@aws-sdk/client-sagemaker 3.624.0 → 3.631.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (39) hide show
  1. package/dist-cjs/index.js +102 -81
  2. package/dist-es/commands/DescribeModelCardCommand.js +1 -1
  3. package/dist-es/models/models_1.js +1 -4
  4. package/dist-es/models/models_2.js +4 -4
  5. package/dist-es/models/models_3.js +5 -6
  6. package/dist-es/models/models_4.js +6 -0
  7. package/dist-es/protocols/Aws_json1_1.js +19 -0
  8. package/dist-types/commands/CreateAutoMLJobCommand.d.ts +12 -0
  9. package/dist-types/commands/CreateAutoMLJobV2Command.d.ts +21 -1
  10. package/dist-types/commands/CreateClusterCommand.d.ts +1 -2
  11. package/dist-types/commands/CreateDomainCommand.d.ts +5 -1
  12. package/dist-types/commands/CreateProcessingJobCommand.d.ts +1 -1
  13. package/dist-types/commands/CreateUserProfileCommand.d.ts +5 -1
  14. package/dist-types/commands/DescribeAutoMLJobV2Command.d.ts +5 -0
  15. package/dist-types/commands/DescribeDomainCommand.d.ts +5 -1
  16. package/dist-types/commands/DescribeModelCardCommand.d.ts +2 -1
  17. package/dist-types/commands/DescribeModelCardExportJobCommand.d.ts +1 -2
  18. package/dist-types/commands/DescribeProcessingJobCommand.d.ts +1 -1
  19. package/dist-types/commands/DescribeUserProfileCommand.d.ts +5 -1
  20. package/dist-types/commands/ListModelExplainabilityJobDefinitionsCommand.d.ts +1 -1
  21. package/dist-types/commands/SearchCommand.d.ts +1 -1
  22. package/dist-types/commands/UpdateDomainCommand.d.ts +5 -1
  23. package/dist-types/commands/UpdateUserProfileCommand.d.ts +5 -1
  24. package/dist-types/models/models_0.d.ts +92 -169
  25. package/dist-types/models/models_1.d.ts +182 -105
  26. package/dist-types/models/models_2.d.ts +112 -135
  27. package/dist-types/models/models_3.d.ts +132 -80
  28. package/dist-types/models/models_4.d.ts +81 -1
  29. package/dist-types/ts3.4/commands/CreateAutoMLJobV2Command.d.ts +1 -1
  30. package/dist-types/ts3.4/commands/CreateClusterCommand.d.ts +4 -2
  31. package/dist-types/ts3.4/commands/DescribeModelCardCommand.d.ts +2 -4
  32. package/dist-types/ts3.4/commands/DescribeModelCardExportJobCommand.d.ts +4 -2
  33. package/dist-types/ts3.4/commands/ListModelExplainabilityJobDefinitionsCommand.d.ts +1 -1
  34. package/dist-types/ts3.4/models/models_0.d.ts +11 -21
  35. package/dist-types/ts3.4/models/models_1.d.ts +32 -25
  36. package/dist-types/ts3.4/models/models_2.d.ts +32 -27
  37. package/dist-types/ts3.4/models/models_3.d.ts +24 -23
  38. package/dist-types/ts3.4/models/models_4.d.ts +22 -1
  39. package/package.json +7 -7
@@ -1,5 +1,164 @@
1
1
  import { LazyJsonString as __LazyJsonString } from "@smithy/smithy-client";
2
- import { AdditionalInferenceSpecificationDefinition, AmazonQSettings, AnnotationConsolidationConfig, AppNetworkAccessType, AppSecurityGroupManagement, AppType, AsyncInferenceConfig, AthenaDatasetDefinition, AuthMode, AutoParameter, AutoRollbackConfig, Autotune, AwsManagedHumanLoopRequestSource, BatchTransformInput, BestObjectiveNotImproving, Bias, BlueGreenUpdatePolicy, CanvasAppSettings, CapacitySize, CaptureContentTypeHeader, CaptureOption, CategoricalParameter, CategoricalParameterRange, Channel, CheckpointConfig, ClarifyExplainerConfig, CodeEditorAppSettings, CodeRepository, CollectionConfig, CollectionType, ContainerDefinition, ContentClassifier, ContextSource, ContinuousParameterRange, ConvergenceDetected, CustomImage, FeatureStatus, GitConfig, HyperParameterScalingType, HyperParameterTuningJobObjective, InferenceSpecification, MetadataProperties, MetricDefinition, MetricsSource, ModelApprovalStatus, ModelDataSource, OutputDataConfig, ProcessingS3DataDistributionType, ProcessingS3InputMode, ProductionVariantInstanceType, ResourceConfig, ResourceSpec, StoppingCondition, Tag, TargetDevice, TargetPlatformAccelerator, TargetPlatformArch, TargetPlatformOs, TrainingInputMode, TrainingInstanceType, TransformJobDefinition, VpcConfig } from "./models_0";
2
