@aws-sdk/client-sagemaker 3.598.0 → 3.602.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (116) hide show
  1. package/README.md +80 -0
  2. package/dist-cjs/index.js +644 -80
  3. package/dist-es/SageMaker.js +20 -0
  4. package/dist-es/commands/CreateHubContentReferenceCommand.js +24 -0
  5. package/dist-es/commands/CreateMlflowTrackingServerCommand.js +24 -0
  6. package/dist-es/commands/CreatePresignedMlflowTrackingServerUrlCommand.js +24 -0
  7. package/dist-es/commands/DeleteHubContentReferenceCommand.js +24 -0
  8. package/dist-es/commands/DeleteMlflowTrackingServerCommand.js +24 -0
  9. package/dist-es/commands/DescribeMlflowTrackingServerCommand.js +24 -0
  10. package/dist-es/commands/ListMlflowTrackingServersCommand.js +24 -0
  11. package/dist-es/commands/StartMlflowTrackingServerCommand.js +24 -0
  12. package/dist-es/commands/StopMlflowTrackingServerCommand.js +24 -0
  13. package/dist-es/commands/UpdateMlflowTrackingServerCommand.js +24 -0
  14. package/dist-es/commands/index.js +10 -0
  15. package/dist-es/models/models_0.js +8 -11
  16. package/dist-es/models/models_1.js +16 -12
  17. package/dist-es/models/models_2.js +40 -26
  18. package/dist-es/models/models_3.js +31 -28
  19. package/dist-es/models/models_4.js +28 -0
  20. package/dist-es/pagination/ListMlflowTrackingServersPaginator.js +4 -0
  21. package/dist-es/pagination/index.js +1 -0
  22. package/dist-es/protocols/Aws_json1_1.js +314 -0
  23. package/dist-types/SageMaker.d.ts +71 -0
  24. package/dist-types/SageMakerClient.d.ts +12 -2
  25. package/dist-types/commands/BatchDescribeModelPackageCommand.d.ts +3 -0
  26. package/dist-types/commands/CreateAlgorithmCommand.d.ts +3 -0
  27. package/dist-types/commands/CreateClusterCommand.d.ts +9 -1
  28. package/dist-types/commands/CreateCodeRepositoryCommand.d.ts +2 -1
  29. package/dist-types/commands/CreateHubCommand.d.ts +0 -3
  30. package/dist-types/commands/CreateHubContentReferenceCommand.d.ts +80 -0
  31. package/dist-types/commands/CreateMlflowTrackingServerCommand.d.ts +78 -0
  32. package/dist-types/commands/CreateModelCommand.d.ts +6 -0
  33. package/dist-types/commands/CreateModelPackageCommand.d.ts +9 -0
  34. package/dist-types/commands/CreatePresignedMlflowTrackingServerUrlCommand.d.ts +66 -0
  35. package/dist-types/commands/DeleteHubCommand.d.ts +0 -3
  36. package/dist-types/commands/DeleteHubContentCommand.d.ts +1 -4
  37. package/dist-types/commands/DeleteHubContentReferenceCommand.d.ts +63 -0
  38. package/dist-types/commands/DeleteMlflowTrackingServerCommand.d.ts +63 -0
  39. package/dist-types/commands/DeleteWorkforceCommand.d.ts +1 -1
  40. package/dist-types/commands/DescribeAlgorithmCommand.d.ts +3 -0
  41. package/dist-types/commands/DescribeClusterCommand.d.ts +7 -0
  42. package/dist-types/commands/DescribeClusterNodeCommand.d.ts +7 -0
  43. package/dist-types/commands/DescribeHubCommand.d.ts +1 -4
  44. package/dist-types/commands/DescribeHubContentCommand.d.ts +5 -5
  45. package/dist-types/commands/DescribeInferenceRecommendationsJobCommand.d.ts +4 -4
  46. package/dist-types/commands/DescribeMlflowTrackingServerCommand.d.ts +95 -0
  47. package/dist-types/commands/DescribeModelCommand.d.ts +6 -0
  48. package/dist-types/commands/DescribeModelPackageCommand.d.ts +9 -0
  49. package/dist-types/commands/DescribeMonitoringScheduleCommand.d.ts +2 -1
  50. package/dist-types/commands/DescribeNotebookInstanceCommand.d.ts +1 -1
  51. package/dist-types/commands/DescribeNotebookInstanceLifecycleConfigCommand.d.ts +1 -1
  52. package/dist-types/commands/DescribePipelineCommand.d.ts +1 -1
  53. package/dist-types/commands/DescribePipelineDefinitionForExecutionCommand.d.ts +1 -1
  54. package/dist-types/commands/DescribePipelineExecutionCommand.d.ts +1 -1
  55. package/dist-types/commands/DescribeWorkteamCommand.d.ts +1 -1
  56. package/dist-types/commands/ImportHubContentCommand.d.ts +1 -4
  57. package/dist-types/commands/ListHubContentVersionsCommand.d.ts +5 -5
  58. package/dist-types/commands/ListHubContentsCommand.d.ts +5 -5
  59. package/dist-types/commands/ListHubsCommand.d.ts +0 -3
  60. package/dist-types/commands/ListInferenceRecommendationsJobStepsCommand.d.ts +4 -4
  61. package/dist-types/commands/ListMlflowTrackingServersCommand.d.ts +78 -0
  62. package/dist-types/commands/ListMonitoringAlertHistoryCommand.d.ts +1 -1
  63. package/dist-types/commands/ListMonitoringAlertsCommand.d.ts +1 -1
  64. package/dist-types/commands/ListMonitoringExecutionsCommand.d.ts +1 -1
  65. package/dist-types/commands/ListMonitoringSchedulesCommand.d.ts +1 -1
  66. package/dist-types/commands/ListNotebookInstanceLifecycleConfigsCommand.d.ts +1 -1
  67. package/dist-types/commands/SearchCommand.d.ts +9 -0
