@aws-sdk/client-sagemaker 3.624.0 → 3.631.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/dist-cjs/index.js +102 -81
- package/dist-es/commands/DescribeModelCardCommand.js +1 -1
- package/dist-es/models/models_1.js +1 -4
- package/dist-es/models/models_2.js +4 -4
- package/dist-es/models/models_3.js +5 -6
- package/dist-es/models/models_4.js +6 -0
- package/dist-es/protocols/Aws_json1_1.js +19 -0
- package/dist-types/commands/CreateAutoMLJobCommand.d.ts +12 -0
- package/dist-types/commands/CreateAutoMLJobV2Command.d.ts +21 -1
- package/dist-types/commands/CreateClusterCommand.d.ts +1 -2
- package/dist-types/commands/CreateDomainCommand.d.ts +5 -1
- package/dist-types/commands/CreateProcessingJobCommand.d.ts +1 -1
- package/dist-types/commands/CreateUserProfileCommand.d.ts +5 -1
- package/dist-types/commands/DescribeAutoMLJobV2Command.d.ts +5 -0
- package/dist-types/commands/DescribeDomainCommand.d.ts +5 -1
- package/dist-types/commands/DescribeModelCardCommand.d.ts +2 -1
- package/dist-types/commands/DescribeModelCardExportJobCommand.d.ts +1 -2
- package/dist-types/commands/DescribeProcessingJobCommand.d.ts +1 -1
- package/dist-types/commands/DescribeUserProfileCommand.d.ts +5 -1
- package/dist-types/commands/ListModelExplainabilityJobDefinitionsCommand.d.ts +1 -1
- package/dist-types/commands/SearchCommand.d.ts +1 -1
- package/dist-types/commands/UpdateDomainCommand.d.ts +5 -1
- package/dist-types/commands/UpdateUserProfileCommand.d.ts +5 -1
- package/dist-types/models/models_0.d.ts +92 -169
- package/dist-types/models/models_1.d.ts +182 -105
- package/dist-types/models/models_2.d.ts +112 -135
- package/dist-types/models/models_3.d.ts +132 -80
- package/dist-types/models/models_4.d.ts +81 -1
- package/dist-types/ts3.4/commands/CreateAutoMLJobV2Command.d.ts +1 -1
- package/dist-types/ts3.4/commands/CreateClusterCommand.d.ts +4 -2
- package/dist-types/ts3.4/commands/DescribeModelCardCommand.d.ts +2 -4
- package/dist-types/ts3.4/commands/DescribeModelCardExportJobCommand.d.ts +4 -2
- package/dist-types/ts3.4/commands/ListModelExplainabilityJobDefinitionsCommand.d.ts +1 -1
- package/dist-types/ts3.4/models/models_0.d.ts +11 -21
- package/dist-types/ts3.4/models/models_1.d.ts +32 -25
- package/dist-types/ts3.4/models/models_2.d.ts +32 -27
- package/dist-types/ts3.4/models/models_3.d.ts +24 -23
- package/dist-types/ts3.4/models/models_4.d.ts +22 -1
- package/package.json +7 -7
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
import { Command as $Command } from "@smithy/smithy-client";
|
|
2
2
|
import { MetadataBearer as __MetadataBearer } from "@smithy/types";
|
|
3
|
-
import { ListModelExplainabilityJobDefinitionsRequest, ListModelExplainabilityJobDefinitionsResponse } from "../models/
|
|
3
|
+
import { ListModelExplainabilityJobDefinitionsRequest, ListModelExplainabilityJobDefinitionsResponse } from "../models/models_4";
|
|
4
4
|
import { SageMakerClientResolvedConfig, ServiceInputTypes, ServiceOutputTypes } from "../SageMakerClient";
|
|
5
5
|
/**
|
|
6
6
|
* @public
|
|
@@ -710,7 +710,7 @@ declare const SearchCommand_base: {
|
|
|
710
710
|
* // OutputName: "STRING_VALUE", // required
|
|
711
711
|
* // S3Output: { // ProcessingS3Output
