@aws-sdk/client-sagemaker 3.598.0 → 3.600.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (81) hide show
  1. package/README.md +64 -0
  2. package/dist-cjs/index.js +523 -57
  3. package/dist-es/SageMaker.js +16 -0
  4. package/dist-es/commands/CreateMlflowTrackingServerCommand.js +24 -0
  5. package/dist-es/commands/CreatePresignedMlflowTrackingServerUrlCommand.js +24 -0
  6. package/dist-es/commands/DeleteMlflowTrackingServerCommand.js +24 -0
  7. package/dist-es/commands/DescribeMlflowTrackingServerCommand.js +24 -0
  8. package/dist-es/commands/ListMlflowTrackingServersCommand.js +24 -0
  9. package/dist-es/commands/StartMlflowTrackingServerCommand.js +24 -0
  10. package/dist-es/commands/StopMlflowTrackingServerCommand.js +24 -0
  11. package/dist-es/commands/UpdateMlflowTrackingServerCommand.js +24 -0
  12. package/dist-es/commands/index.js +8 -0
  13. package/dist-es/models/models_0.js +8 -11
  14. package/dist-es/models/models_1.js +16 -12
  15. package/dist-es/models/models_2.js +35 -11
  16. package/dist-es/models/models_3.js +16 -24
  17. package/dist-es/models/models_4.js +24 -0
  18. package/dist-es/pagination/ListMlflowTrackingServersPaginator.js +4 -0
  19. package/dist-es/pagination/index.js +1 -0
  20. package/dist-es/protocols/Aws_json1_1.js +261 -0
  21. package/dist-types/SageMaker.d.ts +57 -0
  22. package/dist-types/SageMakerClient.d.ts +10 -2
  23. package/dist-types/commands/CreateClusterCommand.d.ts +9 -1
  24. package/dist-types/commands/CreateMlflowTrackingServerCommand.d.ts +78 -0
  25. package/dist-types/commands/CreatePresignedMlflowTrackingServerUrlCommand.d.ts +66 -0
  26. package/dist-types/commands/DeleteMlflowTrackingServerCommand.d.ts +63 -0
  27. package/dist-types/commands/DeleteWorkforceCommand.d.ts +1 -1
  28. package/dist-types/commands/DescribeClusterCommand.d.ts +7 -0
  29. package/dist-types/commands/DescribeClusterNodeCommand.d.ts +7 -0
  30. package/dist-types/commands/DescribeMlflowTrackingServerCommand.d.ts +95 -0
  31. package/dist-types/commands/DescribeNotebookInstanceLifecycleConfigCommand.d.ts +1 -1
  32. package/dist-types/commands/DescribePipelineCommand.d.ts +1 -1
  33. package/dist-types/commands/DescribePipelineDefinitionForExecutionCommand.d.ts +1 -1
  34. package/dist-types/commands/DescribePipelineExecutionCommand.d.ts +1 -1
  35. package/dist-types/commands/DescribeWorkteamCommand.d.ts +1 -1
  36. package/dist-types/commands/ListMlflowTrackingServersCommand.d.ts +78 -0
  37. package/dist-types/commands/ListMonitoringAlertsCommand.d.ts +2 -1
  38. package/dist-types/commands/ListMonitoringExecutionsCommand.d.ts +1 -1
  39. package/dist-types/commands/ListMonitoringSchedulesCommand.d.ts +1 -1
  40. package/dist-types/commands/ListNotebookInstanceLifecycleConfigsCommand.d.ts +1 -1
  41. package/dist-types/commands/StartMlflowTrackingServerCommand.d.ts +67 -0
  42. package/dist-types/commands/StopMlflowTrackingServerCommand.d.ts +67 -0
  43. package/dist-types/commands/UpdateClusterCommand.d.ts +7 -0
  44. package/dist-types/commands/UpdateMlflowTrackingServerCommand.d.ts +75 -0
  45. package/dist-types/commands/index.d.ts +8 -0
  46. package/dist-types/models/models_0.d.ts +85 -407
  47. package/dist-types/models/models_1.d.ts +507 -137
  48. package/dist-types/models/models_2.d.ts +295 -318
  49. package/dist-types/models/models_3.d.ts +460 -512
  50. package/dist-types/models/models_4.d.ts +576 -3
  51. package/dist-types/pagination/ListMlflowTrackingServersPaginator.d.ts +7 -0
  52. package/dist-types/pagination/index.d.ts +1 -0
  53. package/dist-types/protocols/Aws_json1_1.d.ts +72 -0
  54. package/dist-types/ts3.4/SageMaker.d.ts +143 -0
  55. package/dist-types/ts3.4/SageMakerClient.d.ts +48 -0
  56. package/dist-types/ts3.4/commands/CreateMlflowTrackingServerCommand.d.ts +40 -0
