@aws-sdk/client-sagemaker 3.940.0 → 3.943.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (91) hide show
  1. package/README.md +48 -0
  2. package/dist-cjs/index.js +277 -12
  3. package/dist-es/SageMaker.js +12 -0
  4. package/dist-es/commands/CreateMlflowAppCommand.js +16 -0
  5. package/dist-es/commands/CreatePresignedMlflowAppUrlCommand.js +16 -0
  6. package/dist-es/commands/DeleteMlflowAppCommand.js +16 -0
  7. package/dist-es/commands/DescribeMlflowAppCommand.js +16 -0
  8. package/dist-es/commands/ListMlflowAppsCommand.js +16 -0
  9. package/dist-es/commands/UpdateMlflowAppCommand.js +16 -0
  10. package/dist-es/commands/index.js +6 -0
  11. package/dist-es/models/enums.js +37 -0
  12. package/dist-es/pagination/ListMlflowAppsPaginator.js +4 -0
  13. package/dist-es/pagination/index.js +1 -0
  14. package/dist-es/schemas/schemas_0.js +149 -12
  15. package/dist-types/SageMaker.d.ts +43 -0
  16. package/dist-types/SageMakerClient.d.ts +8 -2
  17. package/dist-types/commands/CreateClusterCommand.d.ts +3 -3
  18. package/dist-types/commands/CreateComputeQuotaCommand.d.ts +1 -1
  19. package/dist-types/commands/CreateDomainCommand.d.ts +1 -1
  20. package/dist-types/commands/CreateHubContentPresignedUrlsCommand.d.ts +1 -1
  21. package/dist-types/commands/CreateMlflowAppCommand.d.ts +91 -0
  22. package/dist-types/commands/CreatePresignedMlflowAppUrlCommand.d.ts +79 -0
  23. package/dist-types/commands/CreateTrainingJobCommand.d.ts +1 -2
  24. package/dist-types/commands/CreateUserProfileCommand.d.ts +1 -1
  25. package/dist-types/commands/DeleteHubContentCommand.d.ts +1 -1
  26. package/dist-types/commands/DeleteHubContentReferenceCommand.d.ts +1 -1
  27. package/dist-types/commands/DeleteMlflowAppCommand.d.ts +77 -0
  28. package/dist-types/commands/DescribeClusterCommand.d.ts +2 -2
  29. package/dist-types/commands/DescribeClusterNodeCommand.d.ts +1 -1
  30. package/dist-types/commands/DescribeComputeQuotaCommand.d.ts +1 -1
  31. package/dist-types/commands/DescribeDomainCommand.d.ts +1 -1
  32. package/dist-types/commands/DescribeHubContentCommand.d.ts +3 -3
  33. package/dist-types/commands/DescribeMlflowAppCommand.d.ts +111 -0
  34. package/dist-types/commands/DescribeSubscribedWorkteamCommand.d.ts +2 -1
  35. package/dist-types/commands/DescribeTrainingJobCommand.d.ts +1 -1
  36. package/dist-types/commands/DescribeUserProfileCommand.d.ts +1 -1
  37. package/dist-types/commands/ImportHubContentCommand.d.ts +1 -1
  38. package/dist-types/commands/ListClusterNodesCommand.d.ts +1 -1
  39. package/dist-types/commands/ListComputeQuotasCommand.d.ts +1 -1
  40. package/dist-types/commands/ListHubContentVersionsCommand.d.ts +3 -3
  41. package/dist-types/commands/ListHubContentsCommand.d.ts +3 -3
  42. package/dist-types/commands/ListMlflowAppsCommand.d.ts +93 -0
  43. package/dist-types/commands/ListSubscribedWorkteamsCommand.d.ts +2 -1
  44. package/dist-types/commands/ListTagsCommand.d.ts +1 -1
  45. package/dist-types/commands/ListTrainingJobsCommand.d.ts +1 -1
  46. package/dist-types/commands/ListTrainingJobsForHyperParameterTuningJobCommand.d.ts +1 -1
  47. package/dist-types/commands/ListTrainingPlansCommand.d.ts +1 -2
  48. package/dist-types/commands/UpdateClusterCommand.d.ts +2 -2
  49. package/dist-types/commands/UpdateComputeQuotaCommand.d.ts +1 -1
  50. package/dist-types/commands/UpdateDomainCommand.d.ts +1 -1
  51. package/dist-types/commands/UpdateHubContentCommand.d.ts +1 -1
  52. package/dist-types/commands/UpdateHubContentReferenceCommand.d.ts +1 -1
  53. package/dist-types/commands/UpdateMlflowAppCommand.d.ts +88 -0
  54. package/dist-types/commands/UpdateUserProfileCommand.d.ts +1 -1
  55. package/dist-types/commands/index.d.ts +6 -0
  56. package/dist-types/models/enums.d.ts +77 -0
  57. package/dist-types/models/models_0.d.ts +3 -3
  58. package/dist-types/models/models_1.d.ts +87 -170
  59. package/dist-types/models/models_2.d.ts +280 -372
  60. package/dist-types/models/models_3.d.ts +486 -383
  61. package/dist-types/models/models_4.d.ts +427 -4
  62. package/dist-types/pagination/ListMlflowAppsPaginator.d.ts +7 -0
  63. package/dist-types/pagination/index.d.ts +1 -0
  64. package/dist-types/schemas/schemas_0.d.ts +21 -0
  65. package/dist-types/ts3.4/SageMaker.d.ts +103 -0
  66. package/dist-types/ts3.4/SageMakerClient.d.ts +36 -0
  67. package/dist-types/ts3.4/commands/CreateMlflowAppCommand.d.ts +50 -0
  68. package/dist-types/ts3.4/commands/CreatePresignedMlflowAppUrlCommand.d.ts +51 -0
  69. package/dist-types/ts3.4/commands/CreateTrainingJobCommand.d.ts +4 -2
  70. package/dist-types/ts3.4/commands/DeleteMlflowAppCommand.d.ts +50 -0
  71. package/dist-types/ts3.4/commands/DescribeMlflowAppCommand.d.ts +51 -0
  72. package/dist-types/ts3.4/commands/DescribeSubscribedWorkteamCommand.d.ts +2 -4
  73. package/dist-types/ts3.4/commands/DescribeTrainingJobCommand.d.ts +1 -1
  74. package/dist-types/ts3.4/commands/ListMlflowAppsCommand.d.ts +50 -0
  75. package/dist-types/ts3.4/commands/ListSubscribedWorkteamsCommand.d.ts +2 -4
  76. package/dist-types/ts3.4/commands/ListTagsCommand.d.ts +1 -1
  77. package/dist-types/ts3.4/commands/ListTrainingJobsCommand.d.ts +1 -1
  78. package/dist-types/ts3.4/commands/ListTrainingJobsForHyperParameterTuningJobCommand.d.ts +1 -1
  79. package/dist-types/ts3.4/commands/ListTrainingPlansCommand.d.ts +4 -2
  80. package/dist-types/ts3.4/commands/UpdateMlflowAppCommand.d.ts +50 -0
  81. package/dist-types/ts3.4/commands/index.d.ts +6 -0
  82. package/dist-types/ts3.4/models/enums.d.ts +47 -0
  83. package/dist-types/ts3.4/models/models_0.d.ts +1 -1
  84. package/dist-types/ts3.4/models/models_1.d.ts +23 -38
  85. package/dist-types/ts3.4/models/models_2.d.ts +67 -86
  86. package/dist-types/ts3.4/models/models_3.d.ts +127 -91
  87. package/dist-types/ts3.4/models/models_4.d.ts +112 -4
  88. package/dist-types/ts3.4/pagination/ListMlflowAppsPaginator.d.ts +11 -0
  89. package/dist-types/ts3.4/pagination/index.d.ts +1 -0
  90. package/dist-types/ts3.4/schemas/schemas_0.d.ts +21 -0
  91. package/package.json +5 -5
@@ -1,7 +1,377 @@
1
- import { _InstanceType, AlgorithmSortBy, AppImageConfigSortKey, AppSortKey, AppType, AssociationEdgeType, AutoMLJobStatus, AutoMLSortBy, AutoMLSortOrder, BatchStrategy, CandidateSortBy, CandidateStatus, ClusterEventResourceType, ClusterSortBy, CodeRepositorySortBy, CodeRepositorySortOrder, CompilationJobStatus, CrossAccountFilterOption, DeviceDeploymentStatus, DomainStatus, EdgePackagingJobStatus, EndpointConfigSortKey, EndpointSortKey, EndpointStatus, EventSortBy, ExecutionRoleIdentityConfig, ExecutionStatus, FeatureGroupSortBy, FeatureGroupSortOrder, FeatureGroupStatus, FeatureStatus, FeatureType, FlowDefinitionStatus, HubContentSortBy, HubContentStatus, HubContentSupportStatus, HubContentType, HubSortBy, HubStatus, HyperParameterTuningJobSortByOptions, HyperParameterTuningJobStatus, HyperParameterTuningJobStrategyType, ImageSortBy, ImageSortOrder, ImageStatus, ImageVersionSortBy, ImageVersionSortOrder, ImageVersionStatus, InferenceComponentSortKey, InferenceComponentStatus, InferenceExperimentStatus, InferenceExperimentType, IPAddressType, IsTrackingServerActive, LabelingJobStatus, ListCompilationJobsSortBy, ListDeviceFleetsSortBy, ListEdgeDeploymentPlansSortBy, ListEdgePackagingJobsSortBy, ListInferenceRecommendationsJobsSortBy, ListLabelingJobsForWorkteamSortByOptions, ListOptimizationJobsSortBy, ModelApprovalStatus, ModelCardExportJobSortBy, ModelCardExportJobSortOrder, ModelCardExportJobStatus, ModelCardSortBy, ModelCardSortOrder, ModelCardStatus, ModelCardVersionSortBy, ModelMetadataFilterType