|
|
712
712
|
* // S3Uri: "STRING_VALUE", // required
|
|
713
|
-
* // LocalPath: "STRING_VALUE",
|
|
713
|
+
* // LocalPath: "STRING_VALUE",
|
|
714
714
|
* // S3UploadMode: "Continuous" || "EndOfJob", // required
|
|
715
715
|
* // },
|
|
716
716
|
* // FeatureStoreOutput: { // ProcessingFeatureStoreOutput
|
|
@@ -140,6 +140,10 @@ declare const UpdateDomainCommand_base: {
|
|
|
140
140
|
* GenerativeAiSettings: { // GenerativeAiSettings
|
|
141
141
|
* AmazonBedrockRoleArn: "STRING_VALUE",
|
|
142
142
|
* },
|
|
143
|
+
* EmrServerlessSettings: { // EmrServerlessSettings
|
|
144
|
+
* ExecutionRoleArn: "STRING_VALUE",
|
|
145
|
+
* Status: "ENABLED" || "DISABLED",
|
|
146
|
+
* },
|
|
143
147
|
* },
|
|
144
148
|
* CodeEditorAppSettings: { // CodeEditorAppSettings
|
|
145
149
|
* DefaultResourceSpec: {
|
|
@@ -208,7 +212,7 @@ declare const UpdateDomainCommand_base: {
|
|
|
208
212
|
* ],
|
|
209
213
|
* StudioWebPortalSettings: { // StudioWebPortalSettings
|
|
210
214
|
* HiddenMlTools: [ // HiddenMlToolsList
|
|
211
|
-
* "DataWrangler" || "FeatureStore" || "EmrClusters" || "AutoMl" || "Experiments" || "Training" || "ModelEvaluation" || "Pipelines" || "Models" || "JumpStart" || "InferenceRecommender" || "Endpoints" || "Projects",
|
|
215
|
+
* "DataWrangler" || "FeatureStore" || "EmrClusters" || "AutoMl" || "Experiments" || "Training" || "ModelEvaluation" || "Pipelines" || "Models" || "JumpStart" || "InferenceRecommender" || "Endpoints" || "Projects" || "InferenceOptimization",
|
|
212
216
|
* ],
|
|
213
217
|
* HiddenAppTypes: [ // HiddenAppTypesList
|
|
214
218
|
* "JupyterServer" || "KernelGateway" || "DetailedProfiler" || "TensorBoard" || "CodeEditor" || "JupyterLab" || "RStudioServerPro" || "RSessionGateway" || "Canvas",
|
|
@@ -141,6 +141,10 @@ declare const UpdateUserProfileCommand_base: {
|
|
|
141
141
|
* GenerativeAiSettings: { // GenerativeAiSettings
|
|
142
142
|
* AmazonBedrockRoleArn: "STRING_VALUE",
|
|
143
143
|
* },
|
|
144
|
+
* EmrServerlessSettings: { // EmrServerlessSettings
|
|
145
|
+
* ExecutionRoleArn: "STRING_VALUE",
|
|
146
|
+
* Status: "ENABLED" || "DISABLED",
|
|
147
|
+
* },
|
|
144
148
|
* },
|
|
145
149
|
* CodeEditorAppSettings: { // CodeEditorAppSettings
|
|
146
150
|
* DefaultResourceSpec: {
|
|
@@ -209,7 +213,7 @@ declare const UpdateUserProfileCommand_base: {
|
|
|
209
213
|
* ],
|
|
210
214
|
* StudioWebPortalSettings: { // StudioWebPortalSettings
|
|
211
215
|
* HiddenMlTools: [ // HiddenMlToolsList
|
|
212
|
-
* "DataWrangler" || "FeatureStore" || "EmrClusters" || "AutoMl" || "Experiments" || "Training" || "ModelEvaluation" || "Pipelines" || "Models" || "JumpStart" || "InferenceRecommender" || "Endpoints" || "Projects",
|
|
216
|
+
* "DataWrangler" || "FeatureStore" || "EmrClusters" || "AutoMl" || "Experiments" || "Training" || "ModelEvaluation" || "Pipelines" || "Models" || "JumpStart" || "InferenceRecommender" || "Endpoints" || "Projects" || "InferenceOptimization",
|
|
213
217
|
* ],
|
|
214
218
|
* HiddenAppTypes: [ // HiddenAppTypesList
|
|
215
219
|
* "JupyterServer" || "KernelGateway" || "DetailedProfiler" || "TensorBoard" || "CodeEditor" || "JupyterLab" || "RStudioServerPro" || "RSessionGateway" || "Canvas",
