@aws-sdk/client-sagemaker 3.939.0 → 3.943.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (91) hide show
  1. package/README.md +48 -0
  2. package/dist-cjs/index.js +277 -12
  3. package/dist-es/SageMaker.js +12 -0
  4. package/dist-es/commands/CreateMlflowAppCommand.js +16 -0
  5. package/dist-es/commands/CreatePresignedMlflowAppUrlCommand.js +16 -0
  6. package/dist-es/commands/DeleteMlflowAppCommand.js +16 -0
  7. package/dist-es/commands/DescribeMlflowAppCommand.js +16 -0
  8. package/dist-es/commands/ListMlflowAppsCommand.js +16 -0
  9. package/dist-es/commands/UpdateMlflowAppCommand.js +16 -0
  10. package/dist-es/commands/index.js +6 -0
  11. package/dist-es/models/enums.js +37 -0
  12. package/dist-es/pagination/ListMlflowAppsPaginator.js +4 -0
  13. package/dist-es/pagination/index.js +1 -0
  14. package/dist-es/schemas/schemas_0.js +149 -12
  15. package/dist-types/SageMaker.d.ts +43 -0
  16. package/dist-types/SageMakerClient.d.ts +8 -2
  17. package/dist-types/commands/CreateClusterCommand.d.ts +3 -3
  18. package/dist-types/commands/CreateComputeQuotaCommand.d.ts +1 -1
  19. package/dist-types/commands/CreateDomainCommand.d.ts +1 -1
  20. package/dist-types/commands/CreateHubContentPresignedUrlsCommand.d.ts +1 -1
  21. package/dist-types/commands/CreateMlflowAppCommand.d.ts +91 -0
  22. package/dist-types/commands/CreatePresignedMlflowAppUrlCommand.d.ts +79 -0
  23. package/dist-types/commands/CreateTrainingJobCommand.d.ts +1 -2
  24. package/dist-types/commands/CreateUserProfileCommand.d.ts +1 -1
  25. package/dist-types/commands/DeleteHubContentCommand.d.ts +1 -1
  26. package/dist-types/commands/DeleteHubContentReferenceCommand.d.ts +1 -1
  27. package/dist-types/commands/DeleteMlflowAppCommand.d.ts +77 -0
  28. package/dist-types/commands/DescribeClusterCommand.d.ts +2 -2
  29. package/dist-types/commands/DescribeClusterNodeCommand.d.ts +1 -1
  30. package/dist-types/commands/DescribeComputeQuotaCommand.d.ts +1 -1
  31. package/dist-types/commands/DescribeDomainCommand.d.ts +1 -1
  32. package/dist-types/commands/DescribeHubContentCommand.d.ts +3 -3
  33. package/dist-types/commands/DescribeMlflowAppCommand.d.ts +111 -0
  34. package/dist-types/commands/DescribeSubscribedWorkteamCommand.d.ts +2 -1
  35. package/dist-types/commands/DescribeTrainingJobCommand.d.ts +1 -1
  36. package/dist-types/commands/DescribeUserProfileCommand.d.ts +1 -1
  37. package/dist-types/commands/ImportHubContentCommand.d.ts +1 -1
  38. package/dist-types/commands/ListClusterNodesCommand.d.ts +1 -1
  39. package/dist-types/commands/ListComputeQuotasCommand.d.ts +1 -1
  40. package/dist-types/commands/ListHubContentVersionsCommand.d.ts +3 -3
  41. package/dist-types/commands/ListHubContentsCommand.d.ts +3 -3
  42. package/dist-types/commands/ListMlflowAppsCommand.d.ts +93 -0
  43. package/dist-types/commands/ListSubscribedWorkteamsCommand.d.ts +2 -1
  44. package/dist-types/commands/ListTagsCommand.d.ts +1 -1
  45. package/dist-types/commands/ListTrainingJobsCommand.d.ts +1 -1
  46. package/dist-types/commands/ListTrainingJobsForHyperParameterTuningJobCommand.d.ts +1 -1
  47. package/dist-types/commands/ListTrainingPlansCommand.d.ts +1 -2
  48. package/dist-types/commands/UpdateClusterCommand.d.ts +2 -2
  49. package/dist-types/commands/UpdateComputeQuotaCommand.d.ts +1 -1
  50. package/dist-types/commands/UpdateDomainCommand.d.ts +1 -1
  51. package/dist-types/commands/UpdateHubContentCommand.d.ts +1 -1
  52. package/dist-types/commands/UpdateHubContentReferenceCommand.d.ts +1 -1
  53. package/dist-types/commands/UpdateMlflowAppCommand.d.ts +88 -0
  54. package/dist-types/commands/UpdateUserProfileCommand.d.ts +1 -1
  55. package/dist-types/commands/index.d.ts +6 -0
  56. package/dist-types/models/enums.d.ts +77 -0
  57. package/dist-types/models/models_0.d.ts +3 -3
  58. package/dist-types/models/models_1.d.ts +87 -170
  59. package/dist-types/models/models_2.d.ts +280 -372
  60. package/dist-types/models/models_3.d.ts +486 -383
  61. package/dist-types/models/models_4.d.ts +427 -4
  62. package/dist-types/pagination/ListMlflowAppsPaginator.d.ts +7 -0
  63. package/dist-types/pagination/index.d.ts +1 -0
  64. package/dist-types/schemas/schemas_0.d.ts +21 -0
  65. package/dist-types/ts3.4/SageMaker.d.ts +103 -0
  66. package/dist-types/ts3.4/SageMakerClient.d.ts +36 -0
  67. package/dist-types/ts3.4/commands/CreateMlflowAppCommand.d.ts +50 -0
  68. package/dist-types/ts3.4/commands/CreatePresignedMlflowAppUrlCommand.d.ts +51 -0
  69. package/dist-types/ts3.4/commands/CreateTrainingJobCommand.d.ts +4 -2
  70. package/dist-types/ts3.4/commands/DeleteMlflowAppCommand.d.ts +50 -0
  71. package/dist-types/ts3.4/commands/DescribeMlflowAppCommand.d.ts +51 -0
  72. package/dist-types/ts3.4/commands/DescribeSubscribedWorkteamCommand.d.ts +2 -4
  73. package/dist-types/ts3.4/commands/DescribeTrainingJobCommand.d.ts +1 -1
  74. package/dist-types/ts3.4/commands/ListMlflowAppsCommand.d.ts +50 -0
  75. package/dist-types/ts3.4/commands/ListSubscribedWorkteamsCommand.d.ts +2 -4
  76. package/dist-types/ts3.4/commands/ListTagsCommand.d.ts +1 -1
  77. package/dist-types/ts3.4/commands/ListTrainingJobsCommand.d.ts +1 -1
  78. package/dist-types/ts3.4/commands/ListTrainingJobsForHyperParameterTuningJobCommand.d.ts +1 -1
  79. package/dist-types/ts3.4/commands/ListTrainingPlansCommand.d.ts +4 -2
  80. package/dist-types/ts3.4/commands/UpdateMlflowAppCommand.d.ts +50 -0
  81. package/dist-types/ts3.4/commands/index.d.ts +6 -0
  82. package/dist-types/ts3.4/models/enums.d.ts +47 -0
  83. package/dist-types/ts3.4/models/models_0.d.ts +1 -1
  84. package/dist-types/ts3.4/models/models_1.d.ts +23 -38
  85. package/dist-types/ts3.4/models/models_2.d.ts +67 -86
  86. package/dist-types/ts3.4/models/models_3.d.ts +127 -91
  87. package/dist-types/ts3.4/models/models_4.d.ts +112 -4
  88. package/dist-types/ts3.4/pagination/ListMlflowAppsPaginator.d.ts +11 -0
  89. package/dist-types/ts3.4/pagination/index.d.ts +1 -0
  90. package/dist-types/ts3.4/schemas/schemas_0.d.ts +21 -0
  91. package/package.json +5 -5
@@ -1,6 +1,174 @@
1
- import { _InstanceType, ActionStatus, ActivationState, AlgorithmStatus, AppNetworkAccessType, AppSecurityGroupManagement, AppStatus, AppType, AuthMode, AutoMLJobSecondaryStatus, AutoMLJobStatus, AutoMLProblemTypeConfigName, BatchStrategy, CapacityReservationPreference, CaptureStatus, ClusterNodeProvisioningMode, ClusterNodeRecovery, ClusterStatus, CompilationJobStatus, DetailedModelPackageStatus, DirectInternetAccess, DomainStatus, EdgePackagingJobStatus, EdgePresetDeploymentStatus, EdgePresetDeploymentType, EnabledOrDisabled, EndpointStatus, ExecutionStatus, FeatureGroupStatus, FeatureStatus, FeatureType, FlowDefinitionStatus, HubContentStatus, HubContentSupportStatus, HubContentType, HubStatus, HumanTaskUiStatus, HyperParameterTuningJobObjectiveType, HyperParameterTuningJobStatus, ImageStatus, ImageVersionStatus, InferenceComponentCapacitySizeType, InferenceComponentStatus, InferenceExperimentStatus, InferenceExperimentType, IPAddressType, IsTrackingServerActive, JobType, JoinSource, LabelingJobStatus, LastUpdateStatusValue, ModelApprovalStatus, ModelCardExportJobStatus, ModelCardProcessingStatus, ModelCardStatus, ModelPackageGroupStatus, ModelPackageStatus, ModelVariantStatus, MonitoringType, NotebookInstanceAcceleratorType, NotebookInstanceStatus, ObjectiveStatus, OfflineStoreStatusValue, OptimizationJobDeploymentInstanceType, OptimizationJobStatus, PartnerAppAuthType, PartnerAppStatus, PartnerAppType, PipelineExecutionStatus, PipelineStatus, ProblemType, ProcessingJobStatus, Processor, ProductionVariantAcceleratorType, ProductionVariantInstanceType, ProfilingStatus, ProjectStatus, RecommendationJobStatus, RecommendationJobType, RecommendationStatus, ReservedCapacityInstanceType, ReservedCapacityStatus, ReservedCapacityType, RetentionType, RootAccess, RuleEvaluationStatus, SchedulerResourceStatus, ScheduleStatus, SecondaryStatus, SkipModelValidation, SpaceStatus, StageStatus, Statistic, StudioLifecycleConfigAppType, TagPropagation, ThroughputMode, TrackingServerMaintenanceStatus, TrackingServerSize, TrackingServerStatus, TrainingJobStatus, TrialComponentPrimaryStatus, VariantStatus, VendorGuidance, WarmPoolResourceStatus, WorkforceIpAddressType } from "./enums";
1
+ import { _InstanceType, AccountDefaultStatus, ActionStatus, ActivationState, AlgorithmStatus, AppNetworkAccessType, AppSecurityGroupManagement, AppStatus, AppType, AuthMode, AutoMLJobSecondaryStatus, AutoMLJobStatus, AutoMLProblemTypeConfigName, BatchStrategy, CapacityReservationPreference, CaptureStatus, ClusterNodeProvisioningMode, ClusterNodeRecovery, ClusterStatus, CompilationJobStatus, DetailedModelPackageStatus, DirectInternetAccess, DomainStatus, EdgePackagingJobStatus, EdgePresetDeploymentStatus, EdgePresetDeploymentType, EnabledOrDisabled, EndpointStatus, ExecutionStatus, FeatureGroupStatus, FeatureStatus, FeatureType, FlowDefinitionStatus, HubContentStatus, HubContentSupportStatus, HubContentType, HubStatus, HumanTaskUiStatus, HyperParameterTuningJobObjectiveType, HyperParameterTuningJobStatus, ImageStatus, ImageVersionStatus, InferenceComponentCapacitySizeType, InferenceComponentStatus, InferenceExperimentStatus, InferenceExperimentType, IPAddressType, IsTrackingServerActive, JobType, JoinSource, LabelingJobStatus, LastUpdateStatusValue, MaintenanceStatus, MlflowAppStatus, ModelApprovalStatus, ModelCardExportJobStatus, ModelCardProcessingStatus, ModelCardStatus, ModelPackageGroupStatus, ModelPackageStatus, ModelRegistrationMode, ModelVariantStatus, MonitoringType, NotebookInstanceAcceleratorType, NotebookInstanceStatus, ObjectiveStatus, OfflineStoreStatusValue, OptimizationJobDeploymentInstanceType, OptimizationJobStatus, PartnerAppAuthType, PartnerAppStatus, PartnerAppType, PipelineExecutionStatus, PipelineStatus, ProblemType, ProcessingJobStatus, Processor, ProductionVariantAcceleratorType, ProductionVariantInstanceType, ProjectStatus, RecommendationJobStatus, RecommendationJobType, RecommendationStatus, ReservedCapacityInstanceType, ReservedCapacityStatus, ReservedCapacityType, RetentionType, RootAccess, RuleEvaluationStatus, SchedulerResourceStatus, ScheduleStatus, SkipModelValidation, SpaceStatus, StageStatus, Statistic, StudioLifecycleConfigAppType, TagPropagation, ThroughputMode, TrackingServerMaintenanceStatus, TrackingServerSize, TrackingServerStatus, TrainingJobStatus, TrialComponentPrimaryStatus, VariantStatus, VendorGuidance, WorkforceIpAddressType } from "./enums";
2
2
  import { ActionSource, AdditionalInferenceSpecificationDefinition, AlgorithmSpecification, AlgorithmStatusDetails, AlgorithmValidationSpecification, AppSpecification, ArtifactSource, AsyncInferenceConfig, AutoMLCandidate, AutoMLChannel, AutoMLComputeConfig, AutoMLDataSplitConfig, AutoMLJobArtifacts, AutoMLJobChannel, AutoMLJobCompletionCriteria, AutoMLJobConfig, AutoMLJobObjective, AutoMLOutputDataConfig, AutoMLPartialFailureReason, AutoMLProblemTypeConfig, AutoMLResolvedAttributes, AutoMLSecurityConfig, AutoRollbackConfig, Autotune, AvailableUpgrade, BatchDataCaptureConfig, CfnTemplateProviderDetail, Channel, CheckpointConfig, ClusterAutoScalingConfigOutput, ClusterEventDetail, ClusterInstanceGroupDetails, ClusterNodeDetails, ClusterOrchestrator, ClusterRestrictedInstanceGroupDetails, ClusterTieredStorageConfig, CodeEditorAppImageConfig, CognitoConfig, CognitoMemberDefinition, ComputeQuotaConfig, ComputeQuotaTarget, ContainerDefinition, ContextSource, DataQualityAppSpecification, DataQualityBaselineConfig, GitConfig, InferenceSpecification, InputConfig, JupyterLabAppImageConfig, KernelGatewayImageConfig, MetadataProperties, ModelDeployConfig, NeoVpcConfig, OutputConfig, OutputDataConfig, ResourceConfig, ResourceSpec, SchedulerConfig, StoppingCondition, Tag, TrainingSpecification, TransformInput, TransformOutput, TransformResources, UserContext, VpcConfig } from "./models_0";
3
- import { DataCaptureConfig, DataQualityJobInput, DebugHookConfig, DebugRuleConfiguration, DefaultSpaceSettings, DeploymentConfig, DeviceSelectionConfig, DomainSettings, DriftCheckBaselines, EdgeDeploymentConfig, EdgeDeploymentModelConfig, EdgeOutputConfig, EndpointInfo, ExperimentConfig, ExplainerConfig, FeatureDefinition, FlowDefinitionOutputConfig, HubS3StorageConfig, HumanLoopActivationConfig, HumanLoopConfig, HumanLoopRequestSource, HumanTaskConfig, HyperParameterTrainingJobDefinition, HyperParameterTuningJobConfig, HyperParameterTuningJobWarmStartConfig, InferenceComponentComputeResourceRequirements, InferenceComponentStartupParameters, InferenceExecutionConfig, InferenceExperimentDataStorageConfig, InferenceExperimentSchedule, InfraCheckConfig, InstanceMetadataServiceConfiguration, LabelingJobAlgorithmsConfig, LabelingJobInputConfig, LabelingJobOutputConfig, LabelingJobStoppingConditions, MetricsConfig, ModelBiasAppSpecification, ModelBiasBaselineConfig, ModelBiasJobInput, ModelCardExportOutputConfig, ModelCardSecurityConfig, ModelExplainabilityAppSpecification, ModelExplainabilityBaselineConfig, ModelExplainabilityJobInput, ModelInfrastructureConfig, ModelLifeCycle, ModelMetrics, ModelPackageModelCard, ModelPackageSecurityConfig, ModelPackageValidationSpecification, ModelQualityAppSpecification, ModelQualityBaselineConfig, ModelQualityJobInput, MonitoringNetworkConfig, MonitoringOutputConfig, MonitoringResources, MonitoringScheduleConfig, MonitoringStoppingCondition, NetworkConfig, NotebookInstanceLifecycleHook, OfflineStoreConfig, OnlineStoreConfig, OptimizationConfig, OptimizationJobModelSource, OptimizationJobOutputConfig, OptimizationVpcConfig, OwnershipSettings, ParallelismConfiguration, PartnerAppConfig, PartnerAppMaintenanceConfig, ProcessingInput, ProcessingOutputConfig, ProcessingResources, ProcessingStoppingCondition, ProductionVariant, ProductionVariantManagedInstanceScaling, ProductionVariantRoutingConfig, ProductionVariantServerlessConfig, ProfilerConfig, ProfilerRuleConfiguration, RecommendationJobInputConfig, RecommendationJobStoppingConditions, RemoteDebugConfig, RetryStrategy, ServiceCatalogProvisioningDetails, ShadowModeConfig, SourceAlgorithmSpecification, SpaceSettings, SpaceSharingSettings, TensorBoardOutputConfig, UserSettings } from "./models_1";
3