  68. package/dist-types/commands/StartMlflowTrackingServerCommand.d.ts +67 -0
  69. package/dist-types/commands/StopMlflowTrackingServerCommand.d.ts +67 -0
  70. package/dist-types/commands/UpdateClusterCommand.d.ts +7 -0
  71. package/dist-types/commands/UpdateHubCommand.d.ts +0 -3
  72. package/dist-types/commands/UpdateMlflowTrackingServerCommand.d.ts +75 -0
  73. package/dist-types/commands/UpdateModelPackageCommand.d.ts +6 -0
  74. package/dist-types/commands/index.d.ts +10 -0
  75. package/dist-types/models/models_0.d.ts +101 -417
  76. package/dist-types/models/models_1.d.ts +562 -173
  77. package/dist-types/models/models_2.d.ts +384 -589
  78. package/dist-types/models/models_3.d.ts +5441 -5343
  79. package/dist-types/models/models_4.d.ts +707 -3
  80. package/dist-types/pagination/ListMlflowTrackingServersPaginator.d.ts +7 -0
  81. package/dist-types/pagination/index.d.ts +1 -0
  82. package/dist-types/protocols/Aws_json1_1.d.ts +90 -0
  83. package/dist-types/ts3.4/SageMaker.d.ts +177 -0
  84. package/dist-types/ts3.4/SageMakerClient.d.ts +60 -0
  85. package/dist-types/ts3.4/commands/CreateCodeRepositoryCommand.d.ts +2 -4
  86. package/dist-types/ts3.4/commands/CreateHubContentReferenceCommand.d.ts +40 -0
  87. package/dist-types/ts3.4/commands/CreateMlflowTrackingServerCommand.d.ts +40 -0
  88. package/dist-types/ts3.4/commands/CreatePresignedMlflowTrackingServerUrlCommand.d.ts +40 -0
  89. package/dist-types/ts3.4/commands/DeleteHubContentReferenceCommand.d.ts +36 -0
  90. package/dist-types/ts3.4/commands/DeleteMlflowTrackingServerCommand.d.ts +40 -0
  91. package/dist-types/ts3.4/commands/DescribeMlflowTrackingServerCommand.d.ts +40 -0
  92. package/dist-types/ts3.4/commands/DescribeMonitoringScheduleCommand.d.ts +2 -4
  93. package/dist-types/ts3.4/commands/DescribeNotebookInstanceCommand.d.ts +1 -1
  94. package/dist-types/ts3.4/commands/DescribeNotebookInstanceLifecycleConfigCommand.d.ts +1 -1
  95. package/dist-types/ts3.4/commands/DescribePipelineCommand.d.ts +1 -1
  96. package/dist-types/ts3.4/commands/DescribePipelineDefinitionForExecutionCommand.d.ts +1 -1
  97. package/dist-types/ts3.4/commands/DescribePipelineExecutionCommand.d.ts +1 -1
  98. package/dist-types/ts3.4/commands/ListMlflowTrackingServersCommand.d.ts +40 -0
  99. package/dist-types/ts3.4/commands/ListMonitoringAlertHistoryCommand.d.ts +1 -1
  100. package/dist-types/ts3.4/commands/ListMonitoringAlertsCommand.d.ts +1 -1
  101. package/dist-types/ts3.4/commands/ListMonitoringExecutionsCommand.d.ts +1 -1
  102. package/dist-types/ts3.4/commands/ListMonitoringSchedulesCommand.d.ts +1 -1
  103. package/dist-types/ts3.4/commands/ListNotebookInstanceLifecycleConfigsCommand.d.ts +1 -1
  104. package/dist-types/ts3.4/commands/StartMlflowTrackingServerCommand.d.ts +40 -0
  105. package/dist-types/ts3.4/commands/StopMlflowTrackingServerCommand.d.ts +40 -0
  106. package/dist-types/ts3.4/commands/UpdateMlflowTrackingServerCommand.d.ts +40 -0
  107. package/dist-types/ts3.4/commands/index.d.ts +10 -0
  108. package/dist-types/ts3.4/models/models_0.d.ts +31 -21
  109. package/dist-types/ts3.4/models/models_1.d.ts +60 -56
  110. package/dist-types/ts3.4/models/models_2.d.ts +132 -155
  111. package/dist-types/ts3.4/models/models_3.d.ts +184 -161
  112. package/dist-types/ts3.4/models/models_4.d.ts +190 -11
  113. package/dist-types/ts3.4/pagination/ListMlflowTrackingServersPaginator.d.ts +11 -0
  114. package/dist-types/ts3.4/pagination/index.d.ts +1 -0
  115. package/dist-types/ts3.4/protocols/Aws_json1_1.d.ts +120 -0
  116. package/package.json +4 -4
@@ -25,6 +25,7 @@ export * from "./CreateExperimentCommand";
25
25
  export * from "./CreateFeatureGroupCommand";
26
26
  export * from "./CreateFlowDefinitionCommand";
27
27
  export * from "./CreateHubCommand";
28
+ export * from "./CreateHubContentReferenceCommand";
28
29
  export * from "./CreateHumanTaskUiCommand";
29
30
  export * from "./CreateHyperParameterTuningJobCommand";
30
31
  export * from "./CreateImageCommand";
@@ -33,6 +34,7 @@ export * from "./CreateInferenceComponentCommand";
33
34
  export * from "./CreateInferenceExperimentCommand";
34
35
  export * from "./CreateInferenceRecommendationsJobCommand";
35
36
  export * from "./CreateLabelingJobCommand";
37
+ export * from "./CreateMlflowTrackingServerCommand";
36
38
  export * from "./CreateModelBiasJobDefinitionCommand";
37
39
  export * from "./CreateModelCardCommand";
38
40
  export * from "./CreateModelCardExportJobCommand";
@@ -46,6 +48,7 @@ export * from "./CreateNotebookInstanceCommand";
46
48
  export * from "./CreateNotebookInstanceLifecycleConfigCommand";
47
49
  export * from "./CreatePipelineCommand";
48
50