|
|
@@ -4913,7 +4913,8 @@ export interface AutoMLAlgorithmConfig {
|
|
|
4913
4913
|
* <ul>
|
|
4914
4914
|
* <li>
|
|
4915
4915
|
* <p>
|
|
4916
|
-
* <b>For the tabular problem type
|
|
4916
|
+
* <b>For the tabular problem type
|
|
4917
|
+
* <code>TabularJobConfig</code>:</b>
|
|
4917
4918
|
* </p>
|
|
4918
4919
|
* <note>
|
|
4919
4920
|
* <p>Selected algorithms must belong to the list corresponding to the training mode
|
|
@@ -4968,7 +4969,8 @@ export interface AutoMLAlgorithmConfig {
|
|
|
4968
4969
|
* </li>
|
|
4969
4970
|
* <li>
|
|
4970
4971
|
* <p>
|
|
4971
|
-
* <b>For the time-series forecasting problem type
|
|
4972
|
+
* <b>For the time-series forecasting problem type
|
|
4973
|
+
* <code>TimeSeriesForecastingJobConfig</code>:</b>
|
|
4972
4974
|
* </p>
|
|
4973
4975
|
* <ul>
|
|
4974
4976
|
* <li>
|
|
@@ -5396,15 +5398,17 @@ export interface AutoMLCandidateGenerationConfig {
|
|
|
5396
5398
|
*/
|
|
5397
5399
|
FeatureSpecificationS3Uri?: string;
|
|
5398
5400
|
/**
|
|
5399
|
-
* <p>Stores the configuration information for the selection of algorithms trained on tabular
|
|
5401
|
+
* <p>Stores the configuration information for the selection of algorithms trained on tabular
|
|
5402
|
+
* data.</p>
|
|
5400
5403
|
* <p>The list of available algorithms to choose from depends on the training mode set in
|
|
5401
|
-
*
|
|
5404
|
+
* <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_TabularJobConfig.html">
|
|
5402
5405
|
* <code>TabularJobConfig.Mode</code>
|
|
5403
5406
|
* </a>.</p>
|
|
5404
5407
|
* <ul>
|
|
5405
5408
|
* <li>
|
|
5406
5409
|
* <p>
|
|
5407
|
-
* <code>AlgorithmsConfig</code> should not be set if the training mode is set on
|
|
5410
|
+
* <code>AlgorithmsConfig</code> should not be set if the training mode is set on
|
|
5411
|
+
* <code>AUTO</code>.</p>
|
|
5408
5412
|
* </li>
|
|
5409
5413
|
* <li>
|
|
5410
5414
|
* <p>When <code>AlgorithmsConfig</code> is provided, one <code>AutoMLAlgorithms</code>
|
|
@@ -5415,12 +5419,12 @@ export interface AutoMLCandidateGenerationConfig {
|
|
|
5415
5419
|
* </li>
|
|
5416
5420
|
* <li>
|
|
5417
5421
|
* <p>When <code>AlgorithmsConfig</code> is not provided,
|
|
5418
|
-
*
|
|
5422
|
+
* <code>CandidateGenerationConfig</code> uses the full set of algorithms for the
|
|
5419
5423
|
* given training mode.</p>
|
|
5420
5424
|
* </li>
|
|
5421
5425
|
* </ul>
|
|
5422
5426
|
* <p>For the list of all algorithms per problem type and training mode, see <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLAlgorithmConfig.html">
|
|
5423
|
-
*
|
|
5427
|
+
* AutoMLAlgorithmConfig</a>.</p>
|
|
5424
5428
|
* <p>For more information on each algorithm, see the <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-model-support-validation.html#autopilot-algorithm-support">Algorithm support</a> section in Autopilot developer guide.</p>
|
|
5425
5429
|
* @public
|
|
5426
5430
|
*/
|
|
@@ -5583,6 +5587,52 @@ export interface AutoMLChannel {
|
|
|
5583
5587
|
*/
|
|
5584
5588
|
SampleWeightAttributeName?: string;
|
|
5585
5589
|
}
|
|
5590
|
+
/**
|
|
5591
|
+
* <note>
|
|
5592
|
+
* <p>This data type is intended for use exclusively by SageMaker Canvas and cannot be used in