, ModelPackageGroupSortBy, ModelPackageGroupStatus, ModelPackageSortBy, ModelPackageStatus, ModelPackageType, ModelSortKey, MonitoringAlertHistorySortKey, MonitoringAlertStatus, MonitoringExecutionSortKey, MonitoringJobDefinitionSortKey, MonitoringScheduleSortKey, MonitoringType, NotebookInstanceLifecycleConfigSortKey, NotebookInstanceLifecycleConfigSortOrder, NotebookInstanceSortKey, NotebookInstanceSortOrder, NotebookInstanceStatus, OfflineStoreStatusValue, Operator, OptimizationJobDeploymentInstanceType, OptimizationJobStatus, OrderKey, PartnerAppStatus, PartnerAppType, PipelineExecutionStatus, ProcessingJobStatus, ProjectSortBy, ProjectSortOrder, ProjectStatus, RecommendationJobStatus, RecommendationJobType, RecommendationStepType, ReservedCapacityInstanceType, ReservedCapacityStatus, ReservedCapacityType, ResourceCatalogSortBy, ResourceCatalogSortOrder, ResourceType, SageMakerResourceName, SagemakerServicecatalogStatus, SchedulerResourceStatus, ScheduleStatus, SecondaryStatus, SharingType, SortActionsBy, SortArtifactsBy, SortAssociationsBy, SortBy, SortClusterSchedulerConfigBy, SortContextsBy, SortExperimentsBy, SortInferenceExperimentsBy, SortLineageGroupsBy, SortOrder, SortPipelineExecutionsBy, SortPipelinesBy, SortQuotaBy, SortTrackingServerBy, SpaceSortKey, SpaceStatus, StepStatus, StudioLifecycleConfigAppType, StudioLifecycleConfigSortKey, TrackingServerStatus, TrainingJobSortByOptions, TrainingJobStatus, TrainingPlanFilterName, TrainingPlanSortBy, TrainingPlanSortOrder, TrainingPlanStatus, TransformJobStatus, UserProfileStatus, VolumeAttachmentStatus, WarmPoolResourceStatus, WorkforceIpAddressType, WorkforceStatus } from "./enums";
2
- import { ActionSummary, AgentVersion, AlgorithmSummary, AmazonQSettings, AppDetails, AppImageConfigDetails, ArtifactSummary, AssociationSummary, AutoMLCandidate, AutoMLJobStepMetadata, AutoMLJobSummary, BatchDataCaptureConfig, CacheHitResult, CallbackStepMetadata, ClarifyCheckStepMetadata, ClusterEventSummary, ClusterNodeSummary, ClusterSchedulerConfigSummary, ClusterSummary, CodeRepositorySummary, CognitoConfig, CompilationJobSummary, ComputeQuotaSummary, ConditionStepMetadata, ContextSummary, MetadataProperties, OutputParameter, ResourceSpec, Tag, TransformInput, TransformOutput, TransformResources, UserContext } from "./models_0";
3
- import { DockerSettings, EdgeOutputConfig, ExperimentConfig, FeatureDefinition, HyperParameterTrainingJobDefinition, HyperParameterTuningJobConfig, HyperParameterTuningJobWarmStartConfig, InferenceExperimentSchedule, LabelingJobInputConfig, ModelLifeCycle, MonitoringScheduleConfig, OfflineStoreConfig, OnlineStoreConfig, ResourceLimits, SpaceStorageSettings, TrustedIdentityPropagationSettings, UnifiedStudioSettings, UserSettings } from "./models_1";
4
- import { CustomizedMetricSpecification, DataCaptureConfigSummary, DataProcessing, EndpointOutputConfiguration, ExperimentSource, FeatureParameter, HyperParameterTrainingJobSummary, HyperParameterTuningJobCompletionDetails, HyperParameterTuningJobConsumedResources, InferenceMetrics, LabelCounters, LabelingJobOutput, LastUpdateStatus, MemberDefinition, ModelClientConfig, ModelConfiguration, MonitoringExecutionSummary, NotificationConfiguration, ObjectiveStatusCounters, OfflineStoreStatus, ProductionVariantSummary, RecommendationMetrics, SourceIpConfig, SubscribedWorkteam, TrainingJobStatusCounters, TrialComponentArtifact, TrialComponentParameterValue, TrialComponentStatus, WarmPoolStatus, WorkerAccessConfiguration } from "./models_2";
1
+ import { _InstanceType, AccountDefaultStatus, AlgorithmSortBy, AppImageConfigSortKey, AppSortKey, AppType, AssociationEdgeType, AutoMLJobStatus, AutoMLSortBy, AutoMLSortOrder, BatchStrategy, CandidateSortBy, CandidateStatus, ClusterEventResourceType, ClusterSortBy, CodeRepositorySortBy, CodeRepositorySortOrder, CompilationJobStatus, CrossAccountFilterOption, DeviceDeploymentStatus, DomainStatus, EdgePackagingJobStatus, EndpointConfigSortKey, EndpointSortKey, EndpointStatus, EventSortBy, ExecutionRoleIdentityConfig, ExecutionStatus, FeatureGroupSortBy, FeatureGroupSortOrder, FeatureGroupStatus, FeatureStatus, FeatureType, FlowDefinitionStatus, HubContentSortBy, HubContentStatus, HubContentSupportStatus, HubContentType, HubSortBy, HubStatus, HyperParameterTuningJobSortByOptions, HyperParameterTuningJobStatus, HyperParameterTuningJobStrategyType, ImageSortBy, ImageSortOrder, ImageStatus, ImageVersionSortBy, ImageVersionSortOrder, ImageVersionStatus, InferenceComponentSortKey, InferenceComponentStatus, InferenceExperimentStatus, InferenceExperimentType, IPAddressType, IsTrackingServerActive, LabelingJobStatus, ListCompilationJobsSortBy, ListDeviceFleetsSortBy, ListEdgeDeploymentPlansSortBy, ListEdgePackagingJobsSortBy, ListInferenceRecommendationsJobsSortBy, ListLabelingJobsForWorkteamSortByOptions, ListOptimizationJobsSortBy, MlflowAppStatus, ModelApprovalStatus, ModelCardExportJobSortBy, ModelCardExportJobSortOrder, ModelCardExportJobStatus, ModelCardSortBy, ModelCardSortOrder, ModelCardStatus, ModelCardVersionSortBy, ModelMetadataFilterType, ModelPackageGroupSortBy, ModelPackageGroupStatus, ModelPackageSortBy, ModelPackageStatus, ModelPackageType, ModelSortKey, MonitoringAlertHistorySortKey, MonitoringAlertStatus, MonitoringExecutionSortKey, MonitoringJobDefinitionSortKey, MonitoringScheduleSortKey, MonitoringType, NotebookInstanceLifecycleConfigSortKey, NotebookInstanceLifecycleConfigSortOrder, NotebookInstanceSortKey, NotebookInstanceSortOrder, NotebookInstanceStatus, OfflineStoreStatusValue, Operator, OptimizationJobDeploymentInstanceType, OptimizationJobStatus, OrderKey, PartnerAppStatus, PartnerAppType, PipelineExecutionStatus, ProcessingJobStatus, ProfilingStatus, ProjectSortBy, ProjectSortOrder, ProjectStatus, RecommendationJobStatus, RecommendationJobType, RecommendationStepType, ReservedCapacityInstanceType, ReservedCapacityStatus, ReservedCapacityType, ResourceCatalogSortBy, ResourceCatalogSortOrder, ResourceType, RuleEvaluationStatus, SageMakerResourceName, SagemakerServicecatalogStatus, SchedulerResourceStatus, ScheduleStatus, SecondaryStatus, SharingType, SortActionsBy, SortArtifactsBy, SortAssociationsBy, SortBy, SortClusterSchedulerConfigBy, SortContextsBy, SortExperimentsBy, SortInferenceExperimentsBy, SortLineageGroupsBy, SortMlflowAppBy, SortOrder, SortPipelineExecutionsBy, SortPipelinesBy, SortQuotaBy, SortTrackingServerBy, SpaceSortKey, SpaceStatus, StepStatus, StudioLifecycleConfigAppType, StudioLifecycleConfigSortKey, TrackingServerStatus, TrainingJobStatus, TrainingPlanStatus, TransformJobStatus, UserProfileStatus, VolumeAttachmentStatus, WarmPoolResourceStatus, WorkforceIpAddressType, WorkforceStatus } from "./enums";
2
+ import { ActionSummary, AgentVersion, AlgorithmSpecification, AlgorithmSummary, AmazonQSettings, AppDetails, AppImageConfigDetails, ArtifactSummary, AssociationSummary, AutoMLCandidate, AutoMLJobStepMetadata, AutoMLJobSummary, BatchDataCaptureConfig, CacheHitResult, CallbackStepMetadata, Channel, CheckpointConfig, ClarifyCheckStepMetadata, ClusterEventSummary, ClusterNodeSummary, ClusterSchedulerConfigSummary, ClusterSummary, CodeRepositorySummary, CognitoConfig, CompilationJobSummary, ComputeQuotaSummary, ConditionStepMetadata, ContextSummary, MetadataProperties, OutputDataConfig, OutputParameter, ResourceConfig, ResourceSpec, StoppingCondition, Tag, TransformInput, TransformOutput, TransformResources, UserContext, VpcConfig } from "./models_0";
3
