@aws-sdk/client-sagemaker 3.598.0 → 3.600.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +64 -0
- package/dist-cjs/index.js +523 -57
- package/dist-es/SageMaker.js +16 -0
- package/dist-es/commands/CreateMlflowTrackingServerCommand.js +24 -0
- package/dist-es/commands/CreatePresignedMlflowTrackingServerUrlCommand.js +24 -0
- package/dist-es/commands/DeleteMlflowTrackingServerCommand.js +24 -0
- package/dist-es/commands/DescribeMlflowTrackingServerCommand.js +24 -0
- package/dist-es/commands/ListMlflowTrackingServersCommand.js +24 -0
- package/dist-es/commands/StartMlflowTrackingServerCommand.js +24 -0
- package/dist-es/commands/StopMlflowTrackingServerCommand.js +24 -0
- package/dist-es/commands/UpdateMlflowTrackingServerCommand.js +24 -0
- package/dist-es/commands/index.js +8 -0
- package/dist-es/models/models_0.js +8 -11
- package/dist-es/models/models_1.js +16 -12
- package/dist-es/models/models_2.js +35 -11
- package/dist-es/models/models_3.js +16 -24
- package/dist-es/models/models_4.js +24 -0
- package/dist-es/pagination/ListMlflowTrackingServersPaginator.js +4 -0
- package/dist-es/pagination/index.js +1 -0
- package/dist-es/protocols/Aws_json1_1.js +261 -0
- package/dist-types/SageMaker.d.ts +57 -0
- package/dist-types/SageMakerClient.d.ts +10 -2
- package/dist-types/commands/CreateClusterCommand.d.ts +9 -1
- package/dist-types/commands/CreateMlflowTrackingServerCommand.d.ts +78 -0
- package/dist-types/commands/CreatePresignedMlflowTrackingServerUrlCommand.d.ts +66 -0
- package/dist-types/commands/DeleteMlflowTrackingServerCommand.d.ts +63 -0
- package/dist-types/commands/DeleteWorkforceCommand.d.ts +1 -1
- package/dist-types/commands/DescribeClusterCommand.d.ts +7 -0
- package/dist-types/commands/DescribeClusterNodeCommand.d.ts +7 -0
- package/dist-types/commands/DescribeMlflowTrackingServerCommand.d.ts +95 -0
- package/dist-types/commands/DescribeNotebookInstanceLifecycleConfigCommand.d.ts +1 -1
- package/dist-types/commands/DescribePipelineCommand.d.ts +1 -1
- package/dist-types/commands/DescribePipelineDefinitionForExecutionCommand.d.ts +1 -1
- package/dist-types/commands/DescribePipelineExecutionCommand.d.ts +1 -1
- package/dist-types/commands/DescribeWorkteamCommand.d.ts +1 -1
- package/dist-types/commands/ListMlflowTrackingServersCommand.d.ts +78 -0
- package/dist-types/commands/ListMonitoringAlertsCommand.d.ts +2 -1
- package/dist-types/commands/ListMonitoringExecutionsCommand.d.ts +1 -1
- package/dist-types/commands/ListMonitoringSchedulesCommand.d.ts +1 -1
- package/dist-types/commands/ListNotebookInstanceLifecycleConfigsCommand.d.ts +1 -1
- package/dist-types/commands/StartMlflowTrackingServerCommand.d.ts +67 -0
- package/dist-types/commands/StopMlflowTrackingServerCommand.d.ts +67 -0
- package/dist-types/commands/UpdateClusterCommand.d.ts +7 -0
- package/dist-types/commands/UpdateMlflowTrackingServerCommand.d.ts +75 -0
- package/dist-types/commands/index.d.ts +8 -0
- package/dist-types/models/models_0.d.ts +85 -407
- package/dist-types/models/models_1.d.ts +507 -137
- package/dist-types/models/models_2.d.ts +295 -318
- package/dist-types/models/models_3.d.ts +460 -512
- package/dist-types/models/models_4.d.ts +576 -3