|
|
5593
|
+
* other contexts at the moment.</p>
|
|
5594
|
+
* </note>
|
|
5595
|
+
* <p>Specifies the compute configuration for the EMR Serverless job.</p>
|
|
5596
|
+
* @public
|
|
5597
|
+
*/
|
|
5598
|
+
export interface EmrServerlessComputeConfig {
|
|
5599
|
+
/**
|
|
5600
|
+
* <p>The ARN of the IAM role granting the AutoML job V2 the necessary
|
|
5601
|
+
* permissions access policies to list, connect to, or manage EMR Serverless jobs. For
|
|
5602
|
+
* detailed information about the required permissions of this role, see "How to configure
|
|
5603
|
+
* AutoML to initiate a remote job on EMR Serverless for large datasets" in <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-create-experiment.html">Create a regression or classification job for tabular data using the AutoML API</a>
|
|
5604
|
+
* or <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-create-experiment-timeseries-forecasting.html#timeseries-forecasting-api-optional-params">Create an AutoML job for time-series forecasting using the API</a>.</p>
|
|
5605
|
+
* @public
|
|
5606
|
+
*/
|
|
5607
|
+
ExecutionRoleARN: string | undefined;
|
|
5608
|
+
}
|
|
5609
|
+
/**
|
|
5610
|
+
* <note>
|
|
5611
|
+
* <p>This data type is intended for use exclusively by SageMaker Canvas and cannot be used in
|
|
5612
|
+
* other contexts at the moment.</p>
|
|
5613
|
+
* </note>
|
|
5614
|
+
* <p>Specifies the compute configuration for an AutoML job V2.</p>
|
|
5615
|
+
* @public
|
|
5616
|
+
*/
|
|
5617
|
+
export interface AutoMLComputeConfig {
|
|
5618
|
+
/**
|
|
5619
|
+
* <p>The configuration for using <a href="https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/emr-serverless.html"> EMR Serverless</a>
|
|
5620
|
+
* to run the AutoML job V2.</p>
|
|
5621
|
+
* <p>To allow your AutoML job V2 to automatically initiate a remote job on EMR Serverless
|
|
5622
|
+
* when additional compute resources are needed to process large datasets, you need to provide
|
|
5623
|
+
* an <code>EmrServerlessComputeConfig</code> object, which includes an
|
|
5624
|
+
* <code>ExecutionRoleARN</code> attribute, to the <code>AutoMLComputeConfig</code> of the
|
|
5625
|
+
* AutoML job V2 input request.</p>
|
|
5626
|
+
* <p>By seamlessly transitioning to EMR Serverless when required, the AutoML job can handle
|
|
5627
|
+
* datasets that would otherwise exceed the initially provisioned resources, without any
|
|
5628
|
+
* manual intervention from you. </p>
|
|
5629
|
+
* <p>EMR Serverless is available for the tabular and time series problem types. We
|
|
5630
|
+
* recommend setting up this option for tabular datasets larger than 5 GB and time series
|
|
5631
|
+
* datasets larger than 30 GB.</p>
|
|
5632
|
+
* @public
|
|
5633
|
+
*/
|
|
5634
|
+
EmrServerlessComputeConfig?: EmrServerlessComputeConfig;
|
|
5635
|
+
}
|
|
5586
5636
|
/**
|
|
5587
5637
|
* <p>This structure specifies how to split the data into train and validation
|
|
5588
5638
|
* datasets.</p>
|
|
@@ -6049,7 +6099,7 @@ export interface AutoMLOutputDataConfig {
|
|
|
6049
6099
|
*/
|
|
6050
6100
|
KmsKeyId?: string;
|
|
6051
6101
|
/**
|
|
6052
|
-
* <p>The Amazon S3 output path. Must be
|
|
6102
|
+