+ import { DebugHookConfig, DebugRuleConfiguration, DockerSettings, EdgeOutputConfig, ExperimentConfig, FeatureDefinition, HyperParameterTrainingJobDefinition, HyperParameterTuningJobConfig, HyperParameterTuningJobWarmStartConfig, InferenceExperimentSchedule, InfraCheckConfig, LabelingJobInputConfig, ModelLifeCycle, MonitoringScheduleConfig, OfflineStoreConfig, OnlineStoreConfig, ProfilerConfig, ProfilerRuleConfiguration, ResourceLimits, RetryStrategy, SpaceStorageSettings, TrustedIdentityPropagationSettings, UnifiedStudioSettings, UserSettings } from "./models_1";
4
+ import { CustomizedMetricSpecification, DataCaptureConfigSummary, DataProcessing, DebugRuleEvaluationStatus, EndpointOutputConfiguration, ExperimentSource, FeatureParameter, HyperParameterTrainingJobSummary, HyperParameterTuningJobCompletionDetails, HyperParameterTuningJobConsumedResources, InferenceMetrics, LabelCounters, LabelingJobOutput, LastUpdateStatus, MemberDefinition, ModelArtifacts, ModelClientConfig, ModelConfiguration, MonitoringExecutionSummary, NotificationConfiguration, ObjectiveStatusCounters, OfflineStoreStatus, ProductionVariantSummary, RecommendationMetrics, RemoteDebugConfig, SourceIpConfig, TensorBoardOutputConfig, TrainingJobStatusCounters, TrialComponentArtifact, TrialComponentParameterValue, TrialComponentStatus, WorkerAccessConfiguration } from "./models_2";
5
+ /**
6
+ * <p>Describes a work team of a vendor that does the labelling job.</p>
7
+ * @public
8
+ */
9
+ export interface SubscribedWorkteam {
10
+ /**
11
+ * <p>The Amazon Resource Name (ARN) of the vendor that you have subscribed.</p>
12
+ * @public
13
+ */
14
+ WorkteamArn: string | undefined;
15
+ /**
16
+ * <p>The title of the service provided by the vendor in the Amazon Marketplace.</p>
17
+ * @public
18
+ */
19
+ MarketplaceTitle?: string | undefined;
20
+ /**
21
+ * <p>The name of the vendor in the Amazon Marketplace.</p>
22
+ * @public
23
+ */
24
+ SellerName?: string | undefined;
25
+ /**
26
+ * <p>The description of the vendor from the Amazon Marketplace.</p>
27
+ * @public
28
+ */
29
+ MarketplaceDescription?: string | undefined;
30
+ /**
31
+ * <p>Marketplace product listing ID.</p>
32
+ * @public
33
+ */
34
+ ListingId?: string | undefined;
35
+ }
36
+ /**
37
+ * @public
38
+ */
39
+ export interface DescribeSubscribedWorkteamResponse {
40
+ /**
41
+ * <p>A <code>Workteam</code> instance that contains information about the work team.</p>
42
+ * @public
43
+ */
44
+ SubscribedWorkteam: SubscribedWorkteam | undefined;
45
+ }
46
+ /**
47
+ * @public
48
+ */
49
+ export interface DescribeTrainingJobRequest {
50
+ /**
51
+ * <p>The name of the training job.</p>
52
+ * @public
53
+ */
54
+ TrainingJobName: string | undefined;
55
+ }
56
+ /**
57
+ * <p>The name, value, and date and time of a metric that was emitted to Amazon CloudWatch.</p>
58
+ * @public
59
+ */
60
+ export interface MetricData {
61
+ /**
62
+ * <p>The name of the metric.</p>
63
+ * @public
64
+ */
65
+ MetricName?: string | undefined;
66
+ /**
67
+ * <p>The value of the metric.</p>
68
+ * @public
69
+ */
70
+ Value?: number | undefined;
71
+ /**
72
+ * <p>The date and time that the algorithm emitted the metric.</p>
73
+ * @public
74
+ */
75
+ Timestamp?: Date | undefined;
76
+ }
77
+ /**
78
+ * <p>Information about the status of the rule evaluation.</p>
79
+ * @public
80
+ */
81
+ export interface ProfilerRuleEvaluationStatus {
82
+ /**
83
+ * <p>The name of the rule configuration.</p>
84
+ * @public
85
+ */
86
+ RuleConfigurationName?: string | undefined;
87
+ /**
88
+ * <p>The Amazon Resource Name (ARN) of the rule evaluation job.</p>
89
+ * @public
90
+ */
91
+ RuleEvaluationJobArn?: string | undefined;
92
+ /**
93
+ * <p>Status of the rule evaluation.</p>
94
+ * @public
95
+ */
96
+ RuleEvaluationStatus?: RuleEvaluationStatus | undefined;
97
+ /**
98
+ * <p>Details from the rule evaluation.</p>
99
+ * @public
100
+ */
101
+ StatusDetails?: string | undefined;
102
+ /**
103
+ * <p>Timestamp when the rule evaluation status was last modified.</p>
104
+ * @public
105
+ */
106
+ LastModifiedTime?: Date | undefined;
107
+ }
108
+ /**
109
+ * <p>An array element of <code>SecondaryStatusTransitions</code> for <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeTrainingJob.html">DescribeTrainingJob</a>. It provides additional details about a status that the training job has transitioned through. A training job can be in one of several states, for example, starting, downloading, training, or uploading. Within each state, there are a number of intermediate states. For example, within the starting state, SageMaker could be starting the training job or launching the ML instances. These transitional states are referred to as the job's secondary status. </p> <p/>
110
+ * @public
111
+ */
112
+ export interface SecondaryStatusTransition {
113
+ /**
114
+ * <p>Contains a secondary status information from a training job.</p> <p>Status might be one of the following secondary statuses:</p> <dl> <dt>InProgress</dt> <dd> <ul> <li> <p> <code>Starting</code> - Starting the training job.</p> </li> <li> <p> <code>Downloading</code> - An optional stage for algorithms that support <code>File</code> training input mode. It indicates that data is being downloaded to the ML storage volumes.</p> </li> <li> <p> <code>Training</code> - Training is in progress.</p> </li> <li> <p> <code>Uploading</code> - Training is complete and the model artifacts are being uploaded to the S3 location.</p> </li> </ul> </dd> <dt>Completed</dt> <dd> <ul> <li> <p> <code>Completed</code> - The training job has completed.</p> </li> </ul> </dd> <dt>Failed</dt> <dd> <ul> <li> <p> <code>Failed</code> - The training job has failed. The reason for the failure is returned in the <code>FailureReason</code> field of <code>DescribeTrainingJobResponse</code>.</p> </li> </ul> </dd> <dt>Stopped</dt> <dd> <ul> <li> <p> <code>MaxRuntimeExceeded</code> - The job stopped because it exceeded the maximum allowed runtime.</p> </li> <li> <p> <code>Stopped</code> - The training job has stopped.</p> </li> </ul> </dd> <dt>Stopping</dt> <dd> <ul> <li> <p> <code>Stopping</code> - Stopping the training job.</p> </li> </ul> </dd> </dl> <p>We no longer support the following secondary statuses:</p> <ul> <li> <p> <code>LaunchingMLInstances</code> </p> </li> <li> <p> <code>PreparingTrainingStack</code> </p> </li> <li> <p> <code>DownloadingTrainingImage</code> </p> </li> </ul>
115
+ * @public
116
+ */
117
+ Status: SecondaryStatus | undefined;
118
+ /**
119
+ * <p>A timestamp that shows when the training job transitioned to the current secondary status state.</p>
120
+ * @public
121
+ */
122
+ StartTime: Date | undefined;
123
+ /**
124
+ * <p>A timestamp that shows when the training job transitioned out of this secondary status state into another secondary status state or when the training job has ended.</p>
125
+ * @public
126
+ */
127
+ EndTime?: Date | undefined;
128
+ /**
129
+ * <p>A detailed description of the progress within a secondary status. </p> <p>SageMaker provides secondary statuses and status messages that apply to each of them:</p> <dl> <dt>Starting</dt> <dd> <ul> <li> <p>Starting the training job.</p> </li> <li> <p>Launching requested ML instances.</p> </li> <li> <p>Insufficient capacity error from EC2 while launching instances, retrying!</p> </li> <li> <p>Launched instance was unhealthy, replacing it!</p> </li> <li> <p>Preparing the instances for training.</p> </li> </ul> </dd> <dt>Training</dt> <dd> <ul> <li> <p>Training image download completed. Training in progress.</p> </li> </ul> </dd> </dl> <important> <p>Status messages are subject to change. Therefore, we recommend not including them in code that programmatically initiates actions. For examples, don't use status messages in if statements.</p> </important> <p>To have an overview of your training job's progress, view <code>TrainingJobStatus</code> and <code>SecondaryStatus</code> in <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeTrainingJob.html">DescribeTrainingJob</a>, and <code>StatusMessage</code> together. For example, at the start of a training job, you might see the following:</p> <ul> <li> <p> <code>TrainingJobStatus</code> - InProgress</p> </li> <li> <p> <code>SecondaryStatus</code> - Training</p> </li> <li> <p> <code>StatusMessage</code> - Downloading the training image</p> </li> </ul>
