@aws-sdk/client-sagemaker 3.939.0 → 3.943.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (91) hide show
  1. package/README.md +48 -0
  2. package/dist-cjs/index.js +277 -12
  3. package/dist-es/SageMaker.js +12 -0
  4. package/dist-es/commands/CreateMlflowAppCommand.js +16 -0
  5. package/dist-es/commands/CreatePresignedMlflowAppUrlCommand.js +16 -0
  6. package/dist-es/commands/DeleteMlflowAppCommand.js +16 -0
  7. package/dist-es/commands/DescribeMlflowAppCommand.js +16 -0
  8. package/dist-es/commands/ListMlflowAppsCommand.js +16 -0
  9. package/dist-es/commands/UpdateMlflowAppCommand.js +16 -0
  10. package/dist-es/commands/index.js +6 -0
  11. package/dist-es/models/enums.js +37 -0
  12. package/dist-es/pagination/ListMlflowAppsPaginator.js +4 -0
  13. package/dist-es/pagination/index.js +1 -0
  14. package/dist-es/schemas/schemas_0.js +149 -12
  15. package/dist-types/SageMaker.d.ts +43 -0
  16. package/dist-types/SageMakerClient.d.ts +8 -2
  17. package/dist-types/commands/CreateClusterCommand.d.ts +3 -3
  18. package/dist-types/commands/CreateComputeQuotaCommand.d.ts +1 -1
  19. package/dist-types/commands/CreateDomainCommand.d.ts +1 -1
  20. package/dist-types/commands/CreateHubContentPresignedUrlsCommand.d.ts +1 -1
  21. package/dist-types/commands/CreateMlflowAppCommand.d.ts +91 -0
  22. package/dist-types/commands/CreatePresignedMlflowAppUrlCommand.d.ts +79 -0
  23. package/dist-types/commands/CreateTrainingJobCommand.d.ts +1 -2
  24. package/dist-types/commands/CreateUserProfileCommand.d.ts +1 -1
  25. package/dist-types/commands/DeleteHubContentCommand.d.ts +1 -1
  26. package/dist-types/commands/DeleteHubContentReferenceCommand.d.ts +1 -1
  27. package/dist-types/commands/DeleteMlflowAppCommand.d.ts +77 -0
  28. package/dist-types/commands/DescribeClusterCommand.d.ts +2 -2
  29. package/dist-types/commands/DescribeClusterNodeCommand.d.ts +1 -1
  30. package/dist-types/commands/DescribeComputeQuotaCommand.d.ts +1 -1
  31. package/dist-types/commands/DescribeDomainCommand.d.ts +1 -1
  32. package/dist-types/commands/DescribeHubContentCommand.d.ts +3 -3
  33. package/dist-types/commands/DescribeMlflowAppCommand.d.ts +111 -0
  34. package/dist-types/commands/DescribeSubscribedWorkteamCommand.d.ts +2 -1
  35. package/dist-types/commands/DescribeTrainingJobCommand.d.ts +1 -1
  36. package/dist-types/commands/DescribeUserProfileCommand.d.ts +1 -1
  37. package/dist-types/commands/ImportHubContentCommand.d.ts +1 -1
  38. package/dist-types/commands/ListClusterNodesCommand.d.ts +1 -1
  39. package/dist-types/commands/ListComputeQuotasCommand.d.ts +1 -1
  40. package/dist-types/commands/ListHubContentVersionsCommand.d.ts +3 -3
  41. package/dist-types/commands/ListHubContentsCommand.d.ts +3 -3
  42. package/dist-types/commands/ListMlflowAppsCommand.d.ts +93 -0
  43. package/dist-types/commands/ListSubscribedWorkteamsCommand.d.ts +2 -1
  44. package/dist-types/commands/ListTagsCommand.d.ts +1 -1
  45. package/dist-types/commands/ListTrainingJobsCommand.d.ts +1 -1
  46. package/dist-types/commands/ListTrainingJobsForHyperParameterTuningJobCommand.d.ts +1 -1
  47. package/dist-types/commands/ListTrainingPlansCommand.d.ts +1 -2
  48. package/dist-types/commands/UpdateClusterCommand.d.ts +2 -2
  49. package/dist-types/commands/UpdateComputeQuotaCommand.d.ts +1 -1
  50. package/dist-types/commands/UpdateDomainCommand.d.ts +1 -1
  51. package/dist-types/commands/UpdateHubContentCommand.d.ts +1 -1
  52. package/dist-types/commands/UpdateHubContentReferenceCommand.d.ts +1 -1
  53. package/dist-types/commands/UpdateMlflowAppCommand.d.ts +88 -0
  54. package/dist-types/commands/UpdateUserProfileCommand.d.ts +1 -1
  55. package/dist-types/commands/index.d.ts +6 -0
  56. package/dist-types/models/enums.d.ts +77 -0
  57. package/dist-types/models/models_0.d.ts +3 -3
  58. package/dist-types/models/models_1.d.ts +87 -170
  59. package/dist-types/models/models_2.d.ts +280 -372
  60. package/dist-types/models/models_3.d.ts +486 -383
  61. package/dist-types/models/models_4.d.ts +427 -4
  62. package/dist-types/pagination/ListMlflowAppsPaginator.d.ts +7 -0
  63. package/dist-types/pagination/index.d.ts +1 -0
  64. package/dist-types/schemas/schemas_0.d.ts +21 -0
  65. package/dist-types/ts3.4/SageMaker.d.ts +103 -0
  66. package/dist-types/ts3.4/SageMakerClient.d.ts +36 -0
  67. package/dist-types/ts3.4/commands/CreateMlflowAppCommand.d.ts +50 -0
  68. package/dist-types/ts3.4/commands/CreatePresignedMlflowAppUrlCommand.d.ts +51 -0
  69. package/dist-types/ts3.4/commands/CreateTrainingJobCommand.d.ts +4 -2
  70. package/dist-types/ts3.4/commands/DeleteMlflowAppCommand.d.ts +50 -0
  71. package/dist-types/ts3.4/commands/DescribeMlflowAppCommand.d.ts +51 -0
  72. package/dist-types/ts3.4/commands/DescribeSubscribedWorkteamCommand.d.ts +2 -4
  73. package/dist-types/ts3.4/commands/DescribeTrainingJobCommand.d.ts +1 -1
  74. package/dist-types/ts3.4/commands/ListMlflowAppsCommand.d.ts +50 -0
  75. package/dist-types/ts3.4/commands/ListSubscribedWorkteamsCommand.d.ts +2 -4
  76. package/dist-types/ts3.4/commands/ListTagsCommand.d.ts +1 -1
  77. package/dist-types/ts3.4/commands/ListTrainingJobsCommand.d.ts +1 -1
  78. package/dist-types/ts3.4/commands/ListTrainingJobsForHyperParameterTuningJobCommand.d.ts +1 -1
  79. package/dist-types/ts3.4/commands/ListTrainingPlansCommand.d.ts +4 -2
  80. package/dist-types/ts3.4/commands/UpdateMlflowAppCommand.d.ts +50 -0
  81. package/dist-types/ts3.4/commands/index.d.ts +6 -0
  82. package/dist-types/ts3.4/models/enums.d.ts +47 -0
  83. package/dist-types/ts3.4/models/models_0.d.ts +1 -1
  84. package/dist-types/ts3.4/models/models_1.d.ts +23 -38
