@aws-sdk/client-sagemaker 3.624.0 → 3.631.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/dist-cjs/index.js +102 -81
- package/dist-es/commands/DescribeModelCardCommand.js +1 -1
- package/dist-es/models/models_1.js +1 -4
- package/dist-es/models/models_2.js +4 -4
- package/dist-es/models/models_3.js +5 -6
- package/dist-es/models/models_4.js +6 -0
- package/dist-es/protocols/Aws_json1_1.js +19 -0
- package/dist-types/commands/CreateAutoMLJobCommand.d.ts +12 -0
- package/dist-types/commands/CreateAutoMLJobV2Command.d.ts +21 -1
- package/dist-types/commands/CreateClusterCommand.d.ts +1 -2
- package/dist-types/commands/CreateDomainCommand.d.ts +5 -1
- package/dist-types/commands/CreateProcessingJobCommand.d.ts +1 -1
- package/dist-types/commands/CreateUserProfileCommand.d.ts +5 -1
- package/dist-types/commands/DescribeAutoMLJobV2Command.d.ts +5 -0
- package/dist-types/commands/DescribeDomainCommand.d.ts +5 -1
- package/dist-types/commands/DescribeModelCardCommand.d.ts +2 -1
- package/dist-types/commands/DescribeModelCardExportJobCommand.d.ts +1 -2
- package/dist-types/commands/DescribeProcessingJobCommand.d.ts +1 -1
- package/dist-types/commands/DescribeUserProfileCommand.d.ts +5 -1
- package/dist-types/commands/ListModelExplainabilityJobDefinitionsCommand.d.ts +1 -1
- package/dist-types/commands/SearchCommand.d.ts +1 -1
- package/dist-types/commands/UpdateDomainCommand.d.ts +5 -1
- package/dist-types/commands/UpdateUserProfileCommand.d.ts +5 -1
- package/dist-types/models/models_0.d.ts +92 -169
- package/dist-types/models/models_1.d.ts +182 -105
- package/dist-types/models/models_2.d.ts +112 -135
- package/dist-types/models/models_3.d.ts +132 -80
- package/dist-types/models/models_4.d.ts +81 -1
- package/dist-types/ts3.4/commands/CreateAutoMLJobV2Command.d.ts +1 -1
- package/dist-types/ts3.4/commands/CreateClusterCommand.d.ts +4 -2
- package/dist-types/ts3.4/commands/DescribeModelCardCommand.d.ts +2 -4
- package/dist-types/ts3.4/commands/DescribeModelCardExportJobCommand.d.ts +4 -2
- package/dist-types/ts3.4/commands/ListModelExplainabilityJobDefinitionsCommand.d.ts +1 -1
- package/dist-types/ts3.4/models/models_0.d.ts +11 -21
- package/dist-types/ts3.4/models/models_1.d.ts +32 -25
- package/dist-types/ts3.4/models/models_2.d.ts +32 -27
- package/dist-types/ts3.4/models/models_3.d.ts +24 -23
- package/dist-types/ts3.4/models/models_4.d.ts +22 -1
- package/package.json +7 -7
|
@@ -1,5 +1,164 @@
|
|
|
1
1
|
import { LazyJsonString as __LazyJsonString } from "@smithy/smithy-client";
|
|
2
|
-
import { AdditionalInferenceSpecificationDefinition, AmazonQSettings, AnnotationConsolidationConfig, AppNetworkAccessType, AppSecurityGroupManagement, AppType, AsyncInferenceConfig,
|
|
2
|
+
import { AdditionalInferenceSpecificationDefinition, AmazonQSettings, AnnotationConsolidationConfig, AppNetworkAccessType, AppSecurityGroupManagement, AppType, AsyncInferenceConfig, AuthMode, AutoMLComputeConfig, AutoMLDataSplitConfig, AutoMLJobChannel, AutoMLJobObjective, AutoMLOutputDataConfig, AutoMLProblemTypeConfig, AutoMLSecurityConfig, AutoParameter, AutoRollbackConfig, Autotune, AwsManagedHumanLoopRequestSource, BatchTransformInput, BestObjectiveNotImproving, Bias, BlueGreenUpdatePolicy, CanvasAppSettings, CapacitySize, CaptureContentTypeHeader, CaptureOption, CategoricalParameter, CategoricalParameterRange, Channel, CheckpointConfig, ClarifyExplainerConfig, ClusterInstanceGroupSpecification, CodeEditorAppSettings, CodeRepository, CollectionConfig, CollectionType, ContainerDefinition, ContentClassifier, ContextSource, ContinuousParameterRange, ConvergenceDetected, CustomImage, FeatureStatus, GitConfig, HyperParameterScalingType, HyperParameterTuningJobObjective, InferenceSpecification, MetadataProperties, MetricDefinition, MetricsSource, ModelApprovalStatus, ModelDataSource, ModelDeployConfig, OutputDataConfig, ProcessingS3DataDistributionType, ProcessingS3InputMode, ProductionVariantInstanceType, ResourceConfig, ResourceSpec, StoppingCondition, Tag, TargetDevice, TargetPlatformAccelerator, TargetPlatformArch, TargetPlatformOs, TrainingInputMode, TrainingInstanceType, TransformJobDefinition, VpcConfig } from "./models_0";
|
|
3
|
+
/**
|
|
4
|
+
* @public
|
|
5
|
+
*/
|
|
6
|
+
export interface CreateAutoMLJobV2Request {
|
|
7
|
+
/**
|
|
8
|
+
* <p>Identifies an Autopilot job. The name must be unique to your account and is case
|
|
9
|
+
* insensitive.</p>
|
|
10
|
+
* @public
|
|
11
|
+
*/
|
|
12
|
+
AutoMLJobName: string | undefined;
|
|
13
|
+
/**
|
|
14
|
+
* <p>An array of channel objects describing the input data and their location. Each channel
|
|
15
|
+
* is a named input source. Similar to the <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html#sagemaker-CreateAutoMLJob-request-InputDataConfig">InputDataConfig</a> attribute in the <code>CreateAutoMLJob</code> input parameters.