  57. package/dist-types/ts3.4/commands/CreatePresignedMlflowTrackingServerUrlCommand.d.ts +40 -0
  58. package/dist-types/ts3.4/commands/DeleteMlflowTrackingServerCommand.d.ts +40 -0
  59. package/dist-types/ts3.4/commands/DescribeMlflowTrackingServerCommand.d.ts +40 -0
  60. package/dist-types/ts3.4/commands/DescribeNotebookInstanceLifecycleConfigCommand.d.ts +1 -1
  61. package/dist-types/ts3.4/commands/DescribePipelineCommand.d.ts +1 -1
  62. package/dist-types/ts3.4/commands/DescribePipelineDefinitionForExecutionCommand.d.ts +1 -1
  63. package/dist-types/ts3.4/commands/DescribePipelineExecutionCommand.d.ts +1 -1
  64. package/dist-types/ts3.4/commands/ListMlflowTrackingServersCommand.d.ts +40 -0
  65. package/dist-types/ts3.4/commands/ListMonitoringAlertsCommand.d.ts +2 -4
  66. package/dist-types/ts3.4/commands/ListMonitoringExecutionsCommand.d.ts +1 -1
  67. package/dist-types/ts3.4/commands/ListMonitoringSchedulesCommand.d.ts +1 -1
  68. package/dist-types/ts3.4/commands/ListNotebookInstanceLifecycleConfigsCommand.d.ts +1 -1
  69. package/dist-types/ts3.4/commands/StartMlflowTrackingServerCommand.d.ts +40 -0
  70. package/dist-types/ts3.4/commands/StopMlflowTrackingServerCommand.d.ts +40 -0
  71. package/dist-types/ts3.4/commands/UpdateMlflowTrackingServerCommand.d.ts +40 -0
  72. package/dist-types/ts3.4/commands/index.d.ts +8 -0
  73. package/dist-types/ts3.4/models/models_0.d.ts +27 -18
  74. package/dist-types/ts3.4/models/models_1.d.ts +46 -47
  75. package/dist-types/ts3.4/models/models_2.d.ts +105 -85
  76. package/dist-types/ts3.4/models/models_3.d.ts +116 -127
  77. package/dist-types/ts3.4/models/models_4.d.ts +156 -9
  78. package/dist-types/ts3.4/pagination/ListMlflowTrackingServersPaginator.d.ts +11 -0
  79. package/dist-types/ts3.4/pagination/index.d.ts +1 -0
  80. package/dist-types/ts3.4/protocols/Aws_json1_1.d.ts +96 -0
  81. package/package.json +4 -4
@@ -1,5 +1,399 @@
1
1
  import { LazyJsonString as __LazyJsonString } from "@smithy/smithy-client";
2
- import { AdditionalInferenceSpecificationDefinition, AnnotationConsolidationConfig, AppNetworkAccessType, AppSecurityGroupManagement, AppSpecification, AppType, AsyncInferenceConfig, AthenaDatasetDefinition, AuthMode, AutoParameter, AutoRollbackConfig, Autotune, AwsManagedHumanLoopRequestSource, BatchTransformInput, BestObjectiveNotImproving, Bias, BlueGreenUpdatePolicy, CanvasAppSettings, CapacitySize, CaptureContentTypeHeader, CaptureOption, CategoricalParameter, CategoricalParameterRange, Channel, CheckpointConfig, ClarifyExplainerConfig, CodeEditorAppSettings, CodeRepository, CollectionConfig, CollectionType, ContainerDefinition, ContentClassifier, ContextSource, ContinuousParameterRange, ConvergenceDetected, CustomImage, FeatureStatus, HyperParameterScalingType, HyperParameterTuningJobObjective, InferenceSpecification, InputConfig, MetadataProperties, MetricDefinition, MetricsSource, ModelApprovalStatus, ModelDataSource, OutputDataConfig, ProcessingS3DataDistributionType, ProcessingS3InputMode, ProductionVariantInstanceType, ResourceConfig, ResourceSpec, StoppingCondition, Tag, TargetDevice, TargetPlatformAccelerator, TargetPlatformArch, TargetPlatformOs, TrainingInputMode, TrainingInstanceType, TransformJobDefinition, VpcConfig } from "./models_0";
2
