@aws-sdk/client-sagemaker 3.940.0 → 3.943.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +48 -0
- package/dist-cjs/index.js +277 -12
- package/dist-es/SageMaker.js +12 -0
- package/dist-es/commands/CreateMlflowAppCommand.js +16 -0
- package/dist-es/commands/CreatePresignedMlflowAppUrlCommand.js +16 -0
- package/dist-es/commands/DeleteMlflowAppCommand.js +16 -0
- package/dist-es/commands/DescribeMlflowAppCommand.js +16 -0
- package/dist-es/commands/ListMlflowAppsCommand.js +16 -0
- package/dist-es/commands/UpdateMlflowAppCommand.js +16 -0
- package/dist-es/commands/index.js +6 -0
- package/dist-es/models/enums.js +37 -0
- package/dist-es/pagination/ListMlflowAppsPaginator.js +4 -0
- package/dist-es/pagination/index.js +1 -0
- package/dist-es/schemas/schemas_0.js +149 -12
- package/dist-types/SageMaker.d.ts +43 -0
- package/dist-types/SageMakerClient.d.ts +8 -2
- package/dist-types/commands/CreateClusterCommand.d.ts +3 -3
- package/dist-types/commands/CreateComputeQuotaCommand.d.ts +1 -1
- package/dist-types/commands/CreateDomainCommand.d.ts +1 -1
- package/dist-types/commands/CreateHubContentPresignedUrlsCommand.d.ts +1 -1
- package/dist-types/commands/CreateMlflowAppCommand.d.ts +91 -0
- package/dist-types/commands/CreatePresignedMlflowAppUrlCommand.d.ts +79 -0
- package/dist-types/commands/CreateTrainingJobCommand.d.ts +1 -2
- package/dist-types/commands/CreateUserProfileCommand.d.ts +1 -1
- package/dist-types/commands/DeleteHubContentCommand.d.ts +1 -1
- package/dist-types/commands/DeleteHubContentReferenceCommand.d.ts +1 -1
- package/dist-types/commands/DeleteMlflowAppCommand.d.ts +77 -0
- package/dist-types/commands/DescribeClusterCommand.d.ts +2 -2
- package/dist-types/commands/DescribeClusterNodeCommand.d.ts +1 -1
- package/dist-types/commands/DescribeComputeQuotaCommand.d.ts +1 -1
- package/dist-types/commands/DescribeDomainCommand.d.ts +1 -1
- package/dist-types/commands/DescribeHubContentCommand.d.ts +3 -3
- package/dist-types/commands/DescribeMlflowAppCommand.d.ts +111 -0
- package/dist-types/commands/DescribeSubscribedWorkteamCommand.d.ts +2 -1
- package/dist-types/commands/DescribeTrainingJobCommand.d.ts +1 -1
- package/dist-types/commands/DescribeUserProfileCommand.d.ts +1 -1
- package/dist-types/commands/ImportHubContentCommand.d.ts +1 -1
- package/dist-types/commands/ListClusterNodesCommand.d.ts +1 -1
- package/dist-types/commands/ListComputeQuotasCommand.d.ts +1 -1
- package/dist-types/commands/ListHubContentVersionsCommand.d.ts +3 -3
- package/dist-types/commands/ListHubContentsCommand.d.ts +3 -3
- package/dist-types/commands/ListMlflowAppsCommand.d.ts +93 -0
- package/dist-types/commands/ListSubscribedWorkteamsCommand.d.ts +2 -1
- package/dist-types/commands/ListTagsCommand.d.ts +1 -1
- package/dist-types/commands/ListTrainingJobsCommand.d.ts +1 -1
- package/dist-types/commands/ListTrainingJobsForHyperParameterTuningJobCommand.d.ts +1 -1
- package/dist-types/commands/ListTrainingPlansCommand.d.ts +1 -2
- package/dist-types/commands/UpdateClusterCommand.d.ts +2 -2
- package/dist-types/commands/UpdateComputeQuotaCommand.d.ts +1 -1
- package/dist-types/commands/UpdateDomainCommand.d.ts +1 -1
- package/dist-types/commands/UpdateHubContentCommand.d.ts +1 -1
- package/dist-types/commands/UpdateHubContentReferenceCommand.d.ts +1 -1
- package/dist-types/commands/UpdateMlflowAppCommand.d.ts +88 -0
- package/dist-types/commands/UpdateUserProfileCommand.d.ts +1 -1
- package/dist-types/commands/index.d.ts +6 -0
- package/dist-types/models/enums.d.ts +77 -0
- package/dist-types/models/models_0.d.ts +3 -3
- package/dist-types/models/models_1.d.ts +87 -170
- package/dist-types/models/models_2.d.ts +280 -372
- package/dist-types/models/models_3.d.ts +486 -383
- package/dist-types/models/models_4.d.ts +427 -4
- package/dist-types/pagination/ListMlflowAppsPaginator.d.ts +7 -0
- package/dist-types/pagination/index.d.ts +1 -0
- package/dist-types/schemas/schemas_0.d.ts +21 -0
- package/dist-types/ts3.4/SageMaker.d.ts +103 -0
- package/dist-types/ts3.4/SageMakerClient.d.ts +36 -0
- package/dist-types/ts3.4/commands/CreateMlflowAppCommand.d.ts +50 -0
- package/dist-types/ts3.4/commands/CreatePresignedMlflowAppUrlCommand.d.ts +51 -0
- package/dist-types/ts3.4/commands/CreateTrainingJobCommand.d.ts +4 -2
- package/dist-types/ts3.4/commands/DeleteMlflowAppCommand.d.ts +50 -0
- package/dist-types/ts3.4/commands/DescribeMlflowAppCommand.d.ts +51 -0
- package/dist-types/ts3.4/commands/DescribeSubscribedWorkteamCommand.d.ts +2 -4
- package/dist-types/ts3.4/commands/DescribeTrainingJobCommand.d.ts +1 -1
- package/dist-types/ts3.4/commands/ListMlflowAppsCommand.d.ts +50 -0
- package/dist-types/ts3.4/commands/ListSubscribedWorkteamsCommand.d.ts +2 -4
- package/dist-types/ts3.4/commands/ListTagsCommand.d.ts +1 -1
- package/dist-types/ts3.4/commands/ListTrainingJobsCommand.d.ts +1 -1
- package/dist-types/ts3.4/commands/ListTrainingJobsForHyperParameterTuningJobCommand.d.ts +1 -1
- package/dist-types/ts3.4/commands/ListTrainingPlansCommand.d.ts +4 -2
- package/dist-types/ts3.4/commands/UpdateMlflowAppCommand.d.ts +50 -0
- package/dist-types/ts3.4/commands/index.d.ts +6 -0
- package/dist-types/ts3.4/models/enums.d.ts +47 -0
- package/dist-types/ts3.4/models/models_0.d.ts +1 -1
- package/dist-types/ts3.4/models/models_1.d.ts +23 -38
- package/dist-types/ts3.4/models/models_2.d.ts +67 -86
- package/dist-types/ts3.4/models/models_3.d.ts +127 -91
- package/dist-types/ts3.4/models/models_4.d.ts +112 -4
- package/dist-types/ts3.4/pagination/ListMlflowAppsPaginator.d.ts +11 -0
- package/dist-types/ts3.4/pagination/index.d.ts +1 -0
- package/dist-types/ts3.4/schemas/schemas_0.d.ts +21 -0
- package/package.json +5 -5
|
@@ -240,7 +240,7 @@ declare const UpdateDomainCommand_base: {
|
|
|
240
240
|
* ],
|
|
241
241
|
