ0i3uONeo+3Qqx4o1Z8da35HzF+ZzbEhyNAI9DY2o4EcV1wOtbpjL+QKdTQoLwTHJ+bWME1dZWfcUVqaFA5msRPO9WVNtTUYMMiVtwJBaSJxlnu9jr/ZrozmhhWfntqZt+YsJvZmkUOrh2mLSoFBHNQxWtmsBObRzwX5gHbpPmWBdympgZxmmxTiwK2yZ3XuU0tIv88OVnSsT3ObSpkCsVIm/Bqlen5xW+YltamWbmk72pWvuiU3k+fd3LvZq0N1vv3waCCJlZ9so/2qKc14OoN6VuB1oV82xRWviZXUS0N9lsbw5PEoWqybuPzQG8bCSBsGzHP186gMP3G1c5ROaJiPplWJpNL2lYG29/+MFWm9j4rUwe/lUmFHXxUpo5FXJk0ro4+K5OfA6NjxPz3YifDnVXKmre0XK2seetIwcvV0xl0AV0LOfsWFkbLiFm52GkLK4tuEbN9ZE/udm6TMi8sbXeDbXXun26O/eCMrdCVyP5vt337TszzarxHgh7gKNd+Ni2n1gbl1NOgnGLFUlgeu/56TW+Xg+nx2ItUB9sYpD26iMtW61trA4fu614+yra34ReifRVjT6bbpWVscq7Scu4d8MfH35NpsDsNbr71MTwp2ZcXdj7dxmJy4OWFe4qKp6m4rrdesHUk+syX7TNfls98eT7z5fjMl+ozX5rPfH63b5DPfH73Q67PfH63z+9+8Lt9fvdfus98I33my/eZb6bPfJk+82X4zOe3ns31mc/v/pvlM18Pn/miPvMd7zPfifodU0EKD2b9uvZzNzwwMGFNZsOvBp205s2uvbfcvnT5uBPWthw34N/y4yHqLVnI/SHqKRvalMU8NlNHUyl6h8F7x74dBu8G+3YYvL/r22HQXOrbYdCK5tth8NCCb4fBgwW+HQY3vX07DG5MG6/bfsBQzPLFnkxPzH0MWiX6+rxQ6uu4UArJgVehf2cwjNsglgN8/dw38/o5Lr1Ng9B3Gr7y8Shv4mFqy070WWj9/bZlq7C/j7bspCJuy9a4knz8vNAsJeTAW9mmOz9epSksZo81PhTvD1Hxlte5bclWGQ1wHzXJkX8OZXvZAEeAfgvFtPG8r7eKcqE+O5BsUKkGGBa2nwqu8Zg2dJpsw0DDhk7TbdAz50AfDZeDDBuFTePSN612+DgrDw4YV2Hr91teQ4p4P/r9Fhtq+C3mPnHak+kxYPIzZPBhOGkOs06aw90nzWExTprDYwQYccmLqkAKO2EOMzjZDC/iE6YePBqP6eMI/Qy2wWR7RwQ8KL3EHWt7vZST17Qm2zvS8ORoeh2iXwqDDevxEB8n01FFvB16LBp8wYV0G4b62I7RhtthT6bbY/L6e79DFJOXX/xR8TSFuggnppB4j6mrcGJKEO8xdRNOTGHxHlN34dTxI8V7/FvC/mIy/b7rIRzPUcLx9BTOvuwl3vflZ6R9ebRwPL2F4+kjHE9f4Xj6CceTKBxPf+F4koTjSRaOZ4BwPAOF4xkkHM9g4XiGCMczVDieYcLxDBeOZ4RwPCOF4xklHM9o4XjGCMczVjieccLxjBeOZ4JwPBOF45kkHM9k4XimCMczVTieacLxTBeOJ0U4nhnC8aQKxzNTOJ404XhmCceTLhzPbOF45gjHM1c4ngzheI4RjudY4XgyheOZJxxPlvjzmLZtGzyoG8qWQxNTYZ754j3+baT20AUeY9q9d+9fQTw5wtmeXOF48oTjyReOZ6FwPIuE41ksHM8S4XiOE47neOF4ThCO50TheJYKx3OScDzLhONZLhzPycLxnCIcz6nC8ZwmHM/pwvGcIRzPmcLxnCUcz9nC8ZwjHM+5wvGcJxzP+cLxXCAczwrheFYKx3OhcDyrhOO5SDiei4XjuUQ4nkuF47lMOJ7LheO5QjieK4XjuUo4nquF47lGOJ5rHWm9PJvs17NaONuzRjie64TjuV44nhuE47lROJ6bhOO5WTieW4TjuVU4ntuE47ldOJ47hONZKxzPncLx3CUcz93C8dwjHM+9wvHcJxzP/cLxPCAcz4PC8TwkHM864XjWC8fzsHA8jwjH86hwPBuE43lMOJ7HhePZKBzPE8LxPCkcz1PC8TwtHM8m4XieEY7nWeF4nhOO53nheF4QjudF4XheEo7nZeF4XhGO51XheF4Tjud14XjeEI7nTeF43hKO523heDYLx/OOcDzvCsfznnA87wvH84FwPB8Kx/ORcDwfC8ezRTieT4Tj2Socz6fC8XwmHM824Xi2C8fzuXA8XwjHs0M4ni+F4/lKOJ6dwvF8LRzPN8Lx7BKOZ7dwPN8Kx/OdcDzfC8fzg3A8PwrHs0c4np+E4/lZOJ5fhOP5VTie34Tj+V04nj+E4/lTOJ6/hOPZKxyPZvCY1pXRzBMieRJInjDJEyF5ipE8xUmeEiRPSZKnFMlTmuQpQ/KUJXnKkTzlSZ4KJE9FkqeSocfPaMgtDfp2twfbM92OyqTyquLTY9pXRtWQ9zLbSeoroxqpjKuTPDVInpokTy2SpzbJU4fkqUvy1CN56pM8DUieKMnTkOQ5guRpRPI0JnmakDxNSZ5mJE9zkqcFydOS5GlF8rQmedqQPG1JnnYkT3uSpwPJ05Hk6UTydCZ5upA8XUmebiRPd5LnSJKnB8lzFMnTk+TpRfIcTfL0Jnn6kDx9SZ5+Dk9R9mGRSNqe/iRPEsmTTPIMIHkGkjyDSJ7BJM8QkmcoyTOM5BlO8owgeUaSPKNIntEkzxiSZyzJM47kGU/yTCB5JpI8k0ieySTPFJJnKskzjeSZTvKkkDwzSJ5UkmcmyZNG8swiedJJntkkzxySZy7Jk0HyHEPyHEvyZJI880ieLJInm+SZT/IsIHlySJ5ckieP5MkneRaSPItInsUkzxKS5ziS53iS5wSS50SSZynJcxLJs4zkWU7ynEzynELynErynEbynE7ynEHynEnynEXynE3ynEPynEvynEfynE/yXEDyrCB5VpI8F5I8q0iei0iei0meS0ieS0mey0iey0meK0ieK0meq0ieq0mea0iea0me1STPGpLnOpLnepLnBpLnRpLnJpLnZpLnFpLnVpLnNpLndpLnDpJnLclzJ8lzF8lzN8lzD8lzL8lzH8lzP8nzAMnzIMnzEMmzjuRZT/I8TPI8QvI8SvJsIHkeI3keJ3k2kjxPkDxPkjxPkTxPkzybSJ5nSJ5nSZ7nSJ7nSZ4XSJ4XSZ6XSJ6XSZ5XSJ5XSZ7XSJ7XSZ43SJ43SZ63SJ63SZ7NJM87JM+7JM97JM/7JM8HJM+HJM9HJM/HJM8WkucTkmcryfMpyfMZybON5NlO8nxO8nxB8uwgeb4keb4ieXaSPF+TPN+QPLtInt0kz7ckz3ckz/ckzw8kz48kzx6S5yeS52eS5xeS51eS5zeS53eS5w+S50+S5y+SZy/Jo4MHeEzrymjmCZE8CSRPmOSJkDzFSJ7iJE8JkqckyVOK5ClN8pQhecqSPOVInvIkTwWSpyLJU4nkqUzyVCF5qpI81Uie6iRPDZKnJslTi+SpTfLUIXnqkjz1SJ76JE8DkidK8jQkeY4geRqRPI1JniYkT1OSpxnJ05zkaUHytCR5WpE8rUmeNiRPW5KnHcnTnuTpQPJ0JHk6kTydSZ4uJE9XkqcbydOd5DmS5OlB8hxF8vQkeXqRPEeTPL1Jnj4kT1+Sp5/Do+P/NFuSvfG3K/6875NqXXM+vj85P3HJiu2bZqyu0e/t2x52ZjQde9xgTPBQImnb+yd4j985mW57E/EeU5LPbTeNqal4jymZFFMz8R7TAFJMzcV7TANJMbUQ7zENIsXUSrzHNJgUU2vxHtMQUkxtxXtMQ0kxtRPvMQ0jxdRBvMc0nBRTR/Ee0wjDmEKGsewKi+wOm3/njSR9t44ieUaTPGNInrEef5Ps3rv3+yCecYfomCnMM97gN1afCKeMJ5D25USSZxLJM5nkmULyTCV5ppE800meFJJnBsmTSvLMJHnSSJ5ZJE86yTOb5JlD8swleTJInmNInmNJnkySZx7Jk0XyZJM880meBSRPDsmTS/LkkTz5JM9CkmcRybOY5FlC8hxH8hxP8pxA8pxI8iwleU4ieZaRPMtJnpNJnlNInlNJntNIntNJnjNInjNJnrNInrNJnnNInnNJnvNInvNJngtInhUkz0qS50KSZxXJcxHJczHJcwnJcynJcxnJcznJcwXJcyXJcxXJczXJcw3Jcy3Js5rkWUPyXEfyXE/y3EDy3Ejy3ETy3Ezy3ELy3Ery3Eby3E7y3EHyrCV57iR57iJ57iZ57iF57iV57iN57id5HiB5HiR5HiJ51pE860meh0meR0ieR0meDSTPYyTP4yTPRpLnCZLnSZLnKZLnaZJnE8nzDMnzLMnzHMnzPMnzAsnzIsnzEsnzMsnzCsnzKsnzGsnzOsnzBsnzJsnzFsnzNsmzmeR5h+R5l+R5j+R5n+T5gOT5kOT5iOT5mOTZQvJ8QvJsJXk+JXk+I3m2kTzbSZ7PSZ4vSJ4dJM+XJM9XJM9OkudrkucbkmcXybOb5PmW5PmO5Pme5PmB5PmR5NlD8vxE8vxM8vxC8vxK8vxG8vxO8vxB8vxJ8vxF8uwleSTM8YRIngSSJ0zyREieYiRPcZKnBMlTkuQpRfKUJnnKkDxlSZ5yJE95kqcCyVOR5KlE8lQmeaqQPFVJnmokT3WSpwbJU5PkqUXy1CZ56pA8dUmeeiRPfZKnAckTJXkakjxHkDyNSJ7GJE8TkqcpydOM5GlO8rQgeVqSPK1IntYkTxuSpy3J047kaU/ydCB5OpI8nUieziRPF5KnK8nTjeTpTvIcSfL0IHmOInl6kjy9SJ6jSZ7eJE8fkqcvydOP5EkkefqTPEkkTzLJM4DkGUjyDCJ5BpM8Q0ieoSTPMJJnOMkzguQZSfKMInlGkzxjSJ6xJM84kmc8yTOB5JlI8kwieSaTPFNInqkkzzSSZzrJk0LyzCB5UkmemSRPGskzi+RJJ3lmkzxzSJ65JE8GyXMMyXMsyZNJ8swjebJInmySZz7Js4DkySF5ckmePJInn+RZSPIsInkWkzxLSJ7jSJ7jSZ4TSJ4TSZ6lJM9JJM8ykmc5yXMyyXMKyXMqyXMayXM6yXMGyXMmyXMWyXM2yXMOyXMuyXMeyXM+yXMBybOC5FlJ8lzo8LSfNTxna4fVLdaNTHpw+fKJ05p32jFwyfr5KxO37ln1bUDPKtL2XETyXEzyXOLTk+DyFLZvG4v3mC49RDEV5rnMoG72jZjFZFo+uv4REe/pRyLtqIj5/r48XLTbMdTHdoz2sR1XkOptRLzHdCUppmLiPaarSDEVF+8xXU2KqYR4j+kaUkwlxXtM15JiKiXeY1pNiqm0eI9pDSmmMuI9putIMZUV7zFdT4qpnHiP6QZSTOXFe0w3kmKqIN5juokUU0XxHtPNpJgqifeYbiHFVFm8x3QrKaYq4j2m20gxVRXvMd1OiqmaeI/pDlJM1cV7TGtJMdUQ7zHdSYqppniP6S5STLXEe0x3k2KqLd5juocUUx3xHtO9pJjqiveY7iPFVE+8x3Q/Kab64j2mB0gxNRDvMT1Iiikq3mN6iBRTQ/Ee0zpSTEeI95jWk2JqJN5jetggprDsb9/Se306dQFdQTfQHRwJeoCjQE/QCxwNeoM+oC/oBxJBf5AEksEAMBAMAoPBEDAUDAPDwQgwEowCo8EYMBaMA+PBBDARTAKTwRQwFUwD00EKmAFSwUyQBmaBdDAbzAFzQQY4BhwLMsE8kAWywXywAOSAXJAH8sFCsAgsBkvAceB4cAI4ESwFJ4FlYDk4GZwCTgWnaVmCM8CZ4CxwNjgHnAvOA+eDC8AKsBJcCFaBi8DF4BJwKbgMXA6uAFeCq8DV4BpwLVgN1oDrwPXgBnAjuAncDG4Bt4LbwO3gDrAW3AnuAneDe8C94D5wP3gAPAgeAuvAevAweAQ8CjaAx8DjYCN4AjwJngJPg03gGfAseA48D14AL4KXwMvgFfAqeA28Dt4Ab4K3wNtgM3gHvAveA++DD8CH4CPwMdgCPgFbwafgM7ANbAefgy/ADvAl+ArsBF+Db8AusBvocfUd+B78AH4Ee8BP4GfwC/gV/AZ+B3+AP8FfYC/QAycEEkAYREAxUByUACVBKVAalAFlQTlQHlQAFUElUBlUAVVBNVAd1AA1QS1QG9QBdUE9UB80AFHQEBwBGoHGoAloCpqB5qAFaAlagdagDWgL2oH2oAPoCDqBzqAL6Aq6ge7gSNADHAV6gl7gaNAb9AF9QT+QCPqDJJAMBoCBYBAYDIaAoWAYGA5GgJFgFBgNxoCxYBwYDyaAiWASmAymgKlgGpgOUsAMkApmgjQwC6SD2WAOmAsywDHgWJAJ5oEskA3mgwUgB+SCPJAPFoJFYDFYAo4Dx4MTwIlgKTgJLAPLwcngFHAqOA2cDs4AZ4KzwNngHHAuOA+cDy4AK8BKcCFYBS4CF4NLwKXgMnA5uAJcCa4CV4NrwLVgNVgDrgPXgxvAjeAmcDO4BdwKbgO3gzvAWnAnuAvcDe4B94L7wP3gAfAgeAisA+vBw+AR8CjYAB4Dj4ON4AnwJHgKPA02gWfAs+A58Dx4AbwIXgIvg1fAq+A18Dp4A7wJ3gJvg83gHfAueA+8Dz4AH4KPwMdgC/gEbAWfgs/ANrAdfA6+ADvAl+ArsBN8Db4Bu8Bu8C34DnwPfgA/gj3gJ/Az+AX8Cn4Dv4M/wJ/gL7AX6Jd4CCSAMIiAYqA4KAFKglKgNCgDyoJyoDyoACqCSqAyqAKqgmqgOqgBaoJaoDaoA+qCeqA+aKB9ToOG4AjQCDQGTUBT0Aw0By1AS9AKtAZtQFvQDrQHHUBH0Al0Bl1AV9ANdAdHgh7gKNAT9AJHg96gD+gL+oFE0B8kgWQwAAwEg8BgMAQMBcPAcDACjASjwGgwBowF48B4MAFMBJPAZDAFTAXTwHSQAmaAVDATpIFZIB3MBnPAXJABjgHHgkwwD2SBbDAfLAA5IBfkgXywECwCi8EScBw4HpwATgRLwUlgGVgOTgangFPBaeB0cAY4E5wFzgbngHPBeeB8cAFYAVaCC8EqcBG4GFwCLgWXgcvBFeBKcBW4GlwDrgWrwRpwHbge3ABuBDeBm8Et4FZwG9Ax7HV8eR37Xcdl1zHTdTxzHWtcxwHXMbp1/Gwd21rHndYxoXW8Zh1LWcc51jGIdXxgHbtXx9XVMW83Ah0rVsdx1TFWdfxTHZtUxw3VMT11vE0dC1PHqdQxJHV8Rx17UcdF1DELdTxBHetPx+HTMfJ0/DodW07HfdMx2XS8NB3LTMcZ0zHAdHwuHTtLx7XSMac+ATpWk46jpGMc6fhDOjaQjtujY+roeDc6Fo2OE6NjuOj4Kjr2iY5LomOG6HgeOtaGjoOhY1To+BE6toOOu6BjIuh4BTqWgPbzr33wa//42ne99iuvfb7rj2ftK137Mdc+xrX/b+2bW/vN1j6ttb9p7Qta+2nWPpS1f2Pte1j7BdY+e7U/Xe3rVvuh1T5itf9W7VtV+z3VPkm1v1Dty1P72dQ+MLV/Su07Uvt13NfnItC+CrUfQe3jT/vf077xtN867VNO+3vTvti0nzTtw0z7F9O+v7RfLu0zS/uz0r6mtB8o7aNJ+0/Svo203yHtE0j769G+dLSfG+2DRvuH0b5btF8V7fNE+yPRvkK0Hw/tY0P7v9C+KbTfCO3TQftb0L4QtJ8C7UNA3+/Xd+/1vXh9Z13fJ9d3vfU9bH1HWt9f1neL9b1ffSdX35fVd1n1PVN9B1Tfz9R3J/W9Rn3nUN8H1Hf19D06fcdN3z/Td8P0vS19p0rfd9J3kfQ9IX2HR9+v0Xdf9L0UfWdE3+fQdy30PQh9R0HfH9Bn+/W5e30mXp9X12fJ9TlvfQZbn4/WZ5f1uWJ95lefx9VnZfU5Vn3GVJ//1Gcz9VpKn2nU5w31WUB9Tk+fodPn2/TZM30uTJ/Z0uep9FknfQ5JnxHS53f02Rp97kWfM9FnQPSZCH2eQO/f6/1yvT+t94P1/qve79T7i3o/T++f6f0qvT+k92P0/ofeb9D2fW1P1/ZrbS/W9lltD9X2R23v0/Y1bc/S9iNtr9H2EW2P0Ot/vd7W61u9ntTqrteG9mR9/e27ftTnEPS+v95n1/vaeh9Z79vqfVK9L6n3AfW+m97n0vtKeh9H75vofQq9L6Dt8Nrure3M2q6r7ajabqnthNoup+1g2u6k7Tx2u0pD2X+d3kj2P7/TBDQFzUBz0AK0BK1Aa9AGtAXtQHvQAXQEnUBnOXgq6fjc2pqvmPPMiz/uLPGaM13bAv7WvYC/TbfnJa/d0O+NMmudf5tRwN/yC1jn4gL+tsKab9mcVyc0qnvTaRJ/ioqnaWSAvHMD5E0NkDc3QN70AHmjnhcePKUFyHu4yjkrQN45AfIern00K0DeIDHnBcgbxBukTh6umIPso6jnhQdP2QHyBjmOop4XHjzNDpA3P0DeINt7uOpkRoC8/8a6sShA3iBlFWQfBfkejHpeePA0P0De//1GEsqxH6ScD9d36LEB8rYNkDfqeeHB06AAeYN8H0U9Lzx4OlznnCDnySDHb9TzwoOnf2PMQY7fxQHyBvle+N/vdu95WwfIG/W88OApyG/gf+P3b6MAeacEyBvkN3CQ397/+10nlHPOf9tvs2kB8v7dZt3cmqfm5qbn5KWkZc+bn5qXMTMzPSU7JzUNs4XpObkZ2Vkpi3JS589Pz6nuyp9gzbWNP+zdHyrpyGeef1n/ku4VGuWXfflD4te/f/vt+xp+8he3A3Hkd8Zir1fvkZRxfC7n8vuMv3/Q+CsXELO9bxId6aPiaSqm94F0OytaC3TbG1uf8/MyMjPylvTdV1UT/66pI/ZV1PH766l7hSHX/xPjLC/tiDviSOO9TBb3t9cZtjfG8dk5RVxzO001a17K4bfnXt7ffX/Tns33D+44r5Irv072vtHtbG99zshNyc2YlZ6SPnt2epoe+/lZeek5KTnpOOYPOAdYx34tK99hPvaTAx77yQHrfqikI4+P/DGPfXcs4pj3d+Tt70pXVg48Dp1p9Dgq7/hcwfpc1ponOdZl5w9YNkkByyZUWeKXh31uqGL933lumJ+TsTA1L31Q7hjU6KR9FTpxf30e/Xd1dpaR2yGuz+5l8ZbH2gfOdR+C80py0PNKTWte1OcVu67NStefEdm56SlzM7Ly6ltLD/NZY0DAs8aAf8tZ41CfEey/JcfwBtymv88W/o4MSagsB/vtddlnC7v2h2OkddalYo40scpVYiwLScG/gtz7IWrNq3SQdxps6bKkVfWu2SMWnrpl7NqlVa9v8UWFmrvyey789cNs97YkFBB7QWefsjG2x1k+Ac9MA4KemepZ86I+M9nbmZm3/5zU0Pr/f8o5yefxlxDw+It5Top1LBZ0TnLXUZ3s81Bh5yvnOekQ/YJJZvyCqePMIP+UUzGJfyxHXGmrO/JUibO+4lL4uSEcJw7nr333OnSKiqcpFMsTiuGJdR5zltvhPldFrXlRn6uaWZ+zsvMyZi9JSctJx+/aWSlZ+ZmZGbMzcH124EXZ/5MGmaSAp7Kk/5SfV2Udnw9RY03QsimwsSZWg4v9tWxdVA3fVxMT91fE4XY9dEtCrs+hGMttYcBjOSnoscxqabGvfWalz8yfk5KZPSclNScndYnrEJ5spTrMh/CCgIfwgoC/JtrY+Yv5yx/zEHbGYq+3sHYV5+Ge5EiTFCdNsiNNcpw0AxxpBsRJM9CRZmCcNM4HIwbFSTPYkWZwnDRDHGmGxEkz1JFmaJw0wxxphsVJM9yRZnicNCMcaUbESeN8iHxknDSjHGlGxUkz2pFmdJw0YxxpxsRJM9aRZmycNOMcacbFSTPekWZ8nDQTHGkmxEkz0ZFmYpw0kxxpJsVJM9mRZnKcNM4bsVPipJnqSDM1ThrnTaxpcdJMd6SZHidNiiNNSpw0MxxpZsRJk+pIk+pKU9BX/6FqN/V57qtnxxZxLAy5Yivub931Y32Th13LnOsvJYG+B0Ih1/psn3v7nFcydhrb5/5bJEac9t+cZW5/1p9E/Rzp3PvWXl/An50zA+73CkW43yv+G/d72PW3Q7HfY10ha7phjs/2d1bAn/oLivKnfsgRrz257zXpZJeFXU4lY6S3/1bK8TdnWetU2rE8HGNdJVz57PT2bw275cdZH+z8FWL4nfVc4sTtXOYul1Ix0peKkV7LJ8kRs/t+t+kxbF+CuX9DRFzxOPelO35nHXamD8dIr5d4dvlZ99T76wXK0OyDXqdyn1ZCcUKs58qXGCe0CgWs17l+5/J6rmXhGGmd6z4EF5gL7HX7vcC0f1oV9QWmfdU+KyMHdzwzFqanZGTp7U7ba5dDNcd6/FxSVvWX/4BDV1yxONfrvvQVA4c9OfeVe3I2ojrTlnTNQ+b+ULw4QjESV7bmVR3L7PKobc2d+zIvfQ5a/BbkowUmPSvPHW1ph8m02V+nMv7yx9yrpR2fy7iF1jwSI18ozv8TXPOC0oYKWG/ZGH+z12nvDWe89nb8Hy5dORSBGAIA",
|
|
2023
|
-
"debug_symbols": "
|
|
2023
|
+
"debug_symbols": "tVvbbts8DH6XXOdCFEWJ6qsMw9Bt2VCg6IauHfBj2Lv/lCPRTgZxqpXdhLRjfaYonnTwr8Pn08fXrx8enr58+3G4e/fr8PH54fHx4euHx2+f7l8evj3J3V8HV34gHO4Afh8PsFxFuXJy5dtVkH/SmfDhjoTkw12UB6R1lAexPZjOf2W5FxqwlwsqFyxPw/HAcCaCDr/lvybOh5fn06k8t5FPpP5+/3x6ejncPb0+Ph4PP+8fX5eHfny/f1roy/2z/OuOh9PTZ6EC+OXh8VS438e1tes3xehjbY0xoQIg4iiEzwkbhANSCOBhCPahInDgFSBdtMd++xhbJ2KiHe2Taz1I4Ha19629777f6H8Gqu2zhz3tiVv7lHvtud8ewIXWA+HjdhDHzSBuzMBvpBg2RnAATQoX40aIYSmYkppSxLRCQLiAAG9g5KaLjGGPEN5DU4X3aYVAuhwRCDfAIEOfMTcMSGRgxD5GiKlChOw3CDzck+hbfIq4CTB52Cx8gGbePkTsj2m2MNyKsYkR4i5bCG+ZlsPWEXZxNS0Ml3HOgxEoUmxiJN7Eyj8wDPNEauYZYPURT5fK8GjZFuemDHS+jxGskBHXiMG0DwNdkwPQcx/DsM8cNHTSPgRw3q9Rx+iJEUADawQPTJvgl/d0JNG+YU3Q0qBP6LoYaBgopLSGjNw3DfSzQzKIYOjCQhgdVKTpQTXVmVcLz76vTjP65SaFp21SvIp+aOV3R+rxoo682kbMbwBJySmIhMAeiNEZQq30CKnfmWDoFDdyoGOknhw2CHMzEJS6I+4CAUBQEMhph0YwJ02wDlYEgksxLDsVTw2aEhig25doFU7RN88XfmPu430JHlUOMdtuX9hKstSsncXg1jx9mR+DkepRg0cAv44r7erFJoBd9YKsNK+lsCR8BQh+WARcIw/m0BUBLW91ay2dVpMQ5EsMq3JLOhZ+U7ldzSuI5msmivM1E6XZmol4vmaiPF8zmRiDNVOE2QRtIYym14jT6dUclMjNvLzMdfpi0A0UOl2ExunqzzTxzGritM/EB+vH5ObrxzRtniaCS7qeEnchjBp4CtMGbqpzsH60MkHeJAL23USQDNsCn1WMELmPwfOpIOX5VMBuNhUwzKcC9vOpwJRj0F85zPsr06y/Wgij3sZp2ttMZczP1kKABhFCcr3KLZsLqVrNy0Kq2zjbZf2YLdPAENflro3TywTyAsPPO2zGeYfNYdZhM807bI7zDmtiDJYamWedLfO8s8kMYtrbBntilDwmwlCaNy1jsICU/ZH5YZVVmNlxHYWwFBpma0hToYM5CVyeT0qyVTWtUBNiyL5MiGFng/mZkq3TwdxmZSZ0QZe7vPPdzATWhtJoWgFI83kFgGcTC5jbSoOZBayNpdHUYksy6njW1tKw41nbEIOO5/EGXuPnl+9thdzCazytXpOp7zXWBpOsUSddaQ6b/fl4hWGGANLRzal7zsHE8OvIeBe6Zx3A2hQhNbK4PW3Bb5FC3d+7DH0p8J9KAavz+812yJv0CYw3wHDTGKhHLzxS3zbMDSLUnSoIgPswgi6+Qwi3wEg7MdRpZcUj7sXQ/TIJRvN92YtB6woQgZvHwL0YYcWIoYsR0qzX2lKox0E0vMXaYhqSws4JiGtOiP2cYO0ykQsNhNzmiNB1TrAxPCkGxz6GVZ7Suv0Ywy0wcg9jVKfonKFTa4oeNM+K63G/L8naNvMNI6Zt/HkLBmuujrw5l/kmjMxaJDufd2Ekdk4L7QBdDHOzSAKhJgYJJHwLFIB9/cmoOskx7sTQM7OCsW98OYOeU8zUH5sYb6LXeAO9WqtBcfXetDnBerXqCdGsYgi0jJFU0T3WAeaGCetZQeDNTsX1YeS/iBLVg4UPoS+K/7cnKmRQ9bwMbA7VXivW2oaS+QLr1KG/JG1JAeupHe+4L4UZWKNbi5DNFtL4QXMKugtF5A0xjOxPlLVIpbg9p/zH0OZ/PLREa2+2c5jrU618i7NQf0FhXs9uZ/Q7Udb5ZTlStV+WsYNZ1pER1+w14arZUmiNy3GDs11EGoxkiPsHl80vIzQAMLoriPdyef/p4fnyo5byXUpZTfRQuizUV4qVhkqp0lhpqpQrzWeKrtKKhxUPKx5WPKx4WPGw4mHFw4oXXNmHEgqV+kqxLEALDZVSORInNFZaPsIR0whcaS57bMcDuUqhUn9+nrBeh0oLnoR1ipWmEl+FcqX5TCOUMCdU2kdpF0OlVGn51EdiSEyVSvtSaMV8pqnov8yWEjTGNwYbExpDjYmNSY3hxuTKcEPmhswNmRsyN2SmxUqEiY0pyKV0YW5MQS7LsXmxGVFKhmUeL4xvDC5TT2FCY2iZDwoTG5OW2Z0wvEywhMmVkV0k5UC5Al7CHzhULihHypUXlMVRWf1SrryifJQgy92NA6cc1HJHsqVyyzvKh1vLp15nrryjHACB5YOvMp+D8pVX5co70oJX3lGWV2BxqzNX3lGCFBTXqhwuNUbhgnKkXFSuvKO4NBQ3q1xuHDrllncUSXF5R+kHonJBOWpS4fKOIjMm5Vi53Lig/QignFdO3xGWd5Qs+/P++eH+4+OpRJcSgF6fPrVgI5cv/31v/7Rv7L4/f/t0+vz6fCqBafOhnfy+k1VqDyVwwXorH30ot7zeknrD53IL11vpiL7cCn9iLV/YyaPvZLxTfH88/y2KZAEpcfJ/",
|
|
2024
2024
|
"verification_key": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOQAAAAAAAAAAAAAAAAAAAAI/LHBEqHF7jx111AP2WElmYAAAAAAAAAAAAAAAAAAAAAABTpQVE9mblo8HNxspNxwwAAAAAAAAAAAAAAAAAAABL0q6hSL3BE0CRZtArSFUy5AAAAAAAAAAAAAAAAAAAAAAAep9Kv0BEcKolcqeoBv1MAAAAAAAAAAAAAAAAAAAB+eWSjjvnOLTlnA3ugkZWWQwAAAAAAAAAAAAAAAAAAAAAAHFUVzN0jhUZY6TLOakiXAAAAAAAAAAAAAAAAAAAATPSoxWL2vsK6QLXjs2ETS2QAAAAAAAAAAAAAAAAAAAAAABnczMSwD5T2uLl1IUnvmAAAAAAAAAAAAAAAAAAAAAP9Kr3f1R7fQuCL9A+qYEDZAAAAAAAAAAAAAAAAAAAAAAAGtZbyEWDYfzJNIzjtc6kAAAAAAAAAAAAAAAAAAAC/rfRtaNzsu2nHirdAV9KC2gAAAAAAAAAAAAAAAAAAAAAAFgzYEPa5FHdYKTKTNWu5AAAAAAAAAAAAAAAAAAAA3My46MCLFC59E75n4uaXugAAAAAAAAAAAAAAAAAAAAAAABUFLlbrLdXqUpfrW4rhiwAAAAAAAAAAAAAAAAAAAMsD5/qFdRbPIR7xINcj3pg/AAAAAAAAAAAAAAAAAAAAAAAszgAIgns+aiyIW51EJ0MAAAAAAAAAAAAAAAAAAACSv4/KDJNd+lADXMnzm7fz/gAAAAAAAAAAAAAAAAAAAAAAJTc2mzE+zgSEk19e+U+4AAAAAAAAAAAAAAAAAAAAEUXfcpu3nEJStS7Ap+3h0oIAAAAAAAAAAAAAAAAAAAAAAA5aR2lMP6QHaHWJIptYQAAAAAAAAAAAAAAAAAAAAFWPRNWAEdR0fngxY/8uTPpQAAAAAAAAAAAAAAAAAAAAAAAZFv/y+sSg7WcDXOA7Ec4AAAAAAAAAAAAAAAAAAABnqv0JEUy9eowAaCQkRVj0FgAAAAAAAAAAAAAAAAAAAAAALTfkEmPvZA7AdvAMgr8nAAAAAAAAAAAAAAAAAAAAJzF9LwqADNbKcfUoT8KtTa8AAAAAAAAAAAAAAAAAAAAAAA518y3hD5iLVkztpJIXywAAAAAAAAAAAAAAAAAAAB5J8PjTkTM7ZuCKjl4o1N0dAAAAAAAAAAAAAAAAAAAAAAAGAYYZQRXqMgE23QeNvXEAAAAAAAAAAAAAAAAAAACDqQDTFOp4DIDArZuFIzoM8wAAAAAAAAAAAAAAAAAAAAAACWWBWtbJb0b3DJB/sUm/AAAAAAAAAAAAAAAAAAAAzddxH9m3Wxos0sgmUx2zSUoAAAAAAAAAAAAAAAAAAAAAACslai25UE7q+UTCKPoK+AAAAAAAAAAAAAAAAAAAAEUE1v6fYoVpcn3g6jm2wGQXAAAAAAAAAAAAAAAAAAAAAAAQVvfAUYB4bOEz/1rticIAAAAAAAAAAAAAAAAAAABiYLPwljQ+Z1aqxKk12zx4CgAAAAAAAAAAAAAAAAAAAAAAC8Ibf9PqSXH0AljKC6aVAAAAAAAAAAAAAAAAAAAAlOtvrbidSqgPcsb3iA55p1cAAAAAAAAAAAAAAAAAAAAAACylNwk7fg6fBYjSg3S5qwAAAAAAAAAAAAAAAAAAAM9n3yuOA9x0SIm0km8XE0OhAAAAAAAAAAAAAAAAAAAAAAAtOtLiMTc5f2Nf7Rw69JQAAAAAAAAAAAAAAAAAAAAfo5Y+cO5JLP7QrdHUfXn3XwAAAAAAAAAAAAAAAAAAAAAAJ+j8v18Qjtvrf64UQ5lYAAAAAAAAAAAAAAAAAAAA0U53lLo7h3hYkgKbHswZ2MQAAAAAAAAAAAAAAAAAAAAAACnhwi+km3kNaoTH7GVRiwAAAAAAAAAAAAAAAAAAABD+U6OWzKgjALheGInOu3QxAAAAAAAAAAAAAAAAAAAAAAAkILItnEFweLbUieEb33IAAAAAAAAAAAAAAAAAAAC7Zk4B8XS+mJZvsSxACWZ6ZQAAAAAAAAAAAAAAAAAAAAAACKUtfeMQum9i6Eg4EFJyAAAAAAAAAAAAAAAAAAAArfgzVP1oEyzuT4gfleC7l5sAAAAAAAAAAAAAAAAAAAAAAAIdTddtHsQiUjQQAgAPIgAAAAAAAAAAAAAAAAAAAI+jpDaW20ShLwsTToCs4kEXAAAAAAAAAAAAAAAAAAAAAAAnTSk14XsQZiSrB0sKy0MAAAAAAAAAAAAAAAAAAACuNQhOvuO90YU0f/+Hf8ZASwAAAAAAAAAAAAAAAAAAAAAALCHk/UTwlb1Rxu9j2C0/AAAAAAAAAAAAAAAAAAAAwXyCNaxsr3imt8z3x4S/IDgAAAAAAAAAAAAAAAAAAAAAACseyl/iH1KoCwltJLu6WgAAAAAAAAAAAAAAAAAAAJrZb4AiElvJdG5l9/1ckyZHAAAAAAAAAAAAAAAAAAAAAAANW/4pR6OAalgvMPPqU0gAAAAAAAAAAAAAAAAAAADMn4O9tTQCGOoWYQo4vlzuOwAAAAAAAAAAAAAAAAAAAAAAE1OV1kEUru1OWmd9wHcvAAAAAAAAAAAAAAAAAAAAy8TCds3L/gNTFkxsR819OZoAAAAAAAAAAAAAAAAAAAAAAAZpeS+ZrZfQm1rU2qgzoAAAAAAAAAAAAAAAAAAAAIs/LLJYeYJKbHtB8y5qoYC0AAAAAAAAAAAAAAAAAAAAAAAZPivWoQ7tHpuMLKEAmDkAAAAAAAAAAAAAAAAAAACEnziUvf0L8PHxFcNux17llAAAAAAAAAAAAAAAAAAAAAAALO2R1RkkRGtLdogc6zMXAAAAAAAAAAAAAAAAAAAAuw5W21Kzbs/Qk9IKWgFILesAAAAAAAAAAAAAAAAAAAAAABxjZVOGQGAB0NL8iE48cwAAAAAAAAAAAAAAAAAAAHMc8TUmxcYDk8yu2Iy/pTFyAAAAAAAAAAAAAAAAAAAAAAAet4e67uTLo+25VpPY6/cAAAAAAAAAAAAAAAAAAAAI0jnI8JG/rohaURNHlmKboAAAAAAAAAAAAAAAAAAAAAAAGApT4QjvdnJvkHOxehj2AAAAAAAAAAAAAAAAAAAAhlW3zcLSzAb+8ukQiWR/T9MAAAAAAAAAAAAAAAAAAAAAAAp4+gADpfmy7gTBBOXM+gAAAAAAAAAAAAAAAAAAAD9N8tW/VzREp7bswvBQJUVQAAAAAAAAAAAAAAAAAAAAAAAk+OqZENkey8jXMe2N9zIAAAAAAAAAAAAAAAAAAAAYUbuY0GoEG1IjzJdqCdcOzQAAAAAAAAAAAAAAAAAAAAAAHjSySM6esqRz8Xx9nHtJAAAAAAAAAAAAAAAAAAAAOGcEmcTTwy/6SIq8Wb1odjgAAAAAAAAAAAAAAAAAAAAAABtfVd1PnikAPEFgOsUhigAAAAAAAAAAAAAAAAAAAPUl6IOYiFDpf2NSkPmZoV4lAAAAAAAAAAAAAAAAAAAAAAACseJ2l0P6dlMaxFXSKjYAAAAAAAAAAAAAAAAAAAD/133R/2MHzAAeFOeCrb5u3wAAAAAAAAAAAAAAAAAAAAAAAnO8qDaVk3catqjQGjuUAAAAAAAAAAAAAAAAAAAAcfvIeVsUkyT2KPkshYslvkMAAAAAAAAAAAAAAAAAAAAAAAotNAQXU2lrHIN6MWsIgwAAAAAAAAAAAAAAAAAAANhMe5rDtdeqhBMcRUKpRZcuAAAAAAAAAAAAAAAAAAAAAAAoExGmkZWmIw7UnAMaKvsAAAAAAAAAAAAAAAAAAAAyhvjuftgmi0CT/i7Z/o3x6gAAAAAAAAAAAAAAAAAAAAAAAb1of9cb/NGIfm95XtByAAAAAAAAAAAAAAAAAAAAW/ysh/YKbnKdaCBmF4JuR2gAAAAAAAAAAAAAAAAAAAAAACRo7BIZYSaXMmqVA1IG6gAAAAAAAAAAAAAAAAAAAJW12Le0pjsF32UrDRDvFG0mAAAAAAAAAAAAAAAAAAAAAAAJnjvVoKAKt/4YBAEFubMAAAAAAAAAAAAAAAAAAAAhKa86Y39aYioyRA+GDR4qfwAAAAAAAAAAAAAAAAAAAAAAABW40lFdduLM7Jnc0ZRZAAAAAAAAAAAAAAAAAAAAIiuIgQjcJdGqRQ4LS8ISw34AAAAAAAAAAAAAAAAAAAAAABuRdReSC609i8AclZUJKgAAAAAAAAAAAAAAAAAAAEghQcfr5CAAodWMy3Q4H20ZAAAAAAAAAAAAAAAAAAAAAAAwXomSsUju2yLm6ZIHeoQAAAAAAAAAAAAAAAAAAAA47Y2iN1GGtRjHNFxgsRNLLQAAAAAAAAAAAAAAAAAAAAAABh9kSXmW6JFXIlAenjZ5AAAAAAAAAAAAAAAAAAAAKtPXy1l5LhHA0mkfMX/VDm4AAAAAAAAAAAAAAAAAAAAAABuE04M5Mh9AXrr2ovgwhAAAAAAAAAAAAAAAAAAAACjt0afkbIQNnJQ/30VSHGTOAAAAAAAAAAAAAAAAAAAAAAAEPQY7Ewrfs3NCr0XQFVoAAAAAAAAAAAAAAAAAAACTMJUq50xXPRaG2ctKAHM4VAAAAAAAAAAAAAAAAAAAAAAAJhUixAiTMGRq/5ZzYZSUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB5CSh5K3biMYZQfr9HQ78tXgAAAAAAAAAAAAAAAAAAAAAAHBsmcBprgnM6W5XWxmzvAAAAAAAAAAAAAAAAAAAAc4NaQethSCd+YoL2yiUVaHAAAAAAAAAAAAAAAAAAAAAAAAD1qypjppXh5QW4TS66bwAAAAAAAAAAAAAAAAAAAGvMegX/lalrKJQkxfczZw2WAAAAAAAAAAAAAAAAAAAAAAAAxDcm91tv2g3iLODg36sAAAAAAAAAAAAAAAAAAAAdCgnXF47JO614WPluZPC0jQAAAAAAAAAAAAAAAAAAAAAAL5tuC04sAZaN5cMkgqp9AAAAAAAAAAAAAAAAAAAAFLmaKhz1vbFNGPy31tW7G0MAAAAAAAAAAAAAAAAAAAAAABibwBFKqYLGRXSxHbsAPgAAAAAAAAAAAAAAAAAAAIFYESpGMQpiuEn23VYsLIaUAAAAAAAAAAAAAAAAAAAAAAASkF6WwsjbCGXWk491oyQ="
|
|
2025
2025
|
},
|
|
2026
2026
|
{
|
|
@@ -2074,7 +2074,7 @@
|
|
|
2074
2074
|
}
|
|
2075
2075
|
},
|
|
2076
2076
|
"bytecode": "JwACBAEoAAABBIBMJwAABEwnAgIEAScCAwQAHwoAAgADAEscAEtLBS0ISwElAAAARiUAAACRJwIBBEwnAgIEADsOAAIAASgAAEMFAlgsAABEADBkTnLhMaApuFBFtoGBWF0oM+hIeblwkUPh9ZPwAAAAJwBFBAMnAEYBACcARwQAJwBIAQEnAEkEAScASgABJiUAAAg3HgIAAwAeAgAEAB4CAAUBCiIFRAYWCgYHHAoHCAAEKggFBwoiBkYFJAIABQAAAM4nAggEADwGCAEzKgAHAAQABSQCAAUAAADjJQAACF0MIgFDBAoiBEYFJAIABQAAAPolAAAIbycCBAAALQgBBScCBgQEAAgBBgEnAwUEAQAiBQIGLQoGCC0OBAgAIggCCC0OBAgAIggCCC0OBAgrAgAGAAAAAAAAAAACAAAAAAAAAAAtCAEIJwIJBAUACAEJAScDCAQBACIIAgktCgkKLQ4ECgAiCgIKLQ4ECgAiCgIKLQ4ECgAiCgIKLQ4GCi0IAQYAAAECAS0OBQYtCAEFAAABAgEtDggFLQgBCAAAAQIBLQxHCC0IAQkAAAECAS0MRgknAgoECy0IAAstCgYMLQoFDS0KCA4tCgkPLQhKEAAIAAoAJQAACIEtAgAAJwIKBAstCAALLQoGDC0KBQ0tCggOLQoJDy0KBxAACAAKACUAAAiBLQIAACcCCgQLLQgACy0KBgwtCgUNLQoIDi0KCQ8ACAAKACUAAAmALQIAAC0KDAcKKgcEBQoiBUYGJAIABgAAAk0lAAAJ7C8KAAcABRwKBQgEHAoIBgACKgUGCCwCAAUALV4Ji4K6N7Q7maExYRj9INQvUWbJ6fE/teplqW0eCm0EKggFBhwKBgkEHAoJCAACKgYICQQqCQUGHAoGCgEcCgoJABwKCQoBAioGCQssAgAGADAz6iRuUG6Jjpf1cMr/1wTLC7RgMT+3ILKeE55cEAABBCoLBgwcCgwNBBwKDQsAAioMCw0EKg0FDBwKDA0BHAoNBQAcCgUNAQIqDAUOBCoOBgwcCgwOBBwKDgYAHAoGDAUWCg0GHAoFDgUcCgYFBQQqDgwGHAoLDAUWCgoLHAoJDwUcCgsJBQQqDwwLHAoIDAUtCAEIAAABAgEtDg0ILQgBDQAAAQIBLQ4GDS0IARAAAAECAS0OChAtCAEKAAABAgEtDgsKLQgBEQAAAQIBLQ4MER4CABIGDCoSDBMpAgAMBQABUYAkAgATAAADwyMAAAOrBCoPCwMEKgkMBQAqAwUGLQoGAiMAAAPbBCoOBgMEKgUMBgAqAwYFLQoFAiMAAAPbDCoCAQUkAgAFAAAEDSMAAAPtAioCAQUOKgECBiQCAAYAAAQEJQAACf4tCgUDIwAABBsnAgUFAC0KBQMjAAAEGwAqEgMGDioSBgkkAgAJAAAEMiUAAAoQLQxICC0OAg0tDEgQLQ4BCi0OBhEtCAEBJwICBAQACAECAScDAQQBACIBAgItCgIDLQ4EAwAiAwIDLQ4EAwAiAwIDLQ4EAy0IAQIAAAECAS0OAQItCEcFIwAABI4MIgVFASQCAAEAAAfxIwAABKAtCwIDLQgBAicCBQQEAAgBBQEnAwIEAQAiAgIFLQoFBi0OBAYAIgYCBi0OBAYAIgYCBi0OBAYAIgNJBi0LBgUnAgYEAgAqAwYLLQsLCQAiA0ULLQsLBhwKBQsEHAoLAwAtCwgFLQsNCC0LEAstCwoMLQsRChwKCg0AJwIKAAInAg4AICcCEAQRLQgAES0KChItCg4TAAgAEAAlAAAKIi0CAAAtChIPBCoNDw4AKgMODRwKCwMAJwILAEAnAg8EEC0IABAtCgoRLQoLEgAIAA8AJQAACiItAgAALQoRDgQqAw4LACoNCwMcCgwLACcCDABIJwIOBA8tCAAPLQoKEC0KDBEACAAOACUAAAoiLQIAAC0KEA0EKgsNDAAqAwwLHAoFAwAnAgUAaCcCDQQOLQgADi0KCg8tCgUQAAgADQAlAAAKIi0CAAAtCg8MBCoDDAUAKgsFAxwKCAUAJwIIAHAnAgwEDS0IAA0tCgoOLQoIDwAIAAwAJQAACiItAgAALQoOCwQqBQsIACoDCAUtCwIDACIDAgMtDgMCKwIAAwAAAAAAAAAAAwAAAAAAAAAALQgBCCcCCgQFAAgBCgEnAwgEAQAiCAIKLQoKCy0OBAsAIgsCCy0OBAsAIgsCCy0OBAsAIgsCCy0OAwstCAEDAAABAgEtDgIDLQgBAgAAAQIBLQ4IAi0IAQQAAAECAS0MRwQtCAEIAAABAgEtDEYIJwIKBAstCAALLQoDDC0KAg0tCgQOLQoIDy0KBRAACAAKACUAAAiBLQIAACcCCgQLLQgACy0KAwwtCgINLQoEDi0KCA8tCgkQAAgACgAlAAAIgS0CAAAnAgoECy0IAAstCgMMLQoCDS0KBA4tCggPLQoGEAAIAAoAJQAACIEtAgAAJwILBAwtCAAMLQoDDS0KAg4tCgQPLQoIEAAIAAsAJQAACYAtAgAALQoNCi0IAQInAgMEBQAIAQMBJwMCBAEAIgICAy0KAwQtDgUEACIEAgQtDgkEACIEAgQtDgYEACIEAgQtDgoEJwIDBAQtCEcBIwAAB7IMKgEDBCQCAAQAAAfFIwAAB8QmHAoBBAAAKgcEBQAiAgIGACoGAQgtCwgEMAoABAAFACIBSQQtCgQBIwAAB7IcCgUBAAAqBwEDLwoAAwABLQsCAy0CAwMnAAQEBCUAAAsPLQgFBgAiBgIJACoJBQstDgELLQ4GAgAiBUkBLQoBBSMAAASOKAAABAR4TAwAAAQDJAAAAwAACFwqAQABBdrF9da0SjJtPAQCASYqAQABBdUSfSnC0ujtPAQCASYqAQABBV5tPy7czYcJPAQCASYlAAAINy0LBAYKIgZGByQCAAcAAAigJwIIBAA8BggBLQsDBgoiBkUHJAIABwAACRwjAAAIti0LAQctCwIIDCIGRQkkAgAJAAAI0CUAAAtuLQIHAycABAQEJQAACw8tCAUJACIJAgoAKgoGCy0OBQsAIgZJBQ4qBgUHJAIABwAACQclAAAKEC0OCQEtDggCLQ4FAy0MRgQjAAAJfycCBgQHLQgABy0KAQgtCgIJLQoDCi0KBAsACAAGACUAAAuALQIAAC0LAQYtCwIHLQsECC0CBgMnAAQEBCUAAAsPLQgFCQAiCUkKLQ4FCi0OCQEtDgcCLQxJAy0OCAQjAAAJfyYlAAAINy0LBAUKIgVGBiQCAAYAAAmfJwIHBAA8BgcBJwIFBAYtCAAGLQoBBy0KAggtCgMJLQoECgAIAAUAJQAAC4AtAgAALQsBBS0LAgYtCwMHLQ4FAS0OBgItDgcDLQxIBAAiBkkCLQsCASYqAQABBbq7IdeCMxhkPAQCASYqAQABBRu8ZdA/3OrcPAQCASYqAQABBdAH6/TLxmeQPAQCASYlAAAINy0IAQQAAAECAS0MSgQnAgYEAicCBwEBLQgBBScCCAQhAAgBCAEnAwUEAQAiBQIIJwIJBCBDA6oAAgAGAAkABwAILQIIAy0CCQQlAAAMfCcCAgQhJwIGBCAtCEkDIwAACogMKgMCByQCAAcAAAqfIwAACpotCwQBJi0LBAcEKgcHCAIqBgMHDioDBgkkAgAJAAAKvyUAAAn+DCoHBgkkAgAJAAAK0SUAAAtuACIFAgoAKgoHCy0LCwkcCgkHAAQqCAEJBCoHCQoCKEoHCQQqCQgHACoKBwgtDggEACIDSQctCgcDIwAACogtAQMGCgAGAgckAAAHAAALJSMAAAsuLQADBSMAAAttLQABBQAAAQQBAAADBAktAAMKLQAFCwoACgkMJAAADAAAC2gtAQoILQQICwAACgIKAAALAgsjAAALRCcBBQQBJioBAAEF5AhQRQK1jB88BAIBJiUAAAg3LQhHBSMAAAuODCIFRQYkAgAGAAAL9iMAAAugLQsCBS0LBQYAIgYCBi0OBgUtCAEGJwIHBAUACAEHAScDBgQBACIFAgcnAggEBAAiBgIJPw8ABwAJLQsBBS0LAwctCwQILQ4FAS0OBgItDgcDLQ4IBCYtCwMGDCoFBgckAgAHAAAMDCMAAAxuLQsCBwAiBwIJACoJBQotCwoILQsBCQAiCQILACoLBQwtCwwKACoICgstCwQILQIHAycABAQFJQAACw8tCAUKACIKAgwAKgwFDS0OCw0tDgkBLQ4KAi0OBgMtDggEIwAADG4AIgVJBi0KBgUjAAALjicABgQCBgAEBgUtAAQIJwAJBAAOAAUJCiQAAAoAAAzPAgAIAggAAAMJCy0BCwYAAAMICy0BCwcAAAMJCy0EBwsAAAMICy0EBgsAAAkCCSMAAAyPJg==",
|
|
2077
|
-
"debug_symbols": "
|
|
2077
|
+
"debug_symbols": "tZvbbl03Dobfxde50Imi2FcpiiJN3SKA4QRuMsCgyLsPSYnk9gRLteX0Jvk2vfUvkqKOy/777vf7377++evHxz8+/XX3089/3/329PHh4eOfvz58+vD+y8dPj2z9+y7JPxn4v/qO/4e7n5D/7/w5ZwE2ZPkJJoO2foS0YIgFBGgB4YSSikFnGAxZvkwMpRjwl0tiqMXALA0WiH8FBcCAFvRmYBY0C5plVANcQMWgT6gpG8gj2NVa+oKaDOxHzSzNLGAWaAZjQa8GuACLgT1iZAMR7AK0gJrBmNAkqxNwQc4Gq3kryaAZWPNaDaQ5d0FrxaAv0HAUmsFY0O3L3b6M2cAsw5prOAq0gKrBejqkbAAG68uQm4FZCjevSWAskLKZ0BdI70xoBvZlsOZglm7NJZxaGCScCWaRCp/AblTuJiB2tXGrnpKBWHg49CwW/nJvuAD4Ea0K4AJ5aGsCYuEB0qUkWhfABcMsUrSNK7NL0TZ+OhZaUNmxRgK0QEKGJMAWYH9QehCKAC3oZpEhA+wPypCBJiAW9gcl5AliYTeQrJXUoVhGqgZmyWJBgTGdHzLM1SLDXKGaRcoPOIoh5VebQF8A2QAMaIE4P2EsQGsuqVMY1nxYc0oG1pxWc5IoJnDzzhmjzIJdLJL5LhNakt7tXUi6d5HbpCgnieMdlbpRd5vke5IkfNEwkg5f5G3F70XcArPSWJTF9UVuy27LbpNOWNSNanYCIxk4i5qTq4Ary1DBIiRlglVJvie5ylKmi3CRLgSL3JbdlruRTFuLwImMpNwXydNIqFUnNJIBt8ht0guLupEsaiMrgZFMXX0oNadhJLEt6ouqTAEDlERF6qBKlSxyW3GbzMmLhpEMi0Vo1NwmI2OSzMwDlURZPZDlepAS2ygJSWyLwkZGsiIuQiOJbZHZmszNi0RFMtQkNipKYpPe1+WGmhIYVbdJvy0aRhLbIjQCt8nomSSxESiJsuSgaWyoJDbJgS45i8JGRrLqLMJFIDW5yG2ykC4SFckpSGw8AyjKdihJFqCqtSiCYwurDCHD4SghGqJjD6tU50LdcyXdl6E+QhICQ63qme68FpKjxMozguzedLe1cDiW+EIJaw1rDat0k2F3lGnOEBznrnFiPLiTI8oj0lBEx1ECuyOlQAgkQ0w1cDjmEuhiWHKg+qsbWO3ChS1wOM7gJ3ZHiGYQzYAce1h7iGnwC9Fx5MDwbIQYRTPyZiOVwLDmHOj+jpICW6B7piuyYTRr0ay5ZyOCHzP4okiOvQaiI+ZACIxmI8RGWCnEZvB6ukg5sDvmsOawlrDOnp9IjrPnJw7HVgPjwTp41wlH8yBzEE1/pbiIVIwUxaqHl5RaYFhloebFTVGtWVBHYamK4k5pguqO7NkZ9bt6ptIFWb+qy5ySzCSL3CbJX9SNhtuk7BbRoqxDUs9HWYdk0aMb5UAyLDO6icNRx2HR850OM9liF13ADYejRjdRJ5aF8uAqSSk6sSwERwyrHkoXkuMI69CnSbKL1tRCt1YtpIlaSAshkByLK+iqzSu2Ijq2HAiB5Ag1MJr1EOthxRDDEMMQGyrWFNGRSqBbdT037I7Ze6jlFug91PSwPnGGKfXXZphdsTvqtLCQHHVaqKg4HLEEdkdd4Ra2wGhGIUZu1fXc0MUgp8AWGM1KNCvRbBbtUARHLXs513BJ1sDhqGUvRzNGdCxh1UdMlB24YVhbWFtYIay6uiwcjhiPIG0mQw81YjkOMpJbtX7lbMgoCnKqK6gzz8Kwqg8T1YeFYVV3Fur9j9SkHigNw6qVKudMRn0E6C2NWruiWvWmRvMrx8Oix8sZhR4wDdGQQHtTYiMto6ZWLaOFLZAc9cFyQmfEhbybL4FhzWHNYS1hLWHVTMpdACM6zo6dCIHkCNEMotmcFEhRY6uCM6CJYwVU0wxoolvzDGiiKjRBneUWhlX3CnIhwQiB5Aq1BsYjWlh1uZwI8WAIa8+BEBiPwBAbU+Hbt3d3dmv565en+3u5tLy5xuTLzc/vn+4fv9z99Pj14eHd3X/eP3zVL/31+f2j/v/l/RP/lEXvH3/n/1nwj48P90Lf3kXrdN2UJ1darXnuJBfg/cAziXwtwXs1OTGqhuzb0EXwuRvlWqPyFSgsDWbMVxq7UEY2N/hAmy9DaRuJMsg1CuURbtRnGvAD0tH/3XR0BHODjyXVFSA/UxibbLQs90WrOHjLeJUN2mSDpy7PBiH2q0hy2qWjy45ypaPXy5RugykpKp3Xsatg8q5Mm/VK431rpPSoT0a56pO8KVHsdSncJrOVF7swssXQR2uXLmyqE4d3KVJplz2Km0TW3kyDmY4K/DaSka8i2SkQWFnxEbwcKPBx3XxAHvZXCmUzfUKRc6dKwG1Z8nHuucamLnWfMUs7RRi8x36uUDeBxDDlwzuERns+OsqmNKtnkycOVyjQnits5k45jPn0e7MafafRd/m0Yc673TMFuYSbVXGTiVfFUWJVrTc98ioNzN6puItkV1u5g9cWlsvaqtvlfRRfzuhmh0BHoySny3FW624JcC/4xWW79KJu6hMg+UiDm+n7O41Nr8hu1NZEZoCriavulvdUYvZL/Pr2UmQ3hUIPT/h+9VpkmxLfZwDQuE4J7VbWmH1ajwLh98qv0IiBz68+TzWSa7R+pgFeZnwsPvSjJ89Hv1lhX6kBrgHjUGP4XrYTnmlgRp+E2jjViInsZoF7nUbEgnTox8jet6PlUw2v03Ez+F+nMXxXzVfBZxqUq5912rGG54PgcLxQjBc6HC+8o4+zzjjLaW3J8sGvF8/GXIWcfD5t6Vpjt0zVlmNbWy/nU9jOQRQTWU/pcm/ct0em2NsyY7pcHbbRYPesbhbdvjsy1eKrVH2W1fFco+4OkeQjht8fXGvs/ABA711MRxoNfdTxHW8/0xi+4vKL3HKpse2XWHFrw+tVu2/Ow/wG2oqs9QLXGvQDNkO4q9SUc2yG+DXToYgfzYX7mUipKbZl9VLkH3JSbnJyPfBwd5KKE3Yd46bQBr1Cg7xIqKRrjc1GNev96dz7536jQf+nsdmnDp/MKMG1wtge9P2MjZcK+2KH5gM3Xe/8R9pNQj7o+CKrnC0PLaq0wfWgG5sJhF+amB8dKF1rbPyI+TSnm3mdX1c9l2jb+SP7/FGvd2R7jeY3Bh3SocbNPAbtTAMahgYc+oElSuzQD0zDNXI/9SPHGpXenA8s+TCWGrEgHWqMWG/p2I+IheDt+aDDfhmxdxjtsD6GXxvwNuLYD6/T0fOb8zF6OfQD7YqMz/6H9UHFc0o1n/oxQqO/OR9Ur0/auyk5p1hq+ZXo5ZycE7z9Fjen/tZr3Jzw7fe4+strb7vI3Uu86CZ3H8oLr3L3Ii+8y92u+7Hg9l7wct3PeXuNWrvvCkvdvI7L++2pb2MGXu8f/skV72BmyNeu7IqVX7z7OZe5Hqqg31AzNzhVKelHqPhswgz9VMVvIUXl8nY4794f8Em51Tg1j3Z4rIprBL7tPj2b9fwDRF527553L2ZefPGetqtw3ALA7YuZlyrk7GdV+WuGyyllK9H9zU4ecCRRfYZlPPMCfNBkXkfPJDq5xKCzQPy3A+TPF84kYgWvcBTIS9eJnRe9ezo7ngWCaIM+I5UjCYp0UjmSQD8bYusnAuRnbYKzPCT/rRPeMG32Dy3/myOdkg0xKmeJ8GFOCG/M5JkAn2ubX+HczDR5vFgh+/GJL2HLlUJum11YLjFASy9HXvglMiMdKfgvmOGpD+i5zCOdKBTfSTLiWRQUCuOtCvnIh+KjE0tNb+2Lm+Pja3yIX2wocBaF7yW+q4df+NP7Dx+fnv1p+zfRevr4/reH+/Xxj6+PH25++uW/n+0n9qfxn58+fbj//evTvSjF38fzPz/Lyglj/PLuLvOnzsOn9yaf5IeN94atdPmY9SPyR/rlm7j2Pw=="
|
|
2078
2078
|
},
|
|
2079
2079
|
{
|
|
2080
2080
|
"name": "update",
|
|
@@ -2134,7 +2134,7 @@
|
|
|
2134
2134
|
}
|
|
2135
2135
|
},
|
|
2136
2136
|
"bytecode": "JwACBAEoAAABBIBNJwAABE0nAgIEAScCAwQAHwoAAgADAEwtCEwBJQAAAEElAAAArycCAQRNJwICBAA7DgACAAEnAEMAAywAAEQAAAAAAA6S+filNOhY/Pd32iBuCLDGIOz53rIdE0eYE/YsAABFADBkTnLhMaApuFBFtoGBWF0oM+hIeblwkUPh9ZPwAAAAJwBGBAMnAEcBACcASAQAJwBJAQEnAEoEAScASwABJiUAAAh9HgIAAwAeAgAEAB4CAAUBCiIFRQYWCgYHHAoHCAAEKggFBwoiBkcFJAIABQAAAOwnAggEADwGCAEzKgAHAAQABSQCAAUAAAEBJQAACKMzIgABAEMABCQCAAQAAAEWJQAACLUnAgQAAC0IAQUnAgYEBAAIAQYBJwMFBAEAIgUCBi0KBggtDgQIACIIAggtDgQIACIIAggtDgQIKwIABgAAAAAAAAAAAgAAAAAAAAAALQgBCCcCCQQFAAgBCQEnAwgEAQAiCAIJLQoJCi0OBAoAIgoCCi0OBAoAIgoCCi0OBAoAIgoCCi0OBgotCAEGAAABAgEtDgUGLQgBBQAAAQIBLQ4IBS0IAQgAAAECAS0MSAgtCAEJAAABAgEtDEcJJwIKBAstCAALLQoGDC0KBQ0tCggOLQoJDy0ISxAACAAKACUAAAjHLQIAACcCCgQLLQgACy0KBgwtCgUNLQoIDi0KCQ8tCgcQAAgACgAlAAAIxy0CAAAnAgsEDC0IAAwtCgYNLQoFDi0KCA8tCgkQAAgACwAlAAAJxi0CAAAtCg0KCioKBAUKIgVHBiQCAAYAAAJpJQAACjItCAEFJwIGBAQACAEGAScDBQQBACIFAgYtCgYILQ4ECAAiCAIILQ4ECAAiCAIILQ4ECC0IAQYAAAECAS0OBQYtCEgCIwAAArEMIgJGAyQCAAMAAAg3IwAAAsMtCwYDLQgBBScCBgQEAAgBBgEnAwUEAQAiBQIGLQoGCC0OBAgAIggCCC0OBAgAIggCCC0OBAgAIgNKCC0LCAYnAggEAgAqAwgLLQsLCQAiA0YLLQsLCBwKBgsEHAoLAwAcCgMGBS0IAQMAAAECAS0OCQMtCAELAAABAgEtDgYLLwoACgAMHAoMDgQcCg4NAAIqDA0OLAIADAAtXgmLgro3tDuZoTFhGP0g1C9RZsnp8T+16mWpbR4KbQQqDgwNHAoNDwQcCg8OAAIqDQ4PBCoPDA0cCg0QARwKEA8AHAoPEAECKg0PESwCAA0AMDPqJG5QbomOl/Vwyv/XBMsLtGAxP7cgsp4TnlwQAAEEKhENEhwKEhMEHAoTEQACKhIREwQqEwwSHAoSEwEcChMMABwKDBMBAioSDBQEKhQNEhwKEhQEHAoUDQAcCg0SBRYKEw0cCgwTBRwKDRQFBCoTEg0cChESBRYKEBEcCg8QBRwKERUFBCoQEhEcCg4SBR4CABYGDCoWEhcpAgASBQABUYAkAgAXAAAEdyMAAARfBCoQERMEKhUSEAAqExASLQoSAiMAAASPBCoTDRAEKhQSEwAqEBMSLQoSAiMAAASPACoWAhIOKhYSEyQCABMAAASmJQAACkQMKhYGAhYKAgYcCgITABwKBgIABCoTCQYEKgIICQAqBgkCLQ4CAy0OEgscChIGACcCCAACJwIJACAnAhMEFC0IABQtCggVLQoJFgAIABMAJQAAClYtAgAALQoVEgQqDhIJACoGCQ4nAgYAQCcCEgQTLQgAEy0KCBQtCgYVAAgAEgAlAAAKVi0CAAAtChQJBCoPCQYAKg4GCRwKEQYAJwIOAEgnAhEEEi0IABItCggTLQoOFAAIABEAJQAAClYtAgAALQoTDwQqBg8OACoJDgYnAgkAaCcCDwQRLQgAES0KCBItCgkTAAgADwAlAAAKVi0CAAAtChIOBCoMDgkAKgYJDBwKDQYAJwIJAHAnAg4EES0IABEtCggSLQoJEwAIAA4AJQAAClYtAgAALQoSDQQqBg0IACoMCAYtCwUIACIIAggtDggFKwIACAAAAAAAAAAAAwAAAAAAAAAALQgBCScCDAQFAAgBDAEnAwkEAQAiCQIMLQoMDS0OBA0AIg0CDS0OBA0AIg0CDS0OBA0AIg0CDS0OCA0tCAEEAAABAgEtDgUELQgBBQAAAQIBLQ4JBS0IAQgAAAECAS0MSAgtCAEJAAABAgEtDEcJJwIMBBEtCAARLQoEEi0KBRMtCggULQoJFS0KBhYACAAMACUAAAjHLQIAACcCDAQRLQgAES0KBBItCgUTLQoIFC0KCRUtCgIWAAgADAAlAAAIxy0CAAAnAgwEES0IABEtCgQSLQoFEy0KCBQtCgkVLQoBFgAIAAwAJQAACMctAgAAJwINBBEtCAARLQoEEi0KBRMtCggULQoJFQAIAA0AJQAACcYtAgAALQoSDC0IAQQnAgUEBQAIAQUBJwMEBAEAIgQCBS0KBQgtDgYIACIIAggtDgIIACIIAggtDgEIACIIAggtDgwIJwICBAQtCEgQIwAAB2QMKhACBSQCAAUAAAgLIwAAB3YtCwMCLQsLAxwKAwQAJwIFBAUnAggEAwAqBQgGLQgBAwAIAQYBJwMDBAEAIgMCBi0OBQYAIgYCBi0OBQYnAgYEAwAqAwYFLQoFBi0MRAYAIgYCBi0OBwYAIgYCBi0OAgYAIgYCBi0OAQYAIgYCBi0OBAYnAgEEBQAiAwIFLQsFBS0KBQQnAgYEAwAqAwYCNw4ABAACJhwKEAUAACoKBQYAIgQCCAAqCBAJLQsJBTAKAAUABgAiEEoFLQoFECMAAAdkHAoCAwAAKgoDBS8KAAUAAy0LBgUtAgUDJwAEBAQlAAALQy0IBQgAIggCCQAqCQILLQ4DCy0OCAYAIgJKAy0KAwIjAAACsSgAAAQEeE0MAAAEAyQAAAMAAAiiKgEAAQXaxfXWtEoybTwEAgEmKgEAAQXVEn0pwtLo7TwEAgEmKgEAAQWuko9rqY6SjDwEAgEmJQAACH0tCwQGCiIGRwckAgAHAAAI5icCCAQAPAYIAS0LAwYKIgZGByQCAAcAAAliIwAACPwtCwEHLQsCCAwiBkYJJAIACQAACRYlAAALoi0CBwMnAAQEBCUAAAtDLQgFCQAiCQIKACoKBgstDgULACIGSgUOKgYFByQCAAcAAAlNJQAACkQtDgkBLQ4IAi0OBQMtDEcEIwAACcUnAgYEBy0IAActCgEILQoCCS0KAwotCgQLAAgABgAlAAALtC0CAAAtCwEGLQsCBy0LBAgtAgYDJwAEBAQlAAALQy0IBQkAIglKCi0OBQotDgkBLQ4HAi0MSgMtDggEIwAACcUmJQAACH0tCwQFCiIFRwYkAgAGAAAJ5ScCBwQAPAYHAScCBQQGLQgABi0KAQctCgIILQoDCS0KBAoACAAFACUAAAu0LQIAAC0LAQUtCwIGLQsDBy0OBQEtDgYCLQ4HAy0MSQQAIgZKAi0LAgEmKgEAAQW6uyHXgjMYZDwEAgEmKgEAAQXQB+v0y8ZnkDwEAgEmJQAACH0tCAEEAAABAgEtDEsEJwIGBAInAgcBAS0IAQUnAggEIQAIAQgBJwMFBAEAIgUCCCcCCQQgQwOqAAIABgAJAAcACC0CCAMtAgkEJQAADLAnAgIEIScCBgQgLQhKAyMAAAq8DCoDAgckAgAHAAAK0yMAAArOLQsEASYtCwQHBCoHBwgCKgYDBw4qAwYJJAIACQAACvMlAAANBAwqBwYJJAIACQAACwUlAAALogAiBQIKACoKBwstCwsJHAoJBwAEKggBCQQqBwkKAihLBwkEKgkIBwAqCgcILQ4IBAAiA0oHLQoHAyMAAAq8LQEDBgoABgIHJAAABwAAC1kjAAALYi0AAwUjAAALoS0AAQUAAAEEAQAAAwQJLQADCi0ABQsKAAoJDCQAAAwAAAucLQEKCC0ECAsAAAoCCgAACwILIwAAC3gnAQUEASYqAQABBeQIUEUCtYwfPAQCASYlAAAIfS0ISAUjAAALwgwiBUYGJAIABgAADCojAAAL1C0LAgUtCwUGACIGAgYtDgYFLQgBBicCBwQFAAgBBwEnAwYEAQAiBQIHJwIIBAQAIgYCCT8PAAcACS0LAQUtCwMHLQsECC0OBQEtDgYCLQ4HAy0OCAQmLQsDBgwqBQYHJAIABwAADEAjAAAMoi0LAgcAIgcCCQAqCQUKLQsKCC0LAQkAIgkCCwAqCwUMLQsMCgAqCAoLLQsECC0CBwMnAAQEBSUAAAtDLQgFCgAiCgIMACoMBQ0tDgsNLQ4JAS0OCgItDgYDLQ4IBCMAAAyiACIFSgYtCgYFIwAAC8InAAYEAgYABAYFLQAECCcACQQADgAFCQokAAAKAAANAwIACAIIAAADCQstAQsGAAADCAstAQsHAAADCQstBAcLAAADCAstBAYLAAAJAgkjAAAMwyYqAQABBRu8ZdA/3OrcPAQCASY=",
|
|
2137
|
-
"debug_symbols": "
|
|
2137
|
+
"debug_symbols": "tZzdbh43Dobvxcc5GEqiKPZWiqJwU7cwYDiBmyywKHLvS1ISOXYwWltOTurH/L55R6Qo6s/Nvzd/3v3x9e/f7x//+vTPzS+//nvzx9P9w8P9378/fPp4++X+06NY/7059D/Q5Ef+ID/x5heSnyy/AyiIAeSTdBwTSv8oHTwA1IIKPCDRgJwmVIEmUPTLLIBpgnw5JYEq70r6CsoTmjTrEGh5Ag3gNGFY8pEmTAvABByQjgllAg/I+gpxJ2OZ0AbU+VGdFpoWmpaWJtQBDBOwQ9EYdigTeACoy6xAA1KaUAfkYwJO4AFlPl7aAJyP43y8wgRtjwS80DGhTGgDzB2DOoDnl3l+mbkDHmXCeBzVnQ40IMEEnDAfz/PLeX65pAnTgvp4VqgD6jGhTGgDKE2YX27z8TYtPB83d1CBO9RjWCqkCdKMIklS1YsOdUCeljwtZVoKTuABmlod2gBNrQ7zFTQfpynY9HFJEtLELhIN0sQuRQEHaGJ3mJY8LdktPECzpUMboNnSgQZotpSmUAdotnTAAW1aWpnAA1hegYdC69AOtYCCdpMUmWbhNaABliQGOEC96CCvwCpQxIJNAQegWlhBLFXfpcWhgyhXeSlrceigFokh69trVlCLuMw64jpMi5avigpqkbezjpQO4mmVhrH63kEt0h7WjKqsIBaSZsChKTXIbVo2CYzUlpS0LFE24knqORUjf1Z7sNu0Czuh2zS7CJU0varZNL+6TUfHILfpcKdqpDZW0iA2bR/os03bB/rsILfpnNFJx1RDI3QaGQE2cQxyG7gN3KYxaMWoTdKOaGwk72WNQdIiMcht6DatE520UAwqTjyJ3Ka1r5NGg8FIldU3m284G9Egm3EG1UlwOBUnnpTcpr51Ut+4GKmyRi2bb9VIbTolZ/Otk9t0lA5CJ55kvnVym86kg1RFI57NNzbSifvQIBR1bmJYtfJMxEB2VA8nhlVL/EQT0+iWYq9IhmbVeNjMJXltSI41rFqRBmpNmlgC2bGFtTVHNjE0tFdoqNE8tlUPan8ONI8Hqseg7UVbz3QsR2B8AcOKYa1hrSWwOerCYiI5thQYL2YItFcchjyx9qVax+YIKZAcEwS6WM1HYIjlECs50MS0C6t14cDq2J3vWAKbI8VjFI81CAwrh1h3viNPpCMHessIIBAD47FUAsOaQyx7e6mkQG8Z4REYYhiP1XisRsvCeerOa6ZSd74jBrIj50Ca2A4IdLEGYQUMNDEtCS3lwOaYw5rDWsLae94QIbA69p7viIHxYhu8HW1s6sYAWGtpq0bFSVugmwNga20qhs0xhzWH1bpqIDliWDGsWlQnVkcrNQPRsYXVSs3AeDFHc3i+QjZTKbA6AgSiYzoC7RXVkB1zWLvHht3jjuSIYUVTIEUbjqkZmlX3ZYd1ysCw6gQC2TaAloa2CQMbbbpSF9Q26NI6AZjVtoaWZVm9AO23Yl9NNEknwUFus4V0pzoJ3aZVdRAP6nvKXA01rLpyTMn6cyA7mncDm6NV2qyRyH3Hy4YlsDl27wyteg7UF+u6PWWrngPRsYTVNsMD2RHDalVD1/7JNqETw2qloqOVioEYyI7sCn1yt5j1yb2j5d9ADGRHG3ED47EcYjmsJcRKiJUQQxPLhuRoxXFgWAkCq2PzHurz/EDvoT7PG2J3U/Ovz+gFDaujja2B7GjVpFTD5mhja2B1tMI/sATGYzXEalgpxCjEWoi1EGvxGMdj7I9VS9pChuhoVRnREB2tKg+0Ixz7rg2RjhRWGyIdrQAMDCuHld3aJ+GOFuqOVtEG+itsMwq6oUu25wTd0iWynu9WK7u6rUu28wTdz6U+LXbksFobDG3jOTGs1pyONnh1TyhYHXNYbfDqXjHZ7hN0R5Vs/wm6O0y2AwXdFibbg4LuB1Of9cyLPusN5IH5AOusZmdX1rFm7cOpY3Xsw6mjiYEhO1rKDQxrDWsNK4WVwmqRRDtBs6rRsXdsR5oItsAYiIH+GNihoPkGNmVjUjSHOvYyyIboiGHtY6ijKWRFG0MDw2pjCIshOTaPGbR4Bccr+GTlif2Ec2BYrdoPJMcEgS6Wclf49u3DzTxs/f3L092dnrWeTl/lTPbz7dPd45ebXx6/Pjx8uPnP7cNX+9I/n28f7eeX2yf5VCJ69/in/BTBv+4f7pS+fYinj+tHdQYYT0utZxcAwGcScC2ha8g2NISJXISeNyNda2QphDg0hAmuNFauNJjNkO04XLpSFhKpsWskWUxGM/IzDfwB4ag/NxxYtXyZBMp+yRUQnim0RTSKlbKRHLIyvooGL6LBFNFgOrXjhSdwrMJR9QZghKPmy5AunZHR6s7Iou/KGVilaZm9UmSVHCHd6pOGV30CixQlnWhM4RzMkl7dBPJRglTosgmL7KTmXUqcymWP0iKQuZapIcxbCX72pMGVJyuFVmd/Yjul9wuFdLw7Fgl+cizCk3oAbcRCzn3mNFJlw3wZi0VqyiWOZ/d5gKncM41V9dRD/D5Ij2hEphetWGVnFBzJihhjuTwf52mVnph8nMcgk9X8c4VVuQEGn0hO8+p3GryK5yxYmI89BT3KHX2Ke36kWB/kU4+8SYPAO5VWnqxyC2KoyrbgMrdyWc3MLfnEzKe1Dm+NknRdPfMiP2X/6NHA0i5bkRf5WeoxmyE7YrzWWPSKLt3n7C6MeFV2Mq9EwIuwMm+K+LyqXPdEUj5cRA5BLkXWMUmnmNBxJaIHDJciMSXk1qIdstJ+gwbPJJHrl+NaY1VK7Tyjp7vsi0ODX2gskrXxjCkfeK2wSNXaZh2Uc/ZLhXWy4/RDLnTqZbKX5TLU5xVZhZ4mloxv0UDXaMelxnrwk5dTmagvfcHFIlQOknyaxXQdD8w/YPBjWQ65WLjIEcXlshxxNdXWaImsj69FliHxrkHk65qKtNogxNKjVL7s3rVGzPqY067GEfND3dNAn+n0JHBPox4ej1rKrga6BrZNjeZb8sq0p0FAvgIpbVcjVjGn1e3bNMIX4s12NPC+bQV2NTxP22nwv02j+eFA47ynwZD9yKZsa3g8pMpvasR44c3xIgcTcWTT9mIqlz8zHrmkvTGXEXwdhGVzmqo5xtxp6fCyntKyBnEUMlmvXm5rabUgky6Nk5/FgmztDXvvElxPmO1YTf7s2S7XqKeotte3o7XI9kU7lhocuwfGcu3LYvJvpc2OaeW0D5Lse66x3EtRHOtBudRY+SILD89UOK6zrC005O5qxqMiLzQWmRpdq3+JF9tT2d89k1jkacEyJ5giF3KXg26pUYufOlQ8NjVOG0PcbMfJl7qYHJYadDRfs0Pd9IXANdLxbl8owaYvOXwh3tTwoV+It9sRvjC+Px682S/NV/2l4a6GT9qlVXi3L62mzXb4fkyW7pt9y8n7ljPstqOFRn13PDhfL5RXpRCOODM4ar2shXDQ+09g4WjvPYKFg99/Bguru6fXHcKuJV51Crt25ZXHsGuRV57DLufb6ocPtSa6nG8BVnt+OZ7z4y39I6XLK6TVNVSOO4/c6Hre/n9N8Q4WRrhuyipZ9c9mfSlTIW9c4cjVYPHIlssLGFjdRpWSfdQUvDxKgdV1VEqxJ0unsGZ8EdaUViKMka+n5TIfm97U6yRZa3jOl/OpzncaqxzJzVdmwpQ3c4Sy5ytQwV2VdPwIFZ8rhLHuqvgRkapc51teXe7LNbRveuUit2ye/lM9HUXuXiH49fx7RF53KAqrq6pXn4oeyzUWxjrtfGX2WgUAv1KRy4R2OWEsJarfuUHDLYns86fgXivQBw3g6druTRKVXaLxniP+Fyj6P/jsScT6LOOWI69dBaxaUauHs9KeI0Rz0ANx2pLgCCenLQnyuk6l7giwX1wy7sXh8L9skgX3YnWIP3Wk8zGHGKe9QPgwZ8J3RnJPQE4cit80nioNtFcrgK98CE63Ny8U7E9ULvszxQBNNW21Aslbgbyl4H/ESLttII8lnK4636CQfJ8gSHtecCi09yrAVhuSj05K+XhvX5wOB97SBl82UsI9L3wt8V0+/Ca/3X68f3r2rz58U62n+9s/Hu7Gr399ffx4+vTLfz/PT+a/GvH56dPHuz+/Pt2pUvzTEfKfX2WB9wE5//bhBuS3Khv7Wll/0w+LbL9KLvqrflrE2ZLpt2/atP8B"
|
|
2138
2138
|
},
|
|
2139
2139
|
{
|
|
2140
2140
|
"name": "process_message",
|
|
@@ -2385,7 +2385,7 @@
|
|
|
2385
2385
|
}
|
|
2386
2386
|
},
|
|
2387
2387
|
"bytecode": "H4sIAAAAAAAA/+29C5hlV1UuOlft3dW1q6prd/W7q1+7+pFn58lDRFBCEtKBBEJoEvKCvIomIUl3+pF+pbvTkAb0iEfIuR4RrhyvcvEK6FG4KveqICpe5XB8HR8XUURFkaMSBDxeLsphwhpdf/31r7nXWnvs7g2p+X3de9WaY/5jzDHHHPO55szCN0M7/92zd/c9M/v2verBr/93166Zl3/9VZZHNfPfxflvfD8Z5gaj7YRSIatAOzdRBR5Z6D+PodB/Ho3Qfx7N0H8ei0L/eQyH/vNYHPrPYyT0n0cr9J/HaOg/j7HQfx7jof88loT+85gI/efRDv3nsTRU51GHz2Q4M3yWlaf9BvbzxLsq/JaH/pfRitB/HitD/3msCv3nsTr0n8ea0H8ea0P/eUyF/vNYF/rPY33oP48Nof88Nob+89gU+s+jE/rPYzr0n8fm0H8eW0L/eWwN/eexLfSfxzmh/zzODf3ncV7oP4/zQ/95XBD6z+PC0H8e20P/eVwU+s/j4tB/HpeE/vO4NPSfx2Wh/zwuD/3n8bTQfx5PD/3n8YzQfx7PDP3n8R2h/zyeFfrP4ztD/3k8O/Sfx3eF/vN4Tug/j+eG/vP47tB/Ht8T+s/jeaH/PK4I/efx/NB/HleG/vO4KvSfx9Wh/zxeEPrP45rQfx47Qv95XBv6z+OFof88XhT6z+O60H8e14f+83hx6D+Pl4T+87gh9J/HS0P/edwYqvOow+dl4czw2RnODJ+Xhxp8biKGcUND3HAQNwTEBfu4oB4XvOOCdFwwjgu6ccE1LojGBcu4oBgX/OKCXFwsiwtZcXEpLv7ExZm4eBIXN+LiQ1wciJP3cXI9Tn7Hyek4eWyTu9Nf/xcnL+PkYpz8i5NzcfIsTm7Fyac4ORQnb+LkSpz8iJMTcfIgDu7j4DsOjuPgNQ4u4+AvDs7i4CkObuLgIw4OYuc9dq5j5zd2TmPnMXbunvf1f7FzFDsvsXMRG//YOMfGMzZusfGJjUN03tG5RucXnVN0HrFyx8oXK0c03mhYsdBfHoqDFW7B/psf2/TN1yN59BAkq7AfJBshdtXSP/apEQaslD58I31MM1Iv/U2WvlUv/TfMN4bvhfQoi+E28t8fgbQ/QjyN5pNA80miMXnr6Tt8b4/5nRwPc/NoGAFkG62HvQzzZKFB7xC/FXoq+ywjPOPH+bO6MQ40xi+juKaQ0+IWQZzpP7q+C4COy3aE4kyWGH6E4hoQ9/b818oE5aqgo3f0aC/P66O9XPGtaC9NivOwF8RgezGMGD5JccMQ92cUtxji/hx4PwOeH82fe/RJp314zTboG10C5o9YJq+FBv3GYHoy3Y8IeotrQRzqPoZReN8QWIspndE/Pf+dyH+xbCx9W/AfJv5KbmWbmcBqiHdGH/VzEchsmFcCbccevrTvj//3j735/b/+k/vf/a4fmvzEkreNbR89cerU59f94/ofefLUj1vaq0CWLJQu72FLf7Xi/d2/0Lj1NT/7ld1j17z+Zw5+4v998YEl6+/6yKY3vevW33jLpr971Rss7QtU2s9+/9tPtH/mrf+pc+HHvzx8zb//+1d98dpFz/rExx9d+2uv++rfPfmEpb1Gpf39W7/6Zx9oP3Hk0Js/ePRZ5y2/671P/PEXPvebH/vp9hc//b6H//gZlnYH5LlOP+vaeumXWvoXQvoqe3It/YvqpT8t/3X10g9Z+uvhZcceTv7ET/7ZFW/++KV/9dXR77v+rscPPe3f/cHN/3Bkzbu3feb+961/76SlfbFK+5f7r3zL/tUPPvMfRn7nzZf92LoNn/rSuz/wt/98eOZZf/+3n/356S9a2peItGsuP/c79/zw76745Hmb//R5H37vxf9h7Ze2PueTv7jjx578ym/9S5jV2Q2Q5wpldjrPL62Xvmnpb6yXvmHpXwYvO+k0p5tiS7uzHu/T6V9enreFRZb2Jp02e/3mff+x9ebs+o+87qIPjI9+5O+ueOfzr/z4xx7/vk3t977T0t4s0l7wnNaT7/q+46fCX7z7v//AP1/wS8+7aHLjFZMX/7e3/9G6h/betvZJS/sKYxQq5Xm9pb8F0pPsyWDpbw3zZS+b9rZ6vE/X79ur8z6d9o7qaU/XkVcaWKik89O28qp66VuW/s566Uct/V310o9Z+rvrpT/tG++pl36Zpb+3XvoVln4G0lfoC3Qs/avxZSgVtlvaXfV4X2rpX1Mv/WWW/j5IX2VsZenvr8f/Ckv/2nrpr7T0D9RLf5Wlf7Be+hdY+ofqpb/B0u+ul36npd9TL/1dlv7heunvsfR766W/19Lvq5d+xtLvr5f+1Zb+QL30uyz9I/XSv8bSH6yX/j5Lf6he+gcs/eF66R+09EfqpX/I0h+tl363pX+0Xvo9lv5YvfR7Lf3xeun3WfoT9dLvt/SP1Ut/wNKfrJf+EUv/unrpD1r619dLf9jSP14v/VFLf6pe+mOW/g3wshNKhc9b2jeqtOk5hDda2jeptOk5hP8Q507iHNCb84mfuNS1Jk96YP99D9y3//A1M/tf/s2nK3c/tH/m0H6cw4v64bnUFv09Sn+P0d88v2jv1TxlmWBzhksIL4TZucEJ4tMJpcKGjPBC0HO8ht8iWSryOz3HO0H8OH84xxvj2kKWNsXFwH2VtuDTFnwU1j5HrGOOWPsdsY46Ynnm8bAj1kFHrCOOWAccsWYcsTx171mHjg8o1h5HLE+b8NS9p33tdcTyrNueNvGwI5anjz7piDWo7aP1t63vgH2NrODX+PA749MKPfWzslS+JgS/FP2SBP3SkvhjgJ33i6+aufvArut27woUuKt6VYGI64luZ0I0xs3oH79fT+8aghZDzN6q/DnP3gtm9t/zmp137do1c+/XM7mPUzDSlQXvU0ZlnfE2SdoJpcJQGaNE/DNtlFGry/LnXKvX7b7r3ivv2rPvwAMzuHUGzZS5ZISK71SZZiAZvhsluivp7x0iXRDYuO1rkt53QqmwzKximYi0uOWAvYTiVkDcBMWtBKxXAx0HzifmJw6JnxidxWU6lhXLajnFLYW4FcCby7wt+FjehgT9UsJSQz4rl278GiIdD1lTw+oyNdHyEcJsM7REyNxHj7Fi0D2G5W9pPX7LU80aYpo8putJEWdYVkeHC7AsbZPoP5v/tokuhluJx6SQF9/htp+/ItlRt2wnvegR8UwufIf4rdCTXWapclPduF79bxm9ozzsr1m36PeGC7AsbZPov5z/tsP8NoHtZJmQF9+hnTxJsqNu2U5q6rH0lk/Db4We7DJLlRvmj+1kWT1+zyujd5RHtd2oW2wDhwuwLG2T6K271ya6GNhOlgt58R3ayb+S7KhbtpOaelxf1k4MvxV6ssssVW7Kr6pys7RK3zxtXFbfCuuYI9ZRR6yHHbH2OWIdH1Csg45YRxyxDjhizThiHXLE8rT7QdXX6xyxPG31hCPWI45Ynrr3zOMeR6xBtdXHHbF2OWLZ1gY1/8J9HewLVB1bIJ7Jie8QvxV66ltlKb2osYHlb0U9fpMZpUd+iMnzQCtFnGHZ3OtwAZalbRL9C3OFtokuBu4TrxTy4jvsE1+d404IeXl+oKo9pubKMB3bY83yurqsPRp+K/Rk/1nKPpReLH8r6/G7qkz5ojym61UizrBW538PF2BZ2ibR30r2uApkYntcJeTFd2iPL8/myo66ZTupqcfnl7UTw2+FnuwyS5Ub5o/tZFU9fleU0TvKY7peLeIMy7aKDRdgWdom0e8iO1kNMrGdrBby4ju0k7vJb6G8PF9V1h+2RXqjGxHpOvaQ/uzwJ3osz5st/ep66Zdb+jX10l9l6dfWS39FLK89VF74KTSvh9m2wkVhtl7imqmlbRL9/z0ym24/+RHeuhjCbJnW/MR8bVk/Yvhen4Hzp7OcP57rGROytCkuBu7Ljgk+Y4KPwjrliDXjiPWoI9Y+R6wjjlh7HbEOOmJ55vGAI9ag2tceR6xjjlgnHLE87ctTX4ccsTzty7MOHXXE8rQJT79q897jIo77AePwvkK7XHp3Eh7jwe1ynX7AOPEr0ku13UnYG2KtICq+y8Lc3GNcg97x7qSr6e86u5Nq7tqYMquYEpEWtw6wWxS3HuLGKG4DYFXdnWT5qbo7CctqHcVhL3s98OYyV3wsb0OCfglhjYt0Vi7d+D2Va6kqJ0urdlFxPS07KqjjPZw2xJqIa4huR4FomcDN6B+/X0PvGiHtnlIDxDImEwM3QIi1k/gsNEALDdDpsNAAhcFqgBoiHU8P8bRRDB17SJ8ItSxOTX06V9yEkBenhjBvi7rkr0n0N8JU2GdyfpHWphDzWvj8Aw+89saZ/Xvvm3lkRu3971Z1rqe/XyzSqWAmwR8QxzASenJOpZ2h4beCLuZOKBVOO0M1SlEH2lVzhmwQqBVExXdZqO8MX0x/13GGNT+BruwMRygOnSE7yl6coeWnqjPEsmJniJWYnSGW+ZjgY3kbEvTjhJVyZN34LXRZvhkWuiwQFrosYbC6LJxuUZhfqy1tk2iX5YbZY22es3uZZVxo678ZFtp6CAttfRistl55GV6n7udUCfJODrDSx+Z+qUePclOPnvDl0ftenGfSBnhYR7iOW6tVtNfB0jaJ/oqh2XSX588xz9vy+Nzb3HTXA/fde9f+masfevjAzIGZe1+8e//MviseuvfqR2Ye2l95uPcC+vsakU4FU2rNjQ9jqiNqQVWyUYrjDSYYh90gnorlj/wwDjcJNSkOm8NFFIebX4cpDjciLoZnDspxmW5juveVcFyjYVYf6GjNEeDHvzw/a07MNoMxDRut0V89NCvjztzzK0fADpQPOQhh1qY2kOydUCqU7joYfivMb3jqdB02ED/On8+RAqgVRMV3WBs47kx0HTbR+04oFTpmFYre4qYBm48U2Axx6yluC2BV7TpYfqp2HbCspiluI8RtBt5c5hsEH8ubOlJgI2FtEOm461DEryHScbcwo/c4n7lO8Ob5zFeC57h5qlgP60KxHuxvNRBjfVt8DD3a681lPY3ht8L8sq/jaTYRP85fPU+DloJcbiJUo0FaDDeBZEjPZ0hy6Y2JdBxMY02S+SB0ml5DnTTM1zKSW1k7vuNOLaY3OsVnaY98lgo+3K+J4RaKm0zEqQ+D+cOWGHhdU30AoDaW80EDaxKYUwIzlt2qxixe/HcO0ClLt9bJymAbyINp8e9FRBuD3THQJNrvA7t6lOwKazHb1cYucqfsamMo5rO0Rz5LBR81uGbb2STyqlprLudpiGPb2SzypVprxtwqMGP5LGnMpePyj8E8/rnwvsogsqzHN/wWyVLX459L/Dh//IHJefX4vTyj9MgPMU0e0/X5Is6w7G6x4QIsS9sk+v+YZ6pNdDHwBybnC3nxHX5g8tahubKjbrOCX8Pld1y/MO9WPsYH/c1OkOcdQ3Pzgn6qEeb7Net5sq/6HlgZfif5KkzPZafqSd38nyPyOBHm64Y/QFT2fW6CTzuRn36VJx+4hH4Wy/M9VJ7nQZzy0ffkv02iPw/K86epPFVdVHrmdqmqnpcJPv3WM7cv5zvyQSw+rPFCwmI/aOVker4A0l9I6bZDHNLhqOtCeL9d8Fb4htHNBj80pPOmbBB5NYl+CdjgR2ra4PkUh20FtosoB+oBy+yeoPM1LOhT+fotGHXeOjUX09KjrrAs2P8a/X8BzDumtJyYL2wPeAunsocLRb6UTreH7rxRzzsKeA+HtC02if4PhE65XcD0qh7xR8wXdJGd6zem5ztNMV2vfkTJ3K1OfrJinbSPMtl2/3nxbLpPUZ1M2QjKzOOIqnpeKvj0W888RtjuyAexuF24mLBYz1ZOpueLIO5iSncJxCEdtgsXw/tLBG+FX7ZdeHJI563IBo1Xk+j/FGzwi4lxccoGt1Mc6pTbhW7+cC3Rm9zDId3eNon+K4l2QdVX9LXcLhj9vybaBeOL+Uq1C8oWLxL5Ujq9mLC2CSzUM7cLSqeY/22U/9O205jNf6pdsPRqPuI2isP5iPMorgNx3GedhrjzKQ7nI3huZAvEsb/bCnFoIzwfMZHID64r8nwfztttojg8HKFDcXgowTTF4bzdZorDwwS2UNwUxG2FvNq8HS9mr83f97imJ7chpeZFs4LfEMq1B7h2zGvOGxz5INbVxGejI5+Nifx0BB8rL6wv/ViDNfxWmF9368yTTRM/zl+9lRH0NqwVRMV3WZibe4w7E2uwW+h9J5QKW9UsqwWeyVIeCT16h+JwxqDqGqzlp+oaLJYVtzDo8c8B3lzm04JPJ38eEvS8njst0lm5dOPXEOl4vTKj90VrsIbRJPpnQwt9J/VQFK8OyMe9BJO9aAdJh2Qw+u8GGXZOacxmQb42FWC+tDGrjysaGjMITJWvzZQvlmGaZDD6q0XvpxHm25+ysWn6G9e3NxfIp8qJZcX6VJSfDuXH6F+UKKeOkMHkimFHFxmYZnOBDC8RMgiPfuXuPYdzjx4o8HenvDbNmue16o7AKQqmjWiFZpFqZ8UmkW4T/d0SMsWc2xzE6c94H5jZP1OQd26tRgt4DgUduA9u6WKw1qcD7/vRb+jkz62gvVQnlAoZW67x4/zx/sFpIUtbxGH5sh2l+MQytX5/XqYv2797b1GRlu1QZEIsTh8IKxPvYngqm0G17iMbQQf+RlR8l9J8t9L2+IaIm5NOKBW2qAV8C2rAzNv0ynQtY6jafbT8VO0+diBuK8VNQ9w24M1l3hF80Mky/TRhdUQ6K5du/FT3krcBslco6j5yN8voD0BzfPPU3HzyDWlvhDjeotcJc9PG0ONAdLKsJzH8b82B6FJCNRqkxYD3TiF9aoteDNeKdBzYk5xP7zuhVLhALSdYsDic3mRvgVOTHYrDadc3AB0H5UksP9Ha75maxWU6lhVr3YUUh9a9neLQE19EcTjIv5ji0MteQnHoZS+lOBzAX0ZxuKx7OcXhcvDT8mf2FD9I04E122s5HWhYE2G+vvmsbtUNU1v12yL9+gSf1T3yWS34jIt07B1r6rF0P4s3MPf6qYTawKz0olphS9sWcdP5s9md2cnKfJz2ja1RNC3fhyvmn1lWr2f7ivlJIYu66+1BoOO4hng3lMA66oj1mCPWEUesvY5YM45Ynnn0LEfPPD7siOWZx8OOWI86Yh1yxNrniHXCEeugI5anTXjWR8865GkTnvo64Ih13BHLU/f7HbE8dX/MEctTX56+cI8jlqe+BtUXeurL0+c8FfpMnjbh2W576v51jliedu+p+0ccsTx175lHTz/h2Qfw1Nfjjlin8l+bY8J5CF5NUmP+iQQfTD9RAkvNH6TyWHTkhdNJ0ybiM4huR4FomcDN6B+/fwa9awhaxMajgcosZmwj7E4oFS7PCC8EPa1k+F6LGWqncAfe8bTS+UIW9QXWa4GO4xriXeprrqOOWIcdsR51xDrkiLXPEeuEI9ZBRyxPmzjiiDXjiOVpE576OuCI5amv/Y5Ynvp6zBHL01b3OmI9FcrxmCOWp74826E9jlie+hrUdshTX57+3tO+PH2OZ330tAnPPpOn7l/niOVp9566f8QRy1P3nnn09BOD2v963BGLp0lwXM3TJGoMuy3BB9NvK4HVEVipPPZ5msREvIzodhSIlgncjP7x+8voXbdpEt6VcypnZtMiNXcVzZvqQawJ4hmf+ePyqjN1mH4ywWd5j3yWCz7jIp3lu0c9jqH+UE58h/itMD/PdaaX1C45pRe1G8zS8m6wGPiQsI7g0xF8FrAWsM4WVmq3J/8aH36XasrK+JG6fBCLD3/rQHr2vx3i001v6hNjxrJvGGK4E2j4cEI8tCII3rdAPNL/bJ4g7gL/r/lHEuqLKDx85f3NtKyYFmVtEv0vw+ErP59jKj2zb1TfiHDZIV+FyW2axYVQruyWCxlSWFheK4neymK4gN7wuOw+DGXHh7wYTZH9dEgGLKNAGDGw/Rj9r9ewn48207Ky/awMOv/vBPv5LbIf1HHKflZSHNpPJ8zFxDjeIV+1T4TpU30vPkRXyZ6F+b421T1vh2Id9bgT/3xeOsPAX8KgHtSXMGsoDr+EmaI4PDyI2wY8MGgLxV0CcagPDg36G3UUzfD3wPaZLhBPLEM+hAcPOOED5vBAGx4WriFZ+V2qLV1TgIXHFKiDuJpE/6H8tpBYH/+mOTdfeFC26aRHW3taRngh6H4+f/UxVY9f8qsPzB/389W3oO0w38c+AHQcV2aoj3EHHbGOO2I97Ih11BHrpCPWPkesYwMq115HrBlHrMcdsXY5Yp1yxPLU1xFHLM/6eMIRy9PuPX2hZznud8TyLEdP/+Wpr0cdsfY4Ynnqy7MOefYnPPV1yBFrwa+ePb/qqfvXOWJ52r2n7h9xxPLUvWcePf3EAUcsT3159ldf44h1Kv+1uYeic3cwDvlsSvBRh8WpeT+cc+CxtNHE0ONlSI2M8EwefIf4LZKlIr/kZUiqfFKXE7VFHJ+uU3drQnyeJqyycx8Zpe+WR8ctAybi5UR3Q4FoQwI3o3/8/nJ6V7RlwLCtGuHUEy8foRpTqlXLR0an+Kzskc/KknyW98hneUk+q3vks7okn/U98lkv+PRxOnS8rBs7W9OhPR6BNpZyKYjJB2htE3HsgocLsCwtL3sdXfTNX9V08nJ62WY4Qj6yaC4dytuBNHzGfQy4xHZ80VwZOhDHywPY1PIS7a8umk13Mn9Wy1T2NZv60I/Pt8c7Otn28az/CrZR+gAow2+F+b6tju2vIn6cP2zeyh+Px54UtYKo+C4Lc3OPcQ16x5slJihdnYM219D7TigV1quNIhb4pgLUjVowW0lx6JmqHrRp+al60CaWFVs+tjx8vzWW+SrBx/I2JOhXE9Yqkc7KpRu/hki3nDAyeo9eZZ3g3ST6t+eeRJ3TrnhhjeKNnyZ70dnbLIPRvxNk4PO/V0Eala/lIA/q3/7G+nR7Af8PgGf98UWafxD8OX9oq0VnoK8iGYz+3aADPtN9jUgfCt6xba+huDUJ2iWUF3UvO9oin/8+1SXvXP5G/9OJ8l8pZMDPx3d0kYFplhTI8HNCht7Of2fPzqXEJbFS4BQF00YU+gPUT8FSWy7SFdUYTNvr+e+TBTyHgg58L5Gli8FatZr9g9L9EcNvBe39OqFUyNhyjR/nj6cUVEvRFnFFtbQbnx7Pfy/qqChnwekDpc3EuxiiJduhB9Z9nQYaHqZPh7ny8rvUMN3oFJ+VPfJZWZLP8h75LC/JZ3WPfFaX5LO+Rz7qxHLGUsOmGO7Lf/nClj8Ax35HwSUwQwWYN5IMapZQ7eozejXbd67Io/rY6PwSvFGX3BBeUFHW1JWuyF9dD3thRVlvOMOyTgtZ1Vng5odGRL760eQYfkvkoU6T0+1a3npDYN7fjlpBVHyXhbm5x7hUyxLDC+jvOkNgvgi1E0qFi3mfKga1T5Uvg7wU4ng/KX7bVnUIbPmpOgTGsrqE4nAP76XAm8v8QsHH8jYk6LcTlrpA2MqlG79U7TYMlS6GN4k06tq4rOA3hPm1NgbuuG13xLpIYJlN88W8nVAqrCzrjQy/FXqqQ6e9Uepi2Rg475cIWdoiDic7MQ75XCL4KKzNjlhbHLG2OmJtc8KK4dYFrAWsBawFrJJYFodt9kUUh+3nK/NfNSIq+lYP5UvtqcH02xJ8pnrkMyX4pPbM8K/x4XdFe4SQp+UH227Wm7og/qIEH0zPtwV1IB0uej5zWPPE0TumvTP/5Yve/zN8x/Sdw8V5RD1bvljmEeBhcVUW9WPf+70bZvlgP8VkNNyi+oP0d+W/qs0u+jYJMbqVwZVUBtsgTpWBycPfdr4NyuAFVAYdkAvHE0X1piP4sY0MC3rEYxt5US4TLp0o+c4t4If6QJnvLeD3EuB3B93WhXbXyZ97tLuVyu6wvrLdle13l7FT1ImyU56l6ggs1GnRWTHDgh7xmkR/qyjzsnbO5Wr0d5QsVyd/IssVdcXlqmYTVTuUsgMsr07+3A7zy3yasKYFVgfelSnXjsDncn1NolwtPZYrysXlavSvLVmupst+lGsHCMqUK9Jzuar2W+0TbYf57eQqwlI+GnVaplzRVthHG/0jiXK19GX9sNEfHgA/jLoqU65IX7Vc2Q9juZ5HcWqVgesR8kn5aLUxL+Wjjf6UKHPu87NfKJJP6c15QfPCAjFWiPSB0mb0bkUBluHEdzgxzyq37A4HPQVqeFwlvl+oXFXTDvDu4+nypRdCDL8V5ptEnanHbl1Pnno8V8hSpipNl+TjaKoxvKBAjEykD4SViXcY1yE54jtcEzVT5W2vmBa3vaoRNo8UlOfrAE3RDGZR78LwmkT/o4lWqNtojb31pYIee8adUJz/SylOrSgxH2wdUV/cOhr9u0q2jsa7H60j6ohbR1wNawh61vflgv4yoOFZpcshLlWlLyU+3VwH239H8FGjb9UbV9uTy9ijsi/sDVxCcWo0p2zB6PoxU4L5YVtI1aUYWDcp20HdtEN3O8F6eQnxSfmlGFK2gLMLNhs2AtjIBzET4VxLP1Qv/d2WvlEv/UWWT97qGINhY9lWsJl7UCcWVFfB8FskS0V+p7sKi4gf54+7CsNCljbFxXA/0HFcQ7wbSmDNOGI96oi1xxHrmCPWCUesg45Ynvo65IjlaV9HHLGOOmJ52sQ+JyxL7yXXcUcsT5t42BHL0yYOO2J5+lXPuu1lqzEMql/1tAlP/+VZhzxtwlNfBxyxPPW11xHL01Y95Vpot8+evjz7q54+2rMP8Jgjlqf/GlSb8PQTg9oOeY5hPPP4ekesBb/67eG/vMoxC/Pn3AZFX4Pqcwa1X7jfEcuzPj7miOVZjoPYX83C/DnsQbEvT7/6iCOWp58Y1HkmT7k8dT+ofsKzT/5UGNd6ttsnB1Quz3GtZzl61kfPMYznvK8nlqdNcB3K8r9xnfQWeL4N4pHebolS69gV1m7vHYc0ATAQu+Y69L0Z4YUwt68RCH+8gF8MLRHXLCHLe1Z++I6rtnzt9ozSmyz8rszYRK1pm64Wk+ydUCrcrfaQGG+Lw/X5RRSHejEZ4u8FJN9wTfnK6A/x24Kev4orWxaTYa4toL2rPWH8VXPqROL4XHSy8HABPd/8Z/Q/kStefT2Du4+XF/BD+VInGWP68wuwcI8bHhh4d4HsPwWy89ku6kwRdSyS0Xc7dcDkSZ1/MiHSrS/gg3nFsr4zzM2r0f+syKuqf1h3DMfiKtSdMbWHC3XEe7jwK86GoC+z2x33hfKp2ri/7XyKQx1fSHFYr3gfqdrrh3bH+7s2Cayoh48mbsycLMET6cvU646Qg+vGR0rW63MK+KF8qXqN6avW61cVyP7/VKzX5wj5BqFeY1nfGebm1eh/5ylWr1NfsdSt1x2SoSNkKFuvLW3UA9+uezHEGS4eers2f24S/Z8n7PmSMF/WlH677TvnW0px729q3/kFFIf7aXm//mVCDygXn8Vm9H8Devgw2KDlJZBcPdr6FcrWce8w23pqj3kMXBZPE/S479x00iZ6Lhf8G7FQp/yJkOloWNAjHn8D8QXRLph86N8uI9m3V5R9o5BdHRSNderJXMFmg/hJFrdT2xM8OS36meECesPjr73/f6GvlM9HPY0TptH/W8IfKP9Z9Svfi0S+lE4vpjiUHU8vM2zG7LF+Pv9sf9lu5d8O8/0htzdYNy4iPqqPUdb+0YY+OaRxFxXg3pP/sn0tzQtG2ZeqN+fBu6rtObc3aF8XUZzq36vvV7gfqdpdlIvHh0a/BvSQam+c7HmZ9wkhVdt+/rYF2wP2h8pmUafc3piOhoP2M4bXJPotUAbc3uB3WHzi2/kVZa9T3z5E7c15QFdmXIS45xG9+Yui9sbwmkR/kdBXRjywHqCeuL0x+ksT/kCNp1LtTbfxlMmjdMrjKXWLlqqfRtdj/Vyu6ifmn+tn2fNUU74VbZfbG/SHqS/4LyA+5wk+Ze0fbeg91N6cQ7iIhXaRskesN2P5M9vjlQl7TNWzGFjnyn7V/IayRx7zoOwpezS6Hu3xJmWPmH+2x1ReY6haV3ksjraaskdun88RfNSJEnzKDaaNeX3H0Fy6CcDI8l9bE8DxfwWdlz6SwPBbJEtFfqe/M5wkfpw/K7tqZzMvgWfWCqLiuyzMzT3G8YraKNFdTX/XOZu55kUOU+rCNgsWh9eNLKE4nE2aoLgNgPVqoOPA+cT8VD2bGctqHcXhasl64M1lPin4WN6GBP1ywlIXh1m5dOPXEOnUlTH4HluKccG7SfT3Q0tx81SxHsYTerDwRiEnl4XFx2D2WvMikMmynsbwW6Enz3ba0ywnfpw/H09jXJYSqtEgLYalIBnSj9LfXHrXinQc2NNsoPedUCps5H4TBjVnzNbUgbhJipsGrDcAHQflaSw/sTbcQ2sFQWBxO4pyK0/ToTh1j4m6rmYzxeF9IVsoDs+L2UpxqZNT0bOfQ3Ho2Xmd2/L+htyTmG2wp+qEcoFbWFX+C/2WQeu3XE9/1+m3bKT3nVAqbGKPgUF5DLamaYjjfstmwKrab7H89NJv6VAcetxp4M1lXrXfsoGw+t1vUeni3y2RZpz+tvgYemyJSt+Hbvit0JN3O13rNxA/zp/VTzXDYGnbIm4UnjEO+ajRvsLiHUnLS8rc42Fs3FGZLBBjSKQPlJarKg/g1d1u6Hx5ktZkGQ5pM28S/XvEpGMqfQxlzP5MN3a9mr1yEymzXy5kURve+LK8iZJ8HE01husLxFCtaCCsTLzDOGWq2JrsKOA9HPSIkE3V6D+YWE8YEenjiPPT2VzefK07plWydkhWphkhWY3+QyDrTpIVTZX75J1ZUeZVqWmSHWkToXSVMnyvoziniR/nr17/EUuatYKo+C5lxd1qzpX0d53+4xZ63wmlwlaziq0iUs2ojlAczmp3KA53nlbtP1p+qvYfsax4lLcZ4s4B3lzm04JPJ38eEvSbCWtapLNy6cavIdKNEEZG79UOSMRoEv2fJOa9kBePKZT3WCnkVOMH9jQ17fUVZT2N4bfC/LKv42m2ED/OXz1Pg5aCXG4mVKNBWgw3g2RIz93JDv29SqTjYBrj46C/kBd3tL6/zJ/VHuU2yd0B7JTPbov0Rqf4LO2Rz1LBxyy5BeluobixMD+vFoceayfF4UrDrRS3TuSL56MU5oYE5kYRF8vukdZcummgywp+Y2iId6zTaSGrlR16AO7Cqtq2JcEH0/OcIKbrNT9KZtWvwptyvjoymyb+2wpxytvb/GaT6B8ZnU33NapveKOfyaj0zHWxqp7bgk+/9cx1apsjH8TaCfTxn/pGCvVs5ZRa37d050Ec0mGPANfA1R4MhW8Y3WxwaUvnrcgGjRffunAb2ODy1tz8l7XBbRSHvcvpMFfO1No/lgHnq+g7taJ8TeV5UeO+aZFeyc4zRtsSsseQ+oaNe679sHnk2c1+tpD94L4KZT+2DtMk+qvAfs4h+8EeWj/yn6rX2JOz0VeqXiv/wemwjq4oIcO5Qua2SI97hzhdr7ahZO5mG08n21D7tjqAy9+xGP1FYBvfQbaB/pP39qLM3Aesquelgk+/9cz9u/Md+SAWt29q/xbq2cpJfZ92IaXbDnFFt3Dj/i+1l1Hhl23fdrR03ops0Hjx3vZlYIMvIhvE9CkbTO1R5T2Oaj+iKoOM5B4uoC/a93ujaN9S9RX34LEvN/qXA2aZfb9qtJyyxar7flO8Uc87CngPB53/Ilu5PaFT9W0q5od1avSvSuhU6Sil0277hXl/KuaZv8nbLLBSV0wpnWL+N1P+jf7ViX7YNpFe9R2mSRbVD0P6NUSv6pjqm3Ade6BkH5L7Nji3cBvF4dwC72fB9Qwei+FeF97PgnMLHYpTe13U6vt5FKe+PcC5hSbl9XD+0OO6g9wvM02yoX6zgt8QyrWnuEI/SnymHflMJ/hsduSDWFfmv2rMxsvQVecNMH1qbDjWI58xwYexzCfHgH0i/r7F6P8d1Otf2zAXc6uQbwze7UjkleszYlmZna0r8rbW45e8Ig/zx0vd5whZ1BkQRWWKfNRu1KpyjYXZead8Fv+qmbsP7Lpu965AoUl/X1Ug4jqi21EgWiZwM/rH79fRu4agRewzVfXOJp9lPfJZJvj0e6pzGfHpQDoc7ryLhjupKeUY7s5/eUo5wHDnJ2m4k3KlHfjb+KW2Y1j6oi0ORa73feB6d1J3eJzyjPlkGRGzKfjGcEuBDD9HXZWarlF2VQxrguSJz9bVGKG/K/LdomzWAjc9KINa/B+juDKL//F5iuJw+MYfp+AwZD3F4RBiA8WpTyGx3llo0N+o22hn7yux2WAizC+TaYrD+sNb2KcErpUzds/70dQbfotkqcgvU21PI8zPX72FcawJrBVExXdZmF/iGUiG73hQMEbp6mzBqbkNt6O8vQW1rYVrKA5OuaZhra+6BQc/CKmyBQfLapricIDJ22awzNcJPpa3IUHPn7GtE+msXLrxa4h044RR1ArFd5sE7ybRfwJatjsLWrYs6BrFravJXtS6sgxG/+eJ1nUdpFH5QjtA/dvfWJ9uL+D/xZz/NzaQtDT/IPhz/tBWhwvkXUcyGP3fiEmbRphfn5U9cq8bbXsDxW1I0PJ2Q7XdC22RD/Hb2CXvXP5G/w+J8p8SMqQ2sbIMTDNSIMMXhAyipbhy957DBduSeZzEnp1LiUtiSuAUBdNGtFizXtYO1w71rsgCYs5t2e30sPOBmf1FW7K5FWwV8BwKOowXyBbCbKtWs39Quj9i+K2gvV8nlAoZW67x4/zx1INqKdoirqiWduPT4y77oo6KchacPlDaTLyLIZrznmwunZrZ6sC7oukLbAgR4578t0n0zbxjoVY81O4PbFjKrOzjEIWHW+oEY7Xqj8N/ww5Ehw7O4iqYrzzdCfOzCHDjP7VDSK1sG323lcZO/qxOSOIZOZwO4FWCDsThtMS7Kq7Q8i4Bo1+ZsJftoTiPMVQ9fayTP5/N08fuy3/59LENoIczcPrYFQunj80/few8KIN+nj7WEbKr+oZ1akdiB02ZXQiIex7RqxVSpC/ahXC50Bf7s6q7EJ6R8AdnYxfCWTp97Pln+/SxTv7cj9PHOvAuZf9oQ08n+8f2fJp4npvgyWmRT5H98ykRRn9twv7VjkrU0yrCNPrrEvavdJmy/259hFQfiesGyo47HgybMXu0/6uV/WP+2f5TeY2h6klwnfxZneh6DsWh/2Xfqvq8HXiXsn+0oS0Vd3zzVwdG/8qK9qVWU8vaVyd/rrqrbgvFqb4rl6NqZ2K4J//ltuvVJftbJleP9nzWT5Pk0/JV/zblP1M77pT/VO0l+8+HE/0tHJNcQLJvqyh7R8iu6hvWqaWJryGmiee2BE9Oi/W67C0dRn800d6oJWPUE7c3Rn+84ng91d50G6/zlyKoF26LUPbUeN3oeqyfK1T9xPxz/UzlNQbWTWp8r9ob9IdbKQ7rBvdlys7zdBvffxVOwIqhnl4PfSoDWQxbzWk16ddo3prbJy7N2m+Z29E+8Rtf/qMPvPDyB3m5PgYro8gilv+bR2dlyID2bbCt4odg4cxksMBfki6CuFvDLMZP5Rg2JTsMdJ1QKlxoeVkMuFY2gXAtL2qKE6eSeXcbpucJf+P7LtDNO+HzZMRm2WJ4NeEZ7Y+TbhYDXoX6LLdnGJaVD8YNg6zvHq1Hh7bAO3/ZfxjGTyV4NQkDfYrhse1a2eHZSeyLoJhO2wG+4y1NmH60AKtoF6a9axL9B6Dd4V2YY0K+lJ2iTGMUh/PrrAfFR81HKz3w1hlMZ2VoNlxzCaT0maCG3wrz81xnyWWc+BXpxfJX8yClpRmlR37qvFbT9YSIMyzb5TlcgMVnxxr9R3Mj4i/QY+BbHdWBTOqUw1gnfpXqt1qaK1POiNsO8/PO9ojrTLjV8GOjc/MyBnENkfba/LdJ9M+fmk33X8n3YFvN5cO2ab8WeGxh6YsWotm/GP0fgH/hxXDVF7kWMMcKZGgKvjHcUiDDn1Bb1o9TREdIHpO5E8qFMkvG9eTOvlDWfxm+15Jxt9PF2H/VO/U0e7KMP0B5TNdtEWdY9vVo0aF8lrZJ9H9D/qtNeUIeFofy4jv0X58m/6UO8Kvrv1I+vh9+MgY+tQR1i36rW7kqPpje6Hq0sdPp27XSh02Wfmk9/k9y3zMGbE++RO3JJMRx3w19Kx8qOQrtyf+g9gT9sdnMRCi2IbX9usinh5D2EeozhfECrKI+MJ9OaPRfS/SBlQ9LfYk0LvhlBfyVj7U8F2EF8c7osf/NJ1S1iXaJoB0RvDqhVJg0LP6iTfnYHuvSMqsLy0SkxalDPi1uBdC/BOg48PwIyhxt5aM0Xx0EFvtrlI0xlc3dTrSWZ1WObaLF0zRZX7cWyGC4+LXXy/Nfvudh09gs/sr8eYR4VSzb5Vx+GLj8WHccVPmZXLH8vlSz/PgED/TJPPekzp6O+jr/LOlLzb9ZOBv64vmZbvqyODywmdPxJz58SkwnlAqvsvQr66V/2NKvqpf+EM/JfRzq2yWkD57jw/rL42Zck+T0MfA4yuiflvOMtvA9+U5jVaZmDyOUvqJtf3dGeCHocYvht0iWivwy1o/x4/zxVtc1QpY2xcWwG+g4riHeDSWwHnHE2ueINeOI5ZnHg45YRxyxTjhieer+cUeshXKshnXKEcvTJvY6Yh11xPL0X8cdsTx172mrnrofVP/laaue9nXYEcuzHD3ty7MOedrXMUesPY5Ynnkc1L6cZx49+xODWo6D2JeLz6ucsGIY1H6OZx9zoT/x7VGHPP2Ep1xe9hWfVzphxfCYI5an7j37APvgGfVnc3C4BsHrxUb72zQPXHOu7AqeizIMxF5bEzsjvBD0PJzhjwt+JldLxJXZP3r+pd/1Xz7dfttvZ5TeZOF3vMdMfb6u5vR6PC7ouWpvNB4eEwPOu66lONyfaDLE+dYLSL6axwc8t4z+EL8t6O8Auipl0RZ8Wo5YkzWxJsN8X2j1UO234DUeta4Wy/H68bl0aG9cN2uuhV5Wtm4avtccudq7kpojXy1kaVNcDLuBjuMa4t1QAusRR6x9jlgzjlgPO2IdcsTa44h10BHrsCOWp03sdcKKzyucsGI47ijXSiesGI45Yp1wxPKs2487Ynn6Qs/6eMQRy7McTzliedqEp+696nZwzqOnTRx1xBpUP+Ep11Ohz7TQpp093XvWx/2OWF55jM+rnLA85YrBqz/hncdT8JyF2fGhmkezMT5/N/bCfKyt9uxVGN8+ncerhoHYa2piZ4QXgh6rG35qf1lLxJWZR7v4Oz5xyW/+wcj9GaU3Wfgdz6OpOZXUPFrNeapL1Twaz5XhPNoaisN5NJNBzaPVnBO9tIz+EF/NH/M8Wi9z9y1HrMmaWDaPptrH8fxvnEfjvb/LRH5wHo33n+8cn6V5yfhcLLTJoj3ZMfBtzu1E3KTAjLzvGZ99j/7KvlF/CcTx/v2VIp39je/Q1jHNOMQj/e2gm1tIvnF4xnyifFxemC5ivnK8mG5Zgg7LJbX3m29nwvlR/o6vW7lMhPn2xd8h4RxuQ7zj+jIm8jsu0nHbgW1ZBX/TLtt2GH4rzM9znXne5cSvSC89trsTGaVHfqqOmK5Xizj2W8MFWJa2SfT7crtRfZWivfQor+r3RHt8KMcdKZC3E0qFq3v8LuEVaq2xQvoX99gPmuDvGh4DX3WY6iz2P/jqIfQlqb5IW6Tn9Qn8Xo7bi3Ehg2rP8HvMry2ZS4f9pqzg1/LB71JrXuaH4q/1yfPjsK+Z2f+y19y1d+bel83cs3dmf4Mk4JMy+PKUdSSRCiYlHxY/Qn/zadtt+ntS4HTjOV6AHULPq2rTZb0tr6rVvEwouaqG+WNvO1mPXyej9MgPMU0e0/V6EWdY6qoIxLK0fFXEW8jbrqc8IY/1Ql58h972+8mToLzcW1Z6bwvctkjPOmLbjqHH8mqUtUfDb4We7D9L2YfSi7IPS6vKlfVftlxTWCl/UEZ/is8ZLufpQS9ny9/6evw6Zcob5TFdbxBxhqWuaVFXxvAVKe8jv8PXTCGPDUJefId+5yepl4fyRrpOKBVGlK4rpH+muj6rQvrvsPR46VuVslYjPuwhvX98Fhf7G+rEihhuyH/5uqM3rp1N9/Pk83GUVsZP9HZKSPmTwgzfq9+gTkhJ9Rtq+oulZdpLlIdH6Kzb+M/6ncMFWDzja/S/TvWXfS7ySPVzYsD6+yGyoX6fTPPtxmdcpOP6VdP+FpWtX9wvr1mfk/1ypRdl77zbDeNY/2Xt9FsRq9/9szNgf6X9+9myvx77n0vLlDfKY7qeEnHcrheNC4uuUfwc+XdeSUIeane3uiw1+vfPJMaF3DZVHReqE+K69YM+P655lu0HGf2zoR/0TyX6Qak8pk64UmOilN2MCdmV7icpztMftUryKZOfFJ+zmZ9UXcAyuDEh1xRhreuC9VLCwvTrKG4sIXPVE4Axfeqk4ake+UyV5HOm8rOW4vArFfZdquzWJWTA9Hx5OF/2qX6ND79jPkrmbj5y1ZLZNJiuyEdem/82if488JFrc0ylZ85/qi9R80uh0n0Jvli8176EsotUX6LmXM/pvkS3uR7Wtboe2LDs+t2ycz1Gf25e1t5zPZtpledM1ZMJRz6ItZP4FNXHS6g+roe4MvXR6JdCfby8RH1UuhlL5AdPk+a4lF9O1ZWpBL2yddWOs60bRgxW7/Cq6X74FcNvBV0nOqFUOO1XOsSvqN6Iy5ivmNl32eXPuurry5SH9+xnnRruUmQK8jN9oL85XZStSTQTgkcMbD/riI7L3d4zfhmZutF2i1f1ZgPRVu2XYPqxAqyi03atfPjE+qvyeq5O21X1E21oRyKvE5RuokD2GD9S8L4TSoURk/f0qckl+BbpDE/RL9LZdT3ojMdcdXXGeRgJejyfmm/kL8TRN7L/q7czM/uLsv7P8FsiD3X8n9oZq3x/bztjs09llB75ISbrep2IY/81XIBlabn9fiX1q7gvjDzKjke+sWPxDO2esfLpbd4s+1S3/tK91F+agjjuL6EcvObxr2tm0+2i/lKqnnF7o35DKKc/bI94zKnGZWpsy3WmKTBj4JNojX5Pnvced5nLGz3wtAYuF/TfeyuMSVWZGv3noUwPJMqU+wFYpqlxXMo/tRP0yr+oNcXU2Ke3MWR5X274raD9UCeUY2h5V2NA5auq9mUN91OQIZS/W1+W06m+7NICHkV1j+1qit5368sqmYpoq/ZlcZ6T5wLQFlP2qdomPiG8Zj+ww3W/EfS8BOu+DTKW6Tfy/gDG53lrvN1D6WYnxCP990I/8/n5xg9VFssK5AuhXFmoLz36vT7IO3fHHPkglulW7SWJ/zqhVPi0WquskP4/qRtnKqQ/X91MUCH9L6p+fIX0P6/a9grpT6r9TxXS36HmYSqkP2+E6Cumf5qln66X/rOWfnO99Dss/ZZ66T9o6bfWS/8WS7+tXvovW/pz6qV/wtKfWy/9k5b+vHrpM0uPN95XaZss/fZ66Rsm74X4Ushk+OZXzwf6Kn4VebUIq6LsWUp2lI/9+IXAD/NYhHVhRawREVenTC4IxflC/PGELCxnDLuArpc8x7DXCSs+r3bCiuGYo1wTTlgxvMZRrrYj1lJHrGVOWDE85CjXckestY5YUwOKtdIRa4Mj1iZHrI4j1rQj1mYnrBhe7yjXFiesGB51lGurE1YMr3WUy6vtiM/bHLHOccQ61xGrMaBY1r+fENg8Z9UQfBoJPqn1lAbgqDkh+26H5yFi6IQyIeu6D+SfaQ48tXcVZea9q++EOfD/j+bAMb3N5yhdj+XP6otuPmkCv+jmeWy+Zdvk+lpCLsRjfTXEOy5nJU+T8vHaiVlZmvnzCPBE/p1QKmxX5WtY6kbzCmOV7SiThQa9Q3yvk4lVHVO6t7wvErK0KS6GB4GO4xri3VAC66gj1mOOWEccsfY6Ys04Yh10xPLU10lHrD2OWIccsTx1P6j2ddgRa58j1vEBxfK01QOOWJ6697Sv/Y5YxxyxPNs0zzrkqfsTTljxeZUTlnceH3fE2uWIdcoJy9J7yTWofRNPX+jZz/H0E57+a1D7hVaO42Gu7QZ47nGsNoT1AeXEd4jfCvPrkddYDWWoM1aLz7xnSfFRY8KM0neTayzMzmHk+7+umrn7wK7rdu8KFPhos6sKRLyQ6HYUiJYJ3Iz+8fsL6Z3KGmJHlT6+epZPfG/TEQ/RFERN05NbMA1LTfPwVEvVKbVxwYexcNuUOuDP8syf8XZCqXCtpR+tl/7ZattahfTX97g16WU9bk26psetSdeV+Xyg5sGnLy7rCg3f6/MBdQBt6tOxVUKWtohjG10l+KwSfNoi7ogj1klHrD2OWIccsQ46Yu11xJpxxDrsiLXPEev4gGJ52uoBRywv3at2bVBs1bM+nnDEGtT6+JgjlmcdGlTdP+KI5eknTjpiefpoT9176mtQ7cuzb+JZjp66fyr4icedsOLzmCPWckesiQHEiuF+R7najlieul8xoHKtdMKK4SFHLE+bWO2EFcMDjnJ5laO3XJ62Ooi+MIbdjlhethqDVzl6yzWI+vK21aWOWJ4+2tN/nXLE8ux/7XfE8pxT8OyTe44VPOceuX9vc9e4roXrN3wEiNFflHe+erx47AaeTzcMxK55SeQNGeGFoNcS+LgW5GdytURcmQs/L//HQ2953nPO/2pG6U0WfsdLoeoYkNSxRjWP3rA7HufoB49iiQFthC8DxeVfk0Fd+FnzqJjry+gP8duC/nagq1IWCmtHTSy7pFP1y8/WeusieMYj5GzttUn0T8vrvjoOTR2lDPdfzjtCDmWapHTqSokYeI0xhk7Q4WsUDM90vljwQp+ItM+GfF+9ca6svN5pz82C/CwjORmjSDe83o953/pH/9fi//FT/775c3/y5O6DX77gid++5s2/8p7nvPXjF333Yy/7qx/6x+s570MJ2VW+Vhbkq1GQrzK6mRDYbPOpSyktHzEom+cLcDEdtzOrSM5OKBUmyrYz3JbUbDOzVD9A6aXHdnRJWd9r8qhrCVC32EYMh7Qf52sJbszrYJvoYuDLQatcS3B9e67sqj9SppwRNzUH02O/aUm3T8Ne0Z7FRd2ar8e0KAcf9fZm+DTsthxTfYLF5cvtDrYnMXD7aenNHpiG2yKjvxN88s6puZhLRJ5TfmYV8GC+MdxSIMMM9YVrXswq92KtCTpPzTC/Tx7DC/NfTztuhZ7842l/pS4yV+MWpsf+yY1Aw+W3VtDvTNCrIzGxPnFfRR3JyVjIe0eC94YuvPnYWHXMOmMh7xsSvDd14c1XVOAVdJa2x+OZbuzxeKabejye6SV8mf3LcscQdXiYfKeNbYrq3IvyX9PXMMjEfnEY0jXEu1TbMQxyoFzvWTYr+4mKsl9XgPmR9izm68i/ZZSnTigVXm7ph+qlf635NN5zi7LxFuVOKBXWYJ4sqD6c4bdIlro+UW1Nx/zxvsNhIUtbxHEZVbU7jDvihKXKfhDkiuGoI9brHLE88zjjiHXYEeu4I9YBRyxPfZ1wxHq9I9ajjlj7HLE8dX/QEWuvI5ZnHh93xNrliGVrUGU+n8K2oUJbWvrzKR7PZPX4nW67h4gf54/b7kVCFvX5FM/TKj6qj5BR+m5yOX4+ZZCriW5HgWiZwM3oH79fTe9U1hAbP5/iIkA6M79hwu6EUmFDWfMz/FbQRd4JpUKWqpbqq0bL+2IhS5viYuCtPYsFn8WCj8I65oh11BHrYUesfY5YxwcU66Aj1hFHrAOOWDOOWI86YnnWIc9yPOmItccR64Qjlmfd9rQvT7k8y9FTLk8/4WkTnuV42BHL09+bXz1TU5pV+zSpPKolBceurom4nuh2JkRj3Iz+8fv19K6oq2uB1R6fefcEq5PVrYq619m6IcFrXKSzfFlXfDHJ3gmlwqmM8ExOfIf4rTA/z3W64soMlV7UIZeWti3i+OvxJYLPEsGnLeKOOGKddMTa44h1yBHroCPWXkesGUesRx2xjjlieep+UG31hCPWPkcsT/vylMuzHD3l8vSrnjbhWY6HHbE8dX98QLE8/cQBRywv3cfnUSesGDxtdVD7E55YC32AhT5AP/3qQh9goQ+w0AdY6AN0w/LU16Da6mOOWJ76GlQ/8YgjlmcdOumINaht7aD2TTzz6NmP9ixHT90/FfzE445YDzlhxedNjlhe8/fxueOEFcP9jli7nbDi83JHrBUDKldnQOVa7YQVg6dNeJbjmCPWhCNW2xHLS18xvNZRrmlHrEG11YX6eHbyOKj2tdAOLdi9kutBR7k8+5ie5bjUCSuGBxzl8my3Peu2l74GuT6ecsTyHIvud8TyXLfynJ/wnDfx3M9kcx180sv2fANjj3sC32h77lrwMgtzsUdrYmeEF/L0+A7xxwU/k6sl4sqcMHfgr1de/4c/e/sLM0pvsvC7IcCP/8YEvdq7aLpC31BBV4+rE+bw0vAY8Gv6UYrDfasmgzphbqymfGX0h/htQc8nzJUtC4W1oyaWnTCH/QKrO2dqj++Z4pPCUqfOGb3pY1jQI16T6J+Z+6T4961Tc/mpz+uCeDdE9DG8LP8dF3Hsq7BcK9h3s6yvYn9U0++e3hvdIn6cPyvXlG9U9YNP++qlrvUDq4/tzqKq7U4r9GQ7WUovmD8uyzEhS5viYmD9qzZpTPD5VsHC+p/6/qFMuSo+6A8XE5/FjnzQF7SIT8uRD2LtJD6jjnwQy053435EDJ1QKnxXj32kVerUNgsWh+Mxtik8LY7tAE9X5LLDk824r4onnaE9c2jQ36iHKMuOjbO4TGdhQvAp019N1cEhIb/lDWXG0xMfmNQ88SRBtC/svyL9E3Ay1+7J4jwW7aVtCtlj4JMIjX4/jZlwrqOCHcqTCA2rx372QNl4WTu2vEZ+J2raMfeNl4h8WNyEyIfy9TwWQf+8hOKw7Z+gOPSDtwEdYsagxvZ8SuJwIl8o31AJPqnPVYcEnz72n5eUaWMQ/0z3n3vsU45nYb4tqPEv16sxEcd+bDikx9Lsx34od0CefbLog98yOVf2fvRZsHx6nLsa79ZOvYPaqVGIU+2UycG3iZ+Eduqd1E5hei5frkvYFsZQNIcxDLjqlFSW7ydg3M2n/Ko8L07IjDYXwnyb57bV6P8Palv5hONOKBdU22pYXKeQrke+pU/JMvxWmF+/6/ivceJXVD/jOzuZNP9E/7rdd9175V179h14YGYIocP8HhNqBVHxXRbm5h7jGvSO6a6hv3eIdEFgx/gee2OVe0zcg8ceE/eA8Uz3VwMdB9UrsvzE2vbE6Cwu07GsWFarKQ57RWuAN5e54mN5GxL0SwhrXKSzcunGryHScas7ItJ17OH3b/3qn32g/cSRQ2/+4NFnnbf8rvc+8cdf+Nxvfuyn21/89Pse/uNnssxByFy0omDx6tdk53c8azPuiDUhsEw3uOupQn1YXtaTGX4r9FT/TnuyNvHj/HHelwpZ2iKO/dNSwWep4KOwFjlhxXDrAtYC1gLWAtZZwOKZCfS1Foft1A35r41aUuepqjPXFyXkw/RGV+ZA0ZrtTen7hAzf60DRCeJXpJce2+8lqfYUMU0e1Z7yLi4bVQ0XYFnaJtF/jWYaPOw66uwrNNOg+kFlyhlx22F+3q18zrTd4/gKZyQWL9M8i+4d4hkJo98LMxKjy+bKrGYkQoEO0IZC0HkaARlCqF5fYx7eu2GWD+bL8mC4LLOasbA7itTMUoPi0BZ4FrSojFZSGTUgTpUR3w1l9LdBGa3Jn9XdUGXuMFT82IaGC+gbJJ/Rb8hlwt0aSr7RAn5qFi2Gewr4TQO/O3J+yu7QjxoO5qUTSoXlyu6wPrPdqRn21OGK3eyUbRHtlHfoDAks1CnPFFr64aDrveE1iX67KPMydh4Dl6vRX1KyXJ38iSxX1BWXq9r9hPRlVlrUTi21qtQkrKbAQp1yuXary4bHdevZiXLFdrch5OJyNfrnlixXe+5HuaKuuFxVe430ZXbUIabJrVYSRygOfSLzUf4b9V2mzNV901zm14oy574/+4Vu7UsIc2ecbad8PuP8sv27987kU86BQmqKOD4vKRBjmUgfEliYJuU+cRK96J6F4aCnK9l9Gv0NQuUp9xuDMmXLjw0ValaZ0osWht8KunvQCaVCVtat8VRfqpqluuRnwVRjuKZAjEykD12w7G+8bqPMTdYp76ZUZb2LopYDb7pD+jsTLUfZtXWjVyNk7PUYvcr/BMVhutECPtiiob64RTP6XSVbNOPdjxYNdcQtWtkZdKNXI24c1fMNeEspHxinZpLKVkNzr+zqMK0aWan8NnrIL9sX6ncpxRXNpIQw1xaMrh+jYMwP24K6KV7Nphi9ulkc19K514pNKNsJlj+vxHTrdaVsAUeOPBOi9tWkRkBqzyHaMI/Kjf6U8AGGuaRL3sr4O+zmmDxqvxv7O/XNqrJHo+vRHpecbd/E/gftjPftqb15PPJDfePeH6VflrXq93mYHveiouw/DHb2axvm8uu2X7bIdt9+Bm3X5EnZ7sJ+7tmAeii7n5vtwXCLfJ+yebSlB2hWvQ83AW/NCM9kxneIP8g3AcfwENBxXEO8G0pgHXPE8rxx92FHLM9bTD1vtvXE8rwR9Ygj1qDe3ut5S+4eRyzP+uh5Q7GnfXnq65Ajlqd9DepN5p42Mai3Q3vWbc/66FmHTjpiedbHp4J9HXbE8uwD8BV/2F/mK/6q7hzB9GVWtVK3Was89vmKPxNxC9HtTIjGuBn94/db6F1D0GKwYsJhBqtKrVoo1aphftHCLg7hcaj30vy3jzdrvyUjvBD0UMzwB/lm7SzM/xRpUG5HPemI5XmT7yFHLM+bj/c6Ys04Yi3cOn32bPWpcOu0p8856oj1VNC9503Rnnn0vHXaE8uzbh9wxPLSfXwedcKKwdNWB7UP4Ik1qO22p+49+wCePtqzPzGotrrQbp+9Nm2hT14N66Qj1kKfvBrWQr/w7NnXIPYLY/DU16Da6mOOWJ768vQ5nrp/xBHLsw6ddMQaVB89qG2aZx49+76e5eip+6eCn3jcEeshR6z7nbDi8yYnrBh2O8rluT7kqa+ljlgrHLFWO2JNO2HF4GkTyx2xvHQfg1fd9qyPnnUoPnecsGLwqo8xfLvbV3wec8SacMRqO2J51sfXOso17Yjl5aNjGFS7H9Q8fru3td5yLfRNvvXbjhgedJTLsz/hqS+vPnkMDzjK5dnWetZHzzHMoLYdpxyxPOcU9jtiea5bec4zec5/ee4vLNoyjvt9cY8wH39v9N+VV8YerzR4oo/Xoj2REV7I0+M7xB8X/Hq9jvNDV7fGn7P1+b+ZUXqThd8NAX78pz6VTR3CWfPT5B8c8Os4f7CM/hC/Leg9r+N8aU2sMtdx9ntPv9Vl+2T8eXldjnLYp/tnWhb7DP3qAZAlZxteOACy2Cf/LxGyGL9uR5SYrSrZUwfGcr6qfvYzJPj08fuQ0bL+/lvh+5AY+MDhXtr9BawFrCIsPkLC8NWv8eF3zEcdR9Ht+qo9K2bTYLqig3dflf/yQZHPWzmbbl+OqY5gQxmVH8iC/saN6/0w4CINX19l9IfAl/P1VcOUZ8wny4jl2RT5ioH770Z/jPrvNa/Bk9dX8fEzaHPs62vyLX0S5Nm6fq/a9VVsiagVRMV3WZibe4xr0Dumu5r+rnN9Vc2e/Cazik0i0uI6gM2HIE1D3GKK2wxYrwY6DpxPzE/ErHJ9FZZVh+JwZDINvLnMW4KP5W1I0I8SlhpNWLl049cIxb0Sw1DpYnijSOPZmvTjOqs+XKY3WdYbna3L9NR1apa2LeL46++qB8Yh1pQj1npHrI2OWJNOWDHcuoC1gPUUxlIjiNSs3ivzXzW70SD5qs7MYHqjK3PYYE2/Pla2HTF8r8MG1Sxz6rBBdV1mm+JiYPtQ7dW44LOAtYB1trBS/cQy9VPxQX9g9epM+yscQ+Ksy1+u0DyLrsXhWRejvwxmXT6zYq7MKBfOjCod8KqTylOPh0GPxbFOlauSlF0h/Z35L9sV5l3ZQtlr1J6kMmpAnCqjO/Nfvs9jCsroizQzhrP1fJIAjpdT/NiGhgU94rEN/QvMjKWu6Bou4Fc0U3htAb+vAr8zcEXXpLI7rM+9Ho6WWi3uZot85Q/qmMeDQ4IP6rvMlT9KvzyTO5LbK9oD9wHZNorkU3pzvvKnVSDGUpE+JLAwTSpLOPFY5sofnOJhlZ82DaHyVJHFsHDlz7fclT9XF4iRifShC5b93e3KH25VUipWqjJvVdSq8Nq50W8SJl3GY4Yw37OkZtxQntSVR+qKgeECPkWX2HGLZvTnQF5TLZrx7keLhjriFk3NEKgeutF3u7aBqxpfsoxxqOMql5DGUPbKH+6pKXtpJPKb0o+yLyy3JRSnRunKFuxdP3rVmB+2hVTZxsC6aQt6LG8eDeG3OWwnWPf4pr6yl1gqW8Ce6F8WrGcjLtoCry8vBizVm+NrU4z+KuEDDLPVJW+sc7WvDbs5vH8Iuxh8HRDKjqtFhs2YPdrjqLJHzD/bYyqvMZTpbfNe1RiUzS2mOLU6V9ZuUtel4B4K21+h6qa14dZdm6R8dEKpsD4jPJMZ3yF+K8yvg3W6a+r6MOVLLO/LhCxtiouBv2tV144tE3wU1jFHrKOOWA87Yu1zxDo+oFgHHbGOOGIdcMSaccR61BHLsw55luNJR6w9jlgnHLE867anfXnWIU+/+lTQ/WFHLE8fzddZYH+Gr7NQfYfJBB9MP1kCKzWmUXns83UWJuI6otuZEI1xM/rH79fRu4agxaBurSwzdZDaXKA+STpTt2P2sYt9MiM8kxPfIf4gd7GzMH+4MyhNwUlHLM8m/ZAjlmcXaK8j1kL389vDVhe6n9WwFrqf1bA8u59PhakLz7rtOd3gpfv4POqEFYOnrQ5qH8ATa6HdXmi3v1XajoV2e6HdXmi3vz11P6i2+pgjlqe+PH2Op+4fccTyrEMnHbEG1UcPan/CM4+efV/PcvTU/VPBTzzuiOW15SM+b3LE8ponj88dJ6wY7nfE2u2EFZ+XO2KtcMRa7Yg17YQVw1NB92OOWBOOWG1HLC99xfBaR7mmHbG86lAMg2r3g5rHb3df6C3XQtvxrd92xPCgo1yefTlPfS11worhAUe5PNtaz/ropa9BbjtOOWJ5jvn2O2J5rul4zgN4zk/sdcSyOQU+pvgD+d7FHo93fH3q4LceD9l5fUZ4IU+P7xB/XPAzudRBbmWOhX/7Lz791lNDt/1TRulNFn43BPjoD5Fe7cUzXeH4ooKuHlOfZxlvdSw8f2aIezBNBnUs/ERN+croD/Hbgp6PhS9bFgrrxppYdiy8unpgIsyvS2wP6rO+VkLmIcGHj4X/YF6X1fHnZ0oW20f8KwMgix0L/2tnUZY+XpdR+vAx9n01ffzpfcVlP7tM+WFVF/lwqF7q9QLWAtaZwPI88LYditsU/lQ4Bjxw6q9XzabBdEUHLN2Z/zaJ/sia2XR/m2OWORqEfUoW5h6lwO2spcej2JGGj2I3+r8HX85HsY9SnjGfLCOWp7omJwY+it3ov0B95pqHEMuj2PnIEfV5esoPp67DUeXXYx4qHw7OB6hNQxwfSL0Z4vjg8C0Ql1HcVohbT3HbIE7VRQsN+ht1FGX5vXWzuEwXiCeWYYfisG2cprg+XLmyvYxPQvxBv3KF56wG5Wq6445YDztiHXXEOumI5XmV37EBlWuvI5bn9Y6PO2LtcsQa1OswjzhiedbHE45Ynnbv6QsH9VpTT5/jaROHHbE8db9nQOV61BHL0yY8+yYnHbE8y3FQ/ZenfXnWx0H10Z5YnvZ1wBHLdG/jdHXZU0ZxyGc4wQfTDxeki884H8XjJqOJoccxfukTffmypMX1+CUvS1LlU/WyJD66tezYtKpcjkfAmIgXEt2OAtEygZvRP35/Ib1rCFrEVqdE8hRV1RtoMX3qptvRHvmMCj59nHYZL1uFzta0S4+3wo+Vcakoj7qXhqulVdmiA9F5itjoj+V7adphfnWte/9I1Nmh1XPpiu7n63Y3xGOr58qwGOIalBbdPJ8ae2r1bLrXw7Od6B1tXC1zch2tuszZEPlWfEZ75KOWQRhL6SyG+/JfXt74gVw3UYdFJ+0OFWDyEoY6dkpNvxt9t5OxWZdYNyZK8EZdcrvQrijrUkGPW1L4eC6Ub2lFWW84w7K2hKzjgjf7fsxXP7pPht8Seajj+1N6+YZg+W+1m2/57G3UCqLiuyzMzT3GNegd072A/q5z8+0yet8JpULlxS0+TG4a4toUtxmwqt58a/mJXqzKzbdYVh2Kw8XIaeDNZb5U8LG8DQn6ScJaKtJZuXTjl6rdhqHSxfAmkSZ16F+ZWhsDD0ImHbGWCSyzadx8XMGmV5b1RobfCj3VodPeaDnx4/xx3lcIWdoijn3MCsFnheCjsKYcsdY7Ym10xBp3worh1gWsBawFrAWsklhqMm4ZxWH7yTcFq1saM4pD+VI3iWL68QSfRT3yWST4qHuXsoJf48PvmI+S2fLDbTfmp+pHJZh+GeUHZ3925r9Rli+s1jxx9I5p78x/m0T/Wtic+KXVxXlEPVu+WOYe76oZj/LyXTXYx2G7UfUH6e/Kf1WbzRugsKwNo1sZ/BuVgbqvbLGQh+8r2wllkOXP6i4hPme926T5XURv5VR29u80fS5TpOUbSTH9kgJ+qA+U+d4CfqPAL3V/m/Hu0e5WKrvD+sp2V7bfXcZOUSfKTnmWSs0Go055lsrSDwt6xGsS/UpR5mXtnMvV6NeULFcnfyLLNXUvn5pNVO1Qyg6wvEwn7TC/zItmXxELdVqmXBcLfC7XLYlyVbPmKBeXq9GfU7Jcne7Yk+WKuipTrmpxMdV+Y7maTtRHx3xLsPLRqVllVa5oK+yjjf6yRLmqmf2UHzb6pw+AH07dVafKNXVXXbdyZT+M5co3Q6tVhro+Wq3KpXy00T9PlDn3+dkvFMmn9OZ8M/TSAjFWiPQhgYVpUlnCiXlWuWV3OOgpUFa50V8jVK6qKcqzsI+k/D6Sqs1iH0w1hhcUiJGJ9KELVkZxylRxhSd1syq20I/RaA1NiEcKyvOpnr/RW/Uq6l0YXpPob0m0Qt1Ga+ytVwp6rPYmj8r/SorDdEsK+GDriPri1tHo7yzZOhrvfrSOqCNuHfEGrYagZ32vFvR4yxfPKuHxKqkqvZL4dHMdbP/KTtXoW/XGG4n8dhuVsX2p43MmRLrUTInR9WOmBPPDtpCqSzGwblK2g7pph+52gvWyzLFDZW0BZxd4Nkw1G2gLRUdUqJEP5p0/Wz0ufIBhqj0a6Od73cuijvZI7RlS9mh03+q3nlue2kSPelJ7oLgt6GY3qVumcZTFn46vFbiqzTf6KcBqEEZ8tqOGmkT/loQ9rhMypGY31gv6dUBj8kyQDJh2QqQzX6Hs0eh6tMcJZY+YH7bHDRDXEPSsm42CfgPQ8Aw/rjZPURz6Tv60GvmuBdlf0Z5LhzszsoJfk5XfsayIxUcyLHPkg1i3EB+s7zjj/u41s7isEzWMM73zsT6/BjPuP0Uz7pie+7kW9z6oZz+/sTi96XKC/lb+HPsXfESvyifSrynI5/tBzg9DfQhB7+zpsd61Vb1D38f1bgriGoKe652qp+h3uO+BdbJNWKpNQZtkn2w6Gg66DAyvSfS/kpilwXZ6Lck+VlH2smNISxvL4p/zBnAizG9j1hFP1YapsmqH4raCsdS+YPaXWI6NoNtDpjebaIa0f+b282NQVh/cqDFDgQztApmHC+inSAaj/53EGFr5AdXush/4fcC047rKYk4WYP5hoq+h6in2P7hebxL0WF4mj7LTTRSHsnO7uAH4M+0E8cc4tHPmGxLycpvaTV5ubyzu76G9+ov8eYTwKvrqRqqszhfyli2rdiJ/jGXpmmG+PabqCOrjb9dozEUVMT8n2nTVV7kN8P++oD8SA/dHYmC/jD4D6+G7qU+C8i8l+c1u/6nkfJRh9dbWZ3+h2noc15Vp65GefYIar6AtpdobHg9i/eMVdTUWLduWTkBe9y7pnl/EvTvo/Bb5YS730/nNC1T5YTWGS+k8NQ5Sfhh1voHilP9U9mh0/bBHzzFfN7/H9oi+bh3FYX3mXc3d7CZljzhvcC/17ZAP14Fu5V6ki+ECevbrRr8SbJX7Nh0hQ+r432lB3xEyT4T55TFNcZhuXQEfrJeor2vD3Lwa/XpRL5X9d/LnHsdek8r+UUds/5shriHoWd9bBP1moDGdtIkeda989TTFoW1y3VD+rGzdsLRRD5eQry7bBmQCS81Hsq82+u0JX63qYMr+u/kjnhNGXXIfFNNZ2ShbNbp+2Crmh221A3ENQV/XN7SJHvWkbNV4dusLrCrRF0iVbdm+j5Ufrveuozg1lkvJNSXkUrtKphJ8JnrkMyH4jIt0WcGv8eF3zEfJrPo2nB9VPutK5mcd5WedY36UzN3mVF+8djZNkW/DtNzeGf1r1s6me2n+rOZE2W7K2i5vDVkHOlA++wbIfwj96HOGRWe7z8n9SuzjlJkzRNvDttNoAsnYD31hfWZ9pfxgDGXGL1gnTAdqfniS4tDepoiP1/zr58e7yz+ZyG/VuZiyfQD0uYYdwrdXH4BtYRriuA+QmsNSfVLlL7mM0b9iufCaldEfSvQdlR2k7KYj6DFfvH6LttGhOJQ91Xd08iEDbTc8BlJ9x7J2k5orxDba2u9UP9eeVVkjfaMAZxPhsN2NwntMx/1NiwtAr+yOy2K4gN7weOz97xPzDNNdZNhAMmzuIsM0yWD0TwgZUvqPYVy8y/LfEcKvWG+aGeGZPPgO8VtB20cnlAoZ68/4KTuIwfK+RciSmlPIKA75bBF8FNaYIxb2LXsory2sDwwWtxWwOxS3DehvpLhzIO4WwODQoL8xP9Guf2njLC7TsaxYXlsBn21sWqSdFthnqz5M1+OXrA/sk2KoWh868LxQH+Zf/TBo9aEDcSa30lEIpXVUqr5g2VTQ/3TZ+mL4XvVF2Z6qL5a/rfX4deKc7WiY76tw7gZ1h3w2kwy9lh/vLUDsM11+NfcXJMtP9b89y68DGFXKT60H8TxKJ8zPT0fkR+1FNrpUP69MOSk+HSGzmmPEub8/pLm/zRCn5oh47s/oPwNzf39Cc384BuqEuXFoW3gtF+fZ6HocOzbU2LEDBDx2nMbEobisWX9Ij/6Pywz9BM/l4fxTh/ioebGy80+4z+D941r+DHA3irRct5F+s5DD6K3O4RVlSGNpm0T/ORhL8RVlymZRLp5PMfp/SMynGN8QQqm10W2CHv2LyTMR5ut5G8UV9ekNO4T5fQbLn8VVaRdUncD8cJ3AvlJD0LNuzhX05wAN2/25ELeZsLh+xXCtwErJuqkHWbkcsazOJSyjRbvE/LBdGv3XSu4bMJ33o/yxzS5T/mosUFanPKZBPW6luA7EbSE+yvcWrW+wraAP+UNqv1KndqhvDtU3rcqnG52V/+n1h7zM1V7dSZBT+f1rCzCXASb7OpWH1CkK3b6bTK1Nr0ikw/nqEcGrYw9fSwfDs2/2Fgtehsvf9E6Bnq7eqGXJWJ4uQZ1klVE+8dvKKn3ejPBC0H16w2+F+bqo06dX35Mqu7f8rarHbxP26dGOsE+PukM+Vl7q2yXsA2+l+qDqWOo7D6O/YGo23bkFmCFU76+hPF8anYvr/U295VPV3TLf1E+E+WXCZwusgvw0BD3vnTL6y6Fupr5l8vnePvuCahfxu2huF1Pfz8fAZbFG0OM39aaTNtFzuRTZF5Y198PV+Q4rBT6f7/BcKAP+lgm/pV1Fso9XlF19h8X1mOsG12N1FXXq5KUlgNUQGHfnv3wKzwsSbWu3fYVsE92+czZ5JsJ8nfNavzrZSNUXo+vHuizmh+tL2bP0U3aivqdUe9WWUBzaI8+VYB8NzwX4WO57+SyY+Bt11gnpsO6XZn73ez75uU/yFdUB8jraA/73Xt6c/IFbrt/RL/zfXfzfv/Sxj+76wX7h//XIDVcP/Z/fv6lf+D/8pRc/4/Vrtny+G3604zfDDQBoP5jO+jZ8DkEnlAqjKL8F1Xcz/FaYX+fr9N3Knr2g9h1YWp7bjOFWoCvyZap+L2AtYFXBwm8FY/g+6Hcfo9NpsR7xWR+ZkCVLyMLpY7A6gnfC8VkGi0QeLG44Ebc4ETeSiGsl4tTZJxaHfZ2dFDcuMGO+3ppPovA4NoZOKBX+0eTBcYH5tkC4pnvV11bjKTUeWU1Ya7pg3UBYmH4NYXU75+VGwsL0/I18t+/AXkpY6htXw+q2XsCnwmN6S8vjsek8IpbXD4OwmIbLMoY3EJ7RviPHMFvCvWAV2rnA7Tti8bk9TIe/Icxvj2Ngv4BYryQ+am9/j/kbKyMn4rdIlrr9htR5QDFwv2GDkIX3XcfAbYTaA71B8FnAWsA6W1jqW49e/UjRPmr0uTHg3OUv03yD+oYc096Z/7LvHQVf/mHqQ6Hf4H3hKDP3j5S/WJ/I/xLBp9967setZW2BtRPo4z91fhj60jvzX7X/fiOlK9q73Ah6Db/bNyMbCaObDf7elM6bskHk1ST6z0M//r+RDaoz0pR98jx00U12RfaJZXYn0avzfJTN8ncbfyrmTDNKr74FiYHX84z+zxNzjsq/peYcu51lx/rGPPO5S0MCC/PDc65Kp+rcAdbpZxLz0A2Rfhx4WtxKisN5nNUUh3MgaygO5yDXUpz6XlbNY6+iOFyf47ZArbtE+3nTutn33ephDHfmv1wP/ylhW8p3pM516gj6TSLfE2G+PXUoLvV9UgfiuB2azv9GPXRArlflv/wNyVdKrjc57U0bPdvnN3TyZ7WHm+u58hkdeMf1XJ0X0hH4fF7Ioty4VD1HPzFNsi+pKPsqITu3e1ynfi/RT+K2ZkOCJ6dFPsOhWhvaFvrKiEfZc0yMfhlg3lHQ1mO+Um2N8h8bRb6UTlPfq2J/0bAZsx9nHGP+uX6m8hpDXV+p9kLxHjr1PSnbAfIpa/9oQ788NZeuX33nVxbIgxgjQdfBTigVSs+pGH4rzNdNnTmVbmXB/Rc1RuQyj4HHvFXHYgtYC1hnGqvf56FwHxvnbXE8+3zqR6v9Spj2zvyX58d/AeZUrs6f1Xi2zHkwPc4Zl15rXpgzXsBawDp787z98H0xlJl/VHMDgzT/WOSv7y8x76HGAzx2egf46wfJX2N6nntQvjw1N1nWN95J9GquTM3N81zZ/opjwtT8o9EfTIwJ+z3/iHk+W/OPxxPzEktE+kGff2xQHM4/cr8J5x/Rfmz+Ue2JuY0weKyMccMQx2fY4f1PvG9zBOKWUhzuGZykONwTw7ev4zkIfCs47iFdAXp4K+kBy7xJGDgXsTiR11GKwzq0iOJQtyMUhzoaozj0ccMUh2XSojh1O619s9HNH8dwZ/7L/vidCR+j2pDUXvuOoOfv2mPwnIcuc45wB+Qqmod+N+hhYR56LtaZmof+uZrz0Osqyt4Qsqv6iXXq/sTYskyfA3FXEb1qH1VfiNvHX0r0OdR4OtXnMPoPncU+h1oDOEvn38l5aMw/189UXmOoOkdveWqH+f6Q56jV/QBsB8inrP2jDdl8Td3vAv6XX79ox+df+g8b63wXgPtwLZ3N1aA8Fcr3V1F+C2quxvBbJEtFfqfnatTdh5g//qZztB6/D2eUHvkhZov4jdXj1+D1CS6b+M/6mcMFslhavnPlM9TXGxdp+JujGHiuAuMa4t3QWcJSd5iiHvH7qD+lveCs404oFS7nfrlhIHZNW7i5bN0y/FboydZP1y31LSLmj8eJ40IWVV73A12vZX9iQLH2OWIddsR61BHLU18HHbGOOGIdcMSaccTyzOPRAZXrYUcsz/roWY57HbE869BxRyzPcvS01ZOOWJ72dcwR6/WOWJ52P6g+xzOPjzti7XLEOuWI5akvz76Jp30Nar/Q0+4HtS+3xxHrkCPWU6EvN6h279k3WWjTqmENal9uUH2hZ1/O0xd6lqOnvga1//UaR6xB7X/td8TyrNuedchTX57tkGcdGlTde/ovz3m5QZ0b8rQvz77voPYxB7HtiM8tJ6wYrO2YKMDGZ7U22krwyYTMDcEH9yiM5+9wrchwRsJ8XVRYhyp915Hht0iWivyyVPmoe48t70uELGpfJZdVap0S+SispiMW771oCiy17pdReqRX+hoLs/sfD+y/74H79h++aubuA7uu270rUGjS31cViHgT0d1YIFpD4Gb0j9/fRO8aghaxJ8L8ohkukDsAHr7jYsL0zQSfrEc+meAzLtJx1UbTqVDVzi9btQ2/FebnuU7VVqaq9GJ5bwlZ2hQXw26gq+N6Me4RR6yDjljHHbFmHLEedsQ66oh1xBHrhCPWMUesPY5YnuXoqS9PW93riOVpq/scsQbVT3jWR0/dD6qtPuaI5WkTnrbqqa9HHbE8fbRnH+CkI5Zn2+FZhwbVvp4K/qsf7ZD15fFoavwUd5iuq1oEcQ1KmwHPJtEf3DCbrkWfOmTA255HCC8LlcY02zPCC0GPoQy/RbJU5Hd6DDVE/Dh/PIZqCFnaFBfDg0DHcQ3xLoV11BHrMUesI45Yex2xZhyxTjpi7XHEOuSIddARa1DL0dNWPeujp1wPO2Ltc8Q67ojlaRP7HbE8beKYI5anvjz9l6dcJxyxPMvRU65BbTs8y9FT95512zOPjzti7XLEOuWI9VRotz3rdj/aWltXw/HYCPFRY5+hBB9Mz+MiTJflvyMknz13QqkwlBGeyYnvEL8V5ue5Ar8spX+lF15TxLRtiouBP+1VfDLBJxNYKbkcl6ZNxAuJbkeBaJnAzegfv7+Q3ilVILa6WWxE8LKQUm27IH0M4wk+yuxtGmY06OrHy+dVqx+mtzjFJ+uRTyb4sF7VdFIM9+W/fEPcY/kUEp4c0hD8EKuMa6m5ZF96Nw4v2ffqWtSSfcq1DAtZ2B5iuAPoOK4h3qVsq+GI5dQULDJ9LBKRSlesR7SrGykOT9i4BTA4NOhvzE/E/6WNs7hMx7KijZncqi7ztpiqdRnTDxVgqZsTY7gN4pHeTr7psUwvUGXK9jJcE7ts/U6dssZ1n7cvdUI6/G9Xvr313NvuurhqPTL6xYJebe8xXdU8fea8ceARiLfFqW1gFqdOu4vpLyD5FteUr4z+EF/5R+56lS2LyaDbmRjwxBrEMroAMjUhTvFpEv1/huWXn6MT57gNsXcfStBlBb9KZpTH3rUEfUPQG+9RQW9xuJsS9Yo0qC/EakE80v9Knne+SR3TtwV/rDOhQO6i3aKM1RDvjD7m8xc2zM1Dzb5L1ssN3O9/xvZnL3nFOY/164bvJb/xiy/59L/sOafOSV5qa2ZZey1q92K4Pf/tsU0ZUn4slE+flWnvavrwr5Vt7wy/FbRf64RS4XR/doT4cf64jWrV4/dv8TRZO9G0aEyFukM+3JY1RBrVzhlGTD+9aW4+ao4D/q1HG/xXXoaOAZf/P0HL/4shjqeSuA+I9J+C9ufPwLcarqU3feGYd7GIt79N30OCFp9Vf0HpDemtvIpOyhymvBr9Z2BsunNKY5bdPmH0nxXjXcNUp+6pOmP0qZPLUB71Fc0YpUPZsU3nd6p8MqJFGWK4XchU9HdL4BTJMCJw1PimRbKq/jPWm9TpllhvPgFlaW3WiODfz/FsRnGYt5uAjoMas2Jf86PUZwwCS+mHx00ebbe9XwTvmW+DaIeJlr/+QRl76Q9z/2KRkMH+XpyQPyOc1OnjXN/Ub1l5MyGvakt65YNYN+e/PbZ561JzrbEc2htncYvaPNVn4DZvxcbZdMvy525tnsVxvy2GV8A79uncD0KMGHh+3XzkMOAjzQjlyejX5vnAtk35EMOKeV9H+hyBuFQ70iT67wR9biR9or74UzD24wH+HgVZkDaG2wt0cA7IsWVjMS8cpxblMWKct1HToQxIxxh12zXVv+K6W6Z/xXUV0yke7I+L2m6zjbEu8eqE4SDeDQn6kYL8BsG71QV3scBR/r1FcZmIY9+D+UW/xX0O9Avot9qJ+pKFufkapXyNJPKViXRcz1H2xQnZlf7Qf9SdQ3jjX37tT77/6Np/7NccxXPfefB7x5/xMz/bL/z3jf3+83/5nSOvrDIHYuWsPpFl21JzsTHcAvFI/+K8PHqcYwicH+U3UuMzngtl+W8skH8X+O8bqV6o8YmqM0Xt76KSshj9zdCe3gHtaQh6/NDjTQNNddMA+jXu7yp/qz4xMPpuY0vTSTvM96/MW61tok65T2M6Gg56fG94bA93QxnwTSDKN1uc2gqj2kJeZ1XrY5HmONWrmv3bxaofYYHXKDGP6rNuXvfkU9MxDsuS5/sxqDGk5TXKfKLEuqfyD1xf1bxKqr+o6p3hD1q9M9tvh/nlwvZW1oaL+nOKH+oB22qz4aI5eazTOOZ6HY0RhiFOzWmxPzX6t4FvP0W+HXXM9qD8BMsSQrn9CmosPy7SWbn0uJ65CMsX5cR3iK/Wn+vM1au+aWquvmY/ocltLPJT5bA0aJ2q+XweK6r5ntQ4KeVPVP3juqnmEVQbkhrPGW+cMy/Tb1J1C9NyO/m/Qt16f6LfVNQ3CkGPA5g+5ftQVqX7UYpTY397HkvwUXKlTj5ScqFPxrTMu1seyrZVTn3ERaqtwjLhOqL0kjoRSZ3GhKdgcR1Rt9NUbdtGKU618d3atvcXtFGYD/R/PL5VdQzbvrrjw+/a9gNr1v3Ww+P9Gn8uaq57W+dn7ryuyvhT+ZUhwkU98Hx7DC/Lf8usc9dsO0vv2+S2s9d17rJtp+qvc1uA8yy8L0nNwagbwM4UlhqbcFnW7CeU7gfxnoWatpPcs6DaNzW+4nEjtj+s/14+9x9ELKz/qf5xmXJVfFSfvt9rd0U3/nrwUUc0qD3HvfJR+5fVuiyO3z5DbaOaD8O0RfNhSzbNpvvsxrk0JvvnoB/6ZZozwTxXqMstNSa3oOY+2G5VP9DisG/D9oF9G/4WZAJkwL0QHNR8itFFfk/bNIvLdBZQl2W+h+F9phnh8dyx0X+FyovX4juhXFBzx4b17WQLdcr7/hLlrco49d0Aj21SY1M1J6d8ZZF/Q3zlk24jfNRHao1M5dnS4tp7ynex7SP9UvBdGzfNlVGNaZUPtvfd5tFTa9yWtsdbXcfYnjEoe+Z6oE7RZd+m6kEb4tgnLoU4Hs9gUHXE9FDFJ3I5qr4Otms85lPr7theWv7q7iHOANNksryjXPyNBdanJr2ruaf2tO7U3hLsb/Hcm9FfvmkujtoDo8YbRq/2zjcEX/WdxVhFrBHCWtwDFs5bMP3imnIprGHCUt9gqH57LLttedmcyXXm76Q90jXHhWdtnflGaA+eu2kuvzO9zvz8nP/COvPZW2e+HsrgbK4z30f16qm6zlyln7ywzjy/XM7mOvN9Be1Rt3XmB6k/V3ed+XHw7XvIty+sM38zLKwzL6wzh1B9nflNULd+NNFvWlhnnu+TF9aZZ+m/VdeZf7SgjcJ81FlntrbvfwL6JERJ2tIEAA==",
|
|
2388
|
-
"debug_symbols": "tf3druw4kp8P30sfz4EYQUYE51YMY9Aet40GGj1Ge+YFXgzm3v/JkMgna5eTSytz1Unvp6tqx6Mv/iRRkdJ//ul//uV//Mf//pe//v1//dv//dM//7f//NP/+Mdf//a3v/7vf/nbv/3rn//9r//298c//c8/HeN/irQ//bP+0+NP+9M/t/GnX3/G9Wc//9Tj+rNcf8r1p15/1uvPdv151dOrnl719KpXr3r1qlevevWqV6969apXr3r1qlevevWq16567arXrnrtqteueu2q16567arXrnrtqmdXPbvq2VXPrnp21bOrnl317KpnVz276vlVz696ftXzq55f9fyq51c9v+r5Vc+venHVi6teXPXiqhdXvbjqxVUvHvV8/BnXn/38sx/Xn4965RggE3TCo2QZx0p/1Cz5H9sEnxAT+glyHBNG5RggE3RCndAm2ASfEBP6BeWYMCuXWbmMyn1AndAmjMptgE+ICY/KMkCOCWWCTNAJdUKbYBN8QkyYlXVW1ll5DCQZ22eMpBPqhDbBJviEmNAvGAPqhDJhVq6zcp2V66xcZ+U6K9dZuc7KbVZus3Kbldus3GblNiu3WbnNymOIydgFY4wljEF2QpkgE3RCndAm2ASfMCvbrOyzss/KPiv7rOyzss/KPiv7rOyzss/KMSvHrByzcszKMSvHrByzcszKMSvHrNxn5T4r91m5z8p9Vu6zcp+V+6zcZ+V+VdbjmFAmyASdUCe0CTbBJ8SEWbnMymVWLrNymZXLrFxm5TIrjzGoMiAm9AvGGDyhTJAJOqFOaBNswqwss7LMymMMahtQJsiEa3Sr1gltgk3wCTHhGt1ajwllgkyYleusXGflMQbVBviEmNAvGGPwhDJBJuiEOqFNmJXbrNxm5TEGdeyCMQZPKBOuPNQxmuoj+XWMnTo23Rg7J9QJbYJN8AkxoV8wxs4JZcKsHLNyzMoxK8esHLNyzMoxK/dZuc/KfVbus3Kflfus3GflPiv3WblfletxTCgTZIJOqBPaBJvgE2LCrFxm5TIrl1m5zMplVi6zcpmVy6xcZuUyK8usLLOyzMoyK8usPMZObQNsgk+ICf2CMXZOGJVtgEzQCXVCm2ATfEJM6BeMsXPCrFxn5TF2qg+oE0blGGATfEJM6BeMsXNCmTAulsoAnVAnjOslHWATfMK4BBvLk9eIA/IiMaFMkAk6YVQey5xXigk2wSfEhH5BXi4mlAkyQSfMyj4r50XjWMG8akyIC/I6sQ4YdfqAx9+yscpjfFn+K58QE/oFY3ydUCY86tg4Esb4OqFOaBNsgk+ICf2ENsbXCWWCTNAJo7INaBNG5T7AJ8SEfsEYXyeUCY/KfgzQCXVCm2ATfEJM6BeM8XVCmTAry6w8xpeXAW3CqCwDfEJM6BeM8eVjBcf4OkEm6IQ6oU0YlX2AT4gJ/YIxvk4oE2SCTqgT2oRZuc7KY3x5DOgXjPF1wqhcB8gEnRATxt8a+2KMlBirPEZK6IA6oU2wCT4hJvQLxkg5oUyQCbOyz8o+K48BEmN5xgA5oV8wTlInlAmj4FjBcZI6oU5oE2yCTxiVx5qOQZQwBtEJZYJM0Al1QptgE3zCrNyvyjYGUT8GlAky4VG5lwF1QpvwqNx1wKNyrwMelbsN6BeMQXRCmSATdMKoMxZjDJkTYkK/YAyZE8oFmneaMkgW5b3mWKRxSJejDfJFsahPGof1RWVSy382lqyVRbJIF9VFbZEt8kWxqE+y5bDlsOWw5bDlsOXIC6zjMZjM8+/GoPF3x222jaP2orpo/N0y9tmI+It8USzqk8ZRfFHWG1s38u+OrRv5d8eyRCzqk3r+3bElczbgJFmki+qitigdY91yTuCkdIy1zFmBQZ7TAidlvT5o/F05Bvmi/Lt10Pi78lgjzxv/k8oiWTTqiQyqi9qidOggXxSLlkOWQ5ZDlkN0Ub22s0tbZIt8USya+8jzuB97xrVde8bzuB97wdUXxaJ+bWevx6KySBbporqoXfvDqy3yuRdqLFr7KMdM7pkcH7k/2tpHOT5yz+T4yK3R1vaztf1sbb8cH7kXbO0jW/sox0fuBVv7yNY+suWw5fDl8OXwtY/yKB43WJ5H8UmyKJdgbIM8ik9qi2yRL4pF/aLIo/iksmg4tAzSRXVRW2SLfNFwjJvUyKM9KY/2k8oiWaSL6qK2yBb5ouUoy5FHu+qgskgWpaMOqovaonS0Qb4oFvVJmg4blPXGttK6qC2yRVmvDxr1xq1o5AioY1vlCDipLJJFwzHubyJHwEltkS0ajjrWI4/7cb8Ref4Y9xmR5486liDHQht/I88fJ9VFbZEt8kWxaDjGzUTk+DhpOMble+T4OEkX1UVtkS1KRwyKRX1Sjo+TyiJZpIvqorbIFi2HL0eeZ8ZdROR55qSyaDhs7K0895xUFw2Hja2R56NxMxF5PjopFvVJOZJPKovSMY6rHMkn1UVtkS3yRbGoX9RzJJ9UFskiXVQXtUW2yBfFonQ89lbPkXxSWZT7ow7SRXVRW2SLfFE6YlCflCP5pLJIFumiuiiXuQ+KRX1SjtqTyiJZpIvqorbIFi2HLocuR12Ouhx1Oepy1OWoy1GXoy5HXY66HG052nK05WjL0ZajLUdbjrYcbTnacthy2HLYcthy2HLYcthy2HLYcthy+HL4cvhy+HL4cvhy+HL4cvhy+HLEcsRyxHLEcsRyxHLEcsRyxHLEcvTl6MvRl6MvR1+Ovhx9Ofpy9OXo01GO4wALKKCCFWyggQ4GiK1gK9gKtoKtYCvYCraCrWAr2ASbYBNsgk2wCTbBJtgEm2BTbIpNsSk2xabYFJtiU2yKrWLLRBjTJw8UUMF2BdkDDXQwwL6wHWABBVSwgtgatoatYWvYDJthM2yGzbAZNsNm2AybYXNsjs2xOTbH5tgcm2NzbI4tsAW2wBbYAltgC2yBLbAFto6tY+vYOraOrWPr2Dq2jq0vWzkOsIACKljBBhroYIDYCraCrWAr2Aq2gq1gK9gKtoJNsAk2wSbYBJtgE2yCTbAJNsWm2BSbYlNsik2xKTbFptgqtoqtYqvYKjaypJAlhSwpZEkhSwpZku0nZUx0luxAmajgsI1J25KtKBMNzFaKlhhgX5hZcmEBBUxbT6xgAw10MMC+MLPkwgIKiM2xOTbH5tgcm2MLbIEtsAW2wBbYAltgyyzx3EOZJSdmllxYQAEVzBaVkthAA7NRRRID7BPPRpgLs/El266OVeFqdTkxwKwwduzV8HJiAbPpxRIVrGAD0+aJDgbYF2YSjJnski0uZUw0l2xymehgbt/zr/WFOeYvLKCAClYwW3WORAMdDLAvzDF/YQEFVLCC2Cq2iq1iq9gathzzPXdWju6e+zhH94UGOhhgX5ij+8ICCqggNsNm2AybYTNsjs2xOTbH5tgcm2NzbI7NsQW2wBbYAltgC2yBLbAFtsDWsXVsHVvH1rF1bB1bx9ax9WXLFpuJBRRQwQo20EAHA8RWsBVsBVvBVrAVbAVbwVawFWyCTbAJNsEm2ASbYBNsgk2wKTbFptgUm2JTbIpNsSk2xVaxVWwVW8VWsVVsFVvFVrFVbA1bw9awNWxkiZIlSpYoWaJkiZIlSpYoWaJnlmiighVsoIEOBtgXnllyYgHTZokKVjBtNdFABwPsC88sObGAAipYQWyB7cySSAywL8zWvPFssWSD0UQBFaxgAw10MMA+MVuOJhZQwLRZos2FrGc+jFNoPfPhxFEh+3ezvWiighVsoIFjeccDq5KtRhP7wmyXvbCAAipYwQYaiE2wZQPteFRWsgVpYgHTpokKVjBtNdFABwNMW27qbOnLjuZsQ5KSmzqb+C5soIGjruTmy4ZaybXIllrJxcmmWklbttVeKKCCwya5ONlee6GBDqYtlze7ayUXJ/trR8dlyQ4l0Vyc7LHVVGSX7YUNNNDBAPvC7LjVXIbsub1Q1+F5jvkTG8jx6w4GuEZhPcf8iQUUEFtgC2yBjTGf7U6iuc2yGffEHPMX5grlf5tj/kIFK9hAAx0MsE/MNqiJBRRw2MajrZLtUBMbaKCDAQ7beOhVsjVqYgEFVLCCDTTQwQCxCbbMh6qJAiqYtpaYNks0MG2eGGDackNlPlxYQAEVrGADDXQwQGwVW8VWsVVsFVvFVrFVbBVbxdawNWwNW8PWsDVsDVvD1rA1bIbNsBk2w2bYDJthM2yGzbA5Nsfm2BybY8vm/fGI9oEGOhjgOsdml9fEAgqoYAUbaOA6o2eP1+PmMHGdpbOrS1qOwsyHCw10MMA+MTu8JmYruSSu7WvHWmM7AuwLzzF/Yrana6KAClZw7U0r2IqDAa69aXKABZS1DOeYP7GCDbS1DOcPak4MEBtj3hjzxpg3xrwx5o0xb7qOHVO2pLIllS15tvnnMlS2ZGVLMuaNMW+MeWPMG2PeGPPGmLfGfjvH/IlsycaWbOy3HPMXsiUZ88aYN8a8MeaNMW+MeWPMG2PejP1mbEljSxpb0tiSOebHs+ySrXATc0u2RAUr2MBct1yGHPMXBtgX5pi/sIACKpi2XMgc8xfm9cOJfY3CHPOjt6Fkw9xEARVkD3X2UGcPdY71zrF+JsFAPw5w7SE/BFSwgg000MEA1/GQfXUy2sRLNtZNrOCoO9o5SvbWPeanEh0MsC/MfLiwgAIqWMG8akvxOXtwYl94zh6cWEABFaxgAw3EptgUW8VWsVVsFVvFVrFVbBVbxVaxNWzMOZ5dehdia9gatoatYWvYGjbDZtgMm2EzbIbNsBk2w2bYHJtjc2yOzbE5Nsfm2BybYwtsgS2wBbbAFtgCW2ALbIGtY+vYOraOrWPr2Dq2jq1j68t29iReWEABFaxgAw10MEBsBVvBVrAVbAVbwVawFWwFW8Em2ASbYBNsgk2wCTayJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmypJMlnSzpZEknSzpZ0smSTpZ0sqSTJZ0s6WRJJ0s6WdLJkk6WdLKkkyWdLOlkSSdLOlnSyZJOlnSypJMlnSzpZEknSzpZ0smSTpZkI6WMJtaSnZQTFaxgAw10MMC+MO9QLsRWsVVsFVvFVrFVbBVbxdawZZbkQ+PsrpTRAVuyvXJiBRtooIMBpu1858QBFjBtKc47lAsrmDZLNNDBAPMp+LjMP/stLyyggApWsIEGOhgLMzWyGyC7LMXOf6pgBRtooIMBjm2WTXLZbTmxgMM2fnZYsuFyYgWHzfPdH3mHcqGDAeY2K/nGjwMsoIAKVrCBBjoYC3MGwzVRQAVzLWpiAw3MtWiJAeY2s3xLyQEWMG35PpO8Q7mwgg000MEA0xb5KpQDLKCAClZw/jBHzlbK8TBEzlZKScyrigsLKKCCFWzg/DWOnF2VFwbYF+ZVRTmxgAIqWMEGGuhgLDT2vLHnjT1v7Hljzxt73tjzxp439ryz55097+x5Z887e97Z886ed/a8s+edPR/s+WDPB3s+2PPBng/2fLDngz3f2fOdPd/Z850939nznT3f2fOdPd/Z833t+bNTspxYQAEVrGADDXRw7flyjvmeKKCCFRz7Io5EAx0McKzF+BGmnD2RFxZQQAUr2EADfWGO7vFbYsnux4kCKljBBuZatEQHA+wL8+x/YQEFVLCCDcRWseXZfzSSSXY/Xphn/wvT5okCKpi23EN59u+5A/LsP5oTJLsfJwbYF56vDDqxgMPW8yg5Xxx0YgUbaKCDAfaF52uETiwgNsfm2BybY3Nsju18sVBu3/PVQicWMG25zc4XDJ1YwQYa6ODDpkdu6pEPF458mFhAARWsYAMNdBBbX7bsftSjJBZQwLRpYtossYEGOhhgX1gOsIACps0TK5i2SDTQwQCHreSi56uKLiyggApWsIEGDluGeXZVTkxbbp18fdGFBRRQwVTURAMdDLAvrKnITVILKKCCFWxg2nJD5VuNLgywL8x3G11YQAEVrGADsTVs+a6jfOdbNlhemO87unDY8hSaDZYTFRy2PBdmg6XmqS4bLFVyQ40AmRhgXzgCZGIB80SV1BbZIl8Ui/qkHMHXS+UOsID5PCNJF9VFbZEt8j/Nt9NlRUvMzeCJ9Xw9lmS74kW2aGyDmhSL+qQciSeVRbIoJZFYwdzWPdFAX5gDTo/EUWG0s8j5NrALRwVNGgXGb5zlfCXYhQH2hTmyLixzk6gs0kV1UVtki/raiDlkrpf65YLmMuWQuTAXNLdFDpkLc0mz2HwVmKx3gcl6GZist4HJeh2YrPeByfn6rwtzLXNB5gu/ZL3xS7In8KLxt3Mv5MF/Ultki3xRLEpJYh73Fw7LWXycOCcqOIrW3Juex03uwjjAUSGXPWRtmFCwgg3Msrk3w8EA+9rgOZIuLCC2jq1j69g6to6tY+vLlv19Ewu4bNnfN7GCDTTQr0M93zB2Hr7ZCnhhOcACysI8T9VchBxMF1Ywry+SbJEvikV9Ul7unlQWySJdVBcthy6HLocuhy5HnqNGS5DkG8MmCpgrE4kVHBux5pbLAXehgwH2hTnkLizgsI2mDMl2vYkVTFsubw7GCx0ctpb7IYfoiTlEL8xgT5JFuqguaotsUVbMYyNHXsvdmSOv5fJ7BRto4FjSdr4fNMC+MEfphQXMC62klOWWz1F6YQMNdDDAvjBH6YUFFBBbx9axdWwdW45Sy02WozQxO/ImFlBABYdtPKGW7MibaKCDAfaFOUwvLKCACmIr2PJUOWZhJTvyJgaYtrFfsyNvYgHTZokKVrCBaTtfBpu2cThn752O+UDJ3ruJAio46npuvrxMzdmb7L3TnJHJ3jvNuZfsvZvYF2YEXJi28020AipYwbTl8ua4z1mAbLjTnFzMhjuNXJwc93lzmw13EwVUsIINNDBt51tyY2EO9jFlLtllN1FABVORi36elE800MGYQ76dQZCYJ+YLCyigghVs4KibN+7ZT3dhBsGFeVmRWzKD4EIFR928cc9+uoljLfKeOPvpJgaYtlyGTIILCyigghVsYNryOMskuDDAPjF77yYWME81JTHPzJa4rgPscDDAvvC8Nj6xgALmdUBNrGADDczrAE8McF332XnRfGIBBVSwgg3MW5xczbxq7ok55i8soIAKVrCBuS9SkWP+wgD7whzzcmIBBVSwgg000MFYmAN9dIZLdtlNVDDXoic20EAfL849EgPsA/OAGWN+YgFlYO75MeYnVrCBBjoYYNrGwMkuu4kFFFDBCuaezyVz9ryz54M9H+z5YM8Hez7Y88GeD/Z8sOeDPR/s+c6e7+z5zp7v7PnOnu/s+c6e7+z5vvZ8drhFntGzw21iG1gTDezrPxgja2IBZWG+EXf0B0s2mk00MHdhLkO+GffCvjDfjnv0xAKOXZjTRtloNrGCw5ZTQdloNtHBAPvCfGPuhQUUUMEKYmvYGraGrWEzbHnY5xxUNo/VfC1/No/V8f47yeaxiX1hHuAX5vJGooAKVrCBwya5zc73V58YYF94vsX6xAIKqGAFG4gtsAW2wHa+2fpILKCAClawgWnLA/F8z/WJMTHO11efmP+BJgaYm3occtnvNbGAuTgtUcEK5uJ4ooFpi8QAhy1vH7Lfq2YEZb9Xzfua7PeaOGx55s1+r4kNNNDBAPvCfLn1hWnLhcwXXOdURvZ71Zy0yH6vmmf/7OyqecLOzq6JfWEO3gsLKKCCWSy3eo7NC/vCHJsXFlBABbNY7oAcWXljnA1WExtoYP61XPkcbxf2hTneLiyggApWsIEGYnNsji2wBbbAFtgCW2ALbIEtsAW2jq1j69g6to6tY+vYOraOrS9bNlhNLKCAClawgQY6GCC2gq1gK9gKtoKtYCvYCraCrWATbIJNsAk2wSbYBJtgE2yCTbEpNsWm2BSbYlNsik2xKbaKrWKr2Cq2iq1iq9gqtoqtYmvYGraGrWFr2Bq2hq1ha9gaNsNm2AybYTNshs2wkSWdLOlkSSdLOlnSyZJOlnSypJMlnSzpZEknSzpZ0smSTpZ0sqSTJZ0s6WRJJ0s6WdLJkk6WdLKkkyWdLOlkSSdLOlnSyZJOlnSypK8s0WNliR4rS/RYWaLHyhI9VpbosbJEj5Uleqws0WNliR4HtoKtYCvYCraCrWAr2Aq2MyoiUUAFK9hAAx0MsC88o+JEbIpNsSk2xabYFJtiU2wVW8VWsVVsFVvFVrFVbBVbxdawNWwNW8PWsDVsDVvD1rA1bIbNsBk2w2bYDJthM2yGzbA5Nsfm2BybY3Nsjs2xOTbHFtgCW2ALbIEtsAW2wBbYAlvH1rF1bB1bx9axdWwdW8fWl60cB1hAARWsYAMNdDBAbAVbwVawFWwFW8FWsBVsBVvBJtjIkkKWFLKkkCWFLClkSSFLCllSyJJClhSypJAlhSwpZEkhSwpZUsiSQpYUsqSQJYUsKWRJIUsKWVLIkuy1quPhjmavVR3PqTR7rer4XI1mV1Udj3E0W57q9Z0uARUcijHFodnyNNFABwPsC3OQXVhAARXEFtgCWw6RMTuj2bA0sU3MJqQ6nnVoNiFNFDAreOKoMJ5UaDYhTTTQwQD7wjzsLyyggApiK9gKtoKtYCvYBJtgE2yCTbAJNsEm2ASbYFNsii0P+9FbrtmENLGCDTTQwQD7wjzsLywgtoqtYssT4HjCpNk3VMcTJs2+oeq5u3MwXOhggH1hnuouLKCAClYQm2EzbIbNsDk2x+bYHJtjc2yOzbE5NscW2AJbYAtsgS2wBbbAFtgCW8fWsXVsOY7Hcz3NxqWJDTTQwQD7xGxpmlhAARWsYAPT5okOxsJzdEdiVuiJo8J4tqjZxTTRwQD7whzHFxZQQAUriE2wCbYcx+P5pmbL04U5ji8soIAKVrCBBjqITbFVbBVbjuPxuFWzSWpiBRtooC88v/BWE7NCS8wKuVtyzF9ooIMB9oU55i8soIAKYjNshi3HfOQBk2P+wr4wx/yFBRRw1O25N3Mc99x8OY5PzHF84agwHqzq+Y3FCxWsYAMNdDDAvjDH8YXYOrYcxz13S47jCxuYthxkOY4vTFuucY7j8dBNz+8wXviwtfFMTbNpaqKCdaAkNtAGaqIPrIkxsCX2gUOcXVMTCyigghVsoIEOBohNsAk2wSbYBFt+o/vITZKf5R4PhTQbrdp4/KPZaTWxgmMhS26S/Er3hQ4G2BfmF7pLbr78KHfJzZff5c6vhdb8NPeFAfaF+Y3uCwsooIIVTJslGuhg2nKT5KcZT8yPM15YwLTlNstPNF5YwXVpmZ1UEx3MC9nckjl4T8zBe2EBBVQwbbmz8tONFxroYIB9YX79+8ICCqggtsAW2AJbYAtsHVvH1rF1bB1bx9axdWwdW1+27LuaWEABFaxgAw10MEBsBVvBVrAVbAVbwVawFWwFW8Em2ASbYBNsgk2wCTbBJtgEm2JTbIpNsSk2xabYFJtiU2wVW8VWsVVsFVvFVrFVbBVbxdawNWwNW8PWsDVsDVvD1rA1bIbNsBk2w2bYDJthy8++jkezmj1aE/vC/PjrhRXMv1YSY2Ge0fNMlm1VExuY/60k9oU5pC8soIAKVrCBBjqIrS9bNlBNLKCAClawgQY6GCC2gq1gK9gKtoKtYCvYCraCrWATbIJNsAk2wSbYBJtgE2yCTbEpNsWm2BSbYlNsik2xKbaKrWKr2Cq2iq1iq9gqtoqtYmvYGraGrWFr2Bq2hq1ha9gaNsNm2AybYTNshs2wGTbDZtgcm2NzbI7NsTk2x+bYHJtjC2yBLbAFtsAW2AJbXh7kh+rtzJIT+8IzQDxRQAVT0RMbaOBQjI4PzW6siX1ivvNsYgEFVLCCDTTQwQCxFWwFW8FWsBVsBVvBVrAVbAWbYBNsgk2wCTbBJtgEm2ATbIpNsSk2xabYFJtiU2yKTbFVbBVbxVaxVWwVW8VWsVVsFVvD1rA1bA1bw9awNWwNW8PWsBk2w2bYDJthM2yGzbAZNsPm2BybY3Nsjs2xOTbH5tgcW2ALbIEtsAW2wBbYAltgC2wdW8fWsXVsHVvH1rGRJU6WOFkSZEmQJUGWBFkSZEmQJUGWBFkSZEmQJUGWBFkSZEmQJUGWBFkSZEmQJUGWBFkSZEmQJUGWBFkSZEmQJUGWBFkSZEmQJUGWBFkSZEmQJUGWBFkSZEmQJUGWBFkSZEmQJUGWBFkSZEmQJUGWBFkSZEmQJUGWBFkSZEmQJUGWBFkSZEmQJUGWBFkSZEmQJUGWBFkSZEmQJUGWBFkSZEmQJUGWBFkSZEmQJUGWBFkSZEmQJUGWBFkSZEmQJUGWBFkSZEmcWVISDXQwbZrYF55ZcmLaWqKAaYvECjbQQAfT1hP7xGzfa+Onq5rte200hGq2700cttHZqdm+N7GBwzZ+Z6nZvjcxwGEbfZma7XsTCyigghVsoIEOBohNsAk2wSbYBFtGRbbyZB9ey8fO2YfXam6zDIULK9jAsZD5XDr78CYG2BdmKFw4bC03aoZCy82XoXBhBRuYtlzeDIWWy5ChYGfdvjBDYfzaTrMPr+VD4+zDmzhs+fw4+/CaZbEMhRNzdOfD0myoa/l0MhvqJlZwLE4+s8wmuea5vDliLxRQwQo20EAHA+wLA1tgC2yBLbAFtsAW2AJbYOvYOraOrWPr2Dq2jq1j69j6tNVskptYQAEVrGADDXQwQGwFW8FWsBVsBVvBVrAVbAVbwSbYBJtgyxE7nrHW7KKb2EADHQywL8yz/3jqWbOLbqKA9Tp+a7bOTTTQwQD7whzdFxZQQAWxVWwVW8VWsVVsDVvD1rA1bA1bw9awNWwNW8Nm2AybYTNshs2wGTbDZtgMm2NzbI7NsTk2x+bYHJtjc2yBLbAFtsAW2AJbYAtsgS2wdWwdW8fWsXVsGSDj2XjN1rmJDg5bnP9tn5itcxOHbTxrrtk6N3HYxsPomq1zExuYNkt0MMC+MAPkwgIKqGAFG4itYCvYCjbBJtgEm2ATbIJNsAk2wSbYFJtiU2yKTbEpNsWm2BSbYqvYKraKrWKr2Cq2iq1iq9gqtoatYWvYGraGrWFr2Bq2hq1hM2yGzbAZNsNm2AybYTNshs2xOTbH5tgcm2NzbI7NsTm2wBbYAltgC2yBLbAFtsAW2Dq2jq1j69g6to6tY+vYOra+bHIcYAEFVLCCDTTQwQCxkSVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKluiZJZ7oYIBpe8xS1XpmyYkFHLbRflrPXssLK9jAYRudqPXstRwNofXstRytn/XstTwxs+TCAgqoYAUbaKCD2DJLxmt76tlreWEBBVSwgg000MEAsSk2xZZZMl5qVM8WzQsr2EADHQywL8wsubCA2Cq2zJLRcFvPds4LDXQwwL4ws+TCAgqoILbMktHeW892zgt9YabGhVkhj76RD3bkwTXyYaKBDsbAPPpGPlw48mFiAQVUsIINNNBBbI4tsAW2wBbYIm05RKKBacvjNxwMMG25UfsBFlBABSvYQAMdDHDZskVzYgEFVLCCWWzs2Oy1tNG6XLPX0kbrcs1ey4kVbOBYyNHFXLPXcmKAfeEY6BOHreQyjIE+UcEKNtDAtOWiS4B9oR5gAQVUsIINNBCbYtO05TarB1jAYRvNgjV7LScO23iPS81ey4nDNt5GXLPXcuKwja6emr2WF46BPrGAAipYwQYa6CC2hs2wGTbDZtgMm2EzbIbNsBk2x+bYHJtjc2yOzbE5Nsfm2AJbYAtsgS2wBbbAFtgCW2DLUJA8fjMULhRQwbTlYZShcKGBDgbYJ2aT58QCCqhgBRtooIMBYivYCraCLVNjtJfVbNy08VS5ZuPmhZkP41FyzcbNiQIqWMEGGph1R2xnM+a5A7IZ89y+2Yw5sYEGjjUeD65rNmNO7AtzzF+4jh2r2KqCFWyggQ7GWoZzzCe2AyygrGXIMX9hBbEx5o0xb4x5Y8wbY94Y82brSDVjSxpb0tiSOebPZTC2pLElGfPGmDfGvDHmjTFvjHljzBtj3s4xn8vgbElnSwZbMtiSOebHmxtrNmNOzC2ZdXPMX2igg7lueaznmD8xx/yFBRRQwQo2MG05cHLMX7gO8GzGtNH0ULMZc6KACq5DI5sxJxroYIDrsM9mzIlrZ3kRUMEKNtBABwNch0a2Xdpo3ajZdjmxgqNuze2Qw7/mkuXlwYUB9oV5eXBhAQVUsIJZtyYG2BdmKFyYdXMtMhQuVLCCeUkViQY6GGBfmKFwYQEFXNf2zrW9c22frZRWT+wLc/iP5o+arZQTBRxr0fKIyuF/YQPHWrTcQzn8LwywL8zhf2EBBVSwgg3Edj71zGU4n3qeWEABFaxgAw10MEBsHVvH1rF1bB1bx9axdWwdW1+2s2nywgIKqGAFG2iggwFiK9gKtoKtYCvYCraCrWAr2Ao2wSbYBJtgE2yCTbAJNsEm2BSbYlNsik2xKTbFptgUm2Kr2Cq2iq1iq9gqtoqtYqvYKraGrWFr2Bq2Nhud6tk0eaGBOY5rYoB9YabG6Nyq2TQ5UcAcx5FYwQYa6GCAfeGZGicWUEBsjs2xOTbH5tgcW2ALbIEtsAW2wBbYAltgC2wdW8fWsXVsHVvH1rF1bB1bX7ZsmpxYQAEVrGADDXQwQGwFW8FWsBVsBVvBVrAVbAVbwSbYBJtgE2yCTbAJNsEm2ASbYlNsik2xKTbFptgUm2JTbBVbxVaxVWwVW8VWsVVsFVvF1rA1bA1bw9awNWwNW8PWsDVshs2wGTaypJMlnSzpZEknSzpZ0smSTpZ0sqSTJZ0s6WRJJ0s6WdLJkk6WdLKkkyWdLOlkSSdLOlnSyZJOlnSypJMlnSzpZEknSzpZ0smSTpZ0sqSTJZ0s6WRJX1nSjpUl7VhZ0o6VJe1YWdKOlSXtWFnSjpUl7VhZ0o6VJe04sBVsBVvBVrAVbAVbwVawFWwFm2ATbIJNsAk2wSbYBJtgE2yKTbEpNsWm2BSbYlNsik2xVWwVW8VWsVVsFVvFVrFVbBVbw9awNWwNW8PWsDVsDVvD1rAZNsNm2AybYTNshs2wGTbD5tgcm2NzbI7NsTk2x+bYHFtgC2yBLbAFtsAW2AJbYAtsHVvH1rF1bB1bx9axdWwdG1lSyJJClhSypJAlhSwpZEkhSwpZUsiSQpYUsqSQJYUsKWRJIUsKWVLIkkKWFLKkkCWFLClkSSFLCllSyJJClhSypJAlhSwpZEkhSwpZUsiSQpYUsqSQJYUsKWRJIUsKWVLIkkKWFLKkkCWFLClkSSFLCllSyJJClhSypJAlhSwpZEkhSwpZUsiSQpYUsqSQJYUsKWRJIUsKWVLIkkKWFLKkkCWFLClkSSFLCllSyJJClhSypJAlhSwpZEkhS8qZJX3gmSUnFnDYxs9tWnZ2Thy28f6dlp2dEw0ctvGWx5adnROHbfxgp2Vn58QCps0SFUxbS2yggWnLFcosuXDYxt1ty87OicM2bmlbdnZOVHDYxg80WnZ2TjTQwQD7wsySCwsooILYCraCrWAr2Ao2wSbYBJtgE2yCTbAJNsEm2DI1xi9OWnZr2ngnX8tuTRtv32vZrTkxwL4w82G8k69lt+ZEARWs4LCNRv+W3ZoTHQywL8x8uHDYItci8+FCBSvYQAMdDLAvzHy4EJthy3yI3HyZDxc2MG25oTIfeh60mQ8XDtto5WnZrTlx2Hoev5kPFypYwQYa6GCAfWHmw4XYAltgC2yBLbAFtsAW2Dq2jq1j69g6to6tY+vYOra+bNmtObGAAipYwQYa6GCAaRsHYnZrTiyggGlriRVsoIEOBtgXZj5cWEABsQk2wSbYBJtgE2yKTbEpNsWm2BSbYlNsik2xVWwVW8VWsWVqjJ6nlh2YNp6AtOzAnJgVIlFABSvYQAN9YSbBaJVq2VV5HQQ55s99nGP+QgMdfKyxjwaqll2VF44xP7GAHKmMeWXMK2NeGfPKmFfGvDLmNThSgyM1OFLPMX8i6zbGvI9eqpZdlRN94Fk3wL6wH2CuW+63MeYnKljBBhroYIBpGwdBdlVOlLmzspXSR1NUy1bKiQ000OcOyFbKiWtnZSvlxAIKqODaWbU00EAHA1w7q8oBFlDAXItINNDBXIvcDmNIPx72DhxDemIBBVSwgg000BfWrFsSCyigglk316I20EAH87Ijd2wO9BNzoF9YQAEVrGADDRwPWVrasj3ywgIKqGAFG2iggwFic2yOzbE5Nsfm2BybY3Nsji2wBbbAFtgCW2ALbIEtsAW2jq1j69g6to6tY+vYOraOrS/b+V7LCwsooIIVbKCBDgaIrWAr2Aq2gq1gK9gKtoItH6GO52/tfK/lifkI9cIcWS1RQAXTpokNNDBHliUG2BfmI9TxiK+d77W8UEAFK9hAAx0MsC+s2Cq2iq1iq9gqtoqtYqvYKraGrWFr2Bq2hq1ha9gatoatYTNshs2wGTbDZtgMm2EzbIbNsTk2x+bYHJtjc2yOzbE5tsAW2AJbYAtsgS2wBbbAFtg6to6tY+vYOraOrWPr2Dq2vmznCzUvLKCAClawgQY6GCC2gq1gK9gKtoKtYCvYCraCrWATbIJNsAk2wSbYBJtgE2yCjSwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxsiTIkiBLgiwJsiTIkiBLgiwJsiTIkiBLgiwJsiTbRL2cqGAF09YTDcy7jkgMsC/MLMmnRmeb6IVj3fIR1NkmemEFh81SnFly4bCN32e1bBOd2BfmHIhkhZwDuVBABSvYQAMdDLAvrNgqtoqtYqvYKraKrWKr2Cq2hq1ha9gatoatYWvYGjbLurlbLCvUxKzQEhtooIO5vLmHcgr0xJwCvbCAAqYtDyOvYAOHTXPHjnyYGGBfOPJhYgEFVLCCDcQW2AJbYOvYOraOrWPr2Dq2jq1j69j6smXr58QCCqhgBRtooIMBYivYCraCrWAr2Aq2gq1gK9gKNsEm2ASbYBNsgk2wCTbBJtgUm2JTbIpNsSk2xabYFJtiq9gqtoqtYqvYKraKrWKr2Cq2hq1ha9gatoatYWvYGraGrWEzbIbNsBk2w2bYDJthM2yGzbE5Nsfm2BybYyNLOlnSyZJOlnSypJMlnSzpZ5aUxAo20EAHA+wLzyw5MW01UUAF0yaJDTQwbZYYYL/QsvXTx8+kLFs/JwqoYAUbaKCDAfaFBVvBVrBlloxfYtlxpkYu5JkEJwqoYAUb+FQhl+zEAPvCTILxOyrLxs2JAipYwQYa6GCAfWHFVrFlEoxfYlk2bk6sYAMNdHDYxk+qLBs3L8wkuLCAAipYwQYa6CC2hi2TYExzWzZuThQwbbmPMwnGd3QtGzcnpi13SybBhWnLDZVJcGImwYUFFFDBCjbQQAexObbAFtgCW2ALbIEtsAW2wBbYOraOrWPr2Dq2jq1j69g6tr5s2bg5sYACKljBBhroYIDYCraCrWAr2PKqYjS+WTZuTjTQwZU72bh5oRxgAQVUsIINNDDXog8886Emjgp2JFawgQY6GGBfmEkwevasVLZvZY0ra3yO+RP7whzz497JssFyooAKsjcbtsbebOzNxt5s7E1jb55jPpfhHPMnKsjezDF/LkOO+QsdxMaYL4z5wpgvjPnCmC+M+eIcO86WdLaksyVzzJ/LEGzJYEsy5gtjvjDmC2O+MOYLY74w5kuw384xfyJbsrMlO/stx/yFbEnGfGHMF8Z8YcwLY14Y88KYF8a8HGu/ydFAAx0MMLfkGDjZYDkxt2RNFFDBCua65TLkmL/QwQD7whzzFxZQwLTlQuaYvzCvH87/IOYozFZKHy+ft3xJ5sQCCrj2kGgFG2iggwGuoy/bLq8dUNlDlT1U2UO1gg000MF1PGSDpY8uW8sGy4kKjrqe2yHzwXPJMh8udDDAvjDz4cICCqhg1s2jJJPgwgD7wkwCz6Mkk+BCARXMOYUTG2iggwH2hZkEFxZQwNw6LdFABwPMtRhXNtk0ObGAAo45sZqHZ84uXthAAx0MsE88X3F5YW4dT6xgAw10MBbmOPYsliN2NP1atjz6eP23ZcvjRAdHhfHdasuWxwtzxIYkFlDAsbyjK9iy5XFiAw10MMC+MMfxaO+1bHmcKKCCFWzg2OqSi54j9twOOWIvZOvkiB29wpbNjRMr2EADcy0sMcC+MM/zF+ZapC3H8YUKDlvPHZDj+EIDh63nCuU4vrAvzHEcuedzHPfcLTmOe27UHMc9t06e5y9sYNbNdctxfGKO4wsLmHVz3XLEngdXjtgLHYyFOUwvHAOn5JKdH/A9sYFjF5ZcsvMDvicG2BeeH/A9sYACKljB3Ki5zfIkfGGfeHY0XpgrH4kCKljBsRaj68+ub3Kf6GCAfeH5Te4TCyiggnZ9Kt2yjdH7+U8D7Atz8F74qBtH/rUxeCcqWMEGGuhgXF9jt2xuvHAM3okFFFDBCjbQQF84Bm8cJxZQQAVzLSSxgQY6ONYih3Q2N144Bu/EAgqoYAUbGEOhiX2hHWABBVRw1M3TzPnR7gsNdDDAvjA/2p2ng/Oj3RcKqGAFG5hrMUZLNizGkesWAiqYFfI4y+/zXmiggwH2hf0ACyiggtg6to6tY+vY+rJlw+LEAuaxY4kNNNDB3Dqe2BeWAyyggApWsIFpi0QHA+wLJW256OfoPlFABevcWe0c3Sca6GCAfaEeYAEFHHVHO7JlE+JEB0fd0YNs2YQYo8XYsglxYgEFHGuRZ4ZsQpzYQAPTlnuopi03VO0L2wEWUEAFK9hAAx3ElmM+r0CyCXFiAQVUsIINNNDBYcvL22xCDMk19gMsoIAKVrCBBjoYILZIWx5cmQ8XCqhgBRtooIMBDpvmQTDyYWIBBVSwgg00cNg0D9qRDxP7xGxCnFhAARWsYKZRSTTQwQD7wnKAWdcSc3k90cGsoIl9oRxgAQVUsIINNDC3wziUs4UwxlvyLFsIJwqoYAUbaOBYi/HuPMsWwol9YSbBhcNWc5NkElyoYAUbaKCDaZPEtOVqZhJcWEABFaxgW/uisYcaeyiT4MK+MJPgwgIKqODYF5LLm+f5CwPMtchDLsf8hbkWWSHH/IUK5lrkjs0xf6GBYy3yoUU2C07sC3PMX1jAYWu5dXLMX1jBBhroYIB9YY7ufCaRDYBVzn+a/22ucY7YxGz1m5hLZokC5pJ5YgUbmEsWiQ4G2Bfmef7CAgqYtp5YwQYa6GCAfa5xNvVFzkFnU9/ECjZw1M3psWzqmxhgX5jX6yW3WV6vXyigghVsoIG+cIyLntOE2Q43McC+cIyLiQUUUMEKNhCbYTNshs2xOTbH5tgcm2NzbI7NsUXWzUMuBNSFeXbKecRsRZuYdfNA7A4G2CdmK9rEAgqoYAUbGFOcTWcX5lF9YQGzbiQqmHV74qibk5LZdDbRwQD7wnHOmlhAARWsIDbBJtgEm2BTbIpNsSk2xabYFJtiU2yKrWKr2Cq2mnVLYlbITV3XkZqNZBMLmPtCExWsYAMNdDBtJ/aFOQpzRjbfNzhRwFzelpgVLLEvPEdWrsU5svLQOEfWiQpy7OTIyvvNbCSb6OAaAdlIdmEwAgJbYAtsgS3awp7iPJRz6F3oYK7m+d/2idnlNXGIc+Y0u7wmDnHOnGaX18QGDlvOnGaX18QA+8IxICcWUMC0aWIFG2iggwGuXdjPoZcLeQ49T6xgAw10MMC+UNfOyn6uiQIqWOdg6OfQO9FABwPsC8+hd2IBBWwzxLJza6LPQ6PXNaSzc+vCdoAFFFDBCjbQQAexNWyGzbAZNsNm2AybYTNshs2wOTbH5tgcm2NzbDlMz2Mn2OqxTqw9FKxgAw10MMAVjtmNNbGA2Dq2jq1j69g6to6tT5sfxwEWUEAFKzij2LMba6KDAfaFOeYvzC15ooC5L1KRY/7CBua+aAPPE6slCpjLK4kzHD17tCYa6OAc3X6s0e3HeWI9cY5uP9bo9mONbs8erauYYlNsii1H94nnQRuJfeF50J6Yq5n/7XnQnqhghuOR2MAMx5LoYIAzij2bjCYWUEAFK9jAGcWeTUYTA+wL8wC/sIDswj6vH/zotnZAd5Cd1dfOKscBFlDAtbPKunL0sq4cvRwGzij2bCea2BeWAyyggApWsC3MO5/cF9kMNLGCDTTQwQD7wpzXuLCA2BSbYlNsik2xKTbFVrHlvEYefdlONFHBCjbQQAcD7AtzXuNCbA1bw9awNWwNW8PWsDVshs2wGTbDZtgMm2EzbIbNsDk2x+bYHJtjc2yOzbE5NscW2AJbYAtsgS2wBbbAFtgCW8fWsXVsHVvH1rF1bB1bx9aXLZuMJhZQQAUr2EADHQwQW8FWsBVsBVvBVrAVbAVbwVawCTbBJtgEm2ATbIJNsAk2wabYFJtiU2yKTbEpNsWm2BRbxUaWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqW6Jklkpg2TaxgAw10MMC+8MySEwsoILYzSyyxgQamrSYG2BeeWRKJBRRw2EYPhmdT1MQGGuhggH1hZsmFBRQQW8PWsDVsDVvD1rAZNsNm2AybYTNshs2wGTbD5tgcm2NzbI7NsTk2x+bYHFtgC2yBLbAFtsAW2AJbYAtsHVvH1rF1bB1bx9axdWwdW1+27LuaWEABFaxgAw10MEBsBVvBVrAVbAVbwVawFWwFW8Em2ASbYBNsgk2wCTbBpmsc1zMfPLGCDTTQwQD7wjMfTiyggNgqtoqtYqvYKraKrWFr2Bq2hq1ha9gatoatYWvYDJthM2yGzbAZNsNm2AybYXNsjs2xOTbH5tgcm2NzbI4tsAW2wBbYAltgC2yBLbAFto6tY+vYOraOrWPr2Dq2jq0vWzsOsIACKljBBhroYIDYCraCrWAr2Aq2gq1gK9gKtoJNsAk2wSbYBJtgE2xnPkhigH1hpsaFBRRQwUyjlthAA9OmiQH2hWdURGIFG2iggwFmsVy381LixALmovfEMbF05KLnXPyFDTTQwQD7wpyLv7CAAmLLufgjN0nOxV9ooIMB9oU5rXlhAQVcJ4nGpUTjUiKbuPqRmySnNS8MsC/Mac0LCyigghVsILbAFtgCW8fWsXVsHVvH1pct+5j66Drx7GOa2MCxOOMnrZ4vSJsYYF+YU9cXFlBABSvYQGyKLR82jRYWz96kPlpYPBuS5j/NxWmJuTjjej0bkiYWUEAFK9jAXJzcUHlUXxhg2sZwyoakPlpN3M7Gi9x8Z+NFSdS16HlUX8gK5UGrWTcP2gsLKKCCFWyggQ4GmLZc9DxoNRc9D9oLBVRw2GquWx60FxroYIB9YR60FxYwi+WGyqn20V7m2YXUR5+YZxdSH79C9exCmqhgBX1hzpmPfi7PzqKJWcESUzw2Sb4CrI/OLc9XgE0UMG09sYINtFU3R8v1TwPsC3O0XFjWGudouVDBCrJu+UjnXKF8YHtiZY3zCs9OzC6ZXLK8wrvQQAcDzG6W3Dp5LWe5HfJa7sIKNtDArJurmddyF/aFeS13YQEFVHDYxhNSzx6iiQY6GGBfmNdyFxZwKPLxT75Ha2IDDXQwwL4wL+AuLKCA2Dq2vIDLxzTZvDTRwQD7xGxemljmVs/mpYkKrp119iblA9DsQop81JldSBMbaGAujiUG2BfmNdeFBRRQwQqmrSUa6GCAfWFec11YQF3rlhda+Sgum4wmxlqhvKQ6MW/PLixgLnpus7zmurCCueg90UCnAraKrWFr2PKa60J2S2O3NHZLY7c0bA3FeRWUC3leBeWS5Qll/GrAz3aiCxWsYAMNdDDAvjBPKBdiyxNKySM1TygXVrCBBjoYYF+YJ5QLC4itY+vY8owzfkjhZ8fShQ4G2CeeHUsXFlBABSvYQAOz7jhSz36j8WM6P/uNLjTQwQD7wjx9XVhAARVMhSWmwhMdDLAvzHPW+FWGn61HFwqoYAUbaKCDAfaFFVvFVrFVbBVbxZYNSaUnOjgUkjsgrwbHb0D87De6sIKj2OgS97Pf6EIHA+wL82rwwgIKqGAFUeSxLnlo5LEuud/yWL+wgAIqmHVbYi5v7u48qi/sF8bZk3NhAbOuJypYwQYa6GCAaYuBeVF2YQEFVLCCDTQwFT2xL8zBcGEBBVSwgg000EFsgi3HxXhNVpxNOxcKqGAFG2hrq6uDAbKz8gAfL8+KfBdSHz/CiXwX0oV553NhAXNxNFHBCjbQQAcD7AvPY/3EAgqoYAUbaGCsdTvvh+rA887nRF0rdN75nNhAA3PRW2KAfeF555Mb9bzzOVFWhcAW2AJbYMsT1YXslmC3dHZLZ7d0bP1U/Nd//dOf/vZv//rnf//rv/39X/79H3/5y5/++T/XP/i/f/rn//aff/o/f/7HX/7+73/657//x9/+9k9/+v/9+W//kf/R//0/f/57/vnvf/7H498+jqy//P1/Pv58FPxff/3bXwb91z/xt4/Xf7U8HrnZ9dfL4+EZJcrx2yLldZE6bkOyxGN2dxVw+c3fl9d/X0fnX/79x/MRFsDL/bXQeqy1qCov16K+LjIm3M4KRdffr3r3r2u+ne1ci8etCEsg7TclbFNiNDtd24FFeNS6+fetzI3wmGxZf/+xV39TIDbbsdrajI/J1pcl+m5fytoMj+mLlyV2WzLnpK7tEPXlliybQ1JkzCllDXk8/aVG7b+tsTssta3FYHOW+MaK9Lkijwd0+npFNjXG9wiuGuMTAquG/TI6226vjtnda682eVlic2Tlu1uywuNWi/WwfrtCrAEaVl5XuLsa/no1dhszPwN2bkw/+qsSsokaqTFzQlotL0uUTzeFbI5MOfo6ustB5NZfIlc3CzHmB86F6P56IXZ5KTK3xAM5KrTV+ytSxizltSKtvFyRzYElhObxssB+hHVbB8VT9P+6R+Pz0NvVqFpmjceD59fnDz22+S1riDxtDdFfamyOzhZzj9jRnirU+wdGbevAaE+j7NcDQzeH5+PWq68anSNc45c12SyHcEaWxxQoO/b+Utw8xLc17m4N/4GtEZ9ujf1AWZeK44MurwbKpkLNl6qfx3jY8fIYr5vjU0usq0U9nmv4/Rrq6wrjN+f2X2vox2fVWj89q+4q3DuV3F6N12fVu1uzPp2NvrdHDl81Sn1do39+9dqOH7h8Lds7gZnCjyv61+vSNifGx1T6PMof2F5ev+5rWFs1+vG6Rv34KG/t06N8V+HeUX57NV4f5dutqcfaI6pv7hFblzuPGfPXdyW2O8fn+w7PVfHnm4q4f4TWUlYOl/o6Q00+PjJMPz0ydhXuHRm3V+O9/Htswrq2pvXXW9M/35rx8daMj7em/8Fb8+nY9PLW2eTxF+diVDle7xHXj2+8/fPw9I/D0z8OT/88PPcb89NLx1a4dS/t9VxKbKJzvKln3tuEv47f2BxafR2d5Xg+p8Y3JitrK2uy0qK8nKzcb1Fni8Z7O+XebEi03WzIsW4qni/bfi1hHw+S8E8Hya7CvUFyezVeD5LtxtQebEx7q0S+wveandKXcxl9c0Js2WF3HhXd+nsltN4osT+wbk2z9Y+js38cnd0/nt/q8eH81nYZ7k0WluP4dLYwI/r1wwmdK2LP15wa8W6R9maRuu41x/t9N0Xqp9OO+3VZExnjCwtvrousWZ3xxvt3i3hbRfq7u0bXfcl4r/WmyO4W/vGYZN3DP7i8nC7blrk7b/dFkT73z+NJdX+ziK5nWY+nzvZmkZtTiGU3e3d3DrHsnsHcnETcLkfI2iLxdCH3++W4W8SOd4usc8wD7b0ijzHBA/Sj+KbMdhe3FWz9+fLhmwdbcLA9j+PvFbFOkdcD8P7Z+/VDy91ThPy4SpZwf3nS2l8h33quU3YPl+7eSO6L1LUqtfayKbKfvm9r5NXN2vTPHwTvHjHdfBK8K3HzUfDtNdk8C95v0fWwTDzqWzWU4+NxivB3axwf13hqHXke+d+rsS7yHuVe19g9ZLp58/BFjVt3D/t1qXVN41eLz2u8eYypdB5rxOt9u31CY2sav7hsrr63C+JrzuFxcfY6Pmr7fOfua/zAzvXCumwGbt11Oh2+ZtEfVzzvbtR1haixOcq2D5zWzdnjruT1YrTNlXfJn6ad69J9cz+zW47KrOvT4fH7zbE7z7X13Ku233Qw/HKe2z2puTmjVNoPNDy1zzue2g+0PP1Az9N2i96bVtrXuDevVKx8PvT3R8etaaHy+VOn8vljp2+syevsMPvwEnk/ZO2Yx0Z9rvG969vm6/lX213f2g+0nubF0qdP77er8/yk4fEE/fXquPzE6ugfvToSM0KaHrvVaX/kkfZ4hibrbqxt7qTcdyepdYIRSsjvtunnbVDbpVgVnk+Vv1uK3ZOo8jjG6rr+OJ6mQ+0bRY78ye419RDPV0LfKdLj6YnWUzPUd7aIr/3SN/sl6h9a4rENpLM92uuNWn9io9Yf2KjbInePke2w83UDMj6k+l7A/2bCXOu7RdYk5vhQ0JtFfF1DjI9ZvFnE1mEyvoDwukivPxDwuwdMPxLwlt/ouVbHdquza9xo+eKHa3167a8Oti+KrCmEBz/9lufXIpupnfEBgHmuqeX1iUJ2z6seO2fN29mm9U2O7X3V2rCP/+7lzbsc8untnRybqwCRsq4UH1N/TxOy7ZciX4QJv286nm6sfp2m/qJM4zB53LnEyzLbQ3a8+WTuY+ux2cf+8YyoHPHxnaLsJszv3U9sS9z8RcjtNfHNmvjHM6LbGjdnRL+qcXxc496El+x+s/SbO9b23ja9OTP7RY1bM7NS+seTd1/UuHUHv1+XupJZnx++/1pD5I9ejlszxPdrvDnmbs4Qyy5O784Qf3Gw3zxA7A/eMfdmd2X7O6ibs7tfLMit2V3Rz0//u98P3Z3d3S7HzdndLy7unCvexwPzFxd32ZDy6RXitkgV5pnlqanKvnFp53W1YHp9faDq509TpX78NHVb4ua1g37+NPWLi+V1nntc3r8+3+5+zXQ7PnZXyxZrttuib66Wd0V8bdQHlveKlONY16d1e92+W5KmTBPb+xf/YVz8P51lvnvxv9Zo3AjYpoxun0e0/9fziO9tl7pauaU+XSL+vsjHqbg97B+X9etIeWzZt4aOlLIO2bI54+2eNd080TT/gRNNs8836XbXrsnmx17Wdw/5IkyeFX37flcq97tib48cWRc1o+SmSWzXV72mSJ9eL/LLC0q+mlEUJwe0vzktWZ9mEuzVtKTsnlw97gL0/3kXcL/EvauAr2bhb26P4we2h//A84BtkZtbZN/N+LQyx/HciPi9pshD7anMpstTtpfxt3srd2Us1iXB+KToy2n0XQlmR8eXJd8r4SxFf1li32J98IKf4+2O8fWio0eR133a+9/Cuq7r1uf5u1+nV3e/pLrZ6SHx+Y9QJT7uB9iWuHkNHp//DnW/Re91euxr3Ov0kPi8C/CLGvfuBfZH2L139fTy8dHRP3/fz/01eX2Z2T9tqN6O+rouYqLqZtR3+/zOu3/+Y2np8fl+/fjn0vfXZDPqt1v03p23Hj8wo7pfjluPy/Son97G6NE+v+3eLsfN25jd5rh7Z7itce/OUHfPlm5u0nJ8fme4XY57m3T/9oy1NcKeftX1u3f6bd9hdOtn0/s3wN26btEfeCWffv5OPv38pXz6A2/l227Qm5ctx8dXLSrl46uWL2rcy9HPLzi+uPu69yPK/ev97v38cVvj5q8ft+9Pu/l7wds1Nj8X3Ne492vB7bOc2ze0261687eC+yW5e4xst8nN3wru3/T3+drcPVb363LzWPUfOFb9B45V/4Fj1X/iWN1v1Xs/Sb3/ytWXV1K6+xHVrZuf7es5yxovjyuZ5075X19Iuev3U94Mp/XVE9R9iVszp1r94+enu41xrEPjl3c0/boxfuB1ffoT7+vbvzX11iWM7l/DMOfUftOYXu9XWJdi9vR44HcVti+GW0dGaSJPNb7zAlk6qJvo6xpteyNIlD74ufnq/hFGy1N9vkD+9Qjb1mjG79H89SujtPXdo+BbXYZqdw+wzdW+fXxZuC1x82rffmCo7LforS7DbY2bXYZf1Tg+rnGvy1Dt7kxne2+b3uwy/KLGrS5D9R+4h/LP76H263Kvy1C9/tHLcavL8H6NN8fczS5D3f1y6m6X4RcH+70DxOIP3jH3ugx1+8jmZpfhFwtyq8tQ4/NZ090bW25P8cXHs6bbq6Cn3wjpm9dR60HtU7vU7yr4TzwD/6LKzUfgunuT6TfuwnZl7j0C35e49Qj8ixJ3HoHvJ5Ru3k7WP3bS4hvHiP7IMaI/c4zo58eIfn6M6MfHyO4S1ddsweORyVMq6y/vmt0+/7l1i7wtUazRgfbItafnpSq/lLFPpwz2JW5NGdTdr4t+Znvwha3HUxh5vT12z6Iej8nXTH+UV/3j2xJ3v5JSdx+HuveZlG2Je5MG+xK3Zg32W+PmtMEXm/TevEEt/vm8wReHWV9fQXvw83XI7w6z3U1qcV6aGs9755e3kG8nLm+9a2C/HLJe0CEPfr0c2yKNdvbWNkW2G9afLne9PL8M79cNuzv73syzbYl7eSb2x+bZb7fHU8PD7/N9W0bb6kH1WjaxKNvJjMqESHu68K3l3SLxA0WeL+K/V+Rpbsb76yK6/aGBreH3mKjhqqj/8lHH3UekNJT7s+fG7d8V2b42dd3kSTz1gnyvSJS+ijy/1PabRVgSaT9QRI9Nke0vWxqP7J8vw38tsvvxU7N129rs6Tj51i6uxONjnjjePU5i5Vo/6pvbpK6DTarttsludWw15z6mnOp7G7Z2Xnzao71XxMSfWo3bT6zOZhffzpPYhNLugdXNF6nX7fMqPZioFXu9ILsX/nnzWcRbf3oaEL/U2P0ylWZO/c1rNn65JGi791MdnIiP54asX2t88XOSdTX+2Krt9dpsN+u6A1Z9+nXM7zfrtkh/mkTfHCTfOZ/b6/N5ix841nYPWHtfdxgPbpsrFNu2Z63rHHn+WJ7oLzto9+zp5qXwdpPc+5ZC3b2479Zb+/cb9Rv7d1umHZRpdXObsvsRFCn9mPh5GsRh31kUXgJY3OtmomI3K2+yWvBMfzPv8muRbZPoOmJreerY/1aRVlaiPFDfXJKnt7xV9TeXRNcnHpp2e3PD6vqUtVXdFNk+zDLjQineLeKrpfmB5c0i9Dc98N0ivl4S9cD2ZpFu60WP/alT/JsD2VdSP6Yen19s9r0y8fRZv2jvxsrj7oLZz+eU/F2Z+HxyKz6f3IrPJ7f226MxpRSmm72z/bhTieCHos+X97/kbPjHp8D9cvSnn4l2bS+LbL9rsibIuryePtmXWKvSxV5Owu73jLMq4fH2Ad/XjwIevJtl7/rxrNS2xL1Zqd3rAG/OSn1je+xO5l+Vccq0+naZ1injmznD3j/fO/3TvdN2P5z9mb3zvD2iv793jDL93XNOP7h87EXau2WUbyI+RuDra6W2e0p175yzLXHvnLMv8QPnnM77sEu3+nrvtM8fdG1LPK5NDn5s6aW+V4R5xwdLe7PI+kbuuLx575TRnd8s9O0pY9vD+EO3xbJmC0Sf2m5+f1t8t0iRN4vUdUKXWo83i7S6+lyblfeKPLbDCurjeZrtlyLbvbPecSDHb7LkuFtCCttD9HUHQBPdPiS+1Z3etk+qbnan71aGF4PIUXcr8+mHAtrulYuPef41HxW2W4z4fHNsizRZV/RNfnNP/Z0iRPQv94/fKcJbwpr/5lbrlyLbNwTeurbZl7h3baMf97t8sTXWM64W2jdbY/+S8NX9U0M3RXy3JOsyoByvppP3i9HWRbS139w0fmddWlvvKm/R3i7y9Nb0/naRNYNkv3lQ/Z2jPVaIPB7XbYrsfob1I0Xu9u+07Yeo7l1u7krcvNzclrh1ubnfGjf7d77YpPf6d1rbnrrv9e98caJZ36J9XBvVzYlmV6QLRXZnq6Z/9Op058FUic2S7JqzOW+OzjmKyC8vT9i+IdDXmyTVnz/i/J0ita4J7fr8nY7fF4mPT3nbEvdOefbx29L2W6PxYc/nxoHfbQ37/ALAPr8AsPrHbg2rfBfn+Qdmv9sa9vnWsM+3xsftrtuB/1iR1TekUd7LMeWXHVp/M5HwSxEvf3COPf7awaX78ebqPEVQF3uzSF/XmfV49wShfTWpPYpslsTtB24Rd59Oun9PtN07PNd2kc3q7KZIqfHU/OB+v4IVXk/YXq/J7kVnt7dpyA9sU982pqzjrEh9/gXyLzcS219m3dumu8UQfnWnWl4vhu+bohtPwY43i/TqzMxsiuxe63c7jHZFOufd8VV79m8t3yhix8zW/nxT9N0i6+Ul9vwSle8VWTeK3Z77D38tsnv81Ndlc3/+AVDz+yWeX2R7PHcf/lpkvzLByvR3N6trrLV5alj/XpFgB8fze8Z/t1n/6CK/eY2b7vbOrois9+SIPG+TbxXR9XE7ef6N9++K7ILgMWm95gJreR1JdnzaibWtcHcawI6PpwG2Je5NA+xL3JoG2G+Nm9MAX2zSe9MAVn5iGmB7jFWGTOuvTza2/40WTU+9vf4KnJXdNrn3wlLbvg/73gtAbPeivXsvANmWuPcCkPtr4ps12U6s3Hphqf3Ap6i+WI5bLyy13dv67v303rZTRDe/WLIvcvOLJdsid1+dul+Sm18s2Re5+c1Dk93vCW9/8/CrMje/nvJFmbufTvyqzM2PsOw38M2PsOyL3PwIy3YE3XtpxHYg33zV7r7GvVftmn78ERbTH/gIy3Y5bm7S/a699xGWL47Vux9h+aLM3Y+wfFXm5kdY9tdqt15R8sXl3p13lHxxh/R0v/f8+6xf7ktyTvazydZ9iVuTrVbjDy1xc752v0FXM/hj29bXN3q7qdZ7E2DW5PMJMNv+MOtHJhUr7zazzUSr7R5dSXu6uGmvP05tuycL3tetr/ffvAzwG0VCi6wL6GhvFvHVNxL9ueXjO0V6WT8V7aVvtsm21ere2N0vx/ol0+N5aX9zZYT5HumbIqZ/7Moogaj92CxH+2OXo8ZajnbslsM/Xg7zj1N1+xOoW6m63xr2lKq2GXS7VP2RIrdni1w/ni3albg5W7QtcW+2aLs17s4W7Tfpzdki/4EHAvuzjNlqkvTnH0T/eoRsP+R2c6Jn//jq3kTP7unVzYmekI8nem6vyWaiZ7tFb070xOeflP5iOe5N9OyuD2/e2+1+NXV7omdb5O5Ez67I7Yme7ZLcnejZFrk70dPrj0z09B/5TO4XZW5P9PQf+drufgPfnejZFrk70RPx8axEHJ9P9MTx8USP756T3AsD374n4uZEz3Y57m7S/gMTPf1Hvrb7RZnbEz39R762u7/MujfRs79SuzXRs7uVvzel4OUHfsri5Qd+yrLvQbV1Itbnjfq9HtSy2iWqPr92+XuNrOuHmPU37+b8VhGX9ZGCOF53PPruSdaPFLl7d+Pbj1fdurvZlrh3d7MvcevuZr81bt7dfLFJ793duPzApzC+aP/mnQ79N41XvxwhEn9wETH66qPLm0X6c+vHu0Vi3Z7oIZvV0R+Ya3X9gbnW7eooHyLXo222ye61fKXx+uUH11efM/+qyGqaeHCXl0V2k09HPL1cbJNpurtetPUNh2r9dfeGa//41s93r7G7ebW3e/P53dscr/ITtzlflLl7f/LVgeKMnh6vZim9/sTRVj9+bcb+MLk39+O7h1A3535894rBe3M/2xL35n7ur8nruZ8vBt6tuR/fXfvenPvZj7ybky77IjcnXXz/KYd7ky77Jbk56fJVkNyc6PgqSG7OUOxX6eYMxb7IzRmKbdDfu53eHvY3Zyj2NW7OUGyfZN07Z5n9wAzFbjlubtL9rr03Q/HFsXp3huKLMndnKL4qc3OGYn+rdGuG4ou7rVszFPXjhpgvfgZ9Zym+eH8JOd9+88L+77wExXgdi3V9s0jEek93P9p7RX5zQyCvV6dtm1Nvvo5lW+TeZ2H2JW59FuaLEnc+C7PfL87Ltf3t1+T8pkh9t4hQRF/vF4+PewT2JW71CHj0P7TEzfeq7TcoP2vxp19QfXOvrCvWx0PkdxPkeUneLhKNaZb2dhHufHdF9q9Du5ft+zeq3cr2/esmV40u9uYbK9fPKLv4yy/LbF9HemtbfPFG01vbYv/m2/XTuOb29jt418tmW7TjzSJ8aOeB776DN5wl6e++lzjWzn3Ue/ttwE83m/X9bcIvjt59f3VtvGSjdfmJIm++v7oyt1mf5za/V4SXEFbfHWz7ItzQhL8uErtnWN7XpUwcx+sfc8buR1TVVvfmY4nbyyv3r5bE15KU3ZLs3nNl67Kq2dOEk95fjjjWax3iMN8sx37Sam7Wxyn0dS967L6VxUvOn+cApH3nGOnrpqru3q0au67n28fI7uWBt4+RL5bk3jEi7eNjZLcct4+R3Y8v7h8j8YceI+1YT1vbsflKQejuq0MS/+9XEMYvNXY3NC7rnWy/+eZCfGdlVq9xK4dsVkZ/YGXqH7wyfKLngW+e9R6zo+v9clrtzSLCkoj/RJE43l2dNcHatPR3l4QXM+rx/obtbNj2bpFKkbe/zCiVR2nt+UL8t72+UT/+CuG+xK073/j8x1PbEjdvnrcbVHnzr/qx2aB9e1syA+D1Ozf3i1G5/X6cvl8vxu7LWHfDbPcLrLthtv/ipvCYRtrLlfmiyNMX8uz1Fqmy/czezW9/7orcmwPcl7g1B/hFiVtzgOXze/jy8T38von1zqe9YvfGP15sEf31453Y/uaqrNf16eN59cvHO7vnZb5mumscr7+Bvv36cPCR7OcSv7yQZlfC+BiCaX+rRKyRVp5fTv+dEt15T/dR3ikhB6FxVH1rKXjT93hX/3slOh8QKW+tyPhcznq61d9bCr7FV+rz5zS/UaI+tZY833L8UiJfOPvyEA8eYD4fGaXfX5OVOUX9vY1R+UDb83XCu9vzzRJx8NEReW7e/eV6JT7+JPZ2nDU+NvKbn3p9o0Rfy3A8f4HsGyVC+UrB8+Xw77bF9l0699oPI3YP+n/gEwPCMy2x2KzM7u0Kj2uldZybt1dT7F8VWU8sH9z7yyK7y6bo66q6lNdHSPSP3w68PTd2zo3Pr5CXb5RY32B6lNjsl/4Dzf/Rf6D5/8ud608799VlZHT7o48QXqovzxcdv9+w+y+00umzm9HaFxG+aWqvi+RHUT6dKOy7r1vdmyjcLsfdicK++0nT3YnCvvtx1b2Jwm0AlMKZ6sHPHxs6jl+WZPfqirkgTx8lrno7mYuuW/PyfPP2y5rsS1SOsPpeCbpi5OkbFL+W6GU7Z8rUz/Fmib5+n/J0YHxnRZ5fofn0St/vlLA1wfDbDqFvlPDCJdB2W7Q/uEgxzg3PL579XhF3bjm6vFmkH3yJTt7bM2J89cnfGyu65uMeR0p5bylo/nqebP1GicdM/jrDPX8P/TslCh9KKzXeK8Evykq8txS6BuwD31uKJly9VH+vhNHMHv29FeHoVHlvRZTv32l7a0V89fN4tXcK9MqbaTaDfftg8+Pb4X7wzqH31mIdl93bh5vhvQIqXA3Lc9d71/sl1m9Y9fnVS++WeJrM/FaJNTRUnrbFd0o8f+biqWvmOyXqmtbVdry3LdT4ys7zHMu7Jd7bqU9f63jOu29tC9p+q763U/lwvT5/uP5bJdYXPx/Pht7cqcYvAO2tpRjfDOXCor5V4unTpfH8ev5fSvTdM6UiRPfzx67L/W9axrofGR8kf29NVkdJef6q87dKGPN37w2SEp1fMx/lzRXhVyWHfFyivLsUTom3RvvjOpVtUf3jpdjs1O1znMfpjI9hPMdn++0Tqb57ntTb+hJ0b/31z1H6bkk+ntt93KsyG9JefhWg735wdOu7AvsNquus+HhmWV5u0G2RxyQBl+APfrNMb+uOtbffPDz4ThFZz5UeWN8tsrpI+nMryveK8DaEx1a2N4/VWAOvx9M88++P1btFnr6I880i650KD7T3ipSjtJXLR/HXZb7YtMGm7cd7m/ZxpD59AuZweXeVDubOHmU2+2j7fa3bW2Zb5l7zwr7EreaFL0q8bF7474//8+d//es//uVv//avf/73v/7b3//v4+/91yj1j7/++X/87S/X//1f//H3f336t//+//8/89/8j3/89W9/++v//pf/849/+9e//M//+MdfRqXx7/50XP/z3/yR6v/kj3mz//5Pfyrj//dHyD0mju3x//Xx/x/3lk3Gvxv/sYyO7cf/jH9Z8r8ej9gf/xP//b/G4v5/"
|
|
2388
|
+