+ import { AdditionalInferenceSpecificationDefinition, AnnotationConsolidationConfig, AppNetworkAccessType, AppSecurityGroupManagement, AppSpecification, AsyncInferenceConfig, AthenaDatasetDefinition, AuthMode, AutoParameter, AutoRollbackConfig, Autotune, AwsManagedHumanLoopRequestSource, BatchTransformInput, BestObjectiveNotImproving, Bias, BlueGreenUpdatePolicy, CanvasAppSettings, CapacitySize, CaptureContentTypeHeader, CaptureOption, CategoricalParameter, CategoricalParameterRange, Channel, CheckpointConfig, ClarifyExplainerConfig, CodeEditorAppSettings, CodeRepository, CollectionConfig, CollectionType, ContainerDefinition, ContentClassifier, ContextSource, ContinuousParameterRange, ConvergenceDetected, CustomImage, FeatureStatus, HyperParameterScalingType, HyperParameterTuningJobObjective, InferenceSpecification, MetadataProperties, MetricDefinition, MetricsSource, ModelApprovalStatus, ModelDataSource, OutputDataConfig, ProcessingS3DataDistributionType, ProcessingS3InputMode, ProductionVariantInstanceType, ResourceConfig, ResourceSpec, StoppingCondition, Tag, TargetDevice, TargetPlatformAccelerator, TargetPlatformArch, TargetPlatformOs, TrainingInputMode, TrainingInstanceType, TransformJobDefinition, VpcConfig } from "./models_0";
3
+ /**
4
+ * @public
5
+ * @enum
6
+ */
7
+ export declare const Framework: {
8
+ readonly DARKNET: "DARKNET";
9
+ readonly KERAS: "KERAS";
10
+ readonly MXNET: "MXNET";
11
+ readonly ONNX: "ONNX";
12
+ readonly PYTORCH: "PYTORCH";
13
+ readonly SKLEARN: "SKLEARN";
14
+ readonly TENSORFLOW: "TENSORFLOW";
15
+ readonly TFLITE: "TFLITE";
16
+ readonly XGBOOST: "XGBOOST";
17
+ };
18
+ /**
19
+ * @public
20
+ */
21
+ export type Framework = (typeof Framework)[keyof typeof Framework];
22
+ /**
23
+ * <p>Contains information about the location of input model artifacts, the name and
24
+ * shape
25
+ * of the expected data inputs, and the framework in which the model was trained.</p>
26
+ * @public
27
+ */
28
+ export interface InputConfig {
29
+ /**
30
+ * <p>The S3 path where the model artifacts, which result from model training, are stored.
31
+ * This path must point to a single gzip compressed tar archive (.tar.gz suffix).</p>
32
+ * @public
33
+ */
34
+ S3Uri: string | undefined;
35
+ /**
36
+ * <p>Specifies the name and shape of the expected data inputs for your trained model with a
37
+ * JSON dictionary form. The data inputs are <code>Framework</code> specific. </p>
38
+ * <ul>
39
+ * <li>
40
+ * <p>
41
+ * <code>TensorFlow</code>: You must specify the name and shape (NHWC format) of
42
+ * the expected data inputs using a dictionary format for your trained model. The
43
+ * dictionary formats required for the console and CLI are different.</p>
44
+ * <ul>
45
+ * <li>
46
+ * <p>Examples for one input:</p>
47
+ * <ul>
48
+ * <li>
49
+ * <p>If using the console,
50
+ * <code>\{"input":[1,1024,1024,3]\}</code>
51
+ * </p>
52
+ * </li>
53
+ * <li>
54
+ * <p>If using the CLI,
55
+ * <code>\{\"input\":[1,1024,1024,3]\}</code>
56
+ * </p>
57
+ * </li>
58
+ * </ul>
59
+ * </li>
60
+ * <li>
61
+ * <p>Examples for two inputs:</p>
62
+ * <ul>
63
+ * <li>
64
+ * <p>If using the console, <code>\{"data1": [1,28,28,1],
65
+ * "data2":[1,28,28,1]\}</code>
66
+ * </p>
67
+ * </li>
68
+ * <li>
69
+ * <p>If using the CLI, <code>\{\"data1\": [1,28,28,1],
70
+ * \"data2\":[1,28,28,1]\}</code>
71
+ * </p>
72
+ * </li>
73
+ * </ul>
74
+ * </li>
75
+ * </ul>
76
+ * </li>
77
+ * <li>
78
+ * <p>
79
+ * <code>KERAS</code>: You must specify the name and shape (NCHW format) of
80
+ * expected data inputs using a dictionary format for your trained model. Note that
81
+ * while Keras model artifacts should be uploaded in NHWC (channel-last) format,
82
+ * <code>DataInputConfig</code> should be specified in NCHW (channel-first)
83
+ * format. The dictionary formats required for the console and CLI are
84
+ * different.</p>
85
+ * <ul>
86
+ * <li>
87
+ * <p>Examples for one input:</p>
88
+ * <ul>
89
+ * <li>
90
+ * <p>If using the console,
91
+ * <code>\{"input_1":[1,3,224,224]\}</code>
92
+ * </p>
93
+ * </li>
94
+ * <li>
95
+ * <p>If using the CLI,
96
+ * <code>\{\"input_1\":[1,3,224,224]\}</code>
97
+ * </p>
98
+ * </li>
99
+ * </ul>
100
+ * </li>
101
+ * <li>
102
+ * <p>Examples for two inputs:</p>
103
+ * <ul>
104
+ * <li>
105
+ * <p>If using the console, <code>\{"input_1": [1,3,224,224],
106