  85. package/dist-types/ts3.4/models/models_2.d.ts +67 -86
  86. package/dist-types/ts3.4/models/models_3.d.ts +127 -91
  87. package/dist-types/ts3.4/models/models_4.d.ts +112 -4
  88. package/dist-types/ts3.4/pagination/ListMlflowAppsPaginator.d.ts +11 -0
  89. package/dist-types/ts3.4/pagination/index.d.ts +1 -0
  90. package/dist-types/ts3.4/schemas/schemas_0.d.ts +21 -0
  91. package/package.json +5 -5
@@ -240,7 +240,7 @@ declare const UpdateDomainCommand_base: {
240
240
  * ],
241
241
  * StudioWebPortalSettings: { // StudioWebPortalSettings
242
242
  * HiddenMlTools: [ // HiddenMlToolsList
243
- * "DataWrangler" || "FeatureStore" || "EmrClusters" || "AutoMl" || "Experiments" || "Training" || "ModelEvaluation" || "Pipelines" || "Models" || "JumpStart" || "InferenceRecommender" || "Endpoints" || "Projects" || "InferenceOptimization" || "PerformanceEvaluation" || "LakeraGuard" || "Comet" || "DeepchecksLLMEvaluation" || "Fiddler" || "HyperPodClusters",
243
+ * "DataWrangler" || "FeatureStore" || "EmrClusters" || "AutoMl" || "Experiments" || "Training" || "ModelEvaluation" || "Pipelines" || "Models" || "JumpStart" || "InferenceRecommender" || "Endpoints" || "Projects" || "InferenceOptimization" || "PerformanceEvaluation" || "LakeraGuard" || "Comet" || "DeepchecksLLMEvaluation" || "Fiddler" || "HyperPodClusters" || "RunningInstances" || "Datasets" || "Evaluators",
244
244
  * ],
245
245
  * HiddenAppTypes: [ // HiddenAppTypesList
246
246
  * "JupyterServer" || "KernelGateway" || "DetailedProfiler" || "TensorBoard" || "CodeEditor" || "JupyterLab" || "RStudioServerPro" || "RSessionGateway" || "Canvas",
@@ -39,7 +39,7 @@ declare const UpdateHubContentCommand_base: {
39
39
  * const input = { // UpdateHubContentRequest
40
40
  * HubName: "STRING_VALUE", // required
41
41
  * HubContentName: "STRING_VALUE", // required
42
- * HubContentType: "Model" || "Notebook" || "ModelReference", // required
42
+ * HubContentType: "Model" || "Notebook" || "ModelReference" || "DataSet" || "JsonDoc", // required
43
43
  * HubContentVersion: "STRING_VALUE", // required
44
44
  * HubContentDisplayName: "STRING_VALUE",
45
45
  * HubContentDescription: "STRING_VALUE",
@@ -39,7 +39,7 @@ declare const UpdateHubContentReferenceCommand_base: {
39
39
  * const input = { // UpdateHubContentReferenceRequest
40
40
  * HubName: "STRING_VALUE", // required
41
41
  * HubContentName: "STRING_VALUE", // required
42
- * HubContentType: "Model" || "Notebook" || "ModelReference", // required
42
+ * HubContentType: "Model" || "Notebook" || "ModelReference" || "DataSet" || "JsonDoc", // required
43
43
  * MinVersion: "STRING_VALUE",
44
44
  * };
45
45
  * const command = new UpdateHubContentReferenceCommand(input);
@@ -0,0 +1,88 @@
1
+ import { Command as $Command } from "@smithy/smithy-client";
2
+ import { MetadataBearer as __MetadataBearer } from "@smithy/types";
3
+ import { UpdateMlflowAppRequest, UpdateMlflowAppResponse } from "../models/models_4";
4
+ import { SageMakerClientResolvedConfig, ServiceInputTypes, ServiceOutputTypes } from "../SageMakerClient";
5
+ /**
6
+ * @public
7
+ */
8
+ export type { __MetadataBearer };
9
+ export { $Command };
10
+ /**
11
+ * @public
12
+ *
13
+ * The input for {@link UpdateMlflowAppCommand}.
14
+ */
15
+ export interface UpdateMlflowAppCommandInput extends UpdateMlflowAppRequest {
16
+ }
17
+ /**
18
+ * @public
19
+ *
20
+ * The output of {@link UpdateMlflowAppCommand}.
21
+ */
22
+ export interface UpdateMlflowAppCommandOutput extends UpdateMlflowAppResponse, __MetadataBearer {
23
+ }
24
+ declare const UpdateMlflowAppCommand_base: {
25
+ new (input: UpdateMlflowAppCommandInput): import("@smithy/smithy-client").CommandImpl<UpdateMlflowAppCommandInput, UpdateMlflowAppCommandOutput, SageMakerClientResolvedConfig, ServiceInputTypes, ServiceOutputTypes>;
26
+ new (input: UpdateMlflowAppCommandInput): import("@smithy/smithy-client").CommandImpl<UpdateMlflowAppCommandInput, UpdateMlflowAppCommandOutput, SageMakerClientResolvedConfig, ServiceInputTypes, ServiceOutputTypes>;
27
+ getEndpointParameterInstructions(): import("@smithy/middleware-endpoint").EndpointParameterInstructions;
28
+ };
29
+ /**
30
+ * <p>Updates an MLflow App.</p>
31
+ * @example
32
+ * Use a bare-bones client and the command you need to make an API call.
33
+ * ```javascript
34
+ * import { SageMakerClient, UpdateMlflowAppCommand } from "@aws-sdk/client-sagemaker"; // ES Modules import
35
+ * // const { SageMakerClient, UpdateMlflowAppCommand } = require("@aws-sdk/client-sagemaker"); // CommonJS import
36
+ * // import type { SageMakerClientConfig } from "@aws-sdk/client-sagemaker";
37
+ * const config = {}; // type is SageMakerClientConfig
38
+ * const client = new SageMakerClient(config);
39
+ * const input = { // UpdateMlflowAppRequest
40
+ * Arn: "STRING_VALUE", // required
41
+ * Name: "STRING_VALUE",
42
+ * ArtifactStoreUri: "STRING_VALUE",
43
+ * ModelRegistrationMode: "AutoModelRegistrationEnabled" || "AutoModelRegistrationDisabled",
44
+ * WeeklyMaintenanceWindowStart: "STRING_VALUE",
45
+ * DefaultDomainIdList: [ // DefaultDomainIdList
46
+ * "STRING_VALUE",
47
+ * ],
48
+ * AccountDefaultStatus: "ENABLED" || "DISABLED",
49
+ * };
50
+ * const command = new UpdateMlflowAppCommand(input);
51
+ * const response = await client.send(command);
52
+ * // { // UpdateMlflowAppResponse
53
+ * // Arn: "STRING_VALUE",
54
+ * // };
55
+ *
56
+ * ```
57
+ *
58
+ * @param UpdateMlflowAppCommandInput - {@link UpdateMlflowAppCommandInput}
59
+ * @returns {@link UpdateMlflowAppCommandOutput}
60
+ * @see {@link UpdateMlflowAppCommandInput} for command's `input` shape.