  export * from "./CreatePresignedDomainUrlCommand";
51
+ export * from "./CreatePresignedMlflowTrackingServerUrlCommand";
49
52
  export * from "./CreatePresignedNotebookInstanceUrlCommand";
50
53
  export * from "./CreateProcessingJobCommand";
51
54
  export * from "./CreateProjectCommand";
@@ -80,12 +83,14 @@ export * from "./DeleteFeatureGroupCommand";
80
83
  export * from "./DeleteFlowDefinitionCommand";
81
84
  export * from "./DeleteHubCommand";
82
85
  export * from "./DeleteHubContentCommand";
86
+ export * from "./DeleteHubContentReferenceCommand";
83
87
  export * from "./DeleteHumanTaskUiCommand";
84
88
  export * from "./DeleteHyperParameterTuningJobCommand";
85
89
  export * from "./DeleteImageCommand";
86
90
  export * from "./DeleteImageVersionCommand";
87
91
  export * from "./DeleteInferenceComponentCommand";
88
92
  export * from "./DeleteInferenceExperimentCommand";
93
+ export * from "./DeleteMlflowTrackingServerCommand";
89
94
  export * from "./DeleteModelBiasJobDefinitionCommand";
90
95
  export * from "./DeleteModelCardCommand";
91
96
  export * from "./DeleteModelCommand";
@@ -143,6 +148,7 @@ export * from "./DescribeInferenceExperimentCommand";
143
148
  export * from "./DescribeInferenceRecommendationsJobCommand";
144
149
  export * from "./DescribeLabelingJobCommand";
145
150
  export * from "./DescribeLineageGroupCommand";
151
+ export * from "./DescribeMlflowTrackingServerCommand";
146
152
  export * from "./DescribeModelBiasJobDefinitionCommand";
147
153
  export * from "./DescribeModelCardCommand";
148
154
  export * from "./DescribeModelCardExportJobCommand";
@@ -218,6 +224,7 @@ export * from "./ListInferenceRecommendationsJobsCommand";
218
224
  export * from "./ListLabelingJobsCommand";
219
225
  export * from "./ListLabelingJobsForWorkteamCommand";
220
226
  export * from "./ListLineageGroupsCommand";
227
+ export * from "./ListMlflowTrackingServersCommand";
221
228
  export * from "./ListModelBiasJobDefinitionsCommand";
222
229
  export * from "./ListModelCardExportJobsCommand";
223
230
  export * from "./ListModelCardVersionsCommand";
@@ -264,6 +271,7 @@ export * from "./SendPipelineExecutionStepFailureCommand";
264
271
  export * from "./SendPipelineExecutionStepSuccessCommand";
265
272
  export * from "./StartEdgeDeploymentStageCommand";
266
273
  export * from "./StartInferenceExperimentCommand";
274
+ export * from "./StartMlflowTrackingServerCommand";
267
275
  export * from "./StartMonitoringScheduleCommand";
268
276
  export * from "./StartNotebookInstanceCommand";
269
277
  export * from "./StartPipelineExecutionCommand";
@@ -275,6 +283,7 @@ export * from "./StopHyperParameterTuningJobCommand";
275
283
  export * from "./StopInferenceExperimentCommand";
276
284
  export * from "./StopInferenceRecommendationsJobCommand";
277
285
  export * from "./StopLabelingJobCommand";
286
+ export * from "./StopMlflowTrackingServerCommand";
278
287
  export * from "./StopMonitoringScheduleCommand";
279
288
  export * from "./StopNotebookInstanceCommand";
280
289
  export * from "./StopPipelineExecutionCommand";
@@ -302,6 +311,7 @@ export * from "./UpdateImageVersionCommand";
302
311
  export * from "./UpdateInferenceComponentCommand";
303
312
  export * from "./UpdateInferenceComponentRuntimeConfigCommand";
304
313
  export * from "./UpdateInferenceExperimentCommand";
314
+ export * from "./UpdateMlflowTrackingServerCommand";
305
315
  export * from "./UpdateModelCardCommand";
306
316
  export * from "./UpdateModelPackageCommand";
307
317
  export * from "./UpdateMonitoringAlertCommand";
@@ -239,6 +239,17 @@ export declare const ModelCompressionType: {
239
239
  * @public
240
240
  */
241
241
  export type ModelCompressionType = (typeof ModelCompressionType)[keyof typeof ModelCompressionType];
242
+ /**
243
+ * <p>Configuration information specifying which hub contents have accessible deployment options.</p>
244
+ * @public
245
+ */
246
+ export interface InferenceHubAccessConfig {
247
+ /**
248
+ * <p>The ARN of the hub content for which deployment access is allowed.</p>
249
+ * @public
250
+ */
251
+ HubContentArn: string | undefined;
252
+ }
242
253
  /**
243
254
  * <p>The access configuration file to control access to the ML model. You can explicitly accept the model
244
255
  * end-user license agreement (EULA) within the <code>ModelAccessConfig</code>.</p>
@@ -378,6 +389,11 @@ export interface S3ModelDataSource {
378
389
  * @public
379
390
  */
380
391
  ModelAccessConfig?: ModelAccessConfig;
392
+ /**
393
+ * <p>Configuration information for hub access.</p>
394
+ * @public
395
+ */
396
+ HubAccessConfig?: InferenceHubAccessConfig;
381
397
  }
382
398
  /**
383
399