* <p>The Amazon S3 output path. Must be 512 characters or less.</p>
|
|
6053
6103
|
* @public
|
|
6054
6104
|
*/
|
|
6055
6105
|
S3OutputPath: string | undefined;
|
|
@@ -6083,9 +6133,9 @@ export interface CandidateGenerationConfig {
|
|
|
6083
6133
|
* <ul>
|
|
6084
6134
|
* <li>
|
|
6085
6135
|
* <p>
|
|
6086
|
-
* <b>For the tabular problem type
|
|
6087
|
-
*
|
|
6088
|
-
* in <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobConfig.html">
|
|
6136
|
+
* <b>For the tabular problem type
|
|
6137
|
+
* <code>TabularJobConfig</code>,</b> the list of available algorithms to
|
|
6138
|
+
* choose from depends on the training mode set in <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobConfig.html">
|
|
6089
6139
|
* <code>AutoMLJobConfig.Mode</code>
|
|
6090
6140
|
* </a>.</p>
|
|
6091
6141
|
* <ul>
|
|
@@ -6114,11 +6164,13 @@ export interface CandidateGenerationConfig {
|
|
|
6114
6164
|
* </li>
|
|
6115
6165
|
* <li>
|
|
6116
6166
|
* <p>
|
|
6117
|
-
* <b>For the time-series forecasting problem type
|
|
6118
|
-
*
|
|
6119
|
-
*
|
|
6167
|
+
* <b>For the time-series forecasting problem type
|
|
6168
|
+
* <code>TimeSeriesForecastingJobConfig</code>,</b> choose your algorithms
|
|
6169
|
+
* from the list provided in <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLAlgorithmConfig.html">
|
|
6120
6170
|
* AlgorithmConfig</a>.</p>
|
|
6121
|
-
* <p>For more information on each algorithm, see the <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/timeseries-forecasting-algorithms.html">Algorithms
|
|
6171
|
+
* <p>For more information on each algorithm, see the <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/timeseries-forecasting-algorithms.html">Algorithms
|
|
6172
|
+
* support for time-series forecasting</a> section in the Autopilot developer
|
|
6173
|
+
* guide.</p>
|
|
6122
6174
|
* <ul>
|
|
6123
6175
|
* <li>
|
|
6124
6176
|
* <p>When <code>AlgorithmsConfig</code> is provided, one
|
|
@@ -7555,6 +7607,26 @@ export interface DirectDeploySettings {
|
|
|
7555
7607
|
*/
|
|
7556
7608
|
Status?: FeatureStatus;
|
|
7557
7609
|
}
|
|
7610
|
+
/**
|
|
7611
|
+
* <p>The settings for running Amazon EMR Serverless jobs in SageMaker Canvas.</p>
|
|
7612
|
+
* @public
|
|
7613
|
+
*/
|
|
7614
|
+
export interface EmrServerlessSettings {
|
|
7615
|
+
/**
|
|
7616
|
+
* <p>The Amazon Resource Name (ARN) of the Amazon Web Services IAM role that is assumed for
|
|
7617
|
+
* running Amazon EMR Serverless jobs in SageMaker Canvas. This role should have the necessary
|
|
7618
|
+
* permissions to read and write data attached and a trust relationship with
|
|
7619
|
+
* EMR Serverless.</p>
|
|
7620
|
+
* @public
|
|
7621
|
+
*/
|
|
7622
|
+
ExecutionRoleArn?: string;
|
|
7623
|
+
/**
|
|
7624
|
+
* <p>Describes whether Amazon EMR Serverless job capabilities are enabled or disabled in the SageMaker
|
|
7625
|
+
* Canvas application.</p>
|
|
7626
|
+
* @public
|
|
7627
|
+
*/
|
|
7628
|
+
Status?: FeatureStatus;
|
|
7629
|
+
}
|
|
7558
7630
|
/**
|
|
7559
7631
|
* <p>The generative AI settings for the SageMaker Canvas application.</p>
|
|
7560
7632
|
* <p>Configure these settings for Canvas users starting chats with generative AI foundation models.