+ import { DataCaptureConfig, DataQualityJobInput, DebugHookConfig, DebugRuleConfiguration, DefaultSpaceSettings, DeploymentConfig, DeviceSelectionConfig, DomainSettings, DriftCheckBaselines, EdgeDeploymentConfig, EdgeDeploymentModelConfig, EdgeOutputConfig, EndpointInfo, ExperimentConfig, ExplainerConfig, FeatureDefinition, FlowDefinitionOutputConfig, HubS3StorageConfig, HumanLoopActivationConfig, HumanLoopConfig, HumanLoopRequestSource, HumanTaskConfig, HyperParameterTrainingJobDefinition, HyperParameterTuningJobConfig, HyperParameterTuningJobWarmStartConfig, InferenceComponentComputeResourceRequirements, InferenceComponentStartupParameters, InferenceExecutionConfig, InferenceExperimentDataStorageConfig, InferenceExperimentSchedule, InfraCheckConfig, InstanceMetadataServiceConfiguration, LabelingJobAlgorithmsConfig, LabelingJobInputConfig, LabelingJobOutputConfig, LabelingJobStoppingConditions, MetricsConfig, ModelBiasAppSpecification, ModelBiasBaselineConfig, ModelBiasJobInput, ModelCardExportOutputConfig, ModelCardSecurityConfig, ModelExplainabilityAppSpecification, ModelExplainabilityBaselineConfig, ModelExplainabilityJobInput, ModelInfrastructureConfig, ModelLifeCycle, ModelMetrics, ModelPackageModelCard, ModelPackageSecurityConfig, ModelPackageValidationSpecification, ModelQualityAppSpecification, ModelQualityBaselineConfig, ModelQualityJobInput, MonitoringNetworkConfig, MonitoringOutputConfig, MonitoringResources, MonitoringScheduleConfig, MonitoringStoppingCondition, NetworkConfig, NotebookInstanceLifecycleHook, OfflineStoreConfig, OnlineStoreConfig, OptimizationConfig, OptimizationJobModelSource, OptimizationJobOutputConfig, OptimizationVpcConfig, OwnershipSettings, ParallelismConfiguration, PartnerAppConfig, PartnerAppMaintenanceConfig, ProcessingInput, ProcessingOutputConfig, ProcessingResources, ProcessingStoppingCondition, ProductionVariant, ProductionVariantManagedInstanceScaling, ProductionVariantRoutingConfig, ProductionVariantServerlessConfig, ProfilerConfig, ProfilerRuleConfiguration, RecommendationJobInputConfig, RecommendationJobStoppingConditions, RetryStrategy, ServiceCatalogProvisioningDetails, ShadowModeConfig, SourceAlgorithmSpecification, SpaceSettings, SpaceSharingSettings, UserSettings } from "./models_1";
4
+ /**
5
+ * <p>Configuration for remote debugging for the <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html">CreateTrainingJob</a> API. To learn more about the remote debugging functionality of SageMaker, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/train-remote-debugging.html">Access a training container through Amazon Web Services Systems Manager (SSM) for remote debugging</a>.</p>
6
+ * @public
7
+ */
8
+ export interface RemoteDebugConfig {
9
+ /**
10
+ * <p>If set to True, enables remote debugging.</p>
11
+ * @public
12
+ */
13
+ EnableRemoteDebug?: boolean | undefined;
14
+ }
15
+ /**
16
+ * <p>Contains information about attribute-based access control (ABAC) for a training job. The session chaining configuration uses Amazon Security Token Service (STS) for your training job to request temporary, limited-privilege credentials to tenants. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/model-access-training-data.html#model-access-training-data-abac">Attribute-based access control (ABAC) for multi-tenancy training</a>.</p>
17
+ * @public
18
+ */
19
+ export interface SessionChainingConfig {
20
+ /**
21
+ * <p>Set to <code>True</code> to allow SageMaker to extract session tags from a training job creation role and reuse these tags when assuming the training job execution role.</p>
22
+ * @public
23
+ */
24
+ EnableSessionTagChaining?: boolean | undefined;
25
+ }
26
+ /**
27
+ * <p>Configuration of storage locations for the Amazon SageMaker Debugger TensorBoard output data.</p>
28
+ * @public
29
+ */
30
+ export interface TensorBoardOutputConfig {
31
+ /**
32
+ * <p>Path to local storage location for tensorBoard output. Defaults to <code>/opt/ml/output/tensorboard</code>.</p>
33
+ * @public
34
+ */
35
+ LocalPath?: string | undefined;
36
+ /**
37
+ * <p>Path to Amazon S3 storage location for TensorBoard output.</p>
38
+ * @public
39
+ */
40
+ S3OutputPath: string | undefined;
41
+ }
42
+ /**
43
+ * @public
44
+ */
45
+ export interface CreateTrainingJobRequest {
46
+ /**
47
+ * <p>The name of the training job. The name must be unique within an Amazon Web Services Region in an Amazon Web Services account. </p>
48
+ * @public
49
+ */
50
+ TrainingJobName: string | undefined;
51
+ /**
52
+ * <p>Algorithm-specific parameters that influence the quality of the model. You set hyperparameters before you start the learning process. For a list of hyperparameters for each training algorithm provided by SageMaker, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html">Algorithms</a>. </p> <p>You can specify a maximum of 100 hyperparameters. Each hyperparameter is a key-value pair. Each key and value is limited to 256 characters, as specified by the <code>Length Constraint</code>. </p> <important> <p>Do not include any security-sensitive information including account access IDs, secrets, or tokens in any hyperparameter fields. As part of the shared responsibility model, you are responsible for any potential exposure, unauthorized access, or compromise of your sensitive data if caused by any security-sensitive information included in the request hyperparameter variable or plain text fields.</p> </important>
53
+ * @public
54
+ */
55
+ HyperParameters?: Record<string, string> | undefined;
56
+ /**
57
+ * <p>The registry path of the Docker image that contains the training algorithm and algorithm-specific metadata, including the input mode. For more information about algorithms provided by SageMaker, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html">Algorithms</a>. For information about providing your own algorithms, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html">Using Your Own Algorithms with Amazon SageMaker</a>. </p>
58
+ * @public
59
+ */
60
+ AlgorithmSpecification?: AlgorithmSpecification | undefined;
61
+ /**
62
+ * <p>The Amazon Resource Name (ARN) of an IAM role that SageMaker can assume to perform tasks on your behalf. </p> <p>During model training, SageMaker needs your permission to read input data from an S3 bucket, download a Docker image that contains training code, write model artifacts to an S3 bucket, write logs to Amazon CloudWatch Logs, and publish metrics to Amazon CloudWatch. You grant permissions for all of these tasks to an IAM role. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html">SageMaker Roles</a>. </p> <note> <p>To be able to pass this role to SageMaker, the caller of this API must have the <code>iam:PassRole</code> permission.</p> </note>
63
+ * @public
64
+ */
65
+ RoleArn: string | undefined;
66
+ /**
67
+ * <p>An array of <code>Channel</code> objects. Each channel is a named input source. <code>InputDataConfig</code> describes the input data and its location. </p> <p>Algorithms can accept input data from one or more channels. For example, an algorithm might have two channels of input data, <code>training_data</code> and <code>validation_data</code>. The configuration for each channel provides the S3, EFS, or FSx location where the input data is stored. It also provides information about the stored data: the MIME type, compression method, and whether the data is wrapped in RecordIO format. </p> <p>Depending on the input mode that the algorithm supports, SageMaker either copies input data files from an S3 bucket to a local directory in the Docker container, or makes it available as input streams. For example, if you specify an EFS location, input data files are available as input streams. They do not need to be downloaded.</p> <p>Your input must be in the same Amazon Web Services region as your training job.</p>
