@aws-sdk/client-sagemaker 3.598.0 → 3.602.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (116) hide show
  1. package/README.md +80 -0
  2. package/dist-cjs/index.js +644 -80
  3. package/dist-es/SageMaker.js +20 -0
  4. package/dist-es/commands/CreateHubContentReferenceCommand.js +24 -0
  5. package/dist-es/commands/CreateMlflowTrackingServerCommand.js +24 -0
  6. package/dist-es/commands/CreatePresignedMlflowTrackingServerUrlCommand.js +24 -0
  7. package/dist-es/commands/DeleteHubContentReferenceCommand.js +24 -0
  8. package/dist-es/commands/DeleteMlflowTrackingServerCommand.js +24 -0
  9. package/dist-es/commands/DescribeMlflowTrackingServerCommand.js +24 -0
  10. package/dist-es/commands/ListMlflowTrackingServersCommand.js +24 -0
  11. package/dist-es/commands/StartMlflowTrackingServerCommand.js +24 -0
  12. package/dist-es/commands/StopMlflowTrackingServerCommand.js +24 -0
  13. package/dist-es/commands/UpdateMlflowTrackingServerCommand.js +24 -0
  14. package/dist-es/commands/index.js +10 -0
  15. package/dist-es/models/models_0.js +8 -11
  16. package/dist-es/models/models_1.js +16 -12
  17. package/dist-es/models/models_2.js +40 -26
  18. package/dist-es/models/models_3.js +31 -28
  19. package/dist-es/models/models_4.js +28 -0
  20. package/dist-es/pagination/ListMlflowTrackingServersPaginator.js +4 -0
  21. package/dist-es/pagination/index.js +1 -0
  22. package/dist-es/protocols/Aws_json1_1.js +314 -0
  23. package/dist-types/SageMaker.d.ts +71 -0
  24. package/dist-types/SageMakerClient.d.ts +12 -2
  25. package/dist-types/commands/BatchDescribeModelPackageCommand.d.ts +3 -0
  26. package/dist-types/commands/CreateAlgorithmCommand.d.ts +3 -0
  27. package/dist-types/commands/CreateClusterCommand.d.ts +9 -1
  28. package/dist-types/commands/CreateCodeRepositoryCommand.d.ts +2 -1
  29. package/dist-types/commands/CreateHubCommand.d.ts +0 -3
  30. package/dist-types/commands/CreateHubContentReferenceCommand.d.ts +80 -0
  31. package/dist-types/commands/CreateMlflowTrackingServerCommand.d.ts +78 -0
  32. package/dist-types/commands/CreateModelCommand.d.ts +6 -0
  33. package/dist-types/commands/CreateModelPackageCommand.d.ts +9 -0
  34. package/dist-types/commands/CreatePresignedMlflowTrackingServerUrlCommand.d.ts +66 -0
  35. package/dist-types/commands/DeleteHubCommand.d.ts +0 -3
  36. package/dist-types/commands/DeleteHubContentCommand.d.ts +1 -4
  37. package/dist-types/commands/DeleteHubContentReferenceCommand.d.ts +63 -0
  38. package/dist-types/commands/DeleteMlflowTrackingServerCommand.d.ts +63 -0
  39. package/dist-types/commands/DeleteWorkforceCommand.d.ts +1 -1
  40. package/dist-types/commands/DescribeAlgorithmCommand.d.ts +3 -0
  41. package/dist-types/commands/DescribeClusterCommand.d.ts +7 -0
  42. package/dist-types/commands/DescribeClusterNodeCommand.d.ts +7 -0
  43. package/dist-types/commands/DescribeHubCommand.d.ts +1 -4
  44. package/dist-types/commands/DescribeHubContentCommand.d.ts +5 -5
  45. package/dist-types/commands/DescribeInferenceRecommendationsJobCommand.d.ts +4 -4
  46. package/dist-types/commands/DescribeMlflowTrackingServerCommand.d.ts +95 -0
  47. package/dist-types/commands/DescribeModelCommand.d.ts +6 -0
  48. package/dist-types/commands/DescribeModelPackageCommand.d.ts +9 -0
  49. package/dist-types/commands/DescribeMonitoringScheduleCommand.d.ts +2 -1
  50. package/dist-types/commands/DescribeNotebookInstanceCommand.d.ts +1 -1
  51. package/dist-types/commands/DescribeNotebookInstanceLifecycleConfigCommand.d.ts +1 -1
  52. package/dist-types/commands/DescribePipelineCommand.d.ts +1 -1
  53. package/dist-types/commands/DescribePipelineDefinitionForExecutionCommand.d.ts +1 -1
  54. package/dist-types/commands/DescribePipelineExecutionCommand.d.ts +1 -1
  55. package/dist-types/commands/DescribeWorkteamCommand.d.ts +1 -1
  56. package/dist-types/commands/ImportHubContentCommand.d.ts +1 -4
  57. package/dist-types/commands/ListHubContentVersionsCommand.d.ts +5 -5