+ * "input_2":[1,3,224,224]\} </code>
107
+ * </p>
108
+ * </li>
109
+ * <li>
110
+ * <p>If using the CLI, <code>\{\"input_1\": [1,3,224,224],
111
+ * \"input_2\":[1,3,224,224]\}</code>
112
+ * </p>
113
+ * </li>
114
+ * </ul>
115
+ * </li>
116
+ * </ul>
117
+ * </li>
118
+ * <li>
119
+ * <p>
120
+ * <code>MXNET/ONNX/DARKNET</code>: You must specify the name and shape (NCHW
121
+ * format) of the expected data inputs in order using a dictionary format for your
122
+ * trained model. The dictionary formats required for the console and CLI are
123
+ * different.</p>
124
+ * <ul>
125
+ * <li>
126
+ * <p>Examples for one input:</p>
127
+ * <ul>
128
+ * <li>
129
+ * <p>If using the console,
130
+ * <code>\{"data":[1,3,1024,1024]\}</code>
131
+ * </p>
132
+ * </li>
133
+ * <li>
134
+ * <p>If using the CLI,
135
+ * <code>\{\"data\":[1,3,1024,1024]\}</code>
136
+ * </p>
137
+ * </li>
138
+ * </ul>
139
+ * </li>
140
+ * <li>
141
+ * <p>Examples for two inputs:</p>
142
+ * <ul>
143
+ * <li>
144
+ * <p>If using the console, <code>\{"var1": [1,1,28,28],
145
+ * "var2":[1,1,28,28]\} </code>
146
+ * </p>
147
+ * </li>
148
+ * <li>
149
+ * <p>If using the CLI, <code>\{\"var1\": [1,1,28,28],
150
+ * \"var2\":[1,1,28,28]\}</code>
151
+ * </p>
152
+ * </li>
153
+ * </ul>
154
+ * </li>
155
+ * </ul>
156
+ * </li>
157
+ * <li>
158
+ * <p>
159
+ * <code>PyTorch</code>: You can either specify the name and shape (NCHW format)
160
+ * of expected data inputs in order using a dictionary format for your trained
161
+ * model or you can specify the shape only using a list format. The dictionary
162
+ * formats required for the console and CLI are different. The list formats for the
163
+ * console and CLI are the same.</p>
164
+ * <ul>
165
+ * <li>
166
+ * <p>Examples for one input in dictionary format:</p>
167
+ * <ul>
168
+ * <li>
169
+ * <p>If using the console,
170
+ * <code>\{"input0":[1,3,224,224]\}</code>
171
+ * </p>
172
+ * </li>
173
+ * <li>
174
+ * <p>If using the CLI,
175
+ * <code>\{\"input0\":[1,3,224,224]\}</code>
176
+ * </p>
177
+ * </li>
178
+ * </ul>
179
+ * </li>
180
+ * <li>
181
+ * <p>Example for one input in list format:
182
+ * <code>[[1,3,224,224]]</code>
183
+ * </p>
184
+ * </li>
185
+ * <li>
186
+ * <p>Examples for two inputs in dictionary format:</p>
187
+ * <ul>
188
+ * <li>
189
+ * <p>If using the console, <code>\{"input0":[1,3,224,224],
190
+ * "input1":[1,3,224,224]\}</code>
191
+ * </p>
192
+ * </li>
193
+ * <li>
194
+ * <p>If using the CLI, <code>\{\"input0\":[1,3,224,224],
195
+ * \"input1\":[1,3,224,224]\} </code>
196
+ * </p>
197
+ * </li>
198
+ * </ul>
199
+ * </li>
200
+ * <li>
201
+ * <p>Example for two inputs in list format: <code>[[1,3,224,224],
202
+ * [1,3,224,224]]</code>
203
+ * </p>
204
+ * </li>
205
+ * </ul>
206
+ * </li>
207
+ * <li>
208
+ * <p>
209
+ * <code>XGBOOST</code>: input data name and shape are not needed.</p>
210
+ * </li>
211
+ * </ul>
212
+ * <p>
213
+ * <code>DataInputConfig</code> supports the following parameters for <code>CoreML</code>
214
+ * <code>TargetDevice</code> (ML Model format):</p>
215
+ * <ul>
216
+ * <li>
217
+ * <p>
218
+ * <code>shape</code>: Input shape, for example <code>\{"input_1": \{"shape":
219
+ * [1,224,224,3]\}\}</code>. In addition to static input shapes, CoreML converter
220
+ * supports Flexible input shapes:</p>
221
+ * <ul>
222
+ * <li>
223
+ * <p>Range Dimension. You can use the Range Dimension feature if you know
224
+ * the input shape will be within some specific interval in that dimension,
225
+ * for example: <code>\{"input_1": \{"shape": ["1..10", 224, 224,
226
+ * 3]\}\}</code>
227
+ * </p>
228
+ * </li>
229
+ * <li>
230
+ * <p>Enumerated shapes. Sometimes, the models are trained to work only on a
231
+ * select set of inputs. You can enumerate all supported input shapes, for
232