68
+ * @public
69
+ */
70
+ InputDataConfig?: Channel[] | undefined;
71
+ /**
72
+ * <p>Specifies the path to the S3 location where you want to store model artifacts. SageMaker creates subfolders for the artifacts. </p>
73
+ * @public
74
+ */
75
+ OutputDataConfig: OutputDataConfig | undefined;
76
+ /**
77
+ * <p>The resources, including the ML compute instances and ML storage volumes, to use for model training. </p> <p>ML storage volumes store model artifacts and incremental states. Training algorithms might also use ML storage volumes for scratch space. If you want SageMaker to use the ML storage volume to store the training data, choose <code>File</code> as the <code>TrainingInputMode</code> in the algorithm specification. For distributed training algorithms, specify an instance count greater than 1.</p>
78
+ * @public
79
+ */
80
+ ResourceConfig?: ResourceConfig | undefined;
81
+ /**
82
+ * <p>A <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_VpcConfig.html">VpcConfig</a> object that specifies the VPC that you want your training job to connect to. Control access to and from your training container by configuring the VPC. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html">Protect Training Jobs by Using an Amazon Virtual Private Cloud</a>.</p>
83
+ * @public
84
+ */
85
+ VpcConfig?: VpcConfig | undefined;
86
+ /**
87
+ * <p>Specifies a limit to how long a model training job can run. It also specifies how long a managed Spot training job has to complete. When the job reaches the time limit, SageMaker ends the training job. Use this API to cap model training costs.</p> <p>To stop a job, SageMaker sends the algorithm the <code>SIGTERM</code> signal, which delays job termination for 120 seconds. Algorithms can use this 120-second window to save the model artifacts, so the results of training are not lost. </p>
88
+ * @public
89
+ */
90
+ StoppingCondition?: StoppingCondition | undefined;
91
+ /**
92
+ * <p>An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see <a href="https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html">Tagging Amazon Web Services Resources</a>.</p> <important> <p>Do not include any security-sensitive information including account access IDs, secrets, or tokens in any tags. As part of the shared responsibility model, you are responsible for any potential exposure, unauthorized access, or compromise of your sensitive data if caused by any security-sensitive information included in the request tag variable or plain text fields.</p> </important>
93
+ * @public
94
+ */
95
+ Tags?: Tag[] | undefined;
96
+ /**
97
+ * <p>Isolates the training container. No inbound or outbound network calls can be made, except for calls between peers within a training cluster for distributed training. If you enable network isolation for training jobs that are configured to use a VPC, SageMaker downloads and uploads customer data and model artifacts through the specified VPC, but the training container does not have network access.</p>
98
+ * @public
99
+ */
100
+ EnableNetworkIsolation?: boolean | undefined;
101
+ /**
102
+ * <p>To encrypt all communications between ML compute instances in distributed training, choose <code>True</code>. Encryption provides greater security for distributed training, but training might take longer. How long it takes depends on the amount of communication between compute instances, especially if you use a deep learning algorithm in distributed training. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/train-encrypt.html">Protect Communications Between ML Compute Instances in a Distributed Training Job</a>.</p>
103
+ * @public
104
+ */
105
+ EnableInterContainerTrafficEncryption?: boolean | undefined;
106
+ /**
107
+ * <p>To train models using managed spot training, choose <code>True</code>. Managed spot training provides a fully managed and scalable infrastructure for training machine learning models. this option is useful when training jobs can be interrupted and when there is flexibility when the training job is run. </p> <p>The complete and intermediate results of jobs are stored in an Amazon S3 bucket, and can be used as a starting point to train models incrementally. Amazon SageMaker provides metrics and logs in CloudWatch. They can be used to see when managed spot training jobs are running, interrupted, resumed, or completed. </p>
108
+ * @public
109
+ */
110
+ EnableManagedSpotTraining?: boolean | undefined;
111
+ /**
112
+ * <p>Contains information about the output location for managed spot training checkpoint data.</p>
113
+ * @public
114
+ */
115
+ CheckpointConfig?: CheckpointConfig | undefined;
116
+ /**
117
+ * <p>Configuration information for the Amazon SageMaker Debugger hook parameters, metric and tensor collections, and storage paths. To learn more about how to configure the <code>DebugHookConfig</code> parameter, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-createtrainingjob-api.html">Use the SageMaker and Debugger Configuration API Operations to Create, Update, and Debug Your Training Job</a>.</p>
118
+ * @public
119
+ */
120
+ DebugHookConfig?: DebugHookConfig | undefined;
121
+ /**
122
+ * <p>Configuration information for Amazon SageMaker Debugger rules for debugging output tensors.</p>
123
+ * @public
124
+ */
125
+ DebugRuleConfigurations?: DebugRuleConfiguration[] | undefined;
126
+ /**
127
+ * <p>Configuration of storage locations for the Amazon SageMaker Debugger TensorBoard output data.</p>
128
+ * @public
129
+ */
130
+ TensorBoardOutputConfig?: TensorBoardOutputConfig | undefined;
131
+ /**
132
+ * <p>Associates a SageMaker job as a trial component with an experiment and trial. Specified when you call the following APIs:</p> <ul> <li> <p> <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateProcessingJob.html">CreateProcessingJob</a> </p> </li> <li> <p> <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html">CreateTrainingJob</a> </p> </li> <li> <p> <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTransformJob.html">CreateTransformJob</a> </p> </li> </ul>
133
+ * @public
134
+ */
135
+ ExperimentConfig?: ExperimentConfig | undefined;
136
+ /**
137
+ * <p>Configuration information for Amazon SageMaker Debugger system monitoring, framework profiling, and storage paths.</p>
138
+ * @public
139
+ */
140
+ ProfilerConfig?: ProfilerConfig | undefined;
141
+ /**
142
+ * <p>Configuration information for Amazon SageMaker Debugger rules for profiling system and framework metrics.</p>
143
+ * @public
144
+ */
145
+ ProfilerRuleConfigurations?: ProfilerRuleConfiguration[] | undefined;
146
+ /**
147