61
+ * @see {@link UpdateMlflowAppCommandOutput} for command's `response` shape.
62
+ * @see {@link SageMakerClientResolvedConfig | config} for SageMakerClient's `config` shape.
63
+ *
64
+ * @throws {@link ConflictException} (client fault)
65
+ * <p>There was a conflict when you attempted to modify a SageMaker entity such as an <code>Experiment</code> or <code>Artifact</code>.</p>
66
+ *
67
+ * @throws {@link ResourceNotFound} (client fault)
68
+ * <p>Resource being access is not found.</p>
69
+ *
70
+ * @throws {@link SageMakerServiceException}
71
+ * <p>Base exception class for all service exceptions from SageMaker service.</p>
72
+ *
73
+ *
74
+ * @public
75
+ */
76
+ export declare class UpdateMlflowAppCommand extends UpdateMlflowAppCommand_base {
77
+ /** @internal type navigation helper, not in runtime. */
78
+ protected static __types: {
79
+ api: {
80
+ input: UpdateMlflowAppRequest;
81
+ output: UpdateMlflowAppResponse;
82
+ };
83
+ sdk: {
84
+ input: UpdateMlflowAppCommandInput;
85
+ output: UpdateMlflowAppCommandOutput;
86
+ };
87
+ };
88
+ }
@@ -241,7 +241,7 @@ declare const UpdateUserProfileCommand_base: {
241
241
  * ],
242
242
  * StudioWebPortalSettings: { // StudioWebPortalSettings
243
243
  * HiddenMlTools: [ // HiddenMlToolsList
244
- * "DataWrangler" || "FeatureStore" || "EmrClusters" || "AutoMl" || "Experiments" || "Training" || "ModelEvaluation" || "Pipelines" || "Models" || "JumpStart" || "InferenceRecommender" || "Endpoints" || "Projects" || "InferenceOptimization" || "PerformanceEvaluation" || "LakeraGuard" || "Comet" || "DeepchecksLLMEvaluation" || "Fiddler" || "HyperPodClusters",
244
+ * "DataWrangler" || "FeatureStore" || "EmrClusters" || "AutoMl" || "Experiments" || "Training" || "ModelEvaluation" || "Pipelines" || "Models" || "JumpStart" || "InferenceRecommender" || "Endpoints" || "Projects" || "InferenceOptimization" || "PerformanceEvaluation" || "LakeraGuard" || "Comet" || "DeepchecksLLMEvaluation" || "Fiddler" || "HyperPodClusters" || "RunningInstances" || "Datasets" || "Evaluators",
245
245
  * ],
246
246
  * HiddenAppTypes: [ // HiddenAppTypesList
247
247
  * "JupyterServer" || "KernelGateway" || "DetailedProfiler" || "TensorBoard" || "CodeEditor" || "JupyterLab" || "RStudioServerPro" || "RSessionGateway" || "Canvas",
@@ -42,6 +42,7 @@ export * from "./CreateInferenceComponentCommand";
42
42
  export * from "./CreateInferenceExperimentCommand";
43
43
  export * from "./CreateInferenceRecommendationsJobCommand";
44
44
  export * from "./CreateLabelingJobCommand";
45
+ export * from "./CreateMlflowAppCommand";
45
46
  export * from "./CreateMlflowTrackingServerCommand";
46
47
  export * from "./CreateModelBiasJobDefinitionCommand";
47
48
  export * from "./CreateModelCardCommand";
@@ -59,6 +60,7 @@ export * from "./CreatePartnerAppCommand";
59
60
  export * from "./CreatePartnerAppPresignedUrlCommand";
60
61
  export * from "./CreatePipelineCommand";
61
62
  export * from "./CreatePresignedDomainUrlCommand";
63
+ export * from "./CreatePresignedMlflowAppUrlCommand";
62
64
  export * from "./CreatePresignedMlflowTrackingServerUrlCommand";
63
65
  export * from "./CreatePresignedNotebookInstanceUrlCommand";
64
66
  export * from "./CreateProcessingJobCommand";
@@ -104,6 +106,7 @@ export * from "./DeleteImageCommand";
104
106
  export * from "./DeleteImageVersionCommand";
105
107
  export * from "./DeleteInferenceComponentCommand";
106
108
  export * from "./DeleteInferenceExperimentCommand";
109
+ export * from "./DeleteMlflowAppCommand";
107
110
  export * from "./DeleteMlflowTrackingServerCommand";
108
111
  export * from "./DeleteModelBiasJobDefinitionCommand";
109
112
  export * from "./DeleteModelCardCommand";
@@ -169,6 +172,7 @@ export * from "./DescribeInferenceExperimentCommand";
169
172
  export * from "./DescribeInferenceRecommendationsJobCommand";
170
173
  export * from "./DescribeLabelingJobCommand";
171
174
  export * from "./DescribeLineageGroupCommand";
175
+ export * from "./DescribeMlflowAppCommand";
172
176
  export * from "./DescribeMlflowTrackingServerCommand";
173
177
  export * from "./DescribeModelBiasJobDefinitionCommand";
174
178
  export * from "./DescribeModelCardCommand";
@@ -253,6 +257,7 @@ export * from "./ListInferenceRecommendationsJobsCommand";
253
257
  export * from "./ListLabelingJobsCommand";
254
258
  export * from "./ListLabelingJobsForWorkteamCommand";
255
259
  export * from "./ListLineageGroupsCommand";
260
+ export * from "./ListMlflowAppsCommand";
256
261
  export * from "./ListMlflowTrackingServersCommand";
257
262
  export * from "./ListModelBiasJobDefinitionsCommand";
258
263
  export * from "./ListModelCardExportJobsCommand";
@@ -352,6 +357,7 @@ export * from "./UpdateImageVersionCommand";
352
357
  export * from "./UpdateInferenceComponentCommand";
353
358
  export * from "./UpdateInferenceComponentRuntimeConfigCommand";
354
359
  export * from "./UpdateInferenceExperimentCommand";
360
+ export * from "./UpdateMlflowAppCommand";
355
361
  export * from "./UpdateMlflowTrackingServerCommand";
356
362
  export * from "./UpdateModelCardCommand";
357
363
  export * from "./UpdateModelPackageCommand";
@@ -36,6 +36,18 @@ export declare const MIGProfileType: {
36
36
  * @public
37
37
  */
38
38
  export type MIGProfileType = (typeof MIGProfileType)[keyof typeof MIGProfileType];
39
+ /**
40
+ * @public
41
+ * @enum
42
+ */
43
+ export declare const AccountDefaultStatus: {
44
+ readonly DISABLED: "DISABLED";
45
+ readonly ENABLED: "ENABLED";
46
+ };
47
+ /**
48
+ * @public
49
+ */
50
+ export type AccountDefaultStatus = (typeof AccountDefaultStatus)[keyof typeof AccountDefaultStatus];
39
51
  /**
40
52
  * @public
41
53
  * @enum
@@ -2091,6 +2103,7 @@ export declare const ClusterInstanceType: {
2091
2103
  readonly ML_P5EN_48XLARGE: "ml.p5en.48xlarge";
2092
2104
  readonly ML_P5E_48XLARGE: "ml.p5e.48xlarge";
2093
2105
  readonly ML_P5_48XLARGE: "ml.p5.48xlarge";
2106
+ readonly ML_P5_4XLARGE: "ml.p5.4xlarge";
2094
2107
  readonly ML_P6E_GB200_36XLARGE: "ml.p6e-gb200.36xlarge";
2095
2108
  readonly ML_P6_B200_48XLARGE: "ml.p6-b200.48xlarge";
2096
2109