- package/dist-types/pagination/ListMlflowTrackingServersPaginator.d.ts +7 -0
- package/dist-types/pagination/index.d.ts +1 -0
- package/dist-types/protocols/Aws_json1_1.d.ts +72 -0
- package/dist-types/ts3.4/SageMaker.d.ts +143 -0
- package/dist-types/ts3.4/SageMakerClient.d.ts +48 -0
- package/dist-types/ts3.4/commands/CreateMlflowTrackingServerCommand.d.ts +40 -0
- package/dist-types/ts3.4/commands/CreatePresignedMlflowTrackingServerUrlCommand.d.ts +40 -0
- package/dist-types/ts3.4/commands/DeleteMlflowTrackingServerCommand.d.ts +40 -0
- package/dist-types/ts3.4/commands/DescribeMlflowTrackingServerCommand.d.ts +40 -0
- package/dist-types/ts3.4/commands/DescribeNotebookInstanceLifecycleConfigCommand.d.ts +1 -1
- package/dist-types/ts3.4/commands/DescribePipelineCommand.d.ts +1 -1
- package/dist-types/ts3.4/commands/DescribePipelineDefinitionForExecutionCommand.d.ts +1 -1
- package/dist-types/ts3.4/commands/DescribePipelineExecutionCommand.d.ts +1 -1
- package/dist-types/ts3.4/commands/ListMlflowTrackingServersCommand.d.ts +40 -0
- package/dist-types/ts3.4/commands/ListMonitoringAlertsCommand.d.ts +2 -4
- package/dist-types/ts3.4/commands/ListMonitoringExecutionsCommand.d.ts +1 -1
- package/dist-types/ts3.4/commands/ListMonitoringSchedulesCommand.d.ts +1 -1
- package/dist-types/ts3.4/commands/ListNotebookInstanceLifecycleConfigsCommand.d.ts +1 -1
- package/dist-types/ts3.4/commands/StartMlflowTrackingServerCommand.d.ts +40 -0
- package/dist-types/ts3.4/commands/StopMlflowTrackingServerCommand.d.ts +40 -0
- package/dist-types/ts3.4/commands/UpdateMlflowTrackingServerCommand.d.ts +40 -0
- package/dist-types/ts3.4/commands/index.d.ts +8 -0
- package/dist-types/ts3.4/models/models_0.d.ts +27 -18
- package/dist-types/ts3.4/models/models_1.d.ts +46 -47
- package/dist-types/ts3.4/models/models_2.d.ts +105 -85
- package/dist-types/ts3.4/models/models_3.d.ts +116 -127
- package/dist-types/ts3.4/models/models_4.d.ts +156 -9
- package/dist-types/ts3.4/pagination/ListMlflowTrackingServersPaginator.d.ts +11 -0
- package/dist-types/ts3.4/pagination/index.d.ts +1 -0
- package/dist-types/ts3.4/protocols/Aws_json1_1.d.ts +96 -0
- package/package.json +4 -4
|
@@ -1,5 +1,399 @@
|
|
|
1
1
|
import { LazyJsonString as __LazyJsonString } from "@smithy/smithy-client";
|
|
2
|
-
import { AdditionalInferenceSpecificationDefinition, AnnotationConsolidationConfig, AppNetworkAccessType, AppSecurityGroupManagement, AppSpecification,
|
|
2
|
+
import { AdditionalInferenceSpecificationDefinition, AnnotationConsolidationConfig, AppNetworkAccessType, AppSecurityGroupManagement, AppSpecification, AsyncInferenceConfig, AthenaDatasetDefinition, AuthMode, AutoParameter, AutoRollbackConfig, Autotune, AwsManagedHumanLoopRequestSource, BatchTransformInput, BestObjectiveNotImproving, Bias, BlueGreenUpdatePolicy, CanvasAppSettings, CapacitySize, CaptureContentTypeHeader, CaptureOption, CategoricalParameter, CategoricalParameterRange, Channel, CheckpointConfig, ClarifyExplainerConfig, CodeEditorAppSettings, CodeRepository, CollectionConfig, CollectionType, ContainerDefinition, ContentClassifier, ContextSource, ContinuousParameterRange, ConvergenceDetected, CustomImage, FeatureStatus, HyperParameterScalingType, HyperParameterTuningJobObjective, InferenceSpecification, MetadataProperties, MetricDefinition, MetricsSource, ModelApprovalStatus, ModelDataSource, OutputDataConfig, ProcessingS3DataDistributionType, ProcessingS3InputMode, ProductionVariantInstanceType, ResourceConfig, ResourceSpec, StoppingCondition, Tag, TargetDevice, TargetPlatformAccelerator, TargetPlatformArch, TargetPlatformOs, TrainingInputMode, TrainingInstanceType, TransformJobDefinition, VpcConfig } from "./models_0";
|
|
3
|
+
/**
|
|
4
|
+
* @public
|
|
5
|
+
* @enum
|
|
6
|
+
*/
|
|
7
|
+
export declare const Framework: {
|
|
8
|
+
readonly DARKNET: "DARKNET";
|
|
9
|
+
readonly KERAS: "KERAS";
|
|
10
|
+
readonly MXNET: "MXNET";
|
|
11
|
+
readonly ONNX: "ONNX";
|
|
12
|
+
readonly PYTORCH: "PYTORCH";
|
|
13
|
+
readonly SKLEARN: "SKLEARN";
|
|
14
|
+
readonly TENSORFLOW: "TENSORFLOW";
|
|
15
|
+
readonly TFLITE: "TFLITE";
|
|
16
|
+
readonly XGBOOST: "XGBOOST";
|
|
17
|
+
};
|
|
18
|
+
/**
|
|
19
|
+
* @public
|
|
20
|
+
*/
|
|
21
|
+
export type Framework = (typeof Framework)[keyof typeof Framework];
|
|
22
|
+
/**
|
|
23
|
+
* <p>Contains information about the location of input model artifacts, the name and
|
|
24
|
+
* shape
|
|
25
|
+
* of the expected data inputs, and the framework in which the model was trained.</p>
|
|
26
|
+
* @public
|
|
27
|
+
*/
|
|
28
|
+
export interface InputConfig {
|
|
29
|
+
/**
|
|
30
|
+
* <p>The S3 path where the model artifacts, which result from model training, are stored.
|
|
31
|
+
* This path must point to a single gzip compressed tar archive (.tar.gz suffix).</p>
|
|
32
|
+
* @public
|
|
33
|
+
*/
|
|
34
|
+
S3Uri: string | undefined;
|
|
35
|
+
/**
|
|
36
|
+
* <p>Specifies the name and shape of the expected data inputs for your trained model with a
|
|
37
|
+
* JSON dictionary form. The data inputs are <code>Framework</code> specific. </p>
|
|
38
|
+
* <ul>
|
|
39
|
+
* <li>
|
|
40
|
+
* <p>
|
|
41
|
+
* <code>TensorFlow</code>: You must specify the name and shape (NHWC format) of
|
|
42
|
+
* the expected data inputs using a dictionary format for your trained model. The
|
|
43
|
+
* dictionary formats required for the console and CLI are different.</p>
|
|
44
|
+
* <ul>
|
|
45
|
+
* <li>
|
|
46
|
+
* <p>Examples for one input:</p>
|
|
47
|
+
* <ul>
|
|
48
|
+
* <li>
|
|
49
|
+
* <p>If using the console,
|
|
50
|
+
* <code>\{"input":[1,1024,1024,3]\}</code>
|
|
51
|
+
* </p>
|
|
52
|
+
* </li>
|
|
53
|
+
* <li>
|
|
54
|
+
* <p>If using the CLI,
|
|
55
|
+
* <code>\{\"input\":[1,1024,1024,3]\}</code>
|
|
56
|
+
* </p>
|
|
57
|
+
* </li>
|
|
58
|
+
* </ul>
|
|
59
|
+
* </li>
|
|
60
|
+
* <li>
|
|
61
|
+
* <p>Examples for two inputs:</p>
|
|
62
|
+
* <ul>
|
|
63
|
+
* <li>
|
|
64
|
+
* <p>If using the console, <code>\{"data1": [1,28,28,1],
|
|
65
|
+
* "data2":[1,28,28,1]\}</code>
|
|
66
|
+
* </p>
|
|
67
|
+
* </li>
|
|
68
|
+
* <li>
|
|
69
|
+
* <p>If using the CLI, <code>\{\"data1\": [1,28,28,1],
|
|
70
|
+
* \"data2\":[1,28,28,1]\}</code>
|
|
71
|
+
* </p>
|
|
72
|
+
* </li>
|
|
73
|
+
* </ul>
|
|
74
|
+
* </li>
|
|
75
|
+
* </ul>
|
|
76