|
|
@@ -7721,6 +7793,11 @@ export interface CanvasAppSettings {
|
|
|
7721
7793
|
* @public
|
|
7722
7794
|
*/
|
|
7723
7795
|
GenerativeAiSettings?: GenerativeAiSettings;
|
|
7796
|
+
/**
|
|
7797
|
+
* <p>The settings for running Amazon EMR Serverless data processing jobs in SageMaker Canvas.</p>
|
|
7798
|
+
* @public
|
|
7799
|
+
*/
|
|
7800
|
+
EmrServerlessSettings?: EmrServerlessSettings;
|
|
7724
7801
|
}
|
|
7725
7802
|
/**
|
|
7726
7803
|
* <p>Configuration specifying how to treat different headers. If no headers are specified
|
|
@@ -10247,157 +10324,3 @@ export interface CreateAutoMLJobResponse {
|
|
|
10247
10324
|
*/
|
|
10248
10325
|
AutoMLJobArn: string | undefined;
|
|
10249
10326
|
}
|
|
10250
|
-
/**
|
|
10251
|
-
* @public
|
|
10252
|
-
*/
|
|
10253
|
-
export interface CreateAutoMLJobV2Request {
|
|
10254
|
-
/**
|
|
10255
|
-
* <p>Identifies an Autopilot job. The name must be unique to your account and is case
|
|
10256
|
-
* insensitive.</p>
|
|
10257
|
-
* @public
|
|
10258
|
-
*/
|
|
10259
|
-
AutoMLJobName: string | undefined;
|
|
10260
|
-
/**
|
|
10261
|
-
* <p>An array of channel objects describing the input data and their location. Each channel
|
|
10262
|
-
* is a named input source. Similar to the <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html#sagemaker-CreateAutoMLJob-request-InputDataConfig">InputDataConfig</a> attribute in the <code>CreateAutoMLJob</code> input parameters.
|
|
10263
|
-
* The supported formats depend on the problem type:</p>
|
|
10264
|
-
* <ul>
|
|
10265
|
-
* <li>
|
|
10266
|
-
* <p>For tabular problem types: <code>S3Prefix</code>,
|
|
10267
|
-
* <code>ManifestFile</code>.</p>
|
|
10268
|
-
* </li>
|
|
10269
|
-
* <li>
|
|
10270
|
-
* <p>For image classification: <code>S3Prefix</code>, <code>ManifestFile</code>,
|
|
10271
|
-
* <code>AugmentedManifestFile</code>.</p>
|
|
10272
|
-
* </li>
|
|
10273
|
-
* <li>
|
|
10274
|
-
* <p>For text classification: <code>S3Prefix</code>.</p>
|
|
10275
|
-
* </li>
|
|
10276
|
-
* <li>
|
|
10277
|
-
* <p>For time-series forecasting: <code>S3Prefix</code>.</p>
|
|
10278
|
-
* </li>
|
|
10279
|
-
* <li>
|
|
10280
|
-
* <p>For text generation (LLMs fine-tuning): <code>S3Prefix</code>.</p>
|
|
10281
|
-
* </li>
|
|
10282
|
-
* </ul>
|
|
10283
|
-
* @public
|
|
10284
|
-
*/
|
|
10285
|
-
AutoMLJobInputDataConfig: AutoMLJobChannel[] | undefined;
|
|
10286
|
-
/**
|
|
10287
|
-
* <p>Provides information about encryption and the Amazon S3 output path needed to
|
|
10288
|
-
* store artifacts from an AutoML job.</p>
|
|
10289
|
-
* @public
|
|
10290
|
-
*/