  58. package/dist-types/commands/ListHubContentsCommand.d.ts +5 -5
  59. package/dist-types/commands/ListHubsCommand.d.ts +0 -3
  60. package/dist-types/commands/ListInferenceRecommendationsJobStepsCommand.d.ts +4 -4
  61. package/dist-types/commands/ListMlflowTrackingServersCommand.d.ts +78 -0
  62. package/dist-types/commands/ListMonitoringAlertHistoryCommand.d.ts +1 -1
  63. package/dist-types/commands/ListMonitoringAlertsCommand.d.ts +1 -1
  64. package/dist-types/commands/ListMonitoringExecutionsCommand.d.ts +1 -1
  65. package/dist-types/commands/ListMonitoringSchedulesCommand.d.ts +1 -1
  66. package/dist-types/commands/ListNotebookInstanceLifecycleConfigsCommand.d.ts +1 -1
  67. package/dist-types/commands/SearchCommand.d.ts +9 -0
  68. package/dist-types/commands/StartMlflowTrackingServerCommand.d.ts +67 -0
  69. package/dist-types/commands/StopMlflowTrackingServerCommand.d.ts +67 -0
  70. package/dist-types/commands/UpdateClusterCommand.d.ts +7 -0
  71. package/dist-types/commands/UpdateHubCommand.d.ts +0 -3
  72. package/dist-types/commands/UpdateMlflowTrackingServerCommand.d.ts +75 -0
  73. package/dist-types/commands/UpdateModelPackageCommand.d.ts +6 -0
  74. package/dist-types/commands/index.d.ts +10 -0
  75. package/dist-types/models/models_0.d.ts +101 -417
  76. package/dist-types/models/models_1.d.ts +562 -173
  77. package/dist-types/models/models_2.d.ts +384 -589
  78. package/dist-types/models/models_3.d.ts +5441 -5343
  79. package/dist-types/models/models_4.d.ts +707 -3
  80. package/dist-types/pagination/ListMlflowTrackingServersPaginator.d.ts +7 -0
  81. package/dist-types/pagination/index.d.ts +1 -0
  82. package/dist-types/protocols/Aws_json1_1.d.ts +90 -0
  83. package/dist-types/ts3.4/SageMaker.d.ts +177 -0
  84. package/dist-types/ts3.4/SageMakerClient.d.ts +60 -0
  85. package/dist-types/ts3.4/commands/CreateCodeRepositoryCommand.d.ts +2 -4
  86. package/dist-types/ts3.4/commands/CreateHubContentReferenceCommand.d.ts +40 -0
  87. package/dist-types/ts3.4/commands/CreateMlflowTrackingServerCommand.d.ts +40 -0
  88. package/dist-types/ts3.4/commands/CreatePresignedMlflowTrackingServerUrlCommand.d.ts +40 -0
  89. package/dist-types/ts3.4/commands/DeleteHubContentReferenceCommand.d.ts +36 -0
  90. package/dist-types/ts3.4/commands/DeleteMlflowTrackingServerCommand.d.ts +40 -0
  91. package/dist-types/ts3.4/commands/DescribeMlflowTrackingServerCommand.d.ts +40 -0
  92. package/dist-types/ts3.4/commands/DescribeMonitoringScheduleCommand.d.ts +2 -4
  93. package/dist-types/ts3.4/commands/DescribeNotebookInstanceCommand.d.ts +1 -1
  94. package/dist-types/ts3.4/commands/DescribeNotebookInstanceLifecycleConfigCommand.d.ts +1 -1
  95. package/dist-types/ts3.4/commands/DescribePipelineCommand.d.ts +1 -1
  96. package/dist-types/ts3.4/commands/DescribePipelineDefinitionForExecutionCommand.d.ts +1 -1
  97. package/dist-types/ts3.4/commands/DescribePipelineExecutionCommand.d.ts +1 -1
  98. package/dist-types/ts3.4/commands/ListMlflowTrackingServersCommand.d.ts +40 -0
  99. package/dist-types/ts3.4/commands/ListMonitoringAlertHistoryCommand.d.ts +1 -1
  100. package/dist-types/ts3.4/commands/ListMonitoringAlertsCommand.d.ts +1 -1
  101. package/dist-types/ts3.4/commands/ListMonitoringExecutionsCommand.d.ts +1 -1
  102. package/dist-types/ts3.4/commands/ListMonitoringSchedulesCommand.d.ts +1 -1
  103. package/dist-types/ts3.4/commands/ListNotebookInstanceLifecycleConfigsCommand.d.ts +1 -1
  104. package/dist-types/ts3.4/commands/StartMlflowTrackingServerCommand.d.ts +40 -0
  105. package/dist-types/ts3.4/commands/StopMlflowTrackingServerCommand.d.ts +40 -0
  106. package/dist-types/ts3.4/commands/UpdateMlflowTrackingServerCommand.d.ts +40 -0
  107. package/dist-types/ts3.4/commands/index.d.ts +10 -0
  108. package/dist-types/ts3.4/models/models_0.d.ts +31 -21
  109. package/dist-types/ts3.4/models/models_1.d.ts +60 -56
  110. package/dist-types/ts3.4/models/models_2.d.ts +132 -155
  111. package/dist-types/ts3.4/models/models_3.d.ts +184 -161