"debug_symbols": "tf3druw4kp8P30sfz4EYQUYE51YMY9Aet40GGj1Ge+YFXgzm3v/JkMgna5eTSytz1Unvp6tqx6Mv/iRRkdJ//ul//uV//Mf//pe//v1//dv//dM//7f//NP/+Mdf//a3v/7vf/nbv/3rn//9r//298c//c8/HeN/irQ//bP+0+NP+9M/t/GnX3/G9Wc//9Tj+rNcf8r1p15/1uvPdv151dOrnl719KpXr3r1qlevevWqV6969apXr3r1qlevevWq16567arXrnrtqteueu2q16567arXrnrtqmdXPbvq2VXPrnp21bOrnl317KpnVz276vlVz696ftXzq55f9fyq51c9v+r5Vc+venHVi6teXPXiqhdXvbjqxVUvHvV8/BnXn/38sx/Xn4965RggE3TCo2QZx0p/1Cz5H9sEnxAT+glyHBNG5RggE3RCndAm2ASfEBP6BeWYMCuXWbmMyn1AndAmjMptgE+ICY/KMkCOCWWCTNAJdUKbYBN8QkyYlXVW1ll5DCQZ22eMpBPqhDbBJviEmNAvGAPqhDJhVq6zcp2V66xcZ+U6K9dZuc7KbVZus3Kbldus3GblNiu3WbnNymOIydgFY4wljEF2QpkgE3RCndAm2ASfMCvbrOyzss/KPiv7rOyzss/KPiv7rOyzss/KMSvHrByzcszKMSvHrByzcszKMSvHrNxn5T4r91m5z8p9Vu6zcp+V+6zcZ+V+VdbjmFAmyASdUCe0CTbBJ8SEWbnMymVWLrNymZXLrFxm5TIrjzGoMiAm9AvGGDyhTJAJOqFOaBNswqwss7LMymMMahtQJsiEa3Sr1gltgk3wCTHhGt1ajwllgkyYleusXGflMQbVBviEmNAvGGPwhDJBJuiEOqFNmJXbrNxm5TEGdeyCMQZPKBOuPNQxmuoj+XWMnTo23Rg7J9QJbYJN8AkxoV8wxs4JZcKsHLNyzMoxK8esHLNyzMoxK/dZuc/KfVbus3Kflfus3GflPiv3WblfletxTCgTZIJOqBPaBJvgE2LCrFxm5TIrl1m5zMplVi6zcpmVy6xcZuUyK8usLLOyzMoyK8usPMZObQNsgk+ICf2CMXZOGJVtgEzQCXVCm2ATfEJM6BeMsXPCrFxn5TF2qg+oE0blGGATfEJM6BeMsXNCmTAulsoAnVAnjOslHWATfMK4BBvLk9eIA/IiMaFMkAk6YVQey5xXigk2wSfEhH5BXi4mlAkyQSfMyj4r50XjWMG8akyIC/I6sQ4YdfqAx9+yscpjfFn+K58QE/oFY3ydUCY86tg4Esb4OqFOaBNsgk+ICf2ENsbXCWWCTNAJo7INaBNG5T7AJ8SEfsEYXyeUCY/KfgzQCXVCm2ATfEJM6BeM8XVCmTAry6w8xpeXAW3CqCwDfEJM6BeM8eVjBcf4OkEm6IQ6oU0YlX2AT4gJ/YIxvk4oE2SCTqgT2oRZuc7KY3x5DOgXjPF1wqhcB8gEnRATxt8a+2KMlBirPEZK6IA6oU2wCT4hJvQLxkg5oUyQCbOyz8o+K48BEmN5xgA5oV8wTlInlAmj4FjBcZI6oU5oE2yCTxiVx5qOQZQwBtEJZYJM0Al1QptgE3zCrNyvyjYGUT8GlAky4VG5lwF1QpvwqNx1wKNyrwMelbsN6BeMQXRCmSATdMKoMxZjDJkTYkK/YAyZE8oFmneaMkgW5b3mWKRxSJejDfJFsahPGof1RWVSy382lqyVRbJIF9VFbZEt8kWxqE+y5bDlsOWw5bDlsOXIC6zjMZjM8+/GoPF3x222jaP2orpo/N0y9tmI+It8USzqk8ZRfFHWG1s38u+OrRv5d8eyRCzqk3r+3bElczbgJFmki+qitigdY91yTuCkdIy1zFmBQZ7TAidlvT5o/F05Bvmi/Lt10Pi78lgjzxv/k8oiWTTqiQyqi9qidOggXxSLlkOWQ5ZDlkN0Ub22s0tbZIt8USya+8jzuB97xrVde8bzuB97wdUXxaJ+bWevx6KySBbporqoXfvDqy3yuRdqLFr7KMdM7pkcH7k/2tpHOT5yz+T4yK3R1vaztf1sbb8cH7kXbO0jW/sox0fuBVv7yNY+suWw5fDl8OXwtY/yKB43WJ5H8UmyKJdgbIM8ik9qi2yRL4pF/aLIo/iksmg4tAzSRXVRW2SLfNFwjJvUyKM9KY/2k8oiWaSL6qK2yBb5ouUoy5FHu+qgskgWpaMOqovaonS0Qb4oFvVJmg4blPXGttK6qC2yRVmvDxr1xq1o5AioY1vlCDipLJJFwzHubyJHwEltkS0ajjrWI4/7cb8Ref4Y9xmR5486liDHQht/I88fJ9VFbZEt8kWxaDjGzUTk+DhpOMble+T4OEkX1UVtkS1KRwyKRX1Sjo+TyiJZpIvqorbIFi2HL0eeZ8ZdROR55qSyaDhs7K0895xUFw2Hja2R56NxMxF5PjopFvVJOZJPKovSMY6rHMkn1UVtkS3yRbGoX9RzJJ9UFskiXVQXtUW2yBfFonQ89lbPkXxSWZT7ow7SRXVRW2SLfFE6YlCflCP5pLJIFumiuiiXuQ+KRX1SjtqTyiJZpIvqorbIFi2HLocuR12Ouhx1Oepy1OWoy1GXoy5HXY66HG052nK05WjL0ZajLUdbjrYcbTnacthy2HLYcthy2HLYcthy2HLYcthy+HL4cvhy+HL4cvhy+HL4cvhy+HLEcsRyxHLEcsRyxHLEcsRyxHLEcvTl6MvRl6MvR1+Ovhx9Ofpy9OXo01GO4wALKKCCFWyggQ4GiK1gK9gKtoKtYCvYCraCrWAr2ASbYBNsgk2wCTbBJtgEm2BTbIpNsSk2xabYFJtiU2yKrWLLRBjTJw8UUMF2BdkDDXQwwL6wHWABBVSwgtgatoatYWvYDJthM2yGzbAZNsNm2AybYXNsjs2xOTbH5tgcm2NzbI4tsAW2wBbYAltgC2yBLbAFto6tY+vYOraOrWPr2Dq2jq0vWzkOsIACKljBBhroYIDYCraCrWAr2Aq2gq1gK9gKtoJNsAk2wSbYBJtgE2yCTbAJNsWm2BSbYlNsik2xKTbFptgqtoqtYqvYKjaypJAlhSwpZEkhSwpZku0nZUx0luxAmajgsI1J25KtKBMNzFaKlhhgX5hZcmEBBUxbT6xgAw10MMC+MLPkwgIKiM2xOTbH5tgcm2MLbIEtsAW2wBbYAltgyyzx3EOZJSdmllxYQAEVzBaVkthAA7NRRRID7BPPRpgLs/El266OVeFqdTkxwKwwduzV8HJiAbPpxRIVrGAD0+aJDgbYF2YSjJnski0uZUw0l2xymehgbt/zr/WFOeYvLKCAClYwW3WORAMdDLAvzDF/YQEFVLCC2Cq2iq1iq9gathzzPXdWju6e+zhH94UGOhhgX5ij+8ICCqggNsNm2AybYTNsjs2xOTbH5tgcm2NzbI7NsQW2wBbYAltgC2yBLbAFtsDWsXVsHVvH1rF1bB1bx9ax9WXLFpuJBRRQwQo20EAHA8RWsBVsBVvBVrAVbAVbwVawFWyCTbAJNsEm2ASbYBNsgk2wKTbFptgUm2JTbIpNsSk2xVaxVWwVW8VWsVVsFVvFVrFVbA1bw9awNWxkiZIlSpYoWaJkiZIlSpYoWaJnlmiighVsoIEOBtgXnllyYgHTZokKVjBtNdFABwPsC88sObGAAipYQWyB7cySSAywL8zWvPFssWSD0UQBFaxgAw10MMA+MVuOJhZQwLRZos2FrGc+jFNoPfPhxFEh+3ezvWiighVsoIFjeccDq5KtRhP7wmyXvbCAAipYwQYaiE2wZQPteFRWsgVpYgHTpokKVjBtNdFABwNMW27qbOnLjuZsQ5KSmzqb+C5soIGjruTmy4ZaybXIllrJxcmmWklbttVeKKCCwya5ONlee6GBDqYtlze7ayUXJ/trR8dlyQ4l0Vyc7LHVVGSX7YUNNNDBAPvC7LjVXIbsub1Q1+F5jvkTG8jx6w4GuEZhPcf8iQUUEFtgC2yBjTGf7U6iuc2yGffEHPMX5grlf5tj/kIFK9hAAx0MsE/MNqiJBRRw2MajrZLtUBMbaKCDAQ7beOhVsjVqYgEFVLCCDTTQwQCxCbbMh6qJAiqYtpaYNks0MG2eGGDackNlPlxYQAEVrGADDXQwQGwVW8VWsVVsFVvFVrFVbBVbxdawNWwNW8PWsDVsDVvD1rA1bIbNsBk2w2bYDJthM2yGzbA5Nsfm2BybY8vm/fGI9oEGOhjgOsdml9fEAgqoYAUbaOA6o2eP1+PmMHGdpbOrS1qOwsyHCw10MMA+MTu8JmYruSSu7WvHWmM7AuwLzzF/Yrana6KAClZw7U0r2IqDAa69aXKABZS1DOeYP7GCDbS1DOcPak4MEBtj3hjzxpg3xrwx5o0xb7qOHVO2pLIllS15tvnnMlS2ZGVLMuaNMW+MeWPMG2PeGPPGmLfGfjvH/IlsycaWbOy3HPMXsiUZ88aYN8a8MeaNMW+MeWPMG2PejP1mbEljSxpb0tiSOebHs+ySrXATc0u2RAUr2MBct1yGHPMXBtgX5pi/sIACKpi2XMgc8xfm9cOJfY3CHPOjt6Fkw9xEARVkD3X2UGcPdY71zrF+JsFAPw5w7SE/BFSwgg000MEA1/GQfXUy2sRLNtZNrOCoO9o5SvbWPeanEh0MsC/MfLiwgAIqWMG8akvxOXtwYl94zh6cWEABFaxgAw3EptgUW8VWsVVsFVvFVrFVbBVbxVaxNWzMOZ5dehdia9gatoatYWvYGjbDZtgMm2EzbIbNsBk2w2bYHJtjc2yOzbE5Nsfm2BybYwtsgS2wBbbAFtgCW2ALbIGtY+vYOraOrWPr2Dq2jq1j68t29iReWEABFaxgAw10MEBsBVvBVrAVbAVbwVawFWwFW8Em2ASbYBNsgk2wCTayJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmyJMiSIEuCLAmypJMlnSzpZEknSzpZ0smSTpZ0sqSTJZ0s6WRJJ0s6WdLJkk6WdLKkkyWdLOlkSSdLOlnSyZJOlnSypJMlnSzpZEknSzpZ0smSTpZkI6WMJtaSnZQTFaxgAw10MMC+MO9QLsRWsVVsFVvFVrFVbBVbxdawZZbkQ+PsrpTRAVuyvXJiBRtooIMBpu1858QBFjBtKc47lAsrmDZLNNDBAPMp+LjMP/stLyyggApWsIEGOhgLMzWyGyC7LMXOf6pgBRtooIMBjm2WTXLZbTmxgMM2fnZYsuFyYgWHzfPdH3mHcqGDAeY2K/nGjwMsoIAKVrCBBjoYC3MGwzVRQAVzLWpiAw3MtWiJAeY2s3xLyQEWMG35PpO8Q7mwgg000MEA0xb5KpQDLKCAClZw/jBHzlbK8TBEzlZKScyrigsLKKCCFWzg/DWOnF2VFwbYF+ZVRTmxgAIqWMEGGuhgLDT2vLHnjT1v7Hljzxt73tjzxp439ryz55097+x5Z887e97Z886ed/a8s+edPR/s+WDPB3s+2PPBng/2fLDngz3f2fOdPd/Z850939nznT3f2fOdPd/Z833t+bNTspxYQAEVrGADDXRw7flyjvmeKKCCFRz7Io5EAx0McKzF+BGmnD2RFxZQQAUr2EADfWGO7vFbYsnux4kCKljBBuZatEQHA+wL8+x/YQEFVLCCDcRWseXZfzSSSXY/Xphn/wvT5okCKpi23EN59u+5A/LsP5oTJLsfJwbYF56vDDqxgMPW8yg5Xxx0YgUbaKCDAfaF52uETiwgNsfm2BybY3Nsju18sVBu3/PVQicWMG25zc4XDJ1YwQYa6ODDpkdu6pEPF458mFhAARWsYAMNdBBbX7bsftSjJBZQwLRpYtossYEGOhhgX1gOsIACps0TK5i2SDTQwQCHreSi56uKLiyggApWsIEGDluGeXZVTkxbbp18fdGFBRRQwVTURAMdDLAvrKnITVILKKCCFWxg2nJD5VuNLgywL8x3G11YQAEVrGADsTVs+a6jfOdbNlhemO87unDY8hSaDZYTFRy2PBdmg6XmqS4bLFVyQ40AmRhgXzgCZGIB80SV1BbZIl8Ui/qkHMHXS+UOsID5PCNJF9VFbZEt8j/Nt9NlRUvMzeCJ9Xw9lmS74kW2aGyDmhSL+qQciSeVRbIoJZFYwdzWPdFAX5gDTo/EUWG0s8j5NrALRwVNGgXGb5zlfCXYhQH2hTmyLixzk6gs0kV1UVtki/raiDlkrpf65YLmMuWQuTAXNLdFDpkLc0mz2HwVmKx3gcl6GZist4HJeh2YrPeByfn6rwtzLXNB5gu/ZL3xS7In8KLxt3Mv5MF/Ultki3xRLEpJYh73Fw7LWXycOCcqOIrW3Juex03uwjjAUSGXPWRtmFCwgg3Msrk3w8EA+9rgOZIuLCC2jq1j69g6to6tY+vLlv19Ewu4bNnfN7GCDTTQr0M93zB2Hr7ZCnhhOcACysI8T9VchBxMF1Ywry+SbJEvikV9Ul7unlQWySJdVBcthy6HLocuhy5HnqNGS5DkG8MmCpgrE4kVHBux5pbLAXehgwH2hTnkLizgsI2mDMl2vYkVTFsubw7GCx0ctpb7IYfoiTlEL8xgT5JFuqguaotsUVbMYyNHXsvdmSOv5fJ7BRto4FjSdr4fNMC+MEfphQXMC62klOWWz1F6YQMNdDDAvjBH6YUFFBBbx9axdWwdW45Sy02WozQxO/ImFlBABYdtPKGW7MibaKCDAfaFOUwvLKCACmIr2PJUOWZhJTvyJgaYtrFfsyNvYgHTZokKVrCBaTtfBpu2cThn752O+UDJ3ruJAio46npuvrxMzdmb7L3TnJHJ3jvNuZfsvZvYF2YEXJi28020AipYwbTl8ua4z1mAbLjTnFzMhjuNXJwc93lzmw13EwVUsIINNDBt51tyY2EO9jFlLtllN1FABVORi36elE800MGYQ76dQZCYJ+YLCyigghVs4KibN+7ZT3dhBsGFeVmRWzKD4EIFR928cc9+uoljLfKeOPvpJgaYtlyGTIILCyigghVsYNryOMskuDDAPjF77yYWME81JTHPzJa4rgPscDDAvvC8Nj6xgALmdUBNrGADDczrAE8McF332XnRfGIBBVSwgg3MW5xczbxq7ok55i8soIAKVrCBuS9SkWP+wgD7whzzcmIBBVSwgg000MFYmAN9dIZLdtlNVDDXoic20EAfL849EgPsA/OAGWN+YgFlYO75MeYnVrCBBjoYYNrGwMkuu4kFFFDBCuaezyVz9ryz54M9H+z5YM8Hez7Y88GeD/Z8sOeDPR/s+c6e7+z5zp7v7PnOnu/s+c6e7+z5vvZ8drhFntGzw21iG1gTDezrPxgja2IBZWG+EXf0B0s2mk00MHdhLkO+GffCvjDfjnv0xAKOXZjTRtloNrGCw5ZTQdloNtHBAPvCfGPuhQUUUMEKYmvYGraGrWEzbHnY5xxUNo/VfC1/No/V8f47yeaxiX1hHuAX5vJGooAKVrCBwya5zc73V58YYF94vsX6xAIKqGAFG4gtsAW2wHa+2fpILKCAClawgWnLA/F8z/WJMTHO11efmP+BJgaYm3occtnvNbGAuTgtUcEK5uJ4ooFpi8QAhy1vH7Lfq2YEZb9Xzfua7PeaOGx55s1+r4kNNNDBAPvCfLn1hWnLhcwXXOdURvZ71Zy0yH6vmmf/7OyqecLOzq6JfWEO3gsLKKCCWSy3eo7NC/vCHJsXFlBABbNY7oAcWXljnA1WExtoYP61XPkcbxf2hTneLiyggApWsIEGYnNsji2wBbbAFtgCW2ALbIEtsAW2jq1j69g6to6tY+vYOraOrS9bNlhNLKCAClawgQY6GCC2gq1gK9gKtoKtYCvYCraCrWATbIJNsAk2wSbYBJtgE2yCTbEpNsWm2BSbYlNsik2xKbaKrWKr2Cq2iq1iq9gqtoqtYmvYGraGrWFr2Bq2hq1ha9gaNsNm2AybYTNshs2wkSWdLOlkSSdLOlnSyZJOlnSypJMlnSzpZEknSzpZ0smSTpZ0sqSTJZ0s6WRJJ0s6WdLJkk6WdLKkkyWdLOlkSSdLOlnSyZJOlnSypK8s0WNliR4rS/RYWaLHyhI9VpbosbJEj5Uleqws0WNliR4HtoKtYCvYCraCrWAr2Aq2MyoiUUAFK9hAAx0MsC88o+JEbIpNsSk2xabYFJtiU2wVW8VWsVVsFVvFVrFVbBVbxdawNWwNW8PWsDVsDVvD1rA1bIbNsBk2w2bYDJthM2yGzbA5Nsfm2BybY3Nsjs2xOTbHFtgCW2ALbIEtsAW2wBbYAlvH1rF1bB1bx9axdWwdW8fWl60cB1hAARWsYAMNdDBAbAVbwVawFWwFW8FWsBVsBVvBJtjIkkKWFLKkkCWFLClkSSFLCllSyJJClhSypJAlhSwpZEkhSwpZUsiSQpYUsqSQJYUsKWRJIUsKWVLIkuy1quPhjmavVR3PqTR7rer4XI1mV1Udj3E0W57q9Z0uARUcijHFodnyNNFABwPsC3OQXVhAARXEFtgCWw6RMTuj2bA0sU3MJqQ6nnVoNiFNFDAreOKoMJ5UaDYhTTTQwQD7wjzsLyyggApiK9gKtoKtYCvYBJtgE2yCTbAJNsEm2ASbYFNsii0P+9FbrtmENLGCDTTQwQD7wjzsLywgtoqtYssT4HjCpNk3VMcTJs2+oeq5u3MwXOhggH1hnuouLKCAClYQm2EzbIbNsDk2x+bYHJtjc2yOzbE5NscW2AJbYAtsgS2wBbbAFtgCW8fWsXVsOY7Hcz3NxqWJDTTQwQD7xGxpmlhAARWsYAPT5okOxsJzdEdiVuiJo8J4tqjZxTTRwQD7whzHFxZQQAUriE2wCbYcx+P5pmbL04U5ji8soIAKVrCBBjqITbFVbBVbjuPxuFWzSWpiBRtooC88v/BWE7NCS8wKuVtyzF9ooIMB9oU55i8soIAKYjNshi3HfOQBk2P+wr4wx/yFBRRw1O25N3Mc99x8OY5PzHF84agwHqzq+Y3FCxWsYAMNdDDAvjDH8YXYOrYcxz13S47jCxuYthxkOY4vTFuucY7j8dBNz+8wXviwtfFMTbNpaqKCdaAkNtAGaqIPrIkxsCX2gUOcXVMTCyigghVsoIEOBohNsAk2wSbYBFt+o/vITZKf5R4PhTQbrdp4/KPZaTWxgmMhS26S/Er3hQ4G2BfmF7pLbr78KHfJzZff5c6vhdb8NPeFAfaF+Y3uCwsooIIVTJslGuhg2nKT5KcZT8yPM15YwLTlNstPNF5YwXVpmZ1UEx3MC9nckjl4T8zBe2EBBVQwbbmz8tONFxroYIB9YX79+8ICCqggtsAW2AJbYAtsHVvH1rF1bB1bx9axdWwdW1+27LuaWEABFaxgAw10MEBsBVvBVrAVbAVbwVawFWwFW8Em2ASbYBNsgk2wCTbBJtgEm2JTbIpNsSk2xabYFJtiU2wVW8VWsVVsFVvFVrFVbBVbxdawNWwNW8PWsDVsDVvD1rA1bIbNsBk2w2bYDJthy8++jkezmj1aE/vC/PjrhRXMv1YSY2Ge0fNMlm1VExuY/60k9oU5pC8soIAKVrCBBjqIrS9bNlBNLKCAClawgQY6GCC2gq1gK9gKtoKtYCvYCraCrWATbIJNsAk2wSbYBJtgE2yCTbEpNsWm2BSbYlNsik2xKbaKrWKr2Cq2iq1iq9gqtoqtYmvYGraGrWFr2Bq2hq1ha9gaNsNm2AybYTNshs2wGTbDZtgcm2NzbI7NsTk2x+bYHJtjC2yBLbAFtsAW2AJbXh7kh+rtzJIT+8IzQDxRQAVT0RMbaOBQjI4PzW6siX1ivvNsYgEFVLCCDTTQwQCxFWwFW8FWsBVsBVvBVrAVbAWbYBNsgk2wCTbBJtgEm2ATbIpNsSk2xabYFJtiU2yKTbFVbBVbxVaxVWwVW8VWsVVsFVvD1rA1bA1bw9awNWwNW8PWsBk2w2bYDJthM2yGzbAZNsPm2BybY3Nsjs2xOTbH5tgcW2ALbIEtsAW2wBbYAltgC2wdW8fWsXVsHVvH1rGRJU6WOFkSZEmQJUGWBFkSZEmQJUGWBFkSZEmQJUGWBFkSZEmQJUGWBFkSZEmQJUGWBFkSZEmQJUGWBFkSZEmQJUGWBFkSZEmQJUGWBFkSZEmQJUGWBFkSZEmQJUGWBFkSZEmQJUGWBFkSZEmQJUGWBFkSZEmQJUGWBFkSZEmQJUGWBFkSZEmQJUGWBFkSZEmQJUGWBFkSZEmQJUGWBFkSZEmQJUGWBFkSZEmQJUGWBFkSZEmQJUGWBFkSZEmQJUGWBFkSZEmcWVISDXQwbZrYF55ZcmLaWqKAaYvECjbQQAfT1hP7xGzfa+Onq5rte200hGq2700cttHZqdm+N7GBwzZ+Z6nZvjcxwGEbfZma7XsTCyigghVsoIEOBohNsAk2wSbYBFtGRbbyZB9ey8fO2YfXam6zDIULK9jAsZD5XDr78CYG2BdmKFw4bC03aoZCy82XoXBhBRuYtlzeDIWWy5ChYGfdvjBDYfzaTrMPr+VD4+zDmzhs+fw4+/CaZbEMhRNzdOfD0myoa/l0MhvqJlZwLE4+s8wmuea5vDliLxRQwQo20EAHA+wLA1tgC2yBLbAFtsAW2AJbYOvYOraOrWPr2Dq2jq1j69j6tNVskptYQAEVrGADDXQwQGwFW8FWsBVsBVvBVrAVbAVbwSbYBJtgyxE7nrHW7KKb2EADHQywL8yz/3jqWbOLbqKA9Tp+a7bOTTTQwQD7whzdFxZQQAWxVWwVW8VWsVVsDVvD1rA1bA1bw9awNWwNW8Nm2AybYTNshs2wGTbDZtgMm2NzbI7NsTk2x+bYHJtjc2yBLbAFtsAW2AJbYAtsgS2wdWwdW8fWsXVsGSDj2XjN1rmJDg5bnP9tn5itcxOHbTxrrtk6N3HYxsPomq1zExuYNkt0MMC+MAPkwgIKqGAFG4itYCvYCjbBJtgEm2ATbIJNsAk2wSbYFJtiU2yKTbEpNsWm2BSbYqvYKraKrWKr2Cq2iq1iq9gqtoatYWvYGraGrWFr2Bq2hq1hM2yGzbAZNsNm2AybYTNshs2xOTbH5tgcm2NzbI7NsTm2wBbYAltgC2yBLbAFtsAW2Dq2jq1j69g6to6tY+vYOra+bHIcYAEFVLCCDTTQwQCxkSVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClghZImSJkCVClihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKlihZomSJkiVKluiZJZ7oYIBpe8xS1XpmyYkFHLbRflrPXssLK9jAYRudqPXstRwNofXstRytn/XstTwxs+TCAgqoYAUbaKCD2DJLxmt76tlreWEBBVSwgg000MEAsSk2xZZZMl5qVM8WzQsr2EADHQywL8wsubCA2Cq2zJLRcFvPds4LDXQwwL4ws+TCAgqoILbMktHeW892zgt9YabGhVkhj76RD3bkwTXyYaKBDsbAPPpGPlw48mFiAQVUsIINNNBBbI4tsAW2wBbYIm05RKKBacvjNxwMMG25UfsBFlBABSvYQAMdDHDZskVzYgEFVLCCWWzs2Oy1tNG6XLPX0kbrcs1ey4kVbOBYyNHFXLPXcmKAfeEY6BOHreQyjIE+UcEKNtDAtOWiS4B9oR5gAQVUsIINNBCbYtO05TarB1jAYRvNgjV7LScO23iPS81ey4nDNt5GXLPXcuKwja6emr2WF46BPrGAAipYwQYa6CC2hs2wGTbDZtgMm2EzbIbNsBk2x+bYHJtjc2yOzbE5Nsfm2AJbYAtsgS2wBbbAFtgCW2DLUJA8fjMULhRQwbTlYZShcKGBDgbYJ2aT58QCCqhgBRtooIMBYivYCraCLVNjtJfVbNy08VS5ZuPmhZkP41FyzcbNiQIqWMEGGph1R2xnM+a5A7IZ89y+2Yw5sYEGjjUeD65rNmNO7AtzzF+4jh2r2KqCFWyggQ7GWoZzzCe2AyygrGXIMX9hBbEx5o0xb4x5Y8wbY94Y82brSDVjSxpb0tiSOebPZTC2pLElGfPGmDfGvDHmjTFvjHljzBtj3s4xn8vgbElnSwZbMtiSOebHmxtrNmNOzC2ZdXPMX2igg7lueaznmD8xx/yFBRRQwQo2MG05cHLMX7gO8GzGtNH0ULMZc6KACq5DI5sxJxroYIDrsM9mzIlrZ3kRUMEKNtBABwNch0a2Xdpo3ajZdjmxgqNuze2Qw7/mkuXlwYUB9oV5eXBhAQVUsIJZtyYG2BdmKFyYdXMtMhQuVLCCeUkViQY6GGBfmKFwYQEFXNf2zrW9c22frZRWT+wLc/iP5o+arZQTBRxr0fKIyuF/YQPHWrTcQzn8LwywL8zhf2EBBVSwgg3Edj71zGU4n3qeWEABFaxgAw10MEBsHVvH1rF1bB1bx9axdWwdW1+2s2nywgIKqGAFG2iggwFiK9gKtoKtYCvYCraCrWAr2Ao2wSbYBJtgE2yCTbAJNsEm2BSbYlNsik2xKTbFptgUm2Kr2Cq2iq1iq9gqtoqtYqvYKraGrWFr2Bq2Nhud6tk0eaGBOY5rYoB9YabG6Nyq2TQ5UcAcx5FYwQYa6GCAfeGZGicWUEBsjs2xOTbH5tgcW2ALbIEtsAW2wBbYAltgC2wdW8fWsXVsHVvH1rF1bB1bX7ZsmpxYQAEVrGADDXQwQGwFW8FWsBVsBVvBVrAVbAVbwSbYBJtgE2yCTbAJNsEm2ASbYlNsik2xKTbFptgUm2JTbBVbxVaxVWwVW8VWsVVsFVvF1rA1bA1bw9awNWwNW8PWsDVshs2wGTaypJMlnSzpZEknSzpZ0smSTpZ0sqSTJZ0s6WRJJ0s6WdLJkk6WdLKkkyWdLOlkSSdLOlnSyZJOlnSypJMlnSzpZEknSzpZ0smSTpZ0sqSTJZ0s6WRJX1nSjpUl7VhZ0o6VJe1YWdKOlSXtWFnSjpUl7VhZ0o6VJe04sBVsBVvBVrAVbAVbwVawFWwFm2ATbIJNsAk2wSbYBJtgE2yKTbEpNsWm2BSbYlNsik2xVWwVW8VWsVVsFVvFVrFVbBVbw9awNWwNW8PWsDVsDVvD1rAZNsNm2AybYTNshs2wGTbD5tgcm2NzbI7NsTk2x+bYHFtgC2yBLbAFtsAW2AJbYAtsHVvH1rF1bB1bx9axdWwdG1lSyJJClhSypJAlhSwpZEkhSwpZUsiSQpYUsqSQJYUsKWRJIUsKWVLIkkKWFLKkkCWFLClkSSFLCllSyJJClhSypJAlhSwpZEkhSwpZUsiSQpYUsqSQJYUsKWRJIUsKWVLIkkKWFLKkkCWFLClkSSFLCllSyJJClhSypJAlhSwpZEkhSwpZUsiSQpYUsqSQJYUsKWRJIUsKWVLIkkKWFLKkkCWFLClkSSFLCllSyJJClhSypJAlhSwpZEkhS8qZJX3gmSUnFnDYxs9tWnZ2Thy28f6dlp2dEw0ctvGWx5adnROHbfxgp2Vn58QCps0SFUxbS2yggWnLFcosuXDYxt1ty87OicM2bmlbdnZOVHDYxg80WnZ2TjTQwQD7wsySCwsooILYCraCrWAr2Ao2wSbYBJtgE2yCTbAJNsEm2DI1xi9OWnZr2ngnX8tuTRtv32vZrTkxwL4w82G8k69lt+ZEARWs4LCNRv+W3ZoTHQywL8x8uHDYItci8+FCBSvYQAMdDLAvzHy4EJthy3yI3HyZDxc2MG25oTIfeh60mQ8XDtto5WnZrTlx2Hoev5kPFypYwQYa6GCAfWHmw4XYAltgC2yBLbAFtsAW2Dq2jq1j69g6to6tY+vYOra+bNmtObGAAipYwQYa6GCAaRsHYnZrTiyggGlriRVsoIEOBtgXZj5cWEABsQk2wSbYBJtgE2yKTbEpNsWm2BSbYlNsik2xVWwVW8VWsWVqjJ6nlh2YNp6AtOzAnJgVIlFABSvYQAN9YSbBaJVq2VV5HQQ55s99nGP+QgMdfKyxjwaqll2VF44xP7GAHKmMeWXMK2NeGfPKmFfGvDLmNThSgyM1OFLPMX8i6zbGvI9eqpZdlRN94Fk3wL6wH2CuW+63MeYnKljBBhroYIBpGwdBdlVOlLmzspXSR1NUy1bKiQ000OcOyFbKiWtnZSvlxAIKqODaWbU00EAHA1w7q8oBFlDAXItINNDBXIvcDmNIPx72DhxDemIBBVSwgg000BfWrFsSCyigglk316I20EAH87Ijd2wO9BNzoF9YQAEVrGADDRwPWVrasj3ywgIKqGAFG2iggwFic2yOzbE5Nsfm2BybY3Nsji2wBbbAFtgCW2ALbIEtsAW2jq1j69g6to6tY+vYOraOrS/b+V7LCwsooIIVbKCBDgaIrWAr2Aq2gq1gK9gKtoItH6GO52/tfK/lifkI9cIcWS1RQAXTpokNNDBHliUG2BfmI9TxiK+d77W8UEAFK9hAAx0MsC+s2Cq2iq1iq9gqtoqtYqvYKraGrWFr2Bq2hq1ha9gatoatYTNshs2wGTbDZtgMm2EzbIbNsTk2x+bYHJtjc2yOzbE5tsAW2AJbYAtsgS2wBbbAFtg6to6tY+vYOraOrWPr2Dq2vmznCzUvLKCAClawgQY6GCC2gq1gK9gKtoKtYCvYCraCrWATbIJNsAk2wSbYBJtgE2yCjSwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTIEiNLjCwxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxssTJEidLnCxxsiTIkiBLgiwJsiTIkiBLgiwJsiTIkiBLgiwJsiTbRL2cqGAF09YTDcy7jkgMsC/MLMmnRmeb6IVj3fIR1NkmemEFh81SnFly4bCN32e1bBOd2BfmHIhkhZwDuVBABSvYQAMdDLAvrNgqtoqtYqvYKraKrWKr2Cq2hq1ha9gatoatYWvYGjbLurlbLCvUxKzQEhtooIO5vLmHcgr0xJwCvbCAAqYtDyOvYAOHTXPHjnyYGGBfOPJhYgEFVLCCDcQW2AJbYOvYOraOrWPr2Dq2jq1j69j6smXr58QCCqhgBRtooIMBYivYCraCrWAr2Aq2gq1gK9gKNsEm2ASbYBNsgk2wCTbBJtgUm2JTbIpNsSk2xabYFJtiq9gqtoqtYqvYKraKrWKr2Cq2hq1ha9gatoatYWvYGraGrWEzbIbNsBk2w2bYDJthM2yGzbE5Nsfm2BybYyNLOlnSyZJOlnSypJMlnSzpZ5aUxAo20EAHA+wLzyw5MW01UUAF0yaJDTQwbZYYYL/QsvXTx8+kLFs/JwqoYAUbaKCDAfaFBVvBVrBlloxfYtlxpkYu5JkEJwqoYAUb+FQhl+zEAPvCTILxOyrLxs2JAipYwQYa6GCAfWHFVrFlEoxfYlk2bk6sYAMNdHDYxk+qLBs3L8wkuLCAAipYwQYa6CC2hi2TYExzWzZuThQwbbmPMwnGd3QtGzcnpi13SybBhWnLDZVJcGImwYUFFFDBCjbQQAexObbAFtgCW2ALbIEtsAW2wBbYOraOrWPr2Dq2jq1j69g6tr5s2bg5sYACKljBBhroYIDYCraCrWAr2PKqYjS+WTZuTjTQwZU72bh5oRxgAQVUsIINNDDXog8886Emjgp2JFawgQY6GGBfmEkwevasVLZvZY0ra3yO+RP7whzz497JssFyooAKsjcbtsbebOzNxt5s7E1jb55jPpfhHPMnKsjezDF/LkOO+QsdxMaYL4z5wpgvjPnCmC+M+eIcO86WdLaksyVzzJ/LEGzJYEsy5gtjvjDmC2O+MOYLY74w5kuw384xfyJbsrMlO/stx/yFbEnGfGHMF8Z8YcwLY14Y88KYF8a8HGu/ydFAAx0MMLfkGDjZYDkxt2RNFFDBCua65TLkmL/QwQD7whzzFxZQwLTlQuaYvzCvH87/IOYozFZKHy+ft3xJ5sQCCrj2kGgFG2iggwGuoy/bLq8dUNlDlT1U2UO1gg000MF1PGSDpY8uW8sGy4kKjrqe2yHzwXPJMh8udDDAvjDz4cICCqhg1s2jJJPgwgD7wkwCz6Mkk+BCARXMOYUTG2iggwH2hZkEFxZQwNw6LdFABwPMtRhXNtk0ObGAAo45sZqHZ84uXthAAx0MsE88X3F5YW4dT6xgAw10MBbmOPYsliN2NP1atjz6eP23ZcvjRAdHhfHdasuWxwtzxIYkFlDAsbyjK9iy5XFiAw10MMC+MMfxaO+1bHmcKKCCFWzg2OqSi54j9twOOWIvZOvkiB29wpbNjRMr2EADcy0sMcC+MM/zF+ZapC3H8YUKDlvPHZDj+EIDh63nCuU4vrAvzHEcuedzHPfcLTmOe27UHMc9t06e5y9sYNbNdctxfGKO4wsLmHVz3XLEngdXjtgLHYyFOUwvHAOn5JKdH/A9sYFjF5ZcsvMDvicG2BeeH/A9sYACKljB3Ki5zfIkfGGfeHY0XpgrH4kCKljBsRaj68+ub3Kf6GCAfeH5Te4TCyiggnZ9Kt2yjdH7+U8D7Atz8F74qBtH/rUxeCcqWMEGGuhgXF9jt2xuvHAM3okFFFDBCjbQQF84Bm8cJxZQQAVzLSSxgQY6ONYih3Q2N144Bu/EAgqoYAUbGEOhiX2hHWABBVRw1M3TzPnR7gsNdDDAvjA/2p2ng/Oj3RcKqGAFG5hrMUZLNizGkesWAiqYFfI4y+/zXmiggwH2hf0ACyiggtg6to6tY+vY+rJlw+LEAuaxY4kNNNDB3Dqe2BeWAyyggApWsIFpi0QHA+wLJW256OfoPlFABevcWe0c3Sca6GCAfaEeYAEFHHVHO7JlE+JEB0fd0YNs2YQYo8XYsglxYgEFHGuRZ4ZsQpzYQAPTlnuopi03VO0L2wEWUEAFK9hAAx3ElmM+r0CyCXFiAQVUsIINNNDBYcvL22xCDMk19gMsoIAKVrCBBjoYILZIWx5cmQ8XCqhgBRtooIMBDpvmQTDyYWIBBVSwgg00cNg0D9qRDxP7xGxCnFhAARWsYKZRSTTQwQD7wnKAWdcSc3k90cGsoIl9oRxgAQVUsIINNDC3wziUs4UwxlvyLFsIJwqoYAUbaOBYi/HuPMsWwol9YSbBhcNWc5NkElyoYAUbaKCDaZPEtOVqZhJcWEABFaxgW/uisYcaeyiT4MK+MJPgwgIKqODYF5LLm+f5CwPMtchDLsf8hbkWWSHH/IUK5lrkjs0xf6GBYy3yoUU2C07sC3PMX1jAYWu5dXLMX1jBBhroYIB9YY7ufCaRDYBVzn+a/22ucY7YxGz1m5hLZokC5pJ5YgUbmEsWiQ4G2Bfmef7CAgqYtp5YwQYa6GCAfa5xNvVFzkFnU9/ECjZw1M3psWzqmxhgX5jX6yW3WV6vXyigghVsoIG+cIyLntOE2Q43McC+cIyLiQUUUMEKNhCbYTNshs2xOTbH5tgcm2NzbI7NsUXWzUMuBNSFeXbKecRsRZuYdfNA7A4G2CdmK9rEAgqoYAUbGFOcTWcX5lF9YQGzbiQqmHV74qibk5LZdDbRwQD7wnHOmlhAARWsIDbBJtgEm2BTbIpNsSk2xabYFJtiU2yKrWKr2Cq2mnVLYlbITV3XkZqNZBMLmPtCExWsYAMNdDBtJ/aFOQpzRjbfNzhRwFzelpgVLLEvPEdWrsU5svLQOEfWiQpy7OTIyvvNbCSb6OAaAdlIdmEwAgJbYAtsgS3awp7iPJRz6F3oYK7m+d/2idnlNXGIc+Y0u7wmDnHOnGaX18QGDlvOnGaX18QA+8IxICcWUMC0aWIFG2iggwGuXdjPoZcLeQ49T6xgAw10MMC+UNfOyn6uiQIqWOdg6OfQO9FABwPsC8+hd2IBBWwzxLJza6LPQ6PXNaSzc+vCdoAFFFDBCjbQQAexNWyGzbAZNsNm2AybYTNshs2wOTbH5tgcm2NzbDlMz2Mn2OqxTqw9FKxgAw10MMAVjtmNNbGA2Dq2jq1j69g6to6tT5sfxwEWUEAFKzij2LMba6KDAfaFOeYvzC15ooC5L1KRY/7CBua+aAPPE6slCpjLK4kzHD17tCYa6OAc3X6s0e3HeWI9cY5uP9bo9mONbs8erauYYlNsii1H94nnQRuJfeF50J6Yq5n/7XnQnqhghuOR2MAMx5LoYIAzij2bjCYWUEAFK9jAGcWeTUYTA+wL8wC/sIDswj6vH/zotnZAd5Cd1dfOKscBFlDAtbPKunL0sq4cvRwGzij2bCea2BeWAyyggApWsC3MO5/cF9kMNLGCDTTQwQD7wpzXuLCA2BSbYlNsik2xKTbFVrHlvEYefdlONFHBCjbQQAcD7AtzXuNCbA1bw9awNWwNW8PWsDVshs2wGTbDZtgMm2EzbIbNsDk2x+bYHJtjc2yOzbE5NscW2AJbYAtsgS2wBbbAFtgCW8fWsXVsHVvH1rF1bB1bx9aXLZuMJhZQQAUr2EADHQwQW8FWsBVsBVvBVrAVbAVbwVawCTbBJtgEm2ATbIJNsAk2wabYFJtiU2yKTbEpNsWm2BRbxUaWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImQJUKWCFkiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqWKFmiZImSJUqW6Jklkpg2TaxgAw10MMC+8MySEwsoILYzSyyxgQamrSYG2BeeWRKJBRRw2EYPhmdT1MQGGuhggH1hZsmFBRQQW8PWsDVsDVvD1rAZNsNm2AybYTNshs2wGTbD5tgcm2NzbI7NsTk2x+bYHFtgC2yBLbAFtsAW2AJbYAtsHVvH1rF1bB1bx9axdWwdW1+27LuaWEABFaxgAw10MEBsBVvBVrAVbAVbwVawFWwFW8Em2ASbYBNsgk2wCTbBpmsc1zMfPLGCDTTQwQD7wjMfTiyggNgqtoqtYqvYKraKrWFr2Bq2hq1ha9gatoatYWvYDJthM2yGzbAZNsNm2AybYXNsjs2xOTbH5tgcm2NzbI4tsAW2wBbYAltgC2yBLbAFto6tY+vYOraOrWPr2Dq2jq0vWzsOsIACKljBBhroYIDYCraCrWAr2Aq2gq1gK9gKtoJNsAk2wSbYBJtgE2xnPkhigH1hpsaFBRRQwUyjlthAA9OmiQH2hWdURGIFG2iggwFmsVy381LixALmovfEMbF05KLnXPyFDTTQwQD7wpyLv7CAAmLLufgjN0nOxV9ooIMB9oU5rXlhAQVcJ4nGpUTjUiKbuPqRmySnNS8MsC/Mac0LCyigghVsILbAFtgCW8fWsXVsHVvH1pct+5j66Drx7GOa2MCxOOMnrZ4vSJsYYF+YU9cXFlBABSvYQGyKLR82jRYWz96kPlpYPBuS5j/NxWmJuTjjej0bkiYWUEAFK9jAXJzcUHlUXxhg2sZwyoakPlpN3M7Gi9x8Z+NFSdS16HlUX8gK5UGrWTcP2gsLKKCCFWyggQ4GmLZc9DxoNRc9D9oLBVRw2GquWx60FxroYIB9YR60FxYwi+WGyqn20V7m2YXUR5+YZxdSH79C9exCmqhgBX1hzpmPfi7PzqKJWcESUzw2Sb4CrI/OLc9XgE0UMG09sYINtFU3R8v1TwPsC3O0XFjWGudouVDBCrJu+UjnXKF8YHtiZY3zCs9OzC6ZXLK8wrvQQAcDzG6W3Dp5LWe5HfJa7sIKNtDArJurmddyF/aFeS13YQEFVHDYxhNSzx6iiQY6GGBfmNdyFxZwKPLxT75Ha2IDDXQwwL4wL+AuLKCA2Dq2vIDLxzTZvDTRwQD7xGxemljmVs/mpYkKrp119iblA9DsQop81JldSBMbaGAujiUG2BfmNdeFBRRQwQqmrSUa6GCAfWFec11YQF3rlhda+Sgum4wmxlqhvKQ6MW/PLixgLnpus7zmurCCueg90UCnAraKrWFr2PKa60J2S2O3NHZLY7c0bA3FeRWUC3leBeWS5Qll/GrAz3aiCxWsYAMNdDDAvjBPKBdiyxNKySM1TygXVrCBBjoYYF+YJ5QLC4itY+vY8owzfkjhZ8fShQ4G2CeeHUsXFlBABSvYQAOz7jhSz36j8WM6P/uNLjTQwQD7wjx9XVhAARVMhSWmwhMdDLAvzHPW+FWGn61HFwqoYAUbaKCDAfaFFVvFVrFVbBVbxZYNSaUnOjgUkjsgrwbHb0D87De6sIKj2OgS97Pf6EIHA+wL82rwwgIKqGAFUeSxLnlo5LEuud/yWL+wgAIqmHVbYi5v7u48qi/sF8bZk3NhAbOuJypYwQYa6GCAaYuBeVF2YQEFVLCCDTQwFT2xL8zBcGEBBVSwgg000EFsgi3HxXhNVpxNOxcKqGAFG2hrq6uDAbKz8gAfL8+KfBdSHz/CiXwX0oV553NhAXNxNFHBCjbQQAcD7AvPY/3EAgqoYAUbaGCsdTvvh+rA887nRF0rdN75nNhAA3PRW2KAfeF555Mb9bzzOVFWhcAW2AJbYMsT1YXslmC3dHZLZ7d0bP1U/Nd//dOf/vZv//rnf//rv/39X/79H3/5y5/++T/XP/i/f/rn//aff/o/f/7HX/7+73/657//x9/+9k9/+v/9+W//kf/R//0/f/57/vnvf/7H498+jqy//P1/Pv58FPxff/3bXwb91z/xt4/Xf7U8HrnZ9dfL4+EZJcrx2yLldZE6bkOyxGN2dxVw+c3fl9d/X0fnX/79x/MRFsDL/bXQeqy1qCov16K+LjIm3M4KRdffr3r3r2u+ne1ci8etCEsg7TclbFNiNDtd24FFeNS6+fetzI3wmGxZf//x8PM3BWKzHautzfiYbH1Zou/2pazN8Ji+eFlityVzTuraDlFfbsmyOSRFxpxS1pChXjVq/22N3WGpbS0Gm7NEub8ifa7I4wGdvl6RTY3xPYKrxviEwKphv4zOtturY3b32qtNXpbYHFn57pas8LjVYj2s364Qa4CGldcV7q6Gv16N3cbMz4CdG9OP/qqEbKJGasyckFbLyxLl000hmyNTjr6O7nIQufWXyNXNQoz5gXMhur9eiF1eiswt8UCOCm12f0XKmKW8VqSVlyuyObCE0DxeFtiPsG7roHiK/l/3aHweersaVcus8Xjw/Pr8occ2v2UNkaetIfrbc4hujs4Wc4/Y0Z4q2P0Do7Z1YLSnUfbrgaGbw/Nx69VXjc4RrvHLmmyWQzgjy2MKlB17fyluHuLbGne3hv/A1ohPt8Z+oKxLxfFBl1cDZVOh5kvVz2M87Hh5jNfN8akl1tWiHs81/H4N9XWF8Ztz+6819OOzaq2fnlV3Fe6dSm6vxuuz6t2tWZ/ORt/bI4evGqW+rtE/v3ptxw9cvpbtncBM4ccV/et1aZsT42MqfR7lD2wvr1/3NaytGv14XaN+fJS39ulRvqtw7yi/vRqvj/Lt1tRj7RHVN/eIrcudx4z567sS253j832H56r4803Fr/cluxv2UlYOl/o6Q00+PjJMPz0ydhXuHRm3V+O9/Htswrq2pvXXW9M/35rx8daMj7em/8Fb8+nY9PLW2eTxF+diVDle7xHXj2+8/fPw9I/D0z8OT/88PPcb89NLx1a4dS/t9VxKbKJzvKln3tuEv47f2BxafR2d5Xg+p8Y3JitrK2uy0qK8nKzcb1Fni8Z7O+XebEi03WzIsW4qni/bfi1hHw+S8E8Hya7CvUFyezVeD5LtxtQebEx7q0S+wveandKXcxl9c0Js2WF3HhXd+nsltN4osT+wbk2z9Y+js38cnd0/nt/q8eH81nYZ7k0WluP4dLYwI/r1wwmdK2LP15zaj3eLtDeL1HWvOd7vuylSP5123K/LmsgYX1h4c11kzeqMN96/W8TbKtLf3TW67kvGe603RXa38I/HJOse/sHl5XTZtszdebsvivS5fx5PqvubRXQ9y3o8dbY3i9ycQiy72bu7c4hl9wzm5iTidjlC1haJpwu53y/H3SJPE4nfLLLOMQ+094o8xgQP0I/imzLbXdxWsPXny4dvHmzBwfY8jr9XxDpFXg/A+2fv1w8td08R8uMqWcL95Ulrf4V867lO2T1cunsjuS9S16rU2sumyH76vq2RVzdr0z9/ELx7xHTzSfCuxM1HwbfXZPMseL9F18My8ahv1VCOj8cpwt+tcXxc46l15Hnkf6/Gush7lHtdY/eQ6ebNwxc1bt097Nel1jWNXy0+r/HmMabSeawRr/ft9gmNrWn84rK5+t4uiK85h8fF2ev4qO3znbuv8QM71wvrshm4ddfpdPiaRX9c8by7UdcVosbmKNs+cFo3Z4+7kteL0TZX3iV/mnauS/fN/cxuOSqzrk+Hx+83x+4819Zzr9p+08Hwy3lu96Tm5oxSaT/Q8NQ+73hqP9Dy9AM9T9stem9aaV/j3rxSsfL50N8fHbemhcrnT53K54+dvrEmr7PD7MNL5P2QtWMeG/W5xveub5uv519td31rP9B6mhdLnz69367O85OGxxP016vj8hOro3/06kjMCGl67Fan/ZFH2uMZmqy7sba5k3LfnaTWCUYoIb/bpp+3QW2XYlV4PlX+bil2T6LK4xir6/rjeJoOtW8UOfInu9fUQzxfCX2nSI+nJ1pPzVDf2SK+9kvf7Jeof2iJxzaQzvZorzdq/YmNWn9go26L3D1GtsPO1w3I+JDqewH/mwlzre8WWZOY40NBbxbxdQ0xPmbxZhFbh8n4AsLrIr3+QMDvHjD9SMBbfqPnWh3brc6ucaPlix+u9em1vzrYviiyphAe/PRbnl+LbKZ2xgcA5rmmltcnCtk9r3rsnDVvZ5vWNzm291Vrwz7+u5c373LIp7d3cmyuAkTKulJ8TP09Tcj+ukG+CBN+33Q83Vj9Ok39RZnGYfK4c4mXZbaH7HjzydzH1mOzj/3jGVE54uM7RdlNmN+7n9iWuPmLkNtr4ps18Y9nRLc1bs6IflXj+LjGvQkv2f1m6Td3rO29bXpzZvaLGrdmZqX0jyfvvqhx6w5+vy51JbM+P3z/tYbIH70ct2aI79d4c8zdnCGWXZzenSH+4mC/eYDYH7xj7s3uyvZ3UDdnd79YkFuzu6Kfn/53vx+6O7u7XY6bs7tfXNw5V7yPB+YvLu6yIeXTK8RtkSrMM8tTU5V949LO62rB9Pr6QNXPn6ZK/fhp6rbEzWsH/fxp6hcXy+s897i8f32+3f2a6XZ87K6WLdZst0XfXC3vivjaqA8s7xUpx7GuT+v2un23JE2ZJrb3L/7DuPh/Ost89+J/rdG4EbBNGd0+j2j/r+cR39sudbVyS326RPx9kY9TcXvYPy7r15Hy2LJvDR0pZR2yZXPG2z1runmiaf4DJ5pmn2/S7a5dk82PvazvHvJFmDwr+vb9rlTud8XeHjmyLmpGyU2T2K6vek2RPr1epH5ngrQc4uSA9jenJevTTIK9mpaU3ZOrx12A/j/vAu6XuHcV8NUs/M3tcfzA9vAfeB6wLXJzi+y7GZ9W5jieGxG/1xR5qD2V2XR5yvYy/nZv5a6MxbokGJ8UfTmNvivB7Oj4suR7JZyl6C9L7FusD17wc7zdMb5edPQo8rpPe/9bWNd13fo8f/fr9Orul1Q3Oz0kPv8RqsTH/QDbEjevwePz36Hut+i9To99jXudHhKfdwF+UePevcD+CLv3rp5ePj46+ufv+7m/Jq8vM/unDdXbUV/XRUxU3Yz6bp/feffPfywtPT7frx//XPr+mmxG/XaL3rvz1uMHZlT3y3HrcZke9dPbGD3a57fd2+W4eRuz2xx37wy3Ne7dGeru2dLNTVqOz+8Mt8txb5Pu356xtkbY06+6fvdOv+07jG79bHr/Brhb1y36A6/k08/fyaefv5RPf+CtfNsNevOy5fj4qkWlfHzV8kWNezn6+QXHF3df935EuX+9372fP25r3Pz14/b9aTd/L3i7xubngvsa934tuH2Wc/uGdrtVb/5WcL8kd4+R7Ta5+VvB/Zv+Pl+bu8fqfl1uHqv+A8eq/8Cx6j9wrPpPHKv7rXrvJ6n3X7n68kpKdz+iunXzs309Z1nj5XEl89wp/8vrOXe/flLlzXBaXz1B3Ze4NXOq1T9+frrbGMc6NH55R9OvG+MHXtenP/G+vv1bU29dwuj+NQxzTu03jel2v8K6FLOnxwO/q7B9Mdw6MkoTearh39gUdFA30dc12vZGkCh98HPz1f0jjJan+nyB/OsRtq3RjN+j+etXRmnru0fBt7oM1e4eYJurffv4snBb4ubVvv3AUNlv0VtdhtsaN7sMv6pxfFzjXpeh2t2ZzvbeNr3ZZfhFjVtdhuo/cA/ln99D7dflXpehev2jl+NWl+H9Gm+OuZtdhrr75dTdLsMvDvZ7B4jFH7xj7nUZ6vaRzc0uwy8W5FaXocbns6a7N7bcnuKLj2dNt1dBT78R0jevo9aD2qd2qd9V8J94Bv5FlZuPwHX3JtNv3IXtytx7BL4vcesR+Bcl7jwC308o3bydrH/spMU3jhH9kWNEf+YY0c+PEf38GNGPj5HdJaqv2YLHI5OnVNbfJlndPv+5dYu8LVGs0YH2yLWn56Uqv5SxT6cM9iVuTRnU3a+LfmZ78IWtx1MYeb09ds+iHo/J10x/lFf949sSd7+SUncfh7r3mZRtiXuTBvsSt2YN9lvj5rTBF5v03rxBLf75vMEXh1lfX0F78PN1yO8Os91NanFemhrPe+eXT2tsJy5vvWtgvxyyXtAhD369HNsijXb21jZFthvWny53vTy/DO/XDbs7+97Ms22Je3km9sfm2W+3x1PDw+/zfVtG2+pB9Vo2sSjbyYzKhEh7uvD99QOG94vEDxR5voj/XpGnuRnvr4vo9ocGtobfY6Lm6Z7ml68N7T4ipaHcnz03bv+uyPa1qesmT+KpF+R7RaL0VeT5pbbfLMKSSPuBInpsimx/2dJ4ZP98Gf5rkd2Pn5qt29ZmT8fJt3ZxJR4f88Tx7nESK9f6Ud/cJnUdbFJtt012q2OrOfcx5VTf27C18+LTHu29Iib+1GrcfmJ1Nrv4dp7EJpR2D6xuvki9bp9X6cFErdjrBdm98M+bzyLe+tPTgPilxu6XqTRz6m9es/HLBVvbvZ/q4ER8PDdk/Vrji5+TrKvxx1Ztr9dmu1nXHbDq069jfr9Zt0X60yT65iD5zvncXp/PW/zAsbZ7wNr7usN4cNtcodi2PWtd58jzx/Kk/nJDvXv2dPNSeLtJ7n1Loe5e3Hfrrf37jfqN/bst0w7KtLq5Tdn9CIqUfkz8PA3isO8sCi8BLO51M1Gxm5U3WS14pr+Zd/m1yLZJdB2xtTx17H+rSCsrUR6oby7J01veqvqbS6LrEw9Nu725YXV9ytqqbopsH2aZcaEU7xbx1dL8wPJmEfqbHvhuEV8viXpge7NIt/Wix/7UKf7NgewrqR9Tj88vNvtemXj6rF+0d2PlcXfB7OdzSv6uTHw+uRWfT27F55Nb++3RmFIK083e2X7cqUTwQ9Hny/tfV8c/PgXul6M//Uy0a3tZZPtdkzVB1uX19Mm+xFqVLvZyEna/Z5xVCY+3D/i+fhTw4N0se9ePZ6W2Je7NSu1eB3hzVuob22N3Mv+qjFOm1bfLtE4Z38wZ9v753umf7p22++Hsz+yd5+0R/f29Y5Tp755z+sHlYy/S3i2jfBOxa7y+Vmq7p1T3zjnbEvfOOfsSP3DO6bwPu3Srr/dO+/xB17bE49rk4MeWXup7RZh3fLC0N4usb+SOy5v3Thnd+c1C354ytj2MP3RbLGu2QPTwzW3x3SJPO/l7Reo6oUt9Oty+V6TV1efanqYev1XksR1WUB+/mWY7bj++7+sdB3L8Jktul5DC9hB93QHQRLcPiW91p7ftk6qb3em7leHFIHLU3cp8+qGAtnvl4mOef81Hhe0WIz7fHNsiTdYVfZPf3FOXbxQhon+5f/xOEd4S1vw3t1q/FNm+IfDWtc2+xL1rG/243+WLrbGecbXQvtka+5eEr+6fGrop4rslWZcB5Xg1nbxfjLYuoq395qbxO+vS2npXeYv2dpGnt6b3t4usGST7zYPq7xztsULk8bhuU2T3M6wfKXK3f6dtP0R173JzV+Lm5ea2xK3Lzf3WuNm/88Umvde/09r21H2vf+eLE836Fu3j2qhuTjS7Il0osjtbNf2jV6c7D6ZKbJZk15zNeXN0zlFEfnl5wvYNgb7eJKn+/BHn7xSpdU1o1+fvdPy+SHx8ytuWuHfKs4/flrbfGo0Pez43Dvxua9jnFwD2+QWA1T92a1jluzjPPzD73dawz7eGfb41Pm533Q78x4qsviGN8l6OKb/s0PqbiYRfinj5g3Ps8dcOLt2PN1fnKYK62JtF+rrOrMe7Jwjtq0ntUWSzJG4/cIu4+3TS/Xui7d7hubaLbFZnN0VKjafmB/f7FazwesL2ek12Lzq7vU1DfmCb+rYxZR1nRerzL5B/uZHY/jLr3jbdLYbwqzvV8noxfN8U3XgKdrxZpFdnZmZTZPdav9thtCvSOe+Or9qzf6t+o4gdM1v7803Rd4usl5fY80tUvldk3Sh2e+4//LXI7vFTX5fN/fkHQK3fL/H8Itvjufvw1yL7lQlWpr+7WV1jrc1Tw/r3igQ7OJ7fM/67zfpHF/nNa9x0t3d2RWS9J0fkeZt8q4iuj9vJ82+8f1dkFwSPSes1F1jL60iy49NOrG2Fu9MAdnw8DbAtcW8aYF/i1jTAfmvcnAb4YpPemwaw8hPTANtjrDJkWn99srH9b7Roeurt9VfgrOy2yb0Xltr2fdj3XgBiuxft3XsByLbEvReA3F8T36zJdmLl1gtL7Qc+RfXFctx6Yant3tZ376f3tp0iuvnFkn2Rm18s2Ra5++rU/ZLc/GLJvsjNbx6a7H5PePubh1+Vufn1lC/K3P104ldlbn6EZb+Bb36EZV/k5kdYtiPo3ksjtgP55qt29zXuvWrX9OOPsJj+wEdYtstxc5Pud+29j7B8caze/QjLF2XufoTlqzI3P8Kyv1a79YqSLy737ryj5Is7pKf7veffZ/1yX5Jzsp9Ntu5L3JpstRp/aImb87X7DbqawR/btr6+0dtNtd6bALMmn0+A2faHWT8yqVh5t5ltJlpt9+hK2tPFTXv9cWrbPVnwvm59vf/mZYDfKBJaZF1AR3uziK++kejPLR/fKdLL+qloL32zTbatVvfG7n451i+ZHs9L+5srI8z3SN8UMf1jV0YJRO3HZjnaH7scNdZytGO3HP7xcph/nKrbn0DdStX91rCnVLXNoNul6o8UuT1b5PrxbNGuxM3Zom2Je7NF261xd7Zov0lvzhb5DzwQ2J9lzFaTpD//IPrXI2T7IbebEz37x1f3Jnp2T69uTvSEfDzRc3tNNhM92y16c6InPv+k9BfLcW+iZ3d9ePPebverqdsTPdsidyd6dkVuT/Rsl+TuRM+2yN2Jnl5/ZKKn/8hncr8oc3uip//I13b3G/juRM+2yN2JnoiPZyXi+HyiJ46PJ3p895zkXhj49j0RNyd6tstxd5P2H5jo6T/ytd0vytye6Ok/8rXd/WXWvYme/ZXarYme3a38vSkFLz/wUxYvP/BTln0Pqq0TsT5v1O/1oJbVLlH1+bXL32tkXT/ErL95N+e3irisjxTE8brj0XdPsn6kyN27G99+vOrW3c22xL27m32JW3c3+61x8+7mi0167+7G5Qc+hfFF+zfvdOi/abz65QiR+IOLiNFXH13eLNKfWz/eLRLr9kQP2ayO/sBcq+sPzLVuV0f5ELkebbNNdq/lK43XLz+4vvqc+VdFVtPEg7u8LLKbfDri6eVim0zT3fWirW84VOuvuzdc+8e3fr57jd3Nq73dm8/v3uZ4lZ+4zfmizN37k68OFGf09Hg1S+n1J462+vFrM/aHyb25H989hLo59+O7Vwzem/vZlrg393N/TV7P/Xwx8G7N/fju2vfm3M9+5N2cdNkXuTnp4vtPOdybdNkvyc1Jl6+C5OZEx1dBcnOGYr9KN2co9kVuzlBsg/7e7fT2sL85Q7GvcXOGYvsk6945y+wHZih2y3Fzk+537b0Zii+O1bszFF+UuTtD8VWZmzMU+1ulWzMUX9xt3ZqhqB83xHzxM+g7S/HF+0vI+fb8wv5vvQTFeB2LdX2zSMR6T/fzd1S++SaVpxsCeb06bducevN1LNsi9z4Lsy9x67MwX5S481mY/X5xXq7tb78m5zdF6rtFhCL6er94fNwjsC9xq0fAo/+hJW6+V22/QflZi3u8u1fWFevjIfK7CfK8JG8XicY0S3u7CHe+uyL716Hdy/b9G9VuZfv+dZOrRhd7842V62eUXfzll2W2ryO9tS2+eKPprW2xf/Pt+mlcc3v7HbzrZbMt2vFmET6088B338EbzpL0d99LHGvnPuq9/Tbgp5vN+v424RdH776/ujZestG6/ESRN99fXZnbrM9zm98rwksIq+8Otn0RbmjCXxeJ3TMs7+tSJo7j9Y85Y/cjqmqre/OxxO3llftXS+JrScpuSXbvubJ1WdXsacJJ7y9HHOu1DnGYb5ZjP2k1N+vjFPq6Fz1238riJefPcwDS6jeOkb5uquru3aqx63q+fYzsXh54+xj5YknuHSPSPj5Gdstx+xjZ/fji/jESf+gx0o71tLUdm68UhO6+OiTx/34FYfxSY3dD47Leyfabby7Ed1Zm9Rq3cshmZfQHVqb+wSvDJ3oe+OZZ7zE7ut4vp9XeLCIsifhPFInj3dVZE6xNS393SXgxox7vb9jOhm3vFqkUefvLjFJ5lNaeL8R/O6cY9eOvEO5L3Lrzjc9/PLUtcfPmebtBlTf/qh+bDdq3tyUzAF6/c3O/GJXb78fp+/Vi7L6MdTfMdr/Auhtm+y9uCo9ppL1cmS+KPH0hz15vkSrbz+zd/Pbnrsi9OcB9iVtzgF+UuDUHWD6/hy8f38Pvm1jvfNordm/848UW0V8/3ontb67Kel2fPp5Xv3y8s3te5mumu8bx+hvo268PBx/Jfi7xywtpdiWMjyGY9rdKxBpp5fnl9N8p0Z33dB/lnRJyEBpH1beWgjd9j3f1v1ei8wGR8taKjM/lrKdb/b2l4Ft8pT5/TvMbJepTa8nzLccvJfKFsy8P8eAB5vORUb6xJitzivp7G6Pygbbn64R3t+ebJeLgoyPy3Lz7y/VKfPxJ7O04a3xs5Dc/9fpGib6W4Xj+Atk3SoTylYLny+HfbYvtu3TutR9G7B70/8AnBoRnWmKxWZnd2xUe10rrODdvr6bYvyqynlg+uPeXRXaXTdHXVXUpr4+Q6B+/HXh7buycG59fIS/fKLG+wfQosdkv/Qea/6P/QPP/lzvXn3buq8vI6PZHHyG8VF+eLzp+v2H3X2il02c3o7UvInzT1F4XyY+ifDpR2Hdft7o3UbhdjrsThX33k6a7E4V99+OqexOF2wAohTPVg58/NnQcvyzJ7tUVc0GePkpc7ydz0XVrXp5v3n5Zk32JyhFW3ytBV4w8fYPi1xK9bOdMmfo53izR1+9Tng6M76zI8ys0n17p+50StiYYftsh9I0SXrgE2m6L9gcXKca54fnFs98r4s4tR5c3i/SDL9HJe3tGjK8++XtjRdd83ONIKe8tBc1fz5Ot3yjxmMlfZ7jn76F/p0ThQ2mlxnsl+EVZifeWQteAfeB7S9GEq5fq75Uwmtmjv7ciHJ0q762I8v07bW+tiK9+Hq/2ToFeeTPNZrBvH2x+fDvcD9459N5arOOye/twM7xXQIWrYXnuen9c0t4usX7Dqs+vXnq3xNNk5rdKrKGh4u2tEs+fuXjqmvlOibqmdbUd720LNb6y8zzH8m6J93bq09c6nvPuW9uCtt+q7+1UPlyvzx+u/1aJ9cXPx7OhN3eq8QtAe2spxjdDubCob5V4+nRpPL+e/5cSffdMqQjR/fyx61+eB+2nl4Xp5fbemqyOkvL8VedvlTDm794bJCU6v2Y+ypsrwq9KDvm4RHl3KZwSb432x3Uq26L6x0ux2anb5ziP0xkfw3iOz/bbyYy+e57U2/oSdG/99c9R+m5JPp7bfdyrMhvSXn4VoO9+cHTruwL7DarrrPh4ZllebtBtkcckAZfgD36zTG/rjrW33zw8+E4RWc+VHljfLbK6SPpzK8r3ivA2hMdWtjeP1VgDr8fTPPPvj9W7RZ6+iPPNIuudCg+094qUo7SVy0fx12W+2LTBpu3He5v2caQ+fQLmcHl3lQ7mzh5lNvto+32t21tmW+Ze88K+xK3mhS9KvGxe+O+P//Pnf/3rP/7lb//2r3/+97/+29//7+Pv/dco9Y+//vl//O0v1//9X//x9399+rf//v//P/Pf/I9//PVvf/vr//6X//OPf/vXv/zP//jHX0al8e/+dFz/89/8ker/5I95s//+T38q4//3R8g9Jo7t8f/18f8f95ZNxr8b/7GMju3H/4x/WfK/Ho/YH/8T//2/xuL+fw=="
|
|
2389
2389
|
},
|
|
2390
2390
|
{
|
|
2391
2391
|
"name": "public_dispatch",
|
|
@@ -2453,7 +2453,7 @@
|
|
|
2453
2453
|
}
|
|
2454
2454
|
},
|
|
2455
2455
|
"bytecode": "JwACBAEoAAABBIBSJwAABFInAgIEAScCAwQAHwoAAgADAFEtCFEBJQAAAEElAAAA2icCAQRSJwICBAA7DgACAAEnAEMAAywAAEQAAAAAAA6S+filNOhY/Pd32iBuCLDGIOz53rIdE0eYE/YoAABFBQJYLAAARgAwZE5y4TGgKbhQRbaBgVhdKDPoSHm5cJFD4fWT8AAAACcARwQDJwBIAQAnAEkEACcASgAAJwBLAQEnAEwEAScATQABJwBOBAInAE8ALysAAFAAAAAAAAAAAAEAAAAAAAAAACYlAAAMTykCAAIA+pECywoqAQIDJwIEBAAnAgYEAwAqBAYFLQgBAgAIAQUBJwMCBAEAIgICBS0OBAUAIgUCBS0OBAUnAgUEAwAqAgUEJAIAAwAAATMjAAAFMS0IAQMnAgQEAgAIAQQBJwMDBAEAIgMCBB8wAEwATAAELQgBBAAAAQIBLQ4DBC0IAQMAAAECAS0MSQMnAgYEBy0IAActCgQILQoDCQAIAAYAJQAADHUtAgAALQoIBQAiBUwELQsEAx4CAAQAHgIABQAeAgAGAQoiBkYHFgoHCBwKCAkABCoJBggKIgdIBiQCAAYAAAHRJwIJBAA8BgkBMyoACAAFAAYkAgAGAAAB5iUAAAzKMyIAAwBDAAUkAgAFAAAB+yUAAAzcLQgBBScCBgQDAAgBBgEnAwUEAQAiBQIGLQoGBy0MTQcAIgcCBy0OCAcnAgcECS0IAAktCgUKLQhOCy0ISAwACAAHACUAAAzuLQIAAC0KCgYKIgZKBQoiBUgHJAIABwAAAmIlAAAOgCcCBwQJLQgACS0KBgoACAAHACUAAA6SLQIAAC0KCgUtCAEHAAABAgEtDgUHLQgBBQAAAQIBLQxJBS0IAQknAgoEBAAIAQoBJwMJBAEAIgkCCi0KCgstDEoLACILAgstDEoLACILAgstDEoLJwILBAwtCAAMLQoHDS0KBQ4tCE8PLQoJEAAIAAsAJQAADzwtAgAALQoNCicCCwQMLQgADC0KCg0ACAALACUAABAqLQIAAC0KDQUtCg4HLQoPCS8KAAYACicCEAQRLQgAES0KChIACAAQACUAABCALQIAAC0KEgstChMMLQoUDS0KFQ4tChYPHgIACgYnAhEEEi0IABItCgsTLQoMFC0KDRUtCg4WLQoPFy0KChgACAARACUAABF7LQIAAC0KExAAKgoQEQ4qChESJAIAEgAAA6MlAAAR7AwqCgkQFgoQCRwKEAoAHAoJEAAEKgoFCQQqEAcFACoJBQcnAgkEEi0IABItCgcTLQoDFC0KERUtCgsWLQoMFy0KDRgtCg4ZLQoPGgAIAAkAJQAAEf4tAgAALQoTBS0LBQkAIgkCCS0OCQUnAgoEEi0IABItCgUTLQhHFC0ISBUACAAKACUAABNXLQIAAC0KEwknAgsEEi0IABItCgUTLQoJFAAIAAsAJQAAFOktAgAALQoTCicCBQQSLQgAEi0KBhMtCgoUAAgABQAlAAAVRS0CAAAcChEFACcCCQQFJwILBAMAKgkLCi0IAQYACAEKAScDBgQBACIGAgotDgkKACIKAgotDgkKJwIKBAMAKgYKCS0KCQotDEQKACIKAgotDggKACIKAgotDgcKACIKAgotDgMKACIKAgotDgUKJwIDBAUAIgYCCC0LCAgtCggHJwIJBAMAKgYJBTcOAAcABS0LAgMAIgMCAy0OAwIAIgICBi0LBgYtCgYFJwIHBAMAKgIHAzsOAAUAAyMAAAUxKQIAAwDAe14ZCioBAwQkAgAEAAAFTCMAAAjtLQgBBCcCBQQCAAgBBQEnAwQEAQAiBAIFHzAATABMAAUtCAEFAAABAgEtDgQFLQgBBAAAAQIBLQxJBCcCBwQILQgACC0KBQktCgQKAAgABwAlAAAMdS0CAAAtCgkGACIGTAUtCwUEHAoEBgUcCgYFABwKBQQFHgIABQAeAgAGAB4CAAcBCiIHRggWCggJHAoJCgAEKgoHCQoiCEgHJAIABwAABfknAgoEADwGCgEzKgAJAAYAByQCAAcAAAYOJQAADMoMIgRFBgoiBkgHJAIABwAABiUlAAAVly0IAQYnAgcEAwAIAQcBJwMGBAEAIgYCBy0KBwgtDE0IACIIAggtDgkIJwIIBAktCAAJLQoGCi0ITgstCEgMAAgACAAlAAAM7i0CAAAtCgoHCiIHSgYKIgZICCQCAAgAAAaMJQAADoAvCgAHAAYnAg0EDi0IAA4tCgYPAAgADQAlAAAQgC0CAAAtCg8ILQoQCS0KEQotChILLQoTDB4CAAYGJwIOBA8tCAAPLQoIEC0KCREtCgoSLQoLEy0KDBQtCgYVAAgADgAlAAARey0CAAAtChANDCoNBAgkAgAIAAAHKyMAAAcLAioNBAUOKgQNCCQCAAgAAAciJQAAFaktCgUDIwAABzknAgUFAC0KBQMjAAAHOQAqBgMFDioGBQgkAgAIAAAHUCUAABHsJwIGBA4tCAAOLQoHDwAIAAYAJQAADpItAgAALQoPAy0IAQYAAAECAS0OAwYtCAEDAAABAgEtDEkDLQgBCCcCCQQEAAgBCQEnAwgEAQAiCAIJLQoJCi0MSgoAIgoCCi0MSgoAIgoCCi0MSgonAgoEDi0IAA4tCgYPLQoDEC0ITxEtCggSAAgACgAlAAAPPC0CAAAtCg8JJwIKBA4tCAAOLQoJDwAIAAoAJQAAECotAgAALQoPAy0KEAYtChEIJwIKBA4tCAAOLQoDDy0KBhAtCggRLQhLEi0KDRMtCEsULQoEFS0KBRYACAAKACUAABH+LQIAAC0KDwktCwkDACIDAgMtDgMJJwIEBAotCAAKLQoJCy0IRwwtCEgNAAgABAAlAAATVy0CAAAtCgsDJwIFBAotCAAKLQoJCy0KAwwACAAFACUAABTpLQIAAC0KCwQnAgMECC0IAAgtCgcJLQoECgAIAAMAJQAAFUUtAgAALQsCAwAiAwIDLQ4DAgAiAgIFLQsFBS0KBQQnAgYEAwAqAgYDOw4ABAADIwAACO0pAgACAAVVe/oKKgECAyQCAAMAAAkIIwAACo4eAgACAB4CAAMAHgIABAkkAgAEAAAJJCUAABW7HgIABAEKIgRGBRYKBQYcCgYHAAQqBwQGCiIFSAQkAgAEAAAJUicCBwQAPAYHAS0IAQQnAgUEAwAIAQUBJwMEBAEAIgQCBS0KBQctDE0HACIHAgctDgYHJwIGBActCAAHLQoECC0ITgktCEgKAAgABgAlAAAM7i0CAAAtCggFCiIFSgQKIgRIBiQCAAYAAAm5JQAADoAeAgAEBi8KAAUABicCCwQMLQgADC0KBg0ACAALACUAABCALQIAAC0KDQUtCg4HLQoPCC0KEAktChEKJwILBAwtCAAMLQoFDS0KBw4tCggPLQoJEC0KChEtCgQSAAgACwAlAAARey0CAAAtCg0GHAoGBAAnAgYEAScCCAQDACoGCActCAEFAAgBBwEnAwUEAQAiBQIHLQ4GBwAiBwIHLQ4GBycCBwQDACoFBwYtCgYHLQ4EBwAiBQIHLQsHBy0KBwYnAggEAwAqBQgEOw4ABgAEIwAACo4nAgICVScCAwJuJwIEAmsnAgUCbycCBgJ3JwIHAiAnAggCcycCCQJlJwIKAmwnAgsCYycCDAJ0JwINAnInAg4CeycCDwJ9LQgBECcCEQQcAAgBEQEnAxAEAQAiEAIRLQoREi0OAhIAIhICEi0OAxIAIhICEi0OBBIAIhICEi0OAxIAIhICEi0OBRIAIhICEi0OBhIAIhICEi0OAxIAIhICEi0OBxIAIhICEi0OCBIAIhICEi0OCRIAIhICEi0OChIAIhICEi0OCRIAIhICEi0OCxIAIhICEi0ODBIAIhICEi0OBRIAIhICEi0ODRIAIhICEi0OBxIAIhICEi0ODhIAIhICEi0OCBIAIhICEi0OCRIAIhICEi0OChIAIhICEi0OCRIAIhICEi0OCxIAIhICEi0ODBIAIhICEi0OBRIAIhICEi0ODRIAIhICEi0ODxIKIEhLAiQCAAIAAAxPJwIDBB4tCAEEJwIFBB4ACAEFAS0KBAUqAwAFBa2jcsb6poRzACIFAgUAIhACBicCBwQbLQIGAy0CBQQtAgcFJQAAFc0nAgYEGwAqBQYFLQxNBQAiBQIFLQ4BBQAiBQIFPA4DBCgAAAQEeFIMAAAEAyQAAAMAAAx0KgEAAQXaxfXWtEoybTwEAgEmJQAADE8tCwIDLQsBBAoiA0kFJAIABQAADJQlAAAV/wAiBEwFLQsFAy0IAQUnAgYEAgAIAQYBJwMFBAEAIgUCBi0KBgctDgMHLQ4EAS0MTAItCgUBJioBAAEF1RJ9KcLS6O08BAIBJioBAAEFrpKPa6mOkow8BAIBJiUAAAxPHAoCBQAEIgVQBi0IAQUnAgcEBAAIAQcBJwMFBAEAIgUCBy0KBwgtDEoIACIIAggtDEoIACIIAggtDEoILQgBBycCCAQFAAgBCAEnAwcEAQAiBwIILQoICS0MSgkAIgkCCS0MSgkAIgkCCS0MSgkAIgkCCS0OBgktCAEGAAABAgEtDgUGLQgBBQAAAQIBLQ4HBS0IAQcAAAECAS0MSQctCAEIAAABAgEtDEgILQhJBCMAAA2nDCIETgkkAgAJAAAOIiMAAA25JAIAAwAADcYjAAAN9icCAQQJLQgACS0KBgotCgULLQoHDC0KCA0tCE0OAAgAAQAlAAAWES0CAAAjAAAN9icCAgQJLQgACS0KBgotCgULLQoHDC0KCA0ACAACACUAABcQLQIAAC0KCgEmDCoEAgkkAgAJAAAONCMAAA5yACIBAgoAKgoECy0LCwknAgoECy0IAAstCgYMLQoFDS0KBw4tCggPLQoJEAAIAAoAJQAAFhEtAgAAIwAADnIAIgRMCS0KCQQjAAANpyoBAAEFursh14IzGGQ8BAIBJiUAAAxPLQgBAycCBAQEAAgBBAEnAwMEAQAiAwIELQoEBS0MSgUAIgUCBS0MSgUAIgUCBS0MSgUtCAEEAAABAgEtDgMELQhJAiMAAA7fDCICRwMkAgADAAAO9iMAAA7xLQsEASYcCgIDAAAqAQMFLwoABQADLQsEBS0CBQMnAAQEBCUAABd8LQgFBgAiBgIHACoHAggtDgMILQ4GBAAiAkwDLQoDAiMAAA7fJQAADE8tCAEGAAABAgEtDgQGJwIEAAQKKgMEBy0ISQUjAAAPYQwiBUcEJAIABAAAD3gjAAAPcy0LBgEmLQsBCC0LAgkMIglHCiQCAAoAAA+SJQAAFf8AIggCCwAqCwkMLQsMCgAiCUwLDioJCwwkAgAMAAAPtyUAABHsLQ4IAS0OCwIkAgAHAAAP6yMAAA/MCiIDTwgkAgAIAAAP4icCCQQAPAYJAS0KCgQjAAAP9C0KCgQjAAAP9C0LBggtAggDJwAEBAQlAAAXfC0IBQkAIgkCCgAqCgULLQ4ECy0OCQYAIgVMBC0KBAUjAAAPYSUAAAxPLQsBAgAiAgICLQ4CAQAiAU4DLQsDAi0LAQMAIgMCAy0OAwEAIgFHBC0LBAMAIgFMBS0LBQQcCgQFBBwKBQEAHAoBBAUtCgIBLQoDAi0KBAMmJQAADE8cCgEDBBwKAwIAAioBAgMsAgABAC1eCYuCuje0O5mhMWEY/SDUL1FmyenxP7XqZaltHgptBCoDAQIcCgIEBBwKBAMAAioCAwQEKgQBAhwKAgUBHAoFBAAcCgQFAQIqAgQGLAIAAgAwM+okblBuiY6X9XDK/9cEywu0YDE/tyCynhOeXBAAAQQqBgIHHAoHCAQcCggGAAIqBwYIBCoIAQccCgcIARwKCAEAHAoBCAECKgcBCQQqCQIHHAoHCQQcCgkCABwKAgcFHAoBAgUEKgIHARwKBgIFHAoEBgUEKgYCBBwKAwIFLQoFAy0KAgUtCgECLQoIASYlAAAMTwwqBgUIKQIABQUAAVGAJAIACAAAEcEjAAARmxYKAwEcCgMCBRwKAQMFBCoCBAEEKgMFAgAqAQIDLQoDByMAABHnFgoBAxwKAQQFHAoDAQUEKgQCAwQqAQUCACoDAgEtCgEHIwAAEectCgcBJioBAAEF0Afr9MvGZ5A8BAIBJiUAAAxPHAoDCQAcCggDACcCCAACJwIKACAnAgwEDS0IAA0tCggOLQoKDwAIAAwAJQAAF9stAgAALQoOCwQqAwsKACoJCgMcCgYJACcCBgBAJwILBAwtCAAMLQoIDS0KBg4ACAALACUAABfbLQIAAC0KDQoEKgkKBgAqAwYJHAoHAwAnAgYASCcCCgQLLQgACy0KCAwtCgYNAAgACgAlAAAX2y0CAAAtCgwHBCoDBwYAKgkGAxwKBAYAJwIEAGgnAgkECi0IAAotCggLLQoEDAAIAAkAJQAAF9stAgAALQoLBwQqBgcEACoDBAYcCgUDACcCBABwJwIHBAktCAAJLQoICi0KBAsACAAHACUAABfbLQIAAC0KCgUEKgMFBAAqBgQDLQgBBCcCBQQEAAgBBQEnAwQEAQAiBAIFLQoFBi0OAwYAIgYCBi0OAQYAIgYCBi0OAgYtCgQBJiUAAAxPHAoCBQAEIgVQBi0IAQUnAgcEBAAIAQcBJwMFBAEAIgUCBy0KBwgtDEoIACIIAggtDEoIACIIAggtDEoILQgBBycCCAQFAAgBCAEnAwcEAQAiBwIILQoICS0MSgkAIgkCCS0MSgkAIgkCCS0MSgkAIgkCCS0OBgktCAEGAAABAgEtDgUGLQgBBQAAAQIBLQ4HBS0IAQcAAAECAS0MSQctCAEIAAABAgEtDEgILQhJBCMAABQQDCIERwkkAgAJAAAUiyMAABQiJAIAAwAAFC8jAAAUXycCAQQJLQgACS0KBgotCgULLQoHDC0KCA0tCE0OAAgAAQAlAAAWES0CAAAjAAAUXycCAgQJLQgACS0KBgotCgULLQoHDC0KCA0ACAACACUAABcQLQIAAC0KCgEmDCoEAgkkAgAJAAAUnSMAABTbACIBAgoAKgoECy0LCwknAgoECy0IAAstCgYMLQoFDS0KBw4tCggPLQoJEAAIAAoAJQAAFhEtAgAAIwAAFNsAIgRMCS0KCQQjAAAUECUAAAxPACIBTAQtCwQDACIBTgUtCwUEACIBRwYtCwYFLQgBAScCBgQFAAgBBgEnAwEEAQAiAQIGLQoGBy0OAwcAIgcCBy0OBAcAIgcCBy0OBQcAIgcCBy0OAgcmJQAADE8nAgQEBC0ISQMjAAAVWAwqAwQFJAIABQAAFWsjAAAVaiYcCgMFAAAqAQUGACICAgcAKgcDCC0LCAUwCgAFAAYAIgNMBS0KBQMjAAAVWCoBAAEFXm0/LtzNhwk8BAIBJioBAAEFG7xl0D/c6tw8BAIBJioBAAEFT99KitfP8NM8BAIBJgAAAwUHLQADCC0ABAkKAAgHCiQAAAoAABX+LQEIBi0EBgkAAAgCCAAACQIJIwAAFdomKgEAAQXkCFBFArWMHzwEAgEmJQAADE8tCwQGCiIGSAckAgAHAAAWMCcCCAQAPAYIAS0LAwYKIgZHByQCAAcAABasIwAAFkYtCwEHLQsCCAwiBkcJJAIACQAAFmAlAAAV/y0CBwMnAAQEBCUAABd8LQgFCQAiCQIKACoKBgstDgULACIGTAUOKgYFByQCAAcAABaXJQAAEewtDgkBLQ4IAi0OBQMtDEgEIwAAFw8nAgYEBy0IAActCgEILQoCCS0KAwotCgQLAAgABgAlAAAYyC0CAAAtCwEGLQsCBy0LBAgtAgYDJwAEBAQlAAAXfC0IBQkAIglMCi0OBQotDgkBLQ4HAi0MTAMtDggEIwAAFw8mJQAADE8tCwQFCiIFSAYkAgAGAAAXLycCBwQAPAYHAScCBQQGLQgABi0KAQctCgIILQoDCS0KBAoACAAFACUAABjILQIAAC0LAQUtCwIGLQsDBy0OBQEtDgYCLQ4HAy0MSwQAIgZMAi0LAgEmLQEDBgoABgIHJAAABwAAF5IjAAAXmy0AAwUjAAAX2i0AAQUAAAEEAQAAAwQJLQADCi0ABQsKAAoJDCQAAAwAABfVLQEKCC0ECAsAAAoCCgAACwILIwAAF7EnAQUEASYlAAAMTy0IAQQAAAECAS0MTQQnAgYEAicCBwEBLQgBBScCCAQhAAgBCAEnAwUEAQAiBQIIJwIJBCBDA6oAAgAGAAkABwAILQIIAy0CCQQlAAAZxCcCAgQhJwIGBCAtCEwDIwAAGEEMKgMCByQCAAcAABhYIwAAGFMtCwQBJi0LBAcEKgcHCAIqBgMHDioDBgkkAgAJAAAYeCUAABWpDCoHBgkkAgAJAAAYiiUAABX/ACIFAgoAKgoHCy0LCwkcCgkHAAQqCAEJBCoHCQoCKE0HCQQqCQgHACoKBwgtDggEACIDTActCgcDIwAAGEElAAAMTy0ISQUjAAAY1gwiBUcGJAIABgAAGT4jAAAY6C0LAgUtCwUGACIGAgYtDgYFLQgBBicCBwQFAAgBBwEnAwYEAQAiBQIHJwIIBAQAIgYCCT8PAAcACS0LAQUtCwMHLQsECC0OBQEtDgYCLQ4HAy0OCAQmLQsDBgwqBQYHJAIABwAAGVQjAAAZti0LAgcAIgcCCQAqCQUKLQsKCC0LAQkAIgkCCwAqCwUMLQsMCgAqCAoLLQsECC0CBwMnAAQEBSUAABd8LQgFCgAiCgIMACoMBQ0tDgsNLQ4JAS0OCgItDgYDLQ4IBCMAABm2ACIFTAYtCgYFIwAAGNYnAAYEAgYABAYFLQAECCcACQQADgAFCQokAAAKAAAaFwIACAIIAAADCQstAQsGAAADCAstAQsHAAADCQstBAcLAAADCAstBAYLAAAJAgkjAAAZ1yY=",
|
|
2456
|
-
"debug_symbols": "tZ3dbh23zobvxcc50B8lqrdSFEXaphsBgrTIbj/gQ5F73+
|
|
2456
|
+
"debug_symbols": "tZ3dbh23zobvxcc50B8lqrdSFEXaphsBgrTIbj/gQ5F73+IrihynGGU8yz7JPKaXqD9KIqlZzj9Pv3345e///Pzx8+9//Pfphx//efrly8dPnz7+5+dPf/z6/q+Pf3we0n+egvyTUn76Ib57Sjnpsz39kMazJH3qz6Q/U53PGvWpPzf9udF8ctBn0WfHM4ehr4xnjPqs85n056Q/Z/05j3I0niXrk+dT2oNnnU9pD56j/jaeLeiz6JPnk5M+23x2/blXPEsY5WIQoAWjBXE0pcShKrKA9GV0piTpnPwqdYWc9VeZFaThqQqwAoZQAGMIkEHrA9r4cJZKOS4YH855QB915VEFhbRgdCGPNpOM5YSqkJYkLUlekkwLukIpC0YLy6iUKC9oCtLUCbSgK8gIT1gSXsVlkMsYBJJRnqCSKsMLiGPASxWgBV1BbHMCK+QlETMFFGkYC5AChQVlASvUvECKjwGvYrYTqgIvCS9JX5JOC/qEFsoCVoh5waiCxiC0lBZUhRwWlAWsUNaHyypOS0KreJXiUYAWdAWxnwmswEsicwGQ7kxYxaU7NAaTZVJoWALLpEwoC1hBJmXCksjWMaEqlFW8rOJlfVi6U4PAaE8dtXNNC6qCrN0JZQEr8Powrw/39WHpjkAPYUFZIMWHsXWZnQlLIpMCkAVSSaAqFB3nXnSgOi0JLcmaiy5zUYdpdTQeUBawAhoPqAp9fbivD3f9cAwhGdVFstKVTJaCUTEyLbJilGTHi0JiZEp1kXRNqRjxIlk4SiZrpkXWTstCsniUyKgv6tmIlUazjNoi6WUroLpIeqlUjHiR9FLJZOglg0RzFxLrUzJZNZkY4CTZFpRMxiZD30Ayf0rFqCulUIx4UUxGqwUpRaNVW8rBiIxMczHNsrBYZiHJpq1kMumbUl0kfVMyGc/TfUBV6HHBqJ5lWrKsK6VixItkaSmZTI5F0Z9lVgA0j/eYZeFMIIW2JG1JeEl4HvoRp/WENqGEuIAUsHcB5tEfcV4DZO+a0BRk1U+oCmVJCi0YxVnaUWRpKEkfUYssDSWTyTYc8TlZ++IzxCIbMXfQkHUZjSILQqnpb3G8Kw1Zl3EkMZpJsgyUyGi0r1chWeJd2kzS+EmysDuDaFE1mbR5EtocIrAZimEsdGl3aTdplalYSIYxOIoDFQqwG8IDVWyGOTqSYQmOB6krIyirQDasLm3RcUz52EQE0c2Ygc1Q1sBCWtjgISoepN1QVsJCU9ZSdPRiWCFRmgNnIMJWWu6GJTs2Q4qO5OjFqherXqwlR5eyK2MoE+tj2ZjHxgVkw+hSdGgiJiDJHLMskYUuRRsmog3iKw9shmiDIhnK9rrwIO0L+2xkBTbDmByrYQqO5AhlslJ6zo5sWFxaXEoupWZYo2M1bMGRHFGxjHrn4siGWGSKVTEFWJ9iceyG0aWRDROUdWAzxCJTJEMsMsWDtBvOzk90Zeh8TsBqiM4rFkc2xNJT9GLdi3Uv1q1YDMmxGUaXRlMG32FhceyGmPlMQDYsybEaUnAsjt2wurS6Mpi9RFkDmyHMXpEcu+Hs/ESTJpi9IpTJHKfZ+YnVcHZ+YnHshtmlCFoFVvRv4X+SHUcO9YQMwKQajIpRX9RMhq4JoDeSZEBTC0jaz0hAQDZzESKU6DBl2OVE2KUEfQMhRTHMh2KxD2A+JmI+JHAa2A0xCRNhgYoybiSNzrBARVo40wOKLo0uxfJTZEOccYqoWFpWkHNRrIbopmJxZEMsP0WXVleG5UeM7E10dCk2HEUZkopMD2anilURuilhw0By7IY4BxTZMLkU3ZyIXUbRlWVXVrwYzrgq+wmJr76wGtbgWBzZsHmx5sXYi8EaJ3aXdleGXUYim2Hg0rKGPBcOwYnRpdGlsF/FZphdml0qTubCaghTViTD6lL0WBEVyxKq8NwUmyG2FsVq2E3asINKwDWwGUaXRpcmlyaXZpdmlxaXFpeSS8ml1aXVpc2lmMKJs0MTXdpd2k3KsF/F4tgN5xROZEPvJns3OUdHr6J4FdiNFL0K8orJq6hesfeYvcfsPWbv8XSKJnavuHsV3SqeTpGiVdx9YrtPbE/R0SruOTiSo1dRiqNXQV6xz3H3OZ5O0cTmFTevgr1i9irYK+5eRV8V52CmPLAZxuhYDVNwJMdumIsjqqiC2KMmwvlWrIZzmU4kw+ZSuD8TEWNMhJenaNLp3ShaFTEGx+LYDZNLk0tzdrQOTe9G0SsWixpzChRnoEtOPUlzFjbDSIYyqEli0IHkKFlxiUJzQl5ckQ2LS4tLyaXUDJEsl1B1IC3MEUMtH8hzYiHFxHIAdkNMrKJLi0uLS2HKis0QpqxYDWHKiqg4ArshTFnRpd2l3aQFi1exGWLxKlZDLF5Fq7hg8SrCHjqQDacpT2yG06onVsNp1RNdGfyoic2VNVcGl2oinCdOuLJB02VlTZ9AkRy7IRqp2AzJi5EXQyMVXYr1JtmaTHMugJwdmyFOEUVytGI1FEeXxuyIRA9uoHBIsKyAec4ruhTnPDcgOXZDHBKKzXDa2UQv1rzYtLOJLsU+CWwy1EnujjJSDIqyAha6lFxKLpWWLWyGcnwtrIZyfC30itmVdauCsa1IpDS8cXxWBorFlFPGdd1suqxunLxJ7pcGojaxM6ZgxWbTJ3bD6lJxnhRbdnQp8qGKdWEXVzhJhDKwG8biKBqKWF8XV1gRV6pFuol7g+G1C1b0Yl49FkdokG52tGwiRlJRmiMXTGPTiI5LWpAgSISLS7R3YnQpGjkRjVRshrAHaXpB0K+IrXiibIOKuN6V8Gwga98KDrWFbSEOtYXVMEZHl+JAUSyGOC9wY4ozSxFX04qiIeGOFueFooyDZF0GdkPZHxZi5qXzkbMjbDLiwjc5wh5w+xuiI6QyJPPUC6IXofVCSBmXxpDKZCVMrKJowIXzzL0rQioVZ9QWcbeM2iSBWHCPvtClCVJcSCdIZfgyFq+i9FjyjiXDzhQhbbi+hpSBkEojc8+OJsWZlSQTOBDX3tLeEiHFFThMbiJMLmUgG2aXzotzafq8Old0KdyDRLhRFysJ8ypdekwdiPt1aU7FOMgV4MBqmF2aXYptRbE4siEqVnQpFoMilEk3sVePiA8IqTQdMVmSu8WCmEyxu1QOn4V9YcP4KrJhdKk49IqzxxWIKhpeK4CUgZDiZYMSHV2KjVSxOLIhzEjRpTgDFEVZkwmYZ4DE0gVBW5LgtSBoS+JiFwRtEzlER3LshuixIhsml2ITm4geS6BbELSNqFMQPRZPt8yjQzzHwhQdXYoNWrE4siEWjqJLcXQoQpmMOs8ed6BIxV0suKleSIbRpdGlyaXYERXZEGtIsRkikzdxunXSspmoRsu6ObJlJqoVyZBdyi7tLu3FkRVHBik7NsOYHJcjSzMmUyTD7NLs0uLSUhzZkLJjM6zJ0Stu0ZHUZR3YDbk4smFPjsvppRiioynToG1icTRlMWXD6TkmvMmznF6aqWPFasjBsTiyYfdi3YrhzFro0ricXpr5YsXiyIbI+ihWw+LFiisjl5Irm54uCSJmEK+YcAe90KV9Ob2UZi/w6lIIjsWRDaedTfRiyYslMswuzd0QGx4BseEpNkNseIrVEBueItwvBnZDOL2KJi2hOLoUG55iM0zJsRpiw1O0ipFMVsQmJu+qEO6iR4oWiG6KEeA2ekwTkBdSyI5og0wLzZYRXgjDBDAQEyCmrCEMcC6yidVw2u9E0dDxChkSH3IlPrAaYg0pkiEWjqJU3KVDMymp2AyLSxGITUQ4qehShJNytU54w0qxuRS3VxMRTio2QxitommYmUjJrdDMRE5EDKnYDBHaK5KjF8uuLLu0uLLiysiVId6UnA3N69mJCO0VXYrQXpEN2WYI55tiD45lYbdQmfrsZgWyITICE5ERUEQjZQ3hHayFxZENkVdWrIbVi1VX1lzaXFlzZezK2JV1L9a9WF/F6kw/Sj6qzqMOiLvIJGdLnYHNRPhnijjcsyACXcWDtBvCI1V0KbmUXFpd2pohNiZFqyJhs5EZGtcX+CzhvctkUjhPjJcw4TzJ5jiwGpJLZxuAsw0TXTqbA4SbJLtGxW6v2F063SR523JGPrI/1Bn5iHHVGfnIiq0z8pFFVmfkg17MyGfiHF8g9qgOvdi2A/TOSGJiceyG2BwDakNICywIaRVdGl0aXZpcmlwKr01ejxnYDDHUiuTYDcmLkReDk4O+4Q5w3BMLzg5N5NWhudsrmpRmhyZCgxgBXjBe6FJ4pIGA5GhjRjk7ehXFpQjiJ5JXTC5FEK9Ijl5Fc2U8NXz9+u5pvef+819fPnyQ19wPL77/+M/Tn++/fPj819MPn//+9Ond0/+9//Q3PvTfP99/xvOv91/Gb4fSD59/G8+h8PePnz4IfX3npcN50XEYr9JjgqMpGH7hVRXDOWiqYmC/oyIhswAVw387b0XetGLEoXU1Y8SOzZS0y4Mx8iZLhVyw3+pJk/Btqmg9n6qo5yq4rxkZoZYpGEN7WYGES6qATxXwuYKR/6LVhjiCG5+QkbZ+pqRvJgQvNcz5iHTsyOX5kEzzUjHck9PBlKzT+ZyymdZwWF1H/EZH2owHh7qGdHA7ta24M9DhhC7TkOuieKpk1xuOqyFyI3reG9otNu6mZJxQbiItP1dSX2NI2hsPyXDgo+oQr91UUHyuYmOqw1+QrJcayfA/z0YkbYx1eFg+Ir0dWvJNZ1LcjUiV5KOOSD3fxfbdOWynI/CKp93Z7qdrZoaTcBjVe/PCdDYvaWOpTdKS0HAczpKut6HZchnRVDttw8ZGRzJwqWgjnXU6qZvtdFzBlqVjcL9n5seuHI7Ib818p4LrmlOJfc5U5PjwaOT01qPhXakhtjujUfFG8FQxwunT0djYJ+G+Yw7ocZmJumc6thtptU3jcFi3eF0DmdMS0rmGjYE237mGaR2O6vJ8v8i7456S7Re+Vkc65vpoRjfPkX0/Hc0Sd6PJyU6loy/a7xlGOt80ymbzHBkrm5ORuDpthly1nnrmNZhnPgLWcx2bIc2h53WwDT54Yd+ste8oSQclLZwq2R31rdu5xtn94uGdXdfhm49cdt/U4VHCuKg417GdGVrjMa656vnMbC2k2RFdQzzVQZuddKQ5bfuhdN4Oyq9gIVR2SpJv6WFkSU6V7MyMqrdkOA/nSrZDYg4lUed7U1Ozuce1hvNh5d30dovixvyG00OOdltq6uTO4G7hbXtjC2/cbt40VuZsUcddHd23xE7lVEfd6ODCa1C5HHb3XJ6PRy27E6K5lx7LqY6yXzTBQttwbiF1c2pLfmqdMiP9fK5js5n1XixKD94VObSuqoihuI5az3X0x92HFh51H7YDWm03rCN/ezqgbeebjiSyHQ8pn8dw31GSuiuhWw7uCJ6K9aaceqdts6GWkm1MR+r1tCt1lyqItvBTOywWem4dre10dMuI5Wf5qHCvK/V8VrYqbL0NFf1MBe9sdCTcbT+W9/FupBjHpeqyDXkB7jSlxTsDI3wNRk/KeH7c7g6oYmt2LPV2OitXVXA5VbE180ZLR22HAf3GzLm+QvKG2yskb5hfIXmz787F5E0Pb5i8eTYvfLr99PSGyZvK0WJ8Lqfpil4eTld0euN0xbOu3EveVPcFaz9PV+xUtJBXK0bYwqcD2h/PeMQQHk157FVcynnEkB73WmLIj7ot2xG9mPWIgd427XG0jhjODSxsE/rsB2Q4d/Jj4MfD2hj6K8S1MYZXCGzjbmQvR7bfGZZroe1+gnKJvpnljaGUVwhu4+4a6nJ0+50ONb/13Vnc9h4qe4JL4kDbCjK/QAmRXYNTu6lE3pW21NLB9l+mhM1SCh+Oin8p2Q5socN1+sbcUno8hxnTa6SovqflWhYz7m6krqYx90ou5jG/o+RaIvM783Mtk/kdSzFvcxjNZpJzeDwdEne3UxfzIVsdVxMiMedX8C1yedS32I/qxZxI3N0vXU6KfE/L41mRsbHa8fXsDPz29YfdTVXqOdvxNbaW8/6UbTIgJz9KcymP9qceswHxeqjWkhlsGyfzqd+2Tc5ejaHj7l7kchAdt9dNl1+B2PfoYhgdS3vDOPrZ5JyHXLH0NwykW7J3/EZ7TpMskeIrBH6UHg78tiquBX6726rLm/P+turS5rwd0quRH7U3jvyO9sHnO8j2ror9jGDeuIs1vEZgUeNrBBbbDnVzXYd/lTYdyq8QytbyGv5vpdcIZXeXLNdD2f2wXAxlL09QPh/b3cvPgdlWMZ2/dhxbePx+Y9cOfJN5tiNlPm3HTgX+IpSqKLuu5Fe4WNg1pCYP+Q63Tv9uyO7Fv2Qnnh94+WoTUrRMlvwRvNPdea/C/KGxOO+p6NHuzg4vHv/rjGjbfOuaVcrhpgp7O78eDruXdAR/TkA7criKfImKyr6vH96Kf4mK5u/mt3xvUvFV+3WbeU9FDnYhmmO81wp/IT2HW8NZ/Dph5HqOZ9NVDTFaCDRSfXynEdH3Cvk707dUZLPNgfdaQbbdDKev3VNhW2ck7vc6YsFGHDnweyo875DpXkeq2Xes7V4rWlv2PTaVW8YZu4/F0XF6gYpm1+yt1DsKusVtne6NQ7AYdGSBzo0b32Z7u2Xaw1ofPd0bCFujvdGDI3lPQfSkXAoH3+bbZPRux/RUdDq+upHz9a9lFT+MKaebKuz0oFJvqSAL1kaoc68VNdhY1EPS6WUqzD2qxPdUsL8i2dstFc183tQK31ThLsEhJ/EiFd6R1u+1gqNNKpd4U4VZJx+/KvcSFWzLjA8e1ktUdH/Zq5e7KmwsOt1bI93XSL+3RnKq/q0yvjWc8tcN7U4j3VpmI4Cy+JSeXSpeD+ouXs9sfQK7Hx1R7Pmkpt13oNh0PDOt/gK3wkKI2GratKK/ZSs6ef6x3rKLZypauqmCPAt6yy7kD8Z6LifGfiNOH+X82m5wvaUjWRghfFOH3+CPvNRNHfZdwwd0XMuPpf23oC7mx8LjN7vb2MyDiXj4CsO33wHH30M8X29Xvka+bYWdzwPbPRXZg8zj4fqijlz6Qn0q27f1s91Ol5sqzAM9buUvU8Guot1T0VKz0CrfmZE8cu+WIxx86yXocR7Y3hNboXs6UnhcR2mug+o9HaEedJzvG/vrpFbM4aDG5da+YYds5sN4fPvmwlaFe07cyh0VhWxIC/Etz6n4WwulZr6nwlIIw4m66Xwd3l2iex05jEW959eXarnw4QLea0ULdstx/AbYy1phM9JSeHQsWor3OpK9I63fU8H+fl2/2wrvSKeHx6LfmxH2FwX5Xh5glGNPT91thVkn34vAj2PBNd1rhX2XdqR57tlFTzacPcebrWBXUR8di55vpVUo2WKn42XNC1SM7cLeWQmH8DleTti1aMbZ4iHb9o2GtPuSU/Q3Z+Q/h7zVCnshd2C/pcH+UE6724ZmYxkPwd4LNCQ7DAe2e73oroEf1RBvtSFZPr2lHB6di+MfKntBG/wLDonu9SKXx+zhWhwRHo0iwqMxxE6B3ZYd75heoGATgvw0fnz/68cvz/7796+i6svH9798+qA//v73518Pv/3r//9cv1n/ffyfX/749cNvf3/5IJr8/5Af//wY5X8fGFsK//TuKcrPefg28h+3jp+z/CzvfY3IleT3UqBSfFepyo/yeUmojZ7/9FWa+z8="
|
|
2457
2457
|
},
|
|
2458
2458
|
{
|
|
2459
2459
|
"name": "sync_private_state",
|
|
@@ -2611,7 +2611,7 @@
|
|
|
2611
2611
|
}
|
|
2612
2612
|
},
|
|
2613
2613
|
"bytecode": "H4sIAAAAAAAA/+29CZhdV3Umuk/VVamuVNLVPA9XtqzBlmcMBozxbBlLsmzNg22VbWHLkiUhlSYL22BwZoeAQzppOg8yAEmHhORBh5AvyUuT6RGaJJ10QkJDGJJ0IGFwEsj0OdAcfJfqr7/+s+8+566SLnbt75Pq3rPX+tfaa6+99nj2zcLzaUbr79FTB++/9/CRfccHh/bee3ToW//nT7NWbi1UTFlbMYeXPp/T36LoAc7eb/1rhjRB/SSxHP8bnuhnwFL84dv8Wagq//ny5zwVyx/6TBHgR10Md+K3/k2Gz2tJfkX9n+hU/xkRna1ubgT6pn342tFPvOdjT3/gt39m6L3v/pHpn5zyY5PXTHriqae+uvAri/7zs0/9lPHeBLhZSNarz/hvVrKv/VDvzod+6d8PTb71Te8/8cm/2HBsyqLBjyz9nnfv/J23Lv3ivd9lvLco3i/8wDueaLz/be9qXvTxr/fd+pYv3ftPt024+pMff/3833ryuS8++4zx3qp4/3jnc5/+YOOZR08+/eHTV6+aOfi+Zz7xD3/3ex/7hcY/fe7nX/eJq4x3LZS5Slu6rRr/NON/DfDXQrm2kKfbq/Gf0X9dNf4e418PD5v24Y0//TOfvv7pj1/2V89N+r71g28+eeX3/8m2Lz86770X/M3DP7/ofdONd4Pi/fzQjW8dmvvIS7/c/4dPX/4TCxd/5mvv/eDf/vOpvVd/6W+/8MvL/sl47xC8865Y+fLDP/pHsz616rz/fd1vvu+SH57/teXXfOpX1v7Es//+0X8NwzbbCGUuUWdnynxnNf6a8d9Vjb/X+DfBw2acx0LFmbJvrib7DP+WdNmWJhjvVs2bvem8o/+p/nS2/iNPXvzBgUkf+eL177zhxo9/7M3ft7Txvnca7zbBe+E19Wff/X2PPxU++96//8F/vvDXrrt4+pLrp1/yv97xZwsPHtk1/1nj3W6CQqkyLzL+HcBPukeT8e8Mo3VP5d1VTfaZ9r27vOwzvHeX5z3TRu4xsFDK5md85d5q/HXj31ONf5LxDwJ/ib6wafz3VeO/zPjvr8Z/ufE/AA+bISm9wnj3guwStrvO+F8L/CV0v974H6zGf4vxP1SNf7Px76vGP2j8D1fjv9/491fjf8D4D1Tj32v8j1Tjf63xH6zG/6DxH6rG/5DxH67Gv8/4XwcPmyEpneE9Uk32AeM/Wo3/EeMfqsZ/0PiPVeM/ZPzHq/EfNv4T1fiPGP/JavxHjf9UNf4h43+0Gv8x4z9djf+48b++Gv8p43+sGv9p43+8Gv9jk8Lzc+1/nf/8g3z+Pa+VeWxo34F9Q6du3Tu05flPNx46OLT35NAEADB5+L2HvvfS9xp9N7wJBXzM0y7ZfL+PdGymsW8caNFPJH0Qu5/0bIaktDgjvBBGljMQfp10KSkvywjP5HH5rM6s7HWhS0PksY3rQk5dyGmIvAOOWCccsR5xxDrmiOVZxqOOWIcdsYYcsQ46Yg06Ynna3rMNnexSrH2OWJ4+4Wl7T//a74jl2bY9feJhRyzPGH3aEatb+0cb+9rYAccaWcFfk8PPTE6dsKqOe1S5+oW8GP3ECP2kRPx8XN1ofW6Nq2/ae9+xB9cdejBQ4qHuTQUqLiK6zRHVGDejf/x8ET3rFbSY8uLNaX1uFe+WvUP3P7R58MEH9z7wrUIeZQ5GurHgOQ9IkcYG45NI02ZISj0pTon4ddKlqlMqp1GNLbeqbU+3rLru0OADNw4ePnrswF6eZuEUga2CqPhM1WkGmuGzXqK7kb6vFXxBYOf5VnMD9LwZktIU84opItPypgL2RMprQF6d8qYB1gNAx4nLieXJ5X1j/jAu07GuWFdTKW8y5DVANtf5JCHHytYj6CcT1iTBZ/XSTl6v4OMpa2xandISrRx5aggZXI9jEDFmdXvEsPJNriZvZkb8KA8xTR+z9YDIMyxro30FWMZbI/r/1vrbILo87SQZA0JffGb2yZeYfpF0R9uyn3RiR8QzvfAZ4tdDR36ZxeoNy8d+UjH+zkixO+rD8Zpti3GvrwDLeGtE/5HW30YY3Sewn0wR+uIz9JNfJ93RtuwnFe14faqfGH49dOSXWazesHzsJ1Oqybsuxe6oj+q70bbYB/YVYBlvjej/sPW3QXR5Yj+ZKvTFZ+gnv9/63F+gbzMkpRNqTMN+hnYpc6Qi1c8Mvx46qvcsZkfV3tS4zHgbIo+XnRtCTkPIaYi8E45YxxyxHnbEOuCIdbJLsQ47Yg05Yh10xBp0xDriiOXp991or1g/VBYrT56+esoR65AjlqevepZxnyNWt7btxxyx7nPEsmMKPM4z/Dz1h9Ftr+zcBPFMT3yG+HXSpaS8LGYXNWa08k2rJm96RvwoDzFNH7P1dJFnWLbK2FeAZbw1op/XMmiD6PLEY+rpQl98hmNqm0BPFfry+kJZf0R+thHysT92Ul+IZ3riM8Svh478P4v5h7KLlW96NXnTUuoX9TFbzxB5hjWz9b2vAMt4a0S/ivxxBujE/jhD6IvP0B/Pz0bqjrZlP6lox5tT/cTw66Ejv8xi9YblYz+ZUU3eTSl2R33M1jNFnmHNan3vK8Ay3hrRX0V+MhN0Yj+ZKfTFZ+gnl7Vw+wv0bYa0xG3EMBAb7ZJeD9k/pPqZ4ddDR/Wexeyo2puVb1Yledmz7BsoDzFNH7P1bJFnWLa32VeAZbw1or+R/AxlsG9YHuqLz9DPrqV4hLZlP6lmx3BDqp8Yfj104pfDfqLqTbU3K9/savKuT7E76mO2niPyDGtu63tfAZbx1oh+I/nJHNCJ49EcoS8+Qz+5vYU7VejL6++x9oK4DcFvdMrnSsS9e1WdluB/nfHPqcZ/0up4Ljzk9jQPnpfwt8tT25Ph10mXqu1pHsnj8vEa7HyhS4Py8vQQ0HFer3jWE8E65Ih1wBFr0BHrYUesI45Y+xyxDjtiHXXE8vSJ/U5YKk52otdJR71mO2Hl6YQj1ilHrEFHrMccsTxjoWd7HHLE8qzHxx2xPH3C0/ZebTs4l9HTJ445YnVrnPDU68UwZhrv086d7T3b4yOOWF5lzD/PccLy1CtPXuMJ7zLy/h3OLbPW336hQ4l5qy1tncEzPfEZ4tdJl5LysphdsHw8T14gdGlQXp54nrxAyFkg5CisQ45YBxyxBh2xPMt42BFryBHrlCOWp+0fc8Qar8dyWI87Ynn6xH5HrGOOWJ7x66QjlqftPX3V0/bdGr88fdXTv446YnnWo6d/ebYhT/864Yi1zxHLs4zdOpbzLKPneKJb69HT9l5jufzzHCesPHXrOMdzjDk+nnhhtCHPOOGpl5d/5Z9nO2Hl6VFHLE/be44BrK/lc2OGn6cO18CWZYRneuIzxK+H0XXptQamzqBZ+RZUk9dMqQfUx2y9UOQZlt1Z0leAZbw1or+1VaiGkMFn9CwP9cVnePbqhtaXqULfTvcikJ9thHzsjxXrqzfVHw2/Hjry/yzmH8ouyj+MV9Ur2z+1XmNYvC5s+XnqF3wl7NFItb/h10NH9Z3F7KLipJVvUTV5U7kNozzENH3M1otFnmEtaX3vK8Ay3hrR76F4sBh02kkyFgt98RnGg12tL/0F+jZDUrpN2boE/yv6w2jbleBfb/xLqvHfbPxLq/Fv6if6kvy3Gv+yavzbjf+8avwbjP/8avw3Gf/yavzrrO1cAA85Tq2A5yXa8YbUOGX4ddKlapxaQfK4fNxPrBS6NEQet9GVQs5KIach8oYcsU47Yu1zxDriiHXYEWu/I9agI9ZRR6wDjlgnuxTL01cPOmJ52V71693iq57t8ZQjVre2x0cdsTzbULfa/pAjlmec8OxrPWO0p+097dWt/uU5NvGsR0/bvxjixGNOWPnnxY5YSxyxlnYhVp5e66hX0xHL0/azulSvZY5YfU5YefL0ifMcsc53xPKsR0+9PH21G2Nhnh5yxPL0Va969NQrT91qL09fXe6I5dm2veJXnh53xBp0xHrEEctzTcFzTO45V/Bce7Txva1j47p31vrbH0b7Zdm9OMQzPfEZ4tdJl5LysphdsHy817iqmrwpGfGjPMQ0fczWq0WeYV3Y+t5XgGW8NaKf0zJsg+jyxHuNq4W++Az3Gqe3cPsL9G2GpLRmIIy2FfsZ2qVEPaxJ9TPDr4eO6j2L2RHLx3tFFwpdGpSXpweBjvN6xbOeCNYxR6xHHbGGHLH2O2INOmIddsTytNdpR6x9jlhHHLE8bd+t/nXUEeuAI9bJLsXy9NWDjlietvf0r0ccsU44Ynn2aZ5tyNP2p5yw8s9znLC8y/iYI9Z9jliPO2Hln1c6YeXJ0/ae/aNnLPQc53jGCc/41a3jQqtHO2eOcYPPOafeHarOmRvdgODLWn87XHtIviud1x7mVJMXXXtQdulwznvmrvTYXB71UXNQjk0Xtb73FWAZb43on6S1B5TB7z2k+me+9vBYC3eq0Jf7tLJrYchvdC80OQOCj9tXRf+bkNq+eM2lYnuOrrkou5RZc1H274bx1lhhmf+tjshJXSNU/rf6BSpnQPBxe0J7l/Dv5N/VM/x66Kj9ZjF/Unaxsl8kdGmIPD4XcJGQc5GQ0xB5JxyxjjliPeyIdcAR62SXYh12xBpyxDroiDXoiHXcEcuzDXnW42lHrH2OWKccsTzbtqd/ebYhz7j6YrD9UUcszxjNawA4nuknOWXHoshvdGrclP9rhqR0V38YPfYowb/V+NdU47/D+C+uxn+jjasugYdZ669hXwrPS4zx3pgRXgh6TGn4ddKlpLwzY8pLSR6Xj8eUlwldGiKP36G8TMi5TMhpiLwhR6zTjlj7HLGOOGIddsTa74g16Ih13BHrhCOWp+271VdPOWIdcMTy9C/PmHPMEevFYPujjlieZTzZpViebfugI5aX7fPPi5yw8uTpq906BvDE8rTXeL893m+P99vj/XY7rPF++zu/386Tp7261VcfdcTytJdnzPG0/SFHLM825Nlvd2uM7tbxhGcZPce+nvXoafsXQ5x4zAkr/9zniHWhI5bXOnn++SInrDy91hHrISes/PMSR6xZjljnOWKtccLK04vB9osdsZY6YjUdsTztdbEjlpeverahPHWr33drGV/osdBbr/G+4zu/78jTg456eY7lPO213BHrfEcsz77Wsz162qtb+47HHbEGHbEeccQ67IjluQ7guT7heT6H7xm6FPKy1t/+MNovcznNkJQmZ4RneuIzxK+TLiXlZTG7YPnMLlb2y4UuDcrLE9/Xc7mQc7mQM441jnWusPgsp+HnqT+M9v8S7W15avs2/HroKJ5kMbuouGdlv0Lo0hB5vG54hZBzhZDTEHknHLGOOWI97Ih1wBHrZJdiHXbEGnLEOuiINeiIddwRa58jlmd7POWI5elfnvY64ojl6V+ebcgzrnr6hGdc7da27dkePdvQaUcsz/b4YvCvo45YnmMAfvcOx8v87l3ZMTvyG92A4Mtaf/tJvyyUGkO/NSM80xOfIX49jC5zlTG7sr+yi5X9SqFLQ+TxOuyVQs6VQk5D5A05Yp12xNrniHXEEeuwI9Z+R6xBR6zjjlgnHLE8bd+tvnrKEeuAI5anf3nGnGOOWC8G2x91xPIs48kuxfJs2wcdsbxsn39e5ISVJ09f7dYxgCeWp708+21P23uOATxjtOd4olt91dO/xvvtF0bbHh+Tj/sX5x11xBofF5bD6sZxYZ487dWtvvqoI5anvTxjjqftDzliebYhz76jW2N0t/ZpnmX0HPt61qOn7V8MceIxJ6z8c58TVp5e66jXhU5YeXrIUS/P/SFPey13xJrliHWeI9YaJ6w8efrEEkcsT9t7tW3P9ujZhvLPFzlh5cmrPebpxeBfix2xljpiNR2xPO11sSOWVyz0jNF56la/79YyvtD7Wm+9xscm3/l9R54edNTLczzhaS/PMfn5jliefa1ne/S0V7f2HY87Yg06Yj3iiOW5b+W5zuS5/uV5vpDfncWzrVnrb38Y7Ze5nGZISpMywjM98Rni10mXkvKymF3UOWkr+0uELg3KyxO/2/gSIeclQs441jhWGSw7o4/tjn9zsGzbR36jGxB83PaxbZRoi2tS277h10NHsSaL2V/Zxcp+ldClIfJ4LHSVkHOVkNMQeYcdsU46Yj3siHXMEeu0I9YBR6wTXarXfkesQUesxxyx7nPEetwRy9NeQ45Ynu3xlCOWp997xkLPenzEEcsz5nj6xFFHLE/b7+tSvY47Ynn6hOfYxLPf9qzHbo1fnv7l2R67NUZ7Ynn610FHLLM9r1UYfp76iS8LpeZOizPCMz3xGeLXSZeS8rKYXdRc2cr+UqFLQ+TxGYSXCjkvFXIaIu+EI9YxR6yHHbEOOGKd7FKsw45YQ45YBx2xBh2xjjtiebYhz3o87Yi1zxHrlCOWZ9v29C9PvTzr0VMvzzjh6ROe9XjUEcsz3vN9Nzg24vtuyo7PkN/oBgRf1vrbH0aPUUqMl57KCM/0xGeIXw+jy1xlfKbsr+xiZX+Z0KUh8hbCZ8xDOS8Tchoib8gR67Qj1j5HrCOOWIcdsfY7Yg06Yh13xDrhiOVp+2711VOOWAccsTz9y1Mvz3r01Mszrnr6hGc9HnXE8rT9yS7F8owTBx2xvGyff17khJUnT1/t1vGEJ5anvcbHAONjgPExwPgYoB3W+BhgfAwwlvbqVl991BHL017dGicOOWJ5tqFu7Ts8bd+tYxPPMnqOoz3r0dP2L4Y48ZgTVv65zxHrQkcsr/X7/PNFTlh5eq0j1kNOWPnnJY5Ys7pUL6969NbrPCesPHn6hGc9LnbEWuqI1XTE8rTXxY5YaxyxutVXx9vjuSljt/rXeD807vdKrwcd9fIcY3rW43JHrPMdsTz7bc+27Wmvbm2PjztiDTpiPeKI5blv5bk+4blu4nmeie/XmAV5WeuvnQvEWJfLaYakVMsIz/TEZ4hfD6Pbdwl5Z84FLiR5XD6zi5V9kdClQXl54rsUFgk5i4Scs4Wl6iv/1wxJaUt/GG2PEvz7zZ6L4SH7EvYDJep2XqovGX6ddKnqS0tJHpePfakpdGmIvFgd9YpnPQVYeRpywmpX9+dKrzwdc8LKPw84YeXJs4yDjlhHHbFOOmIddMTytNcpR6zXO2Idd8Q64IjlafvDjlj7HbE8y/iYI9Z9jlg2N7D+C8dOWeuvGhek96XZZzPCMz3xGeLXw+g+skrfrcZUWD6zS2djk+wzGfGjPMQ0fdRYgftdm5f2FWAZb43o39R6+Uf1e9NJhuWhvvjM7DPhW/8e7x+pO9qW/aTiGG9Kqp/wGK+aX8bHeGrsbeVrVpM3kGJ31MdsvVzkGZbtm/YVYBlvjeh/iPxkOejEc5PlQl98hn7y/S3cqULfSwk31l4QtyH42UbIx/7YhOdl6wvxTE98hvj10JH/ZzH/UHax8i2vJm9ySv2iPmbrC0WeYdn6dl8BlvHWiP5d5I8Xgk7sjxcKffEZ+uM7yB+bgLWAcJsCtylwG4Lf6JTPMU4kfU7VaQn+dxn/hdX4Vxv/RdX4f8X411Tj/2X1LmoJ/jca/8uq8d9t/FdX419l/C+vxn+l8b+iGv8XjP+V1fjXGv811fg/bPyvqsb/VuO/thr/143/1dX4nzH+66rxP2v811fjz4z/RuAvEdObxn9zNf5e0/cmfCh0MnzrE24A+qzgr2FxnsmqE1bV/lPpjvpxHL8J5GEZi7BuKonVL/Kq1MmNobhciD8Q0YX1zBPPJ6uWOU/7nbDyz+c5YeXphKNeTSesPN3vqNdyR6wLHbEucsTqc8Ra4oi1xhHrpV2KtcwR62WOWFc7Yr3cEesVjlivdMLK0+sd9brGCStPxx31epUj1sWOWE1HrGsdsV7tiHWdI9b0LsW6vvXZ1hWwX1pBcvqEnL6IHOQ3un7B17QPXzv6ifd87OkP/PbPDL333T8y/ZNTfmzymklPPPXUVxd+ZdF/fvapnzZe7O9KjD+3dbiONtP4l1Xjn2H851Xjn97hOtlNvKYSkPfaD/XufOiX/v3Q5Fvf9P4Tn/yLDcemLBr8yNLveffO33nr0i/e+91qPaWE7OvVekqJvYlRd3uFUN5uL6skOyxVaykldH9WraX0JPOHfrWWUoL/pWotpQT/y3gtJQDv8j/71Yn/8l/fUvt///zZQye+fuEzv3/r07/xc9e87eMXX/uGTX/1I19Zr9ZRyuylqHWUKusIr67GP5XXUb4NGpLSK9UaSgnZ/Z2toWSf6XC+PsBrMAF5v/AD73ii8f63vat50ce/3nfrW7507z/dNuHqT3789fN/68nnvvjsDxvvLYr3j3c+9+kPNp559OTTHz599aqZg+975hP/8He/97FfaPzT537+dZ8446+3VtN7svGvrcY/y/hvC0L3aMq+vVbfrD//zfrU7ExuCBPhs7XDPE0Iw2tKm4kmTzWiv3baMN/ylrwB4gnwuZ/4S9pkPpbBkloDM/x6GF32KmtgPSSPy8fn1mpClwbl5YnPMdSEnJqQo7Aed8QadMQ67oh1wBFryBFrvyPWYUcszzIedMTqVv/a54h1whHrlCOWp3952uuII5anf3m2oWOOWJ4+4RlX+V0IzONxwAR4XqJf7kkdBxh+PYzul6uMAyaQvCK7TP7Wvxmtz8eG9h3YN3Rq3aHBB24cPHz02IG9OJrAEQJLyQgVn2VhZOkxr5ee9RLdzfR9reALAjvPt5qbSM+bISndZl5xm8i0vNcANo+sboe8GuWtA6wHgI4TlxPLk//9xvxhXKZjXbGuXkN5uIp1O8jmOp8g5FjZegR9H2FNEHxWL+3kvZhbqaon422IPG6nqbOCKtGj0frcih437b3v2IPrDj0YKNXo+00FKs4jurUFqmUCN6N//HwePVOmQOzYBDHFZfLEHRDmbSY54x3QeAd0Jo13QKG7OqBewcfLQ7xslKemfXjjT//Mp69/+uOX/dVzk75v/eCbT175/X+y7cuPznvvBX/z8M8vet+MXNZbaSkM9WV/trJNaFO+GtH/aWOY7+0teXkrnNvKb7XCG44d2H/X3qEj+/Ye3/uteH40UGrXdNbT9w2CTyVzCdWUzbwVg1NyMDT8etDV3AxJ6UwwVLMULF+1YMgOgVYJwT8YbqDvVYJhHz1vhqRUOhhyF47BkANlJ8HQylM2GGJdcTDERszBUHkpyrGy9Qj6CYQVC2Tt5I0PWZ5P40MWSONDltBdQxbmmxBGt2rjrRHtR1pDgw5b84jTN6zjeF//fBrv6yGN9/Whu/p6FWUywhjLpRKUHZ1gfX7oxrcOzX3kpV/u/8OnL/+JhYs/87X3fvBv//nU3qu/9Ldf+OVlX+swomztMBJuyfn+kiZ4fK4dP1uvVXTWwXhrRP/X9WG+z8ME74JWfivabB08sO+BwaG9Nx983bG9x/Y+sOHQ0N6j1x984Objew8OlZ7u3ULfbxV8Kk0KwwXmC6CwkHnitcDZre/20inTsIGM/gsto+QGm9d6m1M5nekzQPwhjO6m5pDuzZCUkrspw6+TLlW7qTkkj8tXrZtid0arICo+47CBeWejm5pHz5shKZXupvooD7up2ZTXSTdl5SnbTWFdcTc1F/K4m8I6nyPkWNl6BP1cwpoj+LibKpLXK/h4CJLRc1w7myVk89pZNun5v7ltFy4otgNeO8eY9l0N+tnelp+nDv11W2qkMfx6GF33VSLNPJLH5asWadBTUMpWQjUapMW0FTRDev7OtVcTfJwMp0Y6L2h5Ue59k1ufp4bR5ZpKeitvx2c8gEJ+o1NyJncoZ7KQY548Efh2UF5/JK8OmFMpbwrw8R5aA/J2Ut40wJxMedMjmDMEZl53H540jJf/awKd8nTrnawO8MUM5MXvE4g2T7tbf2tEezH41VLyK2zF7Fdz2+gd86u5oVjO5A7lTBZyuLfKE/vOPFFWy5sPfFzPCyCPfWehKJe6FIkxFwvMvH5+cdJIuibQccRfDs/LTFhSI77h10mXqhF/Ocnj8vFk7oJq8rZkxI/yENP0MVuvEHmGtbL1va8Ay3hrRP+KVn3yy1x54otsVgh98Rkecr+K/ARtmxX8NVx+xu0Ly94MI+VgvNkM+ry6IObhSArjmk2WOVZ9BHYhb6BYhfxcd81htToufzOMLuPUMNo2k+BzkX8vj8iZFCnPWNXnJJKDcRbrcwPV5wWQxzE6/7ys9blG9D8H9Xkn1adqi8rO3C+VtfNUIWes7cz9ywpHOYjFL7msIiy2s9WT2Xkl5K0ivtWQh3Q461oFz1cL2QrfMNr54H2TdNmKfNBk1Yj+h8AH91b0wRWUh31FM4zU0/RAOyD9sqDL1VdAX1SuAzDrXLJgJKbxo62wLjj+Gv0hwFy2QOuJ5cL+gBeClT+sEuVSNl0d2stGO68tkN0X4r5YI/rjwqbcLyC/akczSZeVbXTn9o38Rjcg+DqNI0rndm3yiZJt0l50Zt89BW3ySWqTMR9BnXkeUdbOk4WcsbYzzxFWO8pBLO4XLiEstrPVk9l5DeRdQnyXQR6/iN5LPEiPGAo/tV94ZpIuW5EPmqwa0d8DPvgjkXlxzAdXUx7atBlG6tkuHvLFSKZ3X4j3tzWi//FIv6DaK8Za7heM/l2RfsHkYrli/YLyxTWiXMqmlxDWEoGFduZ+QdkUy7+Eym/0703sF4xfrUfsojxcj7iA8uZDHo9Z8aLRFZSH6xG8NoIXI3O8wx/GQB/h9YiJkfL0Awav9+G63TzKmwJ58ymvAXkLKA/X7RZSHh4v4Yu2Z0DeYiirrdvxxumvtZ53uKcnj7zE1kWzgr8hpPUHfFwL5cxxlINYN5OcuY5yeMcB5cwXcqy+FhBfMySl5D1Yw6+H0W23yjrZApLH5au2M4LRhq2CqPgsCyNLj3lnYw+24lXupfdgOSLhHixHpHWAVXYP1spTdg8W64r3YDHi8x4s1vkCIcfK1iPoFxLWAsFn9dJOXq/g4/3KjJ4X7cEaRo3oPw099HIaoShZ2KJ4lGC6F50gYR2M/nOgw7wFGrNWUK55BZhfg92bv56kMYPAVOVaSOViHRaQDkb/BTH66Q2j/U/52AL6jqPBhQX6qXpiXbE9FZWH68novxKpp/lCB/yZkLVtdGCahQU6/KPQQUT0Gw8dPtWK6IESH7LniMyW573q+QKnKBl+7oXmkepkxTzBx+9X9gid8pJbzZ15ZfTA3qG9BWXvEbopmT1BJx6DG1+erPep2I8njxsMvx50lGqGpJSx55o8Lh8felURXf2YAdYv+1FMTl6ntq7UqtNNQ4eOFFVp6oAiE2qFUDywyMLIqkCeF7MblBs+shOgVRAVn8Us3662Pd5XqfiLUaWHj3xMD4ePPLTsZPho5Sk7fMS64uEjNnQePmKdzxdyMMgy/QLCig392slTw0s+BshRoWj4yMMso5/XWpnFI3wsy75fCJ/5iN4YTESnp0aS7+yJ6DRCNRqkxTQNNEP62BG9PN0m+DhxJFlBz5shKZ21iejrgI6TiiRWntzbVy4YxmU61hVbXUokUZPUdZSHk/z1lIfLkhsoD4+D3EF5TcjbSHm4rXsn5eF28F2tzxwprmxFig4P3srlQMOaGkbbG5dQ2a97xTNePkP+2RE50zqUM03IGQg6kuapQzsmj7P4AHOnr0qoA8zKLqoXNt6GyONJuC2r/0rL7759NGrySGx8HYbtWvGt3Zem2tXw66RLVbtOJHlcPrZrv9ClQXl5ehDoOK9XPOuJYB1zxHrUEWvIEWu/I9agI5ZnGT3r0bOMDztieZbxqCPWcUesI45YBxyxTjliHXbE8vQJz/Y46Ijl6ROe9jroiHXSEcvT9o84Ynna/oQjlqe9PGPhPkcsT3t1ayz0tJdnzPH0r24dM3n6hGe/7WX7/POAE1aePP3e0/aHHLE8/d6zjJ5xwnMM4Gmvxxyx7Pc8bI0J1yF4N0nN+SdG5CD/xAQstX4QK2PRlRdOtxqbilcR3doC1TKBm9E/fn4VPesVtIiN19CkbGZU/Pm4KzLCC0EvKxm+12aGOimsNjPU26DG2xB5/HOQqW9xNkTeMUeso45Yxx2xjjhiHXDEOuWIddgRy9MnhhyxBh2xPH3C014HHbE87fWII5anvR51xPL01f2OWC+GejzhiOVpL89+aJ8jlqe9urUf8rSXZ7z39C/PmOPZHj19wnPM5GX7/POAE1aePP3e0/aHHLE8/d6zjJ5xolvHX485YvEyCc6reZlEzWGXROQg/5IELDUfjpVxjJdJTMXLiW5tgWqZwM3oHz+/nJ61WybhUzmrWnHLlkUqniqSp8H4lBYuBzXDyHKUXalD/v6InHqHcuqJci7tUM6lQs6A4MsK/pocfhZb2b+U5Mx2lINYfAkVLoU14TM34VizVn4wvwALb5reAzR8SRq+PB+E7B2Qj/TXttpQviz6ttZRUfVmBl4Ccd1AXFfkRV1rRH9dY5jvxhamsrPVu/IDfnlmtpCrMLltla27utAhhoX1NYXorS76Cuj5VTqjXw91x5dNGE2R/7DOWEeBMPLE/mP0d1bwn00DcV3Zf6YEXf7zwH+2kv+gjWP+M4Xy1HsQKmbySd2yMXOa0E/J4cs8ZwvdszA6bsWGCQ3Bb3TWl56tK7inUR6eup9OeesgbwblrYc87oPw7TW+kOIOyEN7cOql72ij3PffDr7PdIFkxk7yq2u9re5xnMLD0+mkKz+LDU+nF2Dh69LqQqAa0d/Qunkvb49HB0aWCy/sNZt06GtXpvTviF8nXUrKi54+x/LxdtYSoUtD5J0Pnzn+pkw5MO+wI9ZJR6yHHbGOOWKddsQ64Ih1okv12u+INeiI9Zgj1n2OWI87Ynnaa8gRy7M9nnLE8vR7z1joWY+POGJ51qNn/PK013FHrH2OWJ728mxDnuMJT3sdccTy9K/xuHpubJ9/HnDCypOn33va/pAjlqffe5bRM04cdMTytJfnePV+R6zHW39t7aHo/g/MQznzInLUpVVq3Q/XHHgubTR5snWEij/K0psRnumDzxC/HkbHnCrrCOrHFFT9xH4kRW3n8y0fnRwNWEBYqWsfGfG3K6Pj1qWpeAXRbSxQrUfgZvSPn19Bz4q2Lg3bmhEuPTUJE80YM63aPpoRkTOlQzlTEuXUO5RTT5QzrUM50xLlzO5QzuxEOUs7lLNUyOkVcnBbiu9qzhNu0WRTRuqkbgbFZWML1Xwz6E1ThvlqU0baALc57K0M9cIK39OMvzXHXUADnpcIyckXmRh+PYxuG1W6gAbJ4/JheEy/5olbIloFUfFZFkZHrww0w2e8qT+R+NYKviCwe8NwzU2n582QlEpvONUpDzecplBeJxfGWXnKXhiHdcWbQxi5+MI4rPOGkGNl6xH00wirIfisXtrJ6xV8dcLI6HnRhXG88Wv0S1oZ6r5hJQtbFB9gMt1t851pWAejPw904HtsG8CjylUHfdD+9h3b0+4C+S+DyLpiipYfhHwuH/pqX4G+DdLB6C8EG/DdxNMFfyh4xr49nfKmR2j7qCz4Xfki32NsUbWo7Fz/Rn95pP6nCB1MrzytbaMD0/QV6HCV0KGze4w5snMtcU1METhFyayRe6x5L1uHW4d6VuQBnd5j3F8gsyfoxL+vYXwhDPdqFccHyeMRw68HHf2aISll7Lkmj8vHU1LVUzREXlErbSenw3uMiwYqKlgwfyDeTDzLE768e7ZOCSo5UzqUMyVRzlicnFNypnUoZ1qinNkdylEnxhhLTZvyZA7MJyO3QmBfVnBJfk8B5l2kg1oFVKfCjD62KqVsiStEyxNkx378IfWgu9GvFPS4erWEdEX9VpbUdeNZ1nW+0HVAyOYuh38utBmSUnKXY/h1UYYqXU7MLt9WrPW33BQYPZatgqj4LAsjS495sZ4lT7fQ9ypT4NX0vBmSUukp8BLKwynwCsrrZAps5Sk7Bca64inwKsjjKTDW+Uohx8rWI+hXEdZKwWf10k5erHUbhuLLv98seGJ7HymtNk88cFvliKV+SNN8eg08L+HTs1OjkeHXQ0dt6Ew0WkPyuHxc9kuELg2Rh4udmIdyLhFyFNZCR6xFjliLHbEWOGHlaec41jjWONY4ViKWOlO0mvKw/7yn9XdqGB27eFau9sMXRPRD/gUROUs7lLNUyBkQfFXHCo2IzlYe7LvZbuoHnFdH5CD/aipP0XtpH56iZar30vK0p/WXf8j+yqnDfL82pbiMaGcrF+vcDzIsr8S4ZiAfex9ePCwHxymmo+EWtR8cw93a+qz67BmUh3VtGO3q4HepDhZAHtcB6sM/3bgI6uCjVAfIj/OJonaj5LGP9BXQ8y9KGP0fiK0Tpd+SAnloD7Tz2gJ5fyxWlJTfmewO/W628jtsr+x3qePuVD81myg/5VUqdaYJ/YBXqYy/L+g64N+5MvpPizpP9XOuV6P/bGK9OsUTWa9oK65XtZqo+qGYH2B98ftzWOcp72FjXafU6zyBz/X695F6VQdnUE+uV6P/SmK9mi3Hol7RVin1qs58xvpv9Y57I4zuJxuE1e630VLqNfarP0b/b5F6VSv7sThs9M91QRxGW6XUa+xqmnb1ynEY6/UCylO7DFVjtGGlxmij72+NG7DOeczPcaFIv6Lf63Pc0FxZoMYswR+IN6NnswqwDCd/hgvzbHIrbl/QS6Bs8jNNXphcNVPUR4UoK48tPVb8ycfkjRD+ycdOfzw2NvT8tmKtv+q1cm5msaZU5kdqnVw1T7cUqJEJ/kBYmXiGecpVcU/UXJWPvXIPndFMAV2IZwoq8qmRv9HbCLRodGF4NaJfJpoHY6IOOILiaH2ZoMeRMf8GIpbhMspDviUFcrB3xMjPvaPRr4KyxnpHkz0WvSPaiHtHvLGsV9Czva8Q9JcDDa8qXQF5sSZ9GclpFzrY/5Wfqtm3Go2r48kp/qj8C33iEspTsznlC0Y3FislWB72hVhbyhPbJuY7aJtGaO8n2C4vITmxuJSnmC/g6oKthvUDNspphqS00vh7qvHfZ/y91fgvtnLyUcc8GTbWbQmfuR9tYkkNFQy/TrpUHSpMIHlcPh4q9AldGpSXp9cCHef1imc9EaxBR6zjjlj7HLFOOGKdcsQ67Ijlaa8jjlie/jXkiHXMEcvTJw44YRm/l14nHbE8feJhRyxPnzjqiOUZVz3btpev5qlb46qnT3jGr0FHLE+f8LTXQUcsT3vtd8Ty9FVPvTzt9WLotz3t5Tle9YzRnmOARx2xPONXt/qEZ5zo1n7Icw7jWcbXO2KNx9UXRvzyqscsjF5z6xZ7dWvM6dZx4SOOWJ7t0bOv9azHbhyvZmH0Gna3+JdnXD3kiOUZJ7p1nclTL0/bd2uc8ByTvxjmtZ799uku1ctzXutZj57t0XMO47nu64nl6RPchrLWd9wn3QGfd0E+0tuvDKl97BJ7tw8MAE8ADMSuuA/9QEZ4IYwcawTCHyiQl6e6yKsl6PJzs3/z7pvO/+bujPhNF36WMjdRe9pmq4mkezMkpfvUGRKTbXm4Pz+B8tAupkP+982LR+rXV1G/FPshfkPQ7wS6MnUxPYz0BfR3O5eD55D47pR2d4cU3UzbV0DPvxxn9CtbbVK9PbMC+OsF8lC/FcIODcG/ogCr6I2N8wp0vxh057td1C0C6loko18l6PFIMJ+3wjKsojzk6y+Qg2XFut4TRpbV6F8iyqran8nu8AzXZHWGC23EZ7jUWSmkT3k7Bc+w8a3MeIZtBeWhjVdRXtkfj00932W8+Ct8KXcixe7GSW3X84Ue3DZuTmzXzQJ5qF+sXSN/mXadp3sLdL+9ZLtuCv26oV1jXe8JI8tq9He9yNq12cSzXVd9W021a3wb6Tr6dc1LIM9w8VcGL2p95nPngxF/VmdfY/Ztd/aVf+USz7ReTnnIt5Ly1JlZ0+EKYQfUi+9iM/p9YIe3gA9aWQLp1aGvX698Hc+Rs69fCXm9gp7r4iWC/kqgMZs0iJ7rBb8jFtqUXxEyG/UJesTj9wKGRL9g+mF8u4J0X11S97lCd/XLnNimnpn0/GfzQXxPpEkyV0dkMi/Gmb4Cen5nxOgfF/aKxXy00wTCNPo3RuKBip/qVx5itl8jyqVsyu8JoO54T55hM2aH7fMGzxsV8lT2HR2r/0YYHQ+5v8G2sYbkqDFGqv+jDz0xSeMW9TfLWp/Zv56J+JdqNxfAs7L9Ofc36F9rKE+N79U7KjyOVP0u0vP80OjfkdjfOPnzjHP93gvfmob9AcdD5bNY19zfqNs51gh8vi3jPZH+Bt9uvoR0X1FS9yrt7T7qby4AuibJXBGRybwYL4r6G8OrEf0vRvqbC0B3npup/sboP1ByPhXrb9rNp0wfZVOeT6Hu5guqfRpdh+1zpmqfWH5un7Gy5oltE5srqf4m9gZ/7H7dC4ScVP9HH9pA/U2TcBEL/SLmj02gsXpif/zdiD/G2lme2Obtbgtttj4rf+Q5TxPyYv5odB3641blj1h+9sfU+31T2yrPxdFXY/7I/XNTyMEYwv6IftSEsr560ki6iYCRtf7angCuDZSwefKVBIZfJ11KyjvznmE/yePyWd2Vu5sZd0bYKoiKz7IwsvSYxztqvUR3M32vcjdzxR9yKH03cx/l4d3MEylvHWA9AHScuJxYnrJ3M2Nd8d3MuFvCdzNjnfcLOVa2HkFfJ6x+wWf10k5er+DjnbqMnmNPoXb/akT/ZegpFi4otgPuwDGmfb9Q6Ml1YfkhDPtrxR8CmZ4aaQy/HjqKbGciTZ3kcfl8Io1JmUaoRoO0mPAHspCev/MPod0m+DhxpJlDz5shKblGmn7Kw0jzOqDjpCKNlSe3zUraKwgCi/vR1EhjeRip11FeA/LWUx7+XsgGysP7Yu6gPPyJxY2Uh1cq3Ul5uBdgv9lRo7LXW0p1eKZghP4h6PofH7d027hlPX2vMm6ZS8+bISl17bjFyuM5bsGI6zlumUNYYz1uUXxZGDnD4nrqI9oQOu6Jkn9P2/DroaPodqbVzyF5XD6zg1phMN5G0O3GPmMeylGzfYXFJ5LqiTp3eBkbf+8vUKNH8Afi5aaacpAPgy8v0poufSHu5jWiv6TVOap7AxV/nlLc/mx3dp26vQoTMbevC13UgTe0IdfhWXLVPK0vUEP1ooGwMvEM85Sr4qxsbYHsvqBnhOyqRn+NcNVGGKkj8ueYb62PlH0H0PWG0eVjXTeSrooGdTX6G0DXeaQr2p7HwRtBF25Sd5LuzZCUkpuU4ddJl6pN6k6Sx+WrNn5k70OrIGoQtEHktWs5N9L3KuPHTfS8GZLSZvOKzSLT8rYAdkZ5WyGPZ1XbAKvs+NHKU3b8iHW1hfLwFxe3gmyu8zuFHCtbj6C/i7DuFHxWL+3k9Qq+jDAyeo7rXncI2fymxC6IHLzuhbLuCCOTih4818oT2zuE0ZGmor9uT400hl8Po+u+SqTZRPK4fNUiDXoKStlGqEaDtJi2gWZIz9+59pYIPk6GUyOdh1pelHvf3tbnqWG0904ivVGHWMxuCH6jU3ImdyhnspBjnoz1sIPyaqKs/N5OnjZT3msgbyfl3S7KpWbljLk+grlB5OX6/du0kXQYjbKCv3nqFc/YpncKXa3uMALwbEu1tk0ROchvdAOCr9PyKJ3VuAp/KeeJacM8GeWpaN9sfa4R/efmD/M9Se1tM/CbjsrO3BbL2nmSkDPWduY2tcVRDmKhDfN/2wiL7dxsfTY740hoG/FthzykwxHBNni+XchW+IbRzgefmabLVuSDJqtG9L8LPvgjFX1wC+Xh6JL7Q9MD7YD0zaDL1VdAX1SuH4/M++4U/Ep3/h30LRHd88S+iPw8ch0Ln0eZ7fznPeQ/WyFP+Q+/D2j07wf/+VnyHxyhjUX5Y+0aR3I2+4q1axU/mA/b6MwEHbYJnRuC3+jULKtT31A6t/OND5FvbIc85Rv8HovR/yj4xq+Sb2D8NB2VnXkMWNbOk4WcsbYzj+92OMpBLO7fdhEW29nqyeyM7yrvIr7dkId02L/tgue7hWyFn9q/fWyaLluRD5qsGtE/Bj74B5E5TcwHd1Ae2pRXUnYIO6g6yEjvvgL6HVQuo/9T0b/F2usOwORYbvR/Dph8ztLkYrnUbDnmiztFuZRNd4X2stHOawtk9wVd/iJf+UzEpsY/oaA8bFOj/3zEpspGMZuqNrZLlGuqKPNuwrpLYKGdU2yK5edzFEb/xcg4bIvgV2MHHkOqcRjS869Mqjamxibcxr6aOIbksQ2uLeyiPFxb4Lk+7mfwXAx3/LdSHq4t8DrHOsjj/g/3d7ZT3gbIQ9+3tYUalfU5Oi9Tcd9Bnpfh8ztFa2j4N4S0/pTvlEE5Y7FuouTc5SgHsW5s/VVzNv6V57LrBsgfmxvWOpRTE3IYy2JynnBMxO+3nNGz5WR5u37b4pGYm4V+eBfO2khZuT0jltWZtQ+MfWOxL2f4ddKlpLwsFnOxfLzVvVXo0hB5RXWKcmK/e5Wq1+QwfAaxtYp/0977jj247tCDgVKNvt9UoOJColtboFomcDP6x88X0jO17YzYZ6vpnUs5UzuUM1XIGeulzqkkp2i6s2r6ME8W2i8pn9f6zEvK+2G6c1ELU013ipod+lrsOIbJKzriMKFAv8sg9M6j4fAEUebzIjpvBhksN087CnS4qqVDh6FYDlV4KRSHdHydF4Yy3hzGIU6veMY+t1HIYayibtLsykO6a0p2k+jbayNl5W0j1IXtoOSo8K7sEJPT6FBOQ8iJdftVY4nSmacSIYyMF7dRLNkCeWpIYweNa0S/A2LJukgs4WUoHmpwfC3qJ4tiyaYC/e6MxBI1NLwtojNOAVlunnYU6LCVYglvBTVDWlKxhLcmMP7NIP3L9oXIf7b6whkkZ6y3/dRyP8cXtR21NSJHbam1a48PTNcyVXvkfg3pl0F7fJDao8dWXVGbCCFtu2uzkFMUg0KI90FGfyjSB7Ub+semakX64cEqpJ8OZS7CCuKZ0WP/x8sXW4l2S4SW9Ubffmnrs8Ui3lJuhqS03fx5u8jkLQ3UyfJwGfEOoOPER5RQ57y+305XsASBpaabOwowVZvfTbRW5h6By9tF2I7ZXjsLdOA6DmG07xnuD04fxn8z9TO4XF6ibneoLSlLXH9sO06q/kyvvP5+q2L98TEndW00z6e4Pn70HNmL5/yYzoW9ePm5nb0sz8rbI/j4EKrJ+3Xw13cQXg1ksf/zlcm4PcP8IRRvib0T+oqprXOQU8Po/pWvTEVsNT7mfm5egV6qnBgnt5HeRvur5Ku83doMSel6q+NdpBNi766InRFeCHrZ0fAHhDzTqy7yUq45X33ZK//H5xo/9vsZ8Zsu/IznwXcL+nmC3mx1D/CXsNWr1BUwJtvy0B93Ux6uGZgO6przuyvql2I/xG8IepRdpi4aQs5GR6wtFbHs+nW1ncoxN0/cD6m+P6/H/03jdKz3uaRr2TiE/GXiEI83jPbPKQ5VHD++RI0DOQ7tqoidGoe431P1Whd5KXHokpd98tLf+5P+h7MwOt72imcp2/jqJdYO2/llKg5xrEF/3EV5GIdMBxWHKvYpl6XYD/Ebgp7jUGpdNIScjY5YWypiWRxSY3AVh9jPt4vyYBziOcbnYcz26ekjsVLG3SGMjpNbInnbBGYu+x8Kxp/2MhLOI3mOpo4V2Xd8hr6OPLz2YPR/B7b5W9IP5/+B8PgohdruzDG/NL2YbnuELnV8z1uy6th0ar2oY1q8XqSOuOOz2HqR0XGf9B9QB/8c6UsXkC5l+1LkN7qUV4U2CR1UO8X1wN+dMZIObZQV/LVy8DMuh6qffOvbLllobX3fundo00ODR/Y+sGnv/Uf2DvWSBryDwa1qJ2mkkmnJI5MN9J1fYONV4W0Cp51MtUsxGz6zXLWDxZadLXQ+l3LmdyhnvpCjonunHql0brdi3pgxzIM+UbSDxSsSRv//zBvmm9HCjO06KjvjVSxV7DxnXM6YylnZoZyVQs5Yt4OVJKeoHax0agd3Qju4MKEdsLwQ0nZYkJ9HwNvaYHEdI3/scP7GBDmxF0RSXwJIKU9Mzrksj2GplxOwDu6K6LWDsHa2wbqTsNQBfOWDrHPZkxnIHzsBsqNDOTsS5Zyt8mynPJyRcCxWdbczogPy84xOrfJUjZFK53YxcgPFSPWiUOy0i9G/GmLknZEYyb77QrPzLkc5iMWnpIrq826qz92Ql1KfRr8S6nNPQn0q22yOlAdPE6XEw5QXpHZE6NWqoeoHzL6422F11OHORvIVxYZfJ11Kyjtz+Pxeksflw0Pes1qfWzPd6/cevfyKq2/61jT31OEhtqnhTkOhoD/TB/rOfLlufBp6p5CRJ/afXUTH9W7PGT9Fp3a07fJVu+GV17L9GvIXnSAsOi1k9cMne4+02rk6LaTGUehDPJZVfTi3O6brFWWYVMB3fdD6YZnXRsps9KciZd7Rpsw85lbjPY5NTNcrytAfRvsAYqSMX3Ala2EYWa6yK40LhZyxXn1bSHKK+rvvov5OvWiKbf7G1mderZ4F/d33Rvq7s1X+dm0ay8I+heVSJyNDGH0KxL6/rVX2Dk9TyBO5RSdtuP3+MNWpKnusTs+8XQF1+p8S6jTWPmJjERUntkTo1VhHrbGM3YmU7LMpPor4are3ylhEnSJRO3llxyKG+xkoEOrfbizCfGossr1ARlHb4/EBj2XajUWUTkW0ZcciuM7BFwaUXQNUu8DmnxVfnGyaLltAD3XKpuiSqp4wui0q+o2kH+MXrT/UgrYNnz637z8H44zpdLoOdVhQoF8IaXWB/GdrPZZ37sbiDZ4QRq/fYL3eAJ8xz+QUxeSG4I+d8t/VoZzYKYd2vn5t63O7MdGvU/+pLjerCT14bPzLc4f5fpP6T+SP7S/wukXscgf1VmzsWl3cDVZ68RuPZXe1lT78lt9fzBjW5WOkC/Y5q0iXsm8oIj+PD5DP2lJ/GG2PEvE3+UV5w6+H0WWuMj5QdaTsoi79MN6GyMMLQIrkrBJyMsJqp5fji/KWfxHRrS1QLRO4Gf3j5xfRMzXEQOxc1u45w3LQDJ+iqQN3rc2QltTUgUMMVg8387JNC/mLXv7F7l4dTFGh7wLCKtuVI//GAqya0D1PPL0z+n+jOqo4PNsYewmxwwOwG1NDT9F9dKhXXeSlHFK94isn33rdNauf4y7UdOFn7DdqCnmBoDdb4fJQCVutV4dUcYkiT2qarQ6pmg7qkGrFF4DWp9gP8RuCnu/eKruli3lrK2LZwVI1lThXMaloeZfvdDX6b0aWOlVsUi+dxy5f4JjGZeSYk6dm0OmblAzP7D9RyOKp15kX42cO88xaMlLXzUJXixG9ERlBPMtCsW1YRo/gvSaM1G1Lgm7qpWHE6CnQM8dQ0xv227LTm9SXpVd0KGeFkDOWL8ajzHbTr3kzh3kwnhRNv17V+szTr5+G6dfCFqaa5vA0Ul1Gg2OWshdIcDwx+ia0K75AQh21ehVgsp+hDC5Xnng8Y/QXtHTocMwhx5y89IPTZI6teXpNQZkwTuO9iWwDtYW1OUKvlp3RJzlmq3tRGato+4xl72ojm8frRXfZ4neUHbts6e42svkYlnopj335s7OHdbiC2u/twKPq/XbCtO//Y9Yw5lUlMdcVYN4ycxjzaooJGOsXh5Hyyo4/kH98uaH8cgOPCZScxUJORljt9BqD5Ya5ROe53DCXnpVZbjA3x+taX0L4twNGr3jGbo78Rqfk9Hcop1/IiWG9RGAZ/TpBX/SD406uYSouIrrNEdUYt51rLKJnRa5hqZdk5p95xYmrhnWcKjBqkTL1imdc1TUhS8m5qkM5Vwk5vJl/gEZHKL9EtPxui374a0oc+Suu9n13auQv2sxCvdSvKKas9hz769nr//SXdr8mI37ThZ9xk1SHt64S9B1emfhmtdqDGyx5UhszarUHZ9K82lNxVfDNKfZD/Iag59Wesqum6hrFsli22oM3fMfa8tmKGWMhJ4YVu3bQbNMn6FVMMvrjMGvkHz9W9g7iWU8YHY/42jbEmlWgu5Jt+HlqCH6jG8OYOKFsTKyH0WWuMhpW7UPZhTf6kVdt3PMVRWUPu3Y7FvrmQBjtv1nBX5PDz1gOttVZJGesDnWk+HlVOYjFBwTG6vCIjYk67IO3qtfTLamdKPYLdcUEX5Om7K9erFDXs1wHnzn10nceB8xdMozLdJbUai73S2VXc9Wqn1ptwFXWn5qpZeKKo9qR4ZWfD8IqzXtmFpeR5zpVVyx/7iysWL6QfLyKH2+o6Mc89lKHjtRhfyuHitf86w3qCkGOi4ivYhmvoKrxjFrxV2PK9ZSHOtQS5MTGTbVEOYs6lLNIyBnLfgtltotT/z/FKTy8puKUrb3wyY2fhDj1schuEOrI31PG9SYv9Tpxo/+jyG6QKvNNEZ1RRiCMPHFsNfo/pdhacR4rYyv3ueqa7w7lJq+CG36ddCkp78y4X4171fXn5X7Lnc8scURX+whZGFl6zOulZxOI7lb6vlbwBYGd53d4Af027hUxle0V+UJ5fF3kAaDjpHpFK0/eKr8xfxiX6VjX2CtP2GPya27tzkpY2XoE/RbCKtr77E2Qp1YkeDau+PLvtwgez9mW5zkFNVLjaFRxhDkzNRoZfj101IbORCN1Jkv9qIBqVzxqwjxc/cQ8lBN7DRKxbnfCytPOcaxxrHGscaxzgJUyK8V+imfBGAd5tlh2kxz5Y5vxKzqUs0LIGRB8VfvkRkRntbLAdiv7ozrIzxeTFs1KV83SMlNnpUb/DMxKL5o1Umc1Kw1BrwBgPRgG8/aDDpZXYnwxNR8DH4YfiWC78vggNg7JP9t5RnXVFJ8NQl9IraOXUh3VIE/VEZ8jNfrXQx29vPVZnRnjc6Sxs1Eoj9thXwE9v0Jn9Ne2dMIdwdg5c5ZXdK52WYG8G0Ce/aa48jvctQ+hst/NVH6HcYb9Tq1+qXgWixdqFa8RRvsw7wKrc4LqTGlG/H1B1wG+P4X060Wdp/o516vRb0ysV7PlWNQr2orrVe2wq9dPY36A9RVbneSzyK8RWFjXXK/t2rLhcdvaFalXfm+F9eR6Nfp7EuvVbDkW9Yq24npV4w91VjPmB9g/mE3UbsIGylPv2sTiN/pBSp1j/RTF74dFnav3J2oJ+hWdcW0t7Nqq46ahQ0f2tpYdA6XYMmH+veho7gzBH4g3o2f8O5IqfMYW20120SEaDp9G/zph8lj4zVPK8W2s7rFYuDZ8r+Pb7cIaLxXFmllsKnMOXDVPtxaokQn+QFiZeBaCPlIde5soFt2UqdS5MKTntyWM/o2RnqPd/iZHPjVyx97R6FX5+XJh5Cu6XBh7NHSjZVRWo/+exB7NaeYjezS0UcrKaOxtZ/UmklotVZf/8ug0dgFzu2Zo4ZVDHfKqmZXyl9jILGYf5V/qp0nUOYLYLBjPdoTgOwvG8rAvxOo2T2wbdbkZ1jePWnFVi1eesC3xJW1q1pPqC7jawSshGxNxjV5dToc+zLNyo3+PiAGGqc5PxfxR2QLjOK/aqbfF1XkYPEth2IHoOvTHKZ6rMnmq2lZjlzCqGVbRKg7aG89/nK2VPz7f9mHws6KfgE5dUTL6X4v4ripDzHfbrbJxLFU/BHC2d+/5vBvGN94xxvjGZ5PwHBefLyn6WUZOPAZEO6Se6YzFndSYir70U+TzOK24jGSqITw+Y59HfqNTcvo7lNMv5MSwLhNYRq/G0GP8yp6peD7RbY6oxrgZ/ePn59OzXkGLSVVTrUDvENKqCfmLqgnDG87G+Tc2cLhxOWGV3WRC/qI3PpXueeLjbUb/j62w2+HrfM+kvLpS8QjbMxnhhRCiR9jUgSN+nY8vLmmGePr/bq4PXLP8ht/LiN904WfcXFUYvFzQd/gLoz8UG1ap1/n4Vb/UXxiteAz8h1Lsh/jqqDK/ztfJ6zp3VsRKeZ1vrGMSLwH8ixiWnW1dLM481wW6nBkKzT73utjwqU/oEusPsO/kvgV1jx1uOFuHKK7oUM4VQs5YH6K4guQUbZzPnD3Mg21dTXPyZL9jwpuUH4dLYea0Pqslw6L+PQvxcQfrh0fukWZTgX4LwT/5yD2XGcupdF4PMgJh5InHJEbfbOnQT7qW7GvkkXs+CB0br1SUm7xzYfher9puInlcvmpH7nk7n39nWe39ZGFk6TGv3QbFzfS9ypH7iqOTu80r7haZloe/1MSTdmwNPDHfA1gPAB0nNfnGF9HKHLnHurqH8nC0dS/I5jrfJORY2XoE/WbC2iT4rF7ayVMbLTxDUXz59wsFj+eL1GxHD6zY1bcVF6KSfyHM8OuhozZ0JhrFFpDzxGXfJnRRx+B4Rl716tb883ZHrJ2OWF7X0+afNzphBccyjmONY30nYqW8jI39gfW5Z2u2qeRc2qGcS4WcAcFXte9rRHRWV+Cz3cpe5lR0mVUWimd/h2ZrmamzP6P/DZj9HZk9Umc1+8uTmmljPRgG83a4iTpZbaKiXXkTVa1wIv2e1t/YMT7lC6l19BjVUezIL+rD5+DeC3X0Bpqh46pu0Zm/0EYet8PUo+1G/xTM0GNH29cVyEv91V6j/16QdxaOtk9XfodxJuWorIpnsXihVsvU4SE+Kos25nFp2WPv6qhs7Ni70b9d+AP3RewbRfopuzkflS36FYNpgj8Qb0bPphVgGU7+DBdAUo7KqjN9HCL+izB5rMryNH5U9jvuqOzNBWpkgj8QViaehdD+qCz3KjETK1NVfcnifcKlYxE2dnWpGglg9caOyvIPPKhrdlmOevkjT9yjGf0HEns0p5GU7NHQRtyjpa6cGH27407c1GIvFaqZTWozTD0qyyM176OJ7F/qRWR19Cs2qnY6mji5m48m8nWb2B1tJTmpR1rbHWU8VLCvVoTL+1zrAUutJvNxQ6P/nyIGGKY6AxDzR+W/6hpPdfyf4x3qHju6bXQd+uMk5Y9Y/pRZXuzcS2pbVS+S8hV42BfErokv64+4rzmTZnwYO1aTzLIrD8gf+33T/g7l9As5MazVAivWFsb4mKGpuJDoNkdUY9yM/vHzhfSsV9BiUtV0e4HeIaRVE/LH3GEsFryUnEs6lHOJkMPHXya2hr4d3mb9ptjmW4ebwG/KCC8EPZsq+o0w1EttpqUcN3zHr7xk51M9u/4xFnZjQ0L1e0aXCHqzFW5ql7DVG1TXZLLVcUM+iojdi+mgjhtWPA75hhT7Ib66n4Y348reRIx5d1XEsuOG6nb0sxUz+LjhQKstq2N1Z0sXO0I0vQt0seOGc86hLkrOpR3KuVTI8by7sBHRud2i/7I5wzxZ0G/OxRb9jf6tc4f5lkeWZ4qGUziGwIMo3N5NHh7LU7/fx/qtBp/iY3mbqMxYTqXzZpDBcvO0o0CHS6jvrti/ymN5PA3CVWJuJ+qAkLpZVrUTozvbB8X4OCseFOPDSXsgjw+RDULeBMq7D/J2Ut79kMfLmJh4SRNtlPve2xcO4zJdIJllD5+pJb8r4TPmma78jOse+WNHlzd1KGeTkKOWPnG8GjuMZv5Z8Uho8o4AvxZT8fWfMzsCsfuFvq1Y668aM/N0H/OKjkOjnCuFnLJ6jcEP3F1EdEU/epQJ3Iz+8fOL6FnRNNa+n8u3A85WE8MhSbvhw3YaPsRO9XPXifT/Zc4w3y74zDs9iMVvc6Ad7yL91TmbflH2sQgRhl8nXaqGiNT9+nKn1ItOBWSEis9iLYX3BpmfW3+VU+oVg/tGNfi2ZHm4Ts4DBRxw8okuHEg9AHSc1EDBylP2lDrW1Z2Uhx3SXSCb6/x2IcfK1iPo1xGW2pq2emknr1fwTSCMjJ5jhLlDyK4R/XGYACynCYCSVeZSNqYp2iN+NDIJwfePVbn4GAgPerA97S6Q/xaIrI/P0fKDkM/lQ1/tK9C36EqpJ8EGsZ8aVP7I77Chb/N7SOsjtBy/8LvyxTuIfkObsnP9G/33Rur/NUIH0ytPa9vooGiUDk8LHURPceOhw6cKTn3w+IojO9cS18RrBE5RMmvkHmvey9bh1qGeFXlAXvLWi7bDw9UDe4eKTrxwWYt60Z6g00DQuuXpXB1imlBNXvQQE5av6iGmolbaTk6Hh5iKBioqWDB/IN5MPAsttZv15z+fy9/42tShnKJX0/B70UqiVQR3EO+GALWs4M7BngLMlN0BtdJl9O0229mW6mBMTHbsLOW2krqqO+DwoAqvCKJ+O0rqmvIKlKeu64WuA0I2h04s11iETsOvizJUCZ0xu3xbsdbfclM5PnaGVkFUfJaFkaXHPI6Q3NneQt+rTOUq7k/ew2vFmNRaMe8574G8bZQ3CFhlp3J49UuZqRzW1b2UhzeT7QHZXOc7hBwrW4+g30VYOwSf1Us7ebHWbRiKL/9+s+CJvdib0mrzxAOQXY5YdwusDs8EzE6NRoZfDx21oTPR6B6Sx+Xjst8rdGmIPF5aulfIuVfIUVjbHbF2OmLtdsTa6IQVHMs4jjWONY71wsdSe4d8tgv7T35B+1ycz1naoZylQs5Yn89ZSuXBvpvtps4i3h2Rg/x3U3lw2Rg38vrnapnqtYA87Wn9rRH9k3AOaPLc4jKina1crHOHR/MH1NF8HOOkjEtwDHdr67Pqs/k2faxrPrtRVAezqQ7US/LrhD78kvx+qIN5VAfIz79Yr9qNksc+0ldAz+f7jH5xSyf1Anbs9Snlk2jntQXyloG82OtqTq+EzFZ+h+2V/S513J3qp/waEvopr1Kp1z7QD3iV6sw1jEHXgeHxufU1os5T/Zzr1egvTaxXp3gyu+yFDmo1Mfbap/ID9btwjTC6zotWXxEL6zqlXtX2GtfrKyL1qg6DoJ5cr0b/qsR6NVuORb2irVLqVZ2FivXfsde0sJ/kSxFUjI6tKqt6Vb+ew/W6NlKvamU/FoeN/vYuiMNoq5R6VbsfqfXKcRjrlS/CULsMVWO0YaXGaKPfJuqcx/wcF4r0K7o20/EijB0FaswS/IF4M3o2qwDLcPJnuDCfchoCl0DZ5EZ/jzC5aqaoT8qx14qvhSVvhBi+17HX2NDz24q1/qpjr9zMYk2pzDFWx4swbilQIxP8gbAy8QzzvF7c3U5HLdGFeKagIp8a+Ru9jUCLRheGVyP6w5FeKDYKDmF0tN4j6NVbBKr8eyhP7SixHOwdMfJz72j0JxJ7R5M9Fr3jHiDg3nEQ8noFPdv7PkE/CDS8qoRvX8Sa9B6S0y50sP8rP1WzbzUaj11i0G5Wxv6FPsFvcKjZnPIFoxuLlRIsD/vCHsjrFfRsm5jvoG0aob2fYLu8l+TE4lKeYr6Aqwu8GqZe4k85d4IxAN/YeVXrM4/A3i5igGF6/4aX6RP7DS/123QxfzS6br/kpd2ONa+o4lCTryuNnQFq5zexvjn2lma738bk4el2wFLlfXXrc43ofybij8qGsTNA7X6Dkn0Od3p3Up6qD+WPRjcWv8+J5WF/xB2SXkHPttkt6HHMxZdM4W7zdsrDdsxvMWL58Xdy580cSYeXIGUFf01XflZ0QVIQ+vAJEPU3VQ5ixc6MYbv6DYrzOyFPtZNrW59rRP9JWHH/77Tijvz8ZrDl/Ta0s6eWFPPz79Sqy6dUG+GbX1Q5kf7VBeX8fdDzLdAeQhhZR6ZXh+2uUbbdqf4/1u5iK+9oE7Xiyr+DrGIy+mRRTO4L8XjIMflPI6s02Bfxju7mkrqr/qRdHPn11iHFqaQDx7Oi/kDVlVqB2lmA1SP0x3bL9d4rZCt6nJ+qsX0N8pH+81BX37NEY4YCHbYV6NxXQM9zaKP/P5E5tIoD6P/8IpHRfxEw+Ue42mHeWID5pchYQ7VT7GPLzsVMH+WnPBdD3blfvAfkM+1tJB/z0M9Zbojoy31qO325v7G83nnP/83r6F9adu8nvJKxujdWVzcIfVPralukfIxlfLUw2h9jbQTt8Y2CdYAJJTGzFib26WqssgvwTY9YjFTL0DzO4Xb4GzQmwX5mO+l/5uYt0D+2HuUzxs4+W/YiRWWb2EWKsTE5xnDV30ynPPV75JnQoWxfimPTH54xEndHBDf/fB7p0W6Md3XrM8fheaLeYzaM2bzdvMb0UXF4N+Upnz3b/ojlZ3+MlTVPKbuHOK9jf1T9h/JHHmfF/CZPMX/cAWX9Lhrb7Y7ITC0bx9i+AvqiGLsGfDVlfyDmq3sE/b1CZ7VGu4fyYqfMjVaNj/LEl24b/ZWJ8dhpf2B6N+8P8NsGaOM9lIe+yaf0VZtNbRvGm9vhborVuxJxM4Gl4iTHaqO/MRKrVRuM+X+7ubDpo9o/nwJWsWoMT2ZN9zzpmaeqsaFB9Ggn5at8MhTLj+PCDQljgVjdtlt75dimxpGqH+Y56o6IHNRLXaS/IyJnTody5gg5Y7kGiTLV2IbLU3YtBPl5TXWnY3mUznwEI084bt1Lc5gR8xvBy/2d0T8Bc7KHWp/VXhX7Tarv8hmF2BpSCPF9L6d9hgnneszJ40qM43zOQb0zjr6HfafRBNJxLOyF7TllzqjiRsy+2CZ4LxBtuY3y0N9S3r9PHYfgXvPKGe31V++Xp/oHv6ePYxReU9styqt8wejGYgxwNk/dsy/g+GAX5WH9301y1NhRxUuu46KxI+9ZGf1bSo4dY37jOXZU6/xjGEO62m9iY8eyfsMxRN0AgP13bI0sCyP7SdXnWj2029vogTLY80nwHPleTmXmMRJjv4LorZx9BfSGx2OR90TWGXa10eGVpMPuNjrsIh2M/r8KHWL2z1NsTNgfRrfFEu2mlhGe6YPPEL8etH80Q1LK2H4mT/lBnrgtq/aEeTyXKfvWJWJtdsTCsWUH9VX6xm2eV2Ac4+tV90Ae3zaDqZe+Y3lyv/7+JcO4TMe6Yn3hfi772C7Bq24AOVftYVc1edH2oOYAZdsDr1u+2NvDLsrrtvag1pWUjfLUDGkppb1UvHVmWWp7MXyv9qJ8T7WXDm/xaU4Lz49jOFatgc9oO5Szm3TotP5id6ad7frr9M601LmJZ/1h2ypTf2rtbzZ8xjwsT2ztD/nP1trfbJJTtPb3JVr7U3PT2Nqf0T8Ha39fjaz98foe+lZsvc7oOpw79nbzueDYOXXu273WnxoF608Z4F4reLltI/1uoYfR874x0/D5tTNtdP7zf9VFzMpnUa+i9ZQaYJ7t82to59i7RLH1FKd3iZad63eJ2O8HIa/d/m+ebhNYMV23daAr1yPW1SBhqdtPsDzsl0Y/R/jlGJ4bWFZ2PW0P5KWsp7WzKc9p0I6xcwO8nqZib+p6GsaQL1H/pc7sZ5SHMvFZ7EYpPsdn7yKtgPrns7pbQU8V928rwFwdiXWqDLFbT3ZEyoz6xO4xVnz4/le/kNW0D9+MJ8MzX5koZPE5W6O9HOw0a4nWJWN92qTYOzr9YbRflxnzZoQXgh7TG349jLZFlTG9GgMrv7fyVZwDLsUxPfoRjumL3llIfafolfOHeYraGI5TX9b6zG3s+vnDfNcWYIZQfryG+jwwfSRurC3mqdN3+tDmsb35TZSn9lxNB3W+AOn57JTR3wZtM/Yuk9N50n/o5r19fm9V+Zfa22e/KXo3xfBqRL8Z6oDfZcLfFuD90y0ldU89M49tg9tx6hwp1u5R7/Nan7nd3x3pW9V7WrG+VfXFqb8RwO8aIp/FuzGcW8t9WSwPtxfv2MVza+XP6t06PJvOsRfnyrdR7FXvDaTc8lR0x8Cy1me+Y+BQxL/O5R0DyGdtX/mX0XXoXzOUf2F52L9ibSlPZce1fMdJ7I4BjIX8KwU4B8BxyCryL9VPIq/9FCb3k2+I+MvuSBnzVLaP4neYU88Xxd4R47NW9wg7oF57W395zeh7EscLTueZrj/XZ5r5/P0eyOP3PdS6Jtq06Lx7XwjR80K8xvZMZLyg9oNV20rRXcVd1d6wTX1s2vOf1Ty/6BdZlEzmxb6n6Ea/ovnnjwt7cTwrej9sOWEa/bsi8UD1qXfBs7Lv5PHZXvWeU+xc+tiN58MN53rtn/uP2J0gReezkBblpPo/+tCHyP+xP7+TZMbGscyLcor8v+iuhA9G/L/dvHwJYRr9h0qufcX8v90YITZGip17j92J4zQ+v/lcj8/Z/2Pjc4y/HFvb3dIc83/0ofdMG4mL92Ion222PvNdMB8t6V+x935Sx6Cxu2pU7OX1GTV25Xos6meWhZF2MPr/mTjecrprZua5jud814wa38bi51jcNfOpxPUZXlvaUlL31PaGbeoZ6m9w7sv9zZaITObFdl3U3xge9w3/J9Lf4NxMrQdxf2P0Xyw5X4/1N+3m67wepO4MUnP52Hzd6Dpsn7PG+k7Admtl3N+oOyBU20i5EzDV/9GHnmj5f2d2PflEBroYdq+grNFfo/mPln/WQb79rSXo8cnf+fqfffA1VzwynfjzZHWU79nk9f+v84d1yIC2tmBY9wz2uE0HS7yHg/c0Yz81u4Vh+019QNcMSenlVpaJgGt1EwjXytIPAOYb6r7IqYIf/QDlTgPbTFowjIXYrFueHiA8o51KtpkIeCXac+D6RiyrH8zrA11nLKhGh77A53k5fhjG7IisGmFgTDG83Herto2Fv7b3j179qb/7VLu2URX/e6+oTf/BHevXjhX+H038+6997Hcf/KGxwv/r/o039/y3H1g6Vvg/+rUNV71p3vlfLRObzBemAK3xWZuZCs9LtJlJqL+lXnqG+HXSpaS8M/vzU0kel4/fMWgIXRqUlydei2gIOQ0hZxxrHKsMFo8XNkCfeH3r89QwOr5PIV0yoUsW0YX581R1XGJ5fZG8iZG8/khePZI3CcowhfImA99myhsQmHm5ti58/rPFwtlA1wxJ6SHTZw7gWmwLhGu2nwsAKWMr5J9LWPPaYPG6CvLPI6z5bbDuIizkn09YC9pg3UlYyL+AsBa2weL3tpHfeK3dWT39DbS73TQWNR41Fn0d4RntHhqLLgK8TseihjUg9MkK/oYwuj/OE8cFxOI7gBYKOR2Wb3KKnohfJ12qjhsWkTwuH48bFgtdGpSXJ+4jFgs5i4WccaxxrHOFZT6ObaLTOILxYCHJmQN8uG70RlpDxLjbK3j3tP5y7P0DiOVvpjEUxg3TcarQmcdHKl4sipR/ipAz1nbmMdAURzmIxWvSSwgL7ZynPa2/ZmeMpUuIbynkIV0v0CyB50uFbIVvGO188O0LdNmUD6KsGtF/AHzwR8kHkZ99EP1zCuXxXBn1VP6JdbaH6E3vPkGPeDWif2erLGofwfjRVqgXv7Nh9D8JmLyPoOIbjvV4rVz5ouq7lU2XEFaPwMLy8F6Wsim2zx4qv9H/rLApj8eQX6338XuwuI4zl/JwDWQe5U2DvPmUh2PRBZQ3A/L4Pr6ZkMd9wSzIQ/9Zt3D4ebt2mKc9rb/cDn854lsqdqgxoNE3Bf1SUe6pYbQ/NSkP+dgnm5DH/dCy1ne0QxP0snNyNaL/DbBDbM/a9OpwT2yS2hNbBgS8pn0e5PUKeq6L8wX9eUDTbH1uEL1q5ypmNOEZt3OzUZ+gR7wa0X800s4xTiwj3aeU1H2O0J37PW5Tb4+Mk7ivWRyRybwopy+U60P/JNLXqLEh6sV9jdH/WSQeKFvG+hoVP5aIcimbLqU81Uep9ml0Y/E7dlh+bp+xsuapaqxshNHtZyHlYdtg/1drQan+jz70RtpLG6ux8z0F+iBGf9BtsBmSUvKaiuHXw2jbVFlTaVcXPH5Rc0Su8zzxnLfsXGwcaxzrbGPF1kyrxhGMBzzGxnVbnM/20Tga9yV6Be+e1l9eHz+9cJiv3vqs5rM8vh+DNePkvebxNeNxrHGsc7fOOxaxL08p649qbaCb1h+L4vUlCeseaj7Ac6c9EK8vp3iN/Lz2oGJ5bG0yNTbuIXq1VqbW5nmt7OoWUeqcMLb+aPSvBMyzvf6IZT5X6483CJuqtYfvlPXHXsrD9UceN+H6I/qPrT9WPZ/JZ2LQJnwmBm3CZ2LQJnwmBm2izsTMoLzJkDeT8gYgbxbYYSvZAeucz5jiWsTESFknUZ46m6ps2095aKPJlIcxro/ysE7qlIe2NZvYvTzt4nGe9rT+cjy+PxJjVB+i5s1G3xT02G+ZPp7r0Lymt6z1vew69H6ww/g69Eiss7UOfTwS72Pr0AtL6t4rdFftE9vUJZG5ZcqYA3H5t6xU/6jGQtw/viEy5lDz6diYw+jfdA7HHGoPQJ2BwPG8YTPmWKxDY/m5fcbKmqeya/RWpkYYHQ95jRr9fzHJmSPkpPo/+pCt11R9L+Dtv33x2q/e+eUlVd4LwHO4xmdrNahPifr976i/JbVWY/h10qWkvDNrNXWSx+Xje/smVZP3mxnxozzErJO8ydXk9fL+BNdN/s/GmX0Fuhhvjeh/lsZ6A4KnQXl54rUKzOsVz3rOEdYUgYV2tDrJ2+E76Sw427gZktIVPC43DMSu6AvbUtuW4ddDR75+pm1NJnlcPp4nDghdVH29Fug6rftTXYp1wBHrqCPWcUcsT3sddsQacsQ66Ig16IjlWcZjXarXw45Ynu3Rsx73O2J5tqGTjlie9ejpq6cdsTz964Qj1usdsTz9vltjjmcZH3PEus8R63FHLE97eY5NPP2rW8eFnn7frWO5fY5YRxyxPP2+W8dy3er3nmMTz3p8MfRp3TqW69ZY6DmW84yFnvXoaS9PX/Ucf93viNWt469HHLE827ZnG/K0l2c/5NmGutX2nvHLc13ugCNWt/qX59i3W8eYnrb36jvyz3UnrDxZ3zG1ABs/q73RekROJnTuFXLwjMJA6xnuFRlOfxhtixL7UMm/Z2/4ddKlpLwsVj9YPt73miJ0Uecqua5i+5QoR2HVHLH47EVNYKl9v4z4kV7Za3IYPv94bGjfgX1Dp27ae9+xB9cdejBQqtH3mwpU3Ep0dxWo1itwM/rHz7fSs15Bi9hTw+iq6SvQOwCe+nmjhuCvReRkHcrJhJwBwcdNG12nRFNbndq0Db8eRpe5StNWrqrsYmWvC10alJenh4CuSujFvEOOWIcdsU46Yg06Yj3siHXMEWvIEeuUI9YJR6x9jlie9ehpL09f3e+I5emrBxyxujVOeLZHT9t3q68+6ojl6ROevuppr+OOWJ4x2nMMcNoRa58jlmcb6lb/ejHEr7Hoh2wsj1dT46u4v79opMwJkNdLvBnIrBH9KxcP83180UjZGci2z/2El4VSc5o1GeGFoOdQhl8nXUrKOzOH6iF5XD6eQ/UKXRqUl6cHgY7zesWzGNYxR6xHHbGGHLH2O2INOmKddsTa54h1xBHrsCNWt9ajp696tkdPvR52xDrgiHXSEcvTJx5xxPL0iROOWJ728oxfnnqdcsTyrEdPvbq17/CsR0/be7ZtzzI+5oh1nyPW445Ynvbq1n7bs22PRV9r+2o4H+snOWru0xORg/w8L0K+rPW3n/Szz82QlHoywjM98Rni18PoMpeQl8Xsr+zCe4rI26C8PPGrvUpOJuRkAiuml+PWtKl4EdGtLVAtE7gZ/ePnF9EzZQrEVr8s1i9kWYqZtlHAn6eBiBzl9rYMMyno5sfb52WbH/JbnpKTdSgnE3LYrmo5KU97W3/5F+Juai0n4c0hvUIeYqWElopb9smncXjLvtPQorbsY6GlT+jC/pCnu4GO83rFs5hv9TpiOXUFE8weE0SmshXbEf3qLsrDGzbwV9w59dJ3LE+O//1LhnGZjnVFHzO9VVvmYzFl2zLy9xRgqV9OzNMuyEd6u/mmwzq9UNUp+0tfRezU9h27ZY3bPh9faoZ4+skb31F/1a7BS8q2I6OfKOjV8R6zVcXbZ1YNgIxAsi1PHQOzPHXbXc7/ZvKTir9svSrFfoiv4iMPvVLrYnrQ/Uye8MYaxDK6ADrVIE/JqRH9EGy/HKcb57gPsWdvitBlBX+VzqiPPasL+l5Bb7InCXrLw9OUaFekQXshVh3ykf7JVtmtTjCmG39DyMc2Ewr0Ljotyli94pnR5+U8vXhkGSqOXTK72TFPHCPwL8owO/ULejxxbInrfxI87xVYE4nP6H+Q6gV93/gbQj6261Cgt7oZK+avaqs1t893Lx7WuU44qbH+A1etecWU7SveMFa/nD7ld37ljs/96+EVVW5IU0deU+NA0XgiT7tbfzvsq3tU/xDS+bOUcUTFvvGbqeMIw68H3V80Q1I6M09gf+fycd9frybvG/ktvRZPiuaqaDuUw2OEXsGjxg+GkfM/u2RkOSrOr77RoQ/+B2/v5wmPVfzs4mFcLHvRDefYryP9L0C//j6IjYZr/BhHp4bR7YPbtNm7R9DiZzUOU3ZDequvohtI+6isRv9BmPPPW6AxU4+lGP2HxDqCYarbDFWbMfrYjXCoj3o7aTLxoe7Yz/AzVT8Z0aIOedotdCr6Xhc4RTr0Cxw1b6yTrmpegu0mdmsotpufhbq0PqtfyB/LdYKM8rBsW4GOUy99R51zjLfTWDwILGUfno969N32fAI8Z7m9RNtHtLHb4juZZ/D4YoLQwb5PjOifEU7sVndub+pvqr6Z0Ff1JZ3KQaxtrb8d9nkLY2vYeT38ZUKfp8YM3Of9FfR5n0vs8yyPx2152g7POKbzOAgx8sT7FhYj+wAfafqpTEb/BdG3qRhiWHnZ/47s2Q95sX6kRvT9S4b5vkz2RHvxK3YcxwN8nwS6IG2edhfY4OtQr/+4uFgWzjOLyphj/MtiTYc6IB1jVO3X1PiK227K+IrbKvIpGRyPi/pu843JbfLVzc1BPOsR9P0F5Q1Cdr0N7kSBo+J7nfIykcexB8uLcYvHHBgXMG79ZaS9ZGFkuSZRufoj5coEH7dz1H1iRHdlP4wfVdcQvvvz3/zzHzg9/ytjtUbxqnee+N6Bq97/S2OF//OT//iGX39n/z1l1kCsntWrx+xbao07TzsgH+kX09y14hpD4PKouBGbn/EaM+t/V4H+L4V+ZNmSkfLU/ES1maL+d0KiLka/oiUf53WxfYkOf8Ghpn7BAeMaj3dVvFXriUbfbm5pNmmE0fGVZas9Y7Qpj2nMRn1Bz+8Nj/3hcqgD/oUVFZstTx0xUn0h71+rfcecZj21q4rj24lqHGGJ936xjOp1ed5P5tvoMQ/rktfRMak5pJU113lDwn6yig/cXtW6Smy8qNqd4XdbuzPfb4TR9cL+lurDReM5JQ/tgH21+XDRmjy2aZxz3blkGA/tjvEUeTmeGv1DENs3U2xHG7M/qDjBuoSQdg5EzeUHBJ/VS4f7xBOwflFPfIb4al+/ylq9GpvG1uorjhNq3MeiPFUP04K2qVrP57miWu+JzZNi8US1P26bah1B9SGx+ZzJxjXzlHGTalvIy/3kAWhbT0bGTUVjoxD0PIDpY7EPdVW2n0R5au5vnydH5Ci9YjdKKb0wJiMvy25XhtS+ymmMOEH1VVgn3EaUXWI3TalbrvB2MW4j6ld/yvZtkyhP9fHt+rYnC/ooLAfGP57fqjaGfV/V+eErL/jBeQs/+rqBsZp/Tqgt/LHm+/esKzP/VHGlh3DRDrzenqdNrb8p+9wV+87k87Dcd3a6z53ad6rxOvcFuM7C573UGow6P3K2sNTchOuy4jgheRzEZxYq+k70zILq39T8iueN2P+w/Tu5RqEbsbD9x8bHKfWq5Kgx/Vjv3RX9krKHHHX1hTrL3akcdS5c7cvi/O2D1Deq9TDkLVoP+xSMMT+0ZCSN6f5hoPltWjPBMpdoy3U1J7ek1j7Yb9U40PJwbMP+gWMbfsdmKuiAZyE4qfUUo8vl9SwdxmU6S2jLlPeM+PxuRni8dmz0H6X64r34ZkhLau0Yz0e+UHyhSn2/PKG+VR3H3sfguU1sbqrW5FSsLIpviK9i0i7CR3vE9shUmY0X995jsYt9H+k/g/vTFA/VnFbFYHvebh09tsdtvB3+Wu5k9mdMyp+5HajbiTm2qXbQgDyOidMgj+czmFQbMTuUiYlfLujXTAbWRZ54zqf23bG/tPJVPUOcAabpZGVHvfjdFWxPNXpW8UztGdupsyU43uK1tzP+uXQkjjoDEzv7rt5J6BVy1Zn8ySWx+glrYgdYuG7B9BMr6qWw+N2CMu8KfK1gXX8s95n7lw6XifvE74R95mUt/XP7DSwdKe9s7zNPb8kf32c+d/vMi6AOzuU+89XUrl6s+8xlxsnj+8yj6+Vc7jObD5fdZ74Gxhho97L7zJsgtr+aYvv4PvPzaXyfeXyfOYTy+8zboG09Ehk3je8zj47J4/vMw/TfqfvMjxT0UViOKvvM1vf9X7HlZhD8pQQA",
|
|
2614
|
-
"debug_symbols": "tb3Rruw4cmD7L/XsBzHIYJD+lcHA6PH0DBpodBtt+wIXhv/9JkOKWHlO3eTRztz10md1VZ1YEqWIlKiQ+F+//e8//6///L//8pe//Z+///tv//w//uu3//WPv/z1r3/5v//y17//65/+4y9//9vjn/7Xb8f6H6u//XP9p9+s/fbP+vhDzz/6+Yedf4zzj+l/jOP8o5x/yPlHPf84o4wzyjijjDPKOKOMM8o8o8wzyjyjzDPKPKPMM8o8o8wzyjyjzDNKOY7rz3L9Kdef9fqzXX/q9We//rTrz3H9ecUrV7xyxStXvHLFK1e8csUrV7xyxStXvHLFkyueXPHkiidXPLniyRVPrnhyxZMrnlzx6hWvXvHqFa9e8eoVr17x6iOerT/t+nNcf87zz/aIV44FJUACHiFLXfCIWfw/1oAeYAEjYF6gK/JYUAIkoAa0AA3oARYwAuYFPSL3iNxX5LmgBrSAFXmNRO8BFvCILA7zAjsCSoAE1IAWoAE9wAIiskXkEZFX2sgan5U4J9SAFqABPcACRsC8YCXSCRF5RuQZkWdEnhF5RuQZkWdEnldkOY6AEiABNaAFaEAPWJHnghEwL1hZdkIJkIAa0AI0oAdE5BKRS0SWiCwRWSKyRGSJyBKRJSJLRJaILBG5RuQakWtErhG5RuQakWtErhG5RuQakVtEbhG5ReQWkVtEbhG5ReQWkVtEbhFZI7JGZI3IGpE1ImtE1oisEVkjskbkHpF7RO4RuUfkHpF7RO4ReeVglQUjYF6wcvCEEiABNaAFaEAPiMgWkS0irxysuqAESMAjcjsWtAAN6AEWMALmBSsHTygBEhCRZ0SeEXledUOmBYyAq27U4wgoARJQA1qABvQACxgBa5sfVb2uHDyhBEhADWgBGtADLGAERGSJyBKRJSKvHGxtQQvQgB5gASNgXrBy8IQSIAERuUbkGpFXDjZbYAEjYP2slgesHDyhBEhADWgBGtADLGAERGSNyBqRNSJrRNaIrBFZI7JGZI3IGpF7RO4RuUfkHpF7RO4RuUfkHpF7RO4R2SKyRWSLyBaRLSJbRLaIbBHZIrJF5BGRR0QeEXlE5BGRR0QeEXlE5BGRR0SeEXlG5BmRZ0SeEXlG5BmRZ0SeEXlekdtxBJQACagBLUADeoAFjICIXCJyicglIpeIXCJyicglIpeIXCJyicgSkSUiS0SWiCwRWSKyRGSJyBKRJSLXiFwjco3INSLXiFwjco3INSLXiBw52CIHW+RgixxsnoN1QQvQgB5gASNgXuA56FACJCAia0TWiKwRWSOyRmSNyD0i94jcI3KPyD0i94jcI3KPyD0i94hsEdkiskVki8gWkS0iW0S2iGwR2SLyiMgjIo+IPCLyiMgjIo+IPCLyiMgjIs+IPCPyjMgzIs+IPCPyjMgzIs+IPK/IehwBJUACakAL0IAeYAEjICKXiFwiconIJSKXiFwiconIJSKXiFwiskRkicgSkSUiS0SWiCwRWSKyRGSJyDUi14hcI3KNyDUi14hcI3KNyDUi14jcInKLyC0iRw5q5KBGDmrkoEYOauSgRg5q5KBGDmrkoEYOauSgRg5q5KBGDmrkoEYOauSgRg5q5KBGDmrkoEYOauSgRg5q5KBGDqrn4FhQAiSgBrQADegBFjAC5gUjIo+IPCLyiMgjIo+IPCLyiMgjIo+IPCPyjMgzIs+IPCPyysF+LOgBFjAC5gl95eAJJUACakAL0IAeYAErcl0wL1g5eEIJkIAa0AI0oAdYQEQuEVkiskRkicgSkSUiS0SWiCwRWSKyROQakWtErhG5RuQakWtErhG5RuQakWtEbhG5ReQWkVtEbhG5ReQWkVtEbhG5RWSNyBqRNSJrRNaIrBFZI7JGZI3IGpF7RO4RuUfkHpF7RO4RuUfkHpF7RO4R2SKyRWSLyBaRLSJbRLaIbBHZIrJF5BGRR0QeEXlE5BGRR0QeEXlE5BGRR0SeEXlG5BmRZ0SeEXlG5BmRZ0SeEXleke04AkqABNSAFqABPcACRkBEjhy0yEGLHLTIQYsctMhBixy0yEGLHLTIQYsctMhBixy0yEGLHLTIQYsctMhBixy0yEGLHLTIQYsctMhBixy0yEGLHLTIQYsctMhBixy0yEGLHLTIQYsctMhBixy0yEGLHLTIQYsctMhBixy0yEGLHLTIQYsctMhBixy0yEGLHLTIQYsctMhBixy0yEGLHLTIQYsctMhBixy0yEGLHLTIQYsctMhBixw0z8G+YATMCzwHHUqABNSAFqABPSAij4g8IrLnYFlQAiSgBrQADegBFjAC5gnjOAJKgATUgBagAT3AAkZARC4RuUTkEpFLRC4RuUTkEpFLRC4RuURkicgSkSUiS0SWiCwRWSKyRGSJyBKRa0SuEblG5BqRa0SuEblG5BqRa0SuEblF5BaRW0RuEblF5BaRW0RuEblF5BaRNSJrRNaIrBFZI7JGZI3IGpE1ImtE7hG5R+QekXtE7hG5R+QekXtE7hG5R2SLyBaRLSJbRLaIbBHZIrJFZIvIFpFHRB4R2XPQFtSAFrAizwU9wAJGwLzAc9ChBEhADWgBEXlG5BmRZ0SeV+R5HAElQAJqQAvQgB5gASMgIpeIXCJyicglIpeIXCJyicglIpeIXCLyykE7FpQACXhEtrKgBWjAeoJXF1jACFgP8dp6bHoElAAJqAEtQAN6gAWMgIjcInKLyC0it4jcInKLyC0it4jcInKLyBqRNSJrRNaIrBFZI7JGZI3IGpE1IveI3CNyj8g9IveI3CNyj8g9IveI3COyRWSLyBaRLSJbRLaIbBHZIrJFZIvIIyKPiDwi8ojIIyKPiDwi8ojIKwetL5gXrBw8YUVe5+HKwRNqQAvQgB5gASNgnvB49n4klSRJqkktSZN6kiWNpHSUdJR0lHSUdJR0lHSUdJR0lHSUdEg6JB2SDkmHpEPSIemQdEg6JB01HTUdNR01HTUdNR01HTUdNR01HS0dLR0tHS0dLR0tHS0dLR0tHS0dmg5Nh6ZD06Hp0HRoOjQdmg5NR09HT0dPR09HT0dPR09HT0dPR0+HpcPSYemwdFg6LB2WDkuHpcPSMdIx0jHSMdIx0jHSMdIx0jHSMdIx0zHTMdMx0zHTMdMx0zHTMdOReV4yz0vmeck8L5nnJfO8ZJ6XzPOSeV4yz0vmeck8L5nnJfO8ZJ6XzPOSeV4yz0vmeck8L5nnJfO8ZJ6XzPOSeV4yz0vmeck8L5nnJfO8ZJ6XzPOSeV4yz0vmeck8L5nnJfO8ZJ6XzPOSeV4yz0vmeck8L5nnJfO8ZJ6XzPOSeV4yz0vmeck8L5nnJfO8ZJ6XzPOSeV4yz0vmeck8L5nnJfO8ZJ6XzPOSeV4yz0vmeck8L5nnJfO8ZJ6XzPOSeV4yz0vmeck8L5nnJfO8ZJ6XzPOSeV4yz0vmeck8L5nnJfO8ZJ6XzPOSeV4yz0vmeck8L5nnJfO8ZJ6XzPOSeV4yz0vmeck8L5nnknkumeeSeS6Z55J5LpnnknkumeeSeS6Z55J5LpnnknkumeeSeS6Z55J5LpnnknkumeeSeS6Z55J5LpnnknkumeeSeS6Z55J5LpnnknkumeeSeS6Z55J5LpnnknkumeeSeS6Z55J5LpnnknkumeeSeS6Z55J5LpnnknkumeeSeS6Z55J5LpnnknkumefeKDTEyZJG0gxaeX5RSZKkmtSSNCkdPR09HT0dlg5Lh6XD0mHpsHRYOiwdlg5Lx0jHyvNRnSSpJrUkTepJljSSZtDK84vSMdMx0zHTMdMx0zHTMdMxw+FNRReVJEmqSS1Jk3qSJY2kdJR0lHSUdJR0lHSUdJR0lHSUdJR0SDokHZIOSYekQ9Ih6ZB0SDokHTUdNR01HTUdNR01HTUdNR01HTUdLR0tHS0dLR0tHS0dLR0tHS0dLR2aDk2HpkPToenQdHien13FljSSlmN14XpD0kUlSZJqUkvSpJ5kSSMpHZYOS4elw9Jh6bB0WDosHZYOS8dIx0jHSMdIx0jHSMdIx0jHSMdIx0zHTMdMx0zHTMdMx0zHTMdMxwyHNy5dVJIkqSa1JE3qSZY0ktJR0lHSUdJR0lHSUdJR0lHSUdJR0iHpkHRIOiQdkg5Jh6RD0iHpkHTUdNR01HTUdNR01HTUdNR01HTUdLR0tHS0dLR0tHS0dLR0tHS0dLR0aDo0HZoOTYemQ9Oh6dB0aDoyz1vmecs8b5nnLfO8ZZ63zPOWed4yz1vmecs8b5nnLfO8ZZ63zPOWed4yz1vmecs8b5nnLfO8ZZ63zPOWed4yz1vmecs8b5nnLfO8ZZ63zPOWed4yz1vmecs8b5nnLfO8ZZ63zPOWed4yzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM8975nnPPO+Z5z3zvGee98zznnneM8975nnPPO+Z5z3zvGee98zznnneM8975nnPPO+Z5z3zvGee98zznnneM8975nnPPO+Z5z3zvGee98zznnneM8975nnPPO+Z5z3zvGee98zznnneM8975nnPPO+Z5z3zvGee98zznnneM8975nnPPO+Z5z3z3Ju2ZnGqSS1Jk3qSJY2kGbTy/KKSlI6ejp6Ono6ejp6Ono6eDkuHpcPSYemwdKw8n82pJ1nScnSnGbTy/KKSJEk1qSVpUk+ypHSMdMx0zHTMdMx0zHTMdMx0zHTMdMxweJPXRSVJkmpSS9KknmRJIykdJR0lHSUdJR0lHSUdJR0lHSUdJR2SDkmHpEPSIemQdEg6JB2SDklHTUdNR01HTUdNR01HTUdNR01HTUdLR0tHS0dLR0tHS0dLR0tHS0dLh6ZD06Hp0HRoOjQdmg5Nh6ZD09HT0dPR09HT0dPR09HT0dPR0+F5vl4e9Vaxi0qSJNWklqRJPcmSRlI6RjpGOkY6RjpGOkY6RjpGOkY6RjpmOmY6ZjpmOmY6ZjpmOmY6ZjpmOLyR7KKSJEk1qSVpUk+ypJGUjpKOko6SjpKOko6SjpKOko6SjpIOSYekQ9Ih6ZB0SDokHZIOSYekw/N8OpUkSarrpfXi2EAFO2jgAGfi+U78iQUUEFvD1rA1bA1bw9awKTbFptgUm2JTbIpNsSk2xdaxdWwdW8fWsXVsHVvH1rF1bIbNsBk2w2bYDJthM2yGzbANbAPbwDawDWwD28A2sA1sA9vENrFNbBPbxDaxTWwT28Q20+b9boEFFLCCDVSwgwYOEFvBVrAVbAVbwVawFWwFW8FWsAk2wSbYBJtgE2yCTbAJNsFWsVVsFRu1ZFJLJrVkUksmtWRSSya1ZFJLJrVkUksmtWRSSya1ZFJLJrVkUksmtWRSSya1ZFJLJrVkUksmtWRSSya1ZFJLJrVkUksmtWRSSya1ZFJLJrVkUksmtWRSSya1ZFJLJrVkUksmtWRSSya1ZFJLJrVkUksmtWRSSya1ZFJLJrVkUksmtWRSSya1ZFJLJrVkUksmtWRSSya1ZFJLJrVkUksmtWRSS2bWEjmylsiRtUSOrCVyZC2RI2uJHFlL5MhaIkfWEjmylshxYCvYCraCrWAr2Aq2gq1gK9gKNsEm2ASbYBNsgk2wCTbBJtgqtoqtYqvYKraKrWKr2Cq2iq1ha9gatoatYWvYGraGrWFr2BSbYlNsik2xKTbFptgUm2Lr2Dq2jq1j69g6to6tY+vYOjbDZtgMm2EzbIbNsBk2w2bYBraBbWAb2Aa2gW1gG9gGtoFtYpvYJraJbWKb2Ca2iW1io5YUakmhlpSzljTHCjZQwQ4aOMCZeNaSEwuI7awlh2MDFeyggQOciWctObGAAmITbIJNsAk2wSbYKraKrWKr2Cq2iq1iq9gqtoqtYWvYGraGrWFr2Bq2hq1ha9gUm2JTbIpNsSk2xabYFJti69g6to6tY+vYOrazlnRHAwc4E89acmIBBaxgAxXEZtgM21lL5sKzlpxYQAEr2EAFO2jgALFNbBOb15Li+ea15MIGLpuIYwcNHOAM9PbDwAIKWMEGKthBA92mjjPRa8mFbuuOAlawgQp20MABzkSvJRdiE2yCTbAJNsEm2ASbYKvYKraKrWKr2Cq2iq1iq9gqtoatYWvYGraGrWFr2Bq2hq1hU2yKTbEpNsWm2BSbYlNsiq1j69g6to6tY+vYOraOrWPr2AybYTNshs2wGTbDZtgMm2Eb2Aa2gW1gG9gGtoFtYBvYBraJbWKb2Ca2iW1im9gmtoltpq0eB1hAASu4bP6FOO9zDOyJngzqtLy1LvSz3j8e5117gQJWsIEKdtDAAc5ExabYFJtiU2yKTbEpNsWm2Dq2jq1j69g6to6tY+vYOraOzbAZNsNm2AybYTNshs2wGbaBbWAb2Aa2gW1gG9gGtoFtYJvYJraJzc/6OhwbqGAHDRyg29Yvszf8BRZQwAo2UMEOGjhAbAWb/4L6Rw29+S9w2VpxbKCCHTRwgDPRf0HX9/zEuwADBXRbd2yggm7z7fVf0AsHOBP9F/TCAi6b+r75L+iFDVSwgwYOcCZ6LbmwgNgaNq8l6kPiteTCDvperC+wejPg4zLb0SP4QHl90PM/ULCDBg5wJnp9WB8QEu8ADBSwgg1UsIMGDnAmGjbD5vVB/bB4fbhw2brvsdeHCzto4ABnoteH9dkK8a7AQAEr2EAFO2jgAGfixDaxeX3ofrC8PlzoNnVUsIMGus2HxOuDozcKBhZQwAou23o5XbxbMLCDBg5wJnp9uLCAAlYQW8Hm9WG9BS/eORg4QN+3dU5682BgATvoEdYx9ibAxx2Yo29Od6xgAxXs4Ao2fCM9pS+ciZ7SFxZQwGUbvhee0hcq2EEDBzgTz49tn1hAAbEptvOz2z4k54e3TzTQbdVxJp4f4D7RbT6Snv7DR8fTf/UqifcGBirYQQNHoif69I30RL+wgg1UsCd6Fq5eIfHOvcClmL69nm/TTw3Ptwsr2EAFe6B31z3uZR07aOAAZ6LnxYUFFLCCDcRWsBVsBVvBJtj8F3I9MBdvoxOf7PA+usddtuMAZ6J/+fqojgUUsIINVNDjrgPgnXKPW3ZHj+Bb5t+5vrCBHsGH2r92faGBA5yJ/tXrC93me+xfvr5w2YrvvH/9+kIFV9yyTiPviHvMCjgK6NvbHT2C76Z/5/rCDhrocX0c/JvzJ/pX5y90m4+Of3n+wgpiM2yGzbD5V+gvnHksBkdzcDQHR3NwNAdH079Afx5C/+L8eQj9m/PnwZoczcnR9C/Pn8dicjQnR3NyNCdHc+bR9Ga487h5N1ygxMHyfrjABlocQm91O4+b97oFShxC73Y7B8rb3QIV7KDFwfKWt8A8mt70dh4s73oLFBCbYBNsgk3yaHpLmRQfEk+GCw30zfHR8WQ40ZPhwgIKWMEGKtjBZRPfHE+RC2eifxb+wgIKuGziA+WJc6GCHTRwgDPRE+fCAgqIzbB54vjMn3ecBRroNj81PHFO9MS50G0+6p44F1awgW4bjh7XR9KXbzjR0+nCAq641c9fT6frU/Yrrs8/eLtZYAcNXLbqe+zp5Og9Z4EFdFt3dMVwdMV0XAq/EfN+M2nnXxvgTPR8u7CAAlZw2dr5UX4F3eZiz7cLBzgTPd8uLOCy+Q2T958FNlDBDho4wJnov4UXFhBbxea/hX5P5p1ogR10my9N4L+QF85EXxnCb9q8E+1xheQoYAUbqGAH3WaOA5yJXiouLKCAFWyggh3EptgUW8fWsXVsHZuXCr/B8060wA76WeK76aXiwpnopeLCAgq4bN2Pm5eKCxXsoIEDnIleFLofYy8KFzZQwQ4aOMCZ6KXiwgJim9gmtoltYpvYJraZNu85CyyggBVsoIIdNHCA2Aq2gq1gK9gKtoKtYCvYCraCTbAJNsEm2ASbYBNsgk2wCbaKrWKr2Cq2iq1iq9gqtoqtYmvYGraGrWFr2Bq2hq1ha9gaNsWm2BSbYlNsik2xKTbFptg6to6tY+vYOraOrWPr2Dq2js2wGTbDZtgMm2EzbIbNsBm2gW1go5ZMasmklkxqyaSWTGrJpJZMasmklkxqyaSWTGrJpJZMask8a0l1NHBcWI+zgByOBRSwgg1UsIMGDnAmFmwFW8FWsBVsBVvBVrAVbAWbYBNsgk2wCTbBJtgEm2ATbBVbxVaxVWwVW8VWsVVsFVvF1rA1bA1bw9awNWwNW8PWsDVsik2xKTbFptgUm2JTbIpNsXVsHVvH1rF1bB1bx9axdWwdm2EzbIbNsBk2w2bYDJthM2wD28A2sA1sA9vANrANbAPbwDaxTWwT28Q2sU1sE9vENrHNtBVqSaGWFGpJoZYUakmhlpSzlnRHAwfotrHwrCUnFtBt5ljBBirYQQOXbU1dV280u9BryYXLZr69XksurGADFezgsq3Pw1ZvNAuciV5L1sdCqzeaBQpYQY+rjh7BB8rrw4UF9Ag+UF4fLmygb+907KCBA1y24Tvk9eHCAgq44g4fPs/5NXVdvSHsQs/5C/1ouuLM+RMr2EAFO2ig23xQPedP9Jy/sIACVrCBCnbQQGyGbWAb2Aa2gc1zfviB9ewefmA9uy+ciZ7dFxZQwAo2UMEOYpvYZtrOpSYvLKCAFWyggh00cIDYCraCrWAr2Aq2gq1gK9gKtoJNsAk2wSbYBJtgE2yCTbAJtoqtYqvYKraKrWKr2Cq2iq1ia9gatoatYWvYGraGrWFr2Bo2xabYFJtiU2yKTbEpNsWm2Dq2jq1j69g6to6tY+vYOraOzbAZNsNm2AybYTNshs2wGbaBbWAb2Aa2gW1gG9ioJUItEWqJUEuEWiLUEqGWCLVEzlrSHTto4ABn4Llk5oUFFLCCDXTbdOyggW7zVSPPWuJ41pITCyhgBRuoYAcNxFawncvbFscCCrhs62lfrecytycquGzTd+hc2tb/2rmU7eFYwUeEuh7/VP+oXWAHDRzgTFz1oR7nspwFFLCCDVSwgwYOcCYqNsWmblPHCjbQbX4SaAcNdJsfAJ2J/QAL6DYf6lUfavGRXJWgFh9qX/r2wgHORF8At/jw+RK4xffCF8Etvjm+DG5xmy+Ee6GCHXSbb44viHvhTPRFcS9cNvHtXen/OMMcl2I1Ulfvgavim7PSv4orVvoHDnAmrvQPLKCAbvNtmA3seXp6zl84wDx/vfEtsIACVrCBCnbQwAFiK9hWzj/qgaOAFVw7VM//VsEOGjjAmbhyPrCAAlYQm2ATtzVHAwc4E+sBFtBt6ljBBirYQQMHOBO9PlxYQGwNm9eH9YyqeuNbYAfdNhzdNh1noteH5ofF68OFy9Z8oLw+XNhABTto4ABnoteHCwuIrWPr2Dq2jq1j69g6NsNm2AybYTNshs2wGTbDZtgGtoFtYBvYBraBbWAb2Aa2gW1im9gmtoltYpvYJraJbbpNHGegN8kFFlDiJ1SPCjZQwQ4aOMCZeNaSE30vqmP+SnvjW/V1rL3xLXAmen24sIACVtDHQR1zfL0d7trNyh57zl9YQR/f7qhgBw0cKLC1AyyggBVsoOY2eM5faOAAZ27DmfMnFhAbOa/kvJLzSs4rOa/kvCrnTmckOyPZGckz530bOiPZGUlyXsl5JeeVnFdyXsl5JefVOG5nzp/ISBojaRy3M+dPZCTJeSXnlZxXcl7JeSXnlZxXcl4Hx20wkpORnIzkZCTPnDfHBrrN0+nM+RMNHOCyXSupH2ABBaxgAxXs4LKtB/jVGwADPecd/UrBs9Bb/epaa7Z6q1+ggh3MI9TLAPMIdTnAAgpYwTxC/nG9wA4aOMA8+3o9wAIK6HvRHDtooI+Oj4PXB/Ut8/pwYQEFrGADFeygJZ6zBy4+Zw9OFLCCDVSwgwYOcCZ2bB1bx9axdWwdW8fWsXVsHZthM2yGzbAZNsNm2AybYTNsA9vANrANbMw59oFtYBvYBraBbWKb2Ca2iW1im9gmtoltYptpO9sNLyyggBVsoIIdNHCA2Aq2gq1gK9gKtoKtYCvYCraCTbAJNsEm2ASbYBNsgk2wCbaKrWKr2Cq2iq1iq9gqtoqtYmvYGraGrWFr2Bq2hq1ha9gaNmqJUUuMWmLUEqOWGLXEqCVGLTFqiVFLjFpi1BKjlhi1xKglRi0xaolRS4xaYtQSo5YYtcSoJUYtMWqJUUuMWmLUEqOWGLXEqCVGLTFqiVFLjFpi1BKjlhi1xKglRi0xaolRS4xaYtQSo5YYtcSoJUYtMWqJUUsGtWRQSwa1ZFBLBrVkUEsGtWRQSwa1ZFBLBrVkUEsGtWRQSwa1ZFBLBrVkUEsGtWRQSwa1ZFBLBrVkUEsGtWRQSwa1ZFBLBrVkUEsGtWRQSwa1ZFBLBrVkUEsGtWRQSwa1ZFBLBrVkUEsGtWRQSwa1ZFBLBrVkUEsGtWRQSwa1ZFBLBrVkUEu87bKunsjqbZeBHTRwgDPR71AuLKCAFcTWsXVsHVvH1rEZNsNm2AzbWUuKo9uGYwcNHOBM9DuUCwu4bN4C4M2YgQ1ctu5iv0O50EC3TceZ6HcoFxbQj5s4VrCBCnbQwAHmM+yzGfPCAvrTdXX0vTj/aQcNHOBMXFUjsIA+Zs2xgg10m4v9DuVCA91WHWei36FcWEDvHOiOFWyggh00cIDZp3C2XV5YQN+LExXsoO+FOQ5wJvodireEeINloI/ZdKxgA5fNmzS8wTLQwAHORJ/BuLCAy+Y9I95gGdhABTtooL8v4ofbryr8acnZSllOrGADFeyggQP091D8fDhfcjqxgAL6S0MnNlDBDho4wJl4vuR0YgE58oMjPzjygyM/OPKDIz858pMjPznykyM/OfKTIz858pMjPznyM4588/7JwALGkW/ePxnYQAU7aGAc+XZ2Sq4j385OyXJiBRuoYAcNHGAc+XbkC1HtyBei2pEvRLWzU/I4sYEKdtDAAc7EeoAF9NHxPfacv7CDBvqxqI4z0XP+wgL6S2R+WM5XGE9soIIdNHCAM/F8hfFEP8bm2EAFO2jgAH0vxkL/9b+wgAJWsIEKdtDAAWIzbP7rv1q7mnc/BlZw2Ybvsf/6X9jBZRt+hPzXf/gB8F//4cfYf/0vLKCAFWyg27pjBw0c4Ez0SnBhAQWsYAOxTWwT28Q20+bdj4EFdNtwrGADl23NOTbvfgw0cIAz0a8JLly2WR0FrGADFeyggQOciX5NcCE2weazluv17ebdj4EKus2HxGct14OT5t2PgTPRZy0vLKCAFWyggg9b89z0z+wFjoXFcSauqhFYQFnom76qRmADFeyggQOcieo2dSyg23x0tIINVLCDrjDHmdgPsIACLkXxIVkFJFDBDho4wGUrPlCrgAQWUMAKNlDBDho4QGwD23CbZ8AQsIJu89NzKNhBt/kBGG7zQR1u84GaB1hAASvYQL/odRpJ86Kzj/KkkiRBxYMPxwo2cP1aqVNPsqSRNIP8x/0kjzgd1zCsRpLm/Yr1/PcjaQadjxCcSpIk1aSWpEkuKY4GrrFe3SrN2xQv9DS8cG3mehe5eethEw/mqXWhtw44eQDfUM+sCwsoYAVbDInmcGoOp+Zwag6n5nB6Ip2D6ClzDqKnzHrzuHkfYaDvqh9YT5kTPWXEj6anjO+TZ8xJNaklaVJP8oi+IZ4A1TfEE8A1fv6fpEnrb/um+cl/0kiaQX7mn1SSXOKH0M/7C5el+nFbP5yBHVxB/Wh5g1/zU8Mb/AJXBHXSGBjv7ws0cIAe1v/a+i0MLKDEgHt/X2ADsRVsBVvBVrAJNsEm2ASbYBNsgk2wCTaZiWevj1Oe1N4KGFjBBmqi/05V3wRPpgsN9J4Hpxnk17YnlSRJqkktSZN6kiWlQ9PR09HT0dPhv1H1xAYq6HlQHA1cg1h95DzhTvSEu7CAAlawgZ50fo6eWXeigcu2HnU3b9e70H+jLvT09uPgKXphBb2XzkmTepIljaQZ5Pnoqenfomue4d6S15pv/zRwgDPQW/LaehG+eUteoIAVbKA3Yzot2Xqi3rwjL3CAS7YejTfvyAssoMvUsYIu644KdtCvs5xG0gzyFD2pJEmSRzRH31IfC8+5NT/YvL8usIACri3tvoOedBcq2EED/eR0mkH+s3eS57eTJNWklqRJPcklJw5wJvrP4IW+ma70S8kL/VrIaSTNIL+k7H5o/JLyQgF9RHxMPV0vdJUPr6frhb6xPpCerj5l4n1yzec+vE+urZebmvfJBQpYwQYq2EED3ebb6+lqfip5uvpduPfJNb8ZbuePp2/k+et5YgcNHOBM9J/QC1cwv0X2hrfADho4wBnoDW+BHqw4+l8TxwHORM+5Cx/75innX3e7qCa1JE3qSZY0kmbQyraL0iHpkHRIOiQdkg5Jh6RD0lHTUdNR01HTUdNR01HTUdOxks0rlDe1XVSTWpIm9SRLGkkzaP10XpQOTYemQ9Oh6dB0aDo0HZqOno6ejp6Ono6ejp6Ono6eDk+M9QZF82ay5rMu3kzWpp9z/os1/b/1S7/h1JI06RGp+19ZJ6+TN25dtP47n7TwXqxAA9eG+ISB92J5ZfZvsV1UkiSpJrUkTepJljSS0iHp8Ku39fW55p1WzecsvNPKS5Y3Wl00g9bZeVFJkqSa1JI0qSelo6ajpqOlo6WjpaOlo6XDfxTWV/Ca91W16fvn90Y+S+J9VYEVbKCCHTRwgDPRfy0uxNaxdWx+ivr0jPdVBXbQwAHOxPVrEVhAASuIzbAZNsO2ksJnkL2t6qSVEheVJEmqSR6xOPqW+tnt6xX6ye3rFZ4kSY+/7ZNp57qkJ2lST7KkcZG3QalPMHnDk/qskjc8BXbQd7E7DnAmer5dWEABK9hABTuIrWDzxFtv4DRveAosoFezw7GCXs+Koxc0cfSK5jvvPyIXDtALp4v9d+RCL53m6DYX+0+J393buYLH+d8q2EEDBzgT/bfF5we8iUl9/sObmNSnN7yJKXCAa3t9psObmAILKGAFPa4fY/+p8CkIb0xSvwX1xqRAASvYQAU7aOAA3ebD58l4YQHd5oPqyXhhAxX0X2sfM0/GCwe4xvfczfPr+CcWUBb6kJxfxz+xgQp20MB1NM/hy6/jN8uv4zdvTFKf//DGpMAKNtACvdlI/ebNm40C/XGNkyWNoJWCfvvgbUIX1aSWpEk9yZJG0gxamXeRb4w6ClhBv5jy7Tmv2E400I/PcJyJ51XbiWs3qpMk1aSWpEk9yZJG0gzyH8aT0tHS0dLR0tHS0dLR0tHS0dKh6dB0aDo0HZoOTYemwy/qfPbCG38CZ6Lnqt9xeeNPoIDrkPjtojf+BK6j4xMB3vgTaOAAZ6Lnqk8aeONPoNv8mHmuNt8yz1W/+/fGn8AOLptfTXrjT+BMXLna3btS9SJJqkktSZM8oieLZ55fw3sbj64u9eZtPIENVNC31IN5Pl44wBnobTyB61e+Oa1f+enkruG4XH5p6609gcvl99re2qP9DDDA5fI989Ye9dtib+0JfMT1Z6czFvVtM1e6ajNXumozV7pq3pajfuXnbTmBCnbQwAHORM9cf9bubTmBArbYMF+r+6SeZOeqv827cy6aQc2Dq2MBBVy74rfk3psTuHbF79m9NyfQQP8RLo4zMRfJayy42Vhws7HgZmPBzcaCm40FNxsLbjYW3GwsuNlYcLOx4GZjwc3GgpuNBTcbC242FtxsLLjZWHCzseBmY8HNxoKbzTt21KcxvGMnsIE+kn4sPIUvNNBvkfy08hQ+cRxgAf1WzMXD78X8/DgXtvLT/VzY6sQO+v2Yn+Se3hfOxHmABRSwgg1UsIPYJrYZNr0W3DyxgAJWsIEKdtDAAc7Egq1gO29qm2MFG6hgBw0c4Ew8b25PLKDb1LGCDbRELwfr8wbqHTu6WhfUv20WWMEG+vZOxw4aOMCZ6PXhwgIKWMEGYmvYGraGrWFTbH6JvWY81L9tFrhsa/JDvbsnUEE/8mcEAwc4E8/6cGIBPa44ru2dfj74z/b0g+U/2yf6z/aFBfTt7Y4VbKCCHXSbb4Pn/IUz0XP+wgIKuH65Dx8o/+m+UMEOGjjAmTgPsIACYpvYptv8WMwOGug2H9RzXmqNWTknpk50mzoK6Lbu2EAFO2jgAGdiOcACCoitYCvYCraCrWAr2ASbYBNsgk2wCTbBJtgEm2Cr2Cq2iq1iq9gqtoqtYqvYKraGrWFr2Bq2hs0v+1cHjHrHTqCBA1wZu27P9FwY88ICCljBBirYQUvsvhfD0bd3OjbQ7+gOxw4aOMCZaAdYQL9RLI6Mr7HHNhP9Uv3CAvrtp2+65/yFDVSQozmwDY7m4GhOjubkaE6O5pnzvg1nzp/I0ZwcTc/5cxs85y+cgXKkTY4CCljBBirYwTx35BhgjqSUAyy5DUXACmIj54WcF3JeyHkh54WcF3Jezpz3bZAKNlDBDvpIVscB+kiukumNQYEFFND3zYN5zl+oYAcNHOBM9Jy/0G3DUcA8wf3TZX3N4an3DwUaOEBODb/Jv5CDpRws5WBpAxXkYCkHSzlYysHqHKzOweqciJ0TsXNqePqvKUX15qLAmejpLz4Onv7iW7YuDwIr2EAFO2jgAGeiFwXxU8OLwoUNVNDj+qnhReHCAc5Ev/j3qyBvQAoUsIINVLCDeUnlHx47r2n9w2OBAvpedMcG+l4Mxw4a6HsxHWeip/+FPm90OApYwQYq2EEDBzgTPf0vxCbXXIJ6B9JFPekR9NzxleQXzSBP8er/4Tl/d6KAvv3NsYEKLpOP0Mrwi0bSDFrpfVFJkqSa1JI0KR0tHS0dLR2aDk2HpkPToenQdGg6NB2aDk1HT0dPh+d09QH1nL6wgT5e5thBP95nhAHORM/05gfZM/1Ct/k555l+YQOXbbWNqHc1BS7bmmRU72oKnIl+UdD8oPpFwYXL1jxHPP8vXLbme+H5f2EH1/zQGXYkzSB/TnZSSZIkj+gj4D/xzffKf+LXVKR6V1NgAQVcW7qmE9W7mgIV7KCBy7b6k9Tbmi70HL+wgAJW0G3dUcEOGjjAmeg5fmEBBawgNsHmP/Gr+0n9Q2OBA3TbGlRvhOrdx8zz/0KftS2OFfR5Wx8oz/8LO2jgAGei/8RfWEABK4itYWvYGraGrWFTbIpNsSk2xabYFJtiU2yKrWPr2Dq2jq1j69g6to6tY+vYDJth88qwnkSoN1AFNlDBdcvil3HnapwXDnAm+lO4CwsoYAUb6Hvh6LcA3VPEbwEu9O31k9ZvAS5soIIdNHAE+mfC+upKU2+gOofEPwh27rF/ECzQwAH6+K66421VgQUUMI+md1YFKthBAweYR9P7qwJLbo4IWMEGsm+e82tiX73NKnDZVvOdeqPVhZ7zFxZw2cyDec5f2EAFO2jgAGei5/x6wqLekhVY82B5oq+nAuq9WIEdNHDkAWgcLOVgKQdLOVhnop/YQA4Wia4kupLoSqIria4kupLoSqJ7K1Y3Pz09pS8coA+Uj4OntPmWeUpfKGAFG6hgBw0cif6zbn5q+M/6hRVs4Io7/NTwn/ULDRygX0T4X/NEv7CAAlawgQp20AK9xcxPnR5P7NS/DHbR6svpTi1Jk3z7q6OBA1ztP+sE8060i0rS2nifUfdWtMAG6vnkUL0Z7SJLGkkzaCX8RSVJkmpSS0qHpEPSIemQdNR01HTUdNR01HTUdNR01HTUdHh2+/3D2bN2YQH9ue1wrKCPmB8RT/QLO2jXY1X1NUUD/ZnlugLxJrfAAsr1sFW9yS3QbeaoYAfXZb4b/DL/pBnkl/knlSRJ8oi+V57M/nDBW9a6P1HwlrXAAgro7XwezJP5QgU7aKD3DfpJ61fuJ/qV+4XretoHYGX4RTWpJWlST7KkkTSD/Jr9pHTMdMx0zHTMdMx0zHTMdMxw+He/uj/u8Ia3QAEr2EAFO2igD5s5zkT/kb/QbeooYAXdNhwV7KDb1nngDW/XP/VXZX3X/E3Zk1Zy+aMK72YLHOBM9CS+sIArjf2xhnezBTZQwQ4aOMCZ2A6wgNgatuY2H5umYAfd5nvcBjgT1W0+/FpAASvoNh/Slc3mU97+oS7zGUHvh7twpW5gAVdcn+L0fjjzS1Tvh7Pim9M9rtvWz3aggQN0m2+OHWABBVw2n7nzJjjzmTtvgjOfYfMmOPNJMW+CM3GFt6Se6D2pFxZQwAo20G2+DaODI09O/9k+cXLK+s/2hQJWcCl86sk/yRXYwbVD1XdzDnAGepdcYAEFrGADFeyggQN02xpU/yRXYAEFrGAD3aaOHTRwgDPRf9ovLKCAFWwgNsHm9cGrhvffBc5Erw8+WeT9d+YTQN6AF7hsPm/kLXiBy+azPt6EF2jgAGei14cLCyhgBRuIrWFr2Bq2hk2xKTbFptgUm2JTbIpNsSm2jq1j69g6to6tY+vYOraOrWMzbIbNsBk2w2bYDJthM2yGbWDzAuITgt6bF1jBBnoX7YkdNHCAM/Hsoj2xgAJW0PeiOs74AZ3nxX5zLKCAFWyggh30cVjp5B/UOsfBP6h17qb34gUq2EEf3+44wJnoOX9hHk3v3AusYAMV7KCBI7fBc/5Ez/kLCyi5DWfOn9hAbOT8JOcnOT/J+UnOT3J+tjx3ZmMkGyPZGMkz530bGiPZGElyfpLzk5yf5Pwk5yc5P8n5qRy3M+dPZCSVkewctzPnT2QkyflJzk9yfpLzk5yf5Pwk5yc5P43jZoykMZLGSBojeea8ORrotuE4E8+cP7GAy6a+DZ7zFzZQwQ4aOMCZOP2+2TdyFtBnCH0k/UrhzELP+dXgq960FzjAeWE/jjhC/TgKKGAFG6hgB+MIdW/aC5yJ5QALKGAFG6ig70VznIleHy700VFHPxa+ZV4fLmyggh00cIAz0evDhR7XHBuoYAc97nAc4Ez0SnBhuW56uzftBVawgQp20MABzkTPeT2xgg1UcO3FenTRvT0vcIAz0Tvwz5OrF1DACjZQwQ5aomd395PAs/tCASvYQAV9e2WhZ2z3uJ6x3c8dz9gLG+gR/IzyjL3Qx8FPAs/YC2eiZ2z3I+8Ze6GAFWyggh10m58anscXzkBvxAssoID+Koo49hgHb7kLHKDHXUfeW+4CCyhgBdderMnu7i13gR00cNnMbZ7HJ3oeX7hsa/Kxe8tdYAXdpo4KdtBtxdFt3dFta1C95c7MR8d/5y8U0OP6vnkeX2jgAFfc4fvmv91+cnkbXWADFbTE80U13/TzRbUTBfQXv3wvvIv2QgU7aOAAZ+L5UtuJBVwbOXzM/Ef4wg4auHZ++MHyH+ETPU0vLKDvhf+18/W1ExuoYAcNHOBM9N7aC1fcw08NT97hg+rJe2EHDfS9OP/aTPTkvbCAAlawgWsvDj9Y3jxzoYEDnIHeURdYQAEr2EDfixMHOBM9eS/0veiOAlawgb4X4thBAwc4E8/XUE8soIB+LMyxgwYOcCZ6ml7o01hOklSTWpIm9SSfaHIaSTPIf3tPKkmS5Fs+HH0bp+NM9MvqC8v1ong/v5x1YQUbqGAHDRzgTDzfDj8RW8fWsXVsHVvH1rF1bJ670wfOf2IvrGAD/bGGD5RfQF9o4ABnol9AX1hAAd3mp45n9IUKdtBt1XGAM9Ez+sKSB+vM6BMr2EAFO2gg58PM86Ge77o1xwo20PdCHX0vuqOBA5yJntFrRr17O1yggBVcTViru797O9zwJPR2uEADBzgTV0YHFlDACjYQm7fJebU6++QuHOBMrAdYQAEr2EC3DcdlK77H3it34QBnorfLXVhAASvYQAWxedfcmvvuZ9vchTPRG+cuLKCAFWyggm7zk8AfrF04wJnoz9YuLKCAFXSbn7RdwQ4aOMCZaAdYQH/+7VSTWpIm9SQLGv5s0Ed21YDhP/DeEheo12dFurfEBRo4wJno3xO6sIACVnCNgPhJPP1Bph+FOcAZ6O1ygQUUsIK+F81RwQ4a6DZ1nInlAAsoYAUb6Lbu6DZzNHCAM9FrwIUFlDgW3i4X2EAFO2jgAGei14AL6/W9rX59IexEBT3udDRwxa1nhJno2X7h2gu/EfLGuMAKeruvHwDP9gs7aOAA3eaj49l+YQEFrGADFeygx1317fpamJ9GnqvV99hz9UID15athxHd29ou9Fz1mRRvawsUcG1Z83FY2RqoYAcNHOBM9Dxuvr2jgAJWsIEK9tzj4XF9qOcBFlBAj+un/Wyggh206wN2/fxw2IUz8Pxw2IUFFLCCDfTR6Y4DnImexxf6XpijgBVs4MqACzto4ABnon/Q78ICCuij45vuGXuhgb4X03EmesZeuPZi9Qd3b3YLXHuxJjG7N7sFKrhsaz6ze7Nb4ABnoufxhQUU0G3VsYEKdtDAAa4x85TW88u3vm9+/b6eGXbvcAtUsIMGDnAm+vW7F1LvcAsUsIJu85E8P915YgcNHOBMPD/deWIBBVxx/VfbO9yGT6R6h1vgAGeiZ/eFBRTQj4XvsWf3hQp2cO2F/+R731vgTPTf7gsLKGAFG6ig74Xnm/92O3rfW6DvhTkKWEHfi+GooO/FdDRwgMvmk6Pe/hZYQAEr2EAFl83nM70FLnCAM9F/uy8soI9Zc8wj711v53HrYuAA88h751tgAQXMI99rAxXsYB75XgeYR763AyyggBVsYB75s9dsnljAtb1+9+hfUwvs/AcGDnAmeteVX12dbVcXDnAGeudVYAEFrGADFeyggQPEVrAVbAVbwVawFWwFW8FWsInHNUcBa6IfeR8ob5cK9LjD0cABzsR2gAUUsIINVDCPmzdGXagHWECPOx0ruOLW8z9Ycf0i0j8UFmjgAGfiOvsCCyhgBRuIrWPr2Dq2js2wGTbDZtgMm2EzbIbNsBm2gW1gG9i8DdKvq70xaq6X3ro3Rl2n0eRMnZyp3vfoNcobowIbqGAHDXTbiTPQG6Om/wh7Y1SggL693dEjmONMPDOrOpY4NbzZKbCCDfS4w7GDBmYGeLPThXKA2ASbYBNsoon+bSG/JfBOpEADl7id/+1M9NS7cIn97sA7kQKX2C/zvRMpUMFl86t470QKHOBM1AMsoIBu80PoCXmhgh00cIAcwjP1fCPP1PPxPVPvRA5W52B1DtaZeifORONgWQEFrGCLZBhn6p3YQQMHOBPP1DuxgAJqFDHvLgq0PDVGprR3F104D7CAAlawgQp20EBsM23zOMACCljBBirYQQMHiK1gK9gKtoKtYCvYPE393JmSoz4lf1inVLCBCnbQwAFmcfROpMACYqvYKraKrWKr2Cq2iq1ha9gatoatYWtZir0TKdDAAc5Ez/kLfSRPFNCPhSvOH+ETFfRjsWr1PH9YzVFA314/Qj2L4+wKdtDAzO5Jds/zh/XEzO5Jdk+yexo2w2bYDNuZ3Q+04zxpp+NMPE/aE704+n/rJ+2FFfTiWBwV9OIojgYOMEqxeStNYAEFrGADFYxSbN5KEzjAmegn+IUFjENoR43rBztqlGI7qoEDnIntAAsoYBwsO/LK0Y68crSjdTBKsXkrTeBM1AMsoIAVbKAm+r1IP7GCDVSwgwYOcCb6fN+FBcRm2AybYTNshs2wGbaBzWcEuh83nxG4sIINVLCDBg5wJvos4IXYJraJbWKb2Ca2iW1im2nzBpvAAgpYwQYq2EEDB4itYCvYCraCrWAr2Aq2gq1gK9gEm2ATbIJNsAk2wSbYBJtgq9gqtoqtYqvYKraKrWKr2Cq2hq1ha9gatoatYWvYGraGrWFTbIpNsSk2xabYFJtiU2yKrWPr2Dq2jq1j69g6to6tY+vYDJthM2yGzbAZNsNm2AybYRvYqCWFWlKoJYVaUqglhVpSqCWFWlKoJYVaUqglhVpSqCWFWlKoJYVaUqglhVpSqCVCLRFqiVBLhFoi1BKhlgi1RKglQi0RaolQS4RaItQSoZYItUSoJUItEWqJUEuEWiLUEqGWCLVEqCVCLRFqiVBLhFoi1BKhlgi1RKglQi0RaolQS4RaItQSoZYItUSoJUItEWqJUEuEWiLUEqGWCLVEqCVCLRFqiVBLhFoi1BKhlgi1RKglQi0RaolQS4RaItQSoZbIWUuao9vUsYEKdtDAAc7Es5acWEABsZ21ZDgq2EG3dccBzkSvJasLzLzTKFDAZVufUzDvNApUsIMGDnAmei25sIACYpvYJraJbWKb2Gba/HNcgQUUsIINVLCDBg4QW8FWsBVsBVvBVrAVbAVbwVawCTbBJtgEm2ATbIJNsAk2wVaxVWwVW8VWsVVsFVvFVrFVbA1bw9awNWwNW8PWsDVsDVvDptgUm2JTbIpNsSk2xabYFFvH1rF1bB1bx9axdWwdm2Ue17M+TMcGKthBAwc4E89rjRMLKCC2gW1gG9gGtoFtYJvYJraJbWKb2Ca2iW1im9hm2s7epAsLKGAFG6hgBw0cILaCrWAr2Aq2gq1gK9gKtoKtYBNsgk2wCTbBJtgEm2ATbIKtYqvYKraKrWKr2Cq2iq1iq9gatoatYWvYGraGrWFr2Bq2hk2xKTbFptgUm2JTbIpNsSm2jq1j69g6to6tY+vYzvrQHAc4E8+qcWIBBaygVyNzVLCDblPHAc7E81LicGyggh00cIAezPftvJQ4sYBr09c7GHY2Og3fdC8VFyrYQQMHOAO90SmwgAJW0G3mqGAHDRzgTPRScWEBBcwfCeVSQrmU8PansfqtzdufAgc4E71UXFhAASvYQAWxCTbBJtgqtoqtYqvYKraKzWeQz930GeQLO7gmJf2U8/acwJnoz4cuLKCAFWyggh3ENrD5k6D1WpX5R6Wmp4j32cQ/9c1ZF+neZzP9/PU+m0ABK9hABTu4Nme9bGXeZxM4E33O3FPE+2zmegvJvM9mrtd+zPtspp/K3mdzbrr32QTmDnkbzewe16fELxSwgg1UsIMGDnAm+pR49033KXG/EfPmmsAKNtBtvm8+UX6hgQOciT5RfmEBBfRgPlA+4+33ZP51qOk3V/51qNl9oHya+8IGKjgS/YmN3795I06gR/Bj7M9mvCL6F56m+ZD485YLK+iH0MfhzJYTO2gZ98yW85/OxDNbTiyg5B6f33g6sYEKsm/nN518h86POp2Ye3w2+Kz2UzsbfFYXqJ0NPhcaOMCZ6Cf4aty0s5Wnedzz8c+JCnbQQI87HWfi+fjnxAIKWMEGLtvq9zT/+lKggQOciX6uX1hAAZditYma9xAFdtDAAc5EP8EvLKCAFcTWsHkGrO5S808uBQ5wJvqToAsLKDnqysFSDpZysDwvVieqnc1Aq6HOzmagCztooG+Onxr+zPJEf2Z5YQEFrGADFXSbn6meQxcOcCZ6Dl1YQAFb7psnjvr564lz4cwd8sS5sIAC+qb7mHkbwoUK+qb76eltCBcOIqTt7Au6sIACVrCBCnbQwLSdjUMn+sXIehfNvKtnzPOfej9id6xgAxXsoIEDnIl+MXJhAbH5xch6Z8zG2bN3ooIdNHCAM9HvWy4soIDYGraGze9b1qtx5o1DgQOciWcn34kFFLCCDVQQm2I7O0aHo/+307GDBg5wJvpdx4UFFLCCDVyn0Vpxx84OoPUanZ0dQBfORM+3C9dJe/gZ5fl2YQUbqGAHDRzgTPSEvBDbxDaxTWwT28TmCXn4ae8J6Xg2A623+uxs+1mfsbOz7edCBT2YORo4wJnoqXdhAQWsYAMVROG/Let9QzsbZtZKM3Y2zFwoYAUbuOKuFwftbI1Z38+zszXmRP8VubCAAq64a8EMO1tjLlSwgwYOcCZ6f+p6ydDONpoLBaxgAxXsoIGu8APrv0MXFlDACjZQwQ4aOEBsA5vnRfEzyvPiwgo2UMEOWo764GANDtbkYPkJXvz09N+W9S3D4Z/YCSyggL4507GBCnbQwAHORD/XL3TbcBSwgg1UsIMGzmvfxtkitDrrx9kMdGHLHfKrwQs7aKB3hBXHmXh2u53oHVbiKGDNCBVbxVaxVWx+YXghh6VxWBqHpXFYGrYzY+2///uffvvr3//1T//xl7//7V/+4x9//vNv//xf+Q/+/bd//h//9du//ekff/7bf/z2z3/7z7/+9Z9++3/+9Nf/9P/o3//tT3/zP//jT/94/NvHgP35b//78ecj4P/5y1//vOi//4m/fbz+q+XxAFWvv/7gMTNEOX4MUl4HaS1CPGbSMoDJD39fXv/9um4I/e8/5q3ZACv396KufsprLx7ztC/3or0Osq6gzgiFv9/q3b9e/ROP5148rmPZAtEfQvRNiDwUj+l5AoxyN4AvLeYBHjfwGeAxNj8EGJuBbD0ilMfU18sQc3cwJcfhcVP9MsRuKP127RqI0V4OZdmckyLrZsljPE6OpxOizR9jyKfHY7sjM3bk8eSkvt6RTQz1ZYM8xvqod8boP6Wn7o7quhq8jqrKyxCbM8s/d+QRHhf17EeftyP4K8NnhF5eR7i7G/Z6N3aDaUfUifVp6VchZFNrpI0oFKKtvAxRPh0K2ZyZcsw8u8tBzW0/1dy62Yg1d3RuxLTXG7ErmCIxEg/krHg88r2/I2U15l47ouXljmxOLBlxSOvxMsA+w2bPk+Kp9v98RMfnRW8X4/EYMGI8nvK9/gGpx7Z+S6bI02g8fuR/jLE5O31Z4fNH5NCnCO3+idE0Twx9yrKfT4y6OT2nL3x9xZic4Y/H5D/G2GyH8JMspsToXzgmmSXtuXL+7phszs9iWTDKY2KCGPXH82slwssYXbk8WW/7PUX58USv4xvOjvnp2bHfl5mXKWW9VfFyX9ru970YFfDpslWq/RhDPj0/tmfpzRK4jXEzW5p+ni2tfzwauyO7mnniyK4+jddHdldLi+XVX7GnI9t+uu6aux/pGrcU0p5+Y+v88XpeN7W0+YpI123N0xn2c4ztdqiWvFiYm+3YnKXrO2l5Vf+Ucz/H+MqR6S+PjLaPrzp0dw1nvsLytSGPxx6vN2R3nyNSckh+KKk/xdgMyeP0zMNbnq7jvjQg965edH549bL9eZlHpIscw17+vPRdMfVvFZ0xHjPUr2NsTtO1XG9cRcl8PsHK/Rj+us8ZY02QvIzRPv+R6/rpj9zu7Fqrn8eelFbfO8tr3sKuz1O9jNHH7to2L2DW0kHvxbC8i13LjbwXwz/AdsZ4PKV6PR672vF4/sWV1HO+/RzF5NNju88Wi3kBeUwMv5dx/rbrFWOTcbYbj1kz5R78dCHVv7AdeWP/uFcZr7dje0GXNz/r2vTpIvnHe0kb29mzmrNnz/ejX4jRfMmcs6KPp8z/Ocb4hhuoUf7IM+wxYZUzonWUt86wWvPHurZ2vIwx2h97hj1+n/MXrm+yZewuTXXEkZX+w63xjxf7Y3OWPp5WS05hDX0rxvSldc/LbOubGPPzM2weH/8+bWupcmQfv7rHy1o6N7W0lJFbUh4XIu3F+THrp7cd+/rDz8Ljad3LvJ+b8ZBOPR7PDyF+irE905mpfUwCHe9lbed60ERexpjj48cI5V41ntJfbkU5tg9lej5ZWvNgDOn4QhDvSour22MTRHZpq1FOH0+Un55q/HRHWY7dbXr+6M+n37g1UXc752YtSjX94Vr9p9nK4+OL0+2oinAj18ru0Njnhawc49Od2f429Hx6KDbby5pcyv40ywE5nm48fn60sHvixO9tO15PqJfdA6fHbW0+WxB7nk76+cFX3RXlo/Ao83j6yf15NmhXEOshljem+roglu0TG515+1HW+kIvqnvZPTiqByXxx5P15y3Z3e33Y+ZkzjxePw4s4xvOkvnxWbJ9AnX3LNk9g7p/luxL2hR+e6duStruWdRj0jav755/s6T+VI/k49n+/Xa0nJmW52vm323Htri2Mpjz2/xkiW1nQvK+/TErvHl8/Q3nq3x+vtbvOF/rt5yv+0d9mo/6en/58LZtbzKz2WX04+UTobJ7MPW40+b+7jhe/2Ztg1TmyX+40PtdkP55a8Bucvlmb8AuxM3mgNt7sukOuDuk7ejvHpfD+L3aXJDsHk3dbcQprX7+VHq/O5Zzw4+piN3ubH4nhkic8A/U1+VsHyRvKIbsfsObfX7C755Q3TzhdyFunvC392TXDrMb0nrkcan13ePS8ynIGGXTaqW7q1ZtPBd6bpUaXzhXW8kbrEfmbeqqfkO3lH7eLqXf0C+lf2xJfIxjyyHt8/WQ9uPzId3NSdztQPu47+r+nrw9pE9nqZX3fmUefzNvaOTYHZe+uxy611vYv6Gg9s8Lav+8oPZvKKj7Ef30AlMLLYqPivn6AtM21bR3y3mVYZuSbLs2Lmarjuef258r8n48jPEYb47pvabNspsjlnZ0Zrza6xjj8zPd5sdn+i7EzTP99p5szvTtiNY5GNH+XgwV2mPqy87LsntGpf426HWn3OebMfJ52zbG/gy71Rdcxud3UuPzO6ndE6qbXS1l94TqXlPudivuNRuV3fOpez3OZfd4qpd8s6Q/X1LWMd4Nom8GaXlfuRZP2wT5uFl6vy85d7HWw31zXyTn6ta6pu8GyUcy/fl+8GtBat53rNUDXwaRYzc5dRx5IbX46eD83Au/C3O7oX4fZObDrlrmm0F47v947N/fDHKzsVWOzQl7t7NVdo+qbjaCb7eDBqY5ni7Lfr8dd4P0490g+UPzwP5ekMdFZl6oPth2YXaHWLOwzecLiS+ebIOT7TmPvxakT4K8TsAv/Ia/vB+S7ZtS2cJo9vpXa3/NfO99lN2jqru3h/sgLfeltfn6RlW2T6ss2xEek/+v92b7sOrelbfs3jS6d221DXH3va27e2KbPdmOaD54FxvtrRiV8+PxI2Hvxjg+jlG5IHnO/a/FyMu8R7jXMXbPqG7eRfwixq27iP2+tJZT9q2Pz2O8eY5VmTzEGK+Pbd1NP3YagEw27xhuN8RoH7T+unzsni7dPrj2Bx9cK+zLJnHbbgLyyEfl5TGP+O6g5jViHZuzbPeE6t6DYdk9nyr+aaWrecBe39Fst6Mxmfr8KtnP27H9ndN8xNV0014q29en7s0wyTc8nJLPH07J5w+n5BseTu1H9N4M0z7GvRkm2T2aupv6+7Pj3lvju8c5N4/sLsTdI3t7T17XDh0fXiPvU5bXyJpZf/P6Vi2fbenu+nb/ROjek3rp8vmT+u3uPD85kE13uvzi9ambu6N/9O7IiBKiz+89/n537I880x4PxvJNLtPNnVSfux+p/IGR53eVfxoOOz6ew9huRUZ4/qn8/Vbsfm2Fn0p5mhvu90OUY/R8aeAYo70X5DELw9Opp/anrwRZfWR5MXU8ze5+ZVDzPfTHT95mUO0PDfEYSJkMqr7clV8EuXlk7DuOjH3DkSn79xZzwlyavvcb8cOse23vBsmZ0LVE/JtBLC9D+u7lo32QnqfJ43Hs5lJ32Df8RozxB/9GrDWEc3f6Znd2z6qK+nqY1/7MNl+dbL8IcqvVXXbPq/rMdqy1MsVmd+r20uhWq7s/J3h9a3ardVi2rxDcu0PcPq662TrssxW7YnKvdfgXYZTT5HF7Nl6HKdtr35w1sz7Hy2Ncj88nVevx+aRqPT6eVN2GuHdLcn9PbLMnn0+qbmPcnFT9VYzj4xj35szqMW/e9Op7Y3pzcvcXMW5N7tbda1U35/9+EePWJMB+X1pW5vr8BP9326F/9HbcmmS+H+PNnLs5yVx371PdnWT+xcl+7wS5nTDvHph7E8R19w7T3QniX2zIrQniKh///Ffpn08Qb7fj5gTxLy7ujCvex1P3Fxd3dfcm1d0rxG2Qm/ff20s7a/mtXGuvT9Qqn1877L57dvPaYRfi5rXD7T3ZTFTvL5bzd67M+fr39jueL22vlvvTZzKev1j2u6vl7WfgclAfWN4LUo4jr0/b9rp9O3dfmWnu71/8j87F/9OvzFcv/nOP1o3Apl9m7h9p6P/fI42vjUvL5m5pT5eIvw/yDVVx/zm4PFMeI/tW6kjhZdmy+cVrH7+iWvX4hh+aNj8f0u2hzfnqx1Gu757yRZg8K/Xt+11p3O9KfztzJC9qVshN5ozdwy/JeXym8euXZhSFT9Ucdb45LdmeZhL6q2nJuvvi3925zW2Q75iHvz0i8g0j0us3jMguyM0R2TdFPu3McTz3M36tt/Ko/SnMplm0bB9x3G7R3IV5XBNkg/M8Xs7Gb0MwP9pnL++FMLZivgrxi07tg9UNjrcbz+fTx1Rft3v/4q3Z/CLrqM9TeD/NsNbd21U3+0Wqff6qarWPX1Xdhrh5GX57TzbTCdsRvdcvso9xr1+kbr//d3M2YR/j3mzC/gy71XNSd29G3Tw7diHunh239+T1dMT4tBNgn/YtL2RGq5u0337+7+bd9/z8deo6P36dehvi5oG9vSebtN+O6M277/kNs6r77bj1yKzuLpZv3srsvv5399Z7ux33bmXqL97fu3N3uI9x7+6wHR/3qbbjG/pUt9txb0h/8aGNHI7Rn94P+/3XOjZn+r0Xsvcr4Ny6cmnH5+9St+Pjd6m3Ie6VsPt7Yu8N6M1G1+Pj65ZWPn+T+hcx7k1jfvzLtPsS3Bdex9wub3TzRcrtmnL33qPcrg9y883D2zE2Lx7uY9x777DWb7mn3Y3qzbcO91ty9xzZjsnNtw73Kx19vjd3z9X9vtw7V7fr0Nw8V2/H2Jyr+xj3ztVdjPvn6n5U777c+vHtT6ufvpa6XQqrZL48LmWeO+5/GtK6/TQ1H5Or7dVj1H0Iv1T7/2mi+DHE7h2qm1OFu8E48tT46RNOPw3Gd3zjr33HN/7q8emQ7r7O2fPDBf2H/vZ2P0JeifWnRwS/i7B9SJ97UfTp0+m/W91sez9KF7VKfRmjte2N4L1VE3aPg++dor9YMo6nQF3r65WWmsrHGbsNcS9jdwst3RyOTcbKyMmbB77svZgfn+Pz43N8fMM5Pr7hHN++9XTzHN8u4Sf5Dpc8+GlD7H4MpVtB9XWM/eJoTy1TVp6/lvBzpvT2caZsQ9zLlN3HI76hcPw4HOX1N733q/g1emGV+7jfreJ3O8b4PMbzW09fWU2w9pzweDzF4Df255UAd09K62BNn/H8FPx3QbaLpeR1voynSbWvBRllZpDnzwx9MQhbIvoNQZ7WoPnK8ojalRXObL53cBplpKmNd4/wyALwvBbO+4tOtrdGpE2+/TLH5tDcXYRzbNJm1O0U8J1PuLWx/5o2PeRPS9H8fkN2zSNqEcT0eY2Qn+Zvd+uMVJ7+1B/ezfnpx2r3DOrxBDvr+/E8gftzjLHvuBCaJZ5fBBtfGVZl3benlprfD+s2yHzq7399kuwXBL29Muk2ih5E0c2Ci21u1/jhHcrnQzx+/PXcLiv69JJtq69/O7eLR9b8xJ7W+e6ijfkq2QP1vRgzlzvTae3NI2NZBIqN43gzynj6PPjQ12Ni8ukV/DbCrSv4/ZJp86nXadZXDTm6XYtKcp2SKS+vE38RIs/TKf3V/dB+CTljT4aNNzN3zHyo9eDNbaruvvB37+J7H+LWxbceH3flfWE4dusj/yKKEUXbu1F0EsVe3xfpbj2qm4dmG+Leodm9N/Uth+Z5OMZ8+9B0osw36+E8+KmaRV7X9+1ScvcK4j7ErYq43xc+w1Jmb5sR2X2c794EzzbE47fqoDnHSnsvCLdXDxZ9M0guu7B+796qz9N4wjV39Xm7JtZ3LfElea0o9akR4/dLfN0NUuTNINqyQUZ7eS/IYxeyqB3P90c/Bdk9kpHCamNSX68BrdvnmDcfIuh2jZ+7DxF2e0MPtxxttzefPqX6jg8pbVehpx79dOn8hRi8RaX2w0rlPx2Wdnz8y9k+frSj7eNP/uwHI2etdNS5GYy2+6HJeZ7eRt0E2fX55exKL8erG+f9Zmhenz0eqhxv7ovmgrSP2St9O8jTR2Xm20HyAyr9h6nen871Xc/PyKzVuYvx8ZVI//hCZPvps5sPV/afT7v3cEV/sVDwrYcrtv12c84htOevSv28aqrq53dV+vld1efvOm0HQ/mQ9fP07u8GY7so9r3B2Ia4Nxifv+a0HYze+AxcL5vB0M8HQz8fjI+fkm+PyMyfpvb8ZaAvrdk+8xHTI8br1dLVvuEzkj6T/enVz65/vBfestLNZnzHNal9wzXpfvn4koe3SHtexfqnn/zd601PX7F5muQ2+8Jm9Hztu/y4aOwXVrG/+6uwDTKphGtlDUa1lS8E6Uek3Xy+aPhqkGx77M/tl78Lsu3ifHphsz/3X9pXtiR/Kmef7+6O1bgunPbUiPC1IIOBHc+fB/j5gcrof3CQH968eP7awU8Duw8i2dkq8jwmXwpS85uU8vwBqN8f4m9Y2m/X6H93smx8eo2635ObF6m/GI6bV6nzG65S90uU33sdTufnX03X+fFX07ch7r1Lcn9PNqfpftH3W6/D9ePzj53tV32/+TGafZCbH6PZBrn7Rtx+S25+jOZXi9jf/BjNL8Lc/RLlr8Lc/KbNfmRuftNmH+TmN22KfPwBlm323HxrcR/j3luLvXz88bRevuHjadvtuDmk+0N775s2vzhX737T5hdh7n7T5ldhbn7TZn858DSBV9+9osgvczwVpd+H2F655jKKj6dE+vJ6scvH8wH7ELfmA7rYHxri3pTCLwY022YeY9teDuiutereXXjfnqQ378J7/YbnKdsvL8y8DbDnT8n+/MXj7bK2ls9kHo/hy1sxZsn+zPn8ad2fY/TdE6p7J/p+M7LhbcpmQYltDOGWVebc7Mr8Q3elUjqeX2773Wa08oduRssVB6Yeu834uE1lH+Je+Wkft6nsvpkw+1P12SwTsPssx71b3W2EW3e6289p3LzR3ca4eZ/btXzDfW45Pr7P7Vo/vs/t+vH3fLYh7t3n3t+TzX3udkRv3ufq+Pw+d/dls9v3udsgd+9z9x+Mu3mfu92Su/e5pX7Lfe4+zO373F+EuXufux2Zu/e52yB373NL+fimbJc9d+9ztzFu3udun1jdu8/dfoLy7n2ufcOQyjfc5+7P1dv3ufswt+9zfxHm5n3u9lrg1m3u/mrizl3u7vuCN++nxnfcT41vuJ+y7cpJ+QJQfR7Rnx/gb5sASnYgtfq8SsBXYrTsh24/vF/+U4yxe9/NJNdxHMfrZoTx8ccHxscfHxjf8PGB8Q0fH+jzG65Wt092+qDjdxwvD8ouhnB5Vo8i78UYeZlYD3m9HX27M3fTdvdd7tvNCLu51LvrjBX5lrl/2TdEseKxPZeQH2PYNyxCZd+wCJV9vgiVfb4IlX3DIlT2DYtQ2TcsQmXfsAiVfcMiVPYNi1DZNyxCZd+wCJV9wyJU9g2LUNk3LEJl37AIlX3DIlT2DYtQ2TcsQmXfsQiVfcMiVPYNi1DZNyxCZd+xCJV9wyJU9vkiVPYdi1DZ54tQ/ery4dYiVPYdi1DZ54tQlfJ53499wyJU9vkiVPb5IlT2DYtQ7Uf03nyofcMiVEW+o+9HvqPvR76j70e+o+9HvqfvR76nYUe+o2FHvqNhp3zesFO+oWGnfN6wY58vQmXfsQiVtW/ogfqOhh35noYd+Z6GHfmWhp3tNNGticz9RNOdiczta263tmH/otytlqH9K9TUeB3Pc25feQ+78zJ3n/XNIGPkt8yeVzf64svcuRDWA1/vjm47ZW6+Eb4Ncm+xpn2IW4s1/SLErcWatsfF8kpi/Za/eXB/CNLeDSIEqa+Pi9nHPSr7ELeaQ8zqHxri5qX7fkB5IcOeXqb84lHJq1Wx+W4Fed6St4OMvO1+4NtBWPtlG+T4uLT/4mssd2r7Lz4MlTGm9De/LZXTIVPs5dvL8ulQ7L/UdeuXdvsFtXyjS+35zu4rX1Djs2U69Hgvxsxnlw9880tuw9iOd78oN/KoPsK9+0W5pxvM9vZ4DGK8Pi7br/Qpb8fr0yTI+zHe+9Jf47lSe36u9KUYfLSo2eYc28fg9mXY6xi2fYdq5sXLOI7XLx7a3N2/9GzSbY/nei+v03+1JZZbsnkFcuwe6GjPCyntT9NL9f52DNYYGUe3zXbsp6hiWB8/mroJsnubOj/z8XzHL/qFU2TmHVTbffxs7JZGvXuKjMM+P0V+tSU3T5H56Smy3Y7bp0gp33CK7B4ufX6K6JHNHPrjJ6B+OkW2K0hJLpii8vxTNX6KsbsMMsmv2tjzNxTHF/Yle8q1HLLZF/uGfRl/7L7wOPeB7/3aPaZB8yM/tfX3YgjbIfYNMcbx5r7kNKo+r5b0te3gm1b1eHtMJ2Oqb8ZoxOib7x5vF2LIryiI6PP19k9vpMjHS/vsQ9y6vx2fL2WzDXHvFnk7npUvDFZ7vSjF2D1WuvWpsu1WNG6x2xybrdDPK9julambFWy/zIfwFEb05b7sYyhLJPbX49H6/uORt9Yb2Qa5N8u3D3Frlu8XIe7M8m3Xs7l1l75fEefOXXr9eE6+fjwnv18p7vkzNMfzGn5fWm/uqP0pymb1vLpd/PLusnXbMDfP0W2Ie+foPsSdc3S/AufN9fe2MT5f5fH+OfKrVStvniPyPeeIfH6OyOfniHx8juyeu46DL3LLczPsT1cNffsGVx4Ysaf1Ce5vBe1fZT6vUSJfCDFzGw4pb4UYeTv641d8fzcWu46pmy3XY/dtv7st17sH2cLzI+ljszPb3j4jcbvpq+nsXwXJp4MPnq9av8fuCZKMmde2pbw+Q8b2bSmp+Tb++iTe0+l+HHcHtln2K7XndZu+cKI1yxUKHiE2x8a+obd/2Df09v/yANvTAdaXB3j80WcJnwWW/nxj+vPAjruvB+4mlPZB8rG6lL4LIt8wT7dbiOrmPN1uO27P023Xobo7T7ddiOrWPN2+CBR+rR78vDTAT0Vg7JaiypP1aQGpVm9X53urg43di4Ejx3PM111XY/fCVC30kBd9nk0et/ek8CJMeb4p/OmY7EM0cqW9F4J+Gnn6Hvjvzoy5vd9nNul4M0T20/enU/wrO/L82cinj7Z+JUTPq/4fe4u+EMIKF3SbsZjHHx2kdH7l+nPDxZeCWM4nFZvyZpB5sOqMvHdkpLPohb2XKzXn+B5nSnlvK2gbe569/UKINui0fF6gpczb19qsqP64nBvvbEQpnbUAx1vZVmrm6wPf2woVLsOavRei0wE/5ns7wslZ5b0dqay6U/WtHbFsBLLW3wkwG98yem8njpxu/WF5yN9l+u6p0+dn9zz4ytV7A5Gn9jT9cCQ3AbYXB48QfC77mC9nfuauOWx9aDuDzM03FHazHB/PLzyuMLgaf3qs8dPl1ty9CiXP73S/vmArn0+lbYOsWbCDWbD6ZpipeZ0xn9+6+VoQyScTD2zvBsmHifP5geTXgvDi/2OU+5vn6shSPofWzbl6N8jT5+6/GCQ/QvDA/l6Q+xOdvxjae5PIv9iWuzPAvwpzcwp4bld5vz0y2zD3poD3IW5NAf8ixIdTwPee+W6vX7IZsDzPuvz8lfrtZT4LQ/Y63wox8hFnef7V/kqIaSzjdpR3QjzmfSpzyPWtrWAhuLWG4nshJguplrd25HFJzVvM872tYIns0p7XhP9CiPb0xu7zpNFPIeZuSalvuFupeSn0uJJ4bzDakXvy3Jzx7ni+F6IK873y/A7lrPdD5NeT6vMnXN8N8fTk+ksh8lqqytMV7ldC1Jx2etDxVoiWtbf+cIn8la3oT4vRy+ch3juovMJZn2+EvzQWvEjW6nsHlfXj6/P68V8KUfjCh755UPMjsg98ayvWErZMOLW3QjytpDuer/J/CjF360g9HnKxBNTTQudlfOFXVfhV1ff2JFuWy/Oi3l8K0XlK/V6SlDH5NNhR3twR3lE+5OMQ5d2tMEK8le2P33PGotnHW/HzQf2fj//7p3/9yz/+5a9//9c//cdf/v63f3/8zf9ewf7xlz/9r7/++fq//+c///avT//2P/7ff4t/87/+8Ze//vUv//df/u0ff//XP//v//zHn1ek9e9+O67/+R+21tI1Vf2f//RbWf9/7ZM9rpQf/7/6v9f173tf/379hd7b+Kfeta5/4H9jLa/3+J/5P/97bfL/Bw=="