|
|
16
|
+
* The supported formats depend on the problem type:</p>
|
|
17
|
+
* <ul>
|
|
18
|
+
* <li>
|
|
19
|
+
* <p>For tabular problem types: <code>S3Prefix</code>,
|
|
20
|
+
* <code>ManifestFile</code>.</p>
|
|
21
|
+
* </li>
|
|
22
|
+
* <li>
|
|
23
|
+
* <p>For image classification: <code>S3Prefix</code>, <code>ManifestFile</code>,
|
|
24
|
+
* <code>AugmentedManifestFile</code>.</p>
|
|
25
|
+
* </li>
|
|
26
|
+
* <li>
|
|
27
|
+
* <p>For text classification: <code>S3Prefix</code>.</p>
|
|
28
|
+
* </li>
|
|
29
|
+
* <li>
|
|
30
|
+
* <p>For time-series forecasting: <code>S3Prefix</code>.</p>
|
|
31
|
+
* </li>
|
|
32
|
+
* <li>
|
|
33
|
+
* <p>For text generation (LLMs fine-tuning): <code>S3Prefix</code>.</p>
|
|
34
|
+
* </li>
|
|
35
|
+
* </ul>
|
|
36
|
+
* @public
|
|
37
|
+
*/
|
|
38
|
+
AutoMLJobInputDataConfig: AutoMLJobChannel[] | undefined;
|
|
39
|
+
/**
|
|
40
|
+
* <p>Provides information about encryption and the Amazon S3 output path needed to
|
|
41
|
+
* store artifacts from an AutoML job.</p>
|
|
42
|
+
* @public
|
|
43
|
+
*/
|
|
44
|
+
OutputDataConfig: AutoMLOutputDataConfig | undefined;
|
|
45
|
+
/**
|
|
46
|
+
* <p>Defines the configuration settings of one of the supported problem types.</p>
|
|
47
|
+
* @public
|
|
48
|
+
*/
|
|
49
|
+
AutoMLProblemTypeConfig: AutoMLProblemTypeConfig | undefined;
|
|
50
|
+
/**
|
|
51
|
+
* <p>The ARN of the role that is used to access the data.</p>
|
|
52
|
+
* @public
|
|
53
|
+
*/
|
|
54
|
+
RoleArn: string | undefined;
|
|
55
|
+
/**
|
|
56
|
+
* <p>An array of key-value pairs. You can use tags to categorize your Amazon Web Services
|
|
57
|
+
* resources in different ways, such as by purpose, owner, or environment. For more
|
|
58
|
+
* information, see <a href="https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html">Tagging Amazon Web ServicesResources</a>. Tag keys must be unique per
|
|
59
|
+
* resource.</p>
|
|
60
|
+
* @public
|
|
61
|
+
*/
|
|
62
|
+
Tags?: Tag[];
|
|
63
|
+
/**
|
|
64
|
+
* <p>The security configuration for traffic encryption or Amazon VPC settings.</p>
|
|
65
|
+
* @public
|
|
66
|
+
*/
|
|
67
|
+
SecurityConfig?: AutoMLSecurityConfig;
|
|
68
|
+
/**
|
|
69
|
+
* <p>Specifies a metric to minimize or maximize as the objective of a job. If not specified,
|
|
70
|
+
* the default objective metric depends on the problem type. For the list of default values
|
|
71
|
+
* per problem type, see <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobObjective.html">AutoMLJobObjective</a>.</p>
|
|
72
|
+
* <note>
|
|
73
|
+
* <ul>
|
|
74
|
+
* <li>
|
|
75
|
+
* <p>For tabular problem types: You must either provide both the
|
|
76
|
+
* <code>AutoMLJobObjective</code> and indicate the type of supervised learning
|
|
77
|
+
* problem in <code>AutoMLProblemTypeConfig</code>
|
|
78
|
+
* (<code>TabularJobConfig.ProblemType</code>), or none at all.</p>
|
|
79
|
+
* </li>
|
|
80
|
+
* <li>
|
|
81
|
+
* <p>For text generation problem types (LLMs fine-tuning):
|
|
82
|
+
* Fine-tuning language models in Autopilot does not
|
|
83
|
+
* require setting the <code>AutoMLJobObjective</code> field. Autopilot fine-tunes LLMs
|
|
84
|
+
* without requiring multiple candidates to be trained and evaluated.
|
|
85
|
+
* Instead, using your dataset, Autopilot directly fine-tunes your target model to enhance a
|
|
86
|
+
* default objective metric, the cross-entropy loss. After fine-tuning a language model,
|
|
87
|
+
* you can evaluate the quality of its generated text using different metrics.