* StudioWebPortalSettings: { // StudioWebPortalSettings
|
|
242
242
|
* HiddenMlTools: [ // HiddenMlToolsList
|
|
243
|
-
* "DataWrangler" || "FeatureStore" || "EmrClusters" || "AutoMl" || "Experiments" || "Training" || "ModelEvaluation" || "Pipelines" || "Models" || "JumpStart" || "InferenceRecommender" || "Endpoints" || "Projects" || "InferenceOptimization" || "PerformanceEvaluation" || "LakeraGuard" || "Comet" || "DeepchecksLLMEvaluation" || "Fiddler" || "HyperPodClusters",
|
|
243
|
+
* "DataWrangler" || "FeatureStore" || "EmrClusters" || "AutoMl" || "Experiments" || "Training" || "ModelEvaluation" || "Pipelines" || "Models" || "JumpStart" || "InferenceRecommender" || "Endpoints" || "Projects" || "InferenceOptimization" || "PerformanceEvaluation" || "LakeraGuard" || "Comet" || "DeepchecksLLMEvaluation" || "Fiddler" || "HyperPodClusters" || "RunningInstances" || "Datasets" || "Evaluators",
|
|
244
244
|
* ],
|
|
245
245
|
* HiddenAppTypes: [ // HiddenAppTypesList
|
|
246
246
|
* "JupyterServer" || "KernelGateway" || "DetailedProfiler" || "TensorBoard" || "CodeEditor" || "JupyterLab" || "RStudioServerPro" || "RSessionGateway" || "Canvas",
|
|
@@ -39,7 +39,7 @@ declare const UpdateHubContentCommand_base: {
|
|
|
39
39
|
* const input = { // UpdateHubContentRequest
|
|
40
40
|
* HubName: "STRING_VALUE", // required
|
|
41
41
|
* HubContentName: "STRING_VALUE", // required
|
|
42
|
-
* HubContentType: "Model" || "Notebook" || "ModelReference", // required
|
|
42
|
+
* HubContentType: "Model" || "Notebook" || "ModelReference" || "DataSet" || "JsonDoc", // required
|
|
43
43
|
* HubContentVersion: "STRING_VALUE", // required
|
|
44
44
|
* HubContentDisplayName: "STRING_VALUE",
|
|
45
45
|
* HubContentDescription: "STRING_VALUE",
|
|
@@ -39,7 +39,7 @@ declare const UpdateHubContentReferenceCommand_base: {
|
|
|
39
39
|
* const input = { // UpdateHubContentReferenceRequest
|
|
40
40
|
* HubName: "STRING_VALUE", // required
|
|
41
41
|
* HubContentName: "STRING_VALUE", // required
|
|
42
|
-
* HubContentType: "Model" || "Notebook" || "ModelReference", // required
|
|
42
|
+
* HubContentType: "Model" || "Notebook" || "ModelReference" || "DataSet" || "JsonDoc", // required
|
|
43
43
|
* MinVersion: "STRING_VALUE",
|
|
44
44
|
* };
|
|
45
45
|
* const command = new UpdateHubContentReferenceCommand(input);
|
|
@@ -0,0 +1,88 @@
|
|
|
1
|
+
import { Command as $Command } from "@smithy/smithy-client";
|
|
2
|
+
import { MetadataBearer as __MetadataBearer } from "@smithy/types";
|
|
3
|
+
import { UpdateMlflowAppRequest, UpdateMlflowAppResponse } from "../models/models_4";
|
|
4
|
+
import { SageMakerClientResolvedConfig, ServiceInputTypes, ServiceOutputTypes } from "../SageMakerClient";
|
|
5
|
+
/**
|
|
6
|
+
* @public
|
|
7
|
+
*/
|
|
8
|
+
export type { __MetadataBearer };
|
|
9
|
+
export { $Command };
|
|
10
|
+
/**
|
|
11
|
+
* @public
|
|
12
|
+
*
|
|
13
|
+
* The input for {@link UpdateMlflowAppCommand}.
|
|
14
|
+
*/
|
|
15
|
+
export interface UpdateMlflowAppCommandInput extends UpdateMlflowAppRequest {
|
|
16
|
+
}
|
|
17
|
+
/**
|
|
18
|
+
* @public
|
|
19
|
+
*
|
|
20
|
+
* The output of {@link UpdateMlflowAppCommand}.
|
|
21
|
+
*/
|
|
22
|
+
export interface UpdateMlflowAppCommandOutput extends UpdateMlflowAppResponse, __MetadataBearer {
|
|
23
|
+
}
|
|
24
|
+
declare const UpdateMlflowAppCommand_base: {
|
|
25
|
+
new (input: UpdateMlflowAppCommandInput): import("@smithy/smithy-client").CommandImpl<UpdateMlflowAppCommandInput, UpdateMlflowAppCommandOutput, SageMakerClientResolvedConfig, ServiceInputTypes, ServiceOutputTypes>;
|
|
26
|
+
new (input: UpdateMlflowAppCommandInput): import("@smithy/smithy-client").CommandImpl<UpdateMlflowAppCommandInput, UpdateMlflowAppCommandOutput, SageMakerClientResolvedConfig, ServiceInputTypes, ServiceOutputTypes>;
|
|
27
|
+
getEndpointParameterInstructions(): import("@smithy/middleware-endpoint").EndpointParameterInstructions;
|
|
28
|
+
};
|
|
29
|
+
/**
|
|
30
|
+
* <p>Updates an MLflow App.</p>
|
|
31
|
+
* @example
|
|
32
|
+
* Use a bare-bones client and the command you need to make an API call.
|
|
33
|
+
* ```javascript
|
|
34
|
+
* import { SageMakerClient, UpdateMlflowAppCommand } from "@aws-sdk/client-sagemaker"; // ES Modules import
|
|
35
|
+
* // const { SageMakerClient, UpdateMlflowAppCommand } = require("@aws-sdk/client-sagemaker"); // CommonJS import
|
|
36
|
+
* // import type { SageMakerClientConfig } from "@aws-sdk/client-sagemaker";
|
|
37
|
+
* const config = {}; // type is SageMakerClientConfig
|
|
38
|
+
* const client = new SageMakerClient(config);
|
|
39
|
+
* const input = { // UpdateMlflowAppRequest
|
|
40
|
+
* Arn: "STRING_VALUE", // required
|
|
41
|
+
* Name: "STRING_VALUE",
|
|
42
|
+
* ArtifactStoreUri: "STRING_VALUE",
|
|
43
|
+
* ModelRegistrationMode: "AutoModelRegistrationEnabled" || "AutoModelRegistrationDisabled",
|
|
44
|
+
* WeeklyMaintenanceWindowStart: "STRING_VALUE",
|
|
45
|
+
* DefaultDomainIdList: [ // DefaultDomainIdList
|
|
46
|
+
* "STRING_VALUE",
|
|
47
|
+
* ],
|
|
48
|
+
* AccountDefaultStatus: "ENABLED" || "DISABLED",
|
|
49
|
+
* };
|
|
50
|
+
* const command = new UpdateMlflowAppCommand(input);
|
|
51
|
+
* const response = await client.send(command);
|
|
52
|
+
* // { // UpdateMlflowAppResponse
|
|
53
|
+
* // Arn: "STRING_VALUE",
|
|
54
|
+
* // };
|
|
55
|
+
*
|
|
56
|
+
* ```
|
|
57
|
+
*
|
|
58
|
+
* @param UpdateMlflowAppCommandInput - {@link UpdateMlflowAppCommandInput}
|
|
59
|
+
* @returns {@link UpdateMlflowAppCommandOutput}
|
|
60
|
+
* @see {@link UpdateMlflowAppCommandInput} for command's `input` shape.
|
|
61
|
+
* @see {@link UpdateMlflowAppCommandOutput} for command's `response` shape.
|
|
62
|
+
* @see {@link SageMakerClientResolvedConfig | config} for SageMakerClient's `config` shape.