|
|
2614
|
+
"debug_symbols": "tb3Rruw4cmD7L/XsBzHIYJD+lcHA6PH0DBpodBtt+wIXhv/9JkOKWHlO3eTRztz10md1VZ1YEqWIlKiQ+F+//e8//6///L//8pe//Z+///tv//w//uu3//WPv/z1r3/5v//y17//65/+4y9//9vjn/7Xb8f6H6u//XP9p9+s/fbP+vhDzz/6+Yedf4zzj+l/jOP8o5x/yPlHPf84o4wzyjijjDPKOKOMM8o8o8wzyjyjzDPKPKPMM8o8o8wzyjyjzDNKOY7rz3L9Kdef9fqzXX/q9We//rTrz3H9ecUrV7xyxStXvHLFK1e8csUrV7xyxStXvHLFkyueXPHkiidXPLniyRVPrnhyxZMrnlzx6hWvXvHqFa9e8eoVr17x6iOerT/t+nNcf87zz/aIV44FJUACHiFLXfCIWfw/1oAeYAEjYF6gK/JYUAIkoAa0AA3oARYwAuYFPSL3iNxX5LmgBrSAFXmNRO8BFvCILA7zAjsCSoAE1IAWoAE9wAIiskXkEZFX2sgan5U4J9SAFqABPcACRsC8YCXSCRF5RuQZkWdEnhF5RuQZkWdEnldkOY6AEiABNaAFaEAPWJHnghEwL1hZdkIJkIAa0AI0oAdE5BKRS0SWiCwRWSKyRGSJyBKRJSJLRJaILBG5RuQakWtErhG5RuQakWtErhG5RuQakVtEbhG5ReQWkVtEbhG5ReQWkVtEbhFZI7JGZI3IGpE1ImtE1oisEVkjskbkHpF7RO4RuUfkHpF7RO4ReeVglQUjYF6wcvCEEiABNaAFaEAPiMgWkS0irxysuqAESMAjcjsWtAAN6AEWMALmBSsHTygBEhCRZ0SeEXledUOmBYyAq27U4wgoARJQA1qABvQACxgBa5sfVb2uHDyhBEhADWgBGtADLGAERGSJyBKRJSKvHGxtQQvQgB5gASNgXrBy8IQSIAERuUbkGpFXDjZbYAEjYP2slgesHDyhBEhADWgBGtADLGAERGSNyBqRNSJrRNaIrBFZI7JGZI3IGpF7RO4RuUfkHpF7RO4RuUfkHpF7RO4R2SKyRWSLyBaRLSJbRLaIbBHZIrJF5BGRR0QeEXlE5BGRR0QeEXlE5BGRR0SeEXlG5BmRZ0SeEXlG5BmRZ0SeEXlekdtxBJQACagBLUADeoAFjICIXCJyicglIpeIXCJyicglIpeIXCJyicgSkSUiS0SWiCwRWSKyRGSJyBKRJSLXiFwjco3INSLXiFwjco3INSLXiBw52CIHW+RgixxsnoN1QQvQgB5gASNgXuA56FACJCAia0TWiKwRWSOyRmSNyD0i94jcI3KPyD0i94jcI3KPyD0i94hsEdkiskVki8gWkS0iW0S2iGwR2SLyiMgjIo+IPCLyiMgjIo+IPCLyiMgjIs+IPCPyjMgzIs+IPCPyjMgzIs+IPK/IehwBJUACakAL0IAeYAEjICKXiFwiconIJSKXiFwiconIJSKXiFwiskRkicgSkSUiS0SWiCwRWSKyRGSJyDUi14hcI3KNyDUi14hcI3KNyDUi14jcInKLyC0iRw5q5KBGDmrkoEYOauSgRg5q5KBGDmrkoEYOauSgRg5q5KBGDmrkoEYOauSgRg5q5KBGDmrkoEYOauSgRg5q5KBGDqrn4FhQAiSgBrQADegBFjAC5gUjIo+IPCLyiMgjIo+IPCLyiMgjIo+IPCPyjMgzIs+IPCPyysF+LOgBFjAC5gl95eAJJUACakAL0IAeYAErcl0wL1g5eEIJkIAa0AI0oAdYQEQuEVkiskRkicgSkSUiS0SWiCwRWSKyROQakWtErhG5RuQakWtErhG5RuQakWtEbhG5ReQWkVtEbhG5ReQWkVtEbhG5RWSNyBqRNSJrRNaIrBFZI7JGZI3IGpF7RO4RuUfkHpF7RO4RuUfkHpF7RO4R2SKyRWSLyBaRLSJbRLaIbBHZIrJF5BGRR0QeEXlE5BGRR0QeEXlE5BGRR0SeEXlG5BmRZ0SeEXlG5BmRZ0SeEXleke04AkqABNSAFqABPcACRkBEjhy0yEGLHLTIQYsctMhBixy0yEGLHLTIQYsctMhBixy0yEGLHLTIQYsctMhBixy0yEGLHLTIQYsctMhBixy0yEGLHLTIQYsctMhBixy0yEGLHLTIQYsctMhBixy0yEGLHLTIQYsctMhBixy0yEGLHLTIQYsctMhBixy0yEGLHLTIQYsctMhBixy0yEGLHLTIQYsctMhBixy0yEGLHLTIQYsctMhBixw0z8G+YATMCzwHHUqABNSAFqABPSAij4g8IrLnYFlQAiSgBrQADegBFjAC5gnjOAJKgATUgBagAT3AAkZARC4RuUTkEpFLRC4RuUTkEpFLRC4RuURkicgSkSUiS0SWiCwRWSKyRGSJyBKRa0SuEblG5BqRa0SuEblG5BqRa0SuEblF5BaRW0RuEblF5BaRW0RuEblF5BaRNSJrRNaIrBFZI7JGZI3IGpE1ImtE7hG5R+QekXtE7hG5R+QekXtE7hG5R2SLyBaRLSJbRLaIbBHZIrJFZIvIFpFHRB4R2XPQFtSAFrAizwU9wAJGwLzAc9ChBEhADWgBEXlG5BmRZ0SeV+R5HAElQAJqQAvQgB5gASMgIpeIXCJyicglIpeIXCJyicglIpeIXCLyykE7FpQACXhEtrKgBWjAeoJXF1jACFgP8dp6bHoElAAJqAEtQAN6gAWMgIjcInKLyC0it4jcInKLyC0it4jcInKLyBqRNSJrRNaIrBFZI7JGZI3IGpE1IveI3CNyj8g9IveI3CNyj8g9IveI3COyRWSLyBaRLSJbRLaIbBHZIrJFZIvIIyKPiDwi8ojIIyKPiDwi8ojIKwetL5gXrBw8YUVe5+HKwRNqQAvQgB5gASNgnvB49n4klSRJqkktSZN6kiWNpHSUdJR0lHSUdJR0lHSUdJR0lHSUdEg6JB2SDkmHpEPSIemQdEg6JB01HTUdNR01HTUdNR01HTUdNR01HS0dLR0tHS0dLR0tHS0dLR0tHS0dmg5Nh6ZD06Hp0HRoOjQdmg5NR09HT0dPR09HT0dPR09HT0dPR0+HpcPSYemwdFg6LB2WDkuHpcPSMdIx0jHSMdIx0jHSMdIx0jHSMdIx0zHTMdMx0zHTMdMx0zHTMdOReV4yz0vmeck8L5nnJfO8ZJ6XzPOSeV4yz0vmeck8L5nnJfO8ZJ6XzPOSeV4yz0vmeck8L5nnJfO8ZJ6XzPOSeV4yz0vmeck8L5nnJfO8ZJ6XzPOSeV4yz0vmeck8L5nnJfO8ZJ6XzPOSeV4yz0vmeck8L5nnJfO8ZJ6XzPOSeV4yz0vmeck8L5nnJfO8ZJ6XzPOSeV4yz0vmeck8L5nnJfO8ZJ6XzPOSeV4yz0vmeck8L5nnJfO8ZJ6XzPOSeV4yz0vmeck8L5nnJfO8ZJ6XzPOSeV4yz0vmeck8L5nnJfO8ZJ6XzPOSeV4yz0vmeck8L5nnJfO8ZJ6XzPOSeV4yz0vmeck8L5nnknkumeeSeS6Z55J5LpnnknkumeeSeS6Z55J5LpnnknkumeeSeS6Z55J5LpnnknkumeeSeS6Z55J5LpnnknkumeeSeS6Z55J5LpnnknkumeeSeS6Z55J5LpnnknkumeeSeS6Z55J5LpnnknkumeeSeS6Z55J5LpnnknkumeeSeS6Z55J5LpnnknkumefeKDTEyZJG0gxaeX5RSZKkmtSSNCkdPR09HT0dlg5Lh6XD0mHpsHRYOiwdlg5Lx0jHyvNRnSSpJrUkTepJljSSZtDK84vSMdMx0zHTMdMx0zHTMdMxw+FNRReVJEmqSS1Jk3qSJY2kdJR0lHSUdJR0lHSUdJR0lHSUdJR0SDokHZIOSYekQ9Ih6ZB0SDokHTUdNR01HTUdNR01HTUdNR01HTUdLR0tHS0dLR0tHS0dLR0tHS0dLR2aDk2HpkPToenQdHien13FljSSlmN14XpD0kUlSZJqUkvSpJ5kSSMpHZYOS4elw9Jh6bB0WDosHZYOS8dIx0jHSMdIx0jHSMdIx0jHSMdIx0zHTMdMx0zHTMdMx0zHTMdMxwyHNy5dVJIkqSa1JE3qSZY0ktJR0lHSUdJR0lHSUdJR0lHSUdJR0iHpkHRIOiQdkg5Jh6RD0iHpkHTUdNR01HTUdNR01HTUdNR01HTUdLR0tHS0dLR0tHS0dLR0tHS0dLR0aDo0HZoOTYemQ9Oh6dB0aDoyz1vmecs8b5nnLfO8ZZ63zPOWed4yz1vmecs8b5nnLfO8ZZ63zPOWed4yz1vmecs8b5nnLfO8ZZ63zPOWed4yz1vmecs8b5nnLfO8ZZ63zPOWed4yz1vmecs8b5nnLfO8ZZ63zPOWed4yzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM88181wzzzXzXDPPNfNcM8975nnPPO+Z5z3zvGee98zznnneM8975nnPPO+Z5z3zvGee98zznnneM8975nnPPO+Z5z3zvGee98zznnneM8975nnPPO+Z5z3zvGee98zznnneM8975nnPPO+Z5z3zvGee98zznnneM8975nnPPO+Z5z3zvGee98zznnneM8975nnPPO+Z5z3z3Ju2ZnGqSS1Jk3qSJY2kGbTy/KKSlI6ejp6Ono6ejp6Ono6eDkuHpcPSYemwdKw8n82pJ1nScnSnGbTy/KKSJEk1qSVpUk+ypHSMdMx0zHTMdMx0zHTMdMx0zHTMdMxweJPXRSVJkmpSS9KknmRJIykdJR0lHSUdJR0lHSUdJR0lHSUdJR2SDkmHpEPSIemQdEg6JB2SDklHTUdNR01HTUdNR01HTUdNR01HTUdLR0tHS0dLR0tHS0dLR0tHS0dLh6ZD06Hp0HRoOjQdmg5Nh6ZD09HT0dPR09HT0dPR09HT0dPR0+F5vl4e9Vaxi0qSJNWklqRJPcmSRlI6RjpGOkY6RjpGOkY6RjpGOkY6RjpmOmY6ZjpmOmY6ZjpmOmY6ZjpmOLyR7KKSJEk1qSVpUk+ypJGUjpKOko6SjpKOko6SjpKOko6SjpIOSYekQ9Ih6ZB0SDokHZIOSYekw/N8OpUkSarrpfXi2EAFO2jgAGfi+U78iQUUEFvD1rA1bA1bw9awKTbFptgUm2JTbIpNsSk2xdaxdWwdW8fWsXVsHVvH1rF1bIbNsBk2w2bYDJthM2yGzbANbAPbwDawDWwD28A2sA1sA9vENrFNbBPbxDaxTWwT28Q20+b9boEFFLCCDVSwgwYOEFvBVrAVbAVbwVawFWwFW8FWsAk2wSbYBJtgE2yCTbAJNsFWsVVsFRu1ZFJLJrVkUksmtWRSSya1ZFJLJrVkUksmtWRSSya1ZFJLJrVkUksmtWRSSya1ZFJLJrVkUksmtWRSSya1ZFJLJrVkUksmtWRSSya1ZFJLJrVkUksmtWRSSya1ZFJLJrVkUksmtWRSSya1ZFJLJrVkUksmtWRSSya1ZFJLJrVkUksmtWRSSya1ZFJLJrVkUksmtWRSSya1ZFJLJrVkUksmtWRSS2bWEjmylsiRtUSOrCVyZC2RI2uJHFlL5MhaIkfWEjmylshxYCvYCraCrWAr2Aq2gq1gK9gKNsEm2ASbYBNsgk2wCTbBJtgqtoqtYqvYKraKrWKr2Cq2iq1ha9gatoatYWvYGraGrWFr2BSbYlNsik2xKTbFptgUm2Lr2Dq2jq1j69g6to6tY+vYOjbDZtgMm2EzbIbNsBk2w2bYBraBbWAb2Aa2gW1gG9gGtoFtYpvYJraJbWKb2Ca2iW1io5YUakmhlpSzljTHCjZQwQ4aOMCZeNaSEwuI7awlh2MDFeyggQOciWctObGAAmITbIJNsAk2wSbYKraKrWKr2Cq2iq1iq9gqtoqtYWvYGraGrWFr2Bq2hq1ha9gUm2JTbIpNsSk2xabYFJti69g6to6tY+vYOrazlnRHAwc4E89acmIBBaxgAxXEZtgM21lL5sKzlpxYQAEr2EAFO2jgALFNbBOb15Li+ea15MIGLpuIYwcNHOAM9PbDwAIKWMEGKthBA92mjjPRa8mFbuuOAlawgQp20MABzkSvJRdiE2yCTbAJNsEm2ASbYKvYKraKrWKr2Cq2iq1iq9gqtoatYWvYGraGrWFr2Bq2hq1hU2yKTbEpNsWm2BSbYlNsiq1j69g6to6tY+vYOraOrWPr2AybYTNshs2wGTbDZtgMm2Eb2Aa2gW1gG9gGtoFtYBvYBraJbWKb2Ca2iW1im9gmtoltpq0eB1hAASu4bP6FOO9zDOyJngzqtLy1LvSz3j8e5117gQJWsIEKdtDAAc5ExabYFJtiU2yKTbEpNsWm2Dq2jq1j69g6to6tY+vYOraOzbAZNsNm2AybYTNshs2wGbaBbWAb2Aa2gW1gG9gGtoFtYJvYJraJzc/6OhwbqGAHDRyg29Yvszf8BRZQwAo2UMEOGjhAbAWb/4L6Rw29+S9w2VpxbKCCHTRwgDPRf0HX9/zEuwADBXRbd2yggm7z7fVf0AsHOBP9F/TCAi6b+r75L+iFDVSwgwYOcCZ6LbmwgNgaNq8l6kPiteTCDvperC+wejPg4zLb0SP4QHl90PM/ULCDBg5wJnp9WB8QEu8ADBSwgg1UsIMGDnAmGjbD5vVB/bB4fbhw2brvsdeHCzto4ABnoteH9dkK8a7AQAEr2EAFO2jgAGfixDaxeX3ofrC8PlzoNnVUsIMGus2HxOuDozcKBhZQwAou23o5XbxbMLCDBg5wJnp9uLCAAlYQW8Hm9WG9BS/eORg4QN+3dU5682BgATvoEdYx9ibAxx2Yo29Od6xgAxXs4Ao2fCM9pS+ciZ7SFxZQwGUbvhee0hcq2EEDBzgTz49tn1hAAbEptvOz2z4k54e3TzTQbdVxJp4f4D7RbT6Snv7DR8fTf/UqifcGBirYQQNHoif69I30RL+wgg1UsCd6Fq5eIfHOvcClmL69nm/TTw3Ptwsr2EAFe6B31z3uZR07aOAAZ6LnxYUFFLCCDcRWsBVsBVvBJtj8F3I9MBdvoxOf7PA+usddtuMAZ6J/+fqojgUUsIINVNDjrgPgnXKPW3ZHj+Bb5t+5vrCBHsGH2r92faGBA5yJ/tXrC93me+xfvr5w2YrvvH/9+kIFV9yyTiPviHvMCjgK6NvbHT2C76Z/5/rCDhrocX0c/JvzJ/pX5y90m4+Of3n+wgpiM2yGzbD5V+gvnHksBkdzcDQHR3NwNAdH079Afx5C/+L8eQj9m/PnwZoczcnR9C/Pn8dicjQnR3NyNCdHc+bR9Ga487h5N1ygxMHyfrjABlocQm91O4+b97oFShxC73Y7B8rb3QIV7KDFwfKWt8A8mt70dh4s73oLFBCbYBNsgk3yaHpLmRQfEk+GCw30zfHR8WQ40ZPhwgIKWMEGKtjBZRPfHE+RC2eifxb+wgIKuGziA+WJc6GCHTRwgDPRE+fCAgqIzbB54vjMn3ecBRroNj81PHFO9MS50G0+6p44F1awgW4bjh7XR9KXbzjR0+nCAq641c9fT6frU/Yrrs8/eLtZYAcNXLbqe+zp5Og9Z4EFdFt3dMVwdMV0XAq/EfN+M2nnXxvgTPR8u7CAAlZw2dr5UX4F3eZiz7cLBzgTPd8uLOCy+Q2T958FNlDBDho4wJnov4UXFhBbxea/hX5P5p1ogR10my9N4L+QF85EXxnCb9q8E+1xheQoYAUbqGAH3WaOA5yJXiouLKCAFWyggh3EptgUW8fWsXVsHZuXCr/B8060wA76WeK76aXiwpnopeLCAgq4bN2Pm5eKCxXsoIEDnIleFLofYy8KFzZQwQ4aOMCZ6KXiwgJim9gmtoltYpvYJraZNu85CyyggBVsoIIdNHCA2Aq2gq1gK9gKtoKtYCvYCraCTbAJNsEm2ASbYBNsgk2wCbaKrWKr2Cq2iq1iq9gqtoqtYmvYGraGrWFr2Bq2hq1ha9gaNsWm2BSbYlNsik2xKTbFptg6to6tY+vYOraOrWPr2Dq2js2wGTbDZtgMm2EzbIbNsBm2gW1go5ZMasmklkxqyaSWTGrJpJZMasmklkxqyaSWTGrJpJZMask8a0l1NHBcWI+zgByOBRSwgg1UsIMGDnAmFmwFW8FWsBVsBVvBVrAVbAWbYBNsgk2wCTbBJtgEm2ATbBVbxVaxVWwVW8VWsVVsFVvF1rA1bA1bw9awNWwNW8PWsDVsik2xKTbFptgUm2JTbIpNsXVsHVvH1rF1bB1bx9axdWwdm2EzbIbNsBk2w2bYDJthM2wD28A2sA1sA9vANrANbAPbwDaxTWwT28Q2sU1sE9vENrHNtBVqSaGWFGpJoZYUakmhlpSzlnRHAwfotrHwrCUnFtBt5ljBBirYQQOXbU1dV280u9BryYXLZr69XksurGADFezgsq3Pw1ZvNAuciV5L1sdCqzeaBQpYQY+rjh7BB8rrw4UF9Ag+UF4fLmygb+907KCBA1y24Tvk9eHCAgq44g4fPs/5NXVdvSHsQs/5C/1ouuLM+RMr2EAFO2ig23xQPedP9Jy/sIACVrCBCnbQQGyGbWAb2Aa2gc1zfviB9ewefmA9uy+ciZ7dFxZQwAo2UMEOYpvYZtrOpSYvLKCAFWyggh00cIDYCraCrWAr2Aq2gq1gK9gKtoJNsAk2wSbYBJtgE2yCTbAJtoqtYqvYKraKrWKr2Cq2iq1ia9gatoatYWvYGraGrWFr2Bo2xabYFJtiU2yKTbEpNsWm2Dq2jq1j69g6to6tY+vYOraOzbAZNsNm2AybYTNshs2wGbaBbWAb2Aa2gW1gG9ioJUItEWqJUEuEWiLUEqGWCLVEzlrSHTto4ABn4Llk5oUFFLCCDXTbdOyggW7zVSPPWuJ41pITCyhgBRuoYAcNxFawncvbFscCCrhs62lfrecytycquGzTd+hc2tb/2rmU7eFYwUeEuh7/VP+oXWAHDRzgTFz1oR7nspwFFLCCDVSwgwYOcCYqNsWmblPHCjbQbX4SaAcNdJsfAJ2J/QAL6DYf6lUfavGRXJWgFh9qX/r2wgHORF8At/jw+RK4xffCF8Etvjm+DG5xmy+Ee6GCHXSbb44viHvhTPRFcS9cNvHtXen/OMMcl2I1Ulfvgavim7PSv4orVvoHDnAmrvQPLKCAbvNtmA3seXp6zl84wDx/vfEtsIACVrCBCnbQwAFiK9hWzj/qgaOAFVw7VM//VsEOGjjAmbhyPrCAAlYQm2ATtzVHAwc4E+sBFtBt6ljBBirYQQMHOBO9PlxYQGwNm9eH9YyqeuNbYAfdNhzdNh1noteH5ofF68OFy9Z8oLw+XNhABTto4ABnoteHCwuIrWPr2Dq2jq1j69g6NsNm2AybYTNshs2wGTbDZtgGtoFtYBvYBraBbWAb2Aa2gW1im9gmtoltYpvYJraJbbpNHGegN8kFFlDiJ1SPCjZQwQ4aOMCZeNaSE30vqmP+SnvjW/V1rL3xLXAmen24sIACVtDHQR1zfL0d7trNyh57zl9YQR/f7qhgBw0cKLC1AyyggBVsoOY2eM5faOAAZ27DmfMnFhAbOa/kvJLzSs4rOa/kvCrnTmckOyPZGckz530bOiPZGUlyXsl5JeeVnFdyXsl5JefVOG5nzp/ISBojaRy3M+dPZCTJeSXnlZxXcl7JeSXnlZxXcl4Hx20wkpORnIzkZCTPnDfHBrrN0+nM+RMNHOCyXSupH2ABBaxgAxXs4LKtB/jVGwADPecd/UrBs9Bb/epaa7Z6q1+ggh3MI9TLAPMIdTnAAgpYwTxC/nG9wA4aOMA8+3o9wAIK6HvRHDtooI+Oj4PXB/Ut8/pwYQEFrGADFeygJZ6zBy4+Zw9OFLCCDVSwgwYOcCZ2bB1bx9axdWwdW8fWsXVsHZthM2yGzbAZNsNm2AybYTNsA9vANrANbMw59oFtYBvYBraBbWKb2Ca2iW1im9gmtoltYptpO9sNLyyggBVsoIIdNHCA2Aq2gq1gK9gKtoKtYCvYCraCTbAJNsEm2ASbYBNsgk2wCbaKrWKr2Cq2iq1iq9gqtoqtYmvYGraGrWFr2Bq2hq1ha9gaNmqJUUuMWmLUEqOWGLXEqCVGLTFqiVFLjFpi1BKjlhi1xKglRi0xaolRS4xaYtQSo5YYtcSoJUYtMWqJUUuMWmLUEqOWGLXEqCVGLTFqiVFLjFpi1BKjlhi1xKglRi0xaolRS4xaYtQSo5YYtcSoJUYtMWqJUUsGtWRQSwa1ZFBLBrVkUEsGtWRQSwa1ZFBLBrVkUEsGtWRQSwa1ZFBLBrVkUEsGtWRQSwa1ZFBLBrVkUEsGtWRQSwa1ZFBLBrVkUEsGtWRQSwa1ZFBLBrVkUEsGtWRQSwa1ZFBLBrVkUEsGtWRQSwa1ZFBLBrVkUEsGtWRQSwa1ZFBLBrVkUEu87bKunsjqbZeBHTRwgDPR71AuLKCAFcTWsXVsHVvH1rEZNsNm2AzbWUuKo9uGYwcNHOBM9DuUCwu4bN4C4M2YgQ1ctu5iv0O50EC3TceZ6HcoFxbQj5s4VrCBCnbQwAHmM+yzGfPCAvrTdXX0vTj/aQcNHOBMXFUjsIA+Zs2xgg10m4v9DuVCA91WHWei36FcWEDvHOiOFWyggh00cIDZp3C2XV5YQN+LExXsoO+FOQ5wJvodireEeINloI/ZdKxgA5fNmzS8wTLQwAHORJ/BuLCAy+Y9I95gGdhABTtooL8v4ofbryr8acnZSllOrGADFeyggQP091D8fDhfcjqxgAL6S0MnNlDBDho4wJl4vuR0YgE58oMjPzjygyM/OPKDIz858pMjPznykyM/OfKTIz858pMjPznyM4588/7JwALGkW/ePxnYQAU7aGAc+XZ2Sq4j385OyXJiBRuoYAcNHGAc+XbkC1HtyBei2pEvRLWzU/I4sYEKdtDAAc7EeoAF9NHxPfacv7CDBvqxqI4z0XP+wgL6S2R+WM5XGE9soIIdNHCAM/F8hfFEP8bm2EAFO2jgAH0vxkL/9b+wgAJWsIEKdtDAAWIzbP7rv1q7mnc/BlZw2Ybvsf/6X9jBZRt+hPzXf/gB8F//4cfYf/0vLKCAFWyg27pjBw0c4Ez0SnBhAQWsYAOxTWwT28Q20+bdj4EFdNtwrGADl23NOTbvfgw0cIAz0a8JLly2WR0FrGADFeyggQOciX5NcCE2weazluv17ebdj4EKus2HxGct14OT5t2PgTPRZy0vLKCAFWyggg9b89z0z+wFjoXFcSauqhFYQFnom76qRmADFeyggQOcieo2dSyg23x0tIINVLCDrjDHmdgPsIACLkXxIVkFJFDBDho4wGUrPlCrgAQWUMAKNlDBDho4QGwD23CbZ8AQsIJu89NzKNhBt/kBGG7zQR1u84GaB1hAASvYQL/odRpJ86Kzj/KkkiRBxYMPxwo2cP1aqVNPsqSRNIP8x/0kjzgd1zCsRpLm/Yr1/PcjaQadjxCcSpIk1aSWpEkuKY4GrrFe3SrN2xQv9DS8cG3mehe5eethEw/mqXWhtw44eQDfUM+sCwsoYAVbDInmcGoOp+Zwag6n5nB6Ip2D6ClzDqKnzHrzuHkfYaDvqh9YT5kTPWXEj6anjO+TZ8xJNaklaVJP8oi+IZ4A1TfEE8A1fv6fpEnrb/um+cl/0kiaQX7mn1SSXOKH0M/7C5el+nFbP5yBHVxB/Wh5g1/zU8Mb/AJXBHXSGBjv7ws0cIAe1v/a+i0MLKDEgHt/X2ADsRVsBVvBVrAJNsEm2ASbYBNsgk2wCTaZiWevj1Oe1N4KGFjBBmqi/05V3wRPpgsN9J4Hpxnk17YnlSRJqkktSZN6kiWlQ9PR09HT0dPhv1H1xAYq6HlQHA1cg1h95DzhTvSEu7CAAlawgZ50fo6eWXeigcu2HnU3b9e70H+jLvT09uPgKXphBb2XzkmTepIljaQZ5Pnoqenfomue4d6S15pv/zRwgDPQW/LaehG+eUteoIAVbKA3Yzot2Xqi3rwjL3CAS7YejTfvyAssoMvUsYIu644KdtCvs5xG0gzyFD2pJEmSRzRH31IfC8+5NT/YvL8usIACri3tvoOedBcq2EED/eR0mkH+s3eS57eTJNWklqRJPcklJw5wJvrP4IW+ma70S8kL/VrIaSTNIL+k7H5o/JLyQgF9RHxMPV0vdJUPr6frhb6xPpCerj5l4n1yzec+vE+urZebmvfJBQpYwQYq2EED3ebb6+lqfip5uvpduPfJNb8ZbuePp2/k+et5YgcNHOBM9J/QC1cwv0X2hrfADho4wBnoDW+BHqw4+l8TxwHORM+5Cx/75innX3e7qCa1JE3qSZY0kmbQyraL0iHpkHRIOiQdkg5Jh6RD0lHTUdNR01HTUdNR01HTUdOxks0rlDe1XVSTWpIm9SRLGkkzaP10XpQOTYemQ9Oh6dB0aDo0HZqOno6ejp6Ono6ejp6Ono6eDk+M9QZF82ay5rMu3kzWpp9z/os1/b/1S7/h1JI06RGp+19ZJ6+TN25dtP47n7TwXqxAA9eG+ISB92J5ZfZvsV1UkiSpJrUkTepJljSS0iHp8Ku39fW55p1WzecsvNPKS5Y3Wl00g9bZeVFJkqSa1JI0qSelo6ajpqOlo6WjpaOlo6XDfxTWV/Ca91W16fvn90Y+S+J9VYEVbKCCHTRwgDPRfy0uxNaxdWx+ivr0jPdVBXbQwAHOxPVrEVhAASuIzbAZNsO2ksJnkL2t6qSVEheVJEmqSR6xOPqW+tnt6xX6ye3rFZ4kSY+/7ZNp57qkJ2lST7KkcZG3QalPMHnDk/qskjc8BXbQd7E7DnAmer5dWEABK9hABTuIrWDzxFtv4DRveAosoFezw7GCXs+Koxc0cfSK5jvvPyIXDtALp4v9d+RCL53m6DYX+0+J393buYLH+d8q2EEDBzgT/bfF5we8iUl9/sObmNSnN7yJKXCAa3t9psObmAILKGAFPa4fY/+p8CkIb0xSvwX1xqRAASvYQAU7aOAA3ebD58l4YQHd5oPqyXhhAxX0X2sfM0/GCwe4xvfczfPr+CcWUBb6kJxfxz+xgQp20MB1NM/hy6/jN8uv4zdvTFKf//DGpMAKNtACvdlI/ebNm40C/XGNkyWNoJWCfvvgbUIX1aSWpEk9yZJG0gxamXeRb4w6ClhBv5jy7Tmv2E400I/PcJyJ51XbiWs3qpMk1aSWpEk9yZJG0gzyH8aT0tHS0dLR0tHS0dLR0tHS0dKh6dB0aDo0HZoOTYemwy/qfPbCG38CZ6Lnqt9xeeNPoIDrkPjtojf+BK6j4xMB3vgTaOAAZ6Lnqk8aeONPoNv8mHmuNt8yz1W/+/fGn8AOLptfTXrjT+BMXLna3btS9SJJqkktSZM8oieLZ55fw3sbj64u9eZtPIENVNC31IN5Pl44wBnobTyB61e+Oa1f+enkruG4XH5p6609gcvl99re2qP9DDDA5fI989Ye9dtib+0JfMT1Z6czFvVtM1e6ajNXumozV7pq3pajfuXnbTmBCnbQwAHORM9cf9bubTmBArbYMF+r+6SeZOeqv827cy6aQc2Dq2MBBVy74rfk3psTuHbF79m9NyfQQP8RLo4zMRfJayy42Vhws7HgZmPBzcaCm40FNxsLbjYW3GwsuNlYcLOx4GZjwc3GgpuNBTcbC242FtxsLLjZWHCzseBmY8HNxoKbzTt21KcxvGMnsIE+kn4sPIUvNNBvkfy08hQ+cRxgAf1WzMXD78X8/DgXtvLT/VzY6sQO+v2Yn+Se3hfOxHmABRSwgg1UsIPYJrYZNr0W3DyxgAJWsIEKdtDAAc7Egq1gO29qm2MFG6hgBw0c4Ew8b25PLKDb1LGCDbRELwfr8wbqHTu6WhfUv20WWMEG+vZOxw4aOMCZ6PXhwgIKWMEGYmvYGraGrWFTbH6JvWY81L9tFrhsa/JDvbsnUEE/8mcEAwc4E8/6cGIBPa44ru2dfj74z/b0g+U/2yf6z/aFBfTt7Y4VbKCCHXSbb4Pn/IUz0XP+wgIKuH65Dx8o/+m+UMEOGjjAmTgPsIACYpvYptv8WMwOGug2H9RzXmqNWTknpk50mzoK6Lbu2EAFO2jgAGdiOcACCoitYCvYCraCrWAr2ASbYBNsgk2wCTbBJtgEm2Cr2Cq2iq1iq9gqtoqtYqvYKraGrWFr2Bq2hs0v+1cHjHrHTqCBA1wZu27P9FwY88ICCljBBirYQUvsvhfD0bd3OjbQ7+gOxw4aOMCZaAdYQL9RLI6Mr7HHNhP9Uv3CAvrtp2+65/yFDVSQozmwDY7m4GhOjubkaE6O5pnzvg1nzp/I0ZwcTc/5cxs85y+cgXKkTY4CCljBBirYwTx35BhgjqSUAyy5DUXACmIj54WcF3JeyHkh54WcF3Jezpz3bZAKNlDBDvpIVscB+kiukumNQYEFFND3zYN5zl+oYAcNHOBM9Jy/0G3DUcA8wf3TZX3N4an3DwUaOEBODb/Jv5CDpRws5WBpAxXkYCkHSzlYysHqHKzOweqciJ0TsXNqePqvKUX15qLAmejpLz4Onv7iW7YuDwIr2EAFO2jgAGeiFwXxU8OLwoUNVNDj+qnhReHCAc5Ev/j3qyBvQAoUsIINVLCDeUnlHx47r2n9w2OBAvpedMcG+l4Mxw4a6HsxHWeip/+FPm90OApYwQYq2EEDBzgTPf0vxCbXXIJ6B9JFPekR9NzxleQXzSBP8er/4Tl/d6KAvv3NsYEKLpOP0Mrwi0bSDFrpfVFJkqSa1JI0KR0tHS0dLR2aDk2HpkPToenQdGg6NB2aDk1HT0dPh+d09QH1nL6wgT5e5thBP95nhAHORM/05gfZM/1Ct/k555l+YQOXbbWNqHc1BS7bmmRU72oKnIl+UdD8oPpFwYXL1jxHPP8vXLbme+H5f2EH1/zQGXYkzSB/TnZSSZIkj+gj4D/xzffKf+LXVKR6V1NgAQVcW7qmE9W7mgIV7KCBy7b6k9Tbmi70HL+wgAJW0G3dUcEOGjjAmeg5fmEBBawgNsHmP/Gr+0n9Q2OBA3TbGlRvhOrdx8zz/0KftS2OFfR5Wx8oz/8LO2jgAGei/8RfWEABK4itYWvYGraGrWFTbIpNsSk2xabYFJtiU2yKrWPr2Dq2jq1j69g6to6tY+vYDJth88qwnkSoN1AFNlDBdcvil3HnapwXDnAm+lO4CwsoYAUb6Hvh6LcA3VPEbwEu9O31k9ZvAS5soIIdNHAE+mfC+upKU2+gOofEPwh27rF/ECzQwAH6+K66421VgQUUMI+md1YFKthBAweYR9P7qwJLbo4IWMEGsm+e82tiX73NKnDZVvOdeqPVhZ7zFxZw2cyDec5f2EAFO2jgAGei5/x6wqLekhVY82B5oq+nAuq9WIEdNHDkAWgcLOVgKQdLOVhnop/YQA4Wia4kupLoSqIria4kupLoSqJ7K1Y3Pz09pS8coA+Uj4OntPmWeUpfKGAFG6hgBw0cif6zbn5q+M/6hRVs4Io7/NTwn/ULDRygX0T4X/NEv7CAAlawgQp20AK9xcxPnR5P7NS/DHbR6svpTi1Jk3z7q6OBA1ztP+sE8060i0rS2nifUfdWtMAG6vnkUL0Z7SJLGkkzaCX8RSVJkmpSS0qHpEPSIemQdNR01HTUdNR01HTUdNR01HTUdHh2+/3D2bN2YQH9ue1wrKCPmB8RT/QLO2jXY1X1NUUD/ZnlugLxJrfAAsr1sFW9yS3QbeaoYAfXZb4b/DL/pBnkl/knlSRJ8oi+V57M/nDBW9a6P1HwlrXAAgro7XwezJP5QgU7aKD3DfpJ61fuJ/qV+4XretoHYGX4RTWpJWlST7KkkTSD/Jr9pHTMdMx0zHTMdMx0zHTMdMxw+He/uj/u8Ia3QAEr2EAFO2igD5s5zkT/kb/QbeooYAXdNhwV7KDb1nngDW/XP/VXZX3X/E3Zk1Zy+aMK72YLHOBM9CS+sIArjf2xhnezBTZQwQ4aOMCZ2A6wgNgatuY2H5umYAfd5nvcBjgT1W0+/FpAASvoNh/Slc3mU97+oS7zGUHvh7twpW5gAVdcn+L0fjjzS1Tvh7Pim9M9rtvWz3aggQN0m2+OHWABBVw2n7nzJjjzmTtvgjOfYfMmOPNJMW+CM3GFt6Se6D2pFxZQwAo20G2+DaODI09O/9k+cXLK+s/2hQJWcCl86sk/yRXYwbVD1XdzDnAGepdcYAEFrGADFeyggQN02xpU/yRXYAEFrGAD3aaOHTRwgDPRf9ovLKCAFWwgNsHm9cGrhvffBc5Erw8+WeT9d+YTQN6AF7hsPm/kLXiBy+azPt6EF2jgAGei14cLCyhgBRuIrWFr2Bq2hk2xKTbFptgUm2JTbIpNsSm2jq1j69g6to6tY+vYOraOrWMzbIbNsBk2w2bYDJthM2yGbWDzAuITgt6bF1jBBnoX7YkdNHCAM/Hsoj2xgAJW0PeiOs74AZ3nxX5zLKCAFWyggh30cVjp5B/UOsfBP6h17qb34gUq2EEf3+44wJnoOX9hHk3v3AusYAMV7KCBI7fBc/5Ez/kLCyi5DWfOn9hAbOT8JOcnOT/J+UnOT3J+tjx3ZmMkGyPZGMkz530bGiPZGElyfpLzk5yf5Pwk5yc5P8n5qRy3M+dPZCSVkewctzPnT2QkyflJzk9yfpLzk5yf5Pwk5yc5P43jZoykMZLGSBojeea8ORrotuE4E8+cP7GAy6a+DZ7zFzZQwQ4aOMCZOP2+2TdyFtBnCH0k/UrhzELP+dXgq960FzjAeWE/jjhC/TgKKGAFG6hgB+MIdW/aC5yJ5QALKGAFG6ig70VznIleHy700VFHPxa+ZV4fLmyggh00cIAz0evDhR7XHBuoYAc97nAc4Ez0SnBhuW56uzftBVawgQp20MABzkTPeT2xgg1UcO3FenTRvT0vcIAz0Tvwz5OrF1DACjZQwQ5aomd395PAs/tCASvYQAV9e2WhZ2z3uJ6x3c8dz9gLG+gR/IzyjL3Qx8FPAs/YC2eiZ2z3I+8Ze6GAFWyggh10m58anscXzkBvxAssoID+Koo49hgHb7kLHKDHXUfeW+4CCyhgBdderMnu7i13gR00cNnMbZ7HJ3oeX7hsa/Kxe8tdYAXdpo4KdtBtxdFt3dFta1C95c7MR8d/5y8U0OP6vnkeX2jgAFfc4fvmv91+cnkbXWADFbTE80U13/TzRbUTBfQXv3wvvIv2QgU7aOAAZ+L5UtuJBVwbOXzM/Ef4wg4auHZ++MHyH+ETPU0vLKDvhf+18/W1ExuoYAcNHOBM9N7aC1fcw08NT97hg+rJe2EHDfS9OP/aTPTkvbCAAlawgWsvDj9Y3jxzoYEDnIHeURdYQAEr2EDfixMHOBM9eS/0veiOAlawgb4X4thBAwc4E8/XUE8soIB+LMyxgwYOcCZ6ml7o01hOklSTWpIm9SSfaHIaSTPIf3tPKkmS5Fs+HH0bp+NM9MvqC8v1ong/v5x1YQUbqGAHDRzgTDzfDj8RW8fWsXVsHVvH1rF1bJ670wfOf2IvrGAD/bGGD5RfQF9o4ABnol9AX1hAAd3mp45n9IUKdtBt1XGAM9Ez+sKSB+vM6BMr2EAFO2gg58PM86Ge77o1xwo20PdCHX0vuqOBA5yJntFrRr17O1yggBVcTViru797O9zwJPR2uEADBzgTV0YHFlDACjYQm7fJebU6++QuHOBMrAdYQAEr2EC3DcdlK77H3it34QBnorfLXVhAASvYQAWxedfcmvvuZ9vchTPRG+cuLKCAFWyggm7zk8AfrF04wJnoz9YuLKCAFXSbn7RdwQ4aOMCZaAdYQH/+7VSTWpIm9SQLGv5s0Ed21YDhP/DeEheo12dFurfEBRo4wJno3xO6sIACVnCNgPhJPP1Bph+FOcAZ6O1ygQUUsIK+F81RwQ4a6DZ1nInlAAsoYAUb6Lbu6DZzNHCAM9FrwIUFlDgW3i4X2EAFO2jgAGei14AL6/W9rX59IexEBT3udDRwxa1nhJno2X7h2gu/EfLGuMAKeruvHwDP9gs7aOAA3eaj49l+YQEFrGADFeygx1317fpamJ9GnqvV99hz9UID15athxHd29ou9Fz1mRRvawsUcG1Z83FY2RqoYAcNHOBM9Dxuvr2jgAJWsIEK9tzj4XF9qOcBFlBAj+un/Wyggh206wN2/fxw2IUz8Pxw2IUFFLCCDfTR6Y4DnImexxf6XpijgBVs4MqACzto4ABnon/Q78ICCuij45vuGXuhgb4X03EmesZeuPZi9Qd3b3YLXHuxJjG7N7sFKrhsaz6ze7Nb4ABnoufxhQUU0G3VsYEKdtDAAa4x85TW88u3vm9+/b6eGXbvcAtUsIMGDnAm+vW7F1LvcAsUsIJu85E8P915YgcNHOBMPD/deWIBBVxx/VfbO9yGT6R6h1vgAGeiZ/eFBRTQj4XvsWf3hQp2cO2F/+R731vgTPTf7gsLKGAFG6ig74Xnm/92O3rfW6DvhTkKWEHfi+GooO/FdDRwgMvmk6Pe/hZYQAEr2EAFl83nM70FLnCAM9F/uy8soI9Zc8wj711v53HrYuAA88h751tgAQXMI99rAxXsYB75XgeYR763AyyggBVsYB75s9dsnljAtb1+9+hfUwvs/AcGDnAmeteVX12dbVcXDnAGeudVYAEFrGADFeyggQPEVrAVbAVbwVawFWwFW8FWsInHNUcBa6IfeR8ob5cK9LjD0cABzsR2gAUUsIINVDCPmzdGXagHWECPOx0ruOLW8z9Ycf0i0j8UFmjgAGfiOvsCCyhgBRuIrWPr2Dq2js2wGTbDZtgMm2EzbIbNsBm2gW1gG9i8DdKvq70xaq6X3ro3Rl2n0eRMnZyp3vfoNcobowIbqGAHDXTbiTPQG6Om/wh7Y1SggL693dEjmONMPDOrOpY4NbzZKbCCDfS4w7GDBmYGeLPThXKA2ASbYBNsoon+bSG/JfBOpEADl7id/+1M9NS7cIn97sA7kQKX2C/zvRMpUMFl86t470QKHOBM1AMsoIBu80PoCXmhgh00cIAcwjP1fCPP1PPxPVPvRA5W52B1DtaZeifORONgWQEFrGCLZBhn6p3YQQMHOBPP1DuxgAJqFDHvLgq0PDVGprR3F104D7CAAlawgQp20EBsM23zOMACCljBBirYQQMHiK1gK9gKtoKtYCvYPE393JmSoz4lf1inVLCBCnbQwAFmcfROpMACYqvYKraKrWKr2Cq2iq1ha9gatoatYWtZir0TKdDAAc5Ez/kLfSRPFNCPhSvOH+ETFfRjsWr1PH9YzVFA314/Qj2L4+wKdtDAzO5Jds/zh/XEzO5Jdk+yexo2w2bYDNuZ3Q+04zxpp+NMPE/aE704+n/rJ+2FFfTiWBwV9OIojgYOMEqxeStNYAEFrGADFYxSbN5KEzjAmegn+IUFjENoR43rBztqlGI7qoEDnIntAAsoYBwsO/LK0Y68crSjdTBKsXkrTeBM1AMsoIAVbKAm+r1IP7GCDVSwgwYOcCb6fN+FBcRm2AybYTNshs2wGbaBzWcEuh83nxG4sIINVLCDBg5wJvos4IXYJraJbWKb2Ca2iW1im2nzBpvAAgpYwQYq2EEDB4itYCvYCraCrWAr2Aq2gq1gK9gEm2ATbIJNsAk2wSbYBJtgq9gqtoqtYqvYKraKrWKr2Cq2hq1ha9gatoatYWvYGraGrWFTbIpNsSk2xabYFJtiU2yKrWPr2Dq2jq1j69g6to6tY+vYDJthM2yGzbAZNsNm2AybYRvYqCWFWlKoJYVaUqglhVpSqCWFWlKoJYVaUqglhVpSqCWFWlKoJYVaUqglhVpSqCVCLRFqiVBLhFoi1BKhlgi1RKglQi0RaolQS4RaItQSoZYItUSoJUItEWqJUEuEWiLUEqGWCLVEqCVCLRFqiVBLhFoi1BKhlgi1RKglQi0RaolQS4RaItQSoZYItUSoJUItEWqJUEuEWiLUEqGWCLVEqCVCLRFqiVBLhFoi1BKhlgi1RKglQi0RaolQS4RaItQSoZbIWUuao9vUsYEKdtDAAc7Es5acWEABsZ21ZDgq2EG3dccBzkSvJasLzLzTKFDAZVufUzDvNApUsIMGDnAmei25sIACYpvYJraJbWKb2Gba/HNcgQUUsIINVLCDBg4QW8FWsBVsBVvBVrAVbAVbwVawCTbBJtgEm2ATbIJNsAk2wVaxVWwVW8VWsVVsFVvFVrFVbA1bw9awNWwNW8PWsDVsDVvDptgUm2JTbIpNsSk2xabYFFvH1rF1bB1bx9axdWwdm2Ue17M+TMcGKthBAwc4E89rjRMLKCC2gW1gG9gGtoFtYJvYJraJbWKb2Ca2iW1im9hm2s7epAsLKGAFG6hgBw0cILaCrWAr2Aq2gq1gK9gKtoKtYBNsgk2wCTbBJtgEm2ATbIKtYqvYKraKrWKr2Cq2iq1iq9gatoatYWvYGraGrWFr2Bq2hk2xKTbFptgUm2JTbIpNsSm2jq1j69g6to6tY+vYzvrQHAc4E8+qcWIBBaygVyNzVLCDblPHAc7E81LicGyggh00cIAezPftvJQ4sYBr09c7GHY2Og3fdC8VFyrYQQMHOAO90SmwgAJW0G3mqGAHDRzgTPRScWEBBcwfCeVSQrmU8PansfqtzdufAgc4E71UXFhAASvYQAWxCTbBJtgqtoqtYqvYKraKzWeQz930GeQLO7gmJf2U8/acwJnoz4cuLKCAFWyggh3ENrD5k6D1WpX5R6Wmp4j32cQ/9c1ZF+neZzP9/PU+m0ABK9hABTu4Nme9bGXeZxM4E33O3FPE+2zmegvJvM9mrtd+zPtspp/K3mdzbrr32QTmDnkbzewe16fELxSwgg1UsIMGDnAm+pR49033KXG/EfPmmsAKNtBtvm8+UX6hgQOciT5RfmEBBfRgPlA+4+33ZP51qOk3V/51qNl9oHya+8IGKjgS/YmN3795I06gR/Bj7M9mvCL6F56m+ZD485YLK+iH0MfhzJYTO2gZ98yW85/OxDNbTiyg5B6f33g6sYEKsm/nN518h86POp2Ye3w2+Kz2UzsbfFYXqJ0NPhcaOMCZ6Cf4aty0s5Wnedzz8c+JCnbQQI87HWfi+fjnxAIKWMEGLtvq9zT/+lKggQOciX6uX1hAAZditYma9xAFdtDAAc5EP8EvLKCAFcTWsHkGrO5S808uBQ5wJvqToAsLKDnqysFSDpZysDwvVieqnc1Aq6HOzmagCztooG+Onxr+zPJEf2Z5YQEFrGADFXSbn6meQxcOcCZ6Dl1YQAFb7psnjvr564lz4cwd8sS5sIAC+qb7mHkbwoUK+qb76eltCBcOIqTt7Au6sIACVrCBCnbQwLSdjUMn+sXIehfNvKtnzPOfej9id6xgAxXsoIEDnIl+MXJhAbH5xch6Z8zG2bN3ooIdNHCAM9HvWy4soIDYGraGze9b1qtx5o1DgQOciWcn34kFFLCCDVQQm2I7O0aHo/+307GDBg5wJvpdx4UFFLCCDVyn0Vpxx84OoPUanZ0dQBfORM+3C9dJe/gZ5fl2YQUbqGAHDRzgTPSEvBDbxDaxTWwT28TmCXn4ae8J6Xg2A623+uxs+1mfsbOz7edCBT2YORo4wJnoqXdhAQWsYAMVROG/Let9QzsbZtZKM3Y2zFwoYAUbuOKuFwftbI1Z38+zszXmRP8VubCAAq64a8EMO1tjLlSwgwYOcCZ6f+p6ydDONpoLBaxgAxXsoIGu8APrv0MXFlDACjZQwQ4aOEBsA5vnRfEzyvPiwgo2UMEOWo764GANDtbkYPkJXvz09N+W9S3D4Z/YCSyggL4507GBCnbQwAHORD/XL3TbcBSwgg1UsIMGzmvfxtkitDrrx9kMdGHLHfKrwQs7aKB3hBXHmXh2u53oHVbiKGDNCBVbxVaxVWx+YXghh6VxWBqHpXFYGrYzY+2///uffvvr3//1T//xl7//7V/+4x9//vNv//xf+Q/+/bd//h//9du//ekff/7bf/z2z3/7z7/+9Z9++3/+9Nf/9P/o3//tT3/zP//jT/94/NvHgP35b//78ecj4P/5y1//vOi//4m/fbz+q+XxAFWvv/7gMTNEOX4MUl4HaS1CPGbSMoDJD39fXv/9um4I/e8/5q3ZACv396KufsprLx7ztC/3or0Osq6gzgiFv9/q3b9e/ROP5148rmPZAtEfQvRNiDwUj+l5AoxyN4AvLeYBHjfwGeDxpOmHAGMzkK1HhPKY+noZYu4OpuQ4PG6qX4bYDaXfrl0DMdrLoSybc1Jk3Sx5DFnqjNHmjzHk0+Ox3ZEZO/J4clJf78gmhvqyQR5jfdQ7Y/Sf0lN3R3VdDV5HVeVliM2Z5Z878giPi3r2o8/bEfyV4TNCL68j3N0Ne70bu8G0I+rE+rT0qxCyqTXSRhQK0VZehiifDoVszkw5Zp7d5aDmtp9qbt1sxJo7Ojdi2uuN2BVMkRiJB3JWPB7u3t+Rshpzrx3R8nJHNieWjDik9XgZYJ9hs+dJ8VT7fz6i4/Oit4vxeAwYMR5P+V7/gNRjW78lU+RpNKTajzE2Z6cvK3z+iBz6FKHfPzGa5omhT1n284lRN6fn9IWvrxiTM/zxQPzHGJvtEH6SxZQY/QvHJLOkPVfO3x2TzflZLAtGeUxMEKP+eH6tRHgZoyuXJ+ttv6coP57odXzD2TE/PTv2+zLzMqWstype7kvb/b4XowI+XbZK/bGANfn0/NiepTdL4DbGzWxp+nm2tP7xaOyO7GrmiSO7+jReH9ldLS2WV3/Fno7sz9fic/cjXeOWQtrTb+y6jnuOoZta2nxFpOu25ukM+znGdjtUS14szM12bM7S9Z20vKp/yrmfY3zlyPSXR0bbx1cduruGM19h+dqQx2OP1xuyu88RKTkkP5TUn2JshuRxeubhLU/XcV8akHtXLzo/vHrZ/rzMI9JFjmEvf176rpj6t4rOGI8Z6tcxNqfpWq43rqJkPp9g5X4Mf93njLEmSF7GaJ//yHX99Edud3at1c9jT0qr753lNW9h1+epXsboY3dtmxcwa+mg92JY3sWu5Ubei+EfYDtjPJ5SvR6PXe14PP/iSuo5336OYvLpsd1ni8W8gDwmht/LOH/b9YqxyTjbjcesmXIPfrqQ+sK+zLyxf0yhjdfbsb2gy5ufdW36dJH846WYje3sWc3Zs+f70S/EaL5kzlnRx1Pm/xxjfMMN1Ch/5Bn2uG3MGdE6yltnWK35Y11bO17GGO2PPcMev8/5C9c32TJ2l6Y64shK/+HW+KejsjlLH0+rJaewhr4VY/rSuudltvVNjPn5GTaPj3+ftrVUObKPX93jZS2dm1paysgtKY8Lkfbi/Jj109uOff3hZ+HxtO5l3s/NeEinHo/nhxA/xdie6czUPiaBjveytnM9aCIvY8zx8WOEcq8aT+kvt6Ic24cyPZ8sPX5bnoZ0fCGId6XF1e2xCSK7tNUop48nyk9PNX66oyzH7jY9f/Tn029c1Xk/52YtSjX94Vr9p9nK4+OL0+2oinAj18ru0Njnhawc49Od2f429Hx6KDbby5pcyv40ywE5nm48fn60sHvixO9tO15PqJfdA6fHbW0+WxB7nk76eV/qrigfhUeZx9NP7s+zQbuCWA+xvDHV1wWxbJ/Y6Mzbj7LWF3pR3cvuwVE9KIk/nqw/b8nubr8fMydz5vH6cWAZ33CWzI/Pku0TqLtnye4Z1P2zZF/SpvDbO3VT0nbPoh4lI6/vnn+zpP00svLxbP9+O1rOTMvzNfPvtmNbXFsZzPltfrLEtjMhed/+mBXePL7+hvNVPj9f63ecr/Vbztf9oz7NR329v3x427Y3mdnsMvrx+pH+7sHU406b+7vjeP2btQ1SmSf/4ULvd0H6560Bu8nlm70BuxA3mwNu78mmO+DukLajv3tcDuP3anNBsns0dbcRp7T6+VPp/e5Yzg0/piJ2u7P5nRgiccI/UF+Xs32QvKEYsvsNb/b5Cb97QnXzhN+FuHnC396TXTvMbkjrkcel1nePS8+nIGOUTauV7q5atfFc6LlV6qfb1u252kreYD0yb1NX9Ru6pfTzdin9hn4p/WNL4mMcWw5pn6+HtB+fD+luTuJuB9rHfVf39+TtIX06S6289yvz+Jt5QyPH7rj03eXQvd7C/g0FtX9eUPvnBbV/Q0Hdj+inF5haaFF8VMzXF5i2qaa9W86rDNuUZNu1cTFbdTz/3P5ckffjYYzHeHNM7zVtlt0c8eMOrjPj1V7HGJ+f6TY/PtN3IW6e6bf3ZHOmb0e0zsGI9vdiqNAeU192XpbdMyr1t0GvO+U+34yRz9u2MfZn2K2+4DI+v5Man99J7Z5Q3exqKbsnVPeacrdbca/ZqOyeT93rcS67x1O95Jsl/fmSss7j3SD6ZpCW95Vr8bRNkI+bpff7knMXaz3cN/dFcq5urWv6bpB8JNOf7we/FqTmfcdaPfBlEDl2k1PHkRdSi58Ozs+98Lswtxvq90FmPuyqZb4ZhOf+j8f+/c0gNxtb5dicsHc7W2X3qOpmI/h2O2hgmuPpsuz323E3yNPk4ReD5A/NA/t7QR4XmXmh+mDbhdkdYs3CNp8vJL54sg1Otuc8/lqQPgnyOgG/8Bv+8n5Itm9KZQuj2etfrf018733UXaPqu7eHu6DtNyX1ubrG1XZPq2ybEd4TP6/3pvtw6p7V96ye9Po3rXVNsTd97bu7olt9mQ7ovngXWy0t2JUzo/Hj4S9G+P4OEblguQ5978WIy/zHuFex9g9o7p5F/GLGLfuIvb70lpO2bc+Po/x5jlWZfIQY7w+tnU3/dhpADLZvGO43RCjfdD66/Kxe7p0++DaH3xwrbAvm8RtuwnIIx+Vl8c84ruDmteIdWzOst0TqnsPhmX3fKr4p5Wu5gF7fUez3Y7GZOrzq2Q/b8f2d07zEVfTTXupbF+fujfDJN/wcEo+fzglnz+ckm94OLUf0XszTPsY92aYZPdo6m7q78+Oe2+N7x7n3DyyuxB3j+ztPXldO3R8eI28T1leI2tm/c3rW7V8tqW769v9E6F7T+qly+dP6re78/zkQDbd6fKL16du7o7+0bsjI0qIPr/3+PvdsT/yTHs8GMs3uUw3d1J97n6k8gdGnt9V/mk47Ph4DmO7FRnh+afy91ux+7UVfirlaW643w9RjtHzpYFjjPZekMcsDE+nntqfvhJk9ZHlxdTxNLv7lUHN99AfP3mbQbU/NMRjIGUyqPpyV34R5OaRse84MvYNR6bs31vMCXNp+t5vxA+z7rW9GyRnQtcS8W8GsbwM6buXj/ZBep4mj8exm0vdYd/wGzHGH/wbsdYQzt3pm93ZPasq6uthXvsz23x1sv0iyK1Wd9k9r+oz27HWyhSb3anbS6Nbre7+nOD1rdmt1mHZvkJw7w5x+7jqZuuwz1bsism91uFfhFFOk8ft2XgdpmyvfXPWzPocL49xPT6fVK3H55Oq9fh4UnUb4t4tyf09sc2efD6puo1xc1L1VzGOj2PcmzOrx7x506vvjenNyd1fxLg1uVt3r1XdnP/7RYxbkwD7fWlZmevzE/zfbYf+0dtxa5L5fow3c+7mJHPdvU91d5L5Fyf7vRPkdsK8e2DuTRDX3TtMdyeIf7EhtyaIq3z881+lfz5BvN2OmxPEv7i4M654H0/dX1zc1d2bVHevELdBbt5/by/trOW3cq29PlGrfH7tsPvu2c1rh12Im9cOt/dkM1G9v1jO37ky5+vf2+94vrS9Wu5Pn8l4/mLZ766Wt5+By0F9YHkvSDmOvD5t2+v27dx9Zaa5v3/xPzoX/0+/Ml+9+M89WjcCm36ZuX+kof9/jzS+Ni4tm7ulPV0i/j7IN1TF/efg8kx5jOxbqSOFl2XL5hevffyKatXjG35o2vx8SLeHNuerH0e5vnvKF2HyrNS373elcb8r/e3MkbyoWSE3mTN2D78k5/GZxv/KBGnhgwYPrvPNacn2NJPQX01L1t0X/+7ObW6DfMc8/O0RkW8YkV6/YUR2QW6OyL4p8mlnjuO5n/FrvZVH7U9hNs2iZfuI43aL5i7M45ogG5zn8XI2fhuC+dE+e3kvhLEV81WIX3RqH6xucLzdeD6fPqb6ut37F2/N5hdZR32ewvtphrXu3q662S9S7fNXVat9/KrqNsTNy/Dbe7KZTtiO6L1+kX2Me/0idfv9v5uzCfsY92YT9mfYrZ6Tunsz6ubZsQtx9+y4vSevpyPGp50A+7RveSEzWt2k/fbzfzfvvufnr1PX+fHr1NsQNw/s7T3ZpP12RG/efc9vmFXdb8etR2Z1d7F881Zm9/W/u7fe2+24dytTf/H+3p27w32Me3eH7fi4T7Ud39Cnut2Oe0P6iw9t5HCM/vR+2O+/1rE50++9kL1fAefWlUs7Pn+Xuh0fv0u9DXGvhN3fE3tvQG82uh4fX7e08vmb1L+IcW8a8+Nfpt2X4L7wOuZ2eaObL1Ju15S79x7ldn2Qm28e3o6xefFwH+Pee4e1fss97W5Ub751uN+Su+fIdkxuvnW4X+no8725e67u9+Xeubpdh+bmuXo7xuZc3ce4d67uYtw/V/ejevfl1o9vf1r99LXU7VJYJfPlcSnz3HH/03I4dftpaj4mV9urx6j7EH6p9v/TRPFjiN07VDenCneDceSp8dMnnH4ajO/4xl/7jm/81ePTId19nbPnhwv6D/3tX4iQV2L96RHB7yJsH9LnXhR9+nT671Y3296P0kWtUl/GaG17I3hv1YTd4+B7p+gvlozjKVDX+nqlpabyccZuQ9zL2N1CSzeHY5OxMnLy5oEvey/mx+f4/PgcH99wjo9vOMe3bz3dPMe3S/hJvsMlD37akHk/htKtoPo6xn5xtKeWKSvPX0v4OVN6+zhTtiHuZcru4xHfUDh+HI7y+pve+1X8Gr2wyn3c71bxux1jfB7j+a2nr6wmWHtOeDyeYjzN//z0a797UloHa/qM56fgvwuyXSwlr/NlPE2qfS3IKDODPH9m6ItB2BLRbwhSj5dBdr8u2pUVzmy+d3AaZaSpjXeP8MgC8LwWzvuLTra3RqRNvv0yx+bQ3F2Ec2zSZtTtFPCdT7i1sf+aNj3kT0vR/H5Dds0jahHE9HmNkPFTjN0yFDz9qT+8m/PTr+buGdTjCXbW9+N5AvfnGGPfcSE0Szy/CDa+MqzKum9PLTW/H9ZtkPnU3//6JNkvCHp7ZdJtFD2IopsFF9vcrvHDO5TPh3jcX/ixPb1k2+rr387t4pE1P7Gndb67aGO+SvZAfS/GzOXOdFp788hYFoFi4zjejDKePg8+9PWYmHx6Bb+NcOsKfr9k2nzqdZr1VUOObteiklynZMrL68RfhMjzdEp/dT+0X0LO2JNh483MHTMfaj14c5uquy/83bv43oe4dfGtx8ddeV8Yjt36yL+IYkTR9m4UnUSx1/dFuluP6uah2Ya4d2h27019y6F5Ho4x3z40nSjzzXo4D36qZpHX9X27lNy9grgPcasi7veFz7CU2dtmRHYf57s3wbMN8fitOmjOsdLeC8Lt1YNF3wySyy6s37u36vM0nnDNXX3eron1XUt8SV4rSj2eLziPN4M8HeOvBdGWDTL69NT/S0Eeu5BF7fjh/uin9pZds39htTGpr9eA1u1zzJsPEXS7xs/dhwi7vaGHW46225tPn1J9x4eUtqvQU49+unT+wkr2vEWl9sNK5T/G0HZ8/MvZPn60o+3jT/7sByNnrXTUuRmMtvuhyXme3kbdBNn1+eXsSi/Hqxvn/WZoXp89Hqocb+6L5oK0j9krfTvI00dl5ttB8gMq/Yep3p/O9V3Pz8is1bmL8fGVSP/4QmT76bObD1f2n0+793BFf7FQ8K2HK7b9dnPOIbTnr0r9vGqq6ud3Vfr5XdXn7zptB0P5kPXz9O7vBmO7KPa9wdiGuDcYn7/mtB2M3vgMXC+bwdDPB0M/H4yPn5Jvj8jMn6b2/GWgL63ZPvMR0yPG69XS1b7hM5I+k/3p1c+uf7wX3rLSzWZ8xzWpfcM16X75+JKHt0h7XsX6p5/83etNT1+xeZrkNvvCZvR87bv8uGjsF1axv/ursA0yqYRrZQ1GtdUvBOlHpN18vmj4apBse+zP7Ze/C7Lt4nx6YbM/91/Or2xJ/lTOPt/dHatxXTjtqRHha0EGAzuePw/w8wOV0f/gID+8efH8tYOfBnYfRLKzVeR5TL4UpOY3KeX5A1C/P8TfsLTfrtH/7mTZ+PQadb8nNy9SfzEcN69S5zdcpe6XKL/3OpzOz7+arvPjr6ZvQ9x7l+T+nmxO0/2i77deh+vH5x8726/6fvNjNPsgNz9Gsw1y9424/Zbc/BjNrxaxv/kxml+Eufslyl+FuflNm/3I3PymzT7IzW/aFPn4Ayzb7Ln51uI+xr23Fnv5+ONpvXzDx9O223FzSPeH9t43bX5xrt79ps0vwtz9ps2vwtz8ps3+cuBpAq++e0WRX+Z4Kkq/D7G9cs1lFB9PifTl9WKXj+cD9iFuzQd0sT80xL0phV8MaLbNPMa2vRzQXWvVvbvwvj1Jb96F9/oNz1O2X16YeRtgz5+S/fmLx9tlbS2fyTwew5e3YsyS/Znz+dO6P8fouydU9070/WZkw9uUzYIS2xjCLavMudmV+YfuSqV0PL/c9rvNaOUP3YyWKw5MPXab8XGbyj7EvfLTPm5T2X0zYfan6rNZJmD3WY57t7rbCLfudLef07h5o7uNcfM+t2v5hvvccnx8n9u1fnyf2/Xj7/lsQ9y7z72/J5v73O2I3rzP1fH5fe7uy2a373O3Qe7e5+4/GHfzPne7JXfvc0v9lvvcfZjb97m/CHP3Pnc7Mnfvc7dB7t7nlvLxTdkue+7e525j3LzP3T6xunefu/0E5d37XPuGIZVvuM/dn6u373P3YW7f5/4izM373O21wK3b3P3VxJ273N33BW/eT43vuJ8a33A/ZduVk/IFoPo8oj8/wN82AZTsQGr1eZWAr8Ro2Q/dfni//KcYY/e+m0mu4ziO180I4+OPD4yPPz4wvuHjA+MbPj7Q5zdcrW6f7PRBx+84Xh6UXQzh8qweRd6LMfIysR7yejv6dmfupu3uu9y3mxF2c6l31xkr8i1z/7JviGLFY3suIT++ImrfsAiVfcMiVPb5IlT2+SJU9g2LUNk3LEJl37AIlX3DIlT2DYtQ2TcsQmXfsAiVfcMiVPYNi1DZNyxCZd+wCJV9wyJU9g2LUNk3LEJl37AIlX3HIlT2DYtQ2TcsQmXfsAiVfcciVPYNi1DZ54tQ2XcsQmWfL0L1q8uHW4tQ2XcsQmWfL0JVyud9P/YNi1DZ54tQ2eeLUNk3LEK1H9F786H2DYtQFfmOvh/5jr4f+Y6+H/mOvh/5nr4f+Z6GHfmOhh35joad8nnDTvmGhp3yecOOfb4IlX3HIlTWvqEH6jsaduR7Gnbkexp25FsadrbTRLcmMvcTTXcmMrevud3ahv2LcrdahvavUFPj9anGf+097M7L3H3WN4OMkd8ye17d6Isvc+dCWA98vTu67ZS5+Ub4Nsi9xZr2IW4t1vSLELcWa9oeF8srifVb/ubB/SFIezeIEKS+Pi5mH/eo7EPcag4xq39oiJuX7vsB5YUMs/HuUcmrVbH5bgV53pK3g4y87X7g20FY+2Ub5Pi4tP/iayx3avsvPgyVMab0N78tldMhU+zl28vy6VDsv9R165d2+wW1fKNL7fnO7itfUOOzZTr0eC/GzGeXD3zzS27D2I53vyg38qg+wr37RbmnG8z29ngMYrw+Ltuv9Clvx+vTJMj7Md770l/juVJ7fq70pRh8tKjZ5hzbx+D2ZdjrGLZ9h2rmxcs4jtcvHtrc3b/0bNJtj+d6L6/Tf7UllluyeQVy7B7oaM8LKe1P00v1/nYM1hgZR7fNduynqGJYHz+augmye5s6P/PxfMcv2u6fIjPvoNru42djtzTq3VNkHPb5KfKrLbl5isxPT5Htdtw+RUr5hlNk93Dp81NEj2zm0B8/AfXTKbJdQUpywRSV55+q8VOM3WWQSX7Vxp6/oTi+sC/ZU67lkM2+2Dfsy/hj94XHuQ9879fuMQ2aH/mprb8XQ9gOsW+IMY439yWnUfV5taSvbQfftKrH22M6GVN9M0YjRt9893i7EEN+RUFEn6+3f2rCko+X9tmHuHV/Oz5fymYb4t4t8nY8K18YrPZ6UYqxe6x061Nl261o3GK3p1Wqf78V+nkF270ydbOC7Zf5EJ7CPH1S82tLhShLJPbX49H6/uORt9Yb2Qa5N8u3D3Frlu8XIe7M8m3Xs7l1l75fEefOXXr9eE6+fjwnv18p7vkzNMfzGn5fWm/uqP0pymb1vLpd/PLusnXbMDfP0W2Ie+foPsSdc3S/AufN9fe2MT5f5fH+OfKrVStvniPyPeeIfH6OyOfniHx8juyeu46DL3LLczPsT1cNffsGVx4Ysaf1Ce5vBe1fZT6vUSJfCDFzGw4pb4UYeTv641d8fzcWu46pmy3XY/dtv7st17sH2cLzI+ljszPb3j4jcbvpq+nsXwXJp4MPnq9av8fuCZKMmde2pbw+Q8b2bSmp+Tb++iTe0+l+HHcHtln2K7XndZu+cKI1yxUKHiE2x8a+obd/2Df09v/yANvTAdaXB3j80WcJnwWW/nxj+vPAjruvB+4mlPZB8rG6lL4LIt8wT7dbiOrmPN1uO27P023Xobo7T7ddiOrWPN2+CBR+rR78vDTAT0Vg7JaiypP1aQGpdr8631sdbOxeDBw5nmO+7roauxemaqGHvOjzamm3y6EUXoQpzzeFPx2TfYhGrrT3QtBPI0/fA//dmTG39/vMJh1vhsh++v50in9lR54/G/n00davhOh51f9jb9EXQljhgm4zFvP4o4OUzq9cf264+FIQy/mkYlPeDDIPVp2R946MdBa9sPdypeYc3+NMKe9tBW1jz7O3XwjRBp2Wzwu0lHn7WpsV1R+Xc+OdjSilsxbgeCvbSs18feB7W6HCZViz90J0OuDHfG9HODmrvLcjlVV3qr61I5aNQNb6OwFm41tG7+3EkdOtPywP+btM3z11+vzsngdfuXpvIPLUnqYfjuQmwPbi4BGCz2Uf8+XMz9w1h60PbWeQufmGwm6W4+P5hccVBlfjT481frrcmrtXoeT5ne7XF2zl86m0bZA1C3YwC1bfDDM1rzPm81s3Xwsi+WTige3dIPkwcT4/kPxaEF78f4xyf/NcHVnK59C6OVfvBnn63P0Xg+RHCB7Y3wtyf6LzF0N7bxL5F9tydwb4V2FuTgHP7Srvt0dmG+beFPA+xK0p4F+E+HAK+N4z3+31SzYDludZl5+/Ur+9zGdhyF7nWyFGPuIsz7/aXwkxjWXcjvJOiMe8T2UOub61FSwEt9ZQfC/EZCHV8taOPC6peYt5vrcVLJFd2vOa8F8I0Z7e2H2eNNKfv6Sif+jdSs1LoceVxHuD0Y7ck+fmjHfH870QVZjvled3KKfeD5FfT6rPn3B9N8TTk+svhchrqSqmb4WoOe30oOOtEC1rb/3hEvkrW9GfFqOXz0O8d1B5hbM+3wh/aSx4kazV9w4q68fX5/XjvxSi8IUPffOg5kdkH/jWVqwlbJlwam+FeFpJdzxf5f8UYu7WkXo85GIJqKeFzn/qPtr/qgq/qvrenmTLcnle1PtLITpPqd9LkjImnwY7yps7wjvKh3wcory7FUaIt7L98XvOWDT7eCt+Pqj/8/F///Svf/nHv/z17//6p//4y9//9u+Pv/nfK9g//vKn//XXP1//9//859/+9enf/sf/+2/xb/7XP/7y17/+5f/+y7/94+//+uf//Z//+POKtP7db8f1P//D1lq6pqr/859+K+v/r32yx5Xy4/9X//e6/n3v69+vv9B7G//Uu9b1D/xvrOX1Hv8z/+d/r03+/wA="
|
|
2615
2615
|
}
|
|
2616
2616
|
],
|
|
2617
2617
|
"outputs": {
|
|
@@ -3457,39 +3457,39 @@
|
|
|
3457
3457
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/state_vars/map.nr",
|
|
3458
3458
|
"source": "use crate::state_vars::state_variable::StateVariable;\nuse dep::protocol_types::{storage::map::derive_storage_slot_in_map, traits::ToField};\n\n/// Map\n///\n/// A key-value storage container that maps keys to state variables, similar\n/// to Solidity mappings.\n///\n/// `Map` enables you to associate keys (like addresses or other identifiers)\n/// with state variables in your Aztec smart contract. This is conceptually\n/// similar to Solidity's `mapping(K => V)` syntax, where you can store and\n/// retrieve values by their associated keys.\n///\n/// You can declare a state variable contained within a Map in your contract's\n/// #[storage] struct.\n///\n/// For example, you might use\n/// `Map<AztecAddress, PublicMutable<FieldNote, Context>, Context>` to track\n/// token balances for different users, similar to how you'd use\n/// `mapping(address => uint256)` in Solidity.\n///\n/// > Aside: the verbose `Context` in the declaration is a consequence of\n/// > leveraging Noir's regular syntax for generics to ensure that certain\n/// > state variable methods can only be called in some contexts (private,\n/// > public, utility).\n///\n/// The methods of Map are:\n/// - `at` (access state variable for a given key)\n/// (see the method's own doc comments for more info).\n///\n/// ## Generic Parameters\n/// - `K`: The key type (must implement `ToField` trait for hashing)\n/// - `V`: The value type:\n/// - any Aztec state variable (variable that implements the StateVariable trait):\n/// - `PublicMutable`\n/// - `PublicImmutable`\n/// - `DelayedPublicMutable`\n/// - `Map`\n/// - `Context`: The execution context (handles private/public function\n/// contexts)\n///\n/// ## Usage\n/// Maps are typically declared in your contract's #[storage] struct and\n/// accessed\n/// using the `at(key)` method to get the state variable for a specific key.\n/// The resulting state variable can then be read from or written to using its\n/// own methods.\n///\n/// Note that maps cannot be used with owned state variables (variables that\n/// implement the OwnedStateVariable trait) - those need to be wrapped in an\n/// `Owned` state variable instead.\n///\n/// ## Advanced\n/// Internally, `Map` uses a single base storage slot to represent the\n/// mapping\n/// itself, similar to Solidity's approach. Individual key-value pairs are\n/// stored at derived storage slots computed by hashing the base storage\n/// slot\n/// with the key using Poseidon2. This ensures:\n/// - No storage slot collisions between different keys\n/// - Uniform distribution of storage slots across the storage space\n/// - Compatibility with Aztec's storage tree structure\n/// - Gas-efficient storage access patterns similar to Solidity mappings\n///\n/// The storage slot derivation uses `derive_storage_slot_in_map(base_slot,\n/// key)` which computes `poseidon2_hash([base_slot, key.to_field()])`,\n/// ensuring cryptographically secure slot separation.\n///\n/// docs:start:map\npub struct Map<K, V, Context> {\n pub context: Context,\n storage_slot: Field,\n}\n\n// Map reserves a single storage slot regardless of what it stores because\n// nothing is stored at said slot: it is only used to derive the storage slots\n// of nested state variables, which is expected to never result in collisions\n// or slots being close to one another due to these being hashes. This mirrors\n// the strategy adopted by Solidity mappings.\nimpl<K, V, Context> StateVariable<1, Context> for Map<K, V, Context> {\n fn new(context: Context, storage_slot: Field) -> Self {\n assert(storage_slot != 0, \"Storage slot 0 not allowed. Storage slots must start from 1.\");\n Map { context, storage_slot }\n }\n\n fn get_storage_slot(self) -> Field {\n self.storage_slot\n }\n}\n\nimpl<K, V, Context> Map<K, V, Context> {\n /// Returns the state variable associated with the given key.\n ///\n /// This is equivalent to accessing `mapping[key]` in Solidity. It returns\n /// the state variable instance for the specified key, which can then be\n /// used to read or write the value at that key.\n ///\n /// Unlike Solidity mappings which return the value directly, this returns\n /// the state variable wrapper (like PublicMutable, nested Map etc.)\n /// that you then call methods on to interact with the actual value.\n ///\n /// # Arguments\n ///\n /// * `key` - The key to look up in the map. Must implement the ToField\n /// trait (which most basic Noir & Aztec types do).\n ///\n /// # Returns\n ///\n /// * `V` - The state variable instance for this key. You can then call\n /// methods like `.read()`, `.write()`, `.get_note()`, etc. on this\n /// depending on the specific state variable type.\n ///\n /// # Example\n ///\n /// ```noir\n /// // Get a user's balance (assuming PrivateMutable<FieldNote>)\n /// let user_balance = self.storage.balances.at(user_address);\n /// let current_note = user_balance.get_note();\n ///\n /// // Update the balance\n /// user_balance.replace(new_note);\n /// ```\n ///\n pub fn at<let N: u32>(self, key: K) -> V\n where\n K: ToField,\n V: StateVariable<N, Context>,\n {\n V::new(\n self.context,\n derive_storage_slot_in_map(self.storage_slot, key),\n )\n }\n}\n"
|
|
3459
3459
|
},
|
|
3460
|
-
"
|
|
3460
|
+
"233": {
|
|
3461
3461
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/utils/array/append.nr",
|
|
3462
3462
|
"source": "/// Appends the elements of the second `BoundedVec` to the end of the first one. The resulting `BoundedVec` can have any arbitrary maximum length, but it must be\n/// large enough to fit all of the elements of both the first and second vectors.\npub fn append<T, let ALen: u32, let BLen: u32, let DstLen: u32>(\n a: BoundedVec<T, ALen>,\n b: BoundedVec<T, BLen>,\n) -> BoundedVec<T, DstLen> {\n let mut dst = BoundedVec::new();\n\n dst.extend_from_bounded_vec(a);\n dst.extend_from_bounded_vec(b);\n\n dst\n}\n\nmod test {\n use super::append;\n\n #[test]\n unconstrained fn append_empty_vecs() {\n let a: BoundedVec<_, 3> = BoundedVec::new();\n let b: BoundedVec<_, 14> = BoundedVec::new();\n\n let result: BoundedVec<Field, 5> = append(a, b);\n\n assert_eq(result.len(), 0);\n assert_eq(result.storage(), std::mem::zeroed());\n }\n\n #[test]\n unconstrained fn append_non_empty_vecs() {\n let a: BoundedVec<_, 3> = BoundedVec::from_array([1, 2, 3]);\n let b: BoundedVec<_, 14> = BoundedVec::from_array([4, 5, 6]);\n\n let result: BoundedVec<Field, 8> = append(a, b);\n\n assert_eq(result.len(), 6);\n assert_eq(result.storage(), [1, 2, 3, 4, 5, 6, std::mem::zeroed(), std::mem::zeroed()]);\n }\n\n #[test(should_fail_with = \"out of bounds\")]\n unconstrained fn append_non_empty_vecs_insufficient_max_len() {\n let a: BoundedVec<_, 3> = BoundedVec::from_array([1, 2, 3]);\n let b: BoundedVec<_, 14> = BoundedVec::from_array([4, 5, 6]);\n\n let _: BoundedVec<Field, 5> = append(a, b);\n }\n}\n"
|
|
3463
3463
|
},
|
|
3464
|
-
"
|
|
3464
|
+
"236": {
|
|
3465
3465
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/utils/array/subarray.nr",
|
|
3466
3466
|
"source": "/// Returns `DstLen` elements from a source array, starting at `offset`. `DstLen` must not be larger than the number\n/// of elements past `offset`.\n///\n/// Examples:\n/// ```\n/// let foo: [Field; 2] = subarray([1, 2, 3, 4, 5], 2);\n/// assert_eq(foo, [3, 4]);\n///\n/// let bar: [Field; 5] = subarray([1, 2, 3, 4, 5], 2); // fails - we can't return 5 elements since only 3 remain\n/// ```\npub fn subarray<T, let SrcLen: u32, let DstLen: u32>(src: [T; SrcLen], offset: u32) -> [T; DstLen] {\n assert(offset + DstLen <= SrcLen, \"DstLen too large for offset\");\n\n let mut dst: [T; DstLen] = std::mem::zeroed();\n for i in 0..DstLen {\n dst[i] = src[i + offset];\n }\n\n dst\n}\n\nmod test {\n use super::subarray;\n\n #[test]\n unconstrained fn subarray_into_empty() {\n // In all of these cases we're setting DstLen to be 0, so we always get back an empty array.\n assert_eq(subarray::<Field, _, _>([], 0), []);\n assert_eq(subarray([1, 2, 3, 4, 5], 0), []);\n assert_eq(subarray([1, 2, 3, 4, 5], 2), []);\n }\n\n #[test]\n unconstrained fn subarray_complete() {\n assert_eq(subarray::<Field, _, _>([], 0), []);\n assert_eq(subarray([1, 2, 3, 4, 5], 0), [1, 2, 3, 4, 5]);\n }\n\n #[test]\n unconstrained fn subarray_different_end_sizes() {\n // We implicitly select how many values to read in the size of the return array\n assert_eq(subarray([1, 2, 3, 4, 5], 1), [2, 3, 4, 5]);\n assert_eq(subarray([1, 2, 3, 4, 5], 1), [2, 3, 4]);\n assert_eq(subarray([1, 2, 3, 4, 5], 1), [2, 3]);\n assert_eq(subarray([1, 2, 3, 4, 5], 1), [2]);\n }\n\n #[test(should_fail_with = \"DstLen too large for offset\")]\n unconstrained fn subarray_offset_too_large() {\n // With an offset of 1 we can only request up to 4 elements\n let _: [_; 5] = subarray([1, 2, 3, 4, 5], 1);\n }\n\n #[test(should_fail)]\n unconstrained fn subarray_bad_return_value() {\n assert_eq(subarray([1, 2, 3, 4, 5], 1), [3, 3, 4, 5]);\n }\n}\n"
|
|
3467
3467
|
},
|
|
3468
|
-
"
|
|
3468
|
+
"237": {
|
|
3469
3469
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/utils/array/subbvec.nr",
|
|
3470
3470
|
"source": "use crate::utils::array;\n\n/// Returns `DstMaxLen` elements from a source BoundedVec, starting at `offset`. `offset` must not be larger than the\n/// original length, and `DstLen` must not be larger than the total number of elements past `offset` (including the\n/// zeroed elements past `len()`).\n///\n/// Only elements at the beginning of the vector can be removed: it is not possible to also remove elements at the end\n/// of the vector by passing a value for `DstLen` that is smaller than `len() - offset`.\n///\n/// Examples:\n/// ```\n/// let foo = BoundedVec::<_, 10>::from_array([1, 2, 3, 4, 5]);\n/// assert_eq(subbvec(foo, 2), BoundedVec::<_, 8>::from_array([3, 4, 5]));\n///\n/// let bar: BoundedVec<_, 1> = subbvec(foo, 2); // fails - we can't return just 1 element since 3 remain\n/// let baz: BoundedVec<_, 10> = subbvec(foo, 3); // fails - we can't return 10 elements since only 7 remain\n/// ```\npub fn subbvec<T, let SrcMaxLen: u32, let DstMaxLen: u32>(\n bvec: BoundedVec<T, SrcMaxLen>,\n offset: u32,\n) -> BoundedVec<T, DstMaxLen> {\n // from_parts_unchecked does not verify that the elements past len are zeroed, but that is not an issue in our case\n // because we're constructing the new storage array as a subarray of the original one (which should have zeroed\n // storage past len), guaranteeing correctness. This is because `subarray` does not allow extending arrays past\n // their original length.\n BoundedVec::from_parts_unchecked(array::subarray(bvec.storage(), offset), bvec.len() - offset)\n}\n\nmod test {\n use super::subbvec;\n\n #[test]\n unconstrained fn subbvec_empty() {\n let bvec = BoundedVec::<Field, 0>::from_array([]);\n assert_eq(subbvec(bvec, 0), bvec);\n }\n\n #[test]\n unconstrained fn subbvec_complete() {\n let bvec = BoundedVec::<_, 10>::from_array([1, 2, 3, 4, 5]);\n assert_eq(subbvec(bvec, 0), bvec);\n\n let smaller_capacity = BoundedVec::<_, 5>::from_array([1, 2, 3, 4, 5]);\n assert_eq(subbvec(bvec, 0), smaller_capacity);\n }\n\n #[test]\n unconstrained fn subbvec_partial() {\n let bvec = BoundedVec::<_, 10>::from_array([1, 2, 3, 4, 5]);\n\n assert_eq(subbvec(bvec, 2), BoundedVec::<_, 8>::from_array([3, 4, 5]));\n assert_eq(subbvec(bvec, 2), BoundedVec::<_, 3>::from_array([3, 4, 5]));\n }\n\n #[test]\n unconstrained fn subbvec_into_empty() {\n let bvec: BoundedVec<_, 10> = BoundedVec::from_array([1, 2, 3, 4, 5]);\n assert_eq(subbvec(bvec, 5), BoundedVec::<_, 5>::from_array([]));\n }\n\n #[test(should_fail)]\n unconstrained fn subbvec_offset_past_len() {\n let bvec = BoundedVec::<_, 10>::from_array([1, 2, 3, 4, 5]);\n let _: BoundedVec<_, 1> = subbvec(bvec, 6);\n }\n\n #[test(should_fail)]\n unconstrained fn subbvec_insufficient_dst_len() {\n let bvec = BoundedVec::<_, 10>::from_array([1, 2, 3, 4, 5]);\n\n // We're not providing enough space to hold all of the items inside the original BoundedVec. subbvec can cause\n // for the capacity to reduce, but not the length (other than by len - offset).\n let _: BoundedVec<_, 1> = subbvec(bvec, 2);\n }\n\n #[test(should_fail_with = \"DstLen too large for offset\")]\n unconstrained fn subbvec_dst_len_causes_enlarge() {\n let bvec = BoundedVec::<_, 10>::from_array([1, 2, 3, 4, 5]);\n\n // subbvec does not supprt capacity increases\n let _: BoundedVec<_, 11> = subbvec(bvec, 0);\n }\n\n #[test(should_fail_with = \"DstLen too large for offset\")]\n unconstrained fn subbvec_dst_len_too_large_for_offset() {\n let bvec = BoundedVec::<_, 10>::from_array([1, 2, 3, 4, 5]);\n\n // This effectively requests a capacity increase, since there'd be just one element plus the 5 empty slots,\n // which is less than 7.\n let _: BoundedVec<_, 7> = subbvec(bvec, 4);\n }\n}\n"
|
|
3471
3471
|
},
|
|
3472
|
-
"
|
|
3472
|
+
"239": {
|
|
3473
3473
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/utils/conversion/bytes_to_fields.nr",
|
|
3474
3474
|
"source": "use std::static_assert;\n\n// These functions are used to facilitate the conversion of log ciphertext between byte and field representations.\n//\n// `bytes_to_fields` uses fixed-size arrays since encryption contexts have compile-time size information.\n// `bytes_from_fields` uses BoundedVec for flexibility in unconstrained contexts where sizes are dynamic.\n//\n// Together they provide bidirectional conversion between bytes and fields when processing encrypted logs.\n\n/// Converts the input bytes into an array of fields. A Field is ~254 bits meaning that each field can store 31 whole\n/// bytes. Use `bytes_from_fields` to obtain the original bytes array.\n///\n/// The input bytes are chunked into chunks of 31 bytes. Each 31-byte chunk is viewed as big-endian, and is converted\n/// into a Field.\n/// For example, [1, 10, 3, ..., 0] (31 bytes) is encoded as [1 * 256^30 + 10 * 256^29 + 3 * 256^28 + ... + 0]\n/// Note: N must be a multiple of 31 bytes\npub fn bytes_to_fields<let N: u32>(bytes: [u8; N]) -> [Field; N / 31] {\n // Assert that N is a multiple of 31\n static_assert(N % 31 == 0, \"N must be a multiple of 31\");\n\n let mut fields = [0; N / 31];\n\n // Since N is a multiple of 31, we can simply process all chunks fully\n for i in 0..N / 31 {\n let mut field = 0;\n for j in 0..31 {\n // Shift the existing value left by 8 bits and add the new byte\n field = field * 256 + bytes[i * 31 + j] as Field;\n }\n fields[i] = field;\n }\n\n fields\n}\n\n/// Converts an input BoundedVec of fields into a BoundedVec of bytes in big-endian order. Arbitrary Field arrays\n/// are not allowed: this is assumed to be an array obtained via `bytes_to_fields`, i.e. one that actually represents\n/// bytes. To convert a Field array into bytes, use `fields_to_bytes`.\n///\n/// Each input field must contain at most 31 bytes (this is constrained to be so).\n/// Each field is converted into 31 big-endian bytes, and the resulting 31-byte chunks are concatenated\n/// back together in the order of the original fields.\npub fn bytes_from_fields<let N: u32>(fields: BoundedVec<Field, N>) -> BoundedVec<u8, N * 31> {\n let mut bytes = BoundedVec::new();\n\n for i in 0..fields.len() {\n let field = fields.get(i);\n\n // We expect that the field contains at most 31 bytes of information.\n field.assert_max_bit_size::<248>();\n\n // Now we can safely convert the field to 31 bytes.\n let field_as_bytes: [u8; 31] = field.to_be_bytes();\n\n for j in 0..31 {\n bytes.push(field_as_bytes[j]);\n }\n }\n\n bytes\n}\n\nmod tests {\n use crate::utils::array::subarray;\n use super::{bytes_from_fields, bytes_to_fields};\n\n #[test]\n unconstrained fn random_bytes_to_fields_and_back(input: [u8; 93]) {\n let fields = bytes_to_fields(input);\n\n // At this point in production, the log flies through the system and we get a BoundedVec on the other end.\n // So we need to convert the field array to a BoundedVec to be able to feed it to the `bytes_from_fields`\n // function.\n let fields_as_bounded_vec = BoundedVec::<_, 6>::from_array(fields);\n\n let bytes_back = bytes_from_fields(fields_as_bounded_vec);\n\n // Compare the original input with the round-tripped result\n assert_eq(bytes_back.len(), input.len());\n assert_eq(subarray(bytes_back.storage(), 0), input);\n }\n\n #[test(should_fail_with = \"N must be a multiple of 31\")]\n unconstrained fn bytes_to_fields_input_length_not_multiple_of_31() {\n // Try to convert 32 bytes (not a multiple of 31) to fields\n let _fields = bytes_to_fields([0; 32]);\n }\n\n}\n"
|
|
3475
3475
|
},
|
|
3476
|
-
"
|
|
3476
|
+
"240": {
|
|
3477
3477
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/utils/conversion/fields_to_bytes.nr",
|
|
3478
3478
|
"source": "// These functions are used to facilitate the conversion of log plaintext represented as fields into bytes and back.\n//\n// `fields_to_bytes` uses fixed-size arrays since encryption contexts have compile-time size information.\n// `fields_from_bytes` uses BoundedVec for flexibility in unconstrained contexts where sizes are dynamic.\n//\n// Together they provide bidirectional conversion between fields and bytes.\n\n/// Converts an input array of fields into a single array of bytes. Use `fields_from_bytes` to obtain the original\n/// field array.\n/// Each field is converted to a 32-byte big-endian array.\n///\n/// For example, if you have a field array [123, 456], it will be converted to a 64-byte array:\n/// [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,123, // First field (32 bytes)\n/// 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,200] // Second field (32 bytes)\n///\n/// Since a field is ~254 bits, you'll end up with a subtle 2-bit \"gap\" at the big end, every 32 bytes. Be careful\n/// that such a gap doesn't leak information! This could happen if you for example expected the output to be\n/// indistinguishable from random bytes.\npub fn fields_to_bytes<let N: u32>(fields: [Field; N]) -> [u8; 32 * N] {\n let mut bytes = [0; 32 * N];\n\n for i in 0..N {\n let field_as_bytes: [u8; 32] = fields[i].to_be_bytes();\n\n for j in 0..32 {\n bytes[i * 32 + j] = field_as_bytes[j];\n }\n }\n\n bytes\n}\n\n/// Converts an input BoundedVec of bytes into a BoundedVec of fields. Arbitrary byte arrays are not allowed: this\n/// is assumed to be an array obtained via `fields_to_bytes`, i.e. one that actually represents fields. To convert\n/// a byte array into Fields, use `bytes_to_fields`.\n///\n/// The input bytes are chunked into chunks of 32 bytes. Each 32-byte chunk is viewed as big-endian, and is converted\n/// into a Field.\n/// For example, [1, 10, 3, ..., 0] (32 bytes) is encoded as [1 * 256^31 + 10 * 256^30 + 3 * 256^29 + ... + 0]\n/// Note 1: N must be a multiple of 32 bytes\n/// Note 2: The max value check code was taken from std::field::to_be_bytes function.\npub fn fields_from_bytes<let N: u32>(bytes: BoundedVec<u8, N>) -> BoundedVec<Field, N / 32> {\n // Assert that input length is a multiple of 32\n assert(bytes.len() % 32 == 0, \"Input length must be a multiple of 32\");\n\n let mut fields = BoundedVec::new();\n\n let p = std::field::modulus_be_bytes();\n\n // Since input length is a multiple of 32, we can simply process all chunks fully\n for i in 0..bytes.len() / 32 {\n let mut field = 0;\n\n // Process each byte in the 32-byte chunk\n let mut ok = false;\n\n for j in 0..32 {\n let next_byte = bytes.get(i * 32 + j);\n field = field * 256 + next_byte as Field;\n\n if !ok {\n if next_byte != p[j] {\n assert(next_byte < p[j], \"Value does not fit in field\");\n ok = true;\n }\n }\n }\n assert(ok, \"Value does not fit in field\");\n\n fields.push(field);\n }\n\n fields\n}\n\nmod tests {\n use crate::utils::array::subarray;\n use super::{fields_from_bytes, fields_to_bytes};\n\n #[test]\n unconstrained fn random_fields_to_bytes_and_back(input: [Field; 3]) {\n // Convert to bytes\n let bytes = fields_to_bytes(input);\n\n // At this point in production, the log flies through the system and we get a BoundedVec on the other end.\n // So we need to convert the field array to a BoundedVec to be able to feed it to the `fields_from_bytes`\n // function.\n // 113 is an arbitrary max length that is larger than the input length of 96.\n let bytes_as_bounded_vec = BoundedVec::<_, 113>::from_array(bytes);\n\n // Convert back to fields\n let fields_back = fields_from_bytes(bytes_as_bounded_vec);\n\n // Compare the original input with the round-tripped result\n assert_eq(fields_back.len(), input.len());\n assert_eq(subarray(fields_back.storage(), 0), input);\n }\n\n #[test(should_fail_with = \"Input length must be a multiple of 32\")]\n unconstrained fn to_fields_assert() {\n // 143 is an arbitrary max length that is larger than 33\n let input = BoundedVec::<_, 143>::from_array([\n 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,\n 25, 26, 27, 28, 29, 30, 31, 32, 33,\n ]);\n\n // This should fail since 33 is not a multiple of 32\n let _fields = fields_from_bytes(input);\n }\n\n #[test]\n unconstrained fn fields_from_bytes_max_value() {\n let max_field_as_bytes: [u8; 32] = (-1).to_be_bytes();\n let input = BoundedVec::<_, 32>::from_array(max_field_as_bytes);\n\n let fields = fields_from_bytes(input);\n\n // The result should be a largest value storable in a field (-1 since we are modulo-ing)\n assert_eq(fields.get(0), -1);\n }\n\n // In this test we verify that overflow check works by taking the max allowed value, bumping a random byte\n // and then feeding it to `fields_from_bytes` as input.\n #[test(should_fail_with = \"Value does not fit in field\")]\n unconstrained fn fields_from_bytes_overflow(random_value: u8) {\n let index_of_byte_to_bump = random_value % 32;\n\n // Obtain the byte representation of the maximum field value\n let max_field_value_as_bytes: [u8; 32] = (-1).to_be_bytes();\n\n let byte_to_bump = max_field_value_as_bytes[index_of_byte_to_bump as u32];\n\n // Skip test execution if the selected byte is already at maximum value (255).\n // This is acceptable since we are using fuzz testing to generate many test cases.\n if byte_to_bump != 255 {\n let mut input = BoundedVec::<_, 32>::from_array(max_field_value_as_bytes);\n\n // Increment the selected byte to exceed the field's maximum value\n input.set(index_of_byte_to_bump as u32, byte_to_bump + 1);\n\n // Attempt the conversion, which should fail due to the value exceeding the field's capacity\n let _fields = fields_from_bytes(input);\n }\n }\n\n}\n"