  112. package/dist-types/ts3.4/models/models_4.d.ts +190 -11
  113. package/dist-types/ts3.4/pagination/ListMlflowTrackingServersPaginator.d.ts +11 -0
  114. package/dist-types/ts3.4/pagination/index.d.ts +1 -0
  115. package/dist-types/ts3.4/protocols/Aws_json1_1.d.ts +120 -0
  116. package/package.json +4 -4
@@ -1,5 +1,409 @@
1
1
  import { LazyJsonString as __LazyJsonString } from "@smithy/smithy-client";
2
- import { AdditionalInferenceSpecificationDefinition, AnnotationConsolidationConfig, AppNetworkAccessType, AppSecurityGroupManagement, AppSpecification, AppType, AsyncInferenceConfig, AthenaDatasetDefinition, AuthMode, AutoParameter, AutoRollbackConfig, Autotune, AwsManagedHumanLoopRequestSource, BatchTransformInput, BestObjectiveNotImproving, Bias, BlueGreenUpdatePolicy, CanvasAppSettings, CapacitySize, CaptureContentTypeHeader, CaptureOption, CategoricalParameter, CategoricalParameterRange, Channel, CheckpointConfig, ClarifyExplainerConfig, CodeEditorAppSettings, CodeRepository, CollectionConfig, CollectionType, ContainerDefinition, ContentClassifier, ContextSource, ContinuousParameterRange, ConvergenceDetected, CustomImage, FeatureStatus, HyperParameterScalingType, HyperParameterTuningJobObjective, InferenceSpecification, InputConfig, MetadataProperties, MetricDefinition, MetricsSource, ModelApprovalStatus, ModelDataSource, OutputDataConfig, ProcessingS3DataDistributionType, ProcessingS3InputMode, ProductionVariantInstanceType, ResourceConfig, ResourceSpec, StoppingCondition, Tag, TargetDevice, TargetPlatformAccelerator, TargetPlatformArch, TargetPlatformOs, TrainingInputMode, TrainingInstanceType, TransformJobDefinition, VpcConfig } from "./models_0";
2
+ import { AdditionalInferenceSpecificationDefinition, AnnotationConsolidationConfig, AppNetworkAccessType, AppSecurityGroupManagement, AppSpecification, AsyncInferenceConfig, AthenaDatasetDefinition, AuthMode, AutoParameter, AutoRollbackConfig, Autotune, AwsManagedHumanLoopRequestSource, BatchTransformInput, BestObjectiveNotImproving, Bias, BlueGreenUpdatePolicy, CanvasAppSettings, CapacitySize, CaptureContentTypeHeader, CaptureOption, CategoricalParameter, CategoricalParameterRange, Channel, CheckpointConfig, ClarifyExplainerConfig, CodeEditorAppSettings, CodeRepository, CollectionConfig, CollectionType, ContainerDefinition, ContentClassifier, ContextSource, ContinuousParameterRange, ConvergenceDetected, CustomImage, FeatureStatus, HyperParameterScalingType, HyperParameterTuningJobObjective, InferenceSpecification, MetadataProperties, MetricDefinition, MetricsSource, ModelApprovalStatus, ModelDataSource, OutputDataConfig, ProcessingS3DataDistributionType, ProcessingS3InputMode, ProductionVariantInstanceType, ResourceConfig, ResourceSpec, StoppingCondition, Tag, TargetDevice, TargetPlatformAccelerator, TargetPlatformArch, TargetPlatformOs, TrainingInputMode, TrainingInstanceType, TransformJobDefinition, VpcConfig } from "./models_0";
3
+ /**
4
+ * @public
5
+ */
6
+ export interface CreateCodeRepositoryOutput {
7
+ /**
8
+ * <p>The Amazon Resource Name (ARN) of the new repository.</p>
9
+ * @public
10
+ */
11
+ CodeRepositoryArn: string | undefined;
12
+ }
13
+ /**
14
+ * @public
15
+ * @enum
16
+ */
17
+ export declare const Framework: {
18
+ readonly DARKNET: "DARKNET";
19
+ readonly KERAS: "KERAS";
20
+ readonly MXNET: "MXNET";
21
+ readonly ONNX: "ONNX";
22
+ readonly PYTORCH: "PYTORCH";
23
+ readonly SKLEARN: "SKLEARN";
24
+ readonly TENSORFLOW: "TENSORFLOW";
25
+ readonly TFLITE: "TFLITE";
26
+ readonly XGBOOST: "XGBOOST";
27
+ };
28
+ /**
29
+ * @public
30
+ */
31
+ export type Framework = (typeof Framework)[keyof typeof Framework];
32
+ /**
33
+ * <p>Contains information about the location of input model artifacts, the name and
34
+ * shape
35
+ * of the expected data inputs, and the framework in which the model was trained.</p>
36
+ * @public
37
+ */
38
+ export interface InputConfig {
39
+ /**
40
+ * <p>The S3 path where the model artifacts, which result from model training, are stored.