|
|
10291
|
-
OutputDataConfig: AutoMLOutputDataConfig | undefined;
|
|
10292
|
-
/**
|
|
10293
|
-
* <p>Defines the configuration settings of one of the supported problem types.</p>
|
|
10294
|
-
* @public
|
|
10295
|
-
*/
|
|
10296
|
-
AutoMLProblemTypeConfig: AutoMLProblemTypeConfig | undefined;
|
|
10297
|
-
/**
|
|
10298
|
-
* <p>The ARN of the role that is used to access the data.</p>
|
|
10299
|
-
* @public
|
|
10300
|
-
*/
|
|
10301
|
-
RoleArn: string | undefined;
|
|
10302
|
-
/**
|
|
10303
|
-
* <p>An array of key-value pairs. You can use tags to categorize your Amazon Web Services
|
|
10304
|
-
* resources in different ways, such as by purpose, owner, or environment. For more
|
|
10305
|
-
* information, see <a href="https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html">Tagging Amazon Web ServicesResources</a>. Tag keys must be unique per
|
|
10306
|
-
* resource.</p>
|
|
10307
|
-
* @public
|
|
10308
|
-
*/
|
|
10309
|
-
Tags?: Tag[];
|
|
10310
|
-
/**
|
|
10311
|
-
* <p>The security configuration for traffic encryption or Amazon VPC settings.</p>
|
|
10312
|
-
* @public
|
|
10313
|
-
*/
|
|
10314
|
-
SecurityConfig?: AutoMLSecurityConfig;
|
|
10315
|
-
/**
|
|
10316
|
-
* <p>Specifies a metric to minimize or maximize as the objective of a job. If not specified,
|
|
10317
|
-
* the default objective metric depends on the problem type. For the list of default values
|
|
10318
|
-
* per problem type, see <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobObjective.html">AutoMLJobObjective</a>.</p>
|
|
10319
|
-
* <note>
|
|
10320
|
-
* <ul>
|
|
10321
|
-
* <li>
|
|
10322
|
-
* <p>For tabular problem types: You must either provide both the
|
|
10323
|
-
* <code>AutoMLJobObjective</code> and indicate the type of supervised learning
|
|
10324
|
-
* problem in <code>AutoMLProblemTypeConfig</code>
|
|
10325
|
-
* (<code>TabularJobConfig.ProblemType</code>), or none at all.</p>
|
|
10326
|
-
* </li>
|
|
10327
|
-
* <li>
|
|
10328
|
-
* <p>For text generation problem types (LLMs fine-tuning):
|
|
10329
|
-
* Fine-tuning language models in Autopilot does not
|
|
10330
|
-
* require setting the <code>AutoMLJobObjective</code> field. Autopilot fine-tunes LLMs
|
|
10331
|
-
* without requiring multiple candidates to be trained and evaluated.
|
|
10332
|
-
* Instead, using your dataset, Autopilot directly fine-tunes your target model to enhance a
|
|
10333
|
-
* default objective metric, the cross-entropy loss. After fine-tuning a language model,
|
|
10334
|
-
* you can evaluate the quality of its generated text using different metrics.