130
+ * @public
131
+ */
132
+ StatusMessage?: string | undefined;
133
+ }
134
+ /**
135
+ * <p>Status and billing information about the warm pool.</p>
136
+ * @public
137
+ */
138
+ export interface WarmPoolStatus {
139
+ /**
140
+ * <p>The status of the warm pool.</p> <ul> <li> <p> <code>InUse</code>: The warm pool is in use for the training job.</p> </li> <li> <p> <code>Available</code>: The warm pool is available to reuse for a matching training job.</p> </li> <li> <p> <code>Reused</code>: The warm pool moved to a matching training job for reuse.</p> </li> <li> <p> <code>Terminated</code>: The warm pool is no longer available. Warm pools are unavailable if they are terminated by a user, terminated for a patch update, or terminated for exceeding the specified <code>KeepAlivePeriodInSeconds</code>.</p> </li> </ul>
141
+ * @public
142
+ */
143
+ Status: WarmPoolResourceStatus | undefined;
144
+ /**
145
+ * <p>The billable time in seconds used by the warm pool. Billable time refers to the absolute wall-clock time.</p> <p>Multiply <code>ResourceRetainedBillableTimeInSeconds</code> by the number of instances (<code>InstanceCount</code>) in your training cluster to get the total compute time SageMaker bills you if you run warm pool training. The formula is as follows: <code>ResourceRetainedBillableTimeInSeconds * InstanceCount</code>.</p>
146
+ * @public
147
+ */
148
+ ResourceRetainedBillableTimeInSeconds?: number | undefined;
149
+ /**
150
+ * <p>The name of the matching training job that reused the warm pool.</p>
151
+ * @public
152
+ */
153
+ ReusedByJob?: string | undefined;
154
+ }
155
+ /**
156
+ * @public
157
+ */
158
+ export interface DescribeTrainingJobResponse {
159
+ /**
160
+ * <p> Name of the model training job. </p>
161
+ * @public
162
+ */
163
+ TrainingJobName: string | undefined;
164
+ /**
165
+ * <p>The Amazon Resource Name (ARN) of the training job.</p>
166
+ * @public
167
+ */
168
+ TrainingJobArn: string | undefined;
169
+ /**
170
+ * <p>The Amazon Resource Name (ARN) of the associated hyperparameter tuning job if the training job was launched by a hyperparameter tuning job.</p>
171
+ * @public
172
+ */
173
+ TuningJobArn?: string | undefined;
174
+ /**
175
+ * <p>The Amazon Resource Name (ARN) of the SageMaker Ground Truth labeling job that created the transform or training job.</p>
176
+ * @public
177
+ */
178
+ LabelingJobArn?: string | undefined;
179
+ /**
180
+ * <p>The Amazon Resource Name (ARN) of an AutoML job.</p>
181
+ * @public
182
+ */
183
+ AutoMLJobArn?: string | undefined;
184
+ /**
185
+ * <p>Information about the Amazon S3 location that is configured for storing model artifacts. </p>
186
+ * @public
187
+ */
188
+ ModelArtifacts: ModelArtifacts | undefined;
189
+ /**
190
+ * <p>The status of the training job.</p> <p>SageMaker provides the following training job statuses:</p> <ul> <li> <p> <code>InProgress</code> - The training is in progress.</p> </li> <li> <p> <code>Completed</code> - The training job has completed.</p> </li> <li> <p> <code>Failed</code> - The training job has failed. To see the reason for the failure, see the <code>FailureReason</code> field in the response to a <code>DescribeTrainingJobResponse</code> call.</p> </li> <li> <p> <code>Stopping</code> - The training job is stopping.</p> </li> <li> <p> <code>Stopped</code> - The training job has stopped.</p> </li> </ul> <p>For more detailed information, see <code>SecondaryStatus</code>. </p>
191
+ * @public
192
+ */
193
+ TrainingJobStatus: TrainingJobStatus | undefined;
194
+ /**
195
+ * <p> Provides detailed information about the state of the training job. For detailed information on the secondary status of the training job, see <code>StatusMessage</code> under <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_SecondaryStatusTransition.html">SecondaryStatusTransition</a>.</p> <p>SageMaker provides primary statuses and secondary statuses that apply to each of them:</p> <dl> <dt>InProgress</dt> <dd> <ul> <li> <p> <code>Starting</code> - Starting the training job.</p> </li> <li> <p> <code>Downloading</code> - An optional stage for algorithms that support <code>File</code> training input mode. It indicates that data is being downloaded to the ML storage volumes.</p> </li> <li> <p> <code>Training</code> - Training is in progress.</p> </li> <li> <p> <code>Interrupted</code> - The job stopped because the managed spot training instances were interrupted. </p> </li> <li> <p> <code>Uploading</code> - Training is complete and the model artifacts are being uploaded to the S3 location.</p> </li> </ul> </dd> <dt>Completed</dt> <dd> <ul> <li> <p> <code>Completed</code> - The training job has completed.</p> </li> </ul> </dd> <dt>Failed</dt> <dd> <ul> <li> <p> <code>Failed</code> - The training job has failed. The reason for the failure is returned in the <code>FailureReason</code> field of <code>DescribeTrainingJobResponse</code>.</p> </li> </ul> </dd> <dt>Stopped</dt> <dd> <ul> <li> <p> <code>MaxRuntimeExceeded</code> - The job stopped because it exceeded the maximum allowed runtime.</p> </li> <li> <p> <code>MaxWaitTimeExceeded</code> - The job stopped because it exceeded the maximum allowed wait time.</p> </li> <li> <p> <code>Stopped</code> - The training job has stopped.</p> </li> </ul> </dd> <dt>Stopping</dt> <dd> <ul> <li> <p> <code>Stopping</code> - Stopping the training job.</p> </li> </ul> </dd> </dl> <important> <p>Valid values for <code>SecondaryStatus</code> are subject to change. </p> </important> <p>We no longer support the following secondary statuses:</p> <ul> <li> <p> <code>LaunchingMLInstances</code> </p> </li> <li> <p> <code>PreparingTraining</code> </p> </li> <li> <p> <code>DownloadingTrainingImage</code> </p> </li> </ul>
196
+ * @public
197
+ */
198
+ SecondaryStatus: SecondaryStatus | undefined;
199
+ /**
200
+ * <p>If the training job failed, the reason it failed. </p>
201
+ * @public
202
+ */
203
+ FailureReason?: string | undefined;
204
+ /**
205
+ * <p>Algorithm-specific parameters. </p>
206
+ * @public
207
+ */
208
+ HyperParameters?: Record<string, string> | undefined;
209
+ /**
210
+ * <p>Information about the algorithm used for training, and algorithm metadata. </p>
211
+ * @public
212
+ */
213
+ AlgorithmSpecification?: AlgorithmSpecification | undefined;
214
+ /**
215
+ * <p>The Amazon Web Services Identity and Access Management (IAM) role configured for the training job. </p>
216
+ * @public
217
+ */
218
+ RoleArn?: string | undefined;
219
+ /**
220
+ * <p>An array of <code>Channel</code> objects that describes each data input channel. </p>
221
+ * @public
222
+ */
223
+ InputDataConfig?: Channel[] | undefined;
224
+ /**
225
+ * <p>The S3 path where model artifacts that you configured when creating the job are stored. SageMaker creates subfolders for model artifacts. </p>
226
+ * @public
227
+ */
228
+ OutputDataConfig?: OutputDataConfig | undefined;
229
+ /**
230
+ * <p>Resources, including ML compute instances and ML storage volumes, that are configured for model training. </p>
231
+ * @public
232