41
+ * This path must point to a single gzip compressed tar archive (.tar.gz suffix).</p>
42
+ * @public
43
+ */
44
+ S3Uri: string | undefined;
45
+ /**
46
+ * <p>Specifies the name and shape of the expected data inputs for your trained model with a
47
+ * JSON dictionary form. The data inputs are <code>Framework</code> specific. </p>
48
+ * <ul>
49
+ * <li>
50
+ * <p>
51
+ * <code>TensorFlow</code>: You must specify the name and shape (NHWC format) of
52
+ * the expected data inputs using a dictionary format for your trained model. The
53
+ * dictionary formats required for the console and CLI are different.</p>
54
+ * <ul>
55
+ * <li>
56
+ * <p>Examples for one input:</p>
57
+ * <ul>
58
+ * <li>
59
+ * <p>If using the console,
60
+ * <code>\{"input":[1,1024,1024,3]\}</code>
61
+ * </p>
62
+ * </li>
63
+ * <li>
64
+ * <p>If using the CLI,
65
+ * <code>\{\"input\":[1,1024,1024,3]\}</code>
66
+ * </p>
67
+ * </li>
68
+ * </ul>
69
+ * </li>
70
+ * <li>
71
+ * <p>Examples for two inputs:</p>
72
+ * <ul>
73
+ * <li>
74
+ * <p>If using the console, <code>\{"data1": [1,28,28,1],
75
+ * "data2":[1,28,28,1]\}</code>
76
+ * </p>
77
+ * </li>
78
+ * <li>
79
+ * <p>If using the CLI, <code>\{\"data1\": [1,28,28,1],
80
+ * \"data2\":[1,28,28,1]\}</code>
81
+ * </p>
82
+ * </li>
83
+ * </ul>
84
+ * </li>
85
+ * </ul>
86
+ * </li>
87
+ * <li>
88
+ * <p>
89
+ * <code>KERAS</code>: You must specify the name and shape (NCHW format) of
90
+ * expected data inputs using a dictionary format for your trained model. Note that
91
+ * while Keras model artifacts should be uploaded in NHWC (channel-last) format,
92
+ * <code>DataInputConfig</code> should be specified in NCHW (channel-first)
93
+ * format. The dictionary formats required for the console and CLI are
94
+ * different.</p>
95
+ * <ul>
96
+ * <li>
97
+ * <p>Examples for one input:</p>
98
+ * <ul>
99
+ * <li>
100
+ * <p>If using the console,
101
+ * <code>\{"input_1":[1,3,224,224]\}</code>
102
+ * </p>
103
+ * </li>
104
+ * <li>
105
+ * <p>If using the CLI,
106
+ * <code>\{\"input_1\":[1,3,224,224]\}</code>
107
+ * </p>
108
+ * </li>
109
+ * </ul>
110
+ * </li>
111
+ * <li>
112
+ * <p>Examples for two inputs:</p>
113
+ * <ul>
114
+ * <li>
115
+ * <p>If using the console, <code>\{"input_1": [1,3,224,224],
116
+ * "input_2":[1,3,224,224]\} </code>
117
+ * </p>
118
+ * </li>
119
+ * <li>
120
+ * <p>If using the CLI, <code>\{\"input_1\": [1,3,224,224],
121
+ * \"input_2\":[1,3,224,224]\}</code>
122
+ * </p>
123
+ * </li>
124
+ * </ul>
125
+ * </li>
126
+ * </ul>
127
+ * </li>
128
+ * <li>
129
+ * <p>
130
+ * <code>MXNET/ONNX/DARKNET</code>: You must specify the name and shape (NCHW
131
+ * format) of the expected data inputs in order using a dictionary format for your
132
+ * trained model. The dictionary formats required for the console and CLI are
133
+ * different.</p>
134
+ * <ul>
135
+ * <li>
136
+ * <p>Examples for one input:</p>
137
+ * <ul>
138
+ * <li>
139
+ * <p>If using the console,
140
+ * <code>\{"data":[1,3,1024,1024]\}</code>
141
+ * </p>
142
+ * </li>
143
+ * <li>
144
+ * <p>If using the CLI,
145
+ * <code>\{\"data\":[1,3,1024,1024]\}</code>
146
+ * </p>
147
+ * </li>
148
+ * </ul>
149
+ * </li>
150
+ * <li>
151
+ * <p>Examples for two inputs:</p>
152
+ * <ul>
153
+ * <li>
154
+ * <p>If using the console, <code>\{"var1": [1,1,28,28],
155
+ * "var2":[1,1,28,28]\} </code>
156
+ * </p>
157
+ * </li>
158
+ * <li>
159
+ * <p>If using the CLI, <code>\{\"var1\": [1,1,28,28],
160
+ * \"var2\":[1,1,28,28]\}</code>
161
+ * </p>
162
+ * </li>
163
+ * </ul>
164
+ * </li>
165
+ * </ul>
166
+ * </li>
167
+ * <li>
168
+ * <p>
169
+ * <code>PyTorch</code>: You can either specify the name and shape (NCHW format)
170
+ * of expected data inputs in order using a dictionary format for your trained
171
+ * model or you can specify the shape only using a list format. The dictionary
172
+ * formats required for the console and CLI are different. The list formats for the
173
+ * console and CLI are the same.</p>
174
+ * <ul>
175
+ * <li>
176
+ * <p>Examples for one input in dictionary format:</p>
177
+ * <ul>
178
+ * <li>
179
+ * <p>If using the console,
180
+ * <code>\{"input0":[1,3,224,224]\}</code>
181
+ * </p>
182
+ * </li>
183
+ * <li>
184
+ * <p>If using the CLI,
185
+ * <code>\{\"input0\":[1,3,224,224]\}</code>
186
+ * </p>
187
+ * </li>
188
+ * </ul>
189
+ * </li>
190
+ * <li>
191
+ * <p>Example for one input in list format:
192
+ * <code>[[1,3,224,224]]</code>
193
+ * </p>
194
+ * </li>
195
+ * <li>
196
+ * <p>Examples for two inputs in dictionary format:</p>
197
+ * <ul>
198
+ * <li>
199
+ * <p>If using the console, <code>\{"input0":[1,3,224,224],
200
+ * "input1":[1,3,224,224]\}</code>
201
+ * </p>
202
+ * </li>
203
+ * <li>
204
+ * <p>If using the CLI, <code>\{\"input0\":[1,3,224,224],
205