|
|
63
|
+
*
|
|
64
|
+
* @throws {@link ConflictException} (client fault)
|
|
65
|
+
* <p>There was a conflict when you attempted to modify a SageMaker entity such as an <code>Experiment</code> or <code>Artifact</code>.</p>
|
|
66
|
+
*
|
|
67
|
+
* @throws {@link ResourceNotFound} (client fault)
|
|
68
|
+
* <p>Resource being access is not found.</p>
|
|
69
|
+
*
|
|
70
|
+
* @throws {@link SageMakerServiceException}
|
|
71
|
+
* <p>Base exception class for all service exceptions from SageMaker service.</p>
|
|
72
|
+
*
|
|
73
|
+
*
|
|
74
|
+
* @public
|
|
75
|
+
*/
|
|
76
|
+
export declare class UpdateMlflowAppCommand extends UpdateMlflowAppCommand_base {
|
|
77
|
+
/** @internal type navigation helper, not in runtime. */
|
|
78
|
+
protected static __types: {
|
|
79
|
+
api: {
|
|
80
|
+
input: UpdateMlflowAppRequest;
|
|
81
|
+
output: UpdateMlflowAppResponse;
|
|
82
|
+
};
|
|
83
|
+
sdk: {
|
|
84
|
+
input: UpdateMlflowAppCommandInput;
|
|
85
|
+
output: UpdateMlflowAppCommandOutput;
|
|
86
|
+
};
|
|
87
|
+
};
|
|
88
|
+
}
|
|
@@ -241,7 +241,7 @@ declare const UpdateUserProfileCommand_base: {
|
|
|
241
241
|
* ],
|
|
242
242
|
* StudioWebPortalSettings: { // StudioWebPortalSettings
|
|
243
243
|
* HiddenMlTools: [ // HiddenMlToolsList
|
|
244
|
-
* "DataWrangler" || "FeatureStore" || "EmrClusters" || "AutoMl" || "Experiments" || "Training" || "ModelEvaluation" || "Pipelines" || "Models" || "JumpStart" || "InferenceRecommender" || "Endpoints" || "Projects" || "InferenceOptimization" || "PerformanceEvaluation" || "LakeraGuard" || "Comet" || "DeepchecksLLMEvaluation" || "Fiddler" || "HyperPodClusters",
|
|
244
|
+
* "DataWrangler" || "FeatureStore" || "EmrClusters" || "AutoMl" || "Experiments" || "Training" || "ModelEvaluation" || "Pipelines" || "Models" || "JumpStart" || "InferenceRecommender" || "Endpoints" || "Projects" || "InferenceOptimization" || "PerformanceEvaluation" || "LakeraGuard" || "Comet" || "DeepchecksLLMEvaluation" || "Fiddler" || "HyperPodClusters" || "RunningInstances" || "Datasets" || "Evaluators",
|
|
245
245
|
* ],
|
|
246
246
|
* HiddenAppTypes: [ // HiddenAppTypesList
|
|
247
247
|
* "JupyterServer" || "KernelGateway" || "DetailedProfiler" || "TensorBoard" || "CodeEditor" || "JupyterLab" || "RStudioServerPro" || "RSessionGateway" || "Canvas",
|
|
@@ -42,6 +42,7 @@ export * from "./CreateInferenceComponentCommand";
|
|
|
42
42
|
export * from "./CreateInferenceExperimentCommand";
|
|
43
43
|
export * from "./CreateInferenceRecommendationsJobCommand";
|
|
44
44
|
export * from "./CreateLabelingJobCommand";
|
|
45
|
+
export * from "./CreateMlflowAppCommand";
|
|
45
46
|
export * from "./CreateMlflowTrackingServerCommand";
|
|
46
47
|
export * from "./CreateModelBiasJobDefinitionCommand";
|
|
47
48
|
export * from "./CreateModelCardCommand";
|
|
@@ -59,6 +60,7 @@ export * from "./CreatePartnerAppCommand";
|
|
|
59
60
|
export * from "./CreatePartnerAppPresignedUrlCommand";
|
|
60
61
|
export * from "./CreatePipelineCommand";
|
|
61
62
|
export * from "./CreatePresignedDomainUrlCommand";
|
|
63
|
+
export * from "./CreatePresignedMlflowAppUrlCommand";
|
|
62
64
|
export * from "./CreatePresignedMlflowTrackingServerUrlCommand";
|
|
63
65
|
export * from "./CreatePresignedNotebookInstanceUrlCommand";
|
|
64
66
|
export * from "./CreateProcessingJobCommand";
|
|
@@ -104,6 +106,7 @@ export * from "./DeleteImageCommand";
|
|
|
104
106
|
export * from "./DeleteImageVersionCommand";
|
|
105
107
|
export * from "./DeleteInferenceComponentCommand";
|
|
106
108
|
export * from "./DeleteInferenceExperimentCommand";
|
|
109
|
+
export * from "./DeleteMlflowAppCommand";
|
|
107
110
|
export * from "./DeleteMlflowTrackingServerCommand";
|
|
108
111
|
export * from "./DeleteModelBiasJobDefinitionCommand";
|
|
109
112
|
export * from "./DeleteModelCardCommand";
|
|
@@ -169,6 +172,7 @@ export * from "./DescribeInferenceExperimentCommand";
|
|
|
169
172
|
export * from "./DescribeInferenceRecommendationsJobCommand";
|
|
170
173
|
export * from "./DescribeLabelingJobCommand";
|
|
171
174
|
export * from "./DescribeLineageGroupCommand";
|
|
175
|
+
export * from "./DescribeMlflowAppCommand";
|
|
172
176
|
export * from "./DescribeMlflowTrackingServerCommand";
|
|
173
177
|
export * from "./DescribeModelBiasJobDefinitionCommand";
|
|
174
178
|
export * from "./DescribeModelCardCommand";
|
|
@@ -253,6 +257,7 @@ export * from "./ListInferenceRecommendationsJobsCommand";
|
|
|
253
257
|
export * from "./ListLabelingJobsCommand";
|
|
254
258
|
export * from "./ListLabelingJobsForWorkteamCommand";
|
|
255
259
|
export * from "./ListLineageGroupsCommand";
|
|
260
|
+
export * from "./ListMlflowAppsCommand";
|
|
256
261
|
export * from "./ListMlflowTrackingServersCommand";
|
|
257
262
|
export * from "./ListModelBiasJobDefinitionsCommand";
|
|
258
263
|
export * from "./ListModelCardExportJobsCommand";
|
|
@@ -352,6 +357,7 @@ export * from "./UpdateImageVersionCommand";
|
|
|
352
357
|
export * from "./UpdateInferenceComponentCommand";
|
|
353
358
|
export * from "./UpdateInferenceComponentRuntimeConfigCommand";
|
|
354
359
|
export * from "./UpdateInferenceExperimentCommand";
|
|
360
|
+
export * from "./UpdateMlflowAppCommand";
|
|
355
361
|
export * from "./UpdateMlflowTrackingServerCommand";
|
|
356
362
|
export * from "./UpdateModelCardCommand";
|
|
357
363
|
export * from "./UpdateModelPackageCommand";
|
|
@@ -36,6 +36,18 @@ export declare const MIGProfileType: {
|
|
|
36
36
|
* @public
|
|
37
37
|
*/
|
|
38
38
|
export type MIGProfileType = (typeof MIGProfileType)[keyof typeof MIGProfileType];
|
|
39
|
+
/**
|
|
40
|
+
* @public
|
|
41
|
+
* @enum
|
|
42
|
+
*/
|
|
43
|
+
export declare const AccountDefaultStatus: {
|
|
44
|
+
readonly DISABLED: "DISABLED";
|
|
45
|
+
readonly ENABLED: "ENABLED";
|
|
46
|
+
};
|
|
47
|
+
/**
|
|
48
|
+
* @public
|
|
49
|
+
*/
|
|
50
|
+
export type AccountDefaultStatus = (typeof AccountDefaultStatus)[keyof typeof AccountDefaultStatus];
|
|
39
51
|
/**
|
|
40
52
|
* @public
|
|
41
53
|
* @enum
|
|
@@ -2091,6 +2103,7 @@ export declare const ClusterInstanceType: {
|
|
|
2091
2103
|
readonly ML_P5EN_48XLARGE: "ml.p5en.48xlarge";
|
|
2092
2104
|
readonly ML_P5E_48XLARGE: "ml.p5e.48xlarge";
|
|
2093
2105
|
readonly ML_P5_48XLARGE: "ml.p5.48xlarge";
|
|
2106
|
+
readonly ML_P5_4XLARGE: "ml.p5.4xlarge";
|
|
2094
2107
|