  * <p>Specifies the location of ML model data to deploy. If specified, you must specify one
@@ -8230,6 +8246,55 @@ export interface ClarifyExplainerConfig {
8230
8246
  */
8231
8247
  ShapConfig: ClarifyShapConfig | undefined;
8232
8248
  }
8249
+ /**
8250
+ * <p>Defines the configuration for attaching an additional Amazon Elastic Block Store (EBS)
8251
+ * volume to each instance of the SageMaker HyperPod cluster instance group.</p>
8252
+ * @public
8253
+ */
8254
+ export interface ClusterEbsVolumeConfig {
8255
+ /**
8256
+ * <p>The size in gigabytes (GB) of the additional EBS volume to be attached to the instances
8257
+ * in the SageMaker HyperPod cluster instance group. The additional EBS volume is attached to each
8258
+ * instance within the SageMaker HyperPod cluster instance group and mounted to
8259
+ * <code>/opt/sagemaker</code>.</p>
8260
+ * @public
8261
+ */
8262
+ VolumeSizeInGB: number | undefined;
8263
+ }
8264
+ /**
8265
+ * <p>Defines the configuration for attaching additional storage to the instances in the
8266
+ * SageMaker HyperPod cluster instance group.</p>
8267
+ * @public
8268
+ */
8269
+ export type ClusterInstanceStorageConfig = ClusterInstanceStorageConfig.EbsVolumeConfigMember | ClusterInstanceStorageConfig.$UnknownMember;
8270
+ /**
8271
+ * @public
8272
+ */
8273
+ export declare namespace ClusterInstanceStorageConfig {
8274
+ /**
8275
+ * <p>Defines the configuration for attaching additional Amazon Elastic Block Store (EBS)
8276
+ * volumes to the instances in the SageMaker HyperPod cluster instance group. The additional EBS volume is
8277
+ * attached to each instance within the SageMaker HyperPod cluster instance group and mounted to
8278
+ * <code>/opt/sagemaker</code>.</p>
8279
+ * @public
8280
+ */
8281
+ interface EbsVolumeConfigMember {
8282
+ EbsVolumeConfig: ClusterEbsVolumeConfig;
8283
+ $unknown?: never;
8284
+ }
8285
+ /**
8286
+ * @public
8287
+ */
8288
+ interface $UnknownMember {
8289
+ EbsVolumeConfig?: never;
8290
+ $unknown: [string, any];
8291
+ }
8292
+ interface Visitor<T> {
8293
+ EbsVolumeConfig: (value: ClusterEbsVolumeConfig) => T;
8294
+ _: (name: string, value: any) => T;
8295
+ }
8296
+ const visit: <T>(value: ClusterInstanceStorageConfig, visitor: Visitor<T>) => T;
8297
+ }
8233
8298
  /**
8234
8299
  * @public
8235
8300
  * @enum
@@ -8308,13 +8373,14 @@ export interface ClusterLifeCycleConfig {
8308
8373
  */
8309
8374
  export interface ClusterInstanceGroupDetails {
8310
8375
  /**
8311
- * <p>The number of instances that are currently in the instance group of a
8312
- * SageMaker HyperPod cluster.</p>
8376
+ * <p>The number of instances that are currently in the instance group of a SageMaker HyperPod
8377
+ * cluster.</p>
8313
8378
  * @public
8314
8379
  */
8315
8380
  CurrentCount?: number;
8316
8381
  /**
8317
- * <p>The number of instances you specified to add to the instance group of a SageMaker HyperPod cluster.</p>
8382
+ * <p>The number of instances you specified to add to the instance group of a SageMaker HyperPod
8383
+ * cluster.</p>
8318
8384
  * @public
8319
8385
  */
8320
8386
  TargetCount?: number;
@@ -8342,11 +8408,18 @@ export interface ClusterInstanceGroupDetails {
8342
8408
  * <p>The number you specified to <code>TreadsPerCore</code> in <code>CreateCluster</code> for
8343
8409
  * enabling or disabling multithreading. For instance types that support multithreading, you
8344
8410
  * can specify 1 for disabling multithreading and 2 for enabling multithreading. For more
8345
- * information, see the reference table of <a href="https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/cpu-options-supported-instances-values.html">CPU cores and threads per CPU core per instance type</a> in the <i>Amazon Elastic Compute Cloud
8346
- * User Guide</i>.</p>
8411
+ * information, see the reference table of <a href="https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/cpu-options-supported-instances-values.html">CPU cores and
8412
+ * threads per CPU core per instance type</a> in the <i>Amazon Elastic Compute Cloud User
8413
+ * Guide</i>.</p>
8347
8414
  * @public
8348
8415
  */
8349
8416
  ThreadsPerCore?: number;
8417
+ /**
8418
+ * <p>The additional storage configurations for the instances in the SageMaker HyperPod cluster instance
8419
+ * group.</p>
8420
+ * @public
8421
+ */
8422
+ InstanceStorageConfigs?: ClusterInstanceStorageConfig[];
8350
8423
  }
8351
8424
  /**
8352
8425
  * <p>The specifications of an instance group that you need to define.</p>
@@ -8354,7 +8427,8 @@ export interface ClusterInstanceGroupDetails {
8354
8427
  */
8355
8428
  export interface ClusterInstanceGroupSpecification {
8356
8429
  /**
8357
- * <p>Specifies the number of instances to add to the instance group of a SageMaker HyperPod cluster.</p>