+ */
233
+ ResourceConfig?: ResourceConfig | undefined;
234
+ /**
235
+ * <p>The status of the warm pool associated with the training job.</p>
236
+ * @public
237
+ */
238
+ WarmPoolStatus?: WarmPoolStatus | undefined;
239
+ /**
240
+ * <p>A <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_VpcConfig.html">VpcConfig</a> object that specifies the VPC that this training job has access to. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html">Protect Training Jobs by Using an Amazon Virtual Private Cloud</a>.</p>
241
+ * @public
242
+ */
243
+ VpcConfig?: VpcConfig | undefined;
244
+ /**
245
+ * <p>Specifies a limit to how long a model training job can run. It also specifies how long a managed Spot training job has to complete. When the job reaches the time limit, SageMaker ends the training job. Use this API to cap model training costs.</p> <p>To stop a job, SageMaker sends the algorithm the <code>SIGTERM</code> signal, which delays job termination for 120 seconds. Algorithms can use this 120-second window to save the model artifacts, so the results of training are not lost. </p>
246
+ * @public
247
+ */
248
+ StoppingCondition: StoppingCondition | undefined;
249
+ /**
250
+ * <p>A timestamp that indicates when the training job was created.</p>
251
+ * @public
252
+ */
253
+ CreationTime: Date | undefined;
254
+ /**
255
+ * <p>Indicates the time when the training job starts on training instances. You are billed for the time interval between this time and the value of <code>TrainingEndTime</code>. The start time in CloudWatch Logs might be later than this time. The difference is due to the time it takes to download the training data and to the size of the training container.</p>
256
+ * @public
257
+ */
258
+ TrainingStartTime?: Date | undefined;
259
+ /**
260
+ * <p>Indicates the time when the training job ends on training instances. You are billed for the time interval between the value of <code>TrainingStartTime</code> and this time. For successful jobs and stopped jobs, this is the time after model artifacts are uploaded. For failed jobs, this is the time when SageMaker detects a job failure.</p>
261
+ * @public
262
+ */
263
+ TrainingEndTime?: Date | undefined;
264
+ /**
265
+ * <p>A timestamp that indicates when the status of the training job was last modified.</p>
266
+ * @public
267
+ */
268
+ LastModifiedTime?: Date | undefined;
269
+ /**
270
+ * <p>A history of all of the secondary statuses that the training job has transitioned through.</p>
271
+ * @public
272
+ */
273
+ SecondaryStatusTransitions?: SecondaryStatusTransition[] | undefined;
274
+ /**
275
+ * <p>A collection of <code>MetricData</code> objects that specify the names, values, and dates and times that the training algorithm emitted to Amazon CloudWatch.</p>
276
+ * @public
277
+ */
278
+ FinalMetricDataList?: MetricData[] | undefined;
279
+ /**
280
+ * <p>If you want to allow inbound or outbound network calls, except for calls between peers within a training cluster for distributed training, choose <code>True</code>. If you enable network isolation for training jobs that are configured to use a VPC, SageMaker downloads and uploads customer data and model artifacts through the specified VPC, but the training container does not have network access.</p>
281
+ * @public
282
+ */
283
+ EnableNetworkIsolation?: boolean | undefined;
284
+ /**
285
+ * <p>To encrypt all communications between ML compute instances in distributed training, choose <code>True</code>. Encryption provides greater security for distributed training, but training might take longer. How long it takes depends on the amount of communication between compute instances, especially if you use a deep learning algorithms in distributed training.</p>
286
+ * @public
287
+ */
288
+ EnableInterContainerTrafficEncryption?: boolean | undefined;
289
+ /**
290
+ * <p>A Boolean indicating whether managed spot training is enabled (<code>True</code>) or not (<code>False</code>).</p>
291
+ * @public
292
+ */
293
+ EnableManagedSpotTraining?: boolean | undefined;
294
+ /**
295
+ * <p>Contains information about the output location for managed spot training checkpoint data. </p>
296
+ * @public
297
+ */
298
+ CheckpointConfig?: CheckpointConfig | undefined;
299
+ /**
300
+ * <p>The training time in seconds.</p>
301
+ * @public
302
+ */
303
+ TrainingTimeInSeconds?: number | undefined;
304
+ /**
305
+ * <p>The billable time in seconds. Billable time refers to the absolute wall-clock time.</p> <p>Multiply <code>BillableTimeInSeconds</code> by the number of instances (<code>InstanceCount</code>) in your training cluster to get the total compute time SageMaker bills you if you run distributed training. The formula is as follows: <code>BillableTimeInSeconds * InstanceCount</code> .</p> <p>You can calculate the savings from using managed spot training using the formula <code>(1 - BillableTimeInSeconds / TrainingTimeInSeconds) * 100</code>. For example, if <code>BillableTimeInSeconds</code> is 100 and <code>TrainingTimeInSeconds</code> is 500, the savings is 80%.</p>
306
+ * @public
307
+ */
308
+ BillableTimeInSeconds?: number | undefined;
309
+ /**
310
+ * <p>Configuration information for the Amazon SageMaker Debugger hook parameters, metric and tensor collections, and storage paths. To learn more about how to configure the <code>DebugHookConfig</code> parameter, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-createtrainingjob-api.html">Use the SageMaker and Debugger Configuration API Operations to Create, Update, and Debug Your Training Job</a>.</p>
311
+ * @public
312
+ */
313
+ DebugHookConfig?: DebugHookConfig | undefined;
314
+ /**
315
+ * <p>Associates a SageMaker job as a trial component with an experiment and trial. Specified when you call the following APIs:</p> <ul> <li> <p> <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateProcessingJob.html">CreateProcessingJob</a> </p> </li> <li> <p> <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html">CreateTrainingJob</a> </p> </li> <li> <p> <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTransformJob.html">CreateTransformJob</a> </p> </li> </ul>
316
+ * @public
317
+ */
318
+ ExperimentConfig?: ExperimentConfig | undefined;
319
+ /**
320
+ * <p>Configuration information for Amazon SageMaker Debugger rules for debugging output tensors.</p>
321
+ * @public
322
+ */
323
+ DebugRuleConfigurations?: DebugRuleConfiguration[] | undefined;
324
+ /**
325
+ * <p>Configuration of storage locations for the Amazon SageMaker Debugger TensorBoard output data.</p>
326
+ * @public
327
+ */
328
+ TensorBoardOutputConfig?: TensorBoardOutputConfig | undefined;
329
+ /**
330
+ * <p>Evaluation status of Amazon SageMaker Debugger rules for debugging on a training job.</p>
331
+ * @public
332
+ */
333
+ DebugRuleEvaluationStatuses?: DebugRuleEvaluationStatus[] | undefined;
334
+ /**
335
+ * <p>Configuration information for Amazon SageMaker Debugger system monitoring, framework profiling, and storage paths.</p>
336
+ * @public
337
+ */
338
+ ProfilerConfig?: ProfilerConfig | undefined;
339
+ /**
340
+ * <p>Configuration information for Amazon SageMaker Debugger rules for profiling system and framework metrics.</p>
341
+ * @public
342
+ */
343
+ ProfilerRuleConfigurations?: ProfilerRuleConfiguration[] | undefined;
344
+ /**
345
+ * <p>Evaluation status of Amazon SageMaker Debugger rules for profiling on a training job.</p>
346
+ * @public
347
+ */
348
+ ProfilerRuleEvaluationStatuses?: ProfilerRuleEvaluationStatus[] | undefined;
349
+ /**
350
+ * <p>Profiling status of a training job.</p>
351
+ * @public
352
+ */
353