readonly ML_P6E_GB200_36XLARGE: "ml.p6e-gb200.36xlarge";
|
|
2095
2108
|
readonly ML_P6_B200_48XLARGE: "ml.p6-b200.48xlarge";
|
|
2096
2109
|
readonly ML_R6I_12XLARGE: "ml.r6i.12xlarge";
|
|
@@ -2775,10 +2788,12 @@ export type StudioWebPortal = (typeof StudioWebPortal)[keyof typeof StudioWebPor
|
|
|
2775
2788
|
export declare const MlTools: {
|
|
2776
2789
|
readonly AUTO_ML: "AutoMl";
|
|
2777
2790
|
readonly COMET: "Comet";
|
|
2791
|
+
readonly DATASETS: "Datasets";
|
|
2778
2792
|
readonly DATA_WRANGLER: "DataWrangler";
|
|
2779
2793
|
readonly DEEPCHECKS_LLM_EVALUATION: "DeepchecksLLMEvaluation";
|
|
2780
2794
|
readonly EMR_CLUSTERS: "EmrClusters";
|
|
2781
2795
|
readonly ENDPOINTS: "Endpoints";
|
|
2796
|
+
readonly EVALUATORS: "Evaluators";
|
|
2782
2797
|
readonly EXPERIMENTS: "Experiments";
|
|
2783
2798
|
readonly FEATURE_STORE: "FeatureStore";
|
|
2784
2799
|
readonly FIDDLER: "Fiddler";
|
|
@@ -2792,6 +2807,7 @@ export declare const MlTools: {
|
|
|
2792
2807
|
readonly PERFORMANCE_EVALUATION: "PerformanceEvaluation";
|
|
2793
2808
|
readonly PIPELINES: "Pipelines";
|
|
2794
2809
|
readonly PROJECTS: "Projects";
|
|
2810
|
+
readonly RUNNING_INSTANCES: "RunningInstances";
|
|
2795
2811
|
readonly TRAINING: "Training";
|
|
2796
2812
|
};
|
|
2797
2813
|
/**
|
|
@@ -3003,6 +3019,8 @@ export type ThroughputMode = (typeof ThroughputMode)[keyof typeof ThroughputMode
|
|
|
3003
3019
|
* @enum
|
|
3004
3020
|
*/
|
|
3005
3021
|
export declare const HubContentType: {
|
|
3022
|
+
readonly DATA_SET: "DataSet";
|
|
3023
|
+
readonly JSON_DOC: "JsonDoc";
|
|
3006
3024
|
readonly MODEL: "Model";
|
|
3007
3025
|
readonly MODEL_REFERENCE: "ModelReference";
|
|
3008
3026
|
readonly NOTEBOOK: "Notebook";
|
|
@@ -3352,6 +3370,18 @@ export declare const FlatInvocations: {
|
|
|
3352
3370
|
* @public
|
|
3353
3371
|
*/
|
|
3354
3372
|
export type FlatInvocations = (typeof FlatInvocations)[keyof typeof FlatInvocations];
|
|
3373
|
+
/**
|
|
3374
|
+
* @public
|
|
3375
|
+
* @enum
|
|
3376
|
+
*/
|
|
3377
|
+
export declare const ModelRegistrationMode: {
|
|
3378
|
+
readonly AUTO_MODEL_REGISTRATION_DISABLED: "AutoModelRegistrationDisabled";
|
|
3379
|
+
readonly AUTO_MODEL_REGISTRATION_ENABLED: "AutoModelRegistrationEnabled";
|
|
3380
|
+
};
|
|
3381
|
+
/**
|
|
3382
|
+
* @public
|
|
3383
|
+
*/
|
|
3384
|
+
export type ModelRegistrationMode = (typeof ModelRegistrationMode)[keyof typeof ModelRegistrationMode];
|
|
3355
3385
|
/**
|
|
3356
3386
|
* @public
|
|
3357
3387
|
* @enum
|
|
@@ -3964,6 +3994,8 @@ export declare const HubContentStatus: {
|
|
|
3964
3994
|
readonly DELETING: "Deleting";
|
|
3965
3995
|
readonly IMPORTING: "Importing";
|
|
3966
3996
|
readonly IMPORT_FAILED: "ImportFailed";
|
|
3997
|
+
readonly PENDING_DELETE: "PendingDelete";
|
|
3998
|
+
readonly PENDING_IMPORT: "PendingImport";
|
|
3967
3999
|
};
|
|
3968
4000
|
/**
|
|
3969
4001
|
* @public
|
|
@@ -4153,6 +4185,38 @@ export declare const LabelingJobStatus: {
|
|
|
4153
4185
|
* @public
|
|
4154
4186
|
*/
|
|
4155
4187
|
export type LabelingJobStatus = (typeof LabelingJobStatus)[keyof typeof LabelingJobStatus];
|
|
4188
|
+
/**
|
|
4189
|
+
* @public
|
|
4190
|
+
* @enum
|
|
4191
|
+
*/
|
|
4192
|
+
export declare const MaintenanceStatus: {
|
|
4193
|
+
readonly MAINTENANCE_COMPLETE: "MaintenanceComplete";
|
|
4194
|
+
readonly MAINTENANCE_FAILED: "MaintenanceFailed";
|
|
4195
|
+
readonly MAINTENANCE_IN_PROGRESS: "MaintenanceInProgress";
|
|
4196
|
+
};
|
|
4197
|
+
/**
|
|
4198
|
+
* @public
|
|
4199
|
+
*/
|
|
4200
|
+
export type MaintenanceStatus = (typeof MaintenanceStatus)[keyof typeof MaintenanceStatus];
|
|
4201
|
+
/**
|
|
4202
|
+
* @public
|
|
4203
|
+
* @enum
|
|
4204
|
+
*/
|
|
4205
|
+
export declare const MlflowAppStatus: {
|
|
4206
|
+
readonly CREATED: "Created";
|
|
4207
|
+
readonly CREATE_FAILED: "CreateFailed";
|
|
4208
|
+
readonly CREATING: "Creating";
|
|
4209
|
+
readonly DELETED: "Deleted";
|
|
4210
|
+
readonly DELETE_FAILED: "DeleteFailed";
|
|
4211
|
+
readonly DELETING: "Deleting";
|
|
4212
|
+
readonly UPDATED: "Updated";
|
|
4213
|
+
readonly UPDATE_FAILED: "UpdateFailed";
|
|
4214
|
+
readonly UPDATING: "Updating";
|
|
4215
|
+
};
|
|
4216
|
+
/**
|
|
4217
|
+
* @public
|
|
4218
|
+
*/
|
|
4219
|
+
export type MlflowAppStatus = (typeof MlflowAppStatus)[keyof typeof MlflowAppStatus];
|
|
4156
4220
|
/**
|
|
4157
4221
|
* @public
|
|
4158
4222
|
* @enum
|
|
@@ -5132,6 +5196,19 @@ export declare const SortLineageGroupsBy: {
|
|
|
5132
5196
|
* @public
|
|
5133
5197
|
*/
|
|
5134
5198
|
export type SortLineageGroupsBy = (typeof SortLineageGroupsBy)[keyof typeof SortLineageGroupsBy];
|
|
5199
|
+
/**
|
|
5200
|
+
* @public
|
|
5201
|
+
* @enum
|
|
5202
|
+
*/
|
|
5203
|
+
export declare const SortMlflowAppBy: {
|
|
5204
|
+
readonly CREATION_TIME: "CreationTime";
|
|
5205
|
+
readonly NAME: "Name";
|
|
5206
|
+
readonly STATUS: "Status";
|
|
5207
|
+
};
|
|
5208
|
+
/**
|
|
5209
|
+
* @public
|
|
5210
|
+
*/
|
|
5211
|
+
export type SortMlflowAppBy = (typeof SortMlflowAppBy)[keyof typeof SortMlflowAppBy];
|
|
5135
5212
|
/**
|
|
5136
5213
|
* @public
|
|
5137
5214
|
* @enum
|
|
@@ -4896,12 +4896,12 @@ export interface ClusterInstanceGroupDetails {
|
|
|
4896
4896
|
*/
|
|
4897
4897
|
CapacityRequirements?: ClusterCapacityRequirements | undefined;
|
|
4898
4898
|
/**
|
|
4899
|
-
* <p>
|
|
4899
|
+
* <p>Represents the number of running nodes using the desired Image ID.</p> <ol> <li> <p> <b>During software update operations:</b> This count shows the number of nodes running on the desired Image ID. If a rollback occurs, the current image ID and desired image ID (both included in the describe cluster response) swap values. The TargetStateCount then shows the number of nodes running on the newly designated desired image ID (which was previously the current image ID).</p> </li> <li> <p> <b>During simultaneous scaling and software update operations:</b> This count shows the number of instances running on the desired image ID, including any new instances created as part of the scaling request. New nodes are always created using the desired image ID, so TargetStateCount reflects the total count of nodes running on the desired image ID, even during rollback scenarios.</p> </li> </ol>
|
|
4900
4900
|
* @public
|
|
4901
4901
|
*/
|
|
4902
4902
|
TargetStateCount?: number | undefined;