  readonly ML_R6I_12XLARGE: "ml.r6i.12xlarge";
@@ -2775,10 +2788,12 @@ export type StudioWebPortal = (typeof StudioWebPortal)[keyof typeof StudioWebPor
2775
2788
  export declare const MlTools: {
2776
2789
  readonly AUTO_ML: "AutoMl";
2777
2790
  readonly COMET: "Comet";
2791
+ readonly DATASETS: "Datasets";
2778
2792
  readonly DATA_WRANGLER: "DataWrangler";
2779
2793
  readonly DEEPCHECKS_LLM_EVALUATION: "DeepchecksLLMEvaluation";
2780
2794
  readonly EMR_CLUSTERS: "EmrClusters";
2781
2795
  readonly ENDPOINTS: "Endpoints";
2796
+ readonly EVALUATORS: "Evaluators";
2782
2797
  readonly EXPERIMENTS: "Experiments";
2783
2798
  readonly FEATURE_STORE: "FeatureStore";
2784
2799
  readonly FIDDLER: "Fiddler";
@@ -2792,6 +2807,7 @@ export declare const MlTools: {
2792
2807
  readonly PERFORMANCE_EVALUATION: "PerformanceEvaluation";
2793
2808
  readonly PIPELINES: "Pipelines";
2794
2809
  readonly PROJECTS: "Projects";
2810
+ readonly RUNNING_INSTANCES: "RunningInstances";
2795
2811
  readonly TRAINING: "Training";
2796
2812
  };
2797
2813
  /**
@@ -3003,6 +3019,8 @@ export type ThroughputMode = (typeof ThroughputMode)[keyof typeof ThroughputMode
3003
3019
  * @enum
3004
3020
  */
3005
3021
  export declare const HubContentType: {
3022
+ readonly DATA_SET: "DataSet";
3023
+ readonly JSON_DOC: "JsonDoc";
3006
3024
  readonly MODEL: "Model";
3007
3025
  readonly MODEL_REFERENCE: "ModelReference";
3008
3026
  readonly NOTEBOOK: "Notebook";
@@ -3352,6 +3370,18 @@ export declare const FlatInvocations: {
3352
3370
  * @public
3353
3371
  */
3354
3372
  export type FlatInvocations = (typeof FlatInvocations)[keyof typeof FlatInvocations];
3373
+ /**
3374
+ * @public
3375
+ * @enum
3376
+ */
3377
+ export declare const ModelRegistrationMode: {
3378
+ readonly AUTO_MODEL_REGISTRATION_DISABLED: "AutoModelRegistrationDisabled";
3379
+ readonly AUTO_MODEL_REGISTRATION_ENABLED: "AutoModelRegistrationEnabled";
3380
+ };
3381
+ /**
3382
+ * @public
3383
+ */
3384
+ export type ModelRegistrationMode = (typeof ModelRegistrationMode)[keyof typeof ModelRegistrationMode];
3355
3385
  /**
3356
3386
  * @public
3357
3387
  * @enum
@@ -3964,6 +3994,8 @@ export declare const HubContentStatus: {
3964
3994
  readonly DELETING: "Deleting";
3965
3995
  readonly IMPORTING: "Importing";
3966
3996
  readonly IMPORT_FAILED: "ImportFailed";
3997
+ readonly PENDING_DELETE: "PendingDelete";
3998
+ readonly PENDING_IMPORT: "PendingImport";
3967
3999
  };
3968
4000
  /**
3969
4001
  * @public
@@ -4153,6 +4185,38 @@ export declare const LabelingJobStatus: {
4153
4185
  * @public
4154
4186
  */
4155
4187
  export type LabelingJobStatus = (typeof LabelingJobStatus)[keyof typeof LabelingJobStatus];
4188
+ /**
4189
+ * @public
4190
+ * @enum
4191
+ */
4192
+ export declare const MaintenanceStatus: {
4193
+ readonly MAINTENANCE_COMPLETE: "MaintenanceComplete";
4194
+ readonly MAINTENANCE_FAILED: "MaintenanceFailed";
4195
+ readonly MAINTENANCE_IN_PROGRESS: "MaintenanceInProgress";
4196
+ };
4197
+ /**
4198
+ * @public
4199
+ */
4200
+ export type MaintenanceStatus = (typeof MaintenanceStatus)[keyof typeof MaintenanceStatus];
4201
+ /**
4202
+ * @public
4203
+ * @enum
4204
+ */
4205
+ export declare const MlflowAppStatus: {
4206
+ readonly CREATED: "Created";
4207
+ readonly CREATE_FAILED: "CreateFailed";
4208
+ readonly CREATING: "Creating";
4209
+ readonly DELETED: "Deleted";
4210
+ readonly DELETE_FAILED: "DeleteFailed";
4211
+ readonly DELETING: "Deleting";
4212
+ readonly UPDATED: "Updated";
4213
+ readonly UPDATE_FAILED: "UpdateFailed";
4214
+ readonly UPDATING: "Updating";
4215
+ };
4216
+ /**
4217
+ * @public
4218
+ */
4219
+ export type MlflowAppStatus = (typeof MlflowAppStatus)[keyof typeof MlflowAppStatus];
4156
4220
  /**
4157
4221
  * @public
4158
4222
  * @enum
@@ -5132,6 +5196,19 @@ export declare const SortLineageGroupsBy: {
5132
5196
  * @public
5133
5197
  */
5134
5198
  export type SortLineageGroupsBy = (typeof SortLineageGroupsBy)[keyof typeof SortLineageGroupsBy];
5199
+ /**
5200
+ * @public
5201
+ * @enum
5202
+ */
5203
+ export declare const SortMlflowAppBy: {
5204
+ readonly CREATION_TIME: "CreationTime";
5205
+ readonly NAME: "Name";
5206
+ readonly STATUS: "Status";
5207
+ };
5208
+ /**
5209
+ * @public
5210
+ */
5211
+ export type SortMlflowAppBy = (typeof SortMlflowAppBy)[keyof typeof SortMlflowAppBy];
5135
5212
  /**
5136
5213
  * @public
5137
5214
  * @enum
@@ -4896,12 +4896,12 @@ export interface ClusterInstanceGroupDetails {
4896
4896
  */
4897
4897
  CapacityRequirements?: ClusterCapacityRequirements | undefined;
4898
4898
  /**
4899
- * <p>The number of nodes running a specific image ID since the last software update request.</p>
4899
+ * <p>Represents the number of running nodes using the desired Image ID.</p> <ol> <li> <p> <b>During software update operations:</b> This count shows the number of nodes running on the desired Image ID. If a rollback occurs, the current image ID and desired image ID (both included in the describe cluster response) swap values. The TargetStateCount then shows the number of nodes running on the newly designated desired image ID (which was previously the current image ID).</p> </li> <li> <p> <b>During simultaneous scaling and software update operations:</b> This count shows the number of instances running on the desired image ID, including any new instances created as part of the scaling request. New nodes are always created using the desired image ID, so TargetStateCount reflects the total count of nodes running on the desired image ID, even during rollback scenarios.</p> </li> </ol>
4900
4900
  * @public
4901
4901
  */
4902
4902
  TargetStateCount?: number | undefined;
4903
4903
  /**
4904
- * <p>Status of the last software udpate request.</p>
4904
+ * <p>Status of the last software udpate request.</p> <p>Status transitions follow these possible sequences:</p> <ul> <li> <p>Pending -&gt; InProgress -&gt; Succeeded</p> </li> <li> <p>Pending -&gt; InProgress -&gt; RollbackInProgress -&gt; RollbackComplete</p> </li> <li> <p>Pending -&gt; InProgress -&gt; RollbackInProgress -&gt; Failed</p> </li> </ul>
4905
4905
  * @public