+ import { AdditionalInferenceSpecificationDefinition, AmazonQSettings, AnnotationConsolidationConfig, AppNetworkAccessType, AppSecurityGroupManagement, AppType, AsyncInferenceConfig, AuthMode, AutoMLComputeConfig, AutoMLDataSplitConfig, AutoMLJobChannel, AutoMLJobObjective, AutoMLOutputDataConfig, AutoMLProblemTypeConfig, AutoMLSecurityConfig, AutoParameter, AutoRollbackConfig, Autotune, AwsManagedHumanLoopRequestSource, BatchTransformInput, BestObjectiveNotImproving, Bias, BlueGreenUpdatePolicy, CanvasAppSettings, CapacitySize, CaptureContentTypeHeader, CaptureOption, CategoricalParameter, CategoricalParameterRange, Channel, CheckpointConfig, ClarifyExplainerConfig, ClusterInstanceGroupSpecification, CodeEditorAppSettings, CodeRepository, CollectionConfig, CollectionType, ContainerDefinition, ContentClassifier, ContextSource, ContinuousParameterRange, ConvergenceDetected, CustomImage, FeatureStatus, GitConfig, HyperParameterScalingType, HyperParameterTuningJobObjective, InferenceSpecification, MetadataProperties, MetricDefinition, MetricsSource, ModelApprovalStatus, ModelDataSource, ModelDeployConfig, OutputDataConfig, ProcessingS3DataDistributionType, ProcessingS3InputMode, ProductionVariantInstanceType, ResourceConfig, ResourceSpec, StoppingCondition, Tag, TargetDevice, TargetPlatformAccelerator, TargetPlatformArch, TargetPlatformOs, TrainingInputMode, TrainingInstanceType, TransformJobDefinition, VpcConfig } from "./models_0";
3
+ /**
4
+ * @public
5
+ */
6
+ export interface CreateAutoMLJobV2Request {
7
+ /**
8
+ * <p>Identifies an Autopilot job. The name must be unique to your account and is case
9
+ * insensitive.</p>
10
+ * @public
11
+ */
12
+ AutoMLJobName: string | undefined;
13
+ /**
14
+ * <p>An array of channel objects describing the input data and their location. Each channel
15
+ * is a named input source. Similar to the <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html#sagemaker-CreateAutoMLJob-request-InputDataConfig">InputDataConfig</a> attribute in the <code>CreateAutoMLJob</code> input parameters.
16
+ * The supported formats depend on the problem type:</p>
17
+ * <ul>
18
+ * <li>
19
+ * <p>For tabular problem types: <code>S3Prefix</code>,
20
+ * <code>ManifestFile</code>.</p>
21
+ * </li>
22
+ * <li>
23
+ * <p>For image classification: <code>S3Prefix</code>, <code>ManifestFile</code>,
24
+ * <code>AugmentedManifestFile</code>.</p>
25
+ * </li>
26
+ * <li>
27
+ * <p>For text classification: <code>S3Prefix</code>.</p>
28
+ * </li>
29
+ * <li>
30
+ * <p>For time-series forecasting: <code>S3Prefix</code>.</p>
31
+ * </li>
32
+ * <li>
33
+ * <p>For text generation (LLMs fine-tuning): <code>S3Prefix</code>.</p>
34
+ * </li>
35
+ * </ul>
36
+ * @public
37
+ */
38
+ AutoMLJobInputDataConfig: AutoMLJobChannel[] | undefined;
39
+ /**
40
+ * <p>Provides information about encryption and the Amazon S3 output path needed to
41
+ * store artifacts from an AutoML job.</p>
42
+ * @public
43
+ */
44
+ OutputDataConfig: AutoMLOutputDataConfig | undefined;
45
+ /**
46
+ * <p>Defines the configuration settings of one of the supported problem types.</p>
47
+ * @public
48
+ */
49
+ AutoMLProblemTypeConfig: AutoMLProblemTypeConfig | undefined;
50
+ /**
51
+ * <p>The ARN of the role that is used to access the data.</p>
52
+ * @public
53
+ */
54
+ RoleArn: string | undefined;
55
+ /**
56
+ * <p>An array of key-value pairs. You can use tags to categorize your Amazon Web Services
57
+ * resources in different ways, such as by purpose, owner, or environment. For more
58
+ * information, see <a href="https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html">Tagging Amazon Web ServicesResources</a>. Tag keys must be unique per
59
+ * resource.</p>
60
+ * @public
61
+ */
62
+ Tags?: Tag[];
63
+ /**
64
+ * <p>The security configuration for traffic encryption or Amazon VPC settings.</p>
65
+ * @public
66
+ */
67
+ SecurityConfig?: AutoMLSecurityConfig;
68
+ /**
69
+ * <p>Specifies a metric to minimize or maximize as the objective of a job. If not specified,
70
+ * the default objective metric depends on the problem type. For the list of default values
71
+ * per problem type, see <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobObjective.html">AutoMLJobObjective</a>.</p>
72
+ * <note>
73
+ * <ul>
74
+ * <li>
75
+ * <p>For tabular problem types: You must either provide both the
76
+ * <code>AutoMLJobObjective</code> and indicate the type of supervised learning
77
+ * problem in <code>AutoMLProblemTypeConfig</code>
78
+ * (<code>TabularJobConfig.ProblemType</code>), or none at all.</p>
79
+ * </li>
80
+ * <li>
81
+ * <p>For text generation problem types (LLMs fine-tuning):
82
+ * Fine-tuning language models in Autopilot does not
83
+ * require setting the <code>AutoMLJobObjective</code> field. Autopilot fine-tunes LLMs
84
+ * without requiring multiple candidates to be trained and evaluated.