+ ProfilingStatus?: ProfilingStatus | undefined;
354
+ /**
355
+ * <p>The environment variables to set in the Docker container.</p> <important> <p>Do not include any security-sensitive information including account access IDs, secrets, or tokens in any environment fields. As part of the shared responsibility model, you are responsible for any potential exposure, unauthorized access, or compromise of your sensitive data if caused by security-sensitive information included in the request environment variable or plain text fields.</p> </important>
356
+ * @public
357
+ */
358
+ Environment?: Record<string, string> | undefined;
359
+ /**
360
+ * <p>The number of times to retry the job when the job fails due to an <code>InternalServerError</code>.</p>
361
+ * @public
362
+ */
363
+ RetryStrategy?: RetryStrategy | undefined;
364
+ /**
365
+ * <p>Configuration for remote debugging. To learn more about the remote debugging functionality of SageMaker, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/train-remote-debugging.html">Access a training container through Amazon Web Services Systems Manager (SSM) for remote debugging</a>.</p>
366
+ * @public
367
+ */
368
+ RemoteDebugConfig?: RemoteDebugConfig | undefined;
369
+ /**
370
+ * <p>Contains information about the infrastructure health check configuration for the training job.</p>
371
+ * @public
372
+ */
373
+ InfraCheckConfig?: InfraCheckConfig | undefined;
374
+ }
5
375
  /**
6
376
  * @public
7
377
  */
@@ -5933,24 +6303,130 @@ export interface ListLineageGroupsResponse {
5933
6303
  /**
5934
6304
  * @public
5935
6305
  */
5936
- export interface ListMlflowTrackingServersRequest {
6306
+ export interface ListMlflowAppsRequest {
5937
6307
  /**
5938
- * <p>Use the <code>CreatedAfter</code> filter to only list tracking servers created after a specific date and time. Listed tracking servers are shown with a date and time such as <code>"2024-03-16T01:46:56+00:00"</code>. The <code>CreatedAfter</code> parameter takes in a Unix timestamp. To convert a date and time into a Unix timestamp, see <a href="https://www.epochconverter.com/">EpochConverter</a>.</p>
6308
+ * <p>Use the <code>CreatedAfter</code> filter to only list MLflow Apps created after a specific date and time. Listed MLflow Apps are shown with a date and time such as <code>"2024-03-16T01:46:56+00:00"</code>. The <code>CreatedAfter</code> parameter takes in a Unix timestamp.</p>
5939
6309
  * @public
5940
6310
  */
5941
6311
  CreatedAfter?: Date | undefined;
5942
6312
  /**
5943
- * <p>Use the <code>CreatedBefore</code> filter to only list tracking servers created before a specific date and time. Listed tracking servers are shown with a date and time such as <code>"2024-03-16T01:46:56+00:00"</code>. The <code>CreatedBefore</code> parameter takes in a Unix timestamp. To convert a date and time into a Unix timestamp, see <a href="https://www.epochconverter.com/">EpochConverter</a>.</p>
6313
+ * <p>Use the <code>CreatedBefore</code> filter to only list MLflow Apps created before a specific date and time. Listed MLflow Apps are shown with a date and time such as <code>"2024-03-16T01:46:56+00:00"</code>. The <code>CreatedAfter</code> parameter takes in a Unix timestamp.</p>
5944
6314
  * @public
5945
6315
  */
5946
6316
  CreatedBefore?: Date | undefined;
5947
6317
  /**
5948
- * <p>Filter for tracking servers with a specified creation status.</p>
6318
+ * <p>Filter for Mlflow apps with a specific creation status.</p>
5949
6319
  * @public
5950
6320
  */
5951
- TrackingServerStatus?: TrackingServerStatus | undefined;
6321
+ Status?: MlflowAppStatus | undefined;
5952
6322
  /**
5953
- * <p>Filter for tracking servers using the specified MLflow version.</p>
6323
+ * <p>Filter for Mlflow Apps with the specified version.</p>
6324
+ * @public
6325
+ */
6326
+ MlflowVersion?: string | undefined;
6327
+ /**
6328
+ * <p>Filter for MLflow Apps with the specified default SageMaker Domain ID.</p>
6329
+ * @public
6330
+ */
6331
+ DefaultForDomainId?: string | undefined;
6332
+ /**
6333
+ * <p>Filter for MLflow Apps with the specified <code>AccountDefaultStatus</code>.</p>
6334
+ * @public
6335
+ */
6336
+ AccountDefaultStatus?: AccountDefaultStatus | undefined;
6337
+ /**
6338
+ * <p>Filter for MLflow Apps sorting by name, creation time, or creation status.</p>
6339
+ * @public
6340
+ */
6341
+ SortBy?: SortMlflowAppBy | undefined;
6342
+ /**
6343
+ * <p>Change the order of the listed MLflow Apps. By default, MLflow Apps are listed in <code>Descending</code> order by creation time. To change the list order, specify <code>SortOrder</code> to be <code>Ascending</code>.</p>
6344
+ * @public
6345
+ */
6346
+ SortOrder?: SortOrder | undefined;
6347
+ /**
6348
+ * <p>If the previous response was truncated, use this token in your next request to receive the next set of results.</p>
6349
+ * @public
6350
+ */
6351
+ NextToken?: string | undefined;
6352
+ /**
6353
+ * <p>The maximum number of MLflow Apps to list.</p>
6354
+ * @public
6355
+ */
6356
+ MaxResults?: number | undefined;
6357
+ }
6358
+ /**
6359
+ * <p>The summary of the Mlflow App to list.</p>
6360
+ * @public
6361
+ */
6362
+ export interface MlflowAppSummary {
6363
+ /**
6364
+ * <p>The ARN of a listed MLflow App.</p>
6365
+ * @public
6366
+ */
6367
+ Arn?: string | undefined;
6368
+ /**
6369
+ * <p>The name of the MLflow App.</p>
6370
+ * @public
6371
+ */
6372
+ Name?: string | undefined;
6373
+ /**
6374
+ * <p>The status of the MLflow App.</p>
6375
+ * @public
6376
+ */
6377
+ Status?: MlflowAppStatus | undefined;
6378
+ /**
6379
+ * <p>The creation time of a listed MLflow App.</p>
6380
+ * @public
6381
+ */
6382
+ CreationTime?: Date | undefined;
6383
+ /**
6384
+ * <p>The last modified time of a listed MLflow App.</p>
6385
+ * @public
6386
+ */
6387
+ LastModifiedTime?: Date | undefined;
6388
+ /**
6389
+ * <p>The version of a listed MLflow App.</p>
6390
+ * @public
6391
+ */
6392
+ MlflowVersion?: string | undefined;
6393
+ }
6394
+ /**
6395
+ * @public
6396
+ */
6397
+ export interface ListMlflowAppsResponse {
6398
+ /**
6399
+ * <p>A list of MLflow Apps according to chosen filters.</p>
6400
+ * @public
6401
+ */
6402
+ Summaries?: MlflowAppSummary[] | undefined;
6403
+ /**
6404
+ * <p>If the previous response was truncated, you will receive this token. Use it in your next request to receive the next set of results.</p>
6405
+ * @public
6406
+ */
6407
+ NextToken?: string | undefined;
6408
+ }
6409
+ /**
6410
+ * @public
6411
+ */
6412
+ export interface ListMlflowTrackingServersRequest {
6413
+ /**
6414
+ * <p>Use the <code>CreatedAfter</code> filter to only list tracking servers created after a specific date and time. Listed tracking servers are shown with a date and time such as <code>"2024-03-16T01:46:56+00:00"</code>. The <code>CreatedAfter</code> parameter takes in a Unix timestamp. To convert a date and time into a Unix timestamp, see <a href="https://www.epochconverter.com/">EpochConverter</a>.</p>
6415
+ * @public
6416
+ */
6417
+ CreatedAfter?: Date | undefined;
6418
+ /**
6419
+ * <p>Use the <code>CreatedBefore</code> filter to only list tracking servers created before a specific date and time. Listed tracking servers are shown with a date and time such as <code>"2024-03-16T01:46:56+00:00"</code>. The <code>CreatedBefore</code> parameter takes in a Unix timestamp. To convert a date and time into a Unix timestamp, see <a href="https://www.epochconverter.com/">EpochConverter</a>.</p>
6420
+ * @public
6421
+ */
6422
+ CreatedBefore?: Date | undefined;
6423
+ /**
6424
+ * <p>Filter for tracking servers with a specified creation status.</p>
6425
+ * @public