4906
4906
  */
4907
4907
  SoftwareUpdateStatus?: SoftwareUpdateStatus | undefined;
@@ -5254,7 +5254,7 @@ export interface ClusterOrchestrator {
5254
5254
  * <p>The Amazon EKS cluster used as the orchestrator for the SageMaker HyperPod cluster.</p>
5255
5255
  * @public
5256
5256
  */
5257
- Eks: ClusterOrchestratorEksConfig | undefined;
5257
+ Eks?: ClusterOrchestratorEksConfig | undefined;
5258
5258
  }
5259
5259
  /**
5260
5260
  * <p>Configuration settings for an Amazon FSx for Lustre file system to be used with the cluster.</p>
@@ -1,6 +1,6 @@
1
1
  import { AutomaticJsonStringConversion as __AutomaticJsonStringConversion } from "@smithy/smithy-client";
2
- import { _InstanceType, AppInstanceType, AppNetworkAccessType, AppSecurityGroupManagement, AppType, AuthMode, AutoMountHomeEFS, AwsManagedHumanLoopRequestSource, CapacityReservationPreference, CollectionType, ContentClassifier, DataDistributionType, DeviceSubsetType, DirectInternetAccess, EdgePresetDeploymentType, ExecutionRoleIdentityConfig, FailureHandlingPolicy, FeatureStatus, FeatureType, FlatInvocations, HubContentType, HyperParameterScalingType, HyperParameterTuningAllocationStrategy, HyperParameterTuningJobStrategyType, HyperParameterTuningJobWarmStartType, InferenceExecutionMode, InferenceExperimentType, InputMode, IPAddressType, JobType, ManagedInstanceScalingStatus, MetricPublishFrequencyInSeconds, MlTools, ModelApprovalStatus, ModelCardStatus, ModelInfrastructureType, ModelSpeculativeDecodingS3DataType, ModelSpeculativeDecodingTechnique, MonitoringProblemType, MonitoringType, NotebookInstanceAcceleratorType, NotebookOutputOption, OptimizationJobDeploymentInstanceType, PartnerAppAuthType, PartnerAppType, ProcessingInstanceType, ProcessingS3CompressionType, ProcessingS3DataDistributionType, ProcessingS3DataType, ProcessingS3InputMode, ProcessingS3UploadMode, Processor, ProductionVariantAcceleratorType, ProductionVariantInferenceAmiVersion, ProductionVariantInstanceType, RecommendationJobSupportedEndpointType, RecommendationJobType, RedshiftResultCompressionType, RedshiftResultFormat, RootAccess, RoutingStrategy, RStudioServerProAccessStatus, RStudioServerProUserGroup, SageMakerImageName, SharingType, SkipModelValidation, StorageType, StudioLifecycleConfigAppType, StudioWebPortal, TableFormat, TagPropagation, ThroughputMode, TrackingServerSize, TrafficType, TrainingInputMode, TrainingInstanceType, TrainingJobEarlyStoppingType, TtlDurationUnit, VendorGuidance } from "./enums";
3
- import { AdditionalInferenceSpecificationDefinition, AlgorithmSpecification, AmazonQSettings, AnnotationConsolidationConfig, AppLifecycleManagement, AppSpecification, AsyncInferenceConfig, AthenaDatasetDefinition, AuthorizedUrl, AutoParameter, AutoRollbackConfig, Autotune, BatchTransformInput, BestObjectiveNotImproving, Bias, BlueGreenUpdatePolicy, CanvasAppSettings, CapacitySize, CaptureContentTypeHeader, CaptureOption, CategoricalParameter, CategoricalParameterRange, CfnCreateTemplateProvider, Channel, CheckpointConfig, ClarifyExplainerConfig, CodeEditorAppSettings, CodeRepository, CollectionConfig, CollectionConfiguration, ContainerDefinition, ContinuousParameterRange, ConvergenceDetected, CustomImage, DataQualityAppSpecification, DataQualityBaselineConfig, HyperParameterTuningJobObjective, InferenceSpecification, MetadataProperties, MetricDefinition, MetricsSource, ModelDataSource, MonitoringConstraintsResource, MonitoringStatisticsResource, OutputDataConfig, ResourceConfig, ResourceSpec, StoppingCondition, Tag, TransformJobDefinition, VpcConfig } from "./models_0";
2
+ import { _InstanceType, AccountDefaultStatus, AppInstanceType, AppNetworkAccessType, AppSecurityGroupManagement, AppType, AuthMode, AutoMountHomeEFS, AwsManagedHumanLoopRequestSource, CapacityReservationPreference, CollectionType, ContentClassifier, DataDistributionType, DeviceSubsetType, DirectInternetAccess, EdgePresetDeploymentType, ExecutionRoleIdentityConfig, FailureHandlingPolicy, FeatureStatus, FeatureType, FlatInvocations, HubContentType, HyperParameterScalingType, HyperParameterTuningAllocationStrategy, HyperParameterTuningJobStrategyType, HyperParameterTuningJobWarmStartType, InferenceExecutionMode, InferenceExperimentType, InputMode, IPAddressType, JobType, ManagedInstanceScalingStatus, MetricPublishFrequencyInSeconds, MlTools, ModelApprovalStatus, ModelCardStatus, ModelInfrastructureType, ModelRegistrationMode, ModelSpeculativeDecodingS3DataType, ModelSpeculativeDecodingTechnique, MonitoringProblemType, MonitoringType, NotebookInstanceAcceleratorType, NotebookOutputOption, OptimizationJobDeploymentInstanceType, PartnerAppAuthType, PartnerAppType, ProcessingInstanceType, ProcessingS3CompressionType, ProcessingS3DataDistributionType, ProcessingS3DataType, ProcessingS3InputMode, ProcessingS3UploadMode, Processor, ProductionVariantAcceleratorType, ProductionVariantInferenceAmiVersion, ProductionVariantInstanceType, RecommendationJobSupportedEndpointType, RecommendationJobType, RedshiftResultCompressionType, RedshiftResultFormat, RootAccess, RoutingStrategy, RStudioServerProAccessStatus, RStudioServerProUserGroup, SageMakerImageName, SharingType, SkipModelValidation, StorageType, StudioLifecycleConfigAppType, StudioWebPortal, TableFormat, TagPropagation, ThroughputMode, TrackingServerSize, TrafficType, TrainingInputMode, TrainingInstanceType, TrainingJobEarlyStoppingType, TtlDurationUnit, VendorGuidance } from "./enums";
3
+ import { AdditionalInferenceSpecificationDefinition, AmazonQSettings, AnnotationConsolidationConfig, AppLifecycleManagement, AppSpecification, AsyncInferenceConfig, AthenaDatasetDefinition, AuthorizedUrl, AutoParameter, AutoRollbackConfig, Autotune, BatchTransformInput, BestObjectiveNotImproving, Bias, BlueGreenUpdatePolicy, CanvasAppSettings, CapacitySize, CaptureContentTypeHeader, CaptureOption, CategoricalParameter, CategoricalParameterRange, CfnCreateTemplateProvider, Channel, CheckpointConfig, ClarifyExplainerConfig, CodeEditorAppSettings, CodeRepository, CollectionConfig, CollectionConfiguration, ContainerDefinition, ContinuousParameterRange, ConvergenceDetected, CustomImage, DataQualityAppSpecification, DataQualityBaselineConfig, HyperParameterTuningJobObjective, InferenceSpecification, MetadataProperties, MetricDefinition, MetricsSource, ModelDataSource, MonitoringConstraintsResource, MonitoringStatisticsResource, OutputDataConfig, ResourceConfig, ResourceSpec, StoppingCondition, Tag, TransformJobDefinition, VpcConfig } from "./models_0";