|
|
4903
4903
|
/**
|
|
4904
|
-
* <p>Status of the last software udpate request.</p>
|
|
4904
|
+
* <p>Status of the last software udpate request.</p> <p>Status transitions follow these possible sequences:</p> <ul> <li> <p>Pending -> InProgress -> Succeeded</p> </li> <li> <p>Pending -> InProgress -> RollbackInProgress -> RollbackComplete</p> </li> <li> <p>Pending -> InProgress -> RollbackInProgress -> Failed</p> </li> </ul>
|
|
4905
4905
|
* @public
|
|
4906
4906
|
*/
|
|
4907
4907
|
SoftwareUpdateStatus?: SoftwareUpdateStatus | undefined;
|
|
@@ -5254,7 +5254,7 @@ export interface ClusterOrchestrator {
|
|
|
5254
5254
|
* <p>The Amazon EKS cluster used as the orchestrator for the SageMaker HyperPod cluster.</p>
|
|
5255
5255
|
* @public
|
|
5256
5256
|
*/
|
|
5257
|
-
Eks
|
|
5257
|
+
Eks?: ClusterOrchestratorEksConfig | undefined;
|
|
5258
5258
|
}
|
|
5259
5259
|
/**
|
|
5260
5260
|
* <p>Configuration settings for an Amazon FSx for Lustre file system to be used with the cluster.</p>
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
import { AutomaticJsonStringConversion as __AutomaticJsonStringConversion } from "@smithy/smithy-client";
|
|
2
|
-
import { _InstanceType, AppInstanceType, AppNetworkAccessType, AppSecurityGroupManagement, AppType, AuthMode, AutoMountHomeEFS, AwsManagedHumanLoopRequestSource, CapacityReservationPreference, CollectionType, ContentClassifier, DataDistributionType, DeviceSubsetType, DirectInternetAccess, EdgePresetDeploymentType, ExecutionRoleIdentityConfig, FailureHandlingPolicy, FeatureStatus, FeatureType, FlatInvocations, HubContentType, HyperParameterScalingType, HyperParameterTuningAllocationStrategy, HyperParameterTuningJobStrategyType, HyperParameterTuningJobWarmStartType, InferenceExecutionMode, InferenceExperimentType, InputMode, IPAddressType, JobType, ManagedInstanceScalingStatus, MetricPublishFrequencyInSeconds, MlTools, ModelApprovalStatus, ModelCardStatus, ModelInfrastructureType, ModelSpeculativeDecodingS3DataType, ModelSpeculativeDecodingTechnique, MonitoringProblemType, MonitoringType, NotebookInstanceAcceleratorType, NotebookOutputOption, OptimizationJobDeploymentInstanceType, PartnerAppAuthType, PartnerAppType, ProcessingInstanceType, ProcessingS3CompressionType, ProcessingS3DataDistributionType, ProcessingS3DataType, ProcessingS3InputMode, ProcessingS3UploadMode, Processor, ProductionVariantAcceleratorType, ProductionVariantInferenceAmiVersion, ProductionVariantInstanceType, RecommendationJobSupportedEndpointType, RecommendationJobType, RedshiftResultCompressionType, RedshiftResultFormat, RootAccess, RoutingStrategy, RStudioServerProAccessStatus, RStudioServerProUserGroup, SageMakerImageName, SharingType, SkipModelValidation, StorageType, StudioLifecycleConfigAppType, StudioWebPortal, TableFormat, TagPropagation, ThroughputMode, TrackingServerSize, TrafficType, TrainingInputMode, TrainingInstanceType, TrainingJobEarlyStoppingType, TtlDurationUnit, VendorGuidance } from "./enums";
|
|
3
|
-
import { AdditionalInferenceSpecificationDefinition,
|
|
2
|
+
import { _InstanceType, AccountDefaultStatus, AppInstanceType, AppNetworkAccessType, AppSecurityGroupManagement, AppType, AuthMode, AutoMountHomeEFS, AwsManagedHumanLoopRequestSource, CapacityReservationPreference, CollectionType, ContentClassifier, DataDistributionType, DeviceSubsetType, DirectInternetAccess, EdgePresetDeploymentType, ExecutionRoleIdentityConfig, FailureHandlingPolicy, FeatureStatus, FeatureType, FlatInvocations, HubContentType, HyperParameterScalingType, HyperParameterTuningAllocationStrategy, HyperParameterTuningJobStrategyType, HyperParameterTuningJobWarmStartType, InferenceExecutionMode, InferenceExperimentType, InputMode, IPAddressType, JobType, ManagedInstanceScalingStatus, MetricPublishFrequencyInSeconds, MlTools, ModelApprovalStatus, ModelCardStatus, ModelInfrastructureType, ModelRegistrationMode, ModelSpeculativeDecodingS3DataType, ModelSpeculativeDecodingTechnique, MonitoringProblemType, MonitoringType, NotebookInstanceAcceleratorType, NotebookOutputOption, OptimizationJobDeploymentInstanceType, PartnerAppAuthType, PartnerAppType, ProcessingInstanceType, ProcessingS3CompressionType, ProcessingS3DataDistributionType, ProcessingS3DataType, ProcessingS3InputMode, ProcessingS3UploadMode, Processor, ProductionVariantAcceleratorType, ProductionVariantInferenceAmiVersion, ProductionVariantInstanceType, RecommendationJobSupportedEndpointType, RecommendationJobType, RedshiftResultCompressionType, RedshiftResultFormat, RootAccess, RoutingStrategy, RStudioServerProAccessStatus, RStudioServerProUserGroup, SageMakerImageName, SharingType, SkipModelValidation, StorageType, StudioLifecycleConfigAppType, StudioWebPortal, TableFormat, TagPropagation, ThroughputMode, TrackingServerSize, TrafficType, TrainingInputMode, TrainingInstanceType, TrainingJobEarlyStoppingType, TtlDurationUnit, VendorGuidance } from "./enums";
|
|
3
|
+
import { AdditionalInferenceSpecificationDefinition, AmazonQSettings, AnnotationConsolidationConfig, AppLifecycleManagement, AppSpecification, AsyncInferenceConfig, AthenaDatasetDefinition, AuthorizedUrl, AutoParameter, AutoRollbackConfig, Autotune, BatchTransformInput, BestObjectiveNotImproving, Bias, BlueGreenUpdatePolicy, CanvasAppSettings, CapacitySize, CaptureContentTypeHeader, CaptureOption, CategoricalParameter, CategoricalParameterRange, CfnCreateTemplateProvider, Channel, CheckpointConfig, ClarifyExplainerConfig, CodeEditorAppSettings, CodeRepository, CollectionConfig, CollectionConfiguration, ContainerDefinition, ContinuousParameterRange, ConvergenceDetected, CustomImage, DataQualityAppSpecification, DataQualityBaselineConfig, HyperParameterTuningJobObjective, InferenceSpecification, MetadataProperties, MetricDefinition, MetricsSource, ModelDataSource, MonitoringConstraintsResource, MonitoringStatisticsResource, OutputDataConfig, ResourceConfig, ResourceSpec, StoppingCondition, Tag, TransformJobDefinition, VpcConfig } from "./models_0";
|
|
4
4
|
/**
|
|
5
5
|
* <p>Input object for the endpoint</p>
|
|
6
6
|
* @public
|
|
@@ -3866,6 +3866,61 @@ export interface CreateLabelingJobResponse {
|
|
|
3866
3866
|
*/
|
|
3867
3867
|
LabelingJobArn: string | undefined;
|
|
3868
3868
|
}
|
|
3869
|
+
/**
|
|
3870
|
+
* @public
|
|
3871
|
+
*/
|
|
3872
|
+
export interface CreateMlflowAppRequest {
|
|
3873
|
+
/**
|
|
3874