8430
+ * <p>Specifies the number of instances to add to the instance group of a SageMaker HyperPod
8431
+ * cluster.</p>
8358
8432
  * @public
8359
8433
  */
8360
8434
  InstanceCount: number | undefined;
@@ -8379,15 +8453,22 @@ export interface ClusterInstanceGroupSpecification {
8379
8453
  */
8380
8454
  ExecutionRole: string | undefined;
8381
8455
  /**
8382
- * <p>Specifies the value for <b>Threads per core</b>. For instance types that
8383
- * support multithreading, you can specify <code>1</code> for disabling multithreading and
8384
- * <code>2</code> for enabling multithreading. For instance types that doesn't support
8385
- * multithreading, specify <code>1</code>. For more information, see the reference table of
8386
- * <a href="https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/cpu-options-supported-instances-values.html">CPU cores and threads per CPU core per instance type</a> in the <i>Amazon Elastic Compute Cloud
8387
- * User Guide</i>.</p>
8456
+ * <p>Specifies the value for <b>Threads per core</b>. For instance
8457
+ * types that support multithreading, you can specify <code>1</code> for disabling
8458
+ * multithreading and <code>2</code> for enabling multithreading. For instance types that
8459
+ * doesn't support multithreading, specify <code>1</code>. For more information, see the
8460
+ * reference table of <a href="https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/cpu-options-supported-instances-values.html">CPU cores and
8461
+ * threads per CPU core per instance type</a> in the <i>Amazon Elastic Compute Cloud User
8462
+ * Guide</i>.</p>
8388
8463
  * @public
8389
8464
  */
8390
8465
  ThreadsPerCore?: number;
8466
+ /**
8467
+ * <p>Specifies the additional storage configurations for the instances in the SageMaker HyperPod cluster
8468
+ * instance group.</p>
8469
+ * @public
8470
+ */
8471
+ InstanceStorageConfigs?: ClusterInstanceStorageConfig[];
8391
8472
  }
8392
8473
  /**
8393
8474
  * <p>Specifies the placement details for the node in the SageMaker HyperPod cluster, including the
@@ -8480,6 +8561,12 @@ export interface ClusterNodeDetails {
8480
8561
  * @public
8481
8562
  */
8482
8563
  ThreadsPerCore?: number;
8564
+ /**
8565
+ * <p>The configurations of additional storage specified to the instance group where the
8566
+ * instance (node) is launched.</p>
8567
+ * @public
8568
+ */
8569
+ InstanceStorageConfigs?: ClusterInstanceStorageConfig[];
8483
8570
  /**
8484
8571
  * <p>The private primary IP address of the SageMaker HyperPod cluster node.</p>
8485
8572
  * @public
@@ -10246,7 +10333,8 @@ export interface CreateClusterRequest {
10246
10333
  * <p>Custom tags for managing the SageMaker HyperPod cluster as an Amazon Web Services resource. You can
10247
10334
  * add tags to your cluster in the same way you add them in other Amazon Web Services services
10248
10335
  * that support tagging. To learn more about tagging Amazon Web Services resources in general,
10249
- * see <a href="https://docs.aws.amazon.com/tag-editor/latest/userguide/tagging.html">Tagging Amazon Web Services Resources User Guide</a>.</p>
10336
+ * see <a href="https://docs.aws.amazon.com/tag-editor/latest/userguide/tagging.html">Tagging
10337
+ * Amazon Web Services Resources User Guide</a>.</p>
10250
10338
  * @public
10251
10339
  */
10252
10340
  Tags?: Tag[];
@@ -10285,407 +10373,3 @@ export interface CreateCodeRepositoryInput {
10285
10373
  */
10286
10374
  Tags?: Tag[];
10287
10375
  }
10288
- /**
10289
- * @public
10290
- */
10291
- export interface CreateCodeRepositoryOutput {
10292
- /**
10293
- * <p>The Amazon Resource Name (ARN) of the new repository.</p>
10294
- * @public
10295
- */
10296
- CodeRepositoryArn: string | undefined;
10297
- }
10298
- /**
10299
- * @public
10300
- * @enum
10301
- */
10302
- export declare const Framework: {
10303
- readonly DARKNET: "DARKNET";
10304
- readonly KERAS: "KERAS";
10305
- readonly MXNET: "MXNET";
10306
- readonly ONNX: "ONNX";
10307
- readonly PYTORCH: "PYTORCH";
10308
- readonly SKLEARN: "SKLEARN";
10309
- readonly TENSORFLOW: "TENSORFLOW";
10310
- readonly TFLITE: "TFLITE";
10311
- readonly XGBOOST: "XGBOOST";
10312
- };
10313
- /**
10314
- * @public
10315
- */
10316
- export type Framework = (typeof Framework)[keyof typeof Framework];
10317
- /**
10318
- * <p>Contains information about the location of input model artifacts, the name and
10319
- * shape
10320
- * of the expected data inputs, and the framework in which the model was trained.</p>
10321
- * @public
10322
- */
10323
- export interface InputConfig {
10324
- /**
10325
- * <p>The S3 path where the model artifacts, which result from model training, are stored.