|
|
88
|
+
* For a list of the available metrics, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-llms-finetuning-metrics.html">Metrics for
|
|
89
|
+
* fine-tuning LLMs in Autopilot</a>.</p>
|
|
90
|
+
* </li>
|
|
91
|
+
* </ul>
|
|
92
|
+
* </note>
|
|
93
|
+
* @public
|
|
94
|
+
*/
|
|
95
|
+
AutoMLJobObjective?: AutoMLJobObjective;
|
|
96
|
+
/**
|
|
97
|
+
* <p>Specifies how to generate the endpoint name for an automatic one-click Autopilot model
|
|
98
|
+
* deployment.</p>
|
|
99
|
+
* @public
|
|
100
|
+
*/
|
|
101
|
+
ModelDeployConfig?: ModelDeployConfig;
|
|
102
|
+
/**
|
|
103
|
+
* <p>This structure specifies how to split the data into train and validation
|
|
104
|
+
* datasets.</p>
|
|
105
|
+
* <p>The validation and training datasets must contain the same headers. For jobs created by
|
|
106
|
+
* calling <code>CreateAutoMLJob</code>, the validation dataset must be less than 2 GB in
|
|
107
|
+
* size.</p>
|
|
108
|
+
* <note>
|
|
109
|
+
* <p>This attribute must not be set for the time-series forecasting problem type, as Autopilot
|
|
110
|
+
* automatically splits the input dataset into training and validation sets.</p>
|
|
111
|
+
* </note>
|
|
112
|
+
* @public
|
|
113
|
+
*/
|
|
114
|
+
DataSplitConfig?: AutoMLDataSplitConfig;
|
|
115
|
+
/**
|
|
116
|
+
* <p>Specifies the compute configuration for the AutoML job V2.</p>
|
|
117
|
+
* @public
|
|
118
|
+
*/
|
|
119
|
+
AutoMLComputeConfig?: AutoMLComputeConfig;
|
|
120
|
+
}
|
|
121
|
+
/**
|
|
122
|
+
* @public
|
|
123
|
+
*/
|
|
124
|
+
export interface CreateAutoMLJobV2Response {
|
|
125
|
+
/**
|
|
126
|
+
* <p>The unique ARN assigned to the AutoMLJob when it is created.</p>
|
|
127
|
+
* @public
|
|
128
|
+
*/
|
|
129
|
+
AutoMLJobArn: string | undefined;
|
|
130
|
+
}
|
|
131
|
+
/**
|
|
132
|
+
* @public
|
|
133
|
+
*/
|
|
134
|
+
export interface CreateClusterRequest {
|
|
135
|
+
/**
|
|
136
|
+
* <p>The name for the new SageMaker HyperPod cluster.</p>
|
|
137
|
+
* @public
|
|
138
|
+
*/
|
|
139
|
+
ClusterName: string | undefined;
|
|
140
|
+
/**
|
|
141
|
+
* <p>The instance groups to be created in the SageMaker HyperPod cluster.</p>
|
|
142
|
+
* @public
|
|
143
|
+
*/
|
|
144
|
+
InstanceGroups: ClusterInstanceGroupSpecification[] | undefined;
|
|
145
|
+
/**
|
|
146
|
+
* <p>Specifies an Amazon Virtual Private Cloud (VPC) that your SageMaker jobs, hosted models, and compute resources
|
|
147
|
+
* have access to. You can control access to and from your resources by configuring a VPC.
|
|
148
|
+
* For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/infrastructure-give-access.html">Give SageMaker Access to Resources in your Amazon VPC</a>. </p>
|
|
149
|
+
* @public
|
|
150
|
+
*/
|
|
151
|
+
VpcConfig?: VpcConfig;
|
|
152
|
+
/**
|
|
153
|
+
* <p>Custom tags for managing the SageMaker HyperPod cluster as an Amazon Web Services resource. You can
|
|
154
|
+
* add tags to your cluster in the same way you add them in other Amazon Web Services services
|
|
155
|
+
* that support tagging. To learn more about tagging Amazon Web Services resources in general,
|
|
156
|
+
* see <a href="https://docs.aws.amazon.com/tag-editor/latest/userguide/tagging.html">Tagging
|
|
157
|
+
* Amazon Web Services Resources User Guide</a>.</p>
|
|
158
|
+
* @public
|
|
159
|
+
*/
|
|
160
|
+
Tags?: Tag[];
|
|
161
|
+
}
|
|
3
162
|
/**
|
|
4
163
|
* @public
|
|
5
164
|
*/
|
|
@@ -1921,6 +2080,7 @@ export declare const MlTools: {
|
|
|
1921
2080
|
readonly ENDPOINTS: "Endpoints";
|
|
1922
2081
|
readonly EXPERIMENTS: "Experiments";
|
|
1923
2082
|
readonly FEATURE_STORE: "FeatureStore";
|
|
2083
|
+
readonly INFERENCE_OPTIMIZATION: "InferenceOptimization";
|
|
1924
2084
|
readonly INFERENCE_RECOMMENDER: "InferenceRecommender";
|
|
1925
2085
|
readonly JUMP_START: "JumpStart";
|
|
1926
2086
|
readonly MODELS: "Models";
|
|
@@ -2957,6 +3117,27 @@ export interface ProductionVariant {
|
|
|
2957
3117
|
* <p>By selecting an AMI version, you can ensure that your inference environment is
|
|
2958
3118
|
* compatible with specific software requirements, such as CUDA driver versions, Linux
|
|
2959
3119
|
* kernel versions, or Amazon Web Services Neuron driver versions.</p>