|
|
3479
3479
|
},
|
|
3480
|
-
"
|
|
3480
|
+
"243": {
|
|
3481
3481
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/utils/point.nr",
|
|
3482
3482
|
"source": "use protocol_types::{point::Point, utils::field::sqrt};\n\n// I am storing the modulus minus 1 divided by 2 here because full modulus would throw \"String literal too large\" error\n// Full modulus is 21888242871839275222246405745257275088548364400416034343698204186575808495617\nglobal BN254_FR_MODULUS_DIV_2: Field =\n 10944121435919637611123202872628637544274182200208017171849102093287904247808;\n\n/// Converts a point to a byte array.\n///\n/// We don't serialize the point at infinity flag because this function is used in situations where we do not want\n/// to waste the extra byte (encrypted log).\npub fn point_to_bytes(p: Point) -> [u8; 32] {\n // Note that there is 1 more free bit in the 32 bytes (254 bits currently occupied by the x coordinate, 1 bit for\n // the \"sign\") so it's possible to use that last bit as an \"is_infinite\" flag if desired in the future.\n assert(!p.is_infinite, \"Cannot serialize point at infinity as bytes.\");\n\n let mut result: [u8; 32] = p.x.to_be_bytes();\n\n if get_sign_of_point(p) {\n // y is <= (modulus - 1) / 2 so we set the sign bit to 1\n // Here we leverage that field fits into 254 bits (log2(Fr.MODULUS) < 254) and given that we serialize Fr to 32\n // bytes and we use big-endian the 2 most significant bits are never populated. Hence we can use one of\n // the bits as a sign bit.\n result[0] += 128;\n }\n\n result\n}\n\n/**\n * Returns: true if p.y <= MOD_DIV_2, else false.\n */\npub fn get_sign_of_point(p: Point) -> bool {\n // We store only a \"sign\" of the y coordinate because the rest can be derived from the x coordinate. To get\n // the sign we check if the y coordinate is less or equal than the curve's order minus 1 divided by 2.\n // Ideally we'd do `y <= MOD_DIV_2`, but there's no `lte` function, so instead we do `!(y > MOD_DIV_2)`, which is\n // equivalent, and then rewrite that as `!(MOD_DIV_2 < y)`, since we also have no `gt` function.\n !BN254_FR_MODULUS_DIV_2.lt(p.y)\n}\n\n/// Returns a `Point` in the Grumpkin curve given its x coordinate.\n///\n/// Because not all values in the field are valid x coordinates of points in the curve (i.e. there\n/// is no corresponding y value in the field that satisfies the curve equation), it may not be\n/// possible to reconstruct a `Point`. `Option::none()` is returned in such cases.\npub fn point_from_x_coord(x: Field) -> Option<Point> {\n // y ^ 2 = x ^ 3 - 17\n let rhs = x * x * x - 17;\n sqrt(rhs).map(|y| Point { x, y, is_infinite: false })\n}\n\n/// Returns a `Point` in the Grumpkin curve given its x coordinate and sign for the y coordinate.\n///\n/// Because not all values in the field are valid x coordinates of points in the curve (i.e. there\n/// is no corresponding y value in the field that satisfies the curve equation), it may not be\n/// possible to reconstruct a `Point`. `Option::none()` is returned in such cases.\n///\n/// @param x - The x coordinate of the point\n/// @param sign - The \"sign\" of the y coordinate - determines whether y <= (Fr.MODULUS - 1) / 2\npub fn point_from_x_coord_and_sign(x: Field, sign: bool) -> Option<Point> {\n // y ^ 2 = x ^ 3 - 17\n let rhs = x * x * x - 17;\n\n sqrt(rhs).map(|y| {\n // If there is a square root, we need to ensure it has the correct \"sign\"\n let y_is_positive = !BN254_FR_MODULUS_DIV_2.lt(y);\n let final_y = if y_is_positive == sign { y } else { -y };\n Point { x, y: final_y, is_infinite: false }\n })\n}\n\nmod test {\n use crate::utils::point::{point_from_x_coord, point_from_x_coord_and_sign, point_to_bytes};\n use dep::protocol_types::point::Point;\n use dep::protocol_types::utils::field::pow;\n\n #[test]\n unconstrained fn test_point_to_bytes_positive_sign() {\n let p = Point {\n x: 0x1af41f5de96446dc3776a1eb2d98bb956b7acd9979a67854bec6fa7c2973bd73,\n y: 0x07fc22c7f2c7057571f137fe46ea9c95114282bc95d37d71ec4bfb88de457d4a,\n is_infinite: false,\n };\n\n let compressed_point = point_to_bytes(p);\n\n let expected_compressed_point_positive_sign = [\n 154, 244, 31, 93, 233, 100, 70, 220, 55, 118, 161, 235, 45, 152, 187, 149, 107, 122,\n 205, 153, 121, 166, 120, 84, 190, 198, 250, 124, 41, 115, 189, 115,\n ];\n assert_eq(expected_compressed_point_positive_sign, compressed_point);\n }\n\n #[test]\n unconstrained fn test_point_to_bytes_negative_sign() {\n let p = Point {\n x: 0x247371652e55dd74c9af8dbe9fb44931ba29a9229994384bd7077796c14ee2b5,\n y: 0x26441aec112e1ae4cee374f42556932001507ad46e255ffb27369c7e3766e5c0,\n is_infinite: false,\n };\n\n let compressed_point = point_to_bytes(p);\n\n let expected_compressed_point_negative_sign = [\n 36, 115, 113, 101, 46, 85, 221, 116, 201, 175, 141, 190, 159, 180, 73, 49, 186, 41, 169,\n 34, 153, 148, 56, 75, 215, 7, 119, 150, 193, 78, 226, 181,\n ];\n\n assert_eq(expected_compressed_point_negative_sign, compressed_point);\n }\n\n #[test]\n unconstrained fn test_point_from_x_coord_and_sign() {\n // Test positive y coordinate\n let x = 0x1af41f5de96446dc3776a1eb2d98bb956b7acd9979a67854bec6fa7c2973bd73;\n let sign = true;\n let p = point_from_x_coord_and_sign(x, sign).unwrap();\n\n assert_eq(p.x, x);\n assert_eq(p.y, 0x07fc22c7f2c7057571f137fe46ea9c95114282bc95d37d71ec4bfb88de457d4a);\n assert_eq(p.is_infinite, false);\n\n // Test negative y coordinate\n let x2 = 0x247371652e55dd74c9af8dbe9fb44931ba29a9229994384bd7077796c14ee2b5;\n let sign2 = false;\n let p2 = point_from_x_coord_and_sign(x2, sign2).unwrap();\n\n assert_eq(p2.x, x2);\n assert_eq(p2.y, 0x26441aec112e1ae4cee374f42556932001507ad46e255ffb27369c7e3766e5c0);\n assert_eq(p2.is_infinite, false);\n }\n\n #[test]\n unconstrained fn test_point_from_x_coord_valid() {\n // x = 8 is a known quadratic residue - should give a valid point\n let result = point_from_x_coord(Field::from(8));\n assert(result.is_some());\n\n let point = result.unwrap();\n assert_eq(point.x, Field::from(8));\n // Check curve equation y^2 = x^3 - 17\n assert_eq(pow(point.y, 2), pow(point.x, 3) - 17);\n }\n\n #[test]\n unconstrained fn test_point_from_x_coord_invalid() {\n // x = 3 is a non-residue for this curve - should give None\n let x = Field::from(3);\n let maybe_point = point_from_x_coord(x);\n assert(maybe_point.is_none());\n }\n\n}\n"
|
|
3483
3483
|
},
|
|
3484
|
-
"
|
|
3484
|
+
"247": {
|
|
3485
3485
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/aztec-nr/aztec/src/utils/with_hash.nr",
|
|
3486
3486
|
"source": "use crate::{\n context::{PublicContext, UtilityContext},\n history::public_storage::PublicStorageHistoricalRead,\n oracle,\n};\nuse dep::protocol_types::{\n abis::block_header::BlockHeader, address::AztecAddress, hash::poseidon2_hash, traits::Packable,\n};\n\n/// A struct that allows for efficient reading of value `T` from public storage in private.\n///\n/// The efficient reads are achieved by verifying large values through a single hash check\n/// and then proving inclusion only of the hash in public storage. This reduces the number\n/// of required tree inclusion proofs from `M` to 1.\n///\n/// # Type Parameters\n/// - `T`: The underlying type being wrapped, must implement `Packable<N>`\n/// - `M`: The number of field elements required to pack values of type `T`\npub struct WithHash<T, let M: u32> {\n value: T,\n packed: [Field; M],\n hash: Field,\n}\n\nimpl<T, let M: u32> WithHash<T, M>\nwhere\n T: Packable<N = M> + Eq,\n{\n pub fn new(value: T) -> Self {\n let packed = value.pack();\n Self { value, packed, hash: poseidon2_hash(packed) }\n }\n\n pub fn get_value(self) -> T {\n self.value\n }\n\n pub fn get_hash(self) -> Field {\n self.hash\n }\n\n pub fn public_storage_read(context: PublicContext, storage_slot: Field) -> T {\n context.storage_read(storage_slot)\n }\n\n pub unconstrained fn utility_public_storage_read(\n context: UtilityContext,\n storage_slot: Field,\n ) -> T {\n context.storage_read(storage_slot)\n }\n\n pub fn historical_public_storage_read(\n header: BlockHeader,\n address: AztecAddress,\n storage_slot: Field,\n ) -> T {\n let historical_block_number = header.global_variables.block_number;\n\n // We could simply produce historical inclusion proofs for each field in `packed`, but that would require one\n // full sibling path per storage slot (since due to kernel siloing the storage is not contiguous). Instead, we\n // get an oracle to provide us the values, and instead we prove inclusion of their hash, which is both a much\n // smaller proof (a single slot), and also independent of the size of T (except in that we need to pack and hash T).\n let hint = WithHash::new(\n // Safety: We verify that a hash of the hint/packed data matches the stored hash.\n unsafe {\n oracle::storage::storage_read(address, storage_slot, historical_block_number)\n },\n );\n\n let hash = header.public_storage_historical_read(storage_slot + M as Field, address);\n\n if hash != 0 {\n assert_eq(hash, hint.get_hash(), \"Hint values do not match hash\");\n } else {\n // The hash slot can only hold a zero if it is uninitialized. Therefore, the hints must then be zero\n // (i.e. the default value for public storage) as well.\n assert_eq(\n hint.get_value(),\n T::unpack(std::mem::zeroed()),\n \"Non-zero hint for zero hash\",\n );\n };\n\n hint.get_value()\n }\n}\n\n// Note: I don't derive Packable on `WithHash` because `derive_serialize` function does not support setting \"N = M\"\n// as I do here 3 lines below. This could be worked around by placing the \"where\" clause directly on the `WithHash`\n// struct, but Jake mentioned that the syntax is not expected to be supported at least until Noir 1.0.\n// Relevant discussion on Slack:\n// https://aztecprotocol.slack.com/archives/C04QF64EDNV/p1752593876160699?thread_ts=1752589887.955379&cid=C04QF64EDNV\nimpl<T, let M: u32> Packable for WithHash<T, M>\nwhere\n T: Packable<N = M>,\n{\n let N: u32 = M + 1;\n\n fn pack(self) -> [Field; Self::N] {\n let mut result: [Field; Self::N] = std::mem::zeroed();\n for i in 0..M {\n result[i] = self.packed[i];\n }\n result[M] = self.hash;\n\n result\n }\n\n fn unpack(packed: [Field; Self::N]) -> Self {\n let mut value_packed = [0; M];\n for i in 0..M {\n value_packed[i] = packed[i];\n }\n let hash = packed[M];\n\n Self { value: T::unpack(value_packed), packed: value_packed, hash }\n }\n}\n\nmod test {\n use crate::{\n test::{helpers::test_environment::TestEnvironment, mocks::mock_struct::MockStruct},\n utils::with_hash::WithHash,\n };\n use dep::protocol_types::hash::poseidon2_hash;\n use dep::protocol_types::traits::{Packable, ToField};\n use dep::std::test::OracleMock;\n\n global STORAGE_SLOT: Field = 47;\n\n #[test]\n unconstrained fn create_and_recover() {\n let value = MockStruct { a: 5, b: 3 };\n let value_with_hash = WithHash::new(value);\n let recovered = WithHash::unpack(value_with_hash.pack());\n\n assert_eq(recovered.value, value);\n assert_eq(recovered.packed, value.pack());\n assert_eq(recovered.hash, poseidon2_hash(value.pack()));\n }\n\n #[test]\n unconstrained fn read_uninitialized_value() {\n let env = TestEnvironment::new();\n\n env.private_context(|context| {\n let result = WithHash::<MockStruct, _>::historical_public_storage_read(\n context.anchor_block_header,\n context.this_address(),\n STORAGE_SLOT,\n );\n\n assert_eq(result, std::mem::zeroed());\n });\n }\n\n #[test]\n unconstrained fn read_initialized_value() {\n let env = TestEnvironment::new();\n\n let value = MockStruct { a: 5, b: 3 };\n let value_with_hash = WithHash::new(value);\n\n env.public_context(|context| { context.storage_write(STORAGE_SLOT, value_with_hash); });\n\n env.private_context(|context| {\n let result = WithHash::<MockStruct, _>::historical_public_storage_read(\n context.anchor_block_header,\n context.this_address(),\n STORAGE_SLOT,\n );\n assert_eq(result, value);\n });\n }\n\n #[test(should_fail_with = \"Non-zero hint for zero hash\")]\n unconstrained fn bad_hint_uninitialized_value() {\n let env = TestEnvironment::new();\n\n env.private_context(|context| {\n let block_header = context.anchor_block_header;\n let address = context.this_address();\n\n // Mock the oracle to return a non-zero hint/packed value\n let value_packed = MockStruct { a: 1, b: 1 }.pack();\n let _ = OracleMock::mock(\"utilityStorageRead\")\n .with_params((\n address.to_field(), STORAGE_SLOT, block_header.global_variables.block_number,\n value_packed.len(),\n ))\n .returns(value_packed)\n .times(1);\n\n // This should fail because the hint value is non-zero and the hash is zero (default value of storage)\n let _ = WithHash::<MockStruct, _>::historical_public_storage_read(\n block_header,\n address,\n STORAGE_SLOT,\n );\n });\n }\n\n #[test(should_fail_with = \"Hint values do not match hash\")]\n unconstrained fn bad_hint_initialized_value() {\n let env = TestEnvironment::new();\n\n env.public_context(|context| {\n // Write the value and hash separately so that the hash is wrong\n let value = MockStruct { a: 5, b: 3 };\n context.storage_write(STORAGE_SLOT, value);\n\n let incorrect_hash = 13;\n let hash_storage_slot = STORAGE_SLOT + (value.pack().len() as Field);\n context.storage_write(hash_storage_slot, [incorrect_hash]);\n });\n\n env.private_context(|context| {\n let _ = WithHash::<MockStruct, _>::historical_public_storage_read(\n context.anchor_block_header,\n context.this_address(),\n STORAGE_SLOT,\n );\n });\n }\n}\n"
|
|
3487
3487
|
},
|
|
3488
|
-
"
|
|
3488
|
+
"254": {
|
|
3489
3489
|
"path": "/home/aztec-dev/nargo/github.com/noir-lang/poseidon/v0.1.1/src/poseidon2.nr",
|
|
3490
3490
|
"source": "use std::default::Default;\nuse std::hash::Hasher;\n\ncomptime global RATE: u32 = 3;\n\npub struct Poseidon2 {\n cache: [Field; 3],\n state: [Field; 4],\n cache_size: u32,\n squeeze_mode: bool, // 0 => absorb, 1 => squeeze\n}\n\nimpl Poseidon2 {\n #[no_predicates]\n pub fn hash<let N: u32>(input: [Field; N], message_size: u32) -> Field {\n Poseidon2::hash_internal(input, message_size, message_size != N)\n }\n\n pub(crate) fn new(iv: Field) -> Poseidon2 {\n let mut result =\n Poseidon2 { cache: [0; 3], state: [0; 4], cache_size: 0, squeeze_mode: false };\n result.state[RATE] = iv;\n result\n }\n\n fn perform_duplex(&mut self) {\n // add the cache into sponge state\n for i in 0..RATE {\n // We effectively zero-pad the cache by only adding to the state\n // cache that is less than the specified `cache_size`\n if i < self.cache_size {\n self.state[i] += self.cache[i];\n }\n }\n self.state = crate::poseidon2_permutation(self.state, 4);\n }\n\n fn absorb(&mut self, input: Field) {\n assert(!self.squeeze_mode);\n if self.cache_size == RATE {\n // If we're absorbing, and the cache is full, apply the sponge permutation to compress the cache\n self.perform_duplex();\n self.cache[0] = input;\n self.cache_size = 1;\n } else {\n // If we're absorbing, and the cache is not full, add the input into the cache\n self.cache[self.cache_size] = input;\n self.cache_size += 1;\n }\n }\n\n fn squeeze(&mut self) -> Field {\n assert(!self.squeeze_mode);\n // If we're in absorb mode, apply sponge permutation to compress the cache.\n self.perform_duplex();\n self.squeeze_mode = true;\n\n // Pop one item off the top of the permutation and return it.\n self.state[0]\n }\n\n fn hash_internal<let N: u32>(\n input: [Field; N],\n in_len: u32,\n is_variable_length: bool,\n ) -> Field {\n let two_pow_64 = 18446744073709551616;\n let iv: Field = (in_len as Field) * two_pow_64;\n let mut sponge = Poseidon2::new(iv);\n for i in 0..input.len() {\n if i < in_len {\n sponge.absorb(input[i]);\n }\n }\n\n // In the case where the hash preimage is variable-length, we append `1` to the end of the input, to distinguish\n // from fixed-length hashes. (the combination of this additional field element + the hash IV ensures\n // fixed-length and variable-length hashes do not collide)\n if is_variable_length {\n sponge.absorb(1);\n }\n sponge.squeeze()\n }\n}\n\npub struct Poseidon2Hasher {\n _state: [Field],\n}\n\nimpl Hasher for Poseidon2Hasher {\n fn finish(self) -> Field {\n let iv: Field = (self._state.len() as Field) * 18446744073709551616; // iv = (self._state.len() << 64)\n let mut sponge = Poseidon2::new(iv);\n for i in 0..self._state.len() {\n sponge.absorb(self._state[i]);\n }\n sponge.squeeze()\n }\n\n fn write(&mut self, input: Field) {\n self._state = self._state.push_back(input);\n }\n}\n\nimpl Default for Poseidon2Hasher {\n fn default() -> Self {\n Poseidon2Hasher { _state: &[] }\n }\n}\n"
|
|
3491
3491
|
},
|
|
3492
|
-
"
|
|
3492
|
+
"296": {
|
|
3493
3493
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/abis/private_log.nr",
|
|
3494
3494
|
"source": "use crate::{\n abis::log::Log,\n constants::PRIVATE_LOG_SIZE_IN_FIELDS,\n side_effect::{Counted, Scoped},\n traits::{Deserialize, Empty, Serialize},\n};\nuse std::meta::derive;\n\npub type PrivateLog = Log<PRIVATE_LOG_SIZE_IN_FIELDS>;\n\n#[derive(Eq, Deserialize, Serialize)]\npub struct PrivateLogData {\n pub log: Log<PRIVATE_LOG_SIZE_IN_FIELDS>,\n // The counter of the note hash this log is for. 0 if it does not link to a note hash.\n pub note_hash_counter: u32,\n}\n\nimpl Empty for PrivateLogData {\n fn empty() -> Self {\n PrivateLogData { log: PrivateLog::empty(), note_hash_counter: 0 }\n }\n}\n\nimpl PrivateLogData {\n pub fn count(self, counter: u32) -> Counted<Self> {\n Counted::new(self, counter)\n }\n}\n\nimpl Scoped<Counted<PrivateLogData>> {\n pub fn expose_to_public(self) -> PrivateLog {\n self.innermost().log\n }\n}\n"
|
|
3495
3495
|
},
|
|
@@ -3497,79 +3497,79 @@
|
|
|
3497
3497
|
"path": "std/array/mod.nr",
|
|
3498
3498
|
"source": "use crate::cmp::{Eq, Ord};\nuse crate::convert::From;\nuse crate::runtime::is_unconstrained;\n\nmod check_shuffle;\nmod quicksort;\n\nimpl<T, let N: u32> [T; N] {\n /// Returns the length of this array.\n ///\n /// ```noir\n /// fn len(self) -> Field\n /// ```\n ///\n /// example\n ///\n /// ```noir\n /// fn main() {\n /// let array = [42, 42];\n /// assert(array.len() == 2);\n /// }\n /// ```\n #[builtin(array_len)]\n pub fn len(self) -> u32 {}\n\n /// Returns this array as a slice.\n ///\n /// ```noir\n /// let array = [1, 2];\n /// let slice = array.as_slice();\n /// assert_eq(slice, &[1, 2]);\n /// ```\n #[builtin(as_slice)]\n pub fn as_slice(self) -> [T] {}\n\n /// Applies a function to each element of this array, returning a new array containing the mapped elements.\n ///\n /// Example:\n ///\n /// ```rust\n /// let a = [1, 2, 3];\n /// let b = a.map(|a| a * 2);\n /// assert_eq(b, [2, 4, 6]);\n /// ```\n pub fn map<U, Env>(self, f: fn[Env](T) -> U) -> [U; N] {\n let uninitialized = crate::mem::zeroed();\n let mut ret = [uninitialized; N];\n\n for i in 0..self.len() {\n ret[i] = f(self[i]);\n }\n\n ret\n }\n\n /// Applies a function to each element of this array along with its index,\n /// returning a new array containing the mapped elements.\n ///\n /// Example:\n ///\n /// ```rust\n /// let a = [1, 2, 3];\n /// let b = a.mapi(|i, a| i + a * 2);\n /// assert_eq(b, [2, 5, 8]);\n /// ```\n pub fn mapi<U, Env>(self, f: fn[Env](u32, T) -> U) -> [U; N] {\n let uninitialized = crate::mem::zeroed();\n let mut ret = [uninitialized; N];\n\n for i in 0..self.len() {\n ret[i] = f(i, self[i]);\n }\n\n ret\n }\n\n /// Applies a function to each element of this array.\n ///\n /// Example:\n ///\n /// ```rust\n /// let a = [1, 2, 3];\n /// let mut b = [0; 3];\n /// let mut i = 0;\n /// a.for_each(|x| {\n /// b[i] = x;\n /// i += 1;\n /// });\n /// assert_eq(a, b);\n /// ```\n pub fn for_each<Env>(self, f: fn[Env](T) -> ()) {\n for i in 0..self.len() {\n f(self[i]);\n }\n }\n\n /// Applies a function to each element of this array along with its index.\n ///\n /// Example:\n ///\n /// ```rust\n /// let a = [1, 2, 3];\n /// let mut b = [0; 3];\n /// a.for_eachi(|i, x| {\n /// b[i] = x;\n /// });\n /// assert_eq(a, b);\n /// ```\n pub fn for_eachi<Env>(self, f: fn[Env](u32, T) -> ()) {\n for i in 0..self.len() {\n f(i, self[i]);\n }\n }\n\n /// Applies a function to each element of the array, returning the final accumulated value. The first\n /// parameter is the initial value.\n ///\n /// This is a left fold, so the given function will be applied to the accumulator and first element of\n /// the array, then the second, and so on. For a given call the expected result would be equivalent to:\n ///\n /// ```rust\n /// let a1 = [1];\n /// let a2 = [1, 2];\n /// let a3 = [1, 2, 3];\n ///\n /// let f = |a, b| a - b;\n /// a1.fold(10, f); //=> f(10, 1)\n /// a2.fold(10, f); //=> f(f(10, 1), 2)\n /// a3.fold(10, f); //=> f(f(f(10, 1), 2), 3)\n ///\n /// assert_eq(a3.fold(10, f), 10 - 1 - 2 - 3);\n /// ```\n pub fn fold<U, Env>(self, mut accumulator: U, f: fn[Env](U, T) -> U) -> U {\n for elem in self {\n accumulator = f(accumulator, elem);\n }\n accumulator\n }\n\n /// Same as fold, but uses the first element as the starting element.\n ///\n /// Requires the input array to be non-empty.\n ///\n /// Example:\n ///\n /// ```noir\n /// fn main() {\n /// let arr = [1, 2, 3, 4];\n /// let reduced = arr.reduce(|a, b| a + b);\n /// assert(reduced == 10);\n /// }\n /// ```\n pub fn reduce<Env>(self, f: fn[Env](T, T) -> T) -> T {\n let mut accumulator = self[0];\n for i in 1..self.len() {\n accumulator = f(accumulator, self[i]);\n }\n accumulator\n }\n\n /// Returns true if all the elements in this array satisfy the given predicate.\n ///\n /// Example:\n ///\n /// ```noir\n /// fn main() {\n /// let arr = [2, 2, 2, 2, 2];\n /// let all = arr.all(|a| a == 2);\n /// assert(all);\n /// }\n /// ```\n pub fn all<Env>(self, predicate: fn[Env](T) -> bool) -> bool {\n let mut ret = true;\n for elem in self {\n ret &= predicate(elem);\n }\n ret\n }\n\n /// Returns true if any of the elements in this array satisfy the given predicate.\n ///\n /// Example:\n ///\n /// ```noir\n /// fn main() {\n /// let arr = [2, 2, 2, 2, 5];\n /// let any = arr.any(|a| a == 5);\n /// assert(any);\n /// }\n /// ```\n pub fn any<Env>(self, predicate: fn[Env](T) -> bool) -> bool {\n let mut ret = false;\n for elem in self {\n ret |= predicate(elem);\n }\n ret\n }\n\n /// Concatenates this array with another array.\n ///\n /// Example:\n ///\n /// ```noir\n /// fn main() {\n /// let arr1 = [1, 2, 3, 4];\n /// let arr2 = [6, 7, 8, 9, 10, 11];\n /// let concatenated_arr = arr1.concat(arr2);\n /// assert(concatenated_arr == [1, 2, 3, 4, 6, 7, 8, 9, 10, 11]);\n /// }\n /// ```\n pub fn concat<let M: u32>(self, array2: [T; M]) -> [T; N + M] {\n let mut result = [crate::mem::zeroed(); N + M];\n for i in 0..N {\n result[i] = self[i];\n }\n for i in 0..M {\n result[i + N] = array2[i];\n }\n result\n }\n}\n\nimpl<T, let N: u32> [T; N]\nwhere\n T: Ord + Eq,\n{\n /// Returns a new sorted array. The original array remains untouched. Notice that this function will\n /// only work for arrays of fields or integers, not for any arbitrary type. This is because the sorting\n /// logic it uses internally is optimized specifically for these values. If you need a sort function to\n /// sort any type, you should use the [`Self::sort_via`] function.\n ///\n /// Example:\n ///\n /// ```rust\n /// fn main() {\n /// let arr = [42, 32];\n /// let sorted = arr.sort();\n /// assert(sorted == [32, 42]);\n /// }\n /// ```\n pub fn sort(self) -> Self {\n self.sort_via(|a, b| a <= b)\n }\n}\n\nimpl<T, let N: u32> [T; N]\nwhere\n T: Eq,\n{\n /// Returns a new sorted array by sorting it with a custom comparison function.\n /// The original array remains untouched.\n /// The ordering function must return true if the first argument should be sorted to be before the second argument or is equal to the second argument.\n ///\n /// Using this method with an operator like `<` that does not return `true` for equal values will result in an assertion failure for arrays with equal elements.\n ///\n /// Example:\n ///\n /// ```rust\n /// fn main() {\n /// let arr = [42, 32]\n /// let sorted_ascending = arr.sort_via(|a, b| a <= b);\n /// assert(sorted_ascending == [32, 42]); // verifies\n ///\n /// let sorted_descending = arr.sort_via(|a, b| a >= b);\n /// assert(sorted_descending == [32, 42]); // does not verify\n /// }\n /// ```\n pub fn sort_via<Env>(self, ordering: fn[Env](T, T) -> bool) -> Self {\n // Safety: `sorted` array is checked to be:\n // a. a permutation of `input`'s elements\n // b. satisfying the predicate `ordering`\n let sorted = unsafe { quicksort::quicksort(self, ordering) };\n\n if !is_unconstrained() {\n for i in 0..N - 1 {\n assert(\n ordering(sorted[i], sorted[i + 1]),\n \"Array has not been sorted correctly according to `ordering`.\",\n );\n }\n check_shuffle::check_shuffle(self, sorted);\n }\n sorted\n }\n}\n\nimpl<let N: u32> [u8; N] {\n /// Converts a byte array of type `[u8; N]` to a string. Note that this performs no UTF-8 validation -\n /// the given array is interpreted as-is as a string.\n ///\n /// Example:\n ///\n /// ```rust\n /// fn main() {\n /// let hi = [104, 105].as_str_unchecked();\n /// assert_eq(hi, \"hi\");\n /// }\n /// ```\n #[builtin(array_as_str_unchecked)]\n pub fn as_str_unchecked(self) -> str<N> {}\n}\n\nimpl<let N: u32> From<str<N>> for [u8; N] {\n /// Returns an array of the string bytes.\n fn from(s: str<N>) -> Self {\n s.as_bytes()\n }\n}\n\nmod test {\n #[test]\n fn map_empty() {\n assert_eq([].map(|x| x + 1), []);\n }\n\n global arr_with_100_values: [u32; 100] = [\n 42, 123, 87, 93, 48, 80, 50, 5, 104, 84, 70, 47, 119, 66, 71, 121, 3, 29, 42, 118, 2, 54,\n 89, 44, 81, 0, 26, 106, 68, 96, 84, 48, 95, 54, 45, 32, 89, 100, 109, 19, 37, 41, 19, 98,\n 53, 114, 107, 66, 6, 74, 13, 19, 105, 64, 123, 28, 44, 50, 89, 58, 123, 126, 21, 43, 86, 35,\n 21, 62, 82, 0, 108, 120, 72, 72, 62, 80, 12, 71, 70, 86, 116, 73, 38, 15, 127, 81, 30, 8,\n 125, 28, 26, 69, 114, 63, 27, 28, 61, 42, 13, 32,\n ];\n global expected_with_100_values: [u32; 100] = [\n 0, 0, 2, 3, 5, 6, 8, 12, 13, 13, 15, 19, 19, 19, 21, 21, 26, 26, 27, 28, 28, 28, 29, 30, 32,\n 32, 35, 37, 38, 41, 42, 42, 42, 43, 44, 44, 45, 47, 48, 48, 50, 50, 53, 54, 54, 58, 61, 62,\n 62, 63, 64, 66, 66, 68, 69, 70, 70, 71, 71, 72, 72, 73, 74, 80, 80, 81, 81, 82, 84, 84, 86,\n 86, 87, 89, 89, 89, 93, 95, 96, 98, 100, 104, 105, 106, 107, 108, 109, 114, 114, 116, 118,\n 119, 120, 121, 123, 123, 123, 125, 126, 127,\n ];\n fn sort_u32(a: u32, b: u32) -> bool {\n a <= b\n }\n\n #[test]\n fn test_sort() {\n let mut arr: [u32; 7] = [3, 6, 8, 10, 1, 2, 1];\n\n let sorted = arr.sort();\n\n let expected: [u32; 7] = [1, 1, 2, 3, 6, 8, 10];\n assert(sorted == expected);\n }\n\n #[test]\n fn test_sort_100_values() {\n let mut arr: [u32; 100] = [\n 42, 123, 87, 93, 48, 80, 50, 5, 104, 84, 70, 47, 119, 66, 71, 121, 3, 29, 42, 118, 2,\n 54, 89, 44, 81, 0, 26, 106, 68, 96, 84, 48, 95, 54, 45, 32, 89, 100, 109, 19, 37, 41,\n 19, 98, 53, 114, 107, 66, 6, 74, 13, 19, 105, 64, 123, 28, 44, 50, 89, 58, 123, 126, 21,\n 43, 86, 35, 21, 62, 82, 0, 108, 120, 72, 72, 62, 80, 12, 71, 70, 86, 116, 73, 38, 15,\n 127, 81, 30, 8, 125, 28, 26, 69, 114, 63, 27, 28, 61, 42, 13, 32,\n ];\n\n let sorted = arr.sort();\n\n let expected: [u32; 100] = [\n 0, 0, 2, 3, 5, 6, 8, 12, 13, 13, 15, 19, 19, 19, 21, 21, 26, 26, 27, 28, 28, 28, 29, 30,\n 32, 32, 35, 37, 38, 41, 42, 42, 42, 43, 44, 44, 45, 47, 48, 48, 50, 50, 53, 54, 54, 58,\n 61, 62, 62, 63, 64, 66, 66, 68, 69, 70, 70, 71, 71, 72, 72, 73, 74, 80, 80, 81, 81, 82,\n 84, 84, 86, 86, 87, 89, 89, 89, 93, 95, 96, 98, 100, 104, 105, 106, 107, 108, 109, 114,\n 114, 116, 118, 119, 120, 121, 123, 123, 123, 125, 126, 127,\n ];\n assert(sorted == expected);\n }\n\n #[test]\n fn test_sort_100_values_comptime() {\n let sorted = arr_with_100_values.sort();\n assert(sorted == expected_with_100_values);\n }\n\n #[test]\n fn test_sort_via() {\n let mut arr: [u32; 7] = [3, 6, 8, 10, 1, 2, 1];\n\n let sorted = arr.sort_via(sort_u32);\n\n let expected: [u32; 7] = [1, 1, 2, 3, 6, 8, 10];\n assert(sorted == expected);\n }\n\n #[test]\n fn test_sort_via_100_values() {\n let mut arr: [u32; 100] = [\n 42, 123, 87, 93, 48, 80, 50, 5, 104, 84, 70, 47, 119, 66, 71, 121, 3, 29, 42, 118, 2,\n 54, 89, 44, 81, 0, 26, 106, 68, 96, 84, 48, 95, 54, 45, 32, 89, 100, 109, 19, 37, 41,\n 19, 98, 53, 114, 107, 66, 6, 74, 13, 19, 105, 64, 123, 28, 44, 50, 89, 58, 123, 126, 21,\n 43, 86, 35, 21, 62, 82, 0, 108, 120, 72, 72, 62, 80, 12, 71, 70, 86, 116, 73, 38, 15,\n 127, 81, 30, 8, 125, 28, 26, 69, 114, 63, 27, 28, 61, 42, 13, 32,\n ];\n\n let sorted = arr.sort_via(sort_u32);\n\n let expected: [u32; 100] = [\n 0, 0, 2, 3, 5, 6, 8, 12, 13, 13, 15, 19, 19, 19, 21, 21, 26, 26, 27, 28, 28, 28, 29, 30,\n 32, 32, 35, 37, 38, 41, 42, 42, 42, 43, 44, 44, 45, 47, 48, 48, 50, 50, 53, 54, 54, 58,\n 61, 62, 62, 63, 64, 66, 66, 68, 69, 70, 70, 71, 71, 72, 72, 73, 74, 80, 80, 81, 81, 82,\n 84, 84, 86, 86, 87, 89, 89, 89, 93, 95, 96, 98, 100, 104, 105, 106, 107, 108, 109, 114,\n 114, 116, 118, 119, 120, 121, 123, 123, 123, 125, 126, 127,\n ];\n assert(sorted == expected);\n }\n\n #[test]\n fn mapi_empty() {\n assert_eq([].mapi(|i, x| i * x + 1), []);\n }\n\n #[test]\n fn for_each_empty() {\n let empty_array: [Field; 0] = [];\n empty_array.for_each(|_x| assert(false));\n }\n\n #[test]\n fn for_eachi_empty() {\n let empty_array: [Field; 0] = [];\n empty_array.for_eachi(|_i, _x| assert(false));\n }\n\n #[test]\n fn map_example() {\n let a = [1, 2, 3];\n let b = a.map(|a| a * 2);\n assert_eq(b, [2, 4, 6]);\n }\n\n #[test]\n fn mapi_example() {\n let a = [1, 2, 3];\n let b = a.mapi(|i, a| i + a * 2);\n assert_eq(b, [2, 5, 8]);\n }\n\n #[test]\n fn for_each_example() {\n let a = [1, 2, 3];\n let mut b = [0, 0, 0];\n let b_ref = &mut b;\n let mut i = 0;\n let i_ref = &mut i;\n a.for_each(|x| {\n b_ref[*i_ref] = x * 2;\n *i_ref += 1;\n });\n assert_eq(b, [2, 4, 6]);\n assert_eq(i, 3);\n }\n\n #[test]\n fn for_eachi_example() {\n let a = [1, 2, 3];\n let mut b = [0, 0, 0];\n let b_ref = &mut b;\n a.for_eachi(|i, a| { b_ref[i] = i + a * 2; });\n assert_eq(b, [2, 5, 8]);\n }\n\n #[test]\n fn concat() {\n let arr1 = [1, 2, 3, 4];\n let arr2 = [6, 7, 8, 9, 10, 11];\n let concatenated_arr = arr1.concat(arr2);\n assert_eq(concatenated_arr, [1, 2, 3, 4, 6, 7, 8, 9, 10, 11]);\n }\n\n #[test]\n fn concat_zero_length_with_something() {\n let arr1 = [];\n let arr2 = [1];\n let concatenated_arr = arr1.concat(arr2);\n assert_eq(concatenated_arr, [1]);\n }\n\n #[test]\n fn concat_something_with_zero_length() {\n let arr1 = [1];\n let arr2 = [];\n let concatenated_arr = arr1.concat(arr2);\n assert_eq(concatenated_arr, [1]);\n }\n\n #[test]\n fn concat_zero_lengths() {\n let arr1: [Field; 0] = [];\n let arr2: [Field; 0] = [];\n let concatenated_arr = arr1.concat(arr2);\n assert_eq(concatenated_arr, []);\n }\n}\n"
|
|
3499
3499
|
},
|
|
3500
|
-
"
|
|
3500
|
+
"312": {
|
|
3501
3501
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/address/aztec_address.nr",
|
|
3502
3502
|
"source": "use crate::{\n address::{\n partial_address::PartialAddress, salted_initialization_hash::SaltedInitializationHash,\n },\n constants::{\n AZTEC_ADDRESS_LENGTH, GENERATOR_INDEX__CONTRACT_ADDRESS_V1, MAX_FIELD_VALUE,\n MAX_PROTOCOL_CONTRACTS,\n },\n contract_class_id::ContractClassId,\n hash::poseidon2_hash_with_separator,\n public_keys::{IvpkM, NpkM, OvpkM, PublicKeys, ToPoint, TpkM},\n traits::{Deserialize, Empty, FromField, Packable, Serialize, ToField},\n utils::field::{pow, sqrt},\n};\n\n// We do below because `use crate::point::Point;` does not work\nuse dep::std::embedded_curve_ops::EmbeddedCurvePoint as Point;\n\nuse crate::public_keys::AddressPoint;\nuse std::{\n embedded_curve_ops::{EmbeddedCurveScalar, fixed_base_scalar_mul as derive_public_key},\n ops::Add,\n};\nuse std::meta::derive;\n\n// Aztec address\n#[derive(Deserialize, Eq, Packable, Serialize)]\npub struct AztecAddress {\n pub inner: Field,\n}\n\nimpl Empty for AztecAddress {\n fn empty() -> Self {\n Self { inner: 0 }\n }\n}\n\nimpl ToField for AztecAddress {\n fn to_field(self) -> Field {\n self.inner\n }\n}\n\nimpl FromField for AztecAddress {\n fn from_field(value: Field) -> AztecAddress {\n AztecAddress { inner: value }\n }\n}\n\nimpl AztecAddress {\n pub fn zero() -> Self {\n Self { inner: 0 }\n }\n\n /// Returns an address's `AddressPoint`, which can be used to create shared secrets with the owner\n /// of the address. If the address is invalid (i.e. it is not a properly derived Aztec address), then this\n /// returns `Option::none()`, and no shared secrets can be created.\n pub fn to_address_point(self) -> Option<AddressPoint> {\n // We compute the address point by taking our address, setting it to x, and then solving for y in the\n // equation which defines our bn curve:\n // y^2 = x^3 - 17; x = address\n let x = self.inner;\n let y_squared = pow(x, 3) - 17;\n\n // An invalid AztecAddress is one for which no y coordinate satisfies the curve equation, which we'll\n // identify by proving that the square root of y_squared does not exist.\n let mut y_opt = sqrt(y_squared);\n if y_opt.is_none() {\n Option::none()\n } else {\n let mut y = y_opt.unwrap();\n\n // If we get a negative y coordinate (any y where y > MAX_FIELD_VALUE / 2), we pin it to the\n // positive one (any value where y <= MAX_FIELD_VALUE / 2) by subtracting it from the Field modulus\n // note: The field modulus is MAX_FIELD_VALUE + 1\n if (!(y.lt(MAX_FIELD_VALUE / 2) | y.eq(MAX_FIELD_VALUE / 2))) {\n y = (MAX_FIELD_VALUE + 1) - y;\n }\n\n Option::some(\n AddressPoint { inner: Point { x: self.inner, y, is_infinite: false } },\n )\n }\n }\n\n pub fn compute(public_keys: PublicKeys, partial_address: PartialAddress) -> AztecAddress {\n let public_keys_hash = public_keys.hash();\n\n let pre_address = poseidon2_hash_with_separator(\n [public_keys_hash.to_field(), partial_address.to_field()],\n GENERATOR_INDEX__CONTRACT_ADDRESS_V1,\n );\n\n let address_point = derive_public_key(EmbeddedCurveScalar::from_field(pre_address)).add(\n public_keys.ivpk_m.to_point(),\n );\n\n // Note that our address is only the x-coordinate of the full address_point. This is okay because when people want to encrypt something and send it to us\n // they can recover our full point using the x-coordinate (our address itself). To do this, they recompute the y-coordinate according to the equation y^2 = x^3 - 17.\n // When they do this, they may get a positive y-coordinate (a value that is less than or equal to MAX_FIELD_VALUE / 2) or\n // a negative y-coordinate (a value that is more than MAX_FIELD_VALUE), and we cannot dictate which one they get and hence the recovered point may sometimes be different than the one\n // our secret can decrypt. Regardless though, they should and will always encrypt using point with the positive y-coordinate by convention.\n // This ensures that everyone encrypts to the same point given an arbitrary x-coordinate (address). This is allowed because even though our original point may not have a positive y-coordinate,\n // with our original secret, we will be able to derive the secret to the point with the flipped (and now positive) y-coordinate that everyone encrypts to.\n AztecAddress::from_field(address_point.x)\n }\n\n pub fn compute_from_class_id(\n contract_class_id: ContractClassId,\n salted_initialization_hash: SaltedInitializationHash,\n public_keys: PublicKeys,\n ) -> Self {\n let partial_address = PartialAddress::compute_from_salted_initialization_hash(\n contract_class_id,\n salted_initialization_hash,\n );\n\n AztecAddress::compute(public_keys, partial_address)\n }\n\n pub fn is_protocol_contract(self) -> bool {\n self.inner.lt(MAX_PROTOCOL_CONTRACTS as Field)\n }\n\n pub fn is_zero(self) -> bool {\n self.inner == 0\n }\n\n pub fn assert_is_zero(self) {\n assert(self.to_field() == 0);\n }\n}\n\n#[test]\nfn compute_address_from_partial_and_pub_keys() {\n let public_keys = PublicKeys {\n npk_m: NpkM {\n inner: Point {\n x: 0x22f7fcddfa3ce3e8f0cc8e82d7b94cdd740afa3e77f8e4a63ea78a239432dcab,\n y: 0x0471657de2b6216ade6c506d28fbc22ba8b8ed95c871ad9f3e3984e90d9723a7,\n is_infinite: false,\n },\n },\n ivpk_m: IvpkM {\n inner: Point {\n x: 0x111223493147f6785514b1c195bb37a2589f22a6596d30bb2bb145fdc9ca8f1e,\n y: 0x273bbffd678edce8fe30e0deafc4f66d58357c06fd4a820285294b9746c3be95,\n is_infinite: false,\n },\n },\n ovpk_m: OvpkM {\n inner: Point {\n x: 0x09115c96e962322ffed6522f57194627136b8d03ac7469109707f5e44190c484,\n y: 0x0c49773308a13d740a7f0d4f0e6163b02c5a408b6f965856b6a491002d073d5b,\n is_infinite: false,\n },\n },\n tpk_m: TpkM {\n inner: Point {\n x: 0x00d3d81beb009873eb7116327cf47c612d5758ef083d4fda78e9b63980b2a762,\n y: 0x2f567d22d2b02fe1f4ad42db9d58a36afd1983e7e2909d1cab61cafedad6193a,\n is_infinite: false,\n },\n },\n };\n\n let partial_address = PartialAddress::from_field(\n 0x0a7c585381b10f4666044266a02405bf6e01fa564c8517d4ad5823493abd31de,\n );\n\n let address = AztecAddress::compute(public_keys, partial_address);\n\n // The following value was generated by `derivation.test.ts`.\n // --> Run the test with AZTEC_GENERATE_TEST_DATA=1 flag to update test data.\n let expected_computed_address_from_partial_and_pubkeys =\n 0x24e4646f58b9fbe7d38e317db8d5636c423fbbdfbe119fc190fe9c64747e0c62;\n assert(address.to_field() == expected_computed_address_from_partial_and_pubkeys);\n}\n\n#[test]\nfn compute_preaddress_from_partial_and_pub_keys() {\n let pre_address = poseidon2_hash_with_separator([1, 2], GENERATOR_INDEX__CONTRACT_ADDRESS_V1);\n let expected_computed_preaddress_from_partial_and_pubkey =\n 0x23ce9be3fa3c846b0f9245cc796902e731d04f086e8a42473bb29e405fc98075;\n assert(pre_address == expected_computed_preaddress_from_partial_and_pubkey);\n}\n\n#[test]\nfn from_field_to_field() {\n let address = AztecAddress { inner: 37 };\n assert_eq(FromField::from_field(address.to_field()), address);\n}\n\n#[test]\nfn serde() {\n let address = AztecAddress { inner: 37 };\n // We use the AZTEC_ADDRESS_LENGTH constant to ensure that there is a match between the derived trait\n // implementation and the constant.\n let serialized: [Field; AZTEC_ADDRESS_LENGTH] = address.serialize();\n let deserialized = AztecAddress::deserialize(serialized);\n assert_eq(address, deserialized);\n}\n\n#[test]\nfn to_address_point_valid() {\n // x = 8 where x^3 - 17 = 512 - 17 = 495, which is a residue in this field\n let address = AztecAddress { inner: 8 };\n let maybe_point = address.to_address_point();\n assert(maybe_point.is_some());\n\n let point = maybe_point.unwrap().inner;\n // check that x is preserved\n assert_eq(point.x, Field::from(8));\n\n // check that the curve equation holds: y^2 == x^3 - 17\n assert_eq(pow(point.y, 2), pow(point.x, 3) - 17);\n}\n\n#[test]\nunconstrained fn to_address_point_invalid() {\n // x = 3 where x^3 - 17 = 27 - 17 = 10, which is a non-residue in this field\n let address = AztecAddress { inner: 3 }; //\n let maybe_point = address.to_address_point();\n assert(maybe_point.is_none());\n}\n"
|
|
3503
3503
|
},
|
|
3504
|
-
"
|
|
3504
|
+
"315": {
|
|
3505
3505
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/address/partial_address.nr",
|
|
3506
3506
|
"source": "use crate::{\n address::{aztec_address::AztecAddress, salted_initialization_hash::SaltedInitializationHash},\n constants::GENERATOR_INDEX__PARTIAL_ADDRESS,\n contract_class_id::ContractClassId,\n hash::poseidon2_hash_with_separator,\n traits::{Deserialize, Empty, Serialize, ToField},\n};\nuse std::meta::derive;\n\n// Partial address\n#[derive(Deserialize, Eq, Serialize)]\npub struct PartialAddress {\n pub inner: Field,\n}\n\nimpl ToField for PartialAddress {\n fn to_field(self) -> Field {\n self.inner\n }\n}\n\nimpl Empty for PartialAddress {\n fn empty() -> Self {\n Self { inner: 0 }\n }\n}\n\nimpl PartialAddress {\n pub fn from_field(field: Field) -> Self {\n Self { inner: field }\n }\n\n pub fn compute(\n contract_class_id: ContractClassId,\n salt: Field,\n initialization_hash: Field,\n deployer: AztecAddress,\n ) -> Self {\n PartialAddress::compute_from_salted_initialization_hash(\n contract_class_id,\n SaltedInitializationHash::compute(salt, initialization_hash, deployer),\n )\n }\n\n pub fn compute_from_salted_initialization_hash(\n contract_class_id: ContractClassId,\n salted_initialization_hash: SaltedInitializationHash,\n ) -> Self {\n PartialAddress::from_field(poseidon2_hash_with_separator(\n [contract_class_id.to_field(), salted_initialization_hash.to_field()],\n GENERATOR_INDEX__PARTIAL_ADDRESS,\n ))\n }\n\n pub fn to_field(self) -> Field {\n self.inner\n }\n\n pub fn is_zero(self) -> bool {\n self.to_field() == 0\n }\n\n pub fn assert_is_zero(self) {\n assert(self.to_field() == 0);\n }\n}\n\nmod test {\n use crate::{address::partial_address::PartialAddress, traits::{Deserialize, Serialize}};\n\n #[test]\n fn serialization_of_partial_address() {\n let item = PartialAddress::from_field(1);\n let serialized: [Field; 1] = item.serialize();\n let deserialized = PartialAddress::deserialize(serialized);\n assert_eq(item, deserialized);\n }\n}\n"
|
|
3507
3507
|
},
|
|
3508
|
-
"
|
|
3508
|
+
"317": {
|
|
3509
3509
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/address/salted_initialization_hash.nr",
|
|
3510
3510
|
"source": "use crate::{\n address::aztec_address::AztecAddress, constants::GENERATOR_INDEX__PARTIAL_ADDRESS,\n hash::poseidon2_hash_with_separator, traits::ToField,\n};\n\n// Salted initialization hash. Used in the computation of a partial address.\n#[derive(Eq)]\npub struct SaltedInitializationHash {\n pub inner: Field,\n}\n\nimpl ToField for SaltedInitializationHash {\n fn to_field(self) -> Field {\n self.inner\n }\n}\n\nimpl SaltedInitializationHash {\n pub fn from_field(field: Field) -> Self {\n Self { inner: field }\n }\n\n pub fn compute(salt: Field, initialization_hash: Field, deployer: AztecAddress) -> Self {\n SaltedInitializationHash::from_field(poseidon2_hash_with_separator(\n [salt, initialization_hash, deployer.to_field()],\n GENERATOR_INDEX__PARTIAL_ADDRESS,\n ))\n }\n\n pub fn assert_is_zero(self) {\n assert(self.to_field() == 0);\n }\n}\n"
|
|
3511
3511
|
},
|
|
3512
|
-
"
|
|
3512
|
+
"333": {
|
|
3513
3513
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/debug_log.nr",
|
|
3514
3514
|
"source": "// TODO: Expose other wrapped functions than debug (info, warn)\n// ['silent', 'fatal', 'error', 'warn', 'info', 'verbose', 'debug', 'trace']\n\npub global SILENT_LOG_LEVEL: u8 = 0;\npub global FATAL_LOG_LEVEL: u8 = 1;\npub global ERROR_LOG_LEVEL: u8 = 2;\npub global WARN_LOG_LEVEL: u8 = 3;\npub global INFO_LOG_LEVEL: u8 = 4;\npub global VERBOSE_LOG_LEVEL: u8 = 5;\npub global DEBUG_LOG_LEVEL: u8 = 6;\npub global TRACE_LOG_LEVEL: u8 = 7;\n\n/// Utility function to console.log data in the acir simulator.\n/// Example:\n/// debug_log(\"blah blah this is a debug string\");\npub fn debug_log<let N: u32>(msg: str<N>) {\n debug_log_format(msg, []);\n}\n\n/// Same as debug_log, but allows to customize the log level.\n/// Consider changing just to 'log'\npub fn debug_log_with_level<let N: u32>(log_level: u8, msg: str<N>) {\n debug_log_format_with_level(log_level, msg, []);\n}\n\n/// Utility function to console.log data in the acir simulator. This variant receives a format string in which the\n/// `${k}` tokens will be replaced with the k-eth value in the `args` array.\n/// Examples:\n/// debug_log_format(\"get_2(slot:{0}) =>\\n\\t0:{1}\\n\\t1:{2}\", [storage_slot, note0_hash, note1_hash]);\n/// debug_log_format(\"whole array: {}\", [e1, e2, e3, e4]);\npub fn debug_log_format<let M: u32, let N: u32>(msg: str<M>, args: [Field; N]) {\n // Safety: This oracle call returns nothing: we only call it for its side effects. It is therefore always safe\n // to call.\n unsafe { debug_log_array_oracle_wrapper(DEBUG_LOG_LEVEL, msg, args) };\n}\n\n/// Same as debug_log_format, but allows to customize the log level.\n/// Consider changing just to 'log_format'\npub fn debug_log_format_with_level<let M: u32, let N: u32>(\n log_level: u8,\n msg: str<M>,\n args: [Field; N],\n) {\n // Safety: This oracle call returns nothing: we only call it for its side effects. It is therefore always safe\n // to call.\n unsafe { debug_log_array_oracle_wrapper(log_level, msg, args) };\n}\n\n/// Utility function to console.log data in the acir simulator. This variant receives a format string in which the\n/// `${k}` tokens will be replaced with the k-eth value in the `args` slice.\n/// Examples:\n/// debug_log_format(\"get_2(slot:{0}) =>\\n\\t0:{1}\\n\\t1:{2}\", [storage_slot, note0_hash, note1_hash]);\n/// debug_log_format(\"whole slice: {}\", [e1, e2, e3, e4]);\npub fn debug_log_format_slice<let M: u32>(log_level: u8, msg: str<M>, args: [Field]) {\n // Safety: This oracle call returns nothing: we only call it for its side effects. It is therefore always safe\n // to call.\n unsafe { debug_log_slice_oracle_wrapper(log_level, msg, args) };\n}\n\n// We provide two versions of the debug log oracle: one that takes args as a slice and another one that takes args as an array.\n// We do this since conversion from array to slice generates overhead in public functions, since opcodes need to be emitted for the conversion.\n// By exposing the two flavors, we avoid conversions since the AVM is able to handle both arrays an slices in this oracle.\n\nunconstrained fn debug_log_slice_oracle_wrapper<let M: u32>(\n log_level: u8,\n msg: str<M>,\n args: [Field],\n) {\n debug_log_slice_oracle(log_level, msg, args);\n}\n\n// WARNING: sometimes when using debug logs the ACVM errors with: `thrown: \"solver opcode resolution error: cannot solve opcode: expression has too many unknowns x155\"`\n#[oracle(utilityDebugLog)]\nunconstrained fn debug_log_slice_oracle<let M: u32>(log_level: u8, msg: str<M>, args: [Field]) {}\n\nunconstrained fn debug_log_array_oracle_wrapper<let M: u32, let N: u32>(\n log_level: u8,\n msg: str<M>,\n args: [Field; N],\n) {\n debug_log_array_oracle(log_level, msg, N, args);\n}\n\n#[oracle(utilityDebugLog)]\nunconstrained fn debug_log_array_oracle<let M: u32, let N: u32>(\n log_level: u8,\n msg: str<M>,\n length: u32,\n args: [Field; N],\n) {}\n"
|
|
3515
3515
|
},
|
|
3516
|
-
"
|
|
3516
|
+
"335": {
|
|
3517
3517
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/delayed_public_mutable/delayed_public_mutable_values.nr",
|
|
3518
3518
|
"source": "use crate::{\n delayed_public_mutable::{\n scheduled_delay_change::ScheduledDelayChange, scheduled_value_change::ScheduledValueChange,\n },\n hash::poseidon2_hash,\n traits::{Hash, Packable},\n utils::arrays,\n};\nuse std::meta::derive;\n\nmod test;\n\n/// DelayedPublicMutableValues is just a wrapper around ScheduledValueChange and ScheduledDelayChange that then allows us\n/// to wrap both of these values in WithHash. WithHash allows for efficient read of values in private.\n///\n/// Note that the WithHash optimization does not work in public (due to there being no unconstrained). But we also want\n/// to be able to read the values efficiently in public and we want to be able to read each value separately. Reading\n/// the values separately is tricky because ScheduledValueChange and ScheduledDelayChange are packed together (sdc and\n/// svc.timestamp_of_change are stored in the same slot). For that reason we expose `unpack_value_change` and\n/// `unpack_delay_change` functions that can be used to extract the values from the packed representation. This\n/// is \"hacky\" but there is no way around it.\n#[derive(Eq)]\npub struct DelayedPublicMutableValues<T, let INITIAL_DELAY: u64> {\n pub svc: ScheduledValueChange<T>,\n pub sdc: ScheduledDelayChange<INITIAL_DELAY>,\n}\n\nimpl<T, let INITIAL_DELAY: u64> DelayedPublicMutableValues<T, INITIAL_DELAY> {\n pub fn new(svc: ScheduledValueChange<T>, sdc: ScheduledDelayChange<INITIAL_DELAY>) -> Self {\n DelayedPublicMutableValues { svc, sdc }\n }\n}\n\npub fn unpack_value_change<T, let M: u32>(packed: [Field; 2 * M + 1]) -> ScheduledValueChange<T>\nwhere\n T: Packable<N = M>,\n{\n let svc_pre_packed = arrays::subarray(packed, 1);\n let svc_post_packed = arrays::subarray(packed, M + 1);\n\n // We first cast to u32 as the timestamp_of_change is packed into the same field as the delay change and it\n // occupies the first 32 bits of the field.\n let timestamp_of_change = (packed[0] as u32) as u64;\n ScheduledValueChange::new(\n T::unpack(svc_pre_packed),\n T::unpack(svc_post_packed),\n timestamp_of_change,\n )\n}\n\npub fn unpack_delay_change<let INITIAL_DELAY: u64>(\n packed: Field,\n) -> ScheduledDelayChange<INITIAL_DELAY> {\n // This function expects to be called with just the first field of the packed representation, which contains sdc\n // and svc timestamp_of_change. We'll discard the svc component.\n let svc_timestamp_of_change = packed as u32;\n\n let mut tmp = (packed - svc_timestamp_of_change as Field) / TWO_POW_32;\n let sdc_timestamp_of_change = tmp as u32;\n\n tmp = (tmp - sdc_timestamp_of_change as Field) / TWO_POW_32;\n let sdc_post_is_some = (tmp as u1) != 0;\n\n tmp = (tmp - sdc_post_is_some as Field) / TWO_POW_8;\n let sdc_post_inner = tmp as u32;\n\n tmp = (tmp - sdc_post_inner as Field) / TWO_POW_32;\n let sdc_pre_is_some = (tmp as u1) != 0;\n\n tmp = (tmp - sdc_pre_is_some as Field) / TWO_POW_8;\n let sdc_pre_inner = tmp as u32;\n\n // Note that below we cast the values to u64 as that is the default type of timestamp in the system. Us packing\n // the values as u32 is a tech debt that is not worth tackling.\n ScheduledDelayChange {\n pre: if sdc_pre_is_some {\n Option::some(sdc_pre_inner as u64)\n } else {\n Option::none()\n },\n post: if sdc_post_is_some {\n Option::some(sdc_post_inner as u64)\n } else {\n Option::none()\n },\n timestamp_of_change: sdc_timestamp_of_change as u64,\n }\n}\n\nglobal TWO_POW_32: Field = 2.pow_32(32);\nglobal TWO_POW_8: Field = 2.pow_32(8);\n\n// We pack to `2 * N + 1` fields because ScheduledValueChange contains T twice (hence `2 * N`) and we need one extra\n// field to store ScheduledDelayChange and the timestamp_of_change of ScheduledValueChange.\nimpl<T, let INITIAL_DELAY: u64> Packable for DelayedPublicMutableValues<T, INITIAL_DELAY>\nwhere\n T: Packable,\n{\n let N: u32 = 2 * <T as Packable>::N + 1;\n\n fn pack(self) -> [Field; Self::N] {\n let mut result = [0; Self::N];\n\n // We pack sdc.pre, sdc.post, sdc.timestamp_of_change and svc.timestamp_of_change into a single field as follows:\n // [ sdc.pre_inner: u32 | sdc.pre_is_some: u8 | sdc.post_inner: u32 | sdc.post_is_some: u8 | sdc.timestamp_of_change: u32 | svc.timestamp_of_change: u32 ]\n // Note that the code below no longer works after 2106 as by that time the timestamp will overflow u32. This is a tech debt that is not worth tackling.\n result[0] = self.svc.timestamp_of_change as Field\n + ((self.sdc.timestamp_of_change as Field) * 2.pow_32(32))\n + ((self.sdc.post.is_some() as Field) * 2.pow_32(64))\n + ((self.sdc.post.unwrap_unchecked() as Field) * 2.pow_32(72))\n + ((self.sdc.pre.is_some() as Field) * 2.pow_32(104))\n + ((self.sdc.pre.unwrap_unchecked() as Field) * 2.pow_32(112));\n\n // Pack the pre and post values from ScheduledValueChange\n let svc_pre_packed = self.svc.pre.pack();\n let svc_post_packed = self.svc.post.pack();\n for i in 0..<T as Packable>::N {\n result[i + 1] = svc_pre_packed[i];\n result[i + 1 + <T as Packable>::N] = svc_post_packed[i];\n }\n result\n }\n\n fn unpack(fields: [Field; Self::N]) -> Self {\n let svc = unpack_value_change::<T, _>(fields);\n let sdc = unpack_delay_change::<INITIAL_DELAY>(fields[0]);\n Self::new(svc, sdc)\n }\n}\n\nimpl<T, let INITIAL_DELAY: u64> Hash for DelayedPublicMutableValues<T, INITIAL_DELAY>\nwhere\n T: Packable,\n{\n fn hash(self) -> Field {\n poseidon2_hash(self.pack())\n }\n}\n"
|
|
3519
3519
|
},
|
|
3520
|
-
"
|
|
3520
|
+
"338": {
|
|
3521
3521
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/delayed_public_mutable/scheduled_delay_change.nr",
|
|
3522
3522
|