85
+ * Instead, using your dataset, Autopilot directly fine-tunes your target model to enhance a
86
+ * default objective metric, the cross-entropy loss. After fine-tuning a language model,
87
+ * you can evaluate the quality of its generated text using different metrics.
88
+ * For a list of the available metrics, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-llms-finetuning-metrics.html">Metrics for
89
+ * fine-tuning LLMs in Autopilot</a>.</p>
90
+ * </li>
91
+ * </ul>
92
+ * </note>
93
+ * @public
94
+ */
95
+ AutoMLJobObjective?: AutoMLJobObjective;
96
+ /**
97
+ * <p>Specifies how to generate the endpoint name for an automatic one-click Autopilot model
98
+ * deployment.</p>
99
+ * @public
100
+ */
101
+ ModelDeployConfig?: ModelDeployConfig;
102
+ /**
103
+ * <p>This structure specifies how to split the data into train and validation
104
+ * datasets.</p>
105
+ * <p>The validation and training datasets must contain the same headers. For jobs created by
106
+ * calling <code>CreateAutoMLJob</code>, the validation dataset must be less than 2 GB in
107
+ * size.</p>
108
+ * <note>
109
+ * <p>This attribute must not be set for the time-series forecasting problem type, as Autopilot
110
+ * automatically splits the input dataset into training and validation sets.</p>
111
+ * </note>
112
+ * @public
113
+ */
114
+ DataSplitConfig?: AutoMLDataSplitConfig;
115
+ /**
116
+ * <p>Specifies the compute configuration for the AutoML job V2.</p>
117
+ * @public
118
+ */
119
+ AutoMLComputeConfig?: AutoMLComputeConfig;
120
+ }
121
+ /**
122
+ * @public
123
+ */
124
+ export interface CreateAutoMLJobV2Response {
125
+ /**
126
+ * <p>The unique ARN assigned to the AutoMLJob when it is created.</p>
127
+ * @public
128
+ */
129
+ AutoMLJobArn: string | undefined;
130
+ }
131
+ /**
132
+ * @public
133
+ */
134
+ export interface CreateClusterRequest {
135
+ /**
136
+ * <p>The name for the new SageMaker HyperPod cluster.</p>
137
+ * @public
138
+ */
139
+ ClusterName: string | undefined;
140
+ /**
141
+ * <p>The instance groups to be created in the SageMaker HyperPod cluster.</p>
142
+ * @public
143
+ */
144
+ InstanceGroups: ClusterInstanceGroupSpecification[] | undefined;
145
+ /**
146
+ * <p>Specifies an Amazon Virtual Private Cloud (VPC) that your SageMaker jobs, hosted models, and compute resources
147
+ * have access to. You can control access to and from your resources by configuring a VPC.