+ * example: <code>\{"input_1": \{"shape": [[1, 224, 224, 3], [1, 160, 160,
233
+ * 3]]\}\}</code>
234
+ * </p>
235
+ * </li>
236
+ * </ul>
237
+ * </li>
238
+ * <li>
239
+ * <p>
240
+ * <code>default_shape</code>: Default input shape. You can set a default shape
241
+ * during conversion for both Range Dimension and Enumerated Shapes. For example
242
+ * <code>\{"input_1": \{"shape": ["1..10", 224, 224, 3], "default_shape": [1,
243
+ * 224, 224, 3]\}\}</code>
244
+ * </p>
245
+ * </li>
246
+ * <li>
247
+ * <p>
248
+ * <code>type</code>: Input type. Allowed values: <code>Image</code> and
249
+ * <code>Tensor</code>. By default, the converter generates an ML Model with
250
+ * inputs of type Tensor (MultiArray). User can set input type to be Image. Image
251
+ * input type requires additional input parameters such as <code>bias</code> and
252
+ * <code>scale</code>.</p>
253
+ * </li>
254
+ * <li>
255
+ * <p>
256
+ * <code>bias</code>: If the input type is an Image, you need to provide the bias
257
+ * vector.</p>
258
+ * </li>
259
+ * <li>
260
+ * <p>
261
+ * <code>scale</code>: If the input type is an Image, you need to provide a scale
262
+ * factor.</p>
263
+ * </li>
264
+ * </ul>
265
+ * <p>CoreML <code>ClassifierConfig</code> parameters can be specified using <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html">OutputConfig</a>
266
+ * <code>CompilerOptions</code>. CoreML converter supports Tensorflow and PyTorch models.
267
+ * CoreML conversion examples:</p>
268
+ * <ul>
269
+ * <li>
270
+ * <p>Tensor type input:</p>
271
+ * <ul>
272
+ * <li>
273
+ * <p>
274
+ * <code>"DataInputConfig": \{"input_1": \{"shape": [[1,224,224,3],
275
+ * [1,160,160,3]], "default_shape": [1,224,224,3]\}\}</code>
276
+ * </p>
277
+ * </li>
278
+ * </ul>
279
+ * </li>
280
+ * <li>
281
+ * <p>Tensor type input without input name (PyTorch):</p>
282
+ * <ul>
283
+ * <li>
284
+ * <p>
285
+ * <code>"DataInputConfig": [\{"shape": [[1,3,224,224], [1,3,160,160]],
286
+ * "default_shape": [1,3,224,224]\}]</code>
287
+ * </p>
288
+ * </li>
289
+ * </ul>
290
+ * </li>
291
+ * <li>
292
+ * <p>Image type input:</p>
293
+ * <ul>
294
+ * <li>
295
+ * <p>
296
+ * <code>"DataInputConfig": \{"input_1": \{"shape": [[1,224,224,3],
297
+ * [1,160,160,3]], "default_shape": [1,224,224,3], "type": "Image",
298
+ * "bias": [-1,-1,-1], "scale": 0.007843137255\}\}</code>
299
+ * </p>
300
+ * </li>
301
+ * <li>
302
+ * <p>
303
+ * <code>"CompilerOptions": \{"class_labels":
304
+ * "imagenet_labels_1000.txt"\}</code>
305
+ * </p>
306
+ * </li>
307
+ * </ul>
308
+ * </li>
309
+ * <li>
310
+ * <p>Image type input without input name (PyTorch):</p>
311
+ * <ul>
312
+ * <li>
313
+ * <p>
314
+ * <code>"DataInputConfig": [\{"shape": [[1,3,224,224], [1,3,160,160]],
315
+ * "default_shape": [1,3,224,224], "type": "Image", "bias": [-1,-1,-1],
316
+ * "scale": 0.007843137255\}]</code>
317
+ * </p>
318
+ * </li>
319
+ * <li>
320
+ * <p>
321
+ * <code>"CompilerOptions": \{"class_labels":
322
+ * "imagenet_labels_1000.txt"\}</code>
323
+ * </p>
324
+ * </li>
325
+ * </ul>
326
+ * </li>
327
+ * </ul>
328
+ * <p>Depending on the model format, <code>DataInputConfig</code> requires the following
329
+ * parameters for <code>ml_eia2</code>
330
+ * <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html#sagemaker-Type-OutputConfig-TargetDevice">OutputConfig:TargetDevice</a>.</p>
331
+ * <ul>
332
+ * <li>
333
+ * <p>For TensorFlow models saved in the SavedModel format, specify the input names
334
+ * from <code>signature_def_key</code> and the input model shapes for
335
+ * <code>DataInputConfig</code>. Specify the <code>signature_def_key</code> in
336
+ * <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html#sagemaker-Type-OutputConfig-CompilerOptions">
337
+ * <code>OutputConfig:CompilerOptions</code>
338
+ * </a> if the model does not
339