|
|
3120
|
+
* <p>The AMI version names, and their configurations, are the following:</p>
|
|
3121
|
+
* <dl>
|
|
3122
|
+
* <dt>al2-ami-sagemaker-inference-gpu-2</dt>
|
|
3123
|
+
* <dd>
|
|
3124
|
+
* <ul>
|
|
3125
|
+
* <li>
|
|
3126
|
+
* <p>Accelerator: GPU</p>
|
|
3127
|
+
* </li>
|
|
3128
|
+
* <li>
|
|
3129
|
+
* <p>NVIDIA driver version: 535.54.03</p>
|
|
3130
|
+
* </li>
|
|
3131
|
+
* <li>
|
|
3132
|
+
* <p>CUDA driver version: 12.2</p>
|
|
3133
|
+
* </li>
|
|
3134
|
+
* <li>
|
|
3135
|
+
* <p>Supported instance types: ml.g4dn.*, ml.g5.*, ml.g6.*, ml.p3.*,
|
|
3136
|
+
* ml.p4d.*, ml.p4de.*, ml.p5.*</p>
|
|
3137
|
+
* </li>
|
|
3138
|
+
* </ul>
|
|
3139
|
+
* </dd>
|
|
3140
|
+
* </dl>
|
|
2960
3141
|
* @public
|
|
2961
3142
|
*/
|
|
2962
3143
|
InferenceAmiVersion?: ProductionVariantInferenceAmiVersion;
|
|
@@ -11580,110 +11761,6 @@ export declare const RedshiftResultFormat: {
|
|
|
11580
11761
|
* @public
|
|
11581
11762
|
*/
|
|
11582
11763
|
export type RedshiftResultFormat = (typeof RedshiftResultFormat)[keyof typeof RedshiftResultFormat];
|
|
11583
|
-
/**
|
|
11584
|
-
* <p>Configuration for Redshift Dataset Definition input.</p>
|
|
11585
|
-
* @public
|
|
11586
|
-
*/
|
|
11587
|
-
export interface RedshiftDatasetDefinition {
|
|
11588
|
-
/**
|
|
11589
|
-
* <p>The Redshift cluster Identifier.</p>
|
|
11590
|
-
* @public
|
|
11591
|
-
*/
|
|
11592
|
-
ClusterId: string | undefined;
|
|
11593
|
-
/**
|
|
11594
|
-
* <p>The name of the Redshift database used in Redshift query execution.</p>
|
|
11595
|
-
* @public
|
|
11596
|
-
*/
|
|
11597
|
-
Database: string | undefined;
|
|
11598
|
-
/**
|
|
11599
|
-
* <p>The database user name used in Redshift query execution.</p>
|
|
11600
|
-
* @public
|
|
11601
|
-
*/
|
|
11602
|
-
DbUser: string | undefined;
|
|
11603
|
-
/**
|
|
11604
|
-
* <p>The SQL query statements to be executed.</p>
|
|
11605
|
-
* @public
|
|
11606
|
-
*/
|
|
11607
|
-
QueryString: string | undefined;
|
|
11608
|
-
/**
|
|
11609
|
-
* <p>The IAM role attached to your Redshift cluster that Amazon SageMaker uses to generate datasets.</p>
|
|
11610
|
-
* @public
|
|
11611
|
-
*/
|
|
11612
|
-
ClusterRoleArn: string | undefined;
|
|
11613
|
-
/**
|
|
11614
|
-
* <p>The location in Amazon S3 where the Redshift query results are stored.</p>
|
|
11615
|
-
* @public
|
|
11616
|
-
*/
|
|
11617
|
-
OutputS3Uri: string | undefined;
|
|
11618
|
-
/**
|
|
11619
|
-
* <p>The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt data from a
|
|
11620
|
-
* Redshift execution.</p>
|
|
11621
|
-
* @public
|
|
11622
|
-
*/
|
|
11623
|
-
KmsKeyId?: string;
|
|
11624
|
-
/**
|
|
11625
|
-
* <p>The data storage format for Redshift query results.</p>
|
|
11626
|
-
* @public
|
|
11627
|
-
*/
|
|
11628
|
-
OutputFormat: RedshiftResultFormat | undefined;
|
|
11629
|
-
/**
|
|
11630
|
-
* <p>The compression used for Redshift query results.</p>
|
|
11631
|
-
* @public
|
|
11632
|
-
*/
|
|
11633
|
-
OutputCompression?: RedshiftResultCompressionType;
|
|
11634
|
-
}
|
|
11635
|
-
/**
|
|
11636
|
-
* <p>Configuration for Dataset Definition inputs. The Dataset Definition input must specify
|
|
11637
|
-
* exactly one of either <code>AthenaDatasetDefinition</code> or <code>RedshiftDatasetDefinition</code>
|
|
11638
|
-
* types.</p>
|
|
11639
|
-
* @public
|
|
11640
|
-
*/
|
|
11641
|
-
export interface DatasetDefinition {
|
|
11642
|
-
/**
|
|
11643
|
-
* <p>Configuration for Athena Dataset Definition input.</p>
|
|
11644
|
-
* @public
|
|
11645
|
-
*/
|
|
11646
|
-
AthenaDatasetDefinition?: AthenaDatasetDefinition;
|
|
11647
|
-
/**
|
|
11648
|
-
* <p>Configuration for Redshift Dataset Definition input.</p>
|
|
11649
|
-
* @public
|
|
11650
|
-
*/
|
|
11651
|
-
RedshiftDatasetDefinition?: RedshiftDatasetDefinition;
|
|
11652
|
-
/**
|
|
11653
|
-
* <p>The local path where you want Amazon SageMaker to download the Dataset Definition inputs to run a
|
|
11654
|
-
* processing job. <code>LocalPath</code> is an absolute path to the input data. This is a required
|
|
11655
|
-
* parameter when <code>AppManaged</code> is <code>False</code> (default).</p>
|
|
11656
|
-
* @public
|
|
11657
|
-
*/
|
|
11658
|
-