148
+ * For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/infrastructure-give-access.html">Give SageMaker Access to Resources in your Amazon VPC</a>. </p>
149
+ * @public
150
+ */
151
+ VpcConfig?: VpcConfig;
152
+ /**
153
+ * <p>Custom tags for managing the SageMaker HyperPod cluster as an Amazon Web Services resource. You can
154
+ * add tags to your cluster in the same way you add them in other Amazon Web Services services
155
+ * that support tagging. To learn more about tagging Amazon Web Services resources in general,
156
+ * see <a href="https://docs.aws.amazon.com/tag-editor/latest/userguide/tagging.html">Tagging
157
+ * Amazon Web Services Resources User Guide</a>.</p>
158
+ * @public
159
+ */
160
+ Tags?: Tag[];
161
+ }
3
162
  /**
4
163
  * @public
5
164
  */
@@ -1921,6 +2080,7 @@ export declare const MlTools: {
1921
2080
  readonly ENDPOINTS: "Endpoints";
1922
2081
  readonly EXPERIMENTS: "Experiments";
1923
2082
  readonly FEATURE_STORE: "FeatureStore";
2083
+ readonly INFERENCE_OPTIMIZATION: "InferenceOptimization";
1924
2084
  readonly INFERENCE_RECOMMENDER: "InferenceRecommender";
1925
2085
  readonly JUMP_START: "JumpStart";
1926
2086
  readonly MODELS: "Models";
@@ -2957,6 +3117,27 @@ export interface ProductionVariant {
2957
3117
  * <p>By selecting an AMI version, you can ensure that your inference environment is
2958
3118
  * compatible with specific software requirements, such as CUDA driver versions, Linux
2959
3119
  * kernel versions, or Amazon Web Services Neuron driver versions.</p>
3120
+ * <p>The AMI version names, and their configurations, are the following:</p>
3121
+ * <dl>
3122
+ * <dt>al2-ami-sagemaker-inference-gpu-2</dt>
3123
+ * <dd>
3124
+ * <ul>
3125
+ * <li>
3126
+ * <p>Accelerator: GPU</p>
3127
+ * </li>
3128
+ * <li>
3129
+ * <p>NVIDIA driver version: 535.54.03</p>
3130
+ * </li>
3131
+ * <li>
3132
+ * <p>CUDA driver version: 12.2</p>
3133
+ * </li>
3134
+ * <li>
3135
+ * <p>Supported instance types: ml.g4dn.*, ml.g5.*, ml.g6.*, ml.p3.*,
3136
+ * ml.p4d.*, ml.p4de.*, ml.p5.*</p>
3137
+ * </li>
3138
+ * </ul>
3139
+ * </dd>
3140
+ * </dl>
2960
3141
  * @public
2961
3142
  */
2962
3143
  InferenceAmiVersion?: ProductionVariantInferenceAmiVersion;
@@ -11580,110 +11761,6 @@ export declare const RedshiftResultFormat: {
11580
11761
  * @public
11581
11762
  */
11582
11763
  export type RedshiftResultFormat = (typeof RedshiftResultFormat)[keyof typeof RedshiftResultFormat];
11583
- /**
11584
- * <p>Configuration for Redshift Dataset Definition input.</p>
11585
- * @public
11586
- */
11587
- export interface RedshiftDatasetDefinition {
11588
- /**
11589
- * <p>The Redshift cluster Identifier.</p>
11590
- * @public
11591
- */
11592
- ClusterId: string | undefined;
11593
- /**
11594
- * <p>The name of the Redshift database used in Redshift query execution.</p>
11595
- * @public
11596
- */
11597
- Database: string | undefined;
11598
- /**
11599
- * <p>The database user name used in Redshift query execution.</p>
11600
- * @public
11601
- */
11602
- DbUser: string | undefined;
11603
- /**
11604
- * <p>The SQL query statements to be executed.</p>
11605
- * @public
11606
- */
11607
- QueryString: string | undefined;
11608
- /**
11609
- * <p>The IAM role attached to your Redshift cluster that Amazon SageMaker uses to generate datasets.</p>
11610
- * @public
11611
- */
11612
- ClusterRoleArn: string | undefined;
11613
- /**
11614
- * <p>The location in Amazon S3 where the Redshift query results are stored.</p>
11615
- * @public
11616
- */
11617
- OutputS3Uri: string | undefined;
11618
- /**
11619
- * <p>The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt data from a
11620
- * Redshift execution.</p>
11621
- * @public
11622
- */
11623
- KmsKeyId?: string;
11624
- /**
11625
- * <p>The data storage format for Redshift query results.</p>
11626
- * @public
11627
- */
11628
- OutputFormat: RedshiftResultFormat | undefined;
11629
- /**
11630
- * <p>The compression used for Redshift query results.</p>
11631
- * @public
11632
- */
11633
- OutputCompression?: RedshiftResultCompressionType;
11634
- }
11635
- /**
11636
- * <p>Configuration for Dataset Definition inputs. The Dataset Definition input must specify
11637
- * exactly one of either <code>AthenaDatasetDefinition</code> or <code>RedshiftDatasetDefinition</code>
11638
- * types.</p>
11639