+ * use TensorFlow's default signature def key. For example:</p>
340
+ * <ul>
341
+ * <li>
342
+ * <p>
343
+ * <code>"DataInputConfig": \{"inputs": [1, 224, 224, 3]\}</code>
344
+ * </p>
345
+ * </li>
346
+ * <li>
347
+ * <p>
348
+ * <code>"CompilerOptions": \{"signature_def_key":
349
+ * "serving_custom"\}</code>
350
+ * </p>
351
+ * </li>
352
+ * </ul>
353
+ * </li>
354
+ * <li>
355
+ * <p>For TensorFlow models saved as a frozen graph, specify the input tensor names
356
+ * and shapes in <code>DataInputConfig</code> and the output tensor names for
357
+ * <code>output_names</code> in <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html#sagemaker-Type-OutputConfig-CompilerOptions">
358
+ * <code>OutputConfig:CompilerOptions</code>
359
+ * </a>. For
360
+ * example:</p>
361
+ * <ul>
362
+ * <li>
363
+ * <p>
364
+ * <code>"DataInputConfig": \{"input_tensor:0": [1, 224, 224,
365
+ * 3]\}</code>
366
+ * </p>
367
+ * </li>
368
+ * <li>
369
+ * <p>
370
+ * <code>"CompilerOptions": \{"output_names":
371
+ * ["output_tensor:0"]\}</code>
372
+ * </p>
373
+ * </li>
374
+ * </ul>
375
+ * </li>
376
+ * </ul>
377
+ * @public
378
+ */
379
+ DataInputConfig?: string;
380
+ /**
381
+ * <p>Identifies the framework in which the model was trained. For example:
382
+ * TENSORFLOW.</p>
383
+ * @public
384
+ */
385
+ Framework: Framework | undefined;
386
+ /**
387
+ * <p>Specifies the framework version to use. This API field is only supported for the
388
+ * MXNet, PyTorch, TensorFlow and TensorFlow Lite frameworks.</p>
389
+ * <p>For information about framework versions supported for cloud targets and edge devices,
390
+ * see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/neo-supported-cloud.html">Cloud
391
+ * Supported Instance Types and Frameworks</a> and <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/neo-supported-devices-edge-frameworks.html">Edge Supported
392
+ * Frameworks</a>.</p>
393
+ * @public
394
+ */
395
+ FrameworkVersion?: string;
396
+ }
3
397
  /**
4
398
  * <p>Contains information about a target platform that you want your model to run on, such
5
399
  * as OS, architecture, and accelerators. It is an alternative of
@@ -8464,6 +8858,87 @@ export interface CreateLabelingJobResponse {
8464
8858
  */
8465
8859
  LabelingJobArn: string | undefined;
8466
8860
  }
8861
+ /**
8862
+ * @public
8863
+ * @enum
8864
+ */
8865
+ export declare const TrackingServerSize: {
8866
+ readonly L: "Large";
8867
+ readonly M: "Medium";
8868
+ readonly S: "Small";
8869
+ };
8870
+ /**
8871
+ * @public
8872
+ */
8873
+ export type TrackingServerSize = (typeof TrackingServerSize)[keyof typeof TrackingServerSize];
8874
+ /**
8875
+ * @public
8876
+ */
8877
+ export interface CreateMlflowTrackingServerRequest {
8878
+ /**
8879
+ * <p>A unique string identifying the tracking server name. This string is part of the tracking server
8880
+ * ARN.</p>
8881
+ * @public
8882
+ */
8883
+ TrackingServerName: string | undefined;
8884
+ /**
8885
+ * <p>The S3 URI for a general purpose bucket to use as the MLflow Tracking Server artifact
8886
+ * store.</p>
8887
+ * @public
8888
+ */
8889
+ ArtifactStoreUri: string | undefined;
8890
+ /**
8891
+ * <p>The size of the tracking server you want to create. You can choose between
8892
+ * <code>"Small"</code>, <code>"Medium"</code>, and <code>"Large"</code>. The default MLflow
8893
+ * Tracking Server configuration size is <code>"Small"</code>. You can choose a size depending on
8894
+ * the projected use of the tracking server such as the volume of data logged, number of users,
8895
+ * and frequency of use. </p>
8896
+ * <p>We recommend using a small tracking server for teams of up to 25 users, a medium tracking
8897
+ * server for teams of up to 50 users, and a large tracking server for teams of up to 100 users. </p>
8898
+ * @public