4
4
  /**
5
5
  * <p>Input object for the endpoint</p>
6
6
  * @public
@@ -3866,6 +3866,61 @@ export interface CreateLabelingJobResponse {
3866
3866
  */
3867
3867
  LabelingJobArn: string | undefined;
3868
3868
  }
3869
+ /**
3870
+ * @public
3871
+ */
3872
+ export interface CreateMlflowAppRequest {
3873
+ /**
3874
+ * <p>A string identifying the MLflow app name. This string is not part of the tracking server ARN.</p>
3875
+ * @public
3876
+ */
3877
+ Name: string | undefined;
3878
+ /**
3879
+ * <p>The S3 URI for a general purpose bucket to use as the MLflow App artifact store.</p>
3880
+ * @public
3881
+ */
3882
+ ArtifactStoreUri: string | undefined;
3883
+ /**
3884
+ * <p>The Amazon Resource Name (ARN) for an IAM role in your account that the MLflow App uses to access the artifact store in Amazon S3. The role should have the <code>AmazonS3FullAccess</code> permission.</p>
3885
+ * @public
3886
+ */
3887
+ RoleArn: string | undefined;
3888
+ /**
3889
+ * <p>Whether to enable or disable automatic registration of new MLflow models to the SageMaker Model Registry. To enable automatic model registration, set this value to <code>AutoModelRegistrationEnabled</code>. To disable automatic model registration, set this value to <code>AutoModelRegistrationDisabled</code>. If not specified, <code>AutomaticModelRegistration</code> defaults to <code>AutoModelRegistrationDisabled</code>.</p>
3890
+ * @public
3891
+ */
3892
+ ModelRegistrationMode?: ModelRegistrationMode | undefined;
3893
+ /**
3894
+ * <p>The day and time of the week in Coordinated Universal Time (UTC) 24-hour standard time that weekly maintenance updates are scheduled. For example: TUE:03:30.</p>
3895
+ * @public
3896
+ */
3897
+ WeeklyMaintenanceWindowStart?: string | undefined;
3898
+ /**
3899
+ * <p>Indicates whether this MLflow app is the default for the entire account.</p>
3900
+ * @public
3901
+ */
3902
+ AccountDefaultStatus?: AccountDefaultStatus | undefined;
3903
+ /**
3904
+ * <p>List of SageMaker domain IDs for which this MLflow App is used as the default.</p>
3905
+ * @public
3906
+ */
3907
+ DefaultDomainIdList?: string[] | undefined;
3908
+ /**
3909
+ * <p>Tags consisting of key-value pairs used to manage metadata for the MLflow App.</p>
3910
+ * @public
3911
+ */
3912
+ Tags?: Tag[] | undefined;
3913
+ }
3914
+ /**
3915
+ * @public
3916
+ */
3917
+ export interface CreateMlflowAppResponse {
3918
+ /**
3919
+ * <p>The ARN of the MLflow App.</p>
3920
+ * @public
3921
+ */
3922
+ Arn?: string | undefined;
3923
+ }
3869
3924
  /**
3870
3925
  * @public
3871
3926
  */
@@ -5926,6 +5981,36 @@ export interface CreatePresignedDomainUrlResponse {
5926
5981
  */
5927
5982
  AuthorizedUrl?: string | undefined;
5928
5983
  }
5984
+ /**
5985
+ * @public
5986
+ */
5987
+ export interface CreatePresignedMlflowAppUrlRequest {
5988
+ /**
5989
+ * <p>The ARN of the MLflow App to connect to your MLflow UI.</p>
5990
+ * @public
5991
+ */
5992
+ Arn: string | undefined;
5993
+ /**
5994
+ * <p>The duration in seconds that your presigned URL is valid. The presigned URL can be used only once.</p>
5995
+ * @public
5996
+ */
5997
+ ExpiresInSeconds?: number | undefined;
5998
+ /**
5999
+ * <p>The duration in seconds that your presigned URL is valid. The presigned URL can be used only once.</p>
6000
+ * @public
6001
+ */
6002
+ SessionExpirationDurationInSeconds?: number | undefined;
6003
+ }
6004
+ /**
6005
+ * @public
6006
+ */
6007
+ export interface CreatePresignedMlflowAppUrlResponse {
6008
+ /**
6009
+ * <p>A presigned URL with an authorization token.</p>
6010
+ * @public
6011
+ */
6012
+ AuthorizedUrl?: string | undefined;
6013
+ }
5929
6014
  /**
5930
6015
  * @public
5931
6016
  */
@@ -6917,171 +7002,3 @@ export interface ProfilerRuleConfiguration {
6917
7002
  */
6918
7003
  RuleParameters?: Record<string, string> | undefined;
6919
7004
  }
6920
- /**
6921
- * <p>Configuration for remote debugging for the <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html">CreateTrainingJob</a> API. To learn more about the remote debugging functionality of SageMaker, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/train-remote-debugging.html">Access a training container through Amazon Web Services Systems Manager (SSM) for remote debugging</a>.</p>
6922
- * @public
6923
- */
6924
- export interface RemoteDebugConfig {
6925
- /**
6926
- * <p>If set to True, enables remote debugging.</p>
6927
- * @public
6928
- */
6929
- EnableRemoteDebug?: boolean | undefined;
6930
- }
6931
- /**
6932
- * <p>Contains information about attribute-based access control (ABAC) for a training job. The session chaining configuration uses Amazon Security Token Service (STS) for your training job to request temporary, limited-privilege credentials to tenants. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/model-access-training-data.html#model-access-training-data-abac">Attribute-based access control (ABAC) for multi-tenancy training</a>.</p>
6933
- * @public
6934
- */
6935
- export interface SessionChainingConfig {
6936
- /**
6937
- * <p>Set to <code>True</code> to allow SageMaker to extract session tags from a training job creation role and reuse these tags when assuming the training job execution role.</p>
6938
- * @public
6939
- */
6940
- EnableSessionTagChaining?: boolean | undefined;
6941
- }
6942
- /**
6943
- * <p>Configuration of storage locations for the Amazon SageMaker Debugger TensorBoard output data.</p>
6944
- * @public
6945
- */
6946
- export interface TensorBoardOutputConfig {
6947
- /**
6948
- * <p>Path to local storage location for tensorBoard output. Defaults to <code>/opt/ml/output/tensorboard</code>.</p>
6949
- * @public
6950
- */
6951
- LocalPath?: string | undefined;
6952
- /**
6953
- * <p>Path to Amazon S3 storage location for TensorBoard output.</p>