+ * <p>The environment variables to set in the Docker container.</p> <important> <p>Do not include any security-sensitive information including account access IDs, secrets, or tokens in any environment fields. As part of the shared responsibility model, you are responsible for any potential exposure, unauthorized access, or compromise of your sensitive data if caused by security-sensitive information included in the request environment variable or plain text fields.</p> </important>
148
+ * @public
149
+ */
150
+ Environment?: Record<string, string> | undefined;
151
+ /**
152
+ * <p>The number of times to retry the job when the job fails due to an <code>InternalServerError</code>.</p>
153
+ * @public
154
+ */
155
+ RetryStrategy?: RetryStrategy | undefined;
156
+ /**
157
+ * <p>Configuration for remote debugging. To learn more about the remote debugging functionality of SageMaker, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/train-remote-debugging.html">Access a training container through Amazon Web Services Systems Manager (SSM) for remote debugging</a>.</p>
158
+ * @public
159
+ */
160
+ RemoteDebugConfig?: RemoteDebugConfig | undefined;
161
+ /**
162
+ * <p>Contains information about the infrastructure health check configuration for the training job.</p>
163
+ * @public
164
+ */
165
+ InfraCheckConfig?: InfraCheckConfig | undefined;
166
+ /**
167
+ * <p>Contains information about attribute-based access control (ABAC) for the training job.</p>
168
+ * @public
169
+ */
170
+ SessionChainingConfig?: SessionChainingConfig | undefined;
171
+ }
4
172
  /**
5
173
  * @public
6
174
  */
@@ -1233,6 +1401,26 @@ export interface DeleteInferenceExperimentResponse {
1233
1401
  */
1234
1402
  InferenceExperimentArn: string | undefined;
1235
1403
  }
1404
+ /**
1405
+ * @public
1406
+ */
1407
+ export interface DeleteMlflowAppRequest {
1408
+ /**
1409
+ * <p>The ARN of the MLflow App to delete.</p>
1410
+ * @public
1411
+ */
1412
+ Arn: string | undefined;
1413
+ }
1414
+ /**
1415
+ * @public
1416
+ */
1417
+ export interface DeleteMlflowAppResponse {
1418
+ /**
1419
+ * <p>The ARN of the deleted MLflow App.</p>
1420
+ * @public
1421
+ */
1422
+ Arn?: string | undefined;
1423
+ }
1236
1424
  /**
1237
1425
  * @public
1238
1426
  */
@@ -5849,6 +6037,96 @@ export interface DescribeLineageGroupResponse {
5849
6037
  */
5850
6038
  LastModifiedBy?: UserContext | undefined;
5851
6039
  }
6040
+ /**
6041
+ * @public
6042
+ */
6043
+ export interface DescribeMlflowAppRequest {
6044
+ /**
6045
+ * <p>The ARN of the MLflow App for which to get information.</p>
6046
+ * @public
6047
+ */
6048
+ Arn: string | undefined;
6049
+ }
6050
+ /**
6051
+ * @public
6052
+ */
6053
+ export interface DescribeMlflowAppResponse {
6054
+ /**
6055
+ * <p>The ARN of the MLflow App.</p>
6056
+ * @public
6057
+ */
6058
+ Arn?: string | undefined;
6059
+ /**
6060
+ * <p>The name of the MLflow App.</p>
6061
+ * @public
6062
+ */
6063
+ Name?: string | undefined;
6064
+ /**
6065
+ * <p>The S3 URI of the general purpose bucket used as the MLflow App artifact store.</p>
6066
+ * @public
6067
+ */
6068
+ ArtifactStoreUri?: string | undefined;
6069
+ /**
6070
+ * <p>The MLflow version used.</p>
6071
+ * @public
6072
+ */
6073
+ MlflowVersion?: string | undefined;
6074
+ /**
6075
+ * <p>The Amazon Resource Name (ARN) for an IAM role in your account that the MLflow App uses to access the artifact store in Amazon S3.</p>
6076
+ * @public
6077
+ */
6078
+ RoleArn?: string | undefined;
6079
+ /**
6080
+ * <p>The current creation status of the described MLflow App.</p>
6081
+ * @public
6082
+ */
6083
+ Status?: MlflowAppStatus | undefined;
6084
+ /**
6085
+ * <p>Whether automatic registration of new MLflow models to the SageMaker Model Registry is enabled.</p>
6086
+ * @public
6087
+ */
6088
+ ModelRegistrationMode?: ModelRegistrationMode | undefined;
6089
+ /**
6090
+ * <p>Indicates whether this MLflow app is the default for the entire account.</p>
6091
+ * @public
6092
+ */
6093
+ AccountDefaultStatus?: AccountDefaultStatus | undefined;
6094
+ /**
6095
+ * <p>List of SageMaker Domain IDs for which this MLflow App is the default.</p>
6096
+ * @public
6097
+ */
6098
+ DefaultDomainIdList?: string[] | undefined;
6099
+ /**
6100
+ * <p>The timestamp when the MLflow App was created.</p>
6101
+ * @public
6102
+ */
6103
+ CreationTime?: Date | undefined;
6104
+ /**
6105
+ * <p>Information about the user who created or modified a SageMaker resource.</p>
6106
+ * @public
6107
+ */
6108
+ CreatedBy?: UserContext | undefined;
6109
+ /**
6110
+ * <p>The timestamp when the MLflow App was last modified.</p>
6111
+ * @public
6112
+ */
6113
+ LastModifiedTime?: Date | undefined;
6114
+ /**
6115
+ * <p>Information about the user who created or modified a SageMaker resource.</p>
6116
+ * @public
6117
+ */
6118
+ LastModifiedBy?: UserContext | undefined;
6119
+ /**
6120
+ * <p>The day and time of the week when weekly maintenance occurs.</p>
6121
+ * @public
6122
+ */
6123
+ WeeklyMaintenanceWindowStart?: string | undefined;
6124
+ /**
6125
+ * <p>Current maintenance status of the MLflow App.</p>
6126
+ * @public
6127
+ */
6128
+ MaintenanceStatus?: MaintenanceStatus | undefined;
6129
+ }
5852
6130
  /**
5853
6131
  * @public
5854
6132
  */
@@ -7881,373 +8159,3 @@ export interface DescribeSubscribedWorkteamRequest {
7881
8159
  */
7882
8160
  WorkteamArn: string | undefined;
7883
8161
  }
7884
- /**
7885
- * <p>Describes a work team of a vendor that does the labelling job.</p>
7886
- * @public
7887
- */
7888
- export interface SubscribedWorkteam {
7889
- /**
7890
- * <p>The Amazon Resource Name (ARN) of the vendor that you have subscribed.</p>
7891
- * @public
7892
- */
7893
- WorkteamArn: string | undefined;
7894
- /**
7895
- * <p>The title of the service provided by the vendor in the Amazon Marketplace.</p>
7896
- * @public
7897
- */
7898
- MarketplaceTitle?: string | undefined;
7899
- /**
7900
- * <p>The name of the vendor in the Amazon Marketplace.</p>
7901
- * @public
7902
- */
7903
- SellerName?: string | undefined;
7904
- /**
7905
- * <p>The description of the vendor from the Amazon Marketplace.</p>
7906
- * @public
7907
- */
7908
- MarketplaceDescription?: string | undefined;
7909
- /**
7910
- * <p>Marketplace product listing ID.</p>
7911
- * @public
7912
- */
7913
- ListingId?: string | undefined;
7914
- }
7915
- /**
7916
- * @public
7917
- */
7918
- export interface DescribeSubscribedWorkteamResponse {
7919
- /**
7920
- * <p>A <code>Workteam</code> instance that contains information about the work team.</p>
7921
- * @public
7922
- */
7923
- SubscribedWorkteam: SubscribedWorkteam | undefined;
7924
- }
7925
- /**
7926
- * @public
7927
- */
7928
- export interface DescribeTrainingJobRequest {
7929
- /**
7930
- * <p>The name of the training job.</p>
7931
- * @public
7932
- */
7933
- TrainingJobName: string | undefined;
7934
- }
7935
- /**
7936
- * <p>The name, value, and date and time of a metric that was emitted to Amazon CloudWatch.</p>
7937
- * @public
7938
- */
7939
- export interface MetricData {
7940
- /**
7941
- * <p>The name of the metric.</p>
7942
- * @public
7943
- */
7944
- MetricName?: string | undefined;
7945
- /**
7946
- * <p>The value of the metric.</p>
7947
- * @public
7948
- */
7949
- Value?: number | undefined;
7950
- /**
7951