LocalPath?: string;
|
|
11659
|
-
/**
|
|
11660
|
-
* <p>Whether the generated dataset is <code>FullyReplicated</code> or
|
|
11661
|
-
* <code>ShardedByS3Key</code> (default).</p>
|
|
11662
|
-
* @public
|
|
11663
|
-
*/
|
|
11664
|
-
DataDistributionType?: DataDistributionType;
|
|
11665
|
-
/**
|
|
11666
|
-
* <p>Whether to use <code>File</code> or <code>Pipe</code> input mode. In <code>File</code> (default) mode,
|
|
11667
|
-
* Amazon SageMaker copies the data from the input source onto the local Amazon Elastic Block Store
|
|
11668
|
-
* (Amazon EBS) volumes before starting your training algorithm. This is the most commonly used
|
|
11669
|
-
* input mode. In <code>Pipe</code> mode, Amazon SageMaker streams input data from the source directly to your
|
|
11670
|
-
* algorithm without using the EBS volume.</p>
|
|
11671
|
-
* @public
|
|
11672
|
-
*/
|
|
11673
|
-
InputMode?: InputMode;
|
|
11674
|
-
}
|
|
11675
|
-
/**
|
|
11676
|
-
* @public
|
|
11677
|
-
* @enum
|
|
11678
|
-
*/
|
|
11679
|
-
export declare const ProcessingS3CompressionType: {
|
|
11680
|
-
readonly GZIP: "Gzip";
|
|
11681
|
-
readonly NONE: "None";
|
|
11682
|
-
};
|
|
11683
|
-
/**
|
|
11684
|
-
* @public
|
|
11685
|
-
*/
|
|
11686
|
-
export type ProcessingS3CompressionType = (typeof ProcessingS3CompressionType)[keyof typeof ProcessingS3CompressionType];
|
|
11687
11764
|
/**
|
|
11688
11765
|
* @internal
|
|
11689
11766
|
*/
|
|
@@ -1,5 +1,109 @@
|
|
|
1
|
-
import { ActionSource, ActionStatus, AlgorithmSpecification, AlgorithmStatus, AlgorithmStatusDetails, AlgorithmValidationSpecification, AppNetworkAccessType, AppSecurityGroupManagement, AppSpecification, AppStatus, AppType, ArtifactSource, AsyncInferenceConfig, AuthMode, AutoMLCandidate, AutoMLChannel, AutoMLDataSplitConfig, AutoMLJobArtifacts, AutoMLJobChannel, AutoMLJobCompletionCriteria, AutoMLJobConfig, AutoMLJobObjective, AutoMLJobSecondaryStatus, AutoMLJobStatus, AutoMLOutputDataConfig, AutoMLPartialFailureReason, AutoMLProblemTypeConfig, AutoMLProblemTypeConfigName, AutoMLResolvedAttributes, AutoMLSecurityConfig, Autotune, BatchDataCaptureConfig, BatchStrategy, CaptureStatus, Channel, CheckpointConfig, ClusterInstanceGroupDetails, ClusterNodeDetails, ClusterStatus, CodeEditorAppImageConfig, CodeRepository, CognitoConfig, CognitoMemberDefinition, CollectionConfiguration, CompilationJobStatus, ContainerDefinition, ContextSource, GitConfig, HyperParameterTuningJobObjectiveType, InferenceSpecification, JupyterLabAppImageConfig, KernelGatewayImageConfig, MetadataProperties, ModelDeployConfig, ObjectiveStatus, OutputDataConfig, ProblemType, ProcessingS3DataDistributionType, ProcessingS3InputMode, ProductionVariantInstanceType, ResourceConfig, ResourceSpec, StoppingCondition, Tag, TrainingSpecification, TransformInput, TransformOutput, TransformResources, UserContext, VpcConfig } from "./models_0";
|
|
2
|
-
import { DataCaptureConfig, DataQualityAppSpecification, DataQualityBaselineConfig, DataQualityJobInput,
|
|
1
|
+
import { ActionSource, ActionStatus, AlgorithmSpecification, AlgorithmStatus, AlgorithmStatusDetails, AlgorithmValidationSpecification, AppNetworkAccessType, AppSecurityGroupManagement, AppSpecification, AppStatus, AppType, ArtifactSource, AsyncInferenceConfig, AthenaDatasetDefinition, AuthMode, AutoMLCandidate, AutoMLChannel, AutoMLComputeConfig, AutoMLDataSplitConfig, AutoMLJobArtifacts, AutoMLJobChannel, AutoMLJobCompletionCriteria, AutoMLJobConfig, AutoMLJobObjective, AutoMLJobSecondaryStatus, AutoMLJobStatus, AutoMLOutputDataConfig, AutoMLPartialFailureReason, AutoMLProblemTypeConfig, AutoMLProblemTypeConfigName, AutoMLResolvedAttributes, AutoMLSecurityConfig, Autotune, BatchDataCaptureConfig, BatchStrategy, CaptureStatus, Channel, CheckpointConfig, ClusterInstanceGroupDetails, ClusterNodeDetails, ClusterStatus, CodeEditorAppImageConfig, CodeRepository, CognitoConfig, CognitoMemberDefinition, CollectionConfiguration, CompilationJobStatus, ContainerDefinition, ContextSource, GitConfig, HyperParameterTuningJobObjectiveType, InferenceSpecification, JupyterLabAppImageConfig, KernelGatewayImageConfig, MetadataProperties, ModelDeployConfig, ObjectiveStatus, OutputDataConfig, ProblemType, ProcessingS3DataDistributionType, ProcessingS3InputMode, ProductionVariantInstanceType, ResourceConfig, ResourceSpec, StoppingCondition, Tag, TrainingSpecification, TransformInput, TransformOutput, TransformResources, UserContext, VpcConfig } from "./models_0";