+ * \"input1\":[1,3,224,224]\} </code>
206
+ * </p>
207
+ * </li>
208
+ * </ul>
209
+ * </li>
210
+ * <li>
211
+ * <p>Example for two inputs in list format: <code>[[1,3,224,224],
212
+ * [1,3,224,224]]</code>
213
+ * </p>
214
+ * </li>
215
+ * </ul>
216
+ * </li>
217
+ * <li>
218
+ * <p>
219
+ * <code>XGBOOST</code>: input data name and shape are not needed.</p>
220
+ * </li>
221
+ * </ul>
222
+ * <p>
223
+ * <code>DataInputConfig</code> supports the following parameters for <code>CoreML</code>
224
+ * <code>TargetDevice</code> (ML Model format):</p>
225
+ * <ul>
226
+ * <li>
227
+ * <p>
228
+ * <code>shape</code>: Input shape, for example <code>\{"input_1": \{"shape":
229
+ * [1,224,224,3]\}\}</code>. In addition to static input shapes, CoreML converter
230
+ * supports Flexible input shapes:</p>
231
+ * <ul>
232
+ * <li>
233
+ * <p>Range Dimension. You can use the Range Dimension feature if you know
234
+ * the input shape will be within some specific interval in that dimension,
235
+ * for example: <code>\{"input_1": \{"shape": ["1..10", 224, 224,
236
+ * 3]\}\}</code>
237
+ * </p>
238
+ * </li>
239
+ * <li>
240
+ * <p>Enumerated shapes. Sometimes, the models are trained to work only on a
241
+ * select set of inputs. You can enumerate all supported input shapes, for
242
+ * example: <code>\{"input_1": \{"shape": [[1, 224, 224, 3], [1, 160, 160,
243
+ * 3]]\}\}</code>
244
+ * </p>
245
+ * </li>
246
+ * </ul>
247
+ * </li>
248
+ * <li>
249
+ * <p>
250
+ * <code>default_shape</code>: Default input shape. You can set a default shape
251
+ * during conversion for both Range Dimension and Enumerated Shapes. For example
252
+ * <code>\{"input_1": \{"shape": ["1..10", 224, 224, 3], "default_shape": [1,
253
+ * 224, 224, 3]\}\}</code>
254
+ * </p>
255
+ * </li>
256
+ * <li>
257
+ * <p>
258
+ * <code>type</code>: Input type. Allowed values: <code>Image</code> and
259
+ * <code>Tensor</code>. By default, the converter generates an ML Model with
260
+ * inputs of type Tensor (MultiArray). User can set input type to be Image. Image
261
+ * input type requires additional input parameters such as <code>bias</code> and
262
+ * <code>scale</code>.</p>
263
+ * </li>
264
+ * <li>
265
+ * <p>
266
+ * <code>bias</code>: If the input type is an Image, you need to provide the bias
267
+ * vector.</p>
268
+ * </li>
269
+ * <li>
270
+ * <p>
271
+ * <code>scale</code>: If the input type is an Image, you need to provide a scale
272
+ * factor.</p>
273
+ * </li>
274
+ * </ul>
275
+ * <p>CoreML <code>ClassifierConfig</code> parameters can be specified using <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html">OutputConfig</a>
276
+ * <code>CompilerOptions</code>. CoreML converter supports Tensorflow and PyTorch models.
277
+ * CoreML conversion examples:</p>
278
+ * <ul>
279
+ * <li>
280
+ * <p>Tensor type input:</p>
281
+ * <ul>
282
+ * <li>
283
+ * <p>
284
+ * <code>"DataInputConfig": \{"input_1": \{"shape": [[1,224,224,3],
285
+ * [1,160,160,3]], "default_shape": [1,224,224,3]\}\}</code>
286
+ * </p>
287
+ * </li>
288
+ * </ul>
289
+ * </li>
290
+ * <li>
291
+ * <p>Tensor type input without input name (PyTorch):</p>
292
+ * <ul>
293
+ * <li>
294
+ * <p>
295
+ * <code>"DataInputConfig": [\{"shape": [[1,3,224,224], [1,3,160,160]],
296
+ * "default_shape": [1,3,224,224]\}]</code>
297
+ * </p>
298
+ * </li>
299
+ * </ul>
300
+ * </li>
301
+ * <li>
302
+ * <p>Image type input:</p>
303
+ * <ul>
304
+ * <li>
305
+ * <p>
306
+ * <code>"DataInputConfig": \{"input_1": \{"shape": [[1,224,224,3],
307
+ * [1,160,160,3]], "default_shape": [1,224,224,3], "type": "Image",
308
+ * "bias": [-1,-1,-1], "scale": 0.007843137255\}\}</code>
309
+ * </p>
310
+ * </li>
311
+ * <li>
312
+ * <p>
313
+ * <code>"CompilerOptions": \{"class_labels":
314
+ * "imagenet_labels_1000.txt"\}</code>
315
+ * </p>
316
+ * </li>
317
+ * </ul>
318
+ * </li>
319
+ * <li>
320
+ * <p>Image type input without input name (PyTorch):</p>
321
+ * <ul>
322
+ * <li>
323
+ * <p>
324
+ * <code>"DataInputConfig": [\{"shape": [[1,3,224,224], [1,3,160,160]],
325
+ * "default_shape": [1,3,224,224], "type": "Image", "bias": [-1,-1,-1],
326
+ * "scale": 0.007843137255\}]</code>
327
+ * </p>
328
+ * </li>
329
+ * <li>
330
+ * <p>
331
+ * <code>"CompilerOptions": \{"class_labels":
332
+ * "imagenet_labels_1000.txt"\}</code>
333
+ * </p>
334
+ * </li>
335
+ * </ul>
336
+ * </li>
337
+ * </ul>
338
+ * <p>Depending on the model format, <code>DataInputConfig</code> requires the following
339
+ * parameters for <code>ml_eia2</code>
340
+ * <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html#sagemaker-Type-OutputConfig-TargetDevice">OutputConfig:TargetDevice</a>.</p>
341
+ * <ul>
342
+ * <li>
343
+ * <p>For TensorFlow models saved in the SavedModel format, specify the input names
344