- * <p>The date and time that the algorithm emitted the metric.</p>
7952
- * @public
7953
- */
7954
- Timestamp?: Date | undefined;
7955
- }
7956
- /**
7957
- * <p>Information about the status of the rule evaluation.</p>
7958
- * @public
7959
- */
7960
- export interface ProfilerRuleEvaluationStatus {
7961
- /**
7962
- * <p>The name of the rule configuration.</p>
7963
- * @public
7964
- */
7965
- RuleConfigurationName?: string | undefined;
7966
- /**
7967
- * <p>The Amazon Resource Name (ARN) of the rule evaluation job.</p>
7968
- * @public
7969
- */
7970
- RuleEvaluationJobArn?: string | undefined;
7971
- /**
7972
- * <p>Status of the rule evaluation.</p>
7973
- * @public
7974
- */
7975
- RuleEvaluationStatus?: RuleEvaluationStatus | undefined;
7976
- /**
7977
- * <p>Details from the rule evaluation.</p>
7978
- * @public
7979
- */
7980
- StatusDetails?: string | undefined;
7981
- /**
7982
- * <p>Timestamp when the rule evaluation status was last modified.</p>
7983
- * @public
7984
- */
7985
- LastModifiedTime?: Date | undefined;
7986
- }
7987
- /**
7988
- * <p>An array element of <code>SecondaryStatusTransitions</code> for <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeTrainingJob.html">DescribeTrainingJob</a>. It provides additional details about a status that the training job has transitioned through. A training job can be in one of several states, for example, starting, downloading, training, or uploading. Within each state, there are a number of intermediate states. For example, within the starting state, SageMaker could be starting the training job or launching the ML instances. These transitional states are referred to as the job's secondary status. </p> <p/>
7989
- * @public
7990
- */
7991
- export interface SecondaryStatusTransition {
7992
- /**
7993
- * <p>Contains a secondary status information from a training job.</p> <p>Status might be one of the following secondary statuses:</p> <dl> <dt>InProgress</dt> <dd> <ul> <li> <p> <code>Starting</code> - Starting the training job.</p> </li> <li> <p> <code>Downloading</code> - An optional stage for algorithms that support <code>File</code> training input mode. It indicates that data is being downloaded to the ML storage volumes.</p> </li> <li> <p> <code>Training</code> - Training is in progress.</p> </li> <li> <p> <code>Uploading</code> - Training is complete and the model artifacts are being uploaded to the S3 location.</p> </li> </ul> </dd> <dt>Completed</dt> <dd> <ul> <li> <p> <code>Completed</code> - The training job has completed.</p> </li> </ul> </dd> <dt>Failed</dt> <dd> <ul> <li> <p> <code>Failed</code> - The training job has failed. The reason for the failure is returned in the <code>FailureReason</code> field of <code>DescribeTrainingJobResponse</code>.</p> </li> </ul> </dd> <dt>Stopped</dt> <dd> <ul> <li> <p> <code>MaxRuntimeExceeded</code> - The job stopped because it exceeded the maximum allowed runtime.</p> </li> <li> <p> <code>Stopped</code> - The training job has stopped.</p> </li> </ul> </dd> <dt>Stopping</dt> <dd> <ul> <li> <p> <code>Stopping</code> - Stopping the training job.</p> </li> </ul> </dd> </dl> <p>We no longer support the following secondary statuses:</p> <ul> <li> <p> <code>LaunchingMLInstances</code> </p> </li> <li> <p> <code>PreparingTrainingStack</code> </p> </li> <li> <p> <code>DownloadingTrainingImage</code> </p> </li> </ul>
7994
- * @public
7995
- */
7996
- Status: SecondaryStatus | undefined;
7997
- /**
7998
- * <p>A timestamp that shows when the training job transitioned to the current secondary status state.</p>
7999
- * @public
8000
- */
8001
- StartTime: Date | undefined;
8002
- /**
8003
- * <p>A timestamp that shows when the training job transitioned out of this secondary status state into another secondary status state or when the training job has ended.</p>
8004
- * @public
8005
- */
8006
- EndTime?: Date | undefined;
8007
- /**
8008
- * <p>A detailed description of the progress within a secondary status. </p> <p>SageMaker provides secondary statuses and status messages that apply to each of them:</p> <dl> <dt>Starting</dt> <dd> <ul> <li> <p>Starting the training job.</p> </li> <li> <p>Launching requested ML instances.</p> </li> <li> <p>Insufficient capacity error from EC2 while launching instances, retrying!</p> </li> <li> <p>Launched instance was unhealthy, replacing it!</p> </li> <li> <p>Preparing the instances for training.</p> </li> </ul> </dd> <dt>Training</dt> <dd> <ul> <li> <p>Training image download completed. Training in progress.</p> </li> </ul> </dd> </dl> <important> <p>Status messages are subject to change. Therefore, we recommend not including them in code that programmatically initiates actions. For examples, don't use status messages in if statements.</p> </important> <p>To have an overview of your training job's progress, view <code>TrainingJobStatus</code> and <code>SecondaryStatus</code> in <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeTrainingJob.html">DescribeTrainingJob</a>, and <code>StatusMessage</code> together. For example, at the start of a training job, you might see the following:</p> <ul> <li> <p> <code>TrainingJobStatus</code> - InProgress</p> </li> <li> <p> <code>SecondaryStatus</code> - Training</p> </li> <li> <p> <code>StatusMessage</code> - Downloading the training image</p> </li> </ul>
8009
- * @public
8010
- */
8011
- StatusMessage?: string | undefined;
8012
- }
8013
- /**
8014
- * <p>Status and billing information about the warm pool.</p>
8015
- * @public
8016
- */
8017
- export interface WarmPoolStatus {
8018
- /**
8019
- * <p>The status of the warm pool.</p> <ul> <li> <p> <code>InUse</code>: The warm pool is in use for the training job.</p> </li> <li> <p> <code>Available</code>: The warm pool is available to reuse for a matching training job.</p> </li> <li> <p> <code>Reused</code>: The warm pool moved to a matching training job for reuse.</p> </li> <li> <p> <code>Terminated</code>: The warm pool is no longer available. Warm pools are unavailable if they are terminated by a user, terminated for a patch update, or terminated for exceeding the specified <code>KeepAlivePeriodInSeconds</code>.</p> </li> </ul>
8020
- * @public
8021
- */
8022
- Status: WarmPoolResourceStatus | undefined;
8023
- /**
8024
- * <p>The billable time in seconds used by the warm pool. Billable time refers to the absolute wall-clock time.</p> <p>Multiply <code>ResourceRetainedBillableTimeInSeconds</code> by the number of instances (<code>InstanceCount</code>) in your training cluster to get the total compute time SageMaker bills you if you run warm pool training. The formula is as follows: <code>ResourceRetainedBillableTimeInSeconds * InstanceCount</code>.</p>
8025
- * @public
8026
- */
8027
- ResourceRetainedBillableTimeInSeconds?: number | undefined;
8028
- /**
8029
- * <p>The name of the matching training job that reused the warm pool.</p>
8030
- * @public
8031
- */
8032
- ReusedByJob?: string | undefined;
8033
- }
8034
- /**
8035
- * @public
8036
- */
8037
- export interface DescribeTrainingJobResponse {
8038
- /**
8039
- * <p> Name of the model training job. </p>
8040
- * @public
8041
- */
8042
- TrainingJobName: string | undefined;
8043
- /**
8044
- * <p>The Amazon Resource Name (ARN) of the training job.</p>