|
|
2
|
+
import { DataCaptureConfig, DataDistributionType, DataQualityAppSpecification, DataQualityBaselineConfig, DataQualityJobInput, DefaultSpaceSettings, DeploymentConfig, DeviceSelectionConfig, DomainSettings, EdgeDeploymentConfig, EdgeDeploymentModelConfig, EdgeOutputConfig, EdgePresetDeploymentType, EndpointInfo, ExperimentConfig, ExplainerConfig, FeatureDefinition, FeatureType, FlowDefinitionOutputConfig, HubS3StorageConfig, HumanLoopActivationConfig, HumanLoopConfig, HumanLoopRequestSource, HumanTaskConfig, HyperParameterTrainingJobDefinition, HyperParameterTuningJobConfig, HyperParameterTuningJobWarmStartConfig, InferenceComponentComputeResourceRequirements, InferenceComponentStartupParameters, InferenceExecutionConfig, InferenceExperimentDataStorageConfig, InferenceExperimentSchedule, InferenceExperimentType, InputConfig, InputMode, JobType, JupyterServerAppSettings, KernelGatewayAppSettings, LabelingJobAlgorithmsConfig, LabelingJobInputConfig, LabelingJobOutputConfig, LabelingJobStoppingConditions, ModelBiasAppSpecification, ModelBiasBaselineConfig, ModelBiasJobInput, ModelInfrastructureConfig, MonitoringNetworkConfig, MonitoringOutputConfig, MonitoringResources, MonitoringStoppingCondition, NeoVpcConfig, NetworkConfig, OfflineStoreConfig, OnlineStoreConfig, OutputConfig, ProcessingInstanceType, ProcessingS3UploadMode, Processor, ProductionVariant, ProductionVariantAcceleratorType, ProductionVariantManagedInstanceScaling, ProductionVariantRoutingConfig, ProductionVariantServerlessConfig, RecommendationJobInputConfig, RecommendationJobStoppingConditions, RecommendationJobType, RedshiftResultCompressionType, RedshiftResultFormat, RetryStrategy, ShadowModeConfig, ThroughputMode, TrackingServerSize, UserSettings, VendorGuidance } from "./models_1";
|
|
3
|
+
/**
|
|
4
|
+
* <p>Configuration for Redshift Dataset Definition input.</p>
|
|
5
|
+
* @public
|
|
6
|
+
*/
|
|
7
|
+
export interface RedshiftDatasetDefinition {
|
|
8
|
+
/**
|
|
9
|
+
* <p>The Redshift cluster Identifier.</p>
|
|
10
|
+
* @public
|
|
11
|
+
*/
|
|
12
|
+
ClusterId: string | undefined;
|
|
13
|
+
/**
|
|
14
|
+
* <p>The name of the Redshift database used in Redshift query execution.</p>
|
|
15
|
+
* @public
|
|
16
|
+
*/
|
|
17
|
+
Database: string | undefined;
|
|
18
|
+
/**
|
|
19
|
+
* <p>The database user name used in Redshift query execution.</p>
|
|
20
|
+
* @public
|
|
21
|
+
*/
|
|
22
|
+
DbUser: string | undefined;
|
|
23
|
+
/**
|
|
24
|
+
* <p>The SQL query statements to be executed.</p>
|
|
25
|
+
* @public
|
|
26
|
+
*/
|
|
27
|
+
QueryString: string | undefined;
|
|
28
|
+
/**
|
|
29
|
+
* <p>The IAM role attached to your Redshift cluster that Amazon SageMaker uses to generate datasets.</p>
|
|
30
|
+
* @public
|
|
31
|
+
*/
|
|
32
|
+
ClusterRoleArn: string | undefined;
|
|
33
|
+
/**
|
|
34
|
+
* <p>The location in Amazon S3 where the Redshift query results are stored.</p>
|
|
35
|
+
* @public
|
|
36
|
+
*/
|
|
37
|
+
OutputS3Uri: string | undefined;
|
|
38
|
+
/**
|
|
39
|
+
* <p>The Amazon Web Services Key Management Service (Amazon Web Services KMS) key that Amazon SageMaker uses to encrypt data from a
|
|
40
|
+
* Redshift execution.</p>
|
|
41
|
+
* @public
|
|
42
|
+
*/
|
|
43
|
+
KmsKeyId?: string;
|
|
44
|
+
/**
|
|
45
|
+
* <p>The data storage format for Redshift query results.</p>
|
|
46
|
+
* @public
|
|
47
|
+
*/
|
|
48
|
+
OutputFormat: RedshiftResultFormat | undefined;
|
|
49
|
+
/**
|
|
50
|
+
* <p>The compression used for Redshift query results.</p>
|
|
51
|
+
* @public
|
|
52
|
+
*/
|
|
53
|
+
OutputCompression?: RedshiftResultCompressionType;
|
|
54
|
+
}
|
|
55
|
+
/**
|
|
56
|
+
* <p>Configuration for Dataset Definition inputs. The Dataset Definition input must specify
|
|
57
|
+
* exactly one of either <code>AthenaDatasetDefinition</code> or <code>RedshiftDatasetDefinition</code>
|
|
58
|
+
* types.</p>
|
|
59
|
+
* @public
|
|
60
|
+
*/
|
|