- * @public
11640
- */
11641
- export interface DatasetDefinition {
11642
- /**
11643
- * <p>Configuration for Athena Dataset Definition input.</p>
11644
- * @public
11645
- */
11646
- AthenaDatasetDefinition?: AthenaDatasetDefinition;
11647
- /**
11648
- * <p>Configuration for Redshift Dataset Definition input.</p>
11649
- * @public
11650
- */
11651
- RedshiftDatasetDefinition?: RedshiftDatasetDefinition;
11652
- /**
11653
- * <p>The local path where you want Amazon SageMaker to download the Dataset Definition inputs to run a
11654
- * processing job. <code>LocalPath</code> is an absolute path to the input data. This is a required
11655
- * parameter when <code>AppManaged</code> is <code>False</code> (default).</p>
11656
- * @public
11657
- */
11658
- LocalPath?: string;
11659
- /**
11660
- * <p>Whether the generated dataset is <code>FullyReplicated</code> or
11661
- * <code>ShardedByS3Key</code> (default).</p>
11662
- * @public
11663
- */
11664
- DataDistributionType?: DataDistributionType;
11665
- /**
11666
- * <p>Whether to use <code>File</code> or <code>Pipe</code> input mode. In <code>File</code> (default) mode,
11667
- * Amazon SageMaker copies the data from the input source onto the local Amazon Elastic Block Store
11668
- * (Amazon EBS) volumes before starting your training algorithm. This is the most commonly used
11669
- * input mode. In <code>Pipe</code> mode, Amazon SageMaker streams input data from the source directly to your
11670
- * algorithm without using the EBS volume.</p>
11671
- * @public
11672
- */
11673
- InputMode?: InputMode;
11674
- }
11675
- /**
11676
- * @public
11677
- * @enum
11678
- */
11679
- export declare const ProcessingS3CompressionType: {
11680
- readonly GZIP: "Gzip";
11681
- readonly NONE: "None";
11682
- };
11683
- /**
11684
- * @public
11685
- */
11686
- export type ProcessingS3CompressionType = (typeof ProcessingS3CompressionType)[keyof typeof ProcessingS3CompressionType];
11687
11764
  /**
11688
11765
  * @internal
11689
11766
  */
@@ -1,5 +1,109 @@
1
- import { ActionSource, ActionStatus, AlgorithmSpecification, AlgorithmStatus, AlgorithmStatusDetails, AlgorithmValidationSpecification, AppNetworkAccessType, AppSecurityGroupManagement, AppSpecification, AppStatus, AppType, ArtifactSource, AsyncInferenceConfig, AuthMode, AutoMLCandidate, AutoMLChannel, AutoMLDataSplitConfig, AutoMLJobArtifacts, AutoMLJobChannel, AutoMLJobCompletionCriteria, AutoMLJobConfig, AutoMLJobObjective, AutoMLJobSecondaryStatus, AutoMLJobStatus, AutoMLOutputDataConfig, AutoMLPartialFailureReason, AutoMLProblemTypeConfig, AutoMLProblemTypeConfigName, AutoMLResolvedAttributes, AutoMLSecurityConfig, Autotune, BatchDataCaptureConfig, BatchStrategy, CaptureStatus, Channel, CheckpointConfig, ClusterInstanceGroupDetails, ClusterNodeDetails, ClusterStatus, CodeEditorAppImageConfig, CodeRepository, CognitoConfig, CognitoMemberDefinition, CollectionConfiguration, CompilationJobStatus, ContainerDefinition, ContextSource, GitConfig, HyperParameterTuningJobObjectiveType, InferenceSpecification, JupyterLabAppImageConfig, KernelGatewayImageConfig, MetadataProperties, ModelDeployConfig, ObjectiveStatus, OutputDataConfig, ProblemType, ProcessingS3DataDistributionType, ProcessingS3InputMode, ProductionVariantInstanceType, ResourceConfig, ResourceSpec, StoppingCondition, Tag, TrainingSpecification, TransformInput, TransformOutput, TransformResources, UserContext, VpcConfig } from "./models_0";
2
- import { DataCaptureConfig, DataQualityAppSpecification, DataQualityBaselineConfig, DataQualityJobInput, DatasetDefinition, DefaultSpaceSettings, DeploymentConfig, DeviceSelectionConfig, DomainSettings, EdgeDeploymentConfig, EdgeDeploymentModelConfig, EdgeOutputConfig, EdgePresetDeploymentType, EndpointInfo, ExperimentConfig, ExplainerConfig, FeatureDefinition, FeatureType, FlowDefinitionOutputConfig, HubS3StorageConfig, HumanLoopActivationConfig, HumanLoopConfig, HumanLoopRequestSource, HumanTaskConfig, HyperParameterTrainingJobDefinition, HyperParameterTuningJobConfig, HyperParameterTuningJobWarmStartConfig, InferenceComponentComputeResourceRequirements, InferenceComponentStartupParameters, InferenceExecutionConfig, InferenceExperimentDataStorageConfig, InferenceExperimentSchedule, InferenceExperimentType, InputConfig, JobType, JupyterServerAppSettings, KernelGatewayAppSettings, LabelingJobAlgorithmsConfig, LabelingJobInputConfig, LabelingJobOutputConfig, LabelingJobStoppingConditions, ModelBiasAppSpecification, ModelBiasBaselineConfig, ModelBiasJobInput, ModelCardSecurityConfig, ModelCardStatus, ModelInfrastructureConfig, MonitoringNetworkConfig, MonitoringOutputConfig, MonitoringResources, MonitoringStoppingCondition, NeoVpcConfig, NetworkConfig, OfflineStoreConfig, OnlineStoreConfig, OutputConfig, ProcessingInstanceType, ProcessingS3CompressionType, ProcessingS3UploadMode, Processor, ProductionVariant, ProductionVariantAcceleratorType, ProductionVariantManagedInstanceScaling, ProductionVariantRoutingConfig, ProductionVariantServerlessConfig, RecommendationJobInputConfig, RecommendationJobStoppingConditions, RecommendationJobType, RetryStrategy, ShadowModeConfig, ThroughputMode, TrackingServerSize, UserSettings, VendorGuidance } from "./models_1";
1
+ import { ActionSource, ActionStatus, AlgorithmSpecification, AlgorithmStatus, AlgorithmStatusDetails, AlgorithmValidationSpecification, AppNetworkAccessType, AppSecurityGroupManagement, AppSpecification, AppStatus, AppType, ArtifactSource, AsyncInferenceConfig, AthenaDatasetDefinition, AuthMode, AutoMLCandidate, AutoMLChannel, AutoMLComputeConfig, AutoMLDataSplitConfig, AutoMLJobArtifacts, AutoMLJobChannel, AutoMLJobCompletionCriteria, AutoMLJobConfig, AutoMLJobObjective, AutoMLJobSecondaryStatus, AutoMLJobStatus, AutoMLOutputDataConfig, AutoMLPartialFailureReason, AutoMLProblemTypeConfig, AutoMLProblemTypeConfigName, AutoMLResolvedAttributes, AutoMLSecurityConfig, Autotune, BatchDataCaptureConfig, BatchStrategy, CaptureStatus, Channel, CheckpointConfig, ClusterInstanceGroupDetails, ClusterNodeDetails, ClusterStatus, CodeEditorAppImageConfig, CodeRepository, CognitoConfig, CognitoMemberDefinition, CollectionConfiguration, CompilationJobStatus, ContainerDefinition, ContextSource, GitConfig, HyperParameterTuningJobObjectiveType, InferenceSpecification, JupyterLabAppImageConfig, KernelGatewayImageConfig, MetadataProperties, ModelDeployConfig, ObjectiveStatus, OutputDataConfig, ProblemType, ProcessingS3DataDistributionType, ProcessingS3InputMode, ProductionVariantInstanceType, ResourceConfig, ResourceSpec, StoppingCondition, Tag, TrainingSpecification, TransformInput, TransformOutput, TransformResources, UserContext, VpcConfig } from "./models_0";
2
+ import { DataCaptureConfig, DataDistributionType, DataQualityAppSpecification, DataQualityBaselineConfig, DataQualityJobInput, DefaultSpaceSettings, DeploymentConfig, DeviceSelectionConfig, DomainSettings, EdgeDeploymentConfig, EdgeDeploymentModelConfig, EdgeOutputConfig, EdgePresetDeploymentType, EndpointInfo, ExperimentConfig, ExplainerConfig, FeatureDefinition, FeatureType, FlowDefinitionOutputConfig, HubS3StorageConfig, HumanLoopActivationConfig, HumanLoopConfig, HumanLoopRequestSource, HumanTaskConfig, HyperParameterTrainingJobDefinition, HyperParameterTuningJobConfig, HyperParameterTuningJobWarmStartConfig, InferenceComponentComputeResourceRequirements, InferenceComponentStartupParameters, InferenceExecutionConfig, InferenceExperimentDataStorageConfig, InferenceExperimentSchedule, InferenceExperimentType, InputConfig, InputMode, JobType, JupyterServerAppSettings, KernelGatewayAppSettings, LabelingJobAlgorithmsConfig, LabelingJobInputConfig, LabelingJobOutputConfig, LabelingJobStoppingConditions, ModelBiasAppSpecification, ModelBiasBaselineConfig, ModelBiasJobInput, ModelInfrastructureConfig, MonitoringNetworkConfig, MonitoringOutputConfig, MonitoringResources, MonitoringStoppingCondition, NeoVpcConfig, NetworkConfig, OfflineStoreConfig, OnlineStoreConfig, OutputConfig, ProcessingInstanceType, ProcessingS3UploadMode, Processor, ProductionVariant, ProductionVariantAcceleratorType, ProductionVariantManagedInstanceScaling, ProductionVariantRoutingConfig, ProductionVariantServerlessConfig, RecommendationJobInputConfig, RecommendationJobStoppingConditions, RecommendationJobType, RedshiftResultCompressionType, RedshiftResultFormat, RetryStrategy, ShadowModeConfig, ThroughputMode, TrackingServerSize, UserSettings, VendorGuidance } from "./models_1";
3
+ /**
4
+ * <p>Configuration for Redshift Dataset Definition input.</p>
5
+ * @public
6
+ */
7
+ export interface RedshiftDatasetDefinition {
8
+ /**
9
+ * <p>The Redshift cluster Identifier.</p>
10
+ * @public
11
+ */