8045
- * @public
8046
- */
8047
- TrainingJobArn: string | undefined;
8048
- /**
8049
- * <p>The Amazon Resource Name (ARN) of the associated hyperparameter tuning job if the training job was launched by a hyperparameter tuning job.</p>
8050
- * @public
8051
- */
8052
- TuningJobArn?: string | undefined;
8053
- /**
8054
- * <p>The Amazon Resource Name (ARN) of the SageMaker Ground Truth labeling job that created the transform or training job.</p>
8055
- * @public
8056
- */
8057
- LabelingJobArn?: string | undefined;
8058
- /**
8059
- * <p>The Amazon Resource Name (ARN) of an AutoML job.</p>
8060
- * @public
8061
- */
8062
- AutoMLJobArn?: string | undefined;
8063
- /**
8064
- * <p>Information about the Amazon S3 location that is configured for storing model artifacts. </p>
8065
- * @public
8066
- */
8067
- ModelArtifacts: ModelArtifacts | undefined;
8068
- /**
8069
- * <p>The status of the training job.</p> <p>SageMaker provides the following training job statuses:</p> <ul> <li> <p> <code>InProgress</code> - The training is in progress.</p> </li> <li> <p> <code>Completed</code> - The training job has completed.</p> </li> <li> <p> <code>Failed</code> - The training job has failed. To see the reason for the failure, see the <code>FailureReason</code> field in the response to a <code>DescribeTrainingJobResponse</code> call.</p> </li> <li> <p> <code>Stopping</code> - The training job is stopping.</p> </li> <li> <p> <code>Stopped</code> - The training job has stopped.</p> </li> </ul> <p>For more detailed information, see <code>SecondaryStatus</code>. </p>
8070
- * @public
8071
- */
8072
- TrainingJobStatus: TrainingJobStatus | undefined;
8073
- /**
8074
- * <p> Provides detailed information about the state of the training job. For detailed information on the secondary status of the training job, see <code>StatusMessage</code> under <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_SecondaryStatusTransition.html">SecondaryStatusTransition</a>.</p> <p>SageMaker provides primary statuses and secondary statuses that apply to each of them:</p> <dl> <dt>InProgress</dt> <dd> <ul> <li> <p> <code>Starting</code> - Starting the training job.</p> </li> <li> <p> <code>Downloading</code> - An optional stage for algorithms that support <code>File</code> training input mode. It indicates that data is being downloaded to the ML storage volumes.</p> </li> <li> <p> <code>Training</code> - Training is in progress.</p> </li> <li> <p> <code>Interrupted</code> - The job stopped because the managed spot training instances were interrupted. </p> </li> <li> <p> <code>Uploading</code> - Training is complete and the model artifacts are being uploaded to the S3 location.</p> </li> </ul> </dd> <dt>Completed</dt> <dd> <ul> <li> <p> <code>Completed</code> - The training job has completed.</p> </li> </ul> </dd> <dt>Failed</dt> <dd> <ul> <li> <p> <code>Failed</code> - The training job has failed. The reason for the failure is returned in the <code>FailureReason</code> field of <code>DescribeTrainingJobResponse</code>.</p> </li> </ul> </dd> <dt>Stopped</dt> <dd> <ul> <li> <p> <code>MaxRuntimeExceeded</code> - The job stopped because it exceeded the maximum allowed runtime.</p> </li> <li> <p> <code>MaxWaitTimeExceeded</code> - The job stopped because it exceeded the maximum allowed wait time.</p> </li> <li> <p> <code>Stopped</code> - The training job has stopped.</p> </li> </ul> </dd> <dt>Stopping</dt> <dd> <ul> <li> <p> <code>Stopping</code> - Stopping the training job.</p> </li> </ul> </dd> </dl> <important> <p>Valid values for <code>SecondaryStatus</code> are subject to change. </p> </important> <p>We no longer support the following secondary statuses:</p> <ul> <li> <p> <code>LaunchingMLInstances</code> </p> </li> <li> <p> <code>PreparingTraining</code> </p> </li> <li> <p> <code>DownloadingTrainingImage</code> </p> </li> </ul>
8075
- * @public
8076
- */
8077
- SecondaryStatus: SecondaryStatus | undefined;
8078
- /**
8079
- * <p>If the training job failed, the reason it failed. </p>
8080
- * @public
8081
- */
8082
- FailureReason?: string | undefined;
8083
- /**
8084
- * <p>Algorithm-specific parameters. </p>
8085
- * @public
8086
- */
8087
- HyperParameters?: Record<string, string> | undefined;
8088
- /**
8089
- * <p>Information about the algorithm used for training, and algorithm metadata. </p>
8090
- * @public
8091
- */
8092
- AlgorithmSpecification?: AlgorithmSpecification | undefined;
8093
- /**
8094
- * <p>The Amazon Web Services Identity and Access Management (IAM) role configured for the training job. </p>
8095
- * @public
8096
- */
8097
- RoleArn?: string | undefined;
8098
- /**
8099
- * <p>An array of <code>Channel</code> objects that describes each data input channel. </p>
8100
- * @public
8101
- */
8102
- InputDataConfig?: Channel[] | undefined;
8103
- /**
8104
- * <p>The S3 path where model artifacts that you configured when creating the job are stored. SageMaker creates subfolders for model artifacts. </p>
8105
- * @public
8106
- */
8107
- OutputDataConfig?: OutputDataConfig | undefined;
8108
- /**
8109
- * <p>Resources, including ML compute instances and ML storage volumes, that are configured for model training. </p>
8110
- * @public
8111
- */
8112
- ResourceConfig?: ResourceConfig | undefined;
8113
- /**
8114
- * <p>The status of the warm pool associated with the training job.</p>
8115
- * @public
8116
- */
8117
- WarmPoolStatus?: WarmPoolStatus | undefined;
8118
- /**
8119
- * <p>A <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_VpcConfig.html">VpcConfig</a> object that specifies the VPC that this training job has access to. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html">Protect Training Jobs by Using an Amazon Virtual Private Cloud</a>.</p>
8120
- * @public
8121
- */
8122
- VpcConfig?: VpcConfig | undefined;
8123
- /**
8124
- * <p>Specifies a limit to how long a model training job can run. It also specifies how long a managed Spot training job has to complete. When the job reaches the time limit, SageMaker ends the training job. Use this API to cap model training costs.</p> <p>To stop a job, SageMaker sends the algorithm the <code>SIGTERM</code> signal, which delays job termination for 120 seconds. Algorithms can use this 120-second window to save the model artifacts, so the results of training are not lost. </p>
8125
- * @public
8126
- */
8127
- StoppingCondition: StoppingCondition | undefined;
8128
- /**
8129
- * <p>A timestamp that indicates when the training job was created.</p>
8130
- * @public
8131
- */
8132
- CreationTime: Date | undefined;
8133
- /**
8134
- * <p>Indicates the time when the training job starts on training instances. You are billed for the time interval between this time and the value of <code>TrainingEndTime</code>. The start time in CloudWatch Logs might be later than this time. The difference is due to the time it takes to download the training data and to the size of the training container.</p>
8135
- * @public
8136
- */
8137
- TrainingStartTime?: Date | undefined;
8138
- /**
8139