8899
+ */
8900
+ TrackingServerSize?: TrackingServerSize;
8901
+ /**
8902
+ * <p>The version of MLflow that the tracking server uses. To see which MLflow versions are
8903
+ * available to use, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/mlflow.html#mlflow-create-tracking-server-how-it-works">How it works</a>.</p>
8904
+ * @public
8905
+ */
8906
+ MlflowVersion?: string;
8907
+ /**
8908
+ * <p>The Amazon Resource Name (ARN) for an IAM role in your account that the MLflow Tracking Server uses to
8909
+ * access the artifact store in Amazon S3. The role should have <code>AmazonS3FullAccess</code>
8910
+ * permissions. For more information on IAM permissions for tracking server creation, see
8911
+ * <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/mlflow-create-tracking-server-iam.html">Set up IAM permissions for MLflow</a>.</p>
8912
+ * @public
8913
+ */
8914
+ RoleArn: string | undefined;
8915
+ /**
8916
+ * <p>Whether to enable or disable automatic registration of new MLflow models to the SageMaker Model Registry. To enable automatic model registration, set this value to <code>True</code>.
8917
+ * To disable automatic model registration, set this value to <code>False</code>. If not specified, <code>AutomaticModelRegistration</code> defaults to <code>False</code>.</p>
8918
+ * @public
8919
+ */
8920
+ AutomaticModelRegistration?: boolean;
8921
+ /**
8922
+ * <p>The day and time of the week in Coordinated Universal Time (UTC) 24-hour standard time that weekly maintenance updates are scheduled. For example: TUE:03:30.</p>
8923
+ * @public
8924
+ */
8925
+ WeeklyMaintenanceWindowStart?: string;
8926
+ /**
8927
+ * <p>Tags consisting of key-value pairs used to manage metadata for the tracking server.</p>
8928
+ * @public
8929
+ */
8930
+ Tags?: Tag[];
8931
+ }
8932
+ /**
8933
+ * @public
8934
+ */
8935
+ export interface CreateMlflowTrackingServerResponse {
8936
+ /**
8937
+ * <p>The ARN of the tracking server.</p>
8938
+ * @public
8939
+ */
8940
+ TrackingServerArn?: string;
8941
+ }
8467
8942
  /**
8468
8943
  * @public
8469
8944
  * @enum
@@ -10438,6 +10913,37 @@ export interface CreatePresignedDomainUrlResponse {
10438
10913
  */
10439
10914
  AuthorizedUrl?: string;
10440
10915
  }
10916
+ /**
10917
+ * @public
10918
+ */
10919
+ export interface CreatePresignedMlflowTrackingServerUrlRequest {
10920
+ /**
10921
+ * <p>The name of the tracking server to connect to your MLflow UI.</p>
10922
+ * @public
10923
+ */
10924
+ TrackingServerName: string | undefined;
10925
+ /**
10926
+ * <p>The duration in seconds that your presigned URL is valid. The presigned URL can be used
10927
+ * only once.</p>
10928
+ * @public
10929
+ */
10930
+ ExpiresInSeconds?: number;
10931
+ /**
10932
+ * <p>The duration in seconds that your MLflow UI session is valid.</p>
10933
+ * @public
10934
+ */
10935
+ SessionExpirationDurationInSeconds?: number;
10936
+ }
10937
+ /**
10938
+ * @public
10939
+ */
10940
+ export interface CreatePresignedMlflowTrackingServerUrlResponse {
10941
+ /**
10942
+ * <p>A presigned URL with an authorization token.</p>
10943
+ * @public
10944
+ */
10945
+ AuthorizedUrl?: string;
10946
+ }
10441
10947
  /**
10442
10948
  * @public
10443
10949
  */
@@ -11139,142 +11645,6 @@ export interface EFSFileSystem {
11139
11645
  */
11140
11646
  FileSystemId: string | undefined;
11141
11647
  }
11142
- /**
11143
- * <p>A file system, created by you, that you assign to a user profile or space for an
11144
- * Amazon SageMaker Domain. Permitted users can access this file system in Amazon SageMaker Studio.</p>
11145
- * @public
11146
- */
11147
- export type CustomFileSystem = CustomFileSystem.EFSFileSystemMember | CustomFileSystem.$UnknownMember;
11148
- /**
11149
- * @public
11150
- */
11151
- export declare namespace CustomFileSystem {
11152
- /**
11153