12
+ ClusterId: string | undefined;
13
+ /**
14
+ * <p>The name of the Redshift database used in Redshift query execution.</p>
15
+ * @public
16
+ */
17
+ Database: string | undefined;
18
+ /**
19
+ * <p>The database user name used in Redshift query execution.</p>
20
+ * @public
21
+ */
22
+ DbUser: string | undefined;
23
+ /**
24
+ * <p>The SQL query statements to be executed.</p>
25
+ * @public
26
+ */
27
+ QueryString: string | undefined;
28
+ /**
29
+ * <p>The IAM role attached to your Redshift cluster that Amazon SageMaker uses to generate datasets.</p>
30
+ * @public
31
+ */
32
+ ClusterRoleArn: string | undefined;
33
+ /**
34
+ * <p>The location in Amazon S3 where the Redshift query results are stored.</p>
35
+ * @public
36
+ */
37
+ OutputS3Uri: string | undefined;
38
+ /**
39
+ * <p>The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt data from a
40
+ * Redshift execution.</p>
41
+ * @public
42
+ */
43
+ KmsKeyId?: string;
44
+ /**
45
+ * <p>The data storage format for Redshift query results.</p>
46
+ * @public
47
+ */
48
+ OutputFormat: RedshiftResultFormat | undefined;
49
+ /**
50
+ * <p>The compression used for Redshift query results.</p>
51
+ * @public
52
+ */
53
+ OutputCompression?: RedshiftResultCompressionType;
54
+ }
55
+ /**
56
+ * <p>Configuration for Dataset Definition inputs. The Dataset Definition input must specify
57
+ * exactly one of either <code>AthenaDatasetDefinition</code> or <code>RedshiftDatasetDefinition</code>
58
+ * types.</p>
59
+ * @public
60
+ */
61
+ export interface DatasetDefinition {
62
+ /**
63
+ * <p>Configuration for Athena Dataset Definition input.</p>
64
+ * @public
65
+ */
66
+ AthenaDatasetDefinition?: AthenaDatasetDefinition;
67
+ /**
68
+ * <p>Configuration for Redshift Dataset Definition input.</p>
69
+ * @public
70
+ */
71
+ RedshiftDatasetDefinition?: RedshiftDatasetDefinition;
72
+ /**
73
+ * <p>The local path where you want Amazon SageMaker to download the Dataset Definition inputs to run a
74
+ * processing job. <code>LocalPath</code> is an absolute path to the input data. This is a required
75
+ * parameter when <code>AppManaged</code> is <code>False</code> (default).</p>
76
+ * @public
77
+ */
78
+ LocalPath?: string;
79
+ /**
80
+ * <p>Whether the generated dataset is <code>FullyReplicated</code> or
81
+ * <code>ShardedByS3Key</code> (default).</p>
82
+ * @public
83
+ */
84
+ DataDistributionType?: DataDistributionType;
85
+ /**
86
+ * <p>Whether to use <code>File</code> or <code>Pipe</code> input mode. In <code>File</code> (default) mode,
87
+ * Amazon SageMaker copies the data from the input source onto the local Amazon Elastic Block Store
88
+ * (Amazon EBS) volumes before starting your training algorithm. This is the most commonly used
89
+ * input mode. In <code>Pipe</code> mode, Amazon SageMaker streams input data from the source directly to your
90
+ * algorithm without using the EBS volume.</p>
91
+ * @public
92
+ */
93
+ InputMode?: InputMode;
94
+ }
95
+ /**
96
+ * @public
97
+ * @enum
98
+ */
99
+ export declare const ProcessingS3CompressionType: {
100
+ readonly GZIP: "Gzip";
101
+ readonly NONE: "None";
102
+ };
103
+ /**
104
+ * @public
105
+ */
106
+ export type ProcessingS3CompressionType = (typeof ProcessingS3CompressionType)[keyof typeof ProcessingS3CompressionType];
3
107
  /**
4
108
  * @public
5
109
  * @enum
@@ -123,7 +227,7 @@ export interface ProcessingS3Output {
123
227
  * entrypoint is invoked.</p>
124
228
  * @public
125
229
  */
126
- LocalPath: string | undefined;
230
+ LocalPath?: string;
127
231
  /**
128
232
  * <p>Whether to upload the results of the processing job continuously or after the job
129
233
  * completes.</p>
@@ -3821,6 +3925,11 @@ export interface DescribeAutoMLJobV2Response {
3821
3925
  * @public
3822
3926
  */
3823
3927
  SecurityConfig?: AutoMLSecurityConfig;
3928
+ /**
3929
+ * <p>The compute configuration used for the AutoML job V2.</p>
3930
+ * @public
3931
+ */
3932
+ AutoMLComputeConfig?: AutoMLComputeConfig;
3824
3933
  }
3825
3934
  /**
3826
3935
  * @public
@@ -8082,134 +8191,6 @@ export declare const ModelCardProcessingStatus: {
8082
8191
  * @public
8083
8192
  */
8084
8193
  export type ModelCardProcessingStatus = (typeof ModelCardProcessingStatus)[keyof typeof ModelCardProcessingStatus];
8085
- /**
8086
- * @public
8087
- */
8088