- * <p>Indicates the time when the training job ends on training instances. You are billed for the time interval between the value of <code>TrainingStartTime</code> and this time. For successful jobs and stopped jobs, this is the time after model artifacts are uploaded. For failed jobs, this is the time when SageMaker detects a job failure.</p>
8140
- * @public
8141
- */
8142
- TrainingEndTime?: Date | undefined;
8143
- /**
8144
- * <p>A timestamp that indicates when the status of the training job was last modified.</p>
8145
- * @public
8146
- */
8147
- LastModifiedTime?: Date | undefined;
8148
- /**
8149
- * <p>A history of all of the secondary statuses that the training job has transitioned through.</p>
8150
- * @public
8151
- */
8152
- SecondaryStatusTransitions?: SecondaryStatusTransition[] | undefined;
8153
- /**
8154
- * <p>A collection of <code>MetricData</code> objects that specify the names, values, and dates and times that the training algorithm emitted to Amazon CloudWatch.</p>
8155
- * @public
8156
- */
8157
- FinalMetricDataList?: MetricData[] | undefined;
8158
- /**
8159
- * <p>If you want to allow inbound or outbound network calls, except for calls between peers within a training cluster for distributed training, choose <code>True</code>. If you enable network isolation for training jobs that are configured to use a VPC, SageMaker downloads and uploads customer data and model artifacts through the specified VPC, but the training container does not have network access.</p>
8160
- * @public
8161
- */
8162
- EnableNetworkIsolation?: boolean | undefined;
8163
- /**
8164
- * <p>To encrypt all communications between ML compute instances in distributed training, choose <code>True</code>. Encryption provides greater security for distributed training, but training might take longer. How long it takes depends on the amount of communication between compute instances, especially if you use a deep learning algorithms in distributed training.</p>
8165
- * @public
8166
- */
8167
- EnableInterContainerTrafficEncryption?: boolean | undefined;
8168
- /**
8169
- * <p>A Boolean indicating whether managed spot training is enabled (<code>True</code>) or not (<code>False</code>).</p>
8170
- * @public
8171
- */
8172
- EnableManagedSpotTraining?: boolean | undefined;
8173
- /**
8174
- * <p>Contains information about the output location for managed spot training checkpoint data. </p>
8175
- * @public
8176
- */
8177
- CheckpointConfig?: CheckpointConfig | undefined;
8178
- /**
8179
- * <p>The training time in seconds.</p>
8180
- * @public
8181
- */
8182
- TrainingTimeInSeconds?: number | undefined;
8183
- /**
8184
- * <p>The billable time in seconds. Billable time refers to the absolute wall-clock time.</p> <p>Multiply <code>BillableTimeInSeconds</code> by the number of instances (<code>InstanceCount</code>) in your training cluster to get the total compute time SageMaker bills you if you run distributed training. The formula is as follows: <code>BillableTimeInSeconds * InstanceCount</code> .</p> <p>You can calculate the savings from using managed spot training using the formula <code>(1 - BillableTimeInSeconds / TrainingTimeInSeconds) * 100</code>. For example, if <code>BillableTimeInSeconds</code> is 100 and <code>TrainingTimeInSeconds</code> is 500, the savings is 80%.</p>
8185
- * @public
8186
- */
8187
- BillableTimeInSeconds?: number | undefined;
8188
- /**
8189
- * <p>Configuration information for the Amazon SageMaker Debugger hook parameters, metric and tensor collections, and storage paths. To learn more about how to configure the <code>DebugHookConfig</code> parameter, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-createtrainingjob-api.html">Use the SageMaker and Debugger Configuration API Operations to Create, Update, and Debug Your Training Job</a>.</p>
8190
- * @public
8191
- */
8192
- DebugHookConfig?: DebugHookConfig | undefined;
8193
- /**
8194
- * <p>Associates a SageMaker job as a trial component with an experiment and trial. Specified when you call the following APIs:</p> <ul> <li> <p> <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateProcessingJob.html">CreateProcessingJob</a> </p> </li> <li> <p> <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html">CreateTrainingJob</a> </p> </li> <li> <p> <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTransformJob.html">CreateTransformJob</a> </p> </li> </ul>
8195
- * @public
8196
- */
8197
- ExperimentConfig?: ExperimentConfig | undefined;
8198
- /**
8199
- * <p>Configuration information for Amazon SageMaker Debugger rules for debugging output tensors.</p>
8200
- * @public
8201
- */
8202
- DebugRuleConfigurations?: DebugRuleConfiguration[] | undefined;
8203
- /**
8204
- * <p>Configuration of storage locations for the Amazon SageMaker Debugger TensorBoard output data.</p>
8205
- * @public
8206
- */
8207
- TensorBoardOutputConfig?: TensorBoardOutputConfig | undefined;
8208
- /**
8209
- * <p>Evaluation status of Amazon SageMaker Debugger rules for debugging on a training job.</p>
8210
- * @public
8211
- */
8212
- DebugRuleEvaluationStatuses?: DebugRuleEvaluationStatus[] | undefined;
8213
- /**
8214
- * <p>Configuration information for Amazon SageMaker Debugger system monitoring, framework profiling, and storage paths.</p>
8215
- * @public
8216
- */
8217
- ProfilerConfig?: ProfilerConfig | undefined;
8218
- /**
8219
- * <p>Configuration information for Amazon SageMaker Debugger rules for profiling system and framework metrics.</p>
8220
- * @public
8221
- */
8222
- ProfilerRuleConfigurations?: ProfilerRuleConfiguration[] | undefined;
8223
- /**
8224
- * <p>Evaluation status of Amazon SageMaker Debugger rules for profiling on a training job.</p>
8225
- * @public
8226
- */
8227
- ProfilerRuleEvaluationStatuses?: ProfilerRuleEvaluationStatus[] | undefined;
8228
- /**
8229
- * <p>Profiling status of a training job.</p>
8230
- * @public
8231
- */
8232
- ProfilingStatus?: ProfilingStatus | undefined;
8233
- /**
8234
- * <p>The environment variables to set in the Docker container.</p> <important> <p>Do not include any security-sensitive information including account access IDs, secrets, or tokens in any environment fields. As part of the shared responsibility model, you are responsible for any potential exposure, unauthorized access, or compromise of your sensitive data if caused by security-sensitive information included in the request environment variable or plain text fields.</p> </important>
8235
- * @public
8236
- */
8237
- Environment?: Record<string, string> | undefined;
8238
- /**
8239
- * <p>The number of times to retry the job when the job fails due to an <code>InternalServerError</code>.</p>
8240
- * @public
8241
- */
8242
- RetryStrategy?: RetryStrategy | undefined;
8243
- /**
8244
- * <p>Configuration for remote debugging. To learn more about the remote debugging functionality of SageMaker, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/train-remote-debugging.html">Access a training container through Amazon Web Services Systems Manager (SSM) for remote debugging</a>.</p>
8245
- * @public
8246
- */
8247
- RemoteDebugConfig?: RemoteDebugConfig | undefined;
8248
- /**
8249
- * <p>Contains information about the infrastructure health check configuration for the training job.</p>
8250
- * @public
8251
- */
8252
- InfraCheckConfig?: InfraCheckConfig | undefined;
8253
- }