61
|
+
export interface DatasetDefinition {
|
|
62
|
+
/**
|
|
63
|
+
* <p>Configuration for Athena Dataset Definition input.</p>
|
|
64
|
+
* @public
|
|
65
|
+
*/
|
|
66
|
+
AthenaDatasetDefinition?: AthenaDatasetDefinition;
|
|
67
|
+
/**
|
|
68
|
+
* <p>Configuration for Redshift Dataset Definition input.</p>
|
|
69
|
+
* @public
|
|
70
|
+
*/
|
|
71
|
+
RedshiftDatasetDefinition?: RedshiftDatasetDefinition;
|
|
72
|
+
/**
|
|
73
|
+
* <p>The local path where you want Amazon SageMaker to download the Dataset Definition inputs to run a
|
|
74
|
+
* processing job. <code>LocalPath</code> is an absolute path to the input data. This is a required
|
|
75
|
+
* parameter when <code>AppManaged</code> is <code>False</code> (default).</p>
|
|
76
|
+
* @public
|
|
77
|
+
*/
|
|
78
|
+
LocalPath?: string;
|
|
79
|
+
/**
|
|
80
|
+
* <p>Whether the generated dataset is <code>FullyReplicated</code> or
|
|
81
|
+
* <code>ShardedByS3Key</code> (default).</p>
|
|
82
|
+
* @public
|
|
83
|
+
*/
|
|
84
|
+
DataDistributionType?: DataDistributionType;
|
|
85
|
+
/**
|
|
86
|
+
* <p>Whether to use <code>File</code> or <code>Pipe</code> input mode. In <code>File</code> (default) mode,
|
|
87
|
+
* Amazon SageMaker copies the data from the input source onto the local Amazon Elastic Block Store
|
|
88
|
+
* (Amazon EBS) volumes before starting your training algorithm. This is the most commonly used
|
|
89
|
+
* input mode. In <code>Pipe</code> mode, Amazon SageMaker streams input data from the source directly to your
|
|
90
|
+
* algorithm without using the EBS volume.</p>
|
|
91
|
+
* @public
|
|
92
|
+
*/
|
|
93
|
+
InputMode?: InputMode;
|
|
94
|
+
}
|
|
95
|
+
/**
|
|
96
|
+
* @public
|
|
97
|
+
* @enum
|
|
98
|
+
*/
|
|
99
|
+
export declare const ProcessingS3CompressionType: {
|
|
100
|
+
readonly GZIP: "Gzip";
|
|
101
|
+
readonly NONE: "None";
|
|
102
|
+
};
|
|
103
|
+
/**
|
|
104
|
+
* @public
|
|
105
|
+
*/
|
|
106
|
+
export type ProcessingS3CompressionType = (typeof ProcessingS3CompressionType)[keyof typeof ProcessingS3CompressionType];
|
|
3
107
|
/**
|
|
4
108
|
* @public
|
|
5
109
|
* @enum
|
|
@@ -123,7 +227,7 @@ export interface ProcessingS3Output {
|
|
|
123
227
|
* entrypoint is invoked.</p>
|
|
124
228
|
* @public
|
|
125
229
|
*/
|
|
126
|
-
LocalPath
|
|
230
|
+
LocalPath?: string;
|
|
127
231
|
/**
|
|
128
232
|
* <p>Whether to upload the results of the processing job continuously or after the job
|
|
129
233
|
* completes.</p>
|
|
@@ -3821,6 +3925,11 @@ export interface DescribeAutoMLJobV2Response {
|
|
|
3821
3925
|
* @public
|
|
3822
3926
|
*/
|
|
3823
3927
|
SecurityConfig?: AutoMLSecurityConfig;
|
|
3928
|
+
/**
|
|
3929
|
+
* <p>The compute configuration used for the AutoML job V2.</p>
|
|
3930
|
+
* @public
|
|
3931
|
+
*/
|
|
3932
|
+
AutoMLComputeConfig?: AutoMLComputeConfig;
|
|
3824
3933
|
}
|
|
3825
3934
|
/**
|
|
3826
3935
|
* @public
|
|
@@ -8082,134 +8191,6 @@ export declare const ModelCardProcessingStatus: {
|
|
|
8082
8191
|
* @public
|
|
8083
8192
|
*/
|
|
8084
8193
|
export type ModelCardProcessingStatus = (typeof ModelCardProcessingStatus)[keyof typeof ModelCardProcessingStatus];
|
|
8085
|
-
/**
|
|
8086
|
-
* @public
|
|
8087
|
-
*/
|
|
8088
|
-
export interface DescribeModelCardResponse {
|
|
8089
|
-
/**
|
|
8090
|
-
* <p>The Amazon Resource Name (ARN) of the model card.</p>
|
|
8091
|
-
* @public
|
|
8092
|
-
*/
|
|
8093
|
-
ModelCardArn: string | undefined;
|
|
8094
|
-
/**
|
|
8095
|
-
* <p>The name of the model card.</p>
|
|
8096
|
-
* @public
|
|
8097
|
-
*/
|
|
8098
|
-
ModelCardName: string | undefined;
|
|
8099
|
-
/**
|
|
8100
|
-
* <p>The version of the model card.</p>
|
|
8101
|
-
* @public
|
|
8102
|
-
*/
|
|
8103
|
-
ModelCardVersion: number | undefined;
|
|
8104
|
-
/**
|
|
8105
|
-
* <p>The content of the model card.</p>
|
|
8106
|
-
* @public
|
|
8107
|
-
*/
|
|
8108
|
-
Content: string | undefined;
|
|
8109
|
-
/**
|
|
8110
|
-
* <p>The approval status of the model card within your organization. Different organizations might have different criteria for model card review and approval.</p>
|
|
8111
|
-
* <ul>
|
|
8112
|
-
* <li>
|
|
8113
|
-
* <p>
|
|
8114
|
-