6426
+ */
6427
+ TrackingServerStatus?: TrackingServerStatus | undefined;
6428
+ /**
6429
+ * <p>Filter for tracking servers using the specified MLflow version.</p>
5954
6430
  * @public
5955
6431
  */
5956
6432
  MlflowVersion?: string | undefined;
@@ -8976,376 +9452,3 @@ export interface ListSubscribedWorkteamsRequest {
8976
9452
  */
8977
9453
  MaxResults?: number | undefined;
8978
9454
  }
8979
- /**
8980
- * @public
8981
- */
8982
- export interface ListSubscribedWorkteamsResponse {
8983
- /**
8984
- * <p>An array of <code>Workteam</code> objects, each describing a work team.</p>
8985
- * @public
8986
- */
8987
- SubscribedWorkteams: SubscribedWorkteam[] | undefined;
8988
- /**
8989
- * <p>If the response is truncated, Amazon SageMaker returns this token. To retrieve the next set of work teams, use it in the subsequent request.</p>
8990
- * @public
8991
- */
8992
- NextToken?: string | undefined;
8993
- }
8994
- /**
8995
- * @public
8996
- */
8997
- export interface ListTagsInput {
8998
- /**
8999
- * <p>The Amazon Resource Name (ARN) of the resource whose tags you want to retrieve.</p>
9000
- * @public
9001
- */
9002
- ResourceArn: string | undefined;
9003
- /**
9004
- * <p> If the response to the previous <code>ListTags</code> request is truncated, SageMaker returns this token. To retrieve the next set of tags, use it in the subsequent request. </p>
9005
- * @public
9006
- */
9007
- NextToken?: string | undefined;
9008
- /**
9009
- * <p>Maximum number of tags to return.</p>
9010
- * @public
9011
- */
9012
- MaxResults?: number | undefined;
9013
- }
9014
- /**
9015
- * @public
9016
- */
9017
- export interface ListTagsOutput {
9018
- /**
9019
- * <p>An array of <code>Tag</code> objects, each with a tag key and a value.</p>
9020
- * @public
9021
- */
9022
- Tags?: Tag[] | undefined;
9023
- /**
9024
- * <p> If response is truncated, SageMaker includes a token in the response. You can use this token in your subsequent request to fetch next set of tokens. </p>
9025
- * @public
9026
- */
9027
- NextToken?: string | undefined;
9028
- }
9029
- /**
9030
- * @public
9031
- */
9032
- export interface ListTrainingJobsRequest {
9033
- /**
9034
- * <p>If the result of the previous <code>ListTrainingJobs</code> request was truncated, the response includes a <code>NextToken</code>. To retrieve the next set of training jobs, use the token in the next request. </p>
9035
- * @public
9036
- */
9037
- NextToken?: string | undefined;
9038
- /**
9039
- * <p>The maximum number of training jobs to return in the response.</p>
9040
- * @public
9041
- */
9042
- MaxResults?: number | undefined;
9043
- /**
9044
- * <p>A filter that returns only training jobs created after the specified time (timestamp).</p>
9045
- * @public
9046
- */
9047
- CreationTimeAfter?: Date | undefined;
9048
- /**
9049
- * <p>A filter that returns only training jobs created before the specified time (timestamp).</p>
9050
- * @public
9051
- */
9052
- CreationTimeBefore?: Date | undefined;
9053
- /**
9054
- * <p>A filter that returns only training jobs modified after the specified time (timestamp).</p>
9055
- * @public
9056
- */
9057
- LastModifiedTimeAfter?: Date | undefined;
9058
- /**
9059
- * <p>A filter that returns only training jobs modified before the specified time (timestamp).</p>
9060
- * @public
9061
- */
9062
- LastModifiedTimeBefore?: Date | undefined;
9063
- /**
9064
- * <p>A string in the training job name. This filter returns only training jobs whose name contains the specified string.</p>
9065
- * @public
9066
- */
9067
- NameContains?: string | undefined;
9068
- /**
9069
- * <p>A filter that retrieves only training jobs with a specific status.</p>
9070
- * @public
9071
- */
9072
- StatusEquals?: TrainingJobStatus | undefined;
9073
- /**
9074
- * <p>The field to sort results by. The default is <code>CreationTime</code>.</p>
9075
- * @public
9076
- */
9077
- SortBy?: SortBy | undefined;
9078
- /**
9079
- * <p>The sort order for results. The default is <code>Ascending</code>.</p>
9080
- * @public
9081
- */
9082
- SortOrder?: SortOrder | undefined;
9083
- /**
9084
- * <p>A filter that retrieves only training jobs with a specific warm pool status.</p>
9085
- * @public
9086
- */
9087
- WarmPoolStatusEquals?: WarmPoolResourceStatus | undefined;
9088
- /**
9089
- * <p>The Amazon Resource Name (ARN); of the training plan to filter training jobs by. For more information about reserving GPU capacity for your SageMaker training jobs using Amazon SageMaker Training Plan, see <code> <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingPlan.html">CreateTrainingPlan</a> </code>.</p>
9090
- * @public
9091
- */
9092
- TrainingPlanArnEquals?: string | undefined;
9093
- }
9094
- /**
9095
- * <p>Provides summary information about a training job.</p>
9096
- * @public
9097
- */
9098
- export interface TrainingJobSummary {
9099
- /**
9100
- * <p>The name of the training job that you want a summary for.</p>
9101
- * @public
9102
- */
9103
- TrainingJobName: string | undefined;
9104
- /**
9105
- * <p>The Amazon Resource Name (ARN) of the training job.</p>
9106
- * @public
9107
- */
9108
- TrainingJobArn: string | undefined;
9109
- /**
9110
- * <p>A timestamp that shows when the training job was created.</p>
9111
- * @public
9112
- */
9113
- CreationTime: Date | undefined;
9114
- /**
9115
- * <p>A timestamp that shows when the training job ended. This field is set only if the training job has one of the terminal statuses (<code>Completed</code>, <code>Failed</code>, or <code>Stopped</code>). </p>
9116
- * @public
9117
- */
9118
- TrainingEndTime?: Date | undefined;
9119
- /**
9120
- * <p> Timestamp when the training job was last modified. </p>
9121
- * @public
9122
- */
9123
- LastModifiedTime?: Date | undefined;
9124
- /**
9125
- * <p>The status of the training job.</p>
9126
- * @public
9127
- */
9128
- TrainingJobStatus: TrainingJobStatus | undefined;
9129
- /**
9130
- * <p>The secondary status of the training job.</p>
9131
- * @public
9132
- */
9133
- SecondaryStatus?: SecondaryStatus | undefined;
9134
- /**
9135
- * <p>The status of the warm pool associated with the training job.</p>
9136
- * @public
9137
- */
9138
- WarmPoolStatus?: WarmPoolStatus | undefined;
9139
- /**
9140
- * <p>The Amazon Resource Name (ARN); of the training plan associated with this training job.</p> <p>For more information about how to reserve GPU capacity for your SageMaker HyperPod clusters using Amazon SageMaker Training Plan, see <code> <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingPlan.html">CreateTrainingPlan</a> </code>.</p>
9141
- * @public
9142
- */
9143
- TrainingPlanArn?: string | undefined;
9144
- }
9145
- /**
9146
- * @public
9147
- */
9148
- export interface ListTrainingJobsResponse {
9149
- /**
9150
- * <p>An array of <code>TrainingJobSummary</code> objects, each listing a training job.</p>
9151
- * @public
9152
- */
9153
- TrainingJobSummaries: TrainingJobSummary[] | undefined;
9154
- /**
9155
- * <p>If the response is truncated, SageMaker returns this token. To retrieve the next set of training jobs, use it in the subsequent request.</p>
9156
- * @public
9157
- */
9158
- NextToken?: string | undefined;
9159
- }
9160
- /**
9161
- * @public
9162
- */
9163
- export interface ListTrainingJobsForHyperParameterTuningJobRequest {
9164
- /**
9165
- * <p>The name of the tuning job whose training jobs you want to list.</p>
9166
- * @public
9167
- */
9168
- HyperParameterTuningJobName: string | undefined;
9169
- /**
9170
- * <p>If the result of the previous <code>ListTrainingJobsForHyperParameterTuningJob</code> request was truncated, the response includes a <code>NextToken</code>. To retrieve the next set of training jobs, use the token in the next request.</p>