10326
- * This path must point to a single gzip compressed tar archive (.tar.gz suffix).</p>
10327
- * @public
10328
- */
10329
- S3Uri: string | undefined;
10330
- /**
10331
- * <p>Specifies the name and shape of the expected data inputs for your trained model with a
10332
- * JSON dictionary form. The data inputs are <code>Framework</code> specific. </p>
10333
- * <ul>
10334
- * <li>
10335
- * <p>
10336
- * <code>TensorFlow</code>: You must specify the name and shape (NHWC format) of
10337
- * the expected data inputs using a dictionary format for your trained model. The
10338
- * dictionary formats required for the console and CLI are different.</p>
10339
- * <ul>
10340
- * <li>
10341
- * <p>Examples for one input:</p>
10342
- * <ul>
10343
- * <li>
10344
- * <p>If using the console,
10345
- * <code>\{"input":[1,1024,1024,3]\}</code>
10346
- * </p>
10347
- * </li>
10348
- * <li>
10349
- * <p>If using the CLI,
10350
- * <code>\{\"input\":[1,1024,1024,3]\}</code>
10351
- * </p>
10352
- * </li>
10353
- * </ul>
10354
- * </li>
10355
- * <li>
10356
- * <p>Examples for two inputs:</p>
10357
- * <ul>
10358
- * <li>
10359
- * <p>If using the console, <code>\{"data1": [1,28,28,1],
10360
- * "data2":[1,28,28,1]\}</code>
10361
- * </p>
10362
- * </li>
10363
- * <li>
10364
- * <p>If using the CLI, <code>\{\"data1\": [1,28,28,1],
10365
- * \"data2\":[1,28,28,1]\}</code>
10366
- * </p>
10367
- * </li>
10368
- * </ul>
10369
- * </li>
10370
- * </ul>
10371
- * </li>
10372
- * <li>
10373
- * <p>
10374
- * <code>KERAS</code>: You must specify the name and shape (NCHW format) of
10375
- * expected data inputs using a dictionary format for your trained model. Note that
10376
- * while Keras model artifacts should be uploaded in NHWC (channel-last) format,
10377
- * <code>DataInputConfig</code> should be specified in NCHW (channel-first)
10378
- * format. The dictionary formats required for the console and CLI are
10379
- * different.</p>
10380
- * <ul>
10381
- * <li>
10382
- * <p>Examples for one input:</p>
10383
- * <ul>
10384
- * <li>
10385
- * <p>If using the console,
10386
- * <code>\{"input_1":[1,3,224,224]\}</code>
10387
- * </p>
10388
- * </li>
10389
- * <li>
10390
- * <p>If using the CLI,
10391
- * <code>\{\"input_1\":[1,3,224,224]\}</code>
10392
- * </p>
10393
- * </li>
10394
- * </ul>
10395
- * </li>
10396
- * <li>
10397
- * <p>Examples for two inputs:</p>
10398
- * <ul>
10399
- * <li>
10400
- * <p>If using the console, <code>\{"input_1": [1,3,224,224],
10401
- * "input_2":[1,3,224,224]\} </code>
10402
- * </p>
10403
- * </li>
10404
- * <li>
10405
- * <p>If using the CLI, <code>\{\"input_1\": [1,3,224,224],
10406
- * \"input_2\":[1,3,224,224]\}</code>
10407
- * </p>
10408
- * </li>
10409
- * </ul>
10410
- * </li>
10411
- * </ul>
10412
- * </li>
10413
- * <li>
10414
- * <p>
10415
- * <code>MXNET/ONNX/DARKNET</code>: You must specify the name and shape (NCHW
10416
- * format) of the expected data inputs in order using a dictionary format for your
10417
- * trained model. The dictionary formats required for the console and CLI are
10418
- * different.</p>
10419
- * <ul>
10420
- * <li>
10421
- * <p>Examples for one input:</p>
10422
- * <ul>
10423
- * <li>
10424
- * <p>If using the console,
10425
- * <code>\{"data":[1,3,1024,1024]\}</code>
10426
- * </p>
10427
- * </li>
10428
- * <li>
10429
- * <p>If using the CLI,
10430
- * <code>\{\"data\":[1,3,1024,1024]\}</code>
10431
- * </p>
10432
- * </li>
10433
- * </ul>
10434
- * </li>
10435
- * <li>
10436
- * <p>Examples for two inputs:</p>
10437
- * <ul>
10438
- * <li>
10439
- * <p>If using the console, <code>\{"var1": [1,1,28,28],
10440
- * "var2":[1,1,28,28]\} </code>
10441
- * </p>
10442
- * </li>
10443
- * <li>
10444
- * <p>If using the CLI, <code>\{\"var1\": [1,1,28,28],
10445
- * \"var2\":[1,1,28,28]\}</code>
10446
- * </p>
10447
- * </li>
10448
- * </ul>
10449
- * </li>
10450
- * </ul>
10451
- * </li>
10452
- * <li>
10453
- * <p>
10454
- * <code>PyTorch</code>: You can either specify the name and shape (NCHW format)
10455