- * <p>A custom file system in Amazon EFS.</p>
11154
- * @public
11155
- */
11156
- interface EFSFileSystemMember {
11157
- EFSFileSystem: EFSFileSystem;
11158
- $unknown?: never;
11159
- }
11160
- /**
11161
- * @public
11162
- */
11163
- interface $UnknownMember {
11164
- EFSFileSystem?: never;
11165
- $unknown: [string, any];
11166
- }
11167
- interface Visitor<T> {
11168
- EFSFileSystem: (value: EFSFileSystem) => T;
11169
- _: (name: string, value: any) => T;
11170
- }
11171
- const visit: <T>(value: CustomFileSystem, visitor: Visitor<T>) => T;
11172
- }
11173
- /**
11174
- * <p>The settings for the JupyterLab application within a space.</p>
11175
- * @public
11176
- */
11177
- export interface SpaceJupyterLabAppSettings {
11178
- /**
11179
- * <p>Specifies the ARN's of a SageMaker image and SageMaker image version, and the instance type that
11180
- * the version runs on.</p>
11181
- * @public
11182
- */
11183
- DefaultResourceSpec?: ResourceSpec;
11184
- /**
11185
- * <p>A list of Git repositories that SageMaker automatically displays to users for cloning in the JupyterLab application.</p>
11186
- * @public
11187
- */
11188
- CodeRepositories?: CodeRepository[];
11189
- }
11190
- /**
11191
- * <p>A collection of EBS storage settings that apply to both private and shared spaces.</p>
11192
- * @public
11193
- */
11194
- export interface EbsStorageSettings {
11195
- /**
11196
- * <p>The size of an EBS storage volume for a space.</p>
11197
- * @public
11198
- */
11199
- EbsVolumeSizeInGb: number | undefined;
11200
- }
11201
- /**
11202
- * <p>The storage settings for a space.</p>
11203
- * @public
11204
- */
11205
- export interface SpaceStorageSettings {
11206
- /**
11207
- * <p>A collection of EBS storage settings for a space.</p>
11208
- * @public
11209
- */
11210
- EbsStorageSettings?: EbsStorageSettings;
11211
- }
11212
- /**
11213
- * <p>A collection of space settings.</p>
11214
- * @public
11215
- */
11216
- export interface SpaceSettings {
11217
- /**
11218
- * <p>The JupyterServer app settings.</p>
11219
- * @public
11220
- */
11221
- JupyterServerAppSettings?: JupyterServerAppSettings;
11222
- /**
11223
- * <p>The KernelGateway app settings.</p>
11224
- * @public
11225
- */
11226
- KernelGatewayAppSettings?: KernelGatewayAppSettings;
11227
- /**
11228
- * <p>The Code Editor application settings.</p>
11229
- * @public
11230
- */
11231
- CodeEditorAppSettings?: SpaceCodeEditorAppSettings;
11232
- /**
11233
- * <p>The settings for the JupyterLab application.</p>
11234
- * @public
11235
- */
11236
- JupyterLabAppSettings?: SpaceJupyterLabAppSettings;
11237
- /**
11238
- * <p>The type of app created within the space.</p>
11239
- * @public
11240
- */
11241
- AppType?: AppType;
11242
- /**
11243
- * <p>The storage settings for a space.</p>
11244
- * @public
11245
- */
11246
- SpaceStorageSettings?: SpaceStorageSettings;
11247
- /**
11248
- * <p>A file system, created by you, that you assign to a space for an Amazon SageMaker
11249
- * Domain. Permitted users can access this file system in Amazon SageMaker
11250
- * Studio.</p>
11251
- * @public
11252
- */
11253
- CustomFileSystems?: CustomFileSystem[];
11254
- }
11255
- /**
11256
- * @public
11257
- * @enum
11258
- */
11259
- export declare const SharingType: {
11260
- readonly Private: "Private";
11261
- readonly Shared: "Shared";
11262
- };
11263
- /**
11264
- * @public
11265
- */
11266
- export type SharingType = (typeof SharingType)[keyof typeof SharingType];
11267
- /**
11268
- * <p>A collection of space sharing settings.</p>
11269
- * @public
11270
- */
11271
- export interface SpaceSharingSettings {
11272
- /**
11273
- * <p>Specifies the sharing type of the space.</p>
11274
- * @public
11275
- */
11276
- SharingType: SharingType | undefined;
11277
- }
11278
11648
  /**
11279
11649
  * @internal
11280
11650
  */