|
|
10335
|
-
* For a list of the available metrics, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-llms-finetuning-metrics.html">Metrics for
|
|
10336
|
-
* fine-tuning LLMs in Autopilot</a>.</p>
|
|
10337
|
-
* </li>
|
|
10338
|
-
* </ul>
|
|
10339
|
-
* </note>
|
|
10340
|
-
* @public
|
|
10341
|
-
*/
|
|
10342
|
-
AutoMLJobObjective?: AutoMLJobObjective;
|
|
10343
|
-
/**
|
|
10344
|
-
* <p>Specifies how to generate the endpoint name for an automatic one-click Autopilot model
|
|
10345
|
-
* deployment.</p>
|
|
10346
|
-
* @public
|
|
10347
|
-
*/
|
|
10348
|
-
ModelDeployConfig?: ModelDeployConfig;
|
|
10349
|
-
/**
|
|
10350
|
-
* <p>This structure specifies how to split the data into train and validation
|
|
10351
|
-
* datasets.</p>
|
|
10352
|
-
* <p>The validation and training datasets must contain the same headers. For jobs created by
|
|
10353
|
-
* calling <code>CreateAutoMLJob</code>, the validation dataset must be less than 2 GB in
|
|
10354
|
-
* size.</p>
|
|
10355
|
-
* <note>
|
|
10356
|
-
* <p>This attribute must not be set for the time-series forecasting problem type, as Autopilot
|
|
10357
|
-
* automatically splits the input dataset into training and validation sets.</p>
|
|
10358
|
-
* </note>
|
|
10359
|
-
* @public
|
|
10360
|
-
*/
|
|
10361
|
-
DataSplitConfig?: AutoMLDataSplitConfig;
|
|
10362
|
-
}
|
|
10363
|
-
/**
|
|
10364
|
-
* @public
|
|
10365
|
-
*/
|
|
10366
|
-
export interface CreateAutoMLJobV2Response {
|
|
10367
|
-
/**
|
|
10368
|
-
* <p>The unique ARN assigned to the AutoMLJob when it is created.</p>
|
|
10369
|
-
* @public
|
|
10370
|
-
*/
|
|
10371
|
-
AutoMLJobArn: string | undefined;
|
|
10372
|
-
}
|
|
10373
|
-
/**
|
|
10374
|
-
* @public
|
|
10375
|
-
*/
|
|
10376
|
-
export interface CreateClusterRequest {
|
|
10377
|
-
/**
|
|
10378
|
-
* <p>The name for the new SageMaker HyperPod cluster.</p>
|
|
10379
|
-
* @public
|
|
10380
|
-
*/
|
|
10381
|
-
ClusterName: string | undefined;
|
|
10382
|
-
/**
|
|
10383
|
-
* <p>The instance groups to be created in the SageMaker HyperPod cluster.</p>
|
|
10384
|
-
* @public
|
|
10385
|
-
*/
|
|
10386
|
-
InstanceGroups: ClusterInstanceGroupSpecification[] | undefined;
|
|
10387
|
-
/**
|
|
10388
|
-
* <p>Specifies an Amazon Virtual Private Cloud (VPC) that your SageMaker jobs, hosted models, and compute resources
|
|
10389
|
-
* have access to. You can control access to and from your resources by configuring a VPC.
|
|
10390
|
-
* For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/infrastructure-give-access.html">Give SageMaker Access to Resources in your Amazon VPC</a>. </p>
|
|
10391
|
-
* @public
|
|
10392
|
-
*/
|
|
10393
|
-
VpcConfig?: VpcConfig;
|
|
10394
|
-
/**
|
|
10395
|
-
* <p>Custom tags for managing the SageMaker HyperPod cluster as an Amazon Web Services resource. You can
|
|
10396
|
-
* add tags to your cluster in the same way you add them in other Amazon Web Services services
|
|
10397
|
-
* that support tagging. To learn more about tagging Amazon Web Services resources in general,
|
|
10398
|
-
* see <a href="https://docs.aws.amazon.com/tag-editor/latest/userguide/tagging.html">Tagging
|
|
10399
|
-
* Amazon Web Services Resources User Guide</a>.</p>
|
|
10400
|
-
* @public
|
|
10401
|
-
*/
|
|
10402
|
-
Tags?: Tag[];
|
|
10403
|
-
}
|