+ * from <code>signature_def_key</code> and the input model shapes for
345
+ * <code>DataInputConfig</code>. Specify the <code>signature_def_key</code> in
346
+ * <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html#sagemaker-Type-OutputConfig-CompilerOptions">
347
+ * <code>OutputConfig:CompilerOptions</code>
348
+ * </a> if the model does not
349
+ * use TensorFlow's default signature def key. For example:</p>
350
+ * <ul>
351
+ * <li>
352
+ * <p>
353
+ * <code>"DataInputConfig": \{"inputs": [1, 224, 224, 3]\}</code>
354
+ * </p>
355
+ * </li>
356
+ * <li>
357
+ * <p>
358
+ * <code>"CompilerOptions": \{"signature_def_key":
359
+ * "serving_custom"\}</code>
360
+ * </p>
361
+ * </li>
362
+ * </ul>
363
+ * </li>
364
+ * <li>
365
+ * <p>For TensorFlow models saved as a frozen graph, specify the input tensor names
366
+ * and shapes in <code>DataInputConfig</code> and the output tensor names for
367
+ * <code>output_names</code> in <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html#sagemaker-Type-OutputConfig-CompilerOptions">
368
+ * <code>OutputConfig:CompilerOptions</code>
369
+ * </a>. For
370
+ * example:</p>
371
+ * <ul>
372
+ * <li>
373
+ * <p>
374
+ * <code>"DataInputConfig": \{"input_tensor:0": [1, 224, 224,
375
+ * 3]\}</code>
376
+ * </p>
377
+ * </li>
378
+ * <li>
379
+ * <p>
380
+ * <code>"CompilerOptions": \{"output_names":
381
+ * ["output_tensor:0"]\}</code>
382
+ * </p>
383
+ * </li>
384
+ * </ul>
385
+ * </li>
386
+ * </ul>
387
+ * @public
388
+ */
389
+ DataInputConfig?: string;
390
+ /**
391
+ * <p>Identifies the framework in which the model was trained. For example:
392
+ * TENSORFLOW.</p>
393
+ * @public
394
+ */
395
+ Framework: Framework | undefined;
396
+ /**
397
+ * <p>Specifies the framework version to use. This API field is only supported for the
398
+ * MXNet, PyTorch, TensorFlow and TensorFlow Lite frameworks.</p>
399
+ * <p>For information about framework versions supported for cloud targets and edge devices,
400
+ * see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/neo-supported-cloud.html">Cloud
401
+ * Supported Instance Types and Frameworks</a> and <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/neo-supported-devices-edge-frameworks.html">Edge Supported
402
+ * Frameworks</a>.</p>
403
+ * @public
404
+ */
405
+ FrameworkVersion?: string;
406
+ }
3
407
  /**
4
408
  * <p>Contains information about a target platform that you want your model to run on, such
5
409
  * as OS, architecture, and accelerators. It is an alternative of
@@ -3991,6 +4395,51 @@ export interface CreateHubResponse {
3991
4395
  */
3992
4396
  HubArn: string | undefined;
3993
4397
  }
4398
+ /**
4399
+ * @public
4400
+ */
4401
+ export interface CreateHubContentReferenceRequest {
4402
+ /**
4403
+ * <p>The name of the hub to add the hub content reference to.</p>
4404
+ * @public
4405
+ */
4406
+ HubName: string | undefined;
4407
+ /**
4408
+ * <p>The ARN of the public hub content to reference.</p>
4409
+ * @public
4410
+ */
4411
+ SageMakerPublicHubContentArn: string | undefined;
4412
+ /**
4413
+ * <p>The name of the hub content to reference.</p>
4414
+ * @public
4415
+ */
4416
+ HubContentName?: string;
4417
+ /**
4418
+ * <p>The minimum version of the hub content to reference.</p>
4419
+ * @public
4420
+ */
4421
+ MinVersion?: string;
4422
+ /**
4423
+ * <p>Any tags associated with the hub content to reference.</p>
4424
+ * @public
4425
+ */
4426
+ Tags?: Tag[];
4427
+ }
4428
+ /**
4429
+ * @public
4430
+ */
4431
+ export interface CreateHubContentReferenceResponse {
4432
+ /**
4433
+ * <p>The ARN of the hub that the hub content reference was added to.</p>
4434
+ * @public
4435
+ */
4436
+ HubArn: string | undefined;
4437
+ /**
4438
+ * <p>The ARN of the hub content.</p>
4439
+ * @public
4440
+ */
4441
+ HubContentArn: string | undefined;
4442
+ }
3994
4443
  /**
3995
4444
  * <p>The Liquid template for the worker user interface.</p>
3996
4445
  * @public
@@ -8464,6 +8913,87 @@ export interface CreateLabelingJobResponse {
8464
8913
  */
8465
8914
  LabelingJobArn: string | undefined;
8466
8915
  }
8916
+ /**
8917
+ * @public
8918
+ * @enum
8919
+ */
8920
+ export declare const TrackingServerSize: {
8921
+ readonly L: "Large";
8922
+ readonly M: "Medium";
8923
+ readonly S: "Small";
8924
+ };
8925
+ /**
8926
+ * @public
8927
+ */
8928
+ export type TrackingServerSize = (typeof TrackingServerSize)[keyof typeof TrackingServerSize];
8929
+ /**
8930
+ * @public
8931
+ */
8932
+ export interface CreateMlflowTrackingServerRequest {
8933
+ /**
8934
+ * <p>A unique string identifying the tracking server name. This string is part of the tracking server
8935
+ * ARN.</p>
8936
+ * @public
8937
+ */
8938
+ TrackingServerName: string | undefined;
8939
+ /**
8940
+ * <p>The S3 URI for a general purpose bucket to use as the MLflow Tracking Server artifact