* <code>Draft</code>: The model card is a work in progress.</p>
|
|
8115
|
-
* </li>
|
|
8116
|
-
* <li>
|
|
8117
|
-
* <p>
|
|
8118
|
-
* <code>PendingReview</code>: The model card is pending review.</p>
|
|
8119
|
-
* </li>
|
|
8120
|
-
* <li>
|
|
8121
|
-
* <p>
|
|
8122
|
-
* <code>Approved</code>: The model card is approved.</p>
|
|
8123
|
-
* </li>
|
|
8124
|
-
* <li>
|
|
8125
|
-
* <p>
|
|
8126
|
-
* <code>Archived</code>: The model card is archived. No more updates should be made to the model
|
|
8127
|
-
* card, but it can still be exported.</p>
|
|
8128
|
-
* </li>
|
|
8129
|
-
* </ul>
|
|
8130
|
-
* @public
|
|
8131
|
-
*/
|
|
8132
|
-
ModelCardStatus: ModelCardStatus | undefined;
|
|
8133
|
-
/**
|
|
8134
|
-
* <p>The security configuration used to protect model card content.</p>
|
|
8135
|
-
* @public
|
|
8136
|
-
*/
|
|
8137
|
-
SecurityConfig?: ModelCardSecurityConfig;
|
|
8138
|
-
/**
|
|
8139
|
-
* <p>The date and time the model card was created.</p>
|
|
8140
|
-
* @public
|
|
8141
|
-
*/
|
|
8142
|
-
CreationTime: Date | undefined;
|
|
8143
|
-
/**
|
|
8144
|
-
* <p>Information about the user who created or modified an experiment, trial, trial
|
|
8145
|
-
* component, lineage group, project, or model card.</p>
|
|
8146
|
-
* @public
|
|
8147
|
-
*/
|
|
8148
|
-
CreatedBy: UserContext | undefined;
|
|
8149
|
-
/**
|
|
8150
|
-
* <p>The date and time the model card was last modified.</p>
|
|
8151
|
-
* @public
|
|
8152
|
-
*/
|
|
8153
|
-
LastModifiedTime?: Date;
|
|
8154
|
-
/**
|
|
8155
|
-
* <p>Information about the user who created or modified an experiment, trial, trial
|
|
8156
|
-
* component, lineage group, project, or model card.</p>
|
|
8157
|
-
* @public
|
|
8158
|
-
*/
|
|
8159
|
-
LastModifiedBy?: UserContext;
|
|
8160
|
-
/**
|
|
8161
|
-
* <p>The processing status of model card deletion. The <code>ModelCardProcessingStatus</code> updates throughout the different deletion steps.</p>
|
|
8162
|
-
* <ul>
|
|
8163
|
-
* <li>
|
|
8164
|
-
* <p>
|
|
8165
|
-
* <code>DeletePending</code>: Model card deletion request received.</p>
|
|
8166
|
-
* </li>
|
|
8167
|
-
* <li>
|
|
8168
|
-
* <p>
|
|
8169
|
-
* <code>DeleteInProgress</code>: Model card deletion is in progress.</p>
|
|
8170
|
-
* </li>
|
|
8171
|
-
* <li>
|
|
8172
|
-
* <p>
|
|
8173
|
-
* <code>ContentDeleted</code>: Deleted model card content.</p>
|
|
8174
|
-
* </li>
|
|
8175
|
-
* <li>
|
|
8176
|
-
* <p>
|
|
8177
|
-
* <code>ExportJobsDeleted</code>: Deleted all export jobs associated with the model card.</p>
|
|
8178
|
-
* </li>
|
|
8179
|
-
* <li>
|
|
8180
|
-
* <p>
|
|
8181
|
-
* <code>DeleteCompleted</code>: Successfully deleted the model card.</p>
|
|
8182
|
-
* </li>
|
|
8183
|
-
* <li>
|
|
8184
|
-
* <p>
|
|
8185
|
-
* <code>DeleteFailed</code>: The model card failed to delete.</p>
|
|
8186
|
-
* </li>
|
|
8187
|
-
* </ul>
|
|
8188
|
-
* @public
|
|
8189
|
-
*/
|
|
8190
|
-
ModelCardProcessingStatus?: ModelCardProcessingStatus;
|
|
8191
|
-
}
|
|
8192
|
-
/**
|
|
8193
|
-
* @public
|
|
8194
|
-
*/
|
|
8195
|
-
export interface DescribeModelCardExportJobRequest {
|
|
8196
|
-
/**
|
|
8197
|
-
* <p>The Amazon Resource Name (ARN) of the model card export job to describe.</p>
|
|
8198
|
-
* @public
|
|
8199
|
-
*/
|
|
8200
|
-
ModelCardExportJobArn: string | undefined;
|
|
8201
|
-
}
|
|
8202
|
-
/**
|
|
8203
|
-
* <p>The artifacts of the model card export job.</p>
|
|
8204
|
-
* @public
|
|
8205
|
-
*/
|
|
8206
|
-
export interface ModelCardExportArtifacts {
|
|
8207
|
-
/**
|
|
8208
|
-
* <p>The Amazon S3 URI of the exported model artifacts.</p>
|
|
8209
|
-
* @public
|
|
8210
|
-
*/
|
|
8211
|
-
S3ExportArtifacts: string | undefined;
|
|
8212
|
-
}
|
|
8213
8194
|
/**
|
|
8214
8195
|
* @internal
|
|
8215
8196
|
*/
|
|
@@ -8218,7 +8199,3 @@ export declare const OidcConfigFilterSensitiveLog: (obj: OidcConfig) => any;
|
|
|
8218
8199
|
* @internal
|
|
8219
8200
|
*/
|
|
8220
8201
|
export declare const CreateWorkforceRequestFilterSensitiveLog: (obj: CreateWorkforceRequest) => any;
|
|
8221
|
-
/**
|
|
8222
|
-
* @internal
|
|
8223
|
-
*/
|
|
8224
|
-
export declare const DescribeModelCardResponseFilterSensitiveLog: (obj: DescribeModelCardResponse) => any;
|