|
+
* <p>A string identifying the MLflow app name. This string is not part of the tracking server ARN.</p>
|
|
3875
|
+
* @public
|
|
3876
|
+
*/
|
|
3877
|
+
Name: string | undefined;
|
|
3878
|
+
/**
|
|
3879
|
+
* <p>The S3 URI for a general purpose bucket to use as the MLflow App artifact store.</p>
|
|
3880
|
+
* @public
|
|
3881
|
+
*/
|
|
3882
|
+
ArtifactStoreUri: string | undefined;
|
|
3883
|
+
/**
|
|
3884
|
+
* <p>The Amazon Resource Name (ARN) for an IAM role in your account that the MLflow App uses to access the artifact store in Amazon S3. The role should have the <code>AmazonS3FullAccess</code> permission.</p>
|
|
3885
|
+
* @public
|
|
3886
|
+
*/
|
|
3887
|
+
RoleArn: string | undefined;
|
|
3888
|
+
/**
|
|
3889
|
+
* <p>Whether to enable or disable automatic registration of new MLflow models to the SageMaker Model Registry. To enable automatic model registration, set this value to <code>AutoModelRegistrationEnabled</code>. To disable automatic model registration, set this value to <code>AutoModelRegistrationDisabled</code>. If not specified, <code>AutomaticModelRegistration</code> defaults to <code>AutoModelRegistrationDisabled</code>.</p>
|
|
3890
|
+
* @public
|
|
3891
|
+
*/
|
|
3892
|
+
ModelRegistrationMode?: ModelRegistrationMode | undefined;
|
|
3893
|
+
/**
|
|
3894
|
+
* <p>The day and time of the week in Coordinated Universal Time (UTC) 24-hour standard time that weekly maintenance updates are scheduled. For example: TUE:03:30.</p>
|
|
3895
|
+
* @public
|
|
3896
|
+
*/
|
|
3897
|
+
WeeklyMaintenanceWindowStart?: string | undefined;
|
|
3898
|
+
/**
|
|
3899
|
+
* <p>Indicates whether this MLflow app is the default for the entire account.</p>
|
|
3900
|
+
* @public
|
|
3901
|
+
*/
|
|
3902
|
+
AccountDefaultStatus?: AccountDefaultStatus | undefined;
|
|
3903
|
+
/**
|
|
3904
|
+
* <p>List of SageMaker domain IDs for which this MLflow App is used as the default.</p>
|
|
3905
|
+
* @public
|
|
3906
|
+
*/
|
|
3907
|
+
DefaultDomainIdList?: string[] | undefined;
|
|
3908
|
+
/**
|
|
3909
|
+
* <p>Tags consisting of key-value pairs used to manage metadata for the MLflow App.</p>
|
|
3910
|
+
* @public
|
|
3911
|
+
*/
|
|
3912
|
+
Tags?: Tag[] | undefined;
|
|
3913
|
+
}
|
|
3914
|
+
/**
|
|
3915
|
+
* @public
|
|
3916
|
+
*/
|
|
3917
|
+
export interface CreateMlflowAppResponse {
|
|
3918
|
+
/**
|
|
3919
|
+
* <p>The ARN of the MLflow App.</p>
|
|
3920
|
+
* @public
|
|
3921
|
+
*/
|
|
3922
|
+
Arn?: string | undefined;
|
|
3923
|
+
}
|
|
3869
3924
|
/**
|
|
3870
3925
|
* @public
|
|
3871
3926
|
*/
|
|
@@ -5926,6 +5981,36 @@ export interface CreatePresignedDomainUrlResponse {
|
|
|
5926
5981
|
*/
|
|
5927
5982
|
AuthorizedUrl?: string | undefined;
|
|
5928
5983
|
}
|
|
5984
|
+
/**
|
|
5985
|
+
* @public
|
|
5986
|
+
*/
|
|
5987
|
+
export interface CreatePresignedMlflowAppUrlRequest {
|
|
5988
|
+
/**
|
|
5989
|
+
* <p>The ARN of the MLflow App to connect to your MLflow UI.</p>
|
|
5990
|
+
* @public
|
|
5991
|
+
*/
|
|
5992
|
+
Arn: string | undefined;
|
|
5993
|
+
/**
|
|
5994
|
+
* <p>The duration in seconds that your presigned URL is valid. The presigned URL can be used only once.</p>
|
|
5995
|
+
* @public
|
|
5996
|
+
*/
|
|
5997
|
+
ExpiresInSeconds?: number | undefined;
|
|
5998
|
+
/**
|
|
5999
|
+
* <p>The duration in seconds that your presigned URL is valid. The presigned URL can be used only once.</p>
|
|
6000
|
+
* @public
|
|
6001
|
+
*/
|
|
6002
|
+
SessionExpirationDurationInSeconds?: number | undefined;
|
|
6003
|
+
}
|
|
6004
|
+
/**
|
|
6005
|
+
* @public
|
|
6006
|
+
*/
|
|
6007
|
+
export interface CreatePresignedMlflowAppUrlResponse {
|
|
6008
|
+
/**
|
|
6009
|
+
* <p>A presigned URL with an authorization token.</p>
|
|
6010
|
+
* @public
|
|
6011
|
+
*/
|
|
6012
|
+
AuthorizedUrl?: string | undefined;
|
|
6013
|
+
}
|
|
5929
6014
|
/**
|
|
5930
6015
|
* @public
|
|
5931
6016
|
*/
|
|
@@ -6917,171 +7002,3 @@ export interface ProfilerRuleConfiguration {
|
|
|
6917
7002
|
*/
|
|
6918
7003
|
RuleParameters?: Record<string, string> | undefined;
|
|
6919
7004
|
}
|
|
6920
|
-
/**
|
|
6921
|
-
* <p>Configuration for remote debugging for the <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html">CreateTrainingJob</a> API. To learn more about the remote debugging functionality of SageMaker, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/train-remote-debugging.html">Access a training container through Amazon Web Services Systems Manager (SSM) for remote debugging</a>.</p>
|
|
6922
|
-
* @public
|
|
6923
|
-
*/
|
|
6924
|
-
export interface RemoteDebugConfig {
|
|
6925
|
-
/**
|
|
6926
|
-
* <p>If set to True, enables remote debugging.</p>
|
|
6927
|
-
* @public
|
|
6928
|
-
*/
|
|
6929
|
-
EnableRemoteDebug?: boolean | undefined;
|
|
6930
|
-
}
|
|
6931
|
-
/**
|
|
6932
|
-
* <p>Contains information about attribute-based access control (ABAC) for a training job. The session chaining configuration uses Amazon Security Token Service (STS) for your training job to request temporary, limited-privilege credentials to tenants. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/model-access-training-data.html#model-access-training-data-abac">Attribute-based access control (ABAC) for multi-tenancy training</a>.</p>
|
|
6933
|
-
* @public
|
|
6934
|
-
*/
|
|
6935
|
-
export interface SessionChainingConfig {
|
|
6936
|
-
/**
|
|
6937
|
-
* <p>Set to <code>True</code> to allow SageMaker to extract session tags from a training job creation role and reuse these tags when assuming the training job execution role.</p>
|
|
6938
|
-
* @public
|
|
6939
|
-
*/
|
|
6940
|
-
EnableSessionTagChaining?: boolean | undefined;
|
|
6941
|
-
}
|
|
6942
|
-
/**
|
|
6943
|
-
* <p>Configuration of storage locations for the Amazon SageMaker Debugger TensorBoard output data.</p>
|
|
6944
|
-
* @public
|
|
6945
|
-
*/
|
|
6946
|
-
export interface TensorBoardOutputConfig {
|
|
6947
|
-
/**
|
|
6948
|
-
* <p>Path to local storage location for tensorBoard output. Defaults to <code>/opt/ml/output/tensorboard</code>.</p>
|
|
6949
|
-
* @public
|
|
6950
|
-
*/
|
|
6951
|
-
LocalPath?: string | undefined;
|
|
6952
|
-
/**
|
|
6953
|
-
* <p>Path to Amazon S3 storage location for TensorBoard output.</p>
|
|
6954
|
-
* @public
|
|
6955
|
-
*/
|
|
6956
|
-
S3OutputPath: string | undefined;
|
|
6957
|
-
}
|
|
6958
|
-
/**
|
|
6959
|
-
* @public
|
|