8941
+ * store.</p>
8942
+ * @public
8943
+ */
8944
+ ArtifactStoreUri: string | undefined;
8945
+ /**
8946
+ * <p>The size of the tracking server you want to create. You can choose between
8947
+ * <code>"Small"</code>, <code>"Medium"</code>, and <code>"Large"</code>. The default MLflow
8948
+ * Tracking Server configuration size is <code>"Small"</code>. You can choose a size depending on
8949
+ * the projected use of the tracking server such as the volume of data logged, number of users,
8950
+ * and frequency of use. </p>
8951
+ * <p>We recommend using a small tracking server for teams of up to 25 users, a medium tracking
8952
+ * server for teams of up to 50 users, and a large tracking server for teams of up to 100 users. </p>
8953
+ * @public
8954
+ */
8955
+ TrackingServerSize?: TrackingServerSize;
8956
+ /**
8957
+ * <p>The version of MLflow that the tracking server uses. To see which MLflow versions are
8958
+ * available to use, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/mlflow.html#mlflow-create-tracking-server-how-it-works">How it works</a>.</p>
8959
+ * @public
8960
+ */
8961
+ MlflowVersion?: string;
8962
+ /**
8963
+ * <p>The Amazon Resource Name (ARN) for an IAM role in your account that the MLflow Tracking Server uses to
8964
+ * access the artifact store in Amazon S3. The role should have <code>AmazonS3FullAccess</code>
8965
+ * permissions. For more information on IAM permissions for tracking server creation, see
8966
+ * <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/mlflow-create-tracking-server-iam.html">Set up IAM permissions for MLflow</a>.</p>
8967
+ * @public
8968
+ */
8969
+ RoleArn: string | undefined;
8970
+ /**
8971
+ * <p>Whether to enable or disable automatic registration of new MLflow models to the SageMaker Model Registry. To enable automatic model registration, set this value to <code>True</code>.
8972
+ * To disable automatic model registration, set this value to <code>False</code>. If not specified, <code>AutomaticModelRegistration</code> defaults to <code>False</code>.</p>
8973
+ * @public
8974
+ */
8975
+ AutomaticModelRegistration?: boolean;
8976
+ /**
8977
+ * <p>The day and time of the week in Coordinated Universal Time (UTC) 24-hour standard time that weekly maintenance updates are scheduled. For example: TUE:03:30.</p>
8978
+ * @public
8979
+ */
8980
+ WeeklyMaintenanceWindowStart?: string;
8981
+ /**
8982
+ * <p>Tags consisting of key-value pairs used to manage metadata for the tracking server.</p>
8983
+ * @public
8984
+ */
8985
+ Tags?: Tag[];
8986
+ }
8987
+ /**
8988
+ * @public
8989
+ */
8990
+ export interface CreateMlflowTrackingServerResponse {
8991
+ /**
8992
+ * <p>The ARN of the tracking server.</p>
8993
+ * @public
8994
+ */
8995
+ TrackingServerArn?: string;
8996
+ }
8467
8997
  /**
8468
8998
  * @public
8469
8999
  * @enum
@@ -10438,6 +10968,37 @@ export interface CreatePresignedDomainUrlResponse {
10438
10968
  */
10439
10969
  AuthorizedUrl?: string;
10440
10970
  }
10971
+ /**
10972
+ * @public
10973
+ */
10974
+ export interface CreatePresignedMlflowTrackingServerUrlRequest {
10975
+ /**
10976
+ * <p>The name of the tracking server to connect to your MLflow UI.</p>
10977
+ * @public
10978
+ */
10979
+ TrackingServerName: string | undefined;
10980
+ /**
10981
+ * <p>The duration in seconds that your presigned URL is valid. The presigned URL can be used
10982
+ * only once.</p>
10983
+ * @public
10984
+ */
10985
+ ExpiresInSeconds?: number;
10986
+ /**
10987
+ * <p>The duration in seconds that your MLflow UI session is valid.</p>
10988
+ * @public
10989
+ */
10990
+ SessionExpirationDurationInSeconds?: number;
10991
+ }
10992
+ /**
10993
+ * @public
10994
+ */
10995
+ export interface CreatePresignedMlflowTrackingServerUrlResponse {
10996
+ /**
10997
+ * <p>A presigned URL with an authorization token.</p>
10998
+ * @public
10999
+ */
11000
+ AuthorizedUrl?: string;
11001
+ }
10441
11002
  /**
10442
11003
  * @public
10443
11004
  */
@@ -11103,178 +11664,6 @@ export interface CreateProjectOutput {
11103
11664
  */
11104
11665
  ProjectId: string | undefined;
11105
11666
  }
11106
- /**
11107
- * <p>The collection of ownership settings for a space.</p>
11108
- * @public
11109
- */
11110
- export interface OwnershipSettings {
11111
- /**
11112
- * <p>The user profile who is the owner of the space.</p>
11113
- * @public
11114
- */
11115
- OwnerUserProfileName: string | undefined;
11116
- }
11117
- /**
11118
- * <p>The application settings for a Code Editor space.</p>
11119
- * @public
11120
- */
11121
- export interface SpaceCodeEditorAppSettings {
11122
- /**
11123
- * <p>Specifies the ARN's of a SageMaker image and SageMaker image version, and the instance type that
11124
- * the version runs on.</p>
11125
- * @public
11126
- */
11127