- * of expected data inputs in order using a dictionary format for your trained
10456
- * model or you can specify the shape only using a list format. The dictionary
10457
- * formats required for the console and CLI are different. The list formats for the
10458
- * console and CLI are the same.</p>
10459
- * <ul>
10460
- * <li>
10461
- * <p>Examples for one input in dictionary format:</p>
10462
- * <ul>
10463
- * <li>
10464
- * <p>If using the console,
10465
- * <code>\{"input0":[1,3,224,224]\}</code>
10466
- * </p>
10467
- * </li>
10468
- * <li>
10469
- * <p>If using the CLI,
10470
- * <code>\{\"input0\":[1,3,224,224]\}</code>
10471
- * </p>
10472
- * </li>
10473
- * </ul>
10474
- * </li>
10475
- * <li>
10476
- * <p>Example for one input in list format:
10477
- * <code>[[1,3,224,224]]</code>
10478
- * </p>
10479
- * </li>
10480
- * <li>
10481
- * <p>Examples for two inputs in dictionary format:</p>
10482
- * <ul>
10483
- * <li>
10484
- * <p>If using the console, <code>\{"input0":[1,3,224,224],
10485
- * "input1":[1,3,224,224]\}</code>
10486
- * </p>
10487
- * </li>
10488
- * <li>
10489
- * <p>If using the CLI, <code>\{\"input0\":[1,3,224,224],
10490
- * \"input1\":[1,3,224,224]\} </code>
10491
- * </p>
10492
- * </li>
10493
- * </ul>
10494
- * </li>
10495
- * <li>
10496
- * <p>Example for two inputs in list format: <code>[[1,3,224,224],
10497
- * [1,3,224,224]]</code>
10498
- * </p>
10499
- * </li>
10500
- * </ul>
10501
- * </li>
10502
- * <li>
10503
- * <p>
10504
- * <code>XGBOOST</code>: input data name and shape are not needed.</p>
10505
- * </li>
10506
- * </ul>
10507
- * <p>
10508
- * <code>DataInputConfig</code> supports the following parameters for <code>CoreML</code>
10509
- * <code>TargetDevice</code> (ML Model format):</p>
10510
- * <ul>
10511
- * <li>
10512
- * <p>
10513
- * <code>shape</code>: Input shape, for example <code>\{"input_1": \{"shape":
10514
- * [1,224,224,3]\}\}</code>. In addition to static input shapes, CoreML converter
10515
- * supports Flexible input shapes:</p>
10516
- * <ul>
10517
- * <li>
10518
- * <p>Range Dimension. You can use the Range Dimension feature if you know
10519
- * the input shape will be within some specific interval in that dimension,
10520
- * for example: <code>\{"input_1": \{"shape": ["1..10", 224, 224,
10521
- * 3]\}\}</code>
10522
- * </p>
10523
- * </li>
10524
- * <li>
10525
- * <p>Enumerated shapes. Sometimes, the models are trained to work only on a
10526
- * select set of inputs. You can enumerate all supported input shapes, for
10527
- * example: <code>\{"input_1": \{"shape": [[1, 224, 224, 3], [1, 160, 160,
10528
- * 3]]\}\}</code>
10529
- * </p>
10530
- * </li>
10531
- * </ul>
10532
- * </li>
10533
- * <li>
10534
- * <p>
10535
- * <code>default_shape</code>: Default input shape. You can set a default shape
10536
- * during conversion for both Range Dimension and Enumerated Shapes. For example
10537
- * <code>\{"input_1": \{"shape": ["1..10", 224, 224, 3], "default_shape": [1,
10538
- * 224, 224, 3]\}\}</code>
10539
- * </p>
10540
- * </li>
10541
- * <li>
10542
- * <p>
10543
- * <code>type</code>: Input type. Allowed values: <code>Image</code> and
10544
- * <code>Tensor</code>. By default, the converter generates an ML Model with
10545
- * inputs of type Tensor (MultiArray). User can set input type to be Image. Image
10546
- * input type requires additional input parameters such as <code>bias</code> and
10547
- * <code>scale</code>.</p>
10548
- * </li>
10549
- * <li>
10550
- * <p>
10551
- * <code>bias</code>: If the input type is an Image, you need to provide the bias
10552
- * vector.</p>
10553
- * </li>
10554
- * <li>
10555
- * <p>
10556
- * <code>scale</code>: If the input type is an Image, you need to provide a scale
10557
- * factor.</p>
10558
- * </li>
10559
- * </ul>
10560
- * <p>CoreML <code>ClassifierConfig</code> parameters can be specified using <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html">OutputConfig</a>
10561
- * <code>CompilerOptions</code>. CoreML converter supports Tensorflow and PyTorch models.