"source": "use crate::traits::Empty;\nuse std::cmp::min;\n\nmod test;\n\n// This data structure is used by DelayedPublicMutable to store the minimum delay with which a ScheduledValueChange object can\n// schedule a change.\n// This delay is initially equal to INITIAL_DELAY, and can be safely mutated to any other value over time. This mutation\n// is performed via `schedule_change` in order to satisfy ScheduleValueChange constraints: if e.g. we allowed for the\n// delay to be decreased immediately then it'd be possible for the state variable to schedule a value change with a\n// reduced delay, invalidating prior private reads.\npub struct ScheduledDelayChange<let INITIAL_DELAY: u64> {\n // Both pre and post are stored in public storage, so by default they are zeroed. By wrapping them in an Option,\n // they default to Option::none(), which we detect and replace with INITIAL_DELAY. The end result is that a\n // ScheduledDelayChange that has not been initialized has a delay equal to INITIAL_DELAY, which is the desired\n // effect. Once initialized, the Option will never be none again.\n pub(crate) pre: Option<u64>,\n pub(crate) post: Option<u64>,\n // Timestamp at which `post` value is used instead of `pre`\n pub(crate) timestamp_of_change: u64,\n}\n\nimpl<let INITIAL_DELAY: u64> ScheduledDelayChange<INITIAL_DELAY> {\n pub fn new(pre: Option<u64>, post: Option<u64>, timestamp_of_change: u64) -> Self {\n Self { pre, post, timestamp_of_change }\n }\n\n /// Returns the current value of the delay stored in the data structure.\n /// This function only returns a meaningful value when called in public with the current timestamp - for\n /// historical private reads use `get_effective_minimum_delay_at` instead.\n pub fn get_current(self, current_timestamp: u64) -> u64 {\n // The post value becomes the current one at the timestamp of change, so any transaction that is included at or after\n // the timestamp of change will use the post value.\n if current_timestamp < self.timestamp_of_change {\n self.pre.unwrap_or(INITIAL_DELAY)\n } else {\n self.post.unwrap_or(INITIAL_DELAY)\n }\n }\n\n /// Returns the scheduled change, i.e. the post-change delay and the timestamp at which it will become the current\n /// delay. Note that this timestamp may be in the past if the change has already taken place.\n /// Additionally, further changes might be later scheduled, potentially canceling the one returned by this function.\n pub fn get_scheduled(self) -> (u64, u64) {\n (self.post.unwrap_or(INITIAL_DELAY), self.timestamp_of_change)\n }\n\n /// Mutates the delay change by scheduling a change at the current timestamp. This function is only meaningful\n /// when called in public with the current timestamp.\n /// The timestamp at which the new delay will become effective is determined automatically:\n /// - when increasing the delay, the change is effective immediately\n /// - when reducing the delay, the change will take effect after a delay equal to the difference between old and\n /// new delay. For example, if reducing from 3 days to 1 day, the reduction will be scheduled to happen after 2\n /// days.\n pub fn schedule_change(&mut self, new: u64, current_timestamp: u64) {\n let current = self.get_current(current_timestamp);\n\n // When changing the delay value we must ensure that it is not possible to produce a value change with a delay\n // shorter than the current one.\n let time_until_change = if new > current {\n // Increasing the delay value can therefore be done immediately: this does not invalidate prior constraints\n // about how quickly a value might be changed (indeed it strengthens them).\n 0\n } else {\n // Decreasing the delay requires waiting for the difference between current and new delay in order to ensure\n // that overall the current delay is respected.\n //\n // current delay earliest value timestamp of change\n // timestamp timestamp of change if delay remained unchanged\n // =======N=========================|================================X=================>\n // ^ ^ ^\n // |-------------------------|--------------------------------|\n // | time until change new delay |\n // ------------------------------------------------------------\n // current delay\n current - new\n };\n\n self.pre = Option::some(current);\n self.post = Option::some(new);\n self.timestamp_of_change = current_timestamp + time_until_change;\n }\n\n /// Returns the minimum delay before a value might mutate due to a scheduled change, from the perspective of some\n /// historical timestamp. It only returns a meaningful value when called in private with historical timestamps.\n /// This function can be used alongside `ScheduledValueChange.get_time_horizon` to properly constrain\n /// the `include_by_timestamp` transaction property when reading delayed mutable state.\n /// This value typically equals the current delay at the timestamp following the historical one (the earliest one in\n /// which a value change could be scheduled), but it also considers scenarios in which a delay reduction is\n /// scheduled to happen in the near future, resulting in a way to schedule a change with an overall delay lower than\n /// the current one.\n pub fn get_effective_minimum_delay_at(self, historical_timestamp: u64) -> u64 {\n if self.timestamp_of_change <= historical_timestamp {\n // If no delay changes were scheduled, then the delay value at the historical timestamp (post) is guaranteed to\n // hold due to how further delay changes would be scheduled by `schedule_change`.\n self.post.unwrap_or(INITIAL_DELAY)\n } else {\n // If a change is scheduled, then the effective delay might be lower than the current one (pre). At the\n // timestamp of change the current delay will be the scheduled one, with an overall delay from the historical\n // timestamp equal to the time until the change plus the new delay. If this value is lower\n // than the current delay, then that is the effective minimum delay.\n //\n // historical\n // timestamp delay actual earliest value\n // v timestamp of change timestamp of change\n // =========NS=====================|=============================X===========Y=====>\n // ^ ^ ^ ^\n // earliest timestamp in | | |\n // which to schedule change | | |\n // | | | |\n // |----------------------|------------------------------ |\n // | time new delay |\n // | until change |\n // | |\n // |----------------------------------------------------------------|\n // current delay at the earliest timestamp in\n // which to scheduled value change\n let time_until_change = self.timestamp_of_change - (historical_timestamp + 1);\n\n min(\n self.pre.unwrap_or(INITIAL_DELAY),\n time_until_change + self.post.unwrap_or(INITIAL_DELAY),\n )\n }\n }\n}\n\nimpl<let INITIAL_DELAY: u64> Eq for ScheduledDelayChange<INITIAL_DELAY> {\n fn eq(self, other: Self) -> bool {\n (self.pre == other.pre)\n & (self.post == other.post)\n & (self.timestamp_of_change == other.timestamp_of_change)\n }\n}\n\nimpl<let INITIAL_DELAY: u64> Empty for ScheduledDelayChange<INITIAL_DELAY> {\n fn empty() -> Self {\n Self { pre: Option::none(), post: Option::none(), timestamp_of_change: 0 }\n }\n}\n"
|
|
3523
3523
|
},
|
|
3524
|
-
"
|
|
3524
|
+
"340": {
|
|
3525
3525
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/delayed_public_mutable/scheduled_value_change.nr",
|
|
3526
3526
|
"source": "use crate::traits::Empty;\nuse std::cmp::min;\n\nmod test;\n\n// This data structure is used by DelayedPublicMutable to represent a value that changes from `pre` to `post` at some timestamp\n// called the `timestamp_of_change`. The value can only be made to change by scheduling a change event at some future\n// timestamp after some minimum delay measured in seconds has elapsed. This means that at any given timestamp we know\n// both the current value and the smallest timestamp at which the value might change - this is called the\n// 'time horizon'.\npub struct ScheduledValueChange<T> {\n pub(crate) pre: T,\n pub(crate) post: T,\n // Timestamp at which `post` value is used instead of `pre`\n pub(crate) timestamp_of_change: u64,\n}\n\nimpl<T> ScheduledValueChange<T> {\n pub fn new(pre: T, post: T, timestamp_of_change: u64) -> Self {\n Self { pre, post, timestamp_of_change }\n }\n\n /// Returns the value stored in the data structure at a given timestamp. This function can be called both in public\n /// (where `timestamp` is simply the current timestamp, i.e. the timestamp at which the current transaction will be\n /// included) and in private (where `timestamp` is the anchor block's timestamp). Reading in private is only safe\n /// if the transaction's `include_by_timestamp` property is set to a value lower or equal to the time horizon (see\n /// `get_time_horizon()`).\n pub fn get_current_at(self, timestamp: u64) -> T {\n // The post value becomes the current one at the timestamp of change. This means different things in each realm:\n // - in public, any transaction that is included at the timestamp of change will use the post value\n // - in private, any transaction that includes the timestamp of change as part of the historical state will use\n // the post value (barring any follow-up changes)\n if timestamp < self.timestamp_of_change {\n self.pre\n } else {\n self.post\n }\n }\n\n /// Returns the scheduled change, i.e. the post-change value and the timestamp at which it will become the current\n /// value. Note that this timestamp may be in the past if the change has already taken place.\n /// Additionally, further changes might be later scheduled, potentially canceling the one returned by this function.\n pub fn get_scheduled(self) -> (T, u64) {\n (self.post, self.timestamp_of_change)\n }\n\n // Returns the previous value. This is the value that is current up until the timestamp of change. Note that this\n // value might not be the current anymore since timestamp of change might have already passed.\n pub fn get_previous(self) -> (T, u64) {\n (self.pre, self.timestamp_of_change)\n }\n\n /// Returns the largest timestamp at which the value returned by `get_current_at` is known to remain the current\n /// value. This value is only meaningful in private where the proof is constructed against an anchor block, since\n /// due to its asynchronous nature private execution cannot know about any later scheduled changes.\n /// The caller of this function must know how quickly the value can change due to a scheduled change in the form of\n /// `minimum_delay`. If the delay itself is immutable, then this is just its duration. If the delay is mutable\n /// however, then this value is the 'effective minimum delay' (obtained by calling\n /// `ScheduledDelayChange.get_effective_minimum_delay_at`), which equals the minimum time in seconds that needs to\n /// elapse from the next block's timestamp until the value changes, regardless of further delay changes.\n /// The value returned by `get_current_at` in private when called with a anchor block's timestamp is only safe to use\n /// if the transaction's `include_by_timestamp` property is set to a value lower or equal to the time horizon\n /// computed using the same anchor timestamp.\n pub fn get_time_horizon(self, anchor_timestamp: u64, minimum_delay: u64) -> u64 {\n // The time horizon is the very last timestamp in which the current value is known. Any timestamp past the\n // horizon (i.e. with a timestamp larger than the time horizon) may have a different current value.\n // Reading the current value in private typically requires constraining the maximum valid timestamp to be equal\n // to the time horizon.\n if anchor_timestamp >= self.timestamp_of_change {\n // Once the timestamp of change has passed (block with timestamp >= timestamp_of_change was mined),\n // the current value (post) will not change unless a new value change is scheduled. This did not happen at\n // the anchor timestamp (or else it would not be greater or equal to the timestamp of change), and\n // therefore could only happen after the anchor timestamp. The earliest would be the immediate next\n // timestamp, and so the smallest possible next timestamp of change equals `anchor_timestamp + 1 +\n // minimum_delay`. Our time horizon is simply the previous timestamp to that one.\n //\n // timestamp of anchor\n // change timestamp time horizon\n // =======|=============N===================H===========>\n // ^ ^\n // ---------------------\n // minimum delay\n anchor_timestamp + minimum_delay\n } else {\n // If the timestamp of change has not yet been reached however, then there are two possible scenarios.\n // a) It could be so far into the future that the time horizon is actually determined by the minimum\n // delay, because a new change could be scheduled and take place _before_ the currently scheduled one.\n // This is similar to the scenario where the timestamp of change is in the past: the time horizon is\n // the timestamp prior to the earliest one in which a new timestamp of change might land.\n //\n // anchor\n // timestamp time horizon timestamp of change\n // =====N=================================H=================|=========>\n // ^ ^\n // | |\n // -----------------------------------\n // minimum delay\n //\n // b) It could be fewer than `minimum_delay` seconds away from the anchor timestamp, in which case\n // the timestamp of change would become the limiting factor for the time horizon, which would equal\n // the timestamp right before the timestamp of change (since by definition the value changes at the\n // timestamp of change).\n //\n // anchor time horizon\n // timestamp timestamp of change if not scheduled\n // =======N=============|===================H=================>\n // ^ ^ ^\n // | actual horizon |\n // -----------------------------------\n // minimum delay\n //\n // Note that the current implementation does not allow the caller to set the timestamp of change to an\n // arbitrary value, and therefore scenario a) is not currently possible. However implementing #5501 would\n // allow for this to happen.\n // Because anchor_timestamp < self.timestamp_of_change, then timestamp_of_change > 0 and we can safely\n // subtract 1.\n min(\n self.timestamp_of_change - 1,\n anchor_timestamp + minimum_delay,\n )\n }\n }\n\n /// Mutates the value by scheduling a change at the current timestamp. This function is only meaningful when\n /// called in public with the current timestamp.\n pub fn schedule_change(\n &mut self,\n new_value: T,\n current_timestamp: u64,\n minimum_delay: u64,\n timestamp_of_change: u64,\n ) {\n assert(timestamp_of_change >= current_timestamp + minimum_delay);\n\n self.pre = self.get_current_at(current_timestamp);\n self.post = new_value;\n self.timestamp_of_change = timestamp_of_change;\n }\n}\n\nimpl<T> Eq for ScheduledValueChange<T>\nwhere\n T: Eq,\n{\n fn eq(self, other: Self) -> bool {\n (self.pre == other.pre)\n & (self.post == other.post)\n & (self.timestamp_of_change == other.timestamp_of_change)\n }\n}\n\nimpl<T> Empty for ScheduledValueChange<T>\nwhere\n T: Empty,\n{\n fn empty() -> Self {\n Self { pre: T::empty(), post: T::empty(), timestamp_of_change: 0 }\n }\n}\n"
|
|
3527
3527
|
},
|
|
3528
|
-
"
|
|
3528
|
+
"343": {
|
|
3529
3529
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/hash.nr",
|
|
3530
3530
|
"source": "mod poseidon2_chunks;\n\nuse crate::{\n abis::{\n contract_class_function_leaf_preimage::ContractClassFunctionLeafPreimage,\n function_selector::FunctionSelector,\n note_hash::NoteHash,\n nullifier::Nullifier,\n private_log::{PrivateLog, PrivateLogData},\n transaction::tx_request::TxRequest,\n },\n address::{AztecAddress, EthAddress},\n constants::{\n CONTRACT_CLASS_LOG_SIZE_IN_FIELDS, FUNCTION_TREE_HEIGHT, GENERATOR_INDEX__NOTE_HASH_NONCE,\n GENERATOR_INDEX__OUTER_NULLIFIER, GENERATOR_INDEX__SILOED_NOTE_HASH,\n GENERATOR_INDEX__UNIQUE_NOTE_HASH, NULL_MSG_SENDER_CONTRACT_ADDRESS, TWO_POW_64,\n },\n merkle_tree::root_from_sibling_path,\n messaging::l2_to_l1_message::L2ToL1Message,\n poseidon2::Poseidon2Sponge,\n side_effect::{Counted, Scoped},\n traits::{FromField, Hash, ToField},\n utils::field::{field_from_bytes, field_from_bytes_32_trunc},\n};\n\npub use poseidon2_chunks::poseidon2_absorb_in_chunks_existing_sponge;\nuse poseidon2_chunks::poseidon2_absorb_in_chunks;\nuse std::embedded_curve_ops::EmbeddedCurveScalar;\n\npub fn sha256_to_field<let N: u32>(bytes_to_hash: [u8; N]) -> Field {\n let sha256_hashed = sha256::digest(bytes_to_hash);\n let hash_in_a_field = field_from_bytes_32_trunc(sha256_hashed);\n\n hash_in_a_field\n}\n\npub fn private_functions_root_from_siblings(\n selector: FunctionSelector,\n vk_hash: Field,\n function_leaf_index: Field,\n function_leaf_sibling_path: [Field; FUNCTION_TREE_HEIGHT],\n) -> Field {\n let function_leaf_preimage = ContractClassFunctionLeafPreimage { selector, vk_hash };\n let function_leaf = function_leaf_preimage.hash();\n root_from_sibling_path(\n function_leaf,\n function_leaf_index,\n function_leaf_sibling_path,\n )\n}\n\npub fn compute_note_hash_nonce(first_nullifier_in_tx: Field, note_index_in_tx: u32) -> Field {\n // Hashing the first nullifier with note index in tx is guaranteed to be unique (because all nullifiers are also\n // unique).\n poseidon2_hash_with_separator(\n [first_nullifier_in_tx, note_index_in_tx as Field],\n GENERATOR_INDEX__NOTE_HASH_NONCE,\n )\n}\n\npub fn compute_unique_note_hash(note_nonce: Field, siloed_note_hash: Field) -> Field {\n let inputs = [note_nonce, siloed_note_hash];\n poseidon2_hash_with_separator(inputs, GENERATOR_INDEX__UNIQUE_NOTE_HASH)\n}\n\npub fn compute_nonce_and_unique_note_hash(\n siloed_note_hash: Field,\n first_nullifier: Field,\n note_index_in_tx: u32,\n) -> Field {\n let note_nonce = compute_note_hash_nonce(first_nullifier, note_index_in_tx);\n compute_unique_note_hash(note_nonce, siloed_note_hash)\n}\n\npub fn compute_siloed_note_hash(app: AztecAddress, note_hash: Field) -> Field {\n poseidon2_hash_with_separator(\n [app.to_field(), note_hash],\n GENERATOR_INDEX__SILOED_NOTE_HASH,\n )\n}\n\n/// Computes unique note hashes from siloed note hashes\npub fn compute_unique_siloed_note_hash(\n siloed_note_hash: Field,\n first_nullifier: Field,\n note_index_in_tx: u32,\n) -> Field {\n if siloed_note_hash == 0 {\n 0\n } else {\n compute_nonce_and_unique_note_hash(siloed_note_hash, first_nullifier, note_index_in_tx)\n }\n}\n\n/// Siloing in the context of Aztec refers to the process of hashing a note hash with a contract address (this way\n/// the note hash is scoped to a specific contract). This is used to prevent intermingling of notes between contracts.\npub fn silo_note_hash(note_hash: Scoped<Counted<NoteHash>>) -> Field {\n if note_hash.contract_address.is_zero() {\n 0\n } else {\n compute_siloed_note_hash(note_hash.contract_address, note_hash.innermost())\n }\n}\n\npub fn compute_siloed_nullifier(app: AztecAddress, nullifier: Field) -> Field {\n poseidon2_hash_with_separator(\n [app.to_field(), nullifier],\n GENERATOR_INDEX__OUTER_NULLIFIER,\n )\n}\n\npub fn silo_nullifier(nullifier: Scoped<Counted<Nullifier>>) -> Field {\n let value = nullifier.innermost().value;\n // Q: shouldn't we be checking whether the _whole_ nullifier is empty?\n // A: We don't have to. The init and inner circuits add contract address to non-empty nullifiers.\n // So we know we should silo it if the contract address is not empty.\n if nullifier.contract_address.is_zero() {\n value // Return `value` instead of 0 because an already-siloed nullifier's contract address is zero.\n } else {\n compute_siloed_nullifier(nullifier.contract_address, value)\n }\n}\n\npub fn create_protocol_nullifier(tx_request: TxRequest) -> Scoped<Counted<Nullifier>> {\n Nullifier { value: tx_request.hash(), note_hash: 0 }.count(1).scope(\n NULL_MSG_SENDER_CONTRACT_ADDRESS,\n )\n}\n\npub fn compute_siloed_private_log_field(contract_address: AztecAddress, field: Field) -> Field {\n poseidon2_hash([contract_address.to_field(), field])\n}\n\npub fn silo_private_log(private_log: Scoped<Counted<PrivateLogData>>) -> PrivateLog {\n let log = private_log.innermost().log;\n if private_log.contract_address.is_zero() {\n log\n } else {\n let mut fields = log.fields;\n fields[0] = compute_siloed_private_log_field(private_log.contract_address, fields[0]);\n PrivateLog::new(fields, log.length)\n }\n}\n\npub fn compute_contract_class_log_hash(log: [Field; CONTRACT_CLASS_LOG_SIZE_IN_FIELDS]) -> Field {\n poseidon2_hash(log)\n}\n\npub fn compute_app_secret_key(\n master_secret_key: EmbeddedCurveScalar,\n app_address: AztecAddress,\n app_secret_generator: Field,\n) -> Field {\n poseidon2_hash_with_separator(\n [master_secret_key.hi, master_secret_key.lo, app_address.to_field()],\n app_secret_generator,\n )\n}\n\npub fn merkle_hash(left: Field, right: Field) -> Field {\n poseidon2_hash([left, right])\n}\n\npub fn compute_l2_to_l1_hash(\n contract_address: AztecAddress,\n recipient: EthAddress,\n content: Field,\n rollup_version_id: Field,\n chain_id: Field,\n) -> Field {\n let contract_address_bytes: [u8; 32] = contract_address.to_field().to_be_bytes();\n let recipient_bytes: [u8; 20] = recipient.to_be_bytes();\n let content_bytes: [u8; 32] = content.to_be_bytes();\n let rollup_version_id_bytes: [u8; 32] = rollup_version_id.to_be_bytes();\n let chain_id_bytes: [u8; 32] = chain_id.to_be_bytes();\n\n let mut bytes: [u8; 148] = std::mem::zeroed();\n for i in 0..32 {\n bytes[i] = contract_address_bytes[i];\n bytes[i + 32] = rollup_version_id_bytes[i];\n // 64 - 84 are for recipient.\n bytes[i + 84] = chain_id_bytes[i];\n bytes[i + 116] = content_bytes[i];\n }\n\n for i in 0..20 {\n bytes[64 + i] = recipient_bytes[i];\n }\n\n sha256_to_field(bytes)\n}\n\npub fn silo_l2_to_l1_message(\n msg: Scoped<L2ToL1Message>,\n rollup_version_id: Field,\n chain_id: Field,\n) -> Field {\n if msg.contract_address.is_zero() {\n 0\n } else {\n compute_l2_to_l1_hash(\n msg.contract_address,\n msg.inner.recipient,\n msg.inner.content,\n rollup_version_id,\n chain_id,\n )\n }\n}\n\n/// Computes sha256 hash of 2 input fields.\n///\n/// @returns A truncated field (i.e., the first byte is always 0).\npub fn accumulate_sha256(v0: Field, v1: Field) -> Field {\n // Concatenate two fields into 32 x 2 = 64 bytes\n let v0_as_bytes: [u8; 32] = v0.to_be_bytes();\n let v1_as_bytes: [u8; 32] = v1.to_be_bytes();\n let hash_input_flattened = v0_as_bytes.concat(v1_as_bytes);\n\n sha256_to_field(hash_input_flattened)\n}\n\n#[inline_always]\npub fn pedersen_hash<let N: u32>(inputs: [Field; N], hash_index: u32) -> Field {\n std::hash::pedersen_hash_with_separator(inputs, hash_index)\n}\n\npub fn poseidon2_hash<let N: u32>(inputs: [Field; N]) -> Field {\n poseidon::poseidon2::Poseidon2::hash(inputs, N)\n}\n\n#[no_predicates]\npub fn poseidon2_hash_with_separator<let N: u32, T>(inputs: [Field; N], separator: T) -> Field\nwhere\n T: ToField,\n{\n let inputs_with_separator = [separator.to_field()].concat(inputs);\n poseidon2_hash(inputs_with_separator)\n}\n\n/// Computes a Poseidon2 hash over a dynamic-length subarray of the given input.\n/// Only the first `in_len` fields of `input` are absorbed; any remaining fields are ignored.\n/// The caller is responsible for ensuring that the input is padded with zeros if required.\n#[no_predicates]\npub fn poseidon2_hash_subarray<let N: u32>(input: [Field; N], in_len: u32) -> Field {\n let mut sponge = poseidon2_absorb_in_chunks(input, in_len);\n sponge.squeeze()\n}\n\n// NB the below is the same as poseidon::poseidon2::Poseidon2::hash(), but replacing a range check with a bit check,\n// and absorbing in chunks of 3 below.\n#[no_predicates]\npub fn poseidon2_cheaper_variable_hash<let N: u32>(input: [Field; N], in_len: u32) -> Field {\n let mut sponge = poseidon2_absorb_in_chunks(input, in_len);\n // In the case where the hash preimage is variable-length, we append `1` to the end of the input, to distinguish\n // from fixed-length hashes. (the combination of this additional field element + the hash IV ensures\n // fixed-length and variable-length hashes do not collide)\n if in_len != N {\n sponge.absorb(1);\n }\n sponge.squeeze()\n}\n\n// This function is unconstrained because it is intended to be used in unconstrained context only as\n// in constrained contexts it would be too inefficient.\npub unconstrained fn poseidon2_hash_with_separator_bounded_vec<let N: u32, T>(\n inputs: BoundedVec<Field, N>,\n separator: T,\n) -> Field\nwhere\n T: ToField,\n{\n let in_len = inputs.len() + 1;\n let iv: Field = (in_len as Field) * TWO_POW_64;\n let mut sponge = Poseidon2Sponge::new(iv);\n sponge.absorb(separator.to_field());\n\n for i in 0..inputs.len() {\n sponge.absorb(inputs.get(i));\n }\n\n sponge.squeeze()\n}\n\n#[no_predicates]\npub fn poseidon2_hash_bytes<let N: u32>(inputs: [u8; N]) -> Field {\n let mut fields = [0; (N + 30) / 31];\n let mut field_index = 0;\n let mut current_field = [0; 31];\n for i in 0..inputs.len() {\n let index = i % 31;\n current_field[index] = inputs[i];\n if index == 30 {\n fields[field_index] = field_from_bytes(current_field, false);\n current_field = [0; 31];\n field_index += 1;\n }\n }\n if field_index != fields.len() {\n fields[field_index] = field_from_bytes(current_field, false);\n }\n poseidon2_hash(fields)\n}\n\n#[test]\nfn poseidon_chunks_matches_fixed() {\n let in_len = 501;\n let mut input: [Field; 4096] = [0; 4096];\n let mut fixed_input = [3; 501];\n assert(in_len == fixed_input.len()); // sanity check\n for i in 0..in_len {\n input[i] = 3;\n }\n let sub_chunk_hash = poseidon2_hash_subarray(input, in_len);\n let fixed_len_hash = poseidon::poseidon2::Poseidon2::hash(fixed_input, fixed_input.len());\n assert(sub_chunk_hash == fixed_len_hash);\n}\n\n#[test]\nfn poseidon_chunks_matches_variable() {\n let in_len = 501;\n let mut input: [Field; 4096] = [0; 4096];\n for i in 0..in_len {\n input[i] = 3;\n }\n let variable_chunk_hash = poseidon2_cheaper_variable_hash(input, in_len);\n let variable_len_hash = poseidon::poseidon2::Poseidon2::hash(input, in_len);\n assert(variable_chunk_hash == variable_len_hash);\n}\n\n#[test]\nfn smoke_sha256_to_field() {\n let full_buffer = [\n 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,\n 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,\n 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70,\n 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93,\n 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112,\n 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130,\n 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,\n 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159,\n ];\n let result = sha256_to_field(full_buffer);\n\n assert(result == 0x448ebbc9e1a31220a2f3830c18eef61b9bd070e5084b7fa2a359fe729184c7);\n\n // to show correctness of the current ver (truncate one byte) vs old ver (mod full bytes):\n let result_bytes = sha256::digest(full_buffer);\n let truncated_field = crate::utils::field::field_from_bytes_32_trunc(result_bytes);\n assert(truncated_field == result);\n let mod_res = result + (result_bytes[31] as Field);\n assert(mod_res == 0x448ebbc9e1a31220a2f3830c18eef61b9bd070e5084b7fa2a359fe729184e0);\n}\n\n#[test]\nfn compute_l2_l1_hash() {\n // All zeroes\n let hash_result =\n compute_l2_to_l1_hash(AztecAddress::from_field(0), EthAddress::zero(), 0, 0, 0);\n assert(hash_result == 0x3b18c58c739716e76429634a61375c45b3b5cd470c22ab6d3e14cee23dd992);\n\n // Non-zero case\n let hash_result = compute_l2_to_l1_hash(\n AztecAddress::from_field(1),\n EthAddress::from_field(3),\n 5,\n 2,\n 4,\n );\n assert(hash_result == 0xaab2a5828156782b12a1dc6f336e2bc627eb1b9514b02d511f66296990c050);\n}\n\n#[test]\nfn silo_l2_to_l1_message_matches_typescript() {\n let version = 4;\n let chainId = 5;\n\n let hash = silo_l2_to_l1_message(\n L2ToL1Message { recipient: EthAddress::from_field(1), content: 2 }.scope(\n AztecAddress::from_field(3),\n ),\n version,\n chainId,\n );\n\n // The following value was generated by `yarn-project/stdlib/src/hash/hash.test.ts`\n let hash_from_typescript = 0x0081edf209e087ad31b3fd24263698723d57190bd1d6e9fe056fc0c0a68ee661;\n\n assert_eq(hash, hash_from_typescript);\n}\n\n#[test]\nunconstrained fn poseidon2_hash_with_separator_bounded_vec_matches_non_bounded_vec_version() {\n let inputs = BoundedVec::<Field, 4>::from_array([1, 2, 3]);\n let separator = 42;\n\n // Hash using bounded vec version\n let bounded_result = poseidon2_hash_with_separator_bounded_vec(inputs, separator);\n\n // Hash using regular version\n let regular_result = poseidon2_hash_with_separator([1, 2, 3], separator);\n\n // Results should match\n assert_eq(bounded_result, regular_result);\n}\n"
|
|
3531
3531
|
},
|
|
3532
|
-
"
|
|
3532
|
+
"356": {
|
|
3533
3533
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/meta/mod.nr",
|
|
3534
3534
|
"source": "use utils::derive_serialization_quotes;\n\npub mod utils;\n\n/// Generates the generic parameter declarations for a struct's trait implementation.\n///\n/// This function takes a struct type definition and generates the generic parameter declarations\n/// that go after the `impl` keyword. For example, given a struct with generics `N: u32` and `T`,\n/// it generates `<let N: u32, T>`.\n///\n/// # Parameters\n/// - `s`: The struct type definition to generate generic declarations for\n///\n/// # Returns\n/// A quoted code block containing the generic parameter declarations, or an empty quote if the struct\n/// has no generic parameters\n///\n/// # Example\n/// For a struct defined as:\n/// ```\n/// struct Container<T, let N: u32> {\n/// items: [T; N],\n/// count: u32\n/// }\n/// ```\n///\n/// This function generates:\n/// ```\n/// <let N: u32, T>\n/// ```\ncomptime fn get_generics_declarations(s: TypeDefinition) -> Quoted {\n let generics = s.generics();\n\n if generics.len() > 0 {\n let generics_declarations_items = generics\n .map(|(name, maybe_integer_typ)| {\n // The second item in the generics tuple is an Option of an integer type that is Some only if\n // the generic is numeric.\n if maybe_integer_typ.is_some() {\n // The generic is numeric, so we return a quote defined as e.g. \"let N: u32\"\n let integer_type = maybe_integer_typ.unwrap();\n quote {let $name: $integer_type}\n } else {\n // The generic is not numeric, so we return a quote containing the name of the generic (e.g. \"T\")\n quote {$name}\n }\n })\n .join(quote {,});\n quote {<$generics_declarations_items>}\n } else {\n // The struct doesn't have any generics defined, so we just return an empty quote.\n quote {}\n }\n}\n\n/// Generates the `where` clause for a trait implementation that constrains non-numeric generic type parameters.\n///\n/// This function takes a struct type definition and a trait name, and generates a `where` clause that\n/// requires all non-numeric generic type parameters to implement the specified trait.\n///\n/// # Parameters\n/// - `s`: The struct type definition to generate the where clause for\n/// - `trait_name`: The name of the trait that non-numeric generic parameters must implement\n///\n/// # Returns\n/// A quoted code block containing the where clause, or an empty quote if the struct has no non-numeric\n/// generic parameters\n///\n/// # Example\n/// For a struct defined as:\n/// ```\n/// struct Container<T, let N: u32> {\n/// items: [T; N],\n/// count: u32\n/// }\n/// ```\n///\n/// And trait name \"Serialize\", this function generates:\n/// ```\n/// where T: Serialize\n/// ```\ncomptime fn get_where_trait_clause(s: TypeDefinition, trait_name: Quoted) -> Quoted {\n let generics = s.generics();\n\n // The second item in the generics tuple is an Option of an integer type that is Some only if the generic is\n // numeric.\n let non_numeric_generics =\n generics.filter(|(_, maybe_integer_typ)| maybe_integer_typ.is_none());\n\n if non_numeric_generics.len() > 0 {\n let non_numeric_generics_declarations =\n non_numeric_generics.map(|(name, _)| quote {$name: $trait_name}).join(quote {,});\n quote {where $non_numeric_generics_declarations}\n } else {\n // There are no non-numeric generics, so we return an empty quote.\n quote {}\n }\n}\n\n/// Generates a `Serialize` trait implementation for a struct type.\n///\n/// # Parameters\n/// - `s`: The struct type definition to generate the implementation for\n///\n/// # Returns\n/// A quoted code block containing the trait implementation\n///\n/// # Example\n/// For a struct defined as:\n/// ```\n/// struct Log<N> {\n/// fields: [Field; N],\n/// length: u32\n/// }\n/// ```\n///\n/// This function generates code equivalent to:\n/// ```\n/// impl<let N: u32> Serialize for Log<N> {\n/// let N: u32 = <[Field; N] as Serialize>::N + <u32 as Serialize>::N;\n///\n/// #[inline_always]\n/// fn serialize(self) -> [Field; Self::N] {\n/// let mut serialized_params = [0; _];\n/// let mut offset = 0;\n///\n/// let serialized_member = Serialize::serialize(self.fields);\n/// let serialized_member_len = <[Field; N] as Serialize>::N;\n/// for i in 0..serialized_member_len {\n/// serialized_params[i + offset] = serialized_member[i];\n/// }\n/// offset += serialized_member_len;\n///\n/// let serialized_member = Serialize::serialize(self.length);\n/// let serialized_member_len = <u32 as Serialize>::N;\n/// for i in 0..serialized_member_len {\n/// serialized_params[i + offset] = serialized_member[i];\n/// }\n/// offset += serialized_member_len;\n///\n/// serialized_params\n/// }\n/// }\n/// ```\npub comptime fn derive_serialize(s: TypeDefinition) -> Quoted {\n let typ = s.as_type();\n let nested_struct = typ.as_data_type().unwrap();\n\n // We care only about the name and type so we drop the last item of the tuple\n let params = nested_struct.0.fields(nested_struct.1).map(|(name, typ, _)| (name, typ));\n\n // Generates the generic parameter declarations (to be placed after the `impl` keyword) and the `where` clause\n // for the `Serialize` trait.\n let generics_declarations = get_generics_declarations(s);\n let where_serialize_clause = get_where_trait_clause(s, quote {Serialize});\n\n let (function_body, params_len_quote, serialized_params_name) =\n derive_serialization_quotes(params, true);\n\n quote {\n impl$generics_declarations $crate::traits::Serialize for $typ\n $where_serialize_clause\n {\n let N: u32 = $params_len_quote;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n $function_body\n\n $serialized_params_name\n }\n }\n }\n}\n\n/// Generates a `Deserialize` trait implementation for a given struct `s`.\n///\n/// # Arguments\n/// * `s` - The struct type definition to generate the implementation for\n///\n/// # Returns\n/// A `Quoted` block containing the generated trait implementation\n///\n/// # Requirements\n/// Each struct member type must implement the `Deserialize` trait (it gets used in the generated code).\n///\n/// # Example\n/// For a struct like:\n/// ```\n/// struct MyStruct {\n/// x: AztecAddress,\n/// y: Field,\n/// }\n/// ```\n///\n/// This generates:\n/// ```\n/// impl Deserialize for MyStruct {\n/// let N: u32 = <AztecAddress as Deserialize>::N + <Field as Deserialize>::N;\n///\n/// fn deserialize(serialized: [Field; Self::N]) -> Self {\n/// let mut offset = 0;\n/// let mut member_fields = [0; <AztecAddress as Deserialize>::N];\n/// for i in 0..<AztecAddress as Deserialize>::N {\n/// member_fields[i] = serialized[i + offset];\n/// }\n/// let x = <AztecAddress as Deserialize>::deserialize(member_fields);\n/// offset += <AztecAddress as Deserialize>::N;\n///\n/// let mut member_fields = [0; <Field as Deserialize>::N];\n/// for i in 0..<Field as Deserialize>::N {\n/// member_fields[i] = serialized[i + offset];\n/// }\n/// let y = <Field as Deserialize>::deserialize(member_fields);\n/// offset += <Field as Deserialize>::N;\n///\n/// Self { x, y }\n/// }\n/// }\n/// ```\npub(crate) comptime fn derive_deserialize(s: TypeDefinition) -> Quoted {\n let typ = s.as_type();\n let nested_struct = typ.as_data_type().unwrap();\n let params = nested_struct.0.fields(nested_struct.1);\n\n // Generates the generic parameter declarations (to be placed after the `impl` keyword) and the `where` clause\n // for the `Deserialize` trait.\n let generics_declarations = get_generics_declarations(s);\n let where_deserialize_clause = get_where_trait_clause(s, quote {Deserialize});\n\n // The following will give us:\n // <type_of_struct_member_1 as Deserialize>::N + <type_of_struct_member_2 as Deserialize>::N + ...\n // (or 0 if the struct has no members)\n let right_hand_side_of_definition_of_n = if params.len() > 0 {\n params\n .map(|(_, param_type, _): (Quoted, Type, Quoted)| {\n quote {\n <$param_type as $crate::traits::Deserialize>::N\n }\n })\n .join(quote {+})\n } else {\n quote {0}\n };\n\n // For structs containing a single member, we can enhance performance by directly deserializing the input array,\n // bypassing the need for loop-based array construction. While this optimization yields significant benefits in\n // Brillig where the loops are expected to not be optimized, it is not relevant in ACIR where the loops are\n // expected to be optimized away.\n let function_body = if params.len() > 1 {\n // This generates deserialization code for each struct member and concatenates them together.\n let deserialization_of_struct_members = params\n .map(|(param_name, param_type, _): (Quoted, Type, Quoted)| {\n quote {\n let mut member_fields = [0; <$param_type as Deserialize>::N];\n for i in 0..<$param_type as Deserialize>::N {\n member_fields[i] = serialized[i + offset];\n }\n let $param_name = <$param_type as Deserialize>::deserialize(member_fields);\n offset += <$param_type as Deserialize>::N;\n }\n })\n .join(quote {});\n\n // We join the struct member names with a comma to be used in the `Self { ... }` syntax\n // This will give us e.g. `a, b, c` for a struct with three fields named `a`, `b`, and `c`.\n let struct_members = params\n .map(|(param_name, _, _): (Quoted, Type, Quoted)| quote { $param_name })\n .join(quote {,});\n\n quote {\n let mut offset = 0;\n\n $deserialization_of_struct_members\n\n Self { $struct_members }\n }\n } else if params.len() == 1 {\n let param_name = params[0].0;\n quote {\n Self { $param_name: $crate::traits::Deserialize::deserialize(serialized) }\n }\n } else {\n quote {\n Self {}\n }\n };\n\n quote {\n impl$generics_declarations $crate::traits::Deserialize for $typ\n $where_deserialize_clause\n {\n let N: u32 = $right_hand_side_of_definition_of_n;\n\n #[inline_always]\n fn deserialize(serialized: [Field; Self::N]) -> Self {\n $function_body\n }\n }\n }\n}\n\n/// Generates a `Packable` trait implementation for a given struct `s`.\n///\n/// # Arguments\n/// * `s` - The struct type definition to generate the implementation for\n///\n/// # Returns\n/// A `Quoted` block containing the generated trait implementation\n///\n/// # Requirements\n/// Each struct member type must implement the `Packable` trait (it gets used in the generated code).\n///\n/// # Example\n/// For a struct like:\n/// ```\n/// struct MyStruct {\n/// x: AztecAddress,\n/// y: Field,\n/// }\n/// ```\n///\n/// This generates:\n/// ```\n/// impl Packable for MyStruct {\n/// let N: u32 = 2;\n///\n/// fn pack(self) -> [Field; 2] {\n/// let mut result: [Field; 2] = [0_Field; 2];\n/// let mut offset: u32 = 0_u32;\n/// let packed_member: [Field; 1] = self.x.pack();\n/// let packed_member_len: u32 = <Field as Packable>::N;\n/// for i in 0_u32..packed_member_len {\n/// {\n/// result[i + offset] = packed_member[i];\n/// }\n/// }\n/// offset = offset + packed_member_len;\n/// let packed_member: [Field; 1] = self.y.pack();\n/// let packed_member_len: u32 = <Field as Packable>::N;\n/// for i in 0_u32..packed_member_len {\n/// {\n/// result[i + offset] = packed_member[i];\n/// }\n/// }\n/// offset = offset + packed_member_len;\n/// result\n/// }\n///\n/// fn unpack(packed: [Field; 2]) -> Self {\n/// let mut offset: u32 = 0_u32;\n/// let mut member_fields: [Field; 1] = [0_Field; 1];\n/// for i in 0_u32..<AztecAddress as Packable>::N {\n/// member_fields[i] = packed[i + offset];\n/// }\n/// let x: AztecAddress = <AztecAddress as Packable>::unpack(member_fields);\n/// offset = offset + <AztecAddress as Packable>::N;\n/// let mut member_fields: [Field; 1] = [0_Field; 1];\n/// for i in 0_u32..<Field as Packable>::N {\n/// member_fields[i] = packed[i + offset];\n/// }\n/// let y: Field = <Field as Packable>::unpack(member_fields);\n/// offset = offset + <Field as Packable>::N;\n/// Self { x: x, y: y }\n/// }\n/// }\n/// ```\npub comptime fn derive_packable(s: TypeDefinition) -> Quoted {\n let typ = s.as_type();\n let nested_struct = typ.as_data_type().unwrap();\n let params = nested_struct.0.fields(nested_struct.1);\n\n // Generates the generic parameter declarations (to be placed after the `impl` keyword) and the `where` clause\n // for the `Packable` trait.\n let generics_declarations = get_generics_declarations(s);\n let where_packable_clause = get_where_trait_clause(s, quote {Packable});\n\n // The following will give us:\n // <type_of_struct_member_1 as Packable>::N + <type_of_struct_member_2 as Packable>::N + ...\n // (or 0 if the struct has no members)\n let right_hand_side_of_definition_of_n = if params.len() > 0 {\n params\n .map(|(_, param_type, _): (Quoted, Type, Quoted)| {\n quote {\n <$param_type as $crate::traits::Packable>::N\n }\n })\n .join(quote {+})\n } else {\n quote {0}\n };\n\n // For structs containing a single member, we can enhance performance by directly returning the packed member,\n // bypassing the need for loop-based array construction. While this optimization yields significant benefits in\n // Brillig where the loops are expected to not be optimized, it is not relevant in ACIR where the loops are\n // expected to be optimized away.\n let pack_function_body = if params.len() > 1 {\n // For multiple struct members, generate packing code that:\n // 1. Packs each member\n // 2. Copies the packed fields into the result array at the correct offset\n // 3. Updates the offset for the next member\n let packing_of_struct_members = params\n .map(|(param_name, param_type, _): (Quoted, Type, Quoted)| {\n quote {\n let packed_member = $crate::traits::Packable::pack(self.$param_name);\n let packed_member_len = <$param_type as $crate::traits::Packable>::N;\n for i in 0..packed_member_len {\n result[i + offset] = packed_member[i];\n }\n offset += packed_member_len;\n }\n })\n .join(quote {});\n\n quote {\n let mut result = [0; Self::N];\n let mut offset = 0;\n\n $packing_of_struct_members\n\n result\n }\n } else if params.len() == 1 {\n let param_name = params[0].0;\n quote {\n $crate::traits::Packable::pack(self.$param_name)\n }\n } else {\n quote {\n [0; Self::N]\n }\n };\n\n // For structs containing a single member, we can enhance performance by directly unpacking the input array,\n // bypassing the need for loop-based array construction. While this optimization yields significant benefits in\n // Brillig where the loops are expected to not be optimized, it is not relevant in ACIR where the loops are\n // expected to be optimized away.\n let unpack_function_body = if params.len() > 1 {\n // For multiple struct members, generate unpacking code that:\n // 1. Unpacks each member\n // 2. Copies packed fields into member array at correct offset\n // 3. Updates offset for next member\n let unpacking_of_struct_members = params\n .map(|(param_name, param_type, _): (Quoted, Type, Quoted)| {\n quote {\n let mut member_fields = [0; <$param_type as $crate::traits::Packable>::N];\n for i in 0..<$param_type as $crate::traits::Packable>::N {\n member_fields[i] = packed[i + offset];\n }\n let $param_name = <$param_type as $crate::traits::Packable>::unpack(member_fields);\n offset += <$param_type as $crate::traits::Packable>::N;\n }\n })\n .join(quote {});\n\n // We join the struct member names with a comma to be used in the `Self { ... }` syntax\n let struct_members = params\n .map(|(param_name, _, _): (Quoted, Type, Quoted)| quote { $param_name })\n .join(quote {,});\n\n quote {\n let mut offset = 0;\n $unpacking_of_struct_members\n Self { $struct_members }\n }\n } else if params.len() == 1 {\n let param_name = params[0].0;\n quote {\n Self { $param_name: $crate::traits::Packable::unpack(packed) }\n }\n } else {\n quote {\n Self {}\n }\n };\n\n quote {\n impl$generics_declarations $crate::traits::Packable for $typ\n $where_packable_clause\n {\n let N: u32 = $right_hand_side_of_definition_of_n;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n $pack_function_body\n }\n\n #[inline_always]\n fn unpack(packed: [Field; Self::N]) -> Self {\n $unpack_function_body\n }\n }\n }\n}\n\nmod test {\n use crate::traits::{Deserialize, Packable, Serialize};\n\n #[derive(Deserialize, Eq, Packable, Serialize)]\n pub struct Empty {}\n\n #[derive(Deserialize, Eq, Packable, Serialize)]\n pub struct Smol {\n a: Field,\n b: Field,\n }\n\n #[derive(Deserialize, Eq, Serialize)]\n pub struct HasArray {\n a: [Field; 2],\n b: bool,\n }\n\n #[derive(Deserialize, Eq, Serialize)]\n pub struct Fancier {\n a: Smol,\n b: [Field; 2],\n c: [u8; 3],\n d: str<16>,\n }\n\n #[derive(Deserialize, Eq, Packable, Serialize)]\n pub struct HasArrayWithGenerics<T, let N: u32> {\n pub fields: [T; N],\n pub length: u32,\n }\n\n #[test]\n fn serde_on_empty() {\n let original = Empty {};\n let serialized = original.serialize();\n assert_eq(serialized, [], \"Serialized does not match empty array\");\n let deserialized = Empty::deserialize(serialized);\n assert_eq(deserialized, original, \"Deserialized does not match original\");\n }\n\n #[test]\n fn packable_on_empty() {\n let original = Empty {};\n let packed = original.pack();\n assert_eq(packed, [], \"Packed does not match empty array\");\n let unpacked = Empty::unpack(packed);\n assert_eq(unpacked, original, \"Unpacked does not match original\");\n }\n\n #[test]\n fn serde_on_smol() {\n let smol = Smol { a: 1, b: 2 };\n let serialized = smol.serialize();\n assert(serialized == [1, 2], serialized);\n let deserialized = Smol::deserialize(serialized);\n assert(deserialized == smol);\n\n // None of the struct members implements the `Packable` trait so the packed and serialized data should be the same\n let packed = smol.pack();\n assert_eq(packed, serialized, \"Packed does not match serialized\");\n }\n\n #[test]\n fn serde_on_has_array() {\n let has_array = HasArray { a: [1, 2], b: true };\n let serialized = has_array.serialize();\n assert(serialized == [1, 2, 1], serialized);\n let deserialized = HasArray::deserialize(serialized);\n assert(deserialized == has_array);\n }\n\n #[test]\n fn serde_on_fancier() {\n let fancier =\n Fancier { a: Smol { a: 1, b: 2 }, b: [0, 1], c: [1, 2, 3], d: \"metaprogramming!\" };\n let serialized = fancier.serialize();\n assert(\n serialized\n == [\n 1, 2, 0, 1, 1, 2, 3, 0x6d, 0x65, 0x74, 0x61, 0x70, 0x72, 0x6f, 0x67, 0x72, 0x61,\n 0x6d, 0x6d, 0x69, 0x6e, 0x67, 0x21,\n ],\n serialized,\n );\n let deserialized = Fancier::deserialize(serialized);\n assert(deserialized == fancier);\n }\n\n #[test]\n fn serde_on_contains_array_with_generics() {\n let struct_with_array_of_generics = HasArrayWithGenerics { fields: [1, 2, 3], length: 3 };\n let serialized = struct_with_array_of_generics.serialize();\n assert(serialized == [1, 2, 3, 3], serialized);\n let deserialized = HasArrayWithGenerics::deserialize(serialized);\n assert(deserialized == struct_with_array_of_generics);\n }\n\n #[test]\n fn packable_on_contains_array_with_generics() {\n let struct_with_array_of_generics = HasArrayWithGenerics { fields: [1, 2, 3], length: 3 };\n let packed = struct_with_array_of_generics.pack();\n assert(packed == [1, 2, 3, 3], packed);\n\n let unpacked = HasArrayWithGenerics::unpack(packed);\n assert(unpacked == struct_with_array_of_generics);\n }\n\n}\n"
|
|
3535
3535
|
},
|
|
3536
|
-
"
|
|
3536
|
+
"357": {
|
|
3537
3537
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/meta/utils.nr",
|
|
3538
3538
|
"source": "/// Generates serialization code for a list of parameters and the total length of the serialized array\n///\n/// # Parameters\n/// - `params`: A list of (name, type) tuples to serialize\n/// - `use_self_prefix`: If true, parameters are accessed as `self.$param_name` (for struct members).\n/// If false, parameters are accessed directly as `$param_name` (for function parameters).\n///\n/// # Returns\n/// A tuple containing:\n/// - Quoted code that serializes the parameters into an array named `serialized_params`\n/// - Quoted code that evaluates to the total length of the serialized array\n/// - Quoted code containing the name of the serialized array\npub comptime fn derive_serialization_quotes(\n params: [(Quoted, Type)],\n use_self_prefix: bool,\n) -> (Quoted, Quoted, Quoted) {\n let prefix_quote = if use_self_prefix {\n quote { self. }\n } else {\n quote {}\n };\n\n let params_len_quote = get_params_len_quote(params);\n let serialized_params_name = quote { serialized_params };\n\n let body = if params.len() == 0 {\n quote {\n let $serialized_params_name: [Field; 0] = [];\n }\n } else if params.len() == 1 {\n // When we have only a single parameter on the input, we can enhance performance by directly returning\n // the serialized member, bypassing the need for loop-based array construction. While this optimization yields\n // significant benefits in Brillig where the loops are expected to not be optimized, it is not relevant in ACIR\n // where the loops are expected to be optimized away.\n\n let param_name = params[0].0;\n quote {\n let $serialized_params_name = $crate::traits::Serialize::serialize($prefix_quote$param_name);\n }\n } else {\n // For multiple struct members, generate serialization code that:\n // 1. Serializes each member\n // 2. Copies the serialized fields into the serialize array at the correct offset\n // 3. Updates the offset for the next member\n let serialization_of_struct_members = params\n .map(|(param_name, param_type): (Quoted, Type)| {\n quote {\n let serialized_member = $crate::traits::Serialize::serialize($prefix_quote$param_name);\n let serialized_member_len = <$param_type as $crate::traits::Serialize>::N;\n for i in 0..serialized_member_len {\n $serialized_params_name[i + offset] = serialized_member[i];\n }\n offset += serialized_member_len;\n }\n })\n .join(quote {});\n\n quote {\n let mut $serialized_params_name = [0; $params_len_quote];\n let mut offset = 0;\n\n $serialization_of_struct_members\n }\n };\n\n (body, params_len_quote, serialized_params_name)\n}\n\n/// Generates a quoted expression that computes the total serialized length of function parameters.\n///\n/// # Parameters\n/// * `params` - An array of tuples where each tuple contains a quoted parameter name and its Type. The type needs\n/// to implement the Serialize trait.\n///\n/// # Returns\n/// A quoted expression that evaluates to:\n/// * `0` if there are no parameters\n/// * `(<type1 as Serialize>::N + <type2 as Serialize>::N + ...)` for one or more parameters\npub comptime fn get_params_len_quote(params: [(Quoted, Type)]) -> Quoted {\n if params.len() == 0 {\n quote { 0 }\n } else {\n let params_quote_without_parentheses = params\n .map(|(_, param_type): (Quoted, Type)| {\n quote {\n <$param_type as $crate::traits::Serialize>::N\n }\n })\n .join(quote {+});\n quote { ($params_quote_without_parentheses) }\n }\n}\n"
|
|
3539
3539
|
},
|
|
3540
|
-
"
|
|
3540
|
+
"359": {
|
|
3541
3541
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/poseidon2.nr",
|
|
3542
3542
|
"source": "use crate::constants::TWO_POW_64;\nuse crate::traits::{Deserialize, Serialize};\nuse std::meta::derive;\n// NB: This is a clone of noir/noir-repo/noir_stdlib/src/hash/poseidon2.nr\n// It exists as we sometimes need to perform custom absorption, but the stdlib version\n// has a private absorb() method (it's also designed to just be a hasher)\n// Can be removed when standalone noir poseidon lib exists: See noir#6679\n\ncomptime global RATE: u32 = 3;\n\n#[derive(Deserialize, Eq, Serialize)]\npub struct Poseidon2Sponge {\n pub cache: [Field; 3],\n pub state: [Field; 4],\n pub cache_size: u32,\n pub squeeze_mode: bool, // 0 => absorb, 1 => squeeze\n}\n\nimpl Poseidon2Sponge {\n #[no_predicates]\n pub fn hash<let N: u32>(input: [Field; N], message_size: u32) -> Field {\n Poseidon2Sponge::hash_internal(input, message_size, message_size != N)\n }\n\n pub(crate) fn new(iv: Field) -> Poseidon2Sponge {\n let mut result =\n Poseidon2Sponge { cache: [0; 3], state: [0; 4], cache_size: 0, squeeze_mode: false };\n result.state[RATE] = iv;\n result\n }\n\n fn perform_duplex(&mut self) {\n // add the cache into sponge state\n for i in 0..RATE {\n // We effectively zero-pad the cache by only adding to the state\n // cache that is less than the specified `cache_size`\n if i < self.cache_size {\n self.state[i] += self.cache[i];\n }\n }\n self.state = std::hash::poseidon2_permutation(self.state, 4);\n }\n\n pub fn absorb(&mut self, input: Field) {\n assert(!self.squeeze_mode);\n if self.cache_size == RATE {\n // If we're absorbing, and the cache is full, apply the sponge permutation to compress the cache\n self.perform_duplex();\n self.cache[0] = input;\n self.cache_size = 1;\n } else {\n // If we're absorbing, and the cache is not full, add the input into the cache\n self.cache[self.cache_size] = input;\n self.cache_size += 1;\n }\n }\n\n pub fn squeeze(&mut self) -> Field {\n assert(!self.squeeze_mode);\n // If we're in absorb mode, apply sponge permutation to compress the cache.\n self.perform_duplex();\n self.squeeze_mode = true;\n\n // Pop one item off the top of the permutation and return it.\n self.state[0]\n }\n\n fn hash_internal<let N: u32>(\n input: [Field; N],\n in_len: u32,\n is_variable_length: bool,\n ) -> Field {\n let iv: Field = (in_len as Field) * TWO_POW_64;\n let mut sponge = Poseidon2Sponge::new(iv);\n for i in 0..input.len() {\n if i < in_len {\n sponge.absorb(input[i]);\n }\n }\n\n // In the case where the hash preimage is variable-length, we append `1` to the end of the input, to distinguish\n // from fixed-length hashes. (the combination of this additional field element + the hash IV ensures\n // fixed-length and variable-length hashes do not collide)\n if is_variable_length {\n sponge.absorb(1);\n }\n sponge.squeeze()\n }\n}\n"
|
|
3543
3543
|
},
|
|
3544
|
-
"
|
|
3544
|
+
"366": {
|
|
3545
3545
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/public_keys.nr",
|
|
3546
3546
|