6960
|
-
*/
|
|
6961
|
-
export interface CreateTrainingJobRequest {
|
|
6962
|
-
/**
|
|
6963
|
-
* <p>The name of the training job. The name must be unique within an Amazon Web Services Region in an Amazon Web Services account. </p>
|
|
6964
|
-
* @public
|
|
6965
|
-
*/
|
|
6966
|
-
TrainingJobName: string | undefined;
|
|
6967
|
-
/**
|
|
6968
|
-
* <p>Algorithm-specific parameters that influence the quality of the model. You set hyperparameters before you start the learning process. For a list of hyperparameters for each training algorithm provided by SageMaker, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html">Algorithms</a>. </p> <p>You can specify a maximum of 100 hyperparameters. Each hyperparameter is a key-value pair. Each key and value is limited to 256 characters, as specified by the <code>Length Constraint</code>. </p> <important> <p>Do not include any security-sensitive information including account access IDs, secrets, or tokens in any hyperparameter fields. As part of the shared responsibility model, you are responsible for any potential exposure, unauthorized access, or compromise of your sensitive data if caused by any security-sensitive information included in the request hyperparameter variable or plain text fields.</p> </important>
|
|
6969
|
-
* @public
|
|
6970
|
-
*/
|
|
6971
|
-
HyperParameters?: Record<string, string> | undefined;
|
|
6972
|
-
/**
|
|
6973
|
-
* <p>The registry path of the Docker image that contains the training algorithm and algorithm-specific metadata, including the input mode. For more information about algorithms provided by SageMaker, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html">Algorithms</a>. For information about providing your own algorithms, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html">Using Your Own Algorithms with Amazon SageMaker</a>. </p>
|
|
6974
|
-
* @public
|
|
6975
|
-
*/
|
|
6976
|
-
AlgorithmSpecification?: AlgorithmSpecification | undefined;
|
|
6977
|
-
/**
|
|
6978
|
-
* <p>The Amazon Resource Name (ARN) of an IAM role that SageMaker can assume to perform tasks on your behalf. </p> <p>During model training, SageMaker needs your permission to read input data from an S3 bucket, download a Docker image that contains training code, write model artifacts to an S3 bucket, write logs to Amazon CloudWatch Logs, and publish metrics to Amazon CloudWatch. You grant permissions for all of these tasks to an IAM role. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html">SageMaker Roles</a>. </p> <note> <p>To be able to pass this role to SageMaker, the caller of this API must have the <code>iam:PassRole</code> permission.</p> </note>
|
|
6979
|
-
* @public
|
|
6980
|
-
*/
|
|
6981
|
-
RoleArn: string | undefined;
|
|
6982
|
-
/**
|
|
6983
|
-
* <p>An array of <code>Channel</code> objects. Each channel is a named input source. <code>InputDataConfig</code> describes the input data and its location. </p> <p>Algorithms can accept input data from one or more channels. For example, an algorithm might have two channels of input data, <code>training_data</code> and <code>validation_data</code>. The configuration for each channel provides the S3, EFS, or FSx location where the input data is stored. It also provides information about the stored data: the MIME type, compression method, and whether the data is wrapped in RecordIO format. </p> <p>Depending on the input mode that the algorithm supports, SageMaker either copies input data files from an S3 bucket to a local directory in the Docker container, or makes it available as input streams. For example, if you specify an EFS location, input data files are available as input streams. They do not need to be downloaded.</p> <p>Your input must be in the same Amazon Web Services region as your training job.</p>
|
|
6984
|
-
* @public
|
|
6985
|
-
*/
|
|
6986
|
-
InputDataConfig?: Channel[] | undefined;
|
|
6987
|
-
/**
|
|
6988
|
-
* <p>Specifies the path to the S3 location where you want to store model artifacts. SageMaker creates subfolders for the artifacts. </p>
|
|
6989
|
-
* @public
|
|
6990
|
-
*/
|
|
6991
|
-
OutputDataConfig: OutputDataConfig | undefined;
|
|
6992
|
-
/**
|
|
6993
|
-
* <p>The resources, including the ML compute instances and ML storage volumes, to use for model training. </p> <p>ML storage volumes store model artifacts and incremental states. Training algorithms might also use ML storage volumes for scratch space. If you want SageMaker to use the ML storage volume to store the training data, choose <code>File</code> as the <code>TrainingInputMode</code> in the algorithm specification. For distributed training algorithms, specify an instance count greater than 1.</p>
|
|
6994
|
-
* @public
|
|
6995
|
-
*/
|
|
6996
|
-
ResourceConfig?: ResourceConfig | undefined;
|
|
6997
|
-
/**
|
|
6998
|
-
* <p>A <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_VpcConfig.html">VpcConfig</a> object that specifies the VPC that you want your training job to connect to. Control access to and from your training container by configuring the VPC. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html">Protect Training Jobs by Using an Amazon Virtual Private Cloud</a>.</p>
|
|
6999
|
-
* @public
|
|
7000
|
-
*/
|
|
7001
|
-
VpcConfig?: VpcConfig | undefined;
|
|
7002
|
-
/**
|
|
7003
|
-
* <p>Specifies a limit to how long a model training job can run. It also specifies how long a managed Spot training job has to complete. When the job reaches the time limit, SageMaker ends the training job. Use this API to cap model training costs.</p> <p>To stop a job, SageMaker sends the algorithm the <code>SIGTERM</code> signal, which delays job termination for 120 seconds. Algorithms can use this 120-second window to save the model artifacts, so the results of training are not lost. </p>
|
|
7004
|
-
* @public
|
|
7005
|
-
*/
|
|
7006
|
-
StoppingCondition?: StoppingCondition | undefined;
|
|
7007
|
-
/**
|
|
7008
|
-
* <p>An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see <a href="https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html">Tagging Amazon Web Services Resources</a>.</p> <important> <p>Do not include any security-sensitive information including account access IDs, secrets, or tokens in any tags. As part of the shared responsibility model, you are responsible for any potential exposure, unauthorized access, or compromise of your sensitive data if caused by any security-sensitive information included in the request tag variable or plain text fields.</p> </important>