6954
- * @public
6955
- */
6956
- S3OutputPath: string | undefined;
6957
- }
6958
- /**
6959
- * @public
6960
- */
6961
- export interface CreateTrainingJobRequest {
6962
- /**
6963
- * <p>The name of the training job. The name must be unique within an Amazon Web Services Region in an Amazon Web Services account. </p>
6964
- * @public
6965
- */
6966
- TrainingJobName: string | undefined;
6967
- /**
6968
- * <p>Algorithm-specific parameters that influence the quality of the model. You set hyperparameters before you start the learning process. For a list of hyperparameters for each training algorithm provided by SageMaker, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html">Algorithms</a>. </p> <p>You can specify a maximum of 100 hyperparameters. Each hyperparameter is a key-value pair. Each key and value is limited to 256 characters, as specified by the <code>Length Constraint</code>. </p> <important> <p>Do not include any security-sensitive information including account access IDs, secrets, or tokens in any hyperparameter fields. As part of the shared responsibility model, you are responsible for any potential exposure, unauthorized access, or compromise of your sensitive data if caused by any security-sensitive information included in the request hyperparameter variable or plain text fields.</p> </important>
6969
- * @public
6970
- */
6971
- HyperParameters?: Record<string, string> | undefined;
6972
- /**
6973
- * <p>The registry path of the Docker image that contains the training algorithm and algorithm-specific metadata, including the input mode. For more information about algorithms provided by SageMaker, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html">Algorithms</a>. For information about providing your own algorithms, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html">Using Your Own Algorithms with Amazon SageMaker</a>. </p>
6974
- * @public
6975
- */
6976
- AlgorithmSpecification?: AlgorithmSpecification | undefined;
6977
- /**
6978
- * <p>The Amazon Resource Name (ARN) of an IAM role that SageMaker can assume to perform tasks on your behalf. </p> <p>During model training, SageMaker needs your permission to read input data from an S3 bucket, download a Docker image that contains training code, write model artifacts to an S3 bucket, write logs to Amazon CloudWatch Logs, and publish metrics to Amazon CloudWatch. You grant permissions for all of these tasks to an IAM role. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html">SageMaker Roles</a>. </p> <note> <p>To be able to pass this role to SageMaker, the caller of this API must have the <code>iam:PassRole</code> permission.</p> </note>
6979
- * @public
6980
- */
6981
- RoleArn: string | undefined;
6982
- /**
6983
- * <p>An array of <code>Channel</code> objects. Each channel is a named input source. <code>InputDataConfig</code> describes the input data and its location. </p> <p>Algorithms can accept input data from one or more channels. For example, an algorithm might have two channels of input data, <code>training_data</code> and <code>validation_data</code>. The configuration for each channel provides the S3, EFS, or FSx location where the input data is stored. It also provides information about the stored data: the MIME type, compression method, and whether the data is wrapped in RecordIO format. </p> <p>Depending on the input mode that the algorithm supports, SageMaker either copies input data files from an S3 bucket to a local directory in the Docker container, or makes it available as input streams. For example, if you specify an EFS location, input data files are available as input streams. They do not need to be downloaded.</p> <p>Your input must be in the same Amazon Web Services region as your training job.</p>
6984
- * @public
6985
- */
6986
- InputDataConfig?: Channel[] | undefined;
6987
- /**
6988
- * <p>Specifies the path to the S3 location where you want to store model artifacts. SageMaker creates subfolders for the artifacts. </p>
6989
- * @public
6990
- */
6991
- OutputDataConfig: OutputDataConfig | undefined;
6992
- /**
6993
- * <p>The resources, including the ML compute instances and ML storage volumes, to use for model training. </p> <p>ML storage volumes store model artifacts and incremental states. Training algorithms might also use ML storage volumes for scratch space. If you want SageMaker to use the ML storage volume to store the training data, choose <code>File</code> as the <code>TrainingInputMode</code> in the algorithm specification. For distributed training algorithms, specify an instance count greater than 1.</p>
6994
- * @public
6995
- */
6996
- ResourceConfig?: ResourceConfig | undefined;
6997
- /**
6998
- * <p>A <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_VpcConfig.html">VpcConfig</a> object that specifies the VPC that you want your training job to connect to. Control access to and from your training container by configuring the VPC. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/train-vpc.html">Protect Training Jobs by Using an Amazon Virtual Private Cloud</a>.</p>
6999
- * @public
7000
- */
7001
- VpcConfig?: VpcConfig | undefined;
7002
- /**
7003
- * <p>Specifies a limit to how long a model training job can run. It also specifies how long a managed Spot training job has to complete. When the job reaches the time limit, SageMaker ends the training job. Use this API to cap model training costs.</p> <p>To stop a job, SageMaker sends the algorithm the <code>SIGTERM</code> signal, which delays job termination for 120 seconds. Algorithms can use this 120-second window to save the model artifacts, so the results of training are not lost. </p>
7004
- * @public
7005
- */
7006
- StoppingCondition?: StoppingCondition | undefined;
7007
- /**
7008