"source": "use crate::{\n address::public_keys_hash::PublicKeysHash,\n constants::{\n DEFAULT_IVPK_M_X, DEFAULT_IVPK_M_Y, DEFAULT_NPK_M_X, DEFAULT_NPK_M_Y, DEFAULT_OVPK_M_X,\n DEFAULT_OVPK_M_Y, DEFAULT_TPK_M_X, DEFAULT_TPK_M_Y, GENERATOR_INDEX__PUBLIC_KEYS_HASH,\n },\n hash::poseidon2_hash_with_separator,\n traits::{Deserialize, Hash, Serialize},\n};\n\nuse dep::std::embedded_curve_ops::EmbeddedCurvePoint as Point;\nuse std::{default::Default, meta::derive};\n\npub trait ToPoint {\n fn to_point(self) -> Point;\n}\n\n#[derive(Deserialize, Eq, Serialize)]\npub struct NpkM {\n pub inner: Point,\n}\n\nimpl ToPoint for NpkM {\n fn to_point(self) -> Point {\n self.inner\n }\n}\n\n// Note: If we store npk_m_hash directly we can remove this trait implementation. See #8091\nimpl Hash for NpkM {\n fn hash(self) -> Field {\n self.inner.hash()\n }\n}\n\n#[derive(Deserialize, Eq, Serialize)]\npub struct IvpkM {\n pub inner: Point,\n}\n\nimpl ToPoint for IvpkM {\n fn to_point(self) -> Point {\n self.inner\n }\n}\n\n#[derive(Deserialize, Eq, Serialize)]\npub struct OvpkM {\n pub inner: Point,\n}\n\nimpl Hash for OvpkM {\n fn hash(self) -> Field {\n self.inner.hash()\n }\n}\n\nimpl ToPoint for OvpkM {\n fn to_point(self) -> Point {\n self.inner\n }\n}\n\n#[derive(Deserialize, Eq, Serialize)]\npub struct TpkM {\n pub inner: Point,\n}\n\nimpl ToPoint for TpkM {\n fn to_point(self) -> Point {\n self.inner\n }\n}\n\n#[derive(Deserialize, Eq, Serialize)]\npub struct PublicKeys {\n pub npk_m: NpkM,\n pub ivpk_m: IvpkM,\n pub ovpk_m: OvpkM,\n pub tpk_m: TpkM,\n}\n\nimpl Default for PublicKeys {\n fn default() -> Self {\n PublicKeys {\n npk_m: NpkM {\n inner: Point { x: DEFAULT_NPK_M_X, y: DEFAULT_NPK_M_Y, is_infinite: false },\n },\n ivpk_m: IvpkM {\n inner: Point { x: DEFAULT_IVPK_M_X, y: DEFAULT_IVPK_M_Y, is_infinite: false },\n },\n ovpk_m: OvpkM {\n inner: Point { x: DEFAULT_OVPK_M_X, y: DEFAULT_OVPK_M_Y, is_infinite: false },\n },\n tpk_m: TpkM {\n inner: Point { x: DEFAULT_TPK_M_X, y: DEFAULT_TPK_M_Y, is_infinite: false },\n },\n }\n }\n}\n\nimpl PublicKeys {\n pub fn hash(self) -> PublicKeysHash {\n PublicKeysHash::from_field(poseidon2_hash_with_separator(\n self.serialize(),\n GENERATOR_INDEX__PUBLIC_KEYS_HASH as Field,\n ))\n }\n}\n\npub struct AddressPoint {\n pub inner: Point,\n}\n\nimpl ToPoint for AddressPoint {\n fn to_point(self) -> Point {\n self.inner\n }\n}\n\nmod test {\n use crate::{\n point::POINT_LENGTH,\n public_keys::{IvpkM, NpkM, OvpkM, PublicKeys, TpkM},\n traits::{Deserialize, Serialize},\n };\n use dep::std::embedded_curve_ops::EmbeddedCurvePoint as Point;\n\n #[test]\n unconstrained fn compute_public_keys_hash() {\n let keys = PublicKeys {\n npk_m: NpkM { inner: Point { x: 1, y: 2, is_infinite: false } },\n ivpk_m: IvpkM { inner: Point { x: 3, y: 4, is_infinite: false } },\n ovpk_m: OvpkM { inner: Point { x: 5, y: 6, is_infinite: false } },\n tpk_m: TpkM { inner: Point { x: 7, y: 8, is_infinite: false } },\n };\n\n let actual = keys.hash();\n let expected_public_keys_hash =\n 0x0fecd9a32db731fec1fded1b9ff957a1625c069245a3613a2538bd527068b0ad;\n\n assert(actual.to_field() == expected_public_keys_hash);\n }\n\n #[test]\n unconstrained fn compute_default_hash() {\n let keys = PublicKeys::default();\n\n let actual = keys.hash();\n let test_data_default_hash =\n 0x1d3bf1fb93ae0e9cda83b203dd91c3bfb492a9aecf30ec90e1057eced0f0e62d;\n\n assert(actual.to_field() == test_data_default_hash);\n }\n\n #[test]\n unconstrained fn serde() {\n let keys = PublicKeys {\n npk_m: NpkM { inner: Point { x: 1, y: 2, is_infinite: false } },\n ivpk_m: IvpkM { inner: Point { x: 3, y: 4, is_infinite: false } },\n ovpk_m: OvpkM { inner: Point { x: 5, y: 6, is_infinite: false } },\n tpk_m: TpkM { inner: Point { x: 7, y: 8, is_infinite: false } },\n };\n\n // We use the PUBLIC_KEYS_LENGTH constant to ensure that there is a match between the derived trait\n let serialized: [Field; POINT_LENGTH * 4] = keys.serialize();\n let deserialized = PublicKeys::deserialize(serialized);\n\n assert_eq(keys, deserialized);\n }\n}\n"
|
|
3547
3547
|
},
|
|
3548
|
-
"
|
|
3548
|
+
"371": {
|
|
3549
3549
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/storage/map.nr",
|
|
3550
3550
|
"source": "use crate::{hash::poseidon2_hash, traits::ToField};\n\npub fn derive_storage_slot_in_map<K>(storage_slot: Field, key: K) -> Field\nwhere\n K: ToField,\n{\n poseidon2_hash([storage_slot, key.to_field()])\n}\n\nmod test {\n use crate::{address::AztecAddress, storage::map::derive_storage_slot_in_map, traits::FromField};\n\n #[test]\n fn test_derive_storage_slot_in_map_matches_typescript() {\n let map_slot = 0x132258fb6962c4387ba659d9556521102d227549a386d39f0b22d1890d59c2b5;\n let key = AztecAddress::from_field(\n 0x302dbc2f9b50a73283d5fb2f35bc01eae8935615817a0b4219a057b2ba8a5a3f,\n );\n\n let slot = derive_storage_slot_in_map(map_slot, key);\n\n // The following value was generated by `map_slot.test.ts`\n let slot_from_typescript =\n 0x15b9fe39449affd8b377461263e9d2b610b9ad40580553500b4e41d9cbd887ac;\n\n assert_eq(slot, slot_from_typescript);\n }\n}\n"
|
|
3551
3551
|
},
|
|
3552
|
-
"
|
|
3552
|
+
"387": {
|
|
3553
3553
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/traits.nr",
|
|
3554
3554
|
"source": "use crate::meta::{derive_deserialize, derive_packable, derive_serialize};\nuse crate::utils::field::field_from_bytes;\n\n// Trait: is_empty\n//\n// The general is_empty trait checks if a data type is is empty,\n// and it defines empty for the basic data types as 0.\n//\n// If a Field is equal to zero, then it is regarded as zero.\n// We will go with this definition for now, however it can be problematic\n// if a value can actually be zero. In a future refactor, we can\n// use the optional type for safety. Doing it now would lead to a worse devex\n// and would make it harder to sync up with the cpp code.\n// Preferred over Default trait to convey intent, as default doesn't necessarily mean empty.\npub trait Empty: Eq {\n fn empty() -> Self;\n\n fn is_empty(self) -> bool {\n self.eq(Self::empty())\n }\n\n // Requires this Noir fix: https://github.com/noir-lang/noir/issues/9002\n // fn assert_not_empty<let U: u32>(self, msg: str<U>) { // This msg version was failing with weird compiler errors.\n // // We provide a default impl but it's likely inefficient.\n // // The reason we include this function is because there's a lot of\n // // opportunity for optimisation on a per-struct basis.\n // // You only need to show one element is not empty to know that the whole thing\n // // is not empty.\n // // If you know an element of your struct which should always be nonempty,\n // // you can write an impl that solely checks that that element is nonempty.\n // assert(!self.is_empty(), msg);\n // }\n\n // This default impl is overwritten by types like arrays, because there's a much\n // more efficient approach.\n fn assert_empty<let S: u32>(self, msg: str<S>) {\n assert(self.is_empty(), msg);\n }\n}\n\nimpl Empty for Field {\n #[inline_always]\n fn empty() -> Self {\n 0\n }\n}\n\nimpl Empty for bool {\n #[inline_always]\n fn empty() -> Self {\n false\n }\n}\n\nimpl Empty for u1 {\n #[inline_always]\n fn empty() -> Self {\n 0\n }\n}\nimpl Empty for u8 {\n #[inline_always]\n fn empty() -> Self {\n 0\n }\n}\nimpl Empty for u16 {\n fn empty() -> Self {\n 0\n }\n}\nimpl Empty for u32 {\n #[inline_always]\n fn empty() -> Self {\n 0\n }\n}\nimpl Empty for u64 {\n #[inline_always]\n fn empty() -> Self {\n 0\n }\n}\nimpl Empty for u128 {\n #[inline_always]\n fn empty() -> Self {\n 0\n }\n}\n\nimpl<T, let N: u32> Empty for [T; N]\nwhere\n T: Empty,\n{\n #[inline_always]\n fn empty() -> Self {\n [T::empty(); N]\n }\n\n fn is_empty(self) -> bool {\n self.all(|elem| elem.is_empty())\n }\n\n fn assert_empty<let S: u32>(self, msg: str<S>) -> () {\n self.for_each(|elem| elem.assert_empty(msg))\n }\n}\n\nimpl<T> Empty for [T]\nwhere\n T: Empty,\n{\n #[inline_always]\n fn empty() -> Self {\n [T::empty()]\n }\n\n fn is_empty(self) -> bool {\n self.all(|elem| elem.is_empty())\n }\n\n fn assert_empty<let S: u32>(self, msg: str<S>) -> () {\n self.for_each(|elem| elem.assert_empty(msg))\n }\n}\nimpl<A, B> Empty for (A, B)\nwhere\n A: Empty,\n B: Empty,\n{\n #[inline_always]\n fn empty() -> Self {\n (A::empty(), B::empty())\n }\n}\n\nimpl<T> Empty for Option<T>\nwhere\n T: Eq,\n{\n #[inline_always]\n fn empty() -> Self {\n Option::none()\n }\n}\n\n// pub fn is_empty<T>(item: T) -> bool\n// where\n// T: Empty,\n// {\n// item.eq(T::empty())\n// }\n\n// pub fn is_empty_array<T, let N: u32>(array: [T; N]) -> bool\n// where\n// T: Empty,\n// {\n// array.all(|elem| is_empty(elem))\n// }\n\n// pub fn assert_empty<T>(item: T) -> ()\n// where\n// T: Empty,\n// {\n// assert(item.eq(T::empty()))\n// }\n\n// pub fn assert_empty_array<T, let N: u32>(array: [T; N]) -> ()\n// where\n// T: Empty,\n// {\n// // A cheaper option than `is_empty_array` for if you don't need to gracefully\n// // handle a bool result.\n// // Avoids the `&` operator of `is_empty_array`'s `.all()` call.\n// for i in 0..N {\n// assert(is_empty(array[i]));\n// }\n// }\n\npub trait Hash {\n fn hash(self) -> Field;\n}\n\npub trait ToField {\n fn to_field(self) -> Field;\n}\n\nimpl ToField for Field {\n #[inline_always]\n fn to_field(self) -> Field {\n self\n }\n}\n\nimpl ToField for bool {\n #[inline_always]\n fn to_field(self) -> Field {\n self as Field\n }\n}\nimpl ToField for u1 {\n #[inline_always]\n fn to_field(self) -> Field {\n self as Field\n }\n}\nimpl ToField for u8 {\n #[inline_always]\n fn to_field(self) -> Field {\n self as Field\n }\n}\nimpl ToField for u16 {\n fn to_field(self) -> Field {\n self as Field\n }\n}\nimpl ToField for u32 {\n #[inline_always]\n fn to_field(self) -> Field {\n self as Field\n }\n}\nimpl ToField for u64 {\n #[inline_always]\n fn to_field(self) -> Field {\n self as Field\n }\n}\nimpl ToField for u128 {\n #[inline_always]\n fn to_field(self) -> Field {\n self as Field\n }\n}\nimpl<let N: u32> ToField for str<N> {\n #[inline_always]\n fn to_field(self) -> Field {\n assert(N < 32, \"String doesn't fit in a field, consider using Serialize instead\");\n field_from_bytes(self.as_bytes(), true)\n }\n}\n\npub trait FromField {\n fn from_field(value: Field) -> Self;\n}\n\nimpl FromField for Field {\n #[inline_always]\n fn from_field(value: Field) -> Self {\n value\n }\n}\n\nimpl FromField for bool {\n #[inline_always]\n fn from_field(value: Field) -> Self {\n value != 0\n }\n}\nimpl FromField for u1 {\n #[inline_always]\n fn from_field(value: Field) -> Self {\n value as u1\n }\n}\nimpl FromField for u8 {\n #[inline_always]\n fn from_field(value: Field) -> Self {\n value as u8\n }\n}\nimpl FromField for u16 {\n fn from_field(value: Field) -> Self {\n value as u16\n }\n}\nimpl FromField for u32 {\n #[inline_always]\n fn from_field(value: Field) -> Self {\n value as u32\n }\n}\nimpl FromField for u64 {\n #[inline_always]\n fn from_field(value: Field) -> Self {\n value as u64\n }\n}\nimpl FromField for u128 {\n #[inline_always]\n fn from_field(value: Field) -> Self {\n value as u128\n }\n}\n\n// docs:start:serialize\n/// Trait for serializing Noir types into arrays of Fields.\n///\n/// An implementation of the Serialize trait has to follow Noir's intrinsic serialization (each member of a struct\n/// converted directly into one or more Fields without any packing or compression). This trait (and Deserialize) are\n/// typically used to communicate between Noir and TypeScript (via oracles and function arguments).\n///\n/// # On Following Noir's Intrinsic Serialization\n/// When calling a Noir function from TypeScript (TS), first the function arguments are serialized into an array\n/// of fields. This array is then included in the initial witness. Noir's intrinsic serialization is then used\n/// to deserialize the arguments from the witness. When the same Noir function is called from Noir this Serialize trait\n/// is used instead of the serialization in TS. For this reason we need to have a match between TS serialization,\n/// Noir's intrinsic serialization and the implementation of this trait. If there is a mismatch, the function calls\n/// fail with an arguments hash mismatch error message.\n///\n/// # Associated Constants\n/// * `N` - The length of the output Field array, known at compile time\n///\n/// # Example\n/// ```\n/// impl<let N: u32> Serialize for str<N> {\n/// let N: u32 = N;\n///\n/// fn serialize(self) -> [Field; Self::N] {\n/// let bytes = self.as_bytes();\n/// let mut fields = [0; Self::N];\n/// for i in 0..bytes.len() {\n/// fields[i] = bytes[i] as Field; // Each byte gets its own Field\n/// }\n/// fields\n/// }\n/// }\n/// ```\n#[derive_via(derive_serialize)]\npub trait Serialize {\n let N: u32;\n\n fn serialize(self) -> [Field; N];\n}\n// docs:end:serialize\n\nimpl<let M: u32> Serialize for str<M> {\n let N: u32 = M;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n let bytes = self.as_bytes();\n let mut fields = [0; Self::N];\n for i in 0..bytes.len() {\n fields[i] = bytes[i] as Field;\n }\n fields\n }\n}\n\n/// Implementation of Deserialize for BoundedVec.\n///\n/// This implementation deserializes a BoundedVec from an array of Fields. The array contains:\n/// 1. The serialized items, each taking up T::N Fields\n/// 2. The length of the BoundedVec as the last Field\n///\n/// # Type Parameters\n/// * `T` - The type of items stored in the BoundedVec, must implement Deserialize\n/// * `M` - The maximum length of the BoundedVec\n///\n/// # Fields Array Layout\n/// [item1_field1, item1_field2, ..., item2_field1, item2_field2, ..., length]\n/// Where:\n/// - itemN_fieldM: The M-th Field of the N-th item (T::N Fields per item)\n/// - length: The number of items in the BoundedVec (1 Field)\n///\n/// Total length N = T::N * M + 1, where:\n/// - T::N is the number of Fields needed to deserialize one item\n/// - M is the maximum length of the BoundedVec\n/// - +1 is for storing the length\n///\n/// # Note\n/// Not deriving this because it's not supported to call derive_deserialize on a \"remote\" struct (and it will never\n/// be supported).\nimpl<T, let M: u32> Deserialize for BoundedVec<T, M>\nwhere\n T: Deserialize,\n{\n let N: u32 = <T as Deserialize>::N * M + 1;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n let mut new_bounded_vec: BoundedVec<T, M> = BoundedVec::new();\n\n // Length is stored in the last field as we need to match intrinsic Noir serialization and the `len` struct\n // field is after `storage` struct field (see `bounded_vec.nr` in noir-stdlib)\n let len = fields[<T as Deserialize>::N * M] as u32;\n\n for i in 0..len {\n let mut nested_fields = [0; <T as Deserialize>::N];\n for j in 0..<T as Deserialize>::N {\n nested_fields[j] = fields[i * <T as Deserialize>::N + j];\n }\n\n let item = T::deserialize(nested_fields);\n new_bounded_vec.push(item);\n }\n\n new_bounded_vec\n }\n}\n\n// This may cause issues if used as program input, because noir disallows empty arrays for program input.\n// I think this is okay because I don't foresee a unit type being used as input. But leaving this comment as a hint\n// if someone does run into this in the future.\nimpl Deserialize for () {\n let N: u32 = 0;\n\n fn deserialize(_fields: [Field; Self::N]) -> Self {\n ()\n }\n}\n\n// Note: Not deriving this because it's not supported to call derive_serialize on a \"remote\" struct (and it will never\n// be supported).\nimpl<T, let M: u32> Serialize for BoundedVec<T, M>\nwhere\n T: Serialize,\n{\n let N: u32 = <T as Serialize>::N * M + 1; // +1 for the length of the BoundedVec\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n let mut fields = [0; Self::N];\n\n let storage = self.storage();\n\n for i in 0..M {\n let serialized_item = storage[i].serialize();\n\n for j in 0..<T as Serialize>::N {\n fields[i * <T as Serialize>::N + j] = serialized_item[j];\n }\n }\n\n // Length is stored in the last field as we need to match intrinsic Noir serialization and the `len` struct\n // field is after `storage` struct field (see `bounded_vec.nr` in noir-stdlib)\n fields[<T as Serialize>::N * M] = self.len() as Field;\n\n fields\n }\n}\n\n// docs:start:deserialize\n/// Trait for deserializing Noir types from arrays of Fields.\n///\n/// An implementation of the Deserialize trait has to follow Noir's intrinsic serialization (each member of a struct\n/// converted directly into one or more Fields without any packing or compression). This trait is typically used when\n/// deserializing return values from function calls in Noir. Since the same function could be called from TypeScript\n/// (TS), in which case the TS deserialization would get used, we need to have a match between the 2.\n///\n/// # Associated Constants\n/// * `N` - The length of the input Field array, known at compile time\n///\n/// # Example\n/// ```\n/// impl<let M: u32> Deserialize for str<M> {\n/// let N: u32 = M;\n///\n/// #[inline_always]\n/// fn deserialize(fields: [Field; Self::N]) -> Self {\n/// str::<Self::N>::from(fields.map(|value| value as u8))\n/// }\n/// }\n/// ```\n#[derive_via(derive_deserialize)]\npub trait Deserialize {\n let N: u32;\n\n fn deserialize(fields: [Field; N]) -> Self;\n}\n// docs:end:deserialize\n\nimpl<let M: u32> Deserialize for str<M> {\n let N: u32 = M;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n str::<Self::N>::from(fields.map(|value| value as u8))\n }\n}\n\n/// Trait for efficiently packing and unpacking Noir types into and from arrays of Fields.\n///\n/// The `Packable` trait allows types to be serialized and deserialized with a focus on minimizing the size of\n/// the resulting Field array. This trait is used when storage efficiency is critical (e.g. when storing data\n/// in the contract's public storage).\n///\n/// # Associated Constants\n/// * `N` - The length of the Field array, known at compile time\n#[derive_via(derive_packable)]\npub trait Packable {\n let N: u32;\n\n /// Packs the current value into a compact array of `Field` elements.\n fn pack(self) -> [Field; N];\n\n /// Unpacks a compact array of `Field` elements into the original value.\n fn unpack(fields: [Field; N]) -> Self;\n}\n\n#[test]\nunconstrained fn bounded_vec_serialization() {\n // Test empty BoundedVec\n let empty_vec: BoundedVec<Field, 3> = BoundedVec::from_array([]);\n let serialized = empty_vec.serialize();\n let deserialized = BoundedVec::<Field, 3>::deserialize(serialized);\n assert_eq(empty_vec, deserialized);\n assert_eq(deserialized.len(), 0);\n\n // Test partially filled BoundedVec\n let partial_vec: BoundedVec<[u32; 2], 3> = BoundedVec::from_array([[1, 2]]);\n let serialized = partial_vec.serialize();\n let deserialized = BoundedVec::<[u32; 2], 3>::deserialize(serialized);\n assert_eq(partial_vec, deserialized);\n assert_eq(deserialized.len(), 1);\n assert_eq(deserialized.get(0), [1, 2]);\n\n // Test full BoundedVec\n let full_vec: BoundedVec<[u32; 2], 3> = BoundedVec::from_array([[1, 2], [3, 4], [5, 6]]);\n let serialized = full_vec.serialize();\n let deserialized = BoundedVec::<[u32; 2], 3>::deserialize(serialized);\n assert_eq(full_vec, deserialized);\n assert_eq(deserialized.len(), 3);\n assert_eq(deserialized.get(0), [1, 2]);\n assert_eq(deserialized.get(1), [3, 4]);\n assert_eq(deserialized.get(2), [5, 6]);\n}\n"
|
|
3555
3555
|
},
|
|
3556
|
-
"
|
|
3556
|
+
"389": {
|
|
3557
3557
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/type_packing.nr",
|
|
3558
3558
|
"source": "use crate::traits::Packable;\n\nglobal BOOL_PACKED_LEN: u32 = 1;\nglobal U8_PACKED_LEN: u32 = 1;\nglobal U16_PACKED_LEN: u32 = 1;\nglobal U32_PACKED_LEN: u32 = 1;\nglobal U64_PACKED_LEN: u32 = 1;\nglobal U128_PACKED_LEN: u32 = 1;\nglobal FIELD_PACKED_LEN: u32 = 1;\nglobal I8_PACKED_LEN: u32 = 1;\nglobal I16_PACKED_LEN: u32 = 1;\nglobal I32_PACKED_LEN: u32 = 1;\nglobal I64_PACKED_LEN: u32 = 1;\n\nimpl Packable for bool {\n let N: u32 = BOOL_PACKED_LEN;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n [self as Field]\n }\n\n #[inline_always]\n fn unpack(fields: [Field; Self::N]) -> bool {\n (fields[0] as u1) != 0\n }\n}\n\nimpl Packable for u8 {\n let N: u32 = U8_PACKED_LEN;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n [self as Field]\n }\n\n #[inline_always]\n fn unpack(fields: [Field; Self::N]) -> Self {\n fields[0] as u8\n }\n}\n\nimpl Packable for u16 {\n let N: u32 = U16_PACKED_LEN;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n [self as Field]\n }\n\n #[inline_always]\n fn unpack(fields: [Field; Self::N]) -> Self {\n fields[0] as u16\n }\n}\n\nimpl Packable for u32 {\n let N: u32 = U32_PACKED_LEN;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n [self as Field]\n }\n\n #[inline_always]\n fn unpack(fields: [Field; Self::N]) -> Self {\n fields[0] as u32\n }\n}\n\nimpl Packable for u64 {\n let N: u32 = U64_PACKED_LEN;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n [self as Field]\n }\n\n #[inline_always]\n fn unpack(fields: [Field; Self::N]) -> Self {\n fields[0] as u64\n }\n}\n\nimpl Packable for u128 {\n let N: u32 = U128_PACKED_LEN;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n [self as Field]\n }\n\n #[inline_always]\n fn unpack(fields: [Field; Self::N]) -> Self {\n fields[0] as u128\n }\n}\n\nimpl Packable for Field {\n let N: u32 = FIELD_PACKED_LEN;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n [self]\n }\n\n #[inline_always]\n fn unpack(fields: [Field; Self::N]) -> Self {\n fields[0]\n }\n}\n\nimpl Packable for i8 {\n let N: u32 = I8_PACKED_LEN;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n [self as u8 as Field]\n }\n\n #[inline_always]\n fn unpack(fields: [Field; Self::N]) -> Self {\n fields[0] as u8 as i8\n }\n}\n\nimpl Packable for i16 {\n let N: u32 = I16_PACKED_LEN;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n [self as u16 as Field]\n }\n\n #[inline_always]\n fn unpack(fields: [Field; Self::N]) -> Self {\n fields[0] as u16 as i16\n }\n}\n\nimpl Packable for i32 {\n let N: u32 = I32_PACKED_LEN;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n [self as u32 as Field]\n }\n\n #[inline_always]\n fn unpack(fields: [Field; Self::N]) -> Self {\n fields[0] as u32 as i32\n }\n}\n\nimpl Packable for i64 {\n let N: u32 = I64_PACKED_LEN;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n [self as u64 as Field]\n }\n\n #[inline_always]\n fn unpack(fields: [Field; Self::N]) -> Self {\n fields[0] as u64 as i64\n }\n}\n\nimpl<T, let M: u32> Packable for [T; M]\nwhere\n T: Packable,\n{\n let N: u32 = M * <T as Packable>::N;\n\n #[inline_always]\n fn pack(self) -> [Field; Self::N] {\n let mut result: [Field; Self::N] = std::mem::zeroed();\n for i in 0..M {\n let serialized = self[i].pack();\n for j in 0..<T as Packable>::N {\n result[i * <T as Packable>::N + j] = serialized[j];\n }\n }\n result\n }\n\n #[inline_always]\n fn unpack(fields: [Field; Self::N]) -> Self {\n let mut reader = crate::utils::reader::Reader::new(fields);\n let mut result: [T; M] = std::mem::zeroed();\n reader.read_struct_array::<T, <T as Packable>::N, M>(Packable::unpack, result)\n }\n}\n\n#[test]\nfn test_u16_packing() {\n let a: u16 = 10;\n assert_eq(a, u16::unpack(a.pack()));\n}\n\n#[test]\nfn test_i8_packing() {\n let a: i8 = -10;\n assert_eq(a, i8::unpack(a.pack()));\n}\n\n#[test]\nfn test_i16_packing() {\n let a: i16 = -10;\n assert_eq(a, i16::unpack(a.pack()));\n}\n\n#[test]\nfn test_i32_packing() {\n let a: i32 = -10;\n assert_eq(a, i32::unpack(a.pack()));\n}\n\n#[test]\nfn test_i64_packing() {\n let a: i64 = -10;\n assert_eq(a, i64::unpack(a.pack()));\n}\n"
|
|
3559
3559
|
},
|
|
3560
|
-
"
|
|
3560
|
+
"390": {
|
|
3561
3561
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/type_serialization.nr",
|
|
3562
3562
|
"source": "use crate::traits::{Deserialize, Serialize};\n\nglobal U1_SERIALIZED_LEN: u32 = 1;\nglobal BOOL_SERIALIZED_LEN: u32 = 1;\nglobal U8_SERIALIZED_LEN: u32 = 1;\nglobal U16_SERIALIZED_LEN: u32 = 1;\nglobal U32_SERIALIZED_LEN: u32 = 1;\nglobal U64_SERIALIZED_LEN: u32 = 1;\nglobal U128_SERIALIZED_LEN: u32 = 1;\nglobal FIELD_SERIALIZED_LEN: u32 = 1;\nglobal I8_SERIALIZED_LEN: u32 = 1;\nglobal I16_SERIALIZED_LEN: u32 = 1;\nglobal I32_SERIALIZED_LEN: u32 = 1;\nglobal I64_SERIALIZED_LEN: u32 = 1;\n\nimpl Serialize for bool {\n let N: u32 = BOOL_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as Field]\n }\n}\n\nimpl Deserialize for bool {\n let N: u32 = BOOL_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> bool {\n fields[0] != 0\n }\n}\n\nimpl Serialize for u1 {\n let N: u32 = U1_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as Field]\n }\n}\n\nimpl Deserialize for u1 {\n let N: u32 = U1_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u1\n }\n}\n\nimpl Serialize for u8 {\n let N: u32 = U8_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as Field]\n }\n}\n\nimpl Deserialize for u8 {\n let N: u32 = U8_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u8\n }\n}\n\nimpl Serialize for u16 {\n let N: u32 = U16_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as Field]\n }\n}\n\nimpl Deserialize for u16 {\n let N: u32 = U16_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u16\n }\n}\n\nimpl Serialize for u32 {\n let N: u32 = U32_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as Field]\n }\n}\n\nimpl Deserialize for u32 {\n let N: u32 = U32_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u32\n }\n}\n\nimpl Serialize for u64 {\n let N: u32 = U64_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as Field]\n }\n}\n\nimpl Deserialize for u64 {\n let N: u32 = U64_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u64\n }\n}\n\nimpl Serialize for u128 {\n let N: u32 = U128_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as Field]\n }\n}\n\nimpl Deserialize for u128 {\n let N: u32 = U128_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u128\n }\n}\n\nimpl Serialize for Field {\n let N: u32 = FIELD_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self]\n }\n}\n\nimpl Deserialize for Field {\n let N: u32 = FIELD_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0]\n }\n}\n\nimpl Serialize for i8 {\n let N: u32 = I8_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as u8 as Field]\n }\n}\n\nimpl Deserialize for i8 {\n let N: u32 = I8_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u8 as i8\n }\n}\n\nimpl Serialize for i16 {\n let N: u32 = I16_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as u16 as Field]\n }\n}\n\nimpl Deserialize for i16 {\n let N: u32 = I16_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u16 as i16\n }\n}\n\nimpl Serialize for i32 {\n let N: u32 = I32_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as u32 as Field]\n }\n}\n\nimpl Deserialize for i32 {\n let N: u32 = I32_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u32 as i32\n }\n}\n\nimpl Serialize for i64 {\n let N: u32 = I64_SERIALIZED_LEN;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n [self as u64 as Field]\n }\n}\n\nimpl Deserialize for i64 {\n let N: u32 = I64_SERIALIZED_LEN;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n fields[0] as u64 as i64\n }\n}\n\nimpl<T, let M: u32> Serialize for [T; M]\nwhere\n T: Serialize,\n{\n let N: u32 = <T as Serialize>::N * M;\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n let mut result: [Field; _] = std::mem::zeroed();\n for i in 0..M {\n let serialized_t = self[i].serialize();\n for j in 0..<T as Serialize>::N {\n result[i * <T as Serialize>::N + j] = serialized_t[j];\n }\n }\n result\n }\n}\n\nimpl<T, let M: u32> Deserialize for [T; M]\nwhere\n T: Deserialize,\n{\n let N: u32 = <T as Deserialize>::N * M;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n let mut reader = crate::utils::reader::Reader::new(fields);\n let mut result: [T; M] = std::mem::zeroed();\n reader.read_struct_array::<T, <T as Deserialize>::N, M>(Deserialize::deserialize, result)\n }\n}\n\nimpl<T> Serialize for Option<T>\nwhere\n T: Serialize,\n{\n let N: u32 = <T as Serialize>::N + 1;\n\n #[inline_always]\n fn serialize(self) -> [Field; Self::N] {\n let mut result: [Field; Self::N] = std::mem::zeroed();\n\n result[0] = if self.is_some() { 1 } else { 0 };\n\n let value_serialized = self.unwrap_unchecked().serialize();\n for i in 0..<T as Serialize>::N {\n result[1 + i] = value_serialized[i];\n }\n\n result\n }\n}\n\nimpl<T> Deserialize for Option<T>\nwhere\n T: Deserialize,\n{\n let N: u32 = <T as Deserialize>::N + 1;\n\n #[inline_always]\n fn deserialize(fields: [Field; Self::N]) -> Self {\n if fields[0] == 1 {\n let mut value_fields = [0; <T as Deserialize>::N];\n for i in 0..<T as Deserialize>::N {\n value_fields[i] = fields[1 + i];\n }\n\n Option::some(T::deserialize(value_fields))\n } else {\n Option::none()\n }\n }\n}\n\nmod test {\n use crate::traits::{Deserialize, Serialize};\n\n #[test]\n fn u16_serialization() {\n let a: u16 = 10;\n assert_eq(a, u16::deserialize(a.serialize()));\n }\n\n #[test]\n fn i8_serialization() {\n let a: i8 = -10;\n assert_eq(a, i8::deserialize(a.serialize()));\n }\n\n #[test]\n fn i16_serialization() {\n let a: i16 = -10;\n assert_eq(a, i16::deserialize(a.serialize()));\n }\n\n #[test]\n fn i32_serialization() {\n let a: i32 = -10;\n assert_eq(a, i32::deserialize(a.serialize()));\n }\n\n #[test]\n fn i64_serialization() {\n let a: i64 = -10;\n assert_eq(a, i64::deserialize(a.serialize()));\n }\n\n #[test]\n fn option_field_serialization() {\n let opt_some = Option::some(5);\n assert_eq(Option::<_>::deserialize(opt_some.serialize()), opt_some);\n\n let opt_none = Option::none();\n assert_eq(Option::<Field>::deserialize(opt_none.serialize()), opt_none);\n }\n\n #[test]\n fn array_serialization() {\n let array = [1, 2, 3, 4];\n\n let serialized: [Field; 4] = array.serialize();\n let deserialized: [Field; 4] = Deserialize::deserialize(serialized);\n assert_eq(deserialized, array);\n }\n\n #[test]\n fn nested_array_serialization() {\n let nested_array = [[1, 2, 3, 4], [5, 6, 7, 8]];\n\n let serialized: [Field; 8] = nested_array.serialize();\n let deserialized: [[Field; 4]; 2] = Deserialize::deserialize(serialized);\n\n assert_eq(deserialized, nested_array);\n }\n\n #[test]\n fn option_array_serialization() {\n let opt_some = Option::some([2, 5]);\n assert_eq(Option::<_>::deserialize(opt_some.serialize()), opt_some);\n\n let opt_none = Option::none();\n assert_eq(Option::<Field>::deserialize(opt_none.serialize()), opt_none);\n }\n}\n"
|
|
3563
3563
|
},
|
|
3564
|
-
"
|
|
3564
|
+
"394": {
|
|
3565
3565
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/utils/arrays.nr",
|
|
3566
3566
|
"source": "pub(crate) mod assert_trailing_zeros;\npub(crate) mod find_index;\npub(crate) mod get_sorted_tuples;\n\n// Re-exports.\npub use assert_trailing_zeros::assert_trailing_zeros;\npub use find_index::{find_first_index, find_last_index};\npub use get_sorted_tuples::{get_sorted_tuples, SortedTuple};\n\nuse crate::traits::{Deserialize, Empty, Serialize};\nuse super::for_loop::{for_i_in_0_, for_i_only_in_0_};\n\n//**********************************************************************************\n// ARRAY\n//**********************************************************************************\n\n// TODO: Consider making this a part of the noir stdlib.\n/// Helper fn to create a subarray from a given array.\npub fn subarray<T, let N: u32, let M: u32>(array: [T; N], offset: u32) -> [T; M]\nwhere\n T: Empty,\n{\n let mut result: [T; M] = [T::empty(); M];\n for i in 0..M {\n result[i] = array[offset + i];\n }\n result\n}\n\n// Helper function to find the index of the first element in an array that satisfies a given predicate.\n// If the element is not found, the function returns Option::none.\n// TODO: Consider making this a part of the noir stdlib.\npub unconstrained fn find_index_hint<T, let N: u32, Env>(\n array: [T; N],\n find: fn[Env](T) -> bool,\n) -> Option<u32> {\n let mut index: Option<u32> = Option::none();\n for i in 0..N {\n if find(array[i]) {\n index = Option::some(i);\n break;\n }\n }\n index\n}\n\n// Helper function to find the index of the first element (starting from the back) of an array that satisfies a given predicate.\n// If the element is not found, the function returns Option::none.\n// TODO: Consider making this a part of the noir stdlib.\npub unconstrained fn find_index_hint_in_reverse<T, let N: u32, Env>(\n array: [T; N],\n find: fn[Env](T) -> bool,\n) -> Option<u32> {\n let mut index: Option<u32> = Option::none();\n for i in 0..N {\n let j = N - i - 1;\n if find(array[j]) {\n index = Option::some(j);\n break;\n }\n }\n index\n}\n\n//**********************************************************************************\n// FREE ARRAY FUNCTIONS (to deprecate or make into methods of array wrappers)\n//**********************************************************************************\n\n/// Deprecated.\n///\n/// Helper function to count the number of non-empty elements in a validated array.\n/// Important: Only use it for validated arrays where validate_array(array) returns true,\n/// which ensures that:\n/// 1. All elements before the first empty element are non-empty\n/// 2. All elements after and including the first empty element are empty\n/// 3. The array forms a contiguous sequence of non-empty elements followed by empty elements\npub fn array_length<T, let N: u32>(array: [T; N]) -> u32\nwhere\n T: Empty,\n{\n // We get the length by checking the index of the first empty element.\n\n // Safety: This is safe because we have validated the array (see function doc above) and the emptiness\n // of the element and non-emptiness of the previous element is checked below.\n let maybe_length = unsafe { find_index_hint(array, |elem: T| elem.is_empty()) };\n\n let mut length = N;\n\n if maybe_length.is_some() {\n length = maybe_length.unwrap_unchecked();\n\n array[length].assert_empty(\"Expected array empty\");\n }\n\n if length != 0 {\n assert(!array[length - 1].is_empty());\n }\n\n length\n}\n\n// Returns an array length defined by fully trimming _all_ \"empty\" items\n// from the RHS.\npub unconstrained fn trimmed_array_length_hint<T, let N: u32>(array: [T; N]) -> u32\nwhere\n T: Empty,\n{\n let maybe_index_of_last_nonempty =\n find_index_hint_in_reverse(array, |elem: T| !elem.is_empty());\n let length: u32 = if maybe_index_of_last_nonempty.is_some() {\n 1 + maybe_index_of_last_nonempty.unwrap_unchecked()\n } else {\n 0\n };\n length\n}\n\n/// This function assumes that `array1` and `array2` contain no more than N non-empty elements between them,\n/// if this is not the case then elements from the end of `array2` will be dropped.\npub fn array_merge<T, let N: u32>(array1: [T; N], array2: [T; N]) -> [T; N]\nwhere\n T: Empty,\n{\n // Safety: we constrain this array below\n let result = unsafe { array_merge_helper(array1, array2) };\n // We assume arrays have been validated. The only use cases so far are with previously validated arrays.\n let array1_len = array_length(array1);\n let mut add_from_left = true;\n for i in 0..N {\n add_from_left &= i != array1_len;\n if add_from_left {\n assert_eq(result[i], array1[i]);\n } else {\n assert_eq(result[i], array2[i - array1_len]);\n }\n }\n result\n}\n\nunconstrained fn array_merge_helper<T, let N: u32>(array1: [T; N], array2: [T; N]) -> [T; N]\nwhere\n T: Empty,\n{\n let mut result: [T; N] = [T::empty(); N];\n let mut i = 0;\n for elem in array1 {\n if !elem.is_empty() {\n result[i] = elem;\n i += 1;\n }\n }\n for elem in array2 {\n if !elem.is_empty() {\n result[i] = elem;\n i += 1;\n }\n }\n result\n}\n\n// Returns the number of consecutive elements at the start of the array for which the predicate returns false.\n// This function ensures that any element after the first matching element (predicate returns true) also matches the predicate.\npub fn array_length_until<T, let N: u32, Env>(array: [T; N], predicate: fn[Env](T) -> bool) -> u32 {\n let mut length = 0;\n let mut stop = false;\n for i in 0..N {\n if predicate(array[i]) {\n stop = true;\n } else {\n assert(\n stop == false,\n \"matching element found after already encountering a non-matching element\",\n );\n length += 1;\n }\n }\n length\n}\n\npub fn check_permutation<T, let N: u32>(\n original_array: [T; N],\n permuted_array: [T; N],\n original_indexes: [u32; N],\n)\nwhere\n T: Eq,\n{\n let mut seen_value = [false; N];\n for i in 0..N {\n let index = original_indexes[i];\n let original_value = original_array[index];\n assert(permuted_array[i].eq(original_value), \"Invalid index\");\n assert(!seen_value[index], \"Duplicated index\");\n seen_value[index] = true;\n }\n}\n\n// Helper function to check if an array is padded with a given value from a given index.\n// Different to padded_array_length in that it allows the elements before the given index to be the same as the padded value.\npub fn array_padded_with<T, let N: u32>(array: [T; N], from_index: u32, padded_with: T) -> bool\nwhere\n T: Eq,\n{\n let mut is_valid = true;\n let mut should_check = false;\n for i in 0..N {\n should_check |= i == from_index;\n is_valid &= !should_check | (array[i] == padded_with);\n }\n is_valid\n}\n\n//**********************************************************************************\n// ARRAY WRAPPERS\n//**********************************************************************************\n\n/*\n *\n *\n * \n * |-----------------------------------------|------------------------------| \n * | LHS | RHS |\n * |-----------------------------------------|------------------------------|\n * ClaimedLengthArray | Interspersed 0s possible. | Unvalidated. |\n * | Possibly not fully trimmed. | Nonempty elements possible. |\n * |-----------------------------------------|------------------------------|\n * EmptyRHSArray | Interspersed 0s possible. | All 0s (validated). |\n * | Possibly not fully trimmed. | |\n * |-----------------------------------------|------------------------------|\n * TrimmedArray | Interspersed 0s possible. | All 0s (validated) |\n * | Last lhs element validated as nonempty. | |\n * | (I.e. fully trimmed) | |\n * |-----------------------------------------|------------------------------|\n * DenseTrimmedArray | Dense (validated). | All 0s (validated) |\n * |-----------------------------------------|------------------------------|\n *\n *\n * | What guarantees do we have? |\n * |--------|--------|--------------------------------| \n * | Dense? | RHS | Length vs Fully Trimmed Length |\n * |--------|--------|--------------------------------|\n * ClaimedLengthArray | ? | ? | ? |\n * | | | |\n * |--------|--------|--------------------------------|\n * EmptyRHSArray | ? | All 0s | Length >= Fully Trimmed Length |\n * | | | |\n * |--------|--------|--------------------------------|\n * TrimmedArray | ? | All 0s | Length == Fully Trimmed Length |\n * | | | |\n * | | | |\n * |--------|--------|--------------------------------|\n * DenseTrimmedArray | Yes | All 0s | Length == Fully Trimmed Length |\n * |--------|--------|--------------------------------|\n *\n *\n * An ClaimedLengthArray is distinct from a regular array [T; N], because it carries a length.\n * \n */\n\n/// ClaimedLengthArray - An array interpreted by Kernel circuits.\n/// Its `length` is merely a claim that must eventually be validated.\n/// Validation must include:\n/// - Asserting all items to the LHS of the length are nonempty (dense).\n/// - Asserting all items to the RHS of the length are empty.\n#[derive(Deserialize, Serialize)]\npub struct ClaimedLengthArray<T, let N: u32> {\n pub array: [T; N],\n pub length: u32,\n}\n\nimpl<T, let N: u32> ClaimedLengthArray<T, N>\nwhere\n T: Empty,\n{\n // No constructor. Append to an empty one.\n\n // For constrained append functions, see the dedicated file: assert_array_appended.nr\n\n pub fn assert_dense_trimmed(self) {\n for_i_in_0_(\n self.length,\n self.array.len(),\n |i| {\n assert(!self.array[i].is_empty(), \"LHS of input array is not dense\")\n // Requires Noir #9002:\n // self.array[i].assert_not_empty(\"LHS of input array is not dense\"); // LHS of input array is not dense.\n },\n |i| self.array[i].assert_empty(\"RHS of input array is not empty\"),\n false,\n );\n }\n\n pub fn assert_empty<let S: u32>(self, msg: str<S>) {\n for i in 0..N {\n self.array[i].assert_empty(msg);\n }\n assert_eq(self.length, 0);\n }\n\n pub fn assert_length_within_bounds<let S: u32>(self, msg: str<S>) {\n assert(self.length <= N, msg);\n }\n\n pub fn push(&mut self, item: T) {\n assert(self.length != N, \"Array full\");\n\n let next_index = self.length;\n self.array[next_index] = item;\n self.length += 1;\n }\n\n pub fn pop(&mut self) -> T {\n assert(self.length != 0, \"Array empty\");\n\n let mut top_index = self.length - 1;\n let popped_item = self.array[top_index];\n self.array[top_index] = T::empty();\n self.length -= 1;\n popped_item\n }\n\n pub fn for_each<Env>(self, f: fn[Env](T) -> ()) {\n // We pass `false`, because by construction, we should know that self.length <= self.array.len().\n for_i_only_in_0_(self.length, self.array.len(), |i| f(self.array[i]), false);\n }\n\n // E.g.\n // dest.for_each_i(|source_item, i| { assert_eq(dest.array[i], source_item, \"bad copy\"); })\n pub fn for_each_i<Env>(self, f: fn[Env](T, u32) -> ()) {\n // We pass `false`, because by construction, we should know that self.length <= self.array.len().\n for_i_only_in_0_(\n self.length,\n self.array.len(),\n |i| f(self.array[i], i),\n false,\n );\n }\n\n pub fn from_bounded_vec(vec: BoundedVec<T, N>) -> Self {\n Self { array: vec.storage(), length: vec.len() }\n }\n}\n\n// TODO: compiler bug. No idea why this is needed, if we have #[derive(Eq)] above the struct definition.\nimpl<T, let N: u32> Eq for ClaimedLengthArray<T, N>\nwhere\n T: Eq,\n{\n fn eq(self, other: Self) -> bool {\n (self.array == other.array) & (self.length == other.length)\n }\n}\n\nimpl<T, let N: u32> Empty for ClaimedLengthArray<T, N>\nwhere\n T: Empty,\n{\n fn empty() -> Self {\n Self { array: [T::empty(); N], length: 0 }\n }\n}\n\n#[test]\nfn test_empty_array_length() {\n assert_eq(array_length([0]), 0);\n assert_eq(array_length([0, 0, 0]), 0);\n}\n\n#[test]\nfn test_array_length() {\n assert_eq(array_length([123]), 1);\n assert_eq(array_length([123, 0, 0]), 1);\n assert_eq(array_length([123, 456]), 2);\n assert_eq(array_length([123, 456, 0]), 2);\n}\n\n#[test]\nfn test_array_length_invalid_arrays() {\n // Result can be misleading (but correct) for invalid arrays.\n assert_eq(array_length([0, 0, 123]), 0);\n assert_eq(array_length([0, 123, 0]), 0);\n assert_eq(array_length([0, 123, 456]), 0);\n assert_eq(array_length([123, 0, 456]), 1);\n}\n\n#[test]\nfn test_array_length_until() {\n let array = [11, 22, 33, 44, 55];\n assert_eq(array_length_until(array, |x| x == 55), 4);\n assert_eq(array_length_until(array, |x| x == 56), 5);\n assert_eq(array_length_until(array, |x| x > 40), 3);\n assert_eq(array_length_until(array, |x| x > 10), 0);\n}\n\n#[test(should_fail_with = \"matching element found after already encountering a non-matching element\")]\nfn test_array_length_until_non_consecutive_fails() {\n let array = [1, 1, 0, 1, 0];\n let _ = array_length_until(array, |x| x == 0);\n}\n\n#[test(should_fail_with = \"matching element found after already encountering a non-matching element\")]\nfn test_array_length_until_first_non_matching_fails() {\n let array = [1, 0, 0, 0, 0];\n let _ = array_length_until(array, |x| x == 1);\n}\n\n#[test]\nunconstrained fn find_index_greater_than_min() {\n let values = [10, 20, 30, 40];\n let min = 22;\n let maybe_index = find_index_hint(values, |v: Field| min.lt(v));\n assert_eq(maybe_index.unwrap_unchecked(), 2);\n}\n\n#[test]\nunconstrained fn find_index_not_found() {\n let values = [10, 20, 30, 40];\n let min = 100;\n let maybe_index = find_index_hint(values, |v: Field| min.lt(v));\n assert_eq(maybe_index.is_none(), true);\n}\n\n#[test]\nfn check_permutation_basic_test() {\n let original_array = [1, 2, 3];\n let permuted_array = [3, 1, 2];\n let indexes = [2, 0, 1];\n check_permutation(original_array, permuted_array, indexes);\n}\n\n#[test(should_fail_with = \"Duplicated index\")]\nfn check_permutation_duplicated_index() {\n let original_array = [0, 1, 0];\n let permuted_array = [1, 0, 0];\n let indexes = [1, 0, 0];\n check_permutation(original_array, permuted_array, indexes);\n}\n\n#[test(should_fail_with = \"Invalid index\")]\nfn check_permutation_invalid_index() {\n let original_array = [0, 1, 2];\n let permuted_array = [1, 0, 0];\n let indexes = [1, 0, 2];\n check_permutation(original_array, permuted_array, indexes);\n}\n\n#[test]\nfn test_array_padded_with() {\n let array = [11, 22, 33, 44, 44];\n assert_eq(array_padded_with(array, 0, 44), false);\n assert_eq(array_padded_with(array, 1, 44), false);\n assert_eq(array_padded_with(array, 2, 44), false);\n assert_eq(array_padded_with(array, 3, 44), true);\n assert_eq(array_padded_with(array, 4, 44), true);\n assert_eq(array_padded_with(array, 4, 33), false);\n assert_eq(array_padded_with(array, 5, 44), true); // Index out of bounds.\n assert_eq(array_padded_with(array, 0, 11), false);\n}\n"
|
|
3567
3567
|
},
|
|
3568
|
-
"
|
|
3568
|
+
"395": {
|
|
3569
3569
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/utils/field.nr",
|
|
3570
3570
|
"source": "global KNOWN_NON_RESIDUE: Field = 5; // This is a non-residue in Noir's native Field.\n\npub fn field_from_bytes<let N: u32>(bytes: [u8; N], big_endian: bool) -> Field {\n assert(bytes.len() < 32, \"field_from_bytes: N must be less than 32\");\n let mut as_field = 0;\n let mut offset = 1;\n for i in 0..N {\n let mut index = i;\n if big_endian {\n index = N - i - 1;\n }\n as_field += (bytes[index] as Field) * offset;\n offset *= 256;\n }\n\n as_field\n}\n\n// Convert a 32 byte array to a field element by truncating the final byte\npub fn field_from_bytes_32_trunc(bytes32: [u8; 32]) -> Field {\n // Convert it to a field element\n let mut v = 1;\n let mut high = 0 as Field;\n let mut low = 0 as Field;\n\n for i in 0..15 {\n // covers bytes 16..30 (31 is truncated and ignored)\n low = low + (bytes32[15 + 15 - i] as Field) * v;\n v = v * 256;\n // covers bytes 0..14\n high = high + (bytes32[14 - i] as Field) * v;\n }\n // covers byte 15\n low = low + (bytes32[15] as Field) * v;\n\n low + high * v\n}\n\n// TODO to radix returns u8, so we cannot use bigger radixes. It'd be ideal to use a radix of the maximum range-constrained integer noir supports\npub fn full_field_less_than(lhs: Field, rhs: Field) -> bool {\n lhs.lt(rhs)\n}\n\npub fn full_field_greater_than(lhs: Field, rhs: Field) -> bool {\n rhs.lt(lhs)\n}\n\npub fn min(f1: Field, f2: Field) -> Field {\n if f1.lt(f2) {\n f1\n } else {\n f2\n }\n}\n\nglobal C1: u32 = 28;\nglobal C3: Field = 40770029410420498293352137776570907027550720424234931066070132305055;\nglobal C5: Field = 19103219067921713944291392827692070036145651957329286315305642004821462161904;\n\npub fn pow(x: Field, y: Field) -> Field {\n let mut r = 1 as Field;\n let b: [u1; 254] = y.to_le_bits();\n\n for i in 0..254 {\n r *= r;\n r *= (b[254 - 1 - i] as Field) * x + (1 - b[254 - 1 - i] as Field);\n }\n\n r\n}\n\n/// Returns Option::some(sqrt) if there is a square root, and Option::none() if there isn't.\npub fn sqrt(x: Field) -> Option<Field> {\n // Safety: if the hint returns the square root of x, then we simply square it\n // check the result equals x. If x is not square, we return a value that\n // enables us to prove that fact (see the `else` clause below).\n let (is_sq, maybe_sqrt) = unsafe { __sqrt(x) };\n\n if is_sq {\n let sqrt = maybe_sqrt;\n validate_sqrt_hint(x, sqrt);\n Option::some(sqrt)\n } else {\n let not_sqrt_hint = maybe_sqrt;\n validate_not_sqrt_hint(x, not_sqrt_hint);\n Option::none()\n }\n}\n\n// Boolean indicating whether Field element is a square, i.e. whether there exists a y in Field s.t. x = y*y.\nunconstrained fn is_square(x: Field) -> bool {\n let v = pow(x, -1 / 2);\n v * (v - 1) == 0\n}\n\n// Tonelli-Shanks algorithm for computing the square root of a Field element.\n// Requires C1 = max{c: 2^c divides (p-1)}, where p is the order of Field\n// as well as C3 = (C2 - 1)/2, where C2 = (p-1)/(2^c1),\n// and C5 = ZETA^C2, where ZETA is a non-square element of Field.\n// These are pre-computed above as globals.\nunconstrained fn tonelli_shanks_sqrt(x: Field) -> Field {\n let mut z = pow(x, C3);\n let mut t = z * z * x;\n z *= x;\n let mut b = t;\n let mut c = C5;\n\n for i in 0..(C1 - 1) {\n for _j in 1..(C1 - i - 1) {\n b *= b;\n }\n\n z *= if b == 1 { 1 } else { c };\n\n c *= c;\n\n t *= if b == 1 { 1 } else { c };\n\n b = t;\n }\n\n z\n}\n\n// NB: this doesn't return an option, because in the case of there _not_ being a square root, we still want to return a field element that allows us to then assert in the _constrained_ sqrt function that there is no sqrt.\nunconstrained fn __sqrt(x: Field) -> (bool, Field) {\n let is_sq = is_square(x);\n if is_sq {\n let sqrt = tonelli_shanks_sqrt(x);\n (true, sqrt)\n } else {\n // Demonstrate that x is not a square (a.k.a. a \"quadratic non-residue\").\n // Facts:\n // The Legendre symbol (\"LS\") of x, is x^((p-1)/2) (mod p).\n // - If x is a square, LS(x) = 1\n // - If x is not a square, LS(x) = -1\n // - If x = 0, LS(x) = 0.\n //\n // Hence:\n // sq * sq = sq // 1 * 1 = 1\n // non-sq * non-sq = sq // -1 * -1 = 1\n // sq * non-sq = non-sq // -1 * 1 = -1\n //\n // See: https://en.wikipedia.org/wiki/Legendre_symbol\n let demo_x_not_square = x * KNOWN_NON_RESIDUE;\n let not_sqrt = tonelli_shanks_sqrt(demo_x_not_square);\n (false, not_sqrt)\n }\n}\n\nfn validate_sqrt_hint(x: Field, hint: Field) {\n assert(hint * hint == x, f\"The claimed_sqrt {hint} is not the sqrt of x {x}\");\n}\n\nfn validate_not_sqrt_hint(x: Field, hint: Field) {\n // We need this assertion, because x = 0 would pass the other assertions in this\n // function, and we don't want people to be able to prove that 0 is not square!\n assert(x != 0, \"0 has a square root; you cannot claim it is not square\");\n // Demonstrate that x is not a square (a.k.a. a \"quadratic non-residue\").\n //\n // Facts:\n // The Legendre symbol (\"LS\") of x, is x^((p-1)/2) (mod p).\n // - If x is a square, LS(x) = 1\n // - If x is not a square, LS(x) = -1\n // - If x = 0, LS(x) = 0.\n //\n // Hence:\n // 1. sq * sq = sq // 1 * 1 = 1\n // 2. non-sq * non-sq = sq // -1 * -1 = 1\n // 3. sq * non-sq = non-sq // -1 * 1 = -1\n //\n // See: https://en.wikipedia.org/wiki/Legendre_symbol\n //\n // We want to demonstrate that this below multiplication falls under bullet-point (2):\n let demo_x_not_square = x * KNOWN_NON_RESIDUE;\n // I.e. we want to demonstrate that `demo_x_not_square` has Legendre symbol 1\n // (i.e. that it is a square), so we prove that it is square below.\n // Why do we want to prove that it has LS 1?\n // Well, since it was computed with a known-non-residue, its squareness implies we're\n // in case 2 (something multiplied by a known-non-residue yielding a result which\n // has a LS of 1), which implies that x must be a non-square. The unconstrained\n // function gave us the sqrt of demo_x_not_square, so all we need to do is\n // assert its squareness:\n assert(\n hint * hint == demo_x_not_square,\n f\"The hint {hint} does not demonstrate that {x} is not a square\",\n );\n}\n\n#[test]\nunconstrained fn bytes_field_test() {\n // Tests correctness of field_from_bytes_32_trunc against existing methods\n // Bytes representing 0x543e0a6642ffeb8039296861765a53407bba62bd1c97ca43374de950bbe0a7\n let inputs = [\n 84, 62, 10, 102, 66, 255, 235, 128, 57, 41, 104, 97, 118, 90, 83, 64, 123, 186, 98, 189, 28,\n 151, 202, 67, 55, 77, 233, 80, 187, 224, 167,\n ];\n let field = field_from_bytes(inputs, true);\n let return_bytes: [u8; 31] = field.to_be_bytes();\n assert_eq(inputs, return_bytes);\n // 32 bytes - we remove the final byte, and check it matches the field\n let inputs2 = [\n 84, 62, 10, 102, 66, 255, 235, 128, 57, 41, 104, 97, 118, 90, 83, 64, 123, 186, 98, 189, 28,\n 151, 202, 67, 55, 77, 233, 80, 187, 224, 167, 158,\n ];\n let field2 = field_from_bytes_32_trunc(inputs2);\n let return_bytes2: [u8; 31] = field.to_be_bytes();\n\n assert_eq(return_bytes2, return_bytes);\n assert_eq(field2, field);\n}\n\n#[test]\nunconstrained fn max_field_test() {\n // Tests the hardcoded value in constants.nr vs underlying modulus\n // NB: We can't use 0-1 in constants.nr as it will be transpiled incorrectly to ts and sol constants files\n let max_value = crate::constants::MAX_FIELD_VALUE;\n assert_eq(max_value, 0 - 1);\n // modulus == 0 is tested elsewhere, so below is more of a sanity check\n let max_bytes: [u8; 32] = max_value.to_be_bytes();\n let mod_bytes = std::field::modulus_be_bytes();\n for i in 0..31 {\n assert_eq(max_bytes[i], mod_bytes[i]);\n }\n assert_eq(max_bytes[31], mod_bytes[31] - 1);\n}\n\n#[test]\nunconstrained fn sqrt_valid_test() {\n let x = 16; // examples: 16, 9, 25, 81\n let result = sqrt(x);\n assert(result.is_some());\n assert_eq(result.unwrap() * result.unwrap(), x);\n}\n\n#[test]\nunconstrained fn sqrt_invalid_test() {\n let x = KNOWN_NON_RESIDUE; // has no square root in the field\n let result = sqrt(x);\n assert(result.is_none());\n}\n"
|
|
3571
3571
|
},
|
|
3572
|
-
"
|
|
3572
|
+
"399": {
|
|
3573
3573
|
"path": "/home/aztec-dev/aztec-packages/noir-projects/noir-protocol-circuits/crates/types/src/utils/reader.nr",
|
|
3574
3574
|
"source": "pub struct Reader<let N: u32> {\n data: [Field; N],\n offset: u32,\n}\n\nimpl<let N: u32> Reader<N> {\n pub fn new(data: [Field; N]) -> Self {\n Self { data, offset: 0 }\n }\n\n pub fn read(&mut self) -> Field {\n let result = self.data[self.offset];\n self.offset += 1;\n result\n }\n\n pub fn read_u32(&mut self) -> u32 {\n self.read() as u32\n }\n\n pub fn read_u64(&mut self) -> u64 {\n self.read() as u64\n }\n\n pub fn read_bool(&mut self) -> bool {\n self.read() != 0\n }\n\n pub fn read_array<let K: u32>(&mut self) -> [Field; K] {\n let mut result = [0; K];\n for i in 0..K {\n result[i] = self.data[self.offset + i];\n }\n self.offset += K;\n result\n }\n\n pub fn read_struct<T, let K: u32>(&mut self, deserialise: fn([Field; K]) -> T) -> T {\n let result = deserialise(self.read_array());\n result\n }\n\n pub fn read_struct_array<T, let K: u32, let C: u32>(\n &mut self,\n deserialise: fn([Field; K]) -> T,\n mut result: [T; C],\n ) -> [T; C] {\n for i in 0..C {\n result[i] = self.read_struct(deserialise);\n }\n result\n }\n\n pub fn finish(self) {\n assert_eq(self.offset, self.data.len(), \"Reader did not read all data\");\n }\n}\n"
|
|
3575
3575
|
},
|