|
|
7009
|
-
* @public
|
|
7010
|
-
*/
|
|
7011
|
-
Tags?: Tag[] | undefined;
|
|
7012
|
-
/**
|
|
7013
|
-
* <p>Isolates the training container. No inbound or outbound network calls can be made, except for calls between peers within a training cluster for distributed training. If you enable network isolation for training jobs that are configured to use a VPC, SageMaker downloads and uploads customer data and model artifacts through the specified VPC, but the training container does not have network access.</p>
|
|
7014
|
-
* @public
|
|
7015
|
-
*/
|
|
7016
|
-
EnableNetworkIsolation?: boolean | undefined;
|
|
7017
|
-
/**
|
|
7018
|
-
* <p>To encrypt all communications between ML compute instances in distributed training, choose <code>True</code>. Encryption provides greater security for distributed training, but training might take longer. How long it takes depends on the amount of communication between compute instances, especially if you use a deep learning algorithm in distributed training. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/train-encrypt.html">Protect Communications Between ML Compute Instances in a Distributed Training Job</a>.</p>
|
|
7019
|
-
* @public
|
|
7020
|
-
*/
|
|
7021
|
-
EnableInterContainerTrafficEncryption?: boolean | undefined;
|
|
7022
|
-
/**
|
|
7023
|
-
* <p>To train models using managed spot training, choose <code>True</code>. Managed spot training provides a fully managed and scalable infrastructure for training machine learning models. this option is useful when training jobs can be interrupted and when there is flexibility when the training job is run. </p> <p>The complete and intermediate results of jobs are stored in an Amazon S3 bucket, and can be used as a starting point to train models incrementally. Amazon SageMaker provides metrics and logs in CloudWatch. They can be used to see when managed spot training jobs are running, interrupted, resumed, or completed. </p>
|
|
7024
|
-
* @public
|
|
7025
|
-
*/
|
|
7026
|
-
EnableManagedSpotTraining?: boolean | undefined;
|
|
7027
|
-
/**
|
|
7028
|
-
* <p>Contains information about the output location for managed spot training checkpoint data.</p>
|
|
7029
|
-
* @public
|
|
7030
|
-
*/
|
|
7031
|
-
CheckpointConfig?: CheckpointConfig | undefined;
|
|
7032
|
-
/**
|
|
7033
|
-
* <p>Configuration information for the Amazon SageMaker Debugger hook parameters, metric and tensor collections, and storage paths. To learn more about how to configure the <code>DebugHookConfig</code> parameter, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-createtrainingjob-api.html">Use the SageMaker and Debugger Configuration API Operations to Create, Update, and Debug Your Training Job</a>.</p>
|
|
7034
|
-
* @public
|
|
7035
|
-
*/
|
|
7036
|
-
DebugHookConfig?: DebugHookConfig | undefined;
|
|
7037
|
-
/**
|
|
7038
|
-
* <p>Configuration information for Amazon SageMaker Debugger rules for debugging output tensors.</p>
|
|
7039
|
-
* @public
|
|
7040
|
-
*/
|
|
7041
|
-
DebugRuleConfigurations?: DebugRuleConfiguration[] | undefined;
|
|
7042
|
-
/**
|
|
7043
|
-
* <p>Configuration of storage locations for the Amazon SageMaker Debugger TensorBoard output data.</p>
|
|
7044
|
-
* @public
|
|
7045
|
-
*/
|
|
7046
|
-
TensorBoardOutputConfig?: TensorBoardOutputConfig | undefined;
|
|
7047
|
-
/**
|
|
7048
|
-
* <p>Associates a SageMaker job as a trial component with an experiment and trial. Specified when you call the following APIs:</p> <ul> <li> <p> <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateProcessingJob.html">CreateProcessingJob</a> </p> </li> <li> <p> <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html">CreateTrainingJob</a> </p> </li> <li> <p> <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTransformJob.html">CreateTransformJob</a> </p> </li> </ul>
|
|
7049
|
-
* @public
|
|
7050
|
-
*/
|
|
7051
|
-
ExperimentConfig?: ExperimentConfig | undefined;
|
|
7052
|
-
/**
|
|
7053
|
-
* <p>Configuration information for Amazon SageMaker Debugger system monitoring, framework profiling, and storage paths.</p>
|
|
7054
|
-
* @public
|
|
7055
|
-
*/
|
|
7056
|
-
ProfilerConfig?: ProfilerConfig | undefined;
|
|
7057
|
-
/**
|
|
7058
|
-
* <p>Configuration information for Amazon SageMaker Debugger rules for profiling system and framework metrics.</p>
|
|
7059
|
-
* @public
|
|
7060
|
-
*/
|
|
7061
|
-
ProfilerRuleConfigurations?: ProfilerRuleConfiguration[] | undefined;
|
|
7062
|
-
/**
|
|
7063
|
-
* <p>The environment variables to set in the Docker container.</p> <important> <p>Do not include any security-sensitive information including account access IDs, secrets, or tokens in any environment fields. As part of the shared responsibility model, you are responsible for any potential exposure, unauthorized access, or compromise of your sensitive data if caused by security-sensitive information included in the request environment variable or plain text fields.</p> </important>
|
|
7064
|
-
* @public
|
|
7065
|
-
*/
|
|
7066
|
-
Environment?: Record<string, string> | undefined;
|
|
7067
|
-
/**
|
|
7068
|
-
* <p>The number of times to retry the job when the job fails due to an <code>InternalServerError</code>.</p>
|
|
7069
|
-
* @public
|
|
7070
|
-
*/
|
|
7071
|
-
RetryStrategy?: RetryStrategy | undefined;
|
|
7072
|
-
/**
|
|
7073
|
-
* <p>Configuration for remote debugging. To learn more about the remote debugging functionality of SageMaker, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/train-remote-debugging.html">Access a training container through Amazon Web Services Systems Manager (SSM) for remote debugging</a>.</p>
|
|
7074
|
-
* @public
|
|
7075
|
-
*/
|
|
7076
|
-
RemoteDebugConfig?: RemoteDebugConfig | undefined;
|
|
7077
|
-
/**
|
|
7078
|
-
* <p>Contains information about the infrastructure health check configuration for the training job.</p>
|
|
7079
|
-
* @public
|
|
7080
|
-
*/
|
|
7081
|
-
InfraCheckConfig?: InfraCheckConfig | undefined;
|
|
7082
|
-
/**
|
|
7083
|
-
* <p>Contains information about attribute-based access control (ABAC) for the training job.</p>
|
|
7084
|
-
* @public
|
|
7085
|
-
*/
|
|
7086
|
-
SessionChainingConfig?: SessionChainingConfig | undefined;
|
|
7087
|
-
}
|