9171
- * @public
9172
- */
9173
- NextToken?: string | undefined;
9174
- /**
9175
- * <p>The maximum number of training jobs to return. The default value is 10.</p>
9176
- * @public
9177
- */
9178
- MaxResults?: number | undefined;
9179
- /**
9180
- * <p>A filter that returns only training jobs with the specified status.</p>
9181
- * @public
9182
- */
9183
- StatusEquals?: TrainingJobStatus | undefined;
9184
- /**
9185
- * <p>The field to sort results by. The default is <code>Name</code>.</p> <p>If the value of this field is <code>FinalObjectiveMetricValue</code>, any training jobs that did not return an objective metric are not listed.</p>
9186
- * @public
9187
- */
9188
- SortBy?: TrainingJobSortByOptions | undefined;
9189
- /**
9190
- * <p>The sort order for results. The default is <code>Ascending</code>.</p>
9191
- * @public
9192
- */
9193
- SortOrder?: SortOrder | undefined;
9194
- }
9195
- /**
9196
- * @public
9197
- */
9198
- export interface ListTrainingJobsForHyperParameterTuningJobResponse {
9199
- /**
9200
- * <p>A list of <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TrainingJobSummary.html">TrainingJobSummary</a> objects that describe the training jobs that the <code>ListTrainingJobsForHyperParameterTuningJob</code> request returned.</p>
9201
- * @public
9202
- */
9203
- TrainingJobSummaries: HyperParameterTrainingJobSummary[] | undefined;
9204
- /**
9205
- * <p>If the result of this <code>ListTrainingJobsForHyperParameterTuningJob</code> request was truncated, the response includes a <code>NextToken</code>. To retrieve the next set of training jobs, use the token in the next request.</p>
9206
- * @public
9207
- */
9208
- NextToken?: string | undefined;
9209
- }
9210
- /**
9211
- * <p>A filter to apply when listing or searching for training plans.</p> <p>For more information about how to reserve GPU capacity for your SageMaker HyperPod clusters using Amazon SageMaker Training Plan, see <code> <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingPlan.html">CreateTrainingPlan</a> </code>.</p>
9212
- * @public
9213
- */
9214
- export interface TrainingPlanFilter {
9215
- /**
9216
- * <p>The name of the filter field (e.g., Status, InstanceType).</p>
9217
- * @public
9218
- */
9219
- Name: TrainingPlanFilterName | undefined;
9220
- /**
9221
- * <p>The value to filter by for the specified field.</p>
9222
- * @public
9223
- */
9224
- Value: string | undefined;
9225
- }
9226
- /**
9227
- * @public
9228
- */
9229
- export interface ListTrainingPlansRequest {
9230
- /**
9231
- * <p>A token to continue pagination if more results are available.</p>
9232
- * @public
9233
- */
9234
- NextToken?: string | undefined;
9235
- /**
9236
- * <p>The maximum number of results to return in the response.</p>
9237
- * @public
9238
- */
9239
- MaxResults?: number | undefined;
9240
- /**
9241
- * <p>Filter to list only training plans with an actual start time after this date.</p>
9242
- * @public
9243
- */
9244
- StartTimeAfter?: Date | undefined;
9245
- /**
9246
- * <p>Filter to list only training plans with an actual start time before this date.</p>
9247
- * @public
9248
- */
9249
- StartTimeBefore?: Date | undefined;
9250
- /**
9251
- * <p>The training plan field to sort the results by (e.g., StartTime, Status).</p>
9252
- * @public
9253
- */
9254
- SortBy?: TrainingPlanSortBy | undefined;
9255
- /**
9256
- * <p>The order to sort the results (Ascending or Descending).</p>
9257
- * @public
9258
- */
9259
- SortOrder?: TrainingPlanSortOrder | undefined;
9260
- /**
9261
- * <p>Additional filters to apply to the list of training plans.</p>
9262
- * @public
9263
- */
9264
- Filters?: TrainingPlanFilter[] | undefined;
9265
- }
9266
- /**
9267
- * <p>Details of the training plan.</p> <p>For more information about how to reserve GPU capacity for your SageMaker HyperPod clusters using Amazon SageMaker Training Plan, see <code> <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingPlan.html">CreateTrainingPlan</a> </code>.</p>
9268
- * @public
9269
- */
9270
- export interface TrainingPlanSummary {
9271
- /**
9272
- * <p>The Amazon Resource Name (ARN); of the training plan.</p>
9273
- * @public
9274
- */
9275
- TrainingPlanArn: string | undefined;
9276
- /**
9277
- * <p>The name of the training plan.</p>
9278
- * @public
9279
- */
9280
- TrainingPlanName: string | undefined;
9281
- /**
9282
- * <p>The current status of the training plan (e.g., Pending, Active, Expired). To see the complete list of status values available for a training plan, refer to the <code>Status</code> attribute within the <code> <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TrainingPlanSummary.html">TrainingPlanSummary</a> </code> object.</p>
9283
- * @public
9284
- */
9285
- Status: TrainingPlanStatus | undefined;
9286
- /**
9287
- * <p>A message providing additional information about the current status of the training plan.</p>
9288
- * @public
9289
- */
9290
- StatusMessage?: string | undefined;
9291
- /**
9292
- * <p>The number of whole hours in the total duration for this training plan.</p>
9293
- * @public
9294
- */
9295
- DurationHours?: number | undefined;
9296
- /**
9297
- * <p>The additional minutes beyond whole hours in the total duration for this training plan.</p>
9298
- * @public
9299
- */
9300
- DurationMinutes?: number | undefined;
9301
- /**
9302
- * <p>The start time of the training plan.</p>
9303
- * @public
9304
- */
9305
- StartTime?: Date | undefined;
9306
- /**
9307
- * <p>The end time of the training plan.</p>
9308
- * @public
9309
- */
9310
- EndTime?: Date | undefined;
9311
- /**
9312
- * <p>The upfront fee for the training plan.</p>
9313
- * @public
9314
- */
9315
- UpfrontFee?: string | undefined;
9316
- /**
9317
- * <p>The currency code for the upfront fee (e.g., USD).</p>
9318
- * @public
9319
- */
9320
- CurrencyCode?: string | undefined;
9321
- /**
9322
- * <p>The total number of instances reserved in this training plan.</p>
9323
- * @public
9324
- */
9325
- TotalInstanceCount?: number | undefined;
9326
- /**
9327
- * <p>The number of instances currently available for use in this training plan.</p>
9328
- * @public
9329
- */
9330
- AvailableInstanceCount?: number | undefined;
9331
- /**
9332
- * <p>The number of instances currently in use from this training plan.</p>
9333
- * @public
9334
- */
9335
- InUseInstanceCount?: number | undefined;
9336
- /**
9337
- * <p>The total number of UltraServers allocated to this training plan.</p>
9338
- * @public
9339
- */
9340
- TotalUltraServerCount?: number | undefined;
9341
- /**
9342
- * <p>The target resources (e.g., training jobs, HyperPod clusters, Endpoints) that can use this training plan.</p> <p>Training plans are specific to their target resource.</p> <ul> <li> <p>A training plan designed for SageMaker training jobs can only be used to schedule and run training jobs.</p> </li> <li> <p>A training plan for HyperPod clusters can be used exclusively to provide compute resources to a cluster's instance group.</p> </li> <li> <p>A training plan for SageMaker endpoints can be used exclusively to provide compute resources to SageMaker endpoints for model deployment.</p> </li> </ul>
9343
- * @public
9344
- */
9345
- TargetResources?: SageMakerResourceName[] | undefined;
9346
- /**
9347
- * <p>A list of reserved capacities associated with this training plan, including details such as instance types, counts, and availability zones.</p>
9348
- * @public
9349
- */
9350
- ReservedCapacitySummaries?: ReservedCapacitySummary[] | undefined;
9351
- }