- * <p>An array of key-value pairs. You can use tags to categorize your Amazon Web Services resources in different ways, for example, by purpose, owner, or environment. For more information, see <a href="https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html">Tagging Amazon Web Services Resources</a>.</p> <important> <p>Do not include any security-sensitive information including account access IDs, secrets, or tokens in any tags. As part of the shared responsibility model, you are responsible for any potential exposure, unauthorized access, or compromise of your sensitive data if caused by any security-sensitive information included in the request tag variable or plain text fields.</p> </important>
7009
- * @public
7010
- */
7011
- Tags?: Tag[] | undefined;
7012
- /**
7013
- * <p>Isolates the training container. No inbound or outbound network calls can be made, except for calls between peers within a training cluster for distributed training. If you enable network isolation for training jobs that are configured to use a VPC, SageMaker downloads and uploads customer data and model artifacts through the specified VPC, but the training container does not have network access.</p>
7014
- * @public
7015
- */
7016
- EnableNetworkIsolation?: boolean | undefined;
7017
- /**
7018
- * <p>To encrypt all communications between ML compute instances in distributed training, choose <code>True</code>. Encryption provides greater security for distributed training, but training might take longer. How long it takes depends on the amount of communication between compute instances, especially if you use a deep learning algorithm in distributed training. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/train-encrypt.html">Protect Communications Between ML Compute Instances in a Distributed Training Job</a>.</p>
7019
- * @public
7020
- */
7021
- EnableInterContainerTrafficEncryption?: boolean | undefined;
7022
- /**
7023
- * <p>To train models using managed spot training, choose <code>True</code>. Managed spot training provides a fully managed and scalable infrastructure for training machine learning models. this option is useful when training jobs can be interrupted and when there is flexibility when the training job is run. </p> <p>The complete and intermediate results of jobs are stored in an Amazon S3 bucket, and can be used as a starting point to train models incrementally. Amazon SageMaker provides metrics and logs in CloudWatch. They can be used to see when managed spot training jobs are running, interrupted, resumed, or completed. </p>
7024
- * @public
7025
- */
7026
- EnableManagedSpotTraining?: boolean | undefined;
7027
- /**
7028
- * <p>Contains information about the output location for managed spot training checkpoint data.</p>
7029
- * @public
7030
- */
7031
- CheckpointConfig?: CheckpointConfig | undefined;
7032
- /**
7033
- * <p>Configuration information for the Amazon SageMaker Debugger hook parameters, metric and tensor collections, and storage paths. To learn more about how to configure the <code>DebugHookConfig</code> parameter, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/debugger-createtrainingjob-api.html">Use the SageMaker and Debugger Configuration API Operations to Create, Update, and Debug Your Training Job</a>.</p>
7034
- * @public
7035
- */
7036
- DebugHookConfig?: DebugHookConfig | undefined;
7037
- /**
7038
- * <p>Configuration information for Amazon SageMaker Debugger rules for debugging output tensors.</p>
7039
- * @public
7040
- */
7041
- DebugRuleConfigurations?: DebugRuleConfiguration[] | undefined;
7042
- /**
7043
- * <p>Configuration of storage locations for the Amazon SageMaker Debugger TensorBoard output data.</p>
7044
- * @public
7045
- */
7046
- TensorBoardOutputConfig?: TensorBoardOutputConfig | undefined;
7047
- /**
7048
- * <p>Associates a SageMaker job as a trial component with an experiment and trial. Specified when you call the following APIs:</p> <ul> <li> <p> <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateProcessingJob.html">CreateProcessingJob</a> </p> </li> <li> <p> <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrainingJob.html">CreateTrainingJob</a> </p> </li> <li> <p> <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTransformJob.html">CreateTransformJob</a> </p> </li> </ul>
7049
- * @public
7050
- */
7051
- ExperimentConfig?: ExperimentConfig | undefined;
7052
- /**
7053
- * <p>Configuration information for Amazon SageMaker Debugger system monitoring, framework profiling, and storage paths.</p>
7054
- * @public
7055
- */
7056
- ProfilerConfig?: ProfilerConfig | undefined;
7057
- /**
7058
- * <p>Configuration information for Amazon SageMaker Debugger rules for profiling system and framework metrics.</p>
7059
- * @public
7060
- */
7061
- ProfilerRuleConfigurations?: ProfilerRuleConfiguration[] | undefined;
7062
- /**
7063
- * <p>The environment variables to set in the Docker container.</p> <important> <p>Do not include any security-sensitive information including account access IDs, secrets, or tokens in any environment fields. As part of the shared responsibility model, you are responsible for any potential exposure, unauthorized access, or compromise of your sensitive data if caused by security-sensitive information included in the request environment variable or plain text fields.</p> </important>
7064
- * @public
7065
- */
7066
- Environment?: Record<string, string> | undefined;
7067
- /**
7068
- * <p>The number of times to retry the job when the job fails due to an <code>InternalServerError</code>.</p>
7069
- * @public
7070
- */
7071
- RetryStrategy?: RetryStrategy | undefined;
7072
- /**
7073
- * <p>Configuration for remote debugging. To learn more about the remote debugging functionality of SageMaker, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/train-remote-debugging.html">Access a training container through Amazon Web Services Systems Manager (SSM) for remote debugging</a>.</p>
7074
- * @public
7075
- */
7076
- RemoteDebugConfig?: RemoteDebugConfig | undefined;
7077
- /**
7078
- * <p>Contains information about the infrastructure health check configuration for the training job.</p>
7079
- * @public
7080
- */
7081
- InfraCheckConfig?: InfraCheckConfig | undefined;
7082
- /**
7083
- * <p>Contains information about attribute-based access control (ABAC) for the training job.</p>
7084
- * @public
7085
- */
7086
- SessionChainingConfig?: SessionChainingConfig | undefined;
7087
- }