- export interface DescribeModelCardResponse {
8089
- /**
8090
- * <p>The Amazon Resource Name (ARN) of the model card.</p>
8091
- * @public
8092
- */
8093
- ModelCardArn: string | undefined;
8094
- /**
8095
- * <p>The name of the model card.</p>
8096
- * @public
8097
- */
8098
- ModelCardName: string | undefined;
8099
- /**
8100
- * <p>The version of the model card.</p>
8101
- * @public
8102
- */
8103
- ModelCardVersion: number | undefined;
8104
- /**
8105
- * <p>The content of the model card.</p>
8106
- * @public
8107
- */
8108
- Content: string | undefined;
8109
- /**
8110
- * <p>The approval status of the model card within your organization. Different organizations might have different criteria for model card review and approval.</p>
8111
- * <ul>
8112
- * <li>
8113
- * <p>
8114
- * <code>Draft</code>: The model card is a work in progress.</p>
8115
- * </li>
8116
- * <li>
8117
- * <p>
8118
- * <code>PendingReview</code>: The model card is pending review.</p>
8119
- * </li>
8120
- * <li>
8121
- * <p>
8122
- * <code>Approved</code>: The model card is approved.</p>
8123
- * </li>
8124
- * <li>
8125
- * <p>
8126
- * <code>Archived</code>: The model card is archived. No more updates should be made to the model
8127
- * card, but it can still be exported.</p>
8128
- * </li>
8129
- * </ul>
8130
- * @public
8131
- */
8132
- ModelCardStatus: ModelCardStatus | undefined;
8133
- /**
8134
- * <p>The security configuration used to protect model card content.</p>
8135
- * @public
8136
- */
8137
- SecurityConfig?: ModelCardSecurityConfig;
8138
- /**
8139
- * <p>The date and time the model card was created.</p>
8140
- * @public
8141
- */
8142
- CreationTime: Date | undefined;
8143
- /**
8144
- * <p>Information about the user who created or modified an experiment, trial, trial
8145
- * component, lineage group, project, or model card.</p>
8146
- * @public
8147
- */
8148
- CreatedBy: UserContext | undefined;
8149
- /**
8150
- * <p>The date and time the model card was last modified.</p>
8151
- * @public
8152
- */
8153
- LastModifiedTime?: Date;
8154
- /**
8155
- * <p>Information about the user who created or modified an experiment, trial, trial
8156
- * component, lineage group, project, or model card.</p>
8157
- * @public
8158
- */
8159
- LastModifiedBy?: UserContext;
8160
- /**
8161
- * <p>The processing status of model card deletion. The <code>ModelCardProcessingStatus</code> updates throughout the different deletion steps.</p>
8162
- * <ul>
8163
- * <li>
8164
- * <p>
8165
- * <code>DeletePending</code>: Model card deletion request received.</p>
8166
- * </li>
8167
- * <li>
8168
- * <p>
8169
- * <code>DeleteInProgress</code>: Model card deletion is in progress.</p>
8170
- * </li>
8171
- * <li>
8172
- * <p>
8173
- * <code>ContentDeleted</code>: Deleted model card content.</p>
8174
- * </li>
8175
- * <li>
8176
- * <p>
8177
- * <code>ExportJobsDeleted</code>: Deleted all export jobs associated with the model card.</p>
8178
- * </li>
8179
- * <li>
8180
- * <p>
8181
- * <code>DeleteCompleted</code>: Successfully deleted the model card.</p>
8182
- * </li>
8183
- * <li>
8184
- * <p>
8185
- * <code>DeleteFailed</code>: The model card failed to delete.</p>
8186
- * </li>
8187
- * </ul>
8188
- * @public
8189
- */
8190
- ModelCardProcessingStatus?: ModelCardProcessingStatus;
8191
- }
8192
- /**
8193
- * @public
8194
- */
8195
- export interface DescribeModelCardExportJobRequest {
8196
- /**
8197
- * <p>The Amazon Resource Name (ARN) of the model card export job to describe.</p>
8198
- * @public
8199
- */
8200
- ModelCardExportJobArn: string | undefined;
8201
- }
8202
- /**
8203
- * <p>The artifacts of the model card export job.</p>
8204
- * @public
8205
- */
8206
- export interface ModelCardExportArtifacts {
8207
- /**
8208
- * <p>The Amazon S3 URI of the exported model artifacts.</p>
8209
- * @public
8210
- */
8211
- S3ExportArtifacts: string | undefined;
8212
- }
8213
8194
  /**
8214
8195
  * @internal
8215
8196
  */
@@ -8218,7 +8199,3 @@ export declare const OidcConfigFilterSensitiveLog: (obj: OidcConfig) => any;
8218
8199
  * @internal
8219
8200
  */
8220
8201
  export declare const CreateWorkforceRequestFilterSensitiveLog: (obj: CreateWorkforceRequest) => any;
8221
- /**
8222
- * @internal
8223
- */
8224
- export declare const DescribeModelCardResponseFilterSensitiveLog: (obj: DescribeModelCardResponse) => any;