10562
- * CoreML conversion examples:</p>
10563
- * <ul>
10564
- * <li>
10565
- * <p>Tensor type input:</p>
10566
- * <ul>
10567
- * <li>
10568
- * <p>
10569
- * <code>"DataInputConfig": \{"input_1": \{"shape": [[1,224,224,3],
10570
- * [1,160,160,3]], "default_shape": [1,224,224,3]\}\}</code>
10571
- * </p>
10572
- * </li>
10573
- * </ul>
10574
- * </li>
10575
- * <li>
10576
- * <p>Tensor type input without input name (PyTorch):</p>
10577
- * <ul>
10578
- * <li>
10579
- * <p>
10580
- * <code>"DataInputConfig": [\{"shape": [[1,3,224,224], [1,3,160,160]],
10581
- * "default_shape": [1,3,224,224]\}]</code>
10582
- * </p>
10583
- * </li>
10584
- * </ul>
10585
- * </li>
10586
- * <li>
10587
- * <p>Image type input:</p>
10588
- * <ul>
10589
- * <li>
10590
- * <p>
10591
- * <code>"DataInputConfig": \{"input_1": \{"shape": [[1,224,224,3],
10592
- * [1,160,160,3]], "default_shape": [1,224,224,3], "type": "Image",
10593
- * "bias": [-1,-1,-1], "scale": 0.007843137255\}\}</code>
10594
- * </p>
10595
- * </li>
10596
- * <li>
10597
- * <p>
10598
- * <code>"CompilerOptions": \{"class_labels":
10599
- * "imagenet_labels_1000.txt"\}</code>
10600
- * </p>
10601
- * </li>
10602
- * </ul>
10603
- * </li>
10604
- * <li>
10605
- * <p>Image type input without input name (PyTorch):</p>
10606
- * <ul>
10607
- * <li>
10608
- * <p>
10609
- * <code>"DataInputConfig": [\{"shape": [[1,3,224,224], [1,3,160,160]],
10610
- * "default_shape": [1,3,224,224], "type": "Image", "bias": [-1,-1,-1],
10611
- * "scale": 0.007843137255\}]</code>
10612
- * </p>
10613
- * </li>
10614
- * <li>
10615
- * <p>
10616
- * <code>"CompilerOptions": \{"class_labels":
10617
- * "imagenet_labels_1000.txt"\}</code>
10618
- * </p>
10619
- * </li>
10620
- * </ul>
10621
- * </li>
10622
- * </ul>
10623
- * <p>Depending on the model format, <code>DataInputConfig</code> requires the following
10624
- * parameters for <code>ml_eia2</code>
10625
- * <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html#sagemaker-Type-OutputConfig-TargetDevice">OutputConfig:TargetDevice</a>.</p>
10626
- * <ul>
10627
- * <li>
10628
- * <p>For TensorFlow models saved in the SavedModel format, specify the input names
10629
- * from <code>signature_def_key</code> and the input model shapes for
10630
- * <code>DataInputConfig</code>. Specify the <code>signature_def_key</code> in
10631
- * <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html#sagemaker-Type-OutputConfig-CompilerOptions">
10632
- * <code>OutputConfig:CompilerOptions</code>
10633
- * </a> if the model does not
10634
- * use TensorFlow's default signature def key. For example:</p>
10635
- * <ul>
10636
- * <li>
10637
- * <p>
10638
- * <code>"DataInputConfig": \{"inputs": [1, 224, 224, 3]\}</code>
10639
- * </p>
10640
- * </li>
10641
- * <li>
10642
- * <p>
10643
- * <code>"CompilerOptions": \{"signature_def_key":
10644
- * "serving_custom"\}</code>
10645
- * </p>
10646
- * </li>
10647
- * </ul>
10648
- * </li>
10649
- * <li>
10650
- * <p>For TensorFlow models saved as a frozen graph, specify the input tensor names
10651
- * and shapes in <code>DataInputConfig</code> and the output tensor names for
10652
- * <code>output_names</code> in <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html#sagemaker-Type-OutputConfig-CompilerOptions">
10653
- * <code>OutputConfig:CompilerOptions</code>
10654
- * </a>. For
10655
- * example:</p>
10656
- * <ul>
10657
- * <li>
10658
- * <p>
10659
- * <code>"DataInputConfig": \{"input_tensor:0": [1, 224, 224,
10660
- * 3]\}</code>
10661
- * </p>
10662
- * </li>
10663
- * <li>
10664
- * <p>
10665
- * <code>"CompilerOptions": \{"output_names":
10666
- * ["output_tensor:0"]\}</code>
10667
- * </p>
10668
- * </li>
10669
- * </ul>
10670
- * </li>
10671
- * </ul>
10672
- * @public
10673
- */
10674
- DataInputConfig?: string;
10675
- /**
10676
- * <p>Identifies the framework in which the model was trained. For example:
10677
- * TENSORFLOW.</p>
10678
- * @public
10679
- */
10680
- Framework: Framework | undefined;
10681
- /**
10682
- * <p>Specifies the framework version to use. This API field is only supported for the
10683
- * MXNet, PyTorch, TensorFlow and TensorFlow Lite frameworks.</p>
10684
- * <p>For information about framework versions supported for cloud targets and edge devices,
10685
- * see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/neo-supported-cloud.html">Cloud
10686
- * Supported Instance Types and Frameworks</a> and <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/neo-supported-devices-edge-frameworks.html">Edge Supported
10687
- * Frameworks</a>.</p>
10688
- * @public
10689
- */
10690
- FrameworkVersion?: string;
10691
- }