- DefaultResourceSpec?: ResourceSpec;
11128
- }
11129
- /**
11130
- * <p>A file system, created by you in Amazon EFS, that you assign to a user profile
11131
- * or space for an Amazon SageMaker Domain. Permitted users can access this file
11132
- * system in Amazon SageMaker Studio.</p>
11133
- * @public
11134
- */
11135
- export interface EFSFileSystem {
11136
- /**
11137
- * <p>The ID of your Amazon EFS file system.</p>
11138
- * @public
11139
- */
11140
- FileSystemId: string | undefined;
11141
- }
11142
- /**
11143
- * <p>A file system, created by you, that you assign to a user profile or space for an
11144
- * Amazon SageMaker Domain. Permitted users can access this file system in Amazon SageMaker Studio.</p>
11145
- * @public
11146
- */
11147
- export type CustomFileSystem = CustomFileSystem.EFSFileSystemMember | CustomFileSystem.$UnknownMember;
11148
- /**
11149
- * @public
11150
- */
11151
- export declare namespace CustomFileSystem {
11152
- /**
11153
- * <p>A custom file system in Amazon EFS.</p>
11154
- * @public
11155
- */
11156
- interface EFSFileSystemMember {
11157
- EFSFileSystem: EFSFileSystem;
11158
- $unknown?: never;
11159
- }
11160
- /**
11161
- * @public
11162
- */
11163
- interface $UnknownMember {
11164
- EFSFileSystem?: never;
11165
- $unknown: [string, any];
11166
- }
11167
- interface Visitor<T> {
11168
- EFSFileSystem: (value: EFSFileSystem) => T;
11169
- _: (name: string, value: any) => T;
11170
- }
11171
- const visit: <T>(value: CustomFileSystem, visitor: Visitor<T>) => T;
11172
- }
11173
- /**
11174
- * <p>The settings for the JupyterLab application within a space.</p>
11175
- * @public
11176
- */
11177
- export interface SpaceJupyterLabAppSettings {
11178
- /**
11179
- * <p>Specifies the ARN's of a SageMaker image and SageMaker image version, and the instance type that
11180
- * the version runs on.</p>
11181
- * @public
11182
- */
11183
- DefaultResourceSpec?: ResourceSpec;
11184
- /**
11185
- * <p>A list of Git repositories that SageMaker automatically displays to users for cloning in the JupyterLab application.</p>
11186
- * @public
11187
- */
11188
- CodeRepositories?: CodeRepository[];
11189
- }
11190
- /**
11191
- * <p>A collection of EBS storage settings that apply to both private and shared spaces.</p>
11192
- * @public
11193
- */
11194
- export interface EbsStorageSettings {
11195
- /**
11196
- * <p>The size of an EBS storage volume for a space.</p>
11197
- * @public
11198
- */
11199
- EbsVolumeSizeInGb: number | undefined;
11200
- }
11201
- /**
11202
- * <p>The storage settings for a space.</p>
11203
- * @public
11204
- */
11205
- export interface SpaceStorageSettings {
11206
- /**
11207
- * <p>A collection of EBS storage settings for a space.</p>
11208
- * @public
11209
- */
11210
- EbsStorageSettings?: EbsStorageSettings;
11211
- }
11212
- /**
11213
- * <p>A collection of space settings.</p>
11214
- * @public
11215
- */
11216
- export interface SpaceSettings {
11217
- /**
11218
- * <p>The JupyterServer app settings.</p>
11219
- * @public
11220
- */
11221
- JupyterServerAppSettings?: JupyterServerAppSettings;
11222
- /**
11223
- * <p>The KernelGateway app settings.</p>
11224
- * @public
11225
- */
11226
- KernelGatewayAppSettings?: KernelGatewayAppSettings;
11227
- /**
11228
- * <p>The Code Editor application settings.</p>
11229
- * @public
11230
- */
11231
- CodeEditorAppSettings?: SpaceCodeEditorAppSettings;
11232
- /**
11233
- * <p>The settings for the JupyterLab application.</p>
11234
- * @public
11235
- */
11236
- JupyterLabAppSettings?: SpaceJupyterLabAppSettings;
11237
- /**
11238
- * <p>The type of app created within the space.</p>
11239
- * @public
11240
- */
11241
- AppType?: AppType;
11242
- /**
11243
- * <p>The storage settings for a space.</p>
11244
- * @public
11245
- */
11246
- SpaceStorageSettings?: SpaceStorageSettings;
11247
- /**
11248
- * <p>A file system, created by you, that you assign to a space for an Amazon SageMaker
11249
- * Domain. Permitted users can access this file system in Amazon SageMaker
11250
- * Studio.</p>
11251
- * @public
11252
- */
11253
- CustomFileSystems?: CustomFileSystem[];
11254
- }
11255
- /**
11256
- * @public
11257
- * @enum
11258
- */
11259
- export declare const SharingType: {
11260
- readonly Private: "Private";
11261
- readonly Shared: "Shared";
11262
- };
11263
- /**
11264
- * @public
11265
- */
11266
- export type SharingType = (typeof SharingType)[keyof typeof SharingType];
11267
- /**
11268
- * <p>A collection of space sharing settings.</p>
11269
- * @public
11270
- */
11271
- export interface SpaceSharingSettings {
11272
- /**
11273
- * <p>Specifies the sharing type of the space.</p>
11274
- * @public
11275
- */
11276
- SharingType: SharingType | undefined;
11277
- }
11278
11667
  /**
11279
11668
  * @internal
11280
11669
  */