|
+
* </li>
|
|
77
|
+
* <li>
|
|
78
|
+
* <p>
|
|
79
|
+
* <code>KERAS</code>: You must specify the name and shape (NCHW format) of
|
|
80
|
+
* expected data inputs using a dictionary format for your trained model. Note that
|
|
81
|
+
* while Keras model artifacts should be uploaded in NHWC (channel-last) format,
|
|
82
|
+
* <code>DataInputConfig</code> should be specified in NCHW (channel-first)
|
|
83
|
+
* format. The dictionary formats required for the console and CLI are
|
|
84
|
+
* different.</p>
|
|
85
|
+
* <ul>
|
|
86
|
+
* <li>
|
|
87
|
+
* <p>Examples for one input:</p>
|
|
88
|
+
* <ul>
|
|
89
|
+
* <li>
|
|
90
|
+
* <p>If using the console,
|
|
91
|
+
* <code>\{"input_1":[1,3,224,224]\}</code>
|
|
92
|
+
* </p>
|
|
93
|
+
* </li>
|
|
94
|
+
* <li>
|
|
95
|
+
* <p>If using the CLI,
|
|
96
|
+
* <code>\{\"input_1\":[1,3,224,224]\}</code>
|
|
97
|
+
* </p>
|
|
98
|
+
* </li>
|
|
99
|
+
* </ul>
|
|
100
|
+
* </li>
|
|
101
|
+
* <li>
|
|
102
|
+
* <p>Examples for two inputs:</p>
|
|
103
|
+
* <ul>
|
|
104
|
+
* <li>
|
|
105
|
+
* <p>If using the console, <code>\{"input_1": [1,3,224,224],
|
|
106
|
+
* "input_2":[1,3,224,224]\} </code>
|
|
107
|
+
* </p>
|
|
108
|
+
* </li>
|
|
109
|
+
* <li>
|
|
110
|
+
* <p>If using the CLI, <code>\{\"input_1\": [1,3,224,224],
|
|
111
|
+
* \"input_2\":[1,3,224,224]\}</code>
|
|
112
|
+
* </p>
|
|
113
|
+
* </li>
|
|
114
|
+
* </ul>
|
|
115
|
+
* </li>
|
|
116
|
+
* </ul>
|
|
117
|
+
* </li>
|
|
118
|
+
* <li>
|
|
119
|
+
* <p>
|
|
120
|
+
* <code>MXNET/ONNX/DARKNET</code>: You must specify the name and shape (NCHW
|
|
121
|
+
* format) of the expected data inputs in order using a dictionary format for your
|
|
122
|
+
* trained model. The dictionary formats required for the console and CLI are
|
|
123
|
+
* different.</p>
|
|
124
|
+
* <ul>
|
|
125
|
+
* <li>
|
|
126
|
+
* <p>Examples for one input:</p>
|
|
127
|
+
* <ul>
|
|
128
|
+
* <li>
|
|
129
|
+
* <p>If using the console,
|
|
130
|
+
* <code>\{"data":[1,3,1024,1024]\}</code>
|
|
131
|
+
* </p>
|
|
132
|
+
* </li>
|
|
133
|
+
* <li>
|
|
134
|
+
* <p>If using the CLI,
|
|
135
|
+
* <code>\{\"data\":[1,3,1024,1024]\}</code>
|
|
136
|
+
* </p>
|
|
137
|
+
* </li>
|
|
138
|
+
* </ul>
|
|
139
|
+
* </li>
|
|
140
|
+
* <li>
|
|
141
|
+
* <p>Examples for two inputs:</p>
|
|
142
|
+
* <ul>
|
|
143
|
+
* <li>
|
|
144
|
+
* <p>If using the console, <code>\{"var1": [1,1,28,28],
|
|
145
|
+
* "var2":[1,1,28,28]\} </code>
|
|
146
|
+
* </p>
|
|
147
|
+
* </li>
|
|
148
|
+
* <li>
|
|
149
|
+
* <p>If using the CLI, <code>\{\"var1\": [1,1,28,28],
|
|
150
|
+
* \"var2\":[1,1,28,28]\}</code>
|
|
151
|
+
* </p>
|
|
152
|
+
* </li>
|
|
153
|
+
* </ul>
|
|
154
|
+
* </li>
|
|
155
|
+
* </ul>
|
|
156
|
+
* </li>
|
|
157
|
+
* <li>
|
|
158
|
+
* <p>
|
|
159
|
+
* <code>PyTorch</code>: You can either specify the name and shape (NCHW format)
|
|
160
|
+
* of expected data inputs in order using a dictionary format for your trained
|
|
161
|
+
* model or you can specify the shape only using a list format. The dictionary
|
|
162
|
+
* formats required for the console and CLI are different. The list formats for the
|
|
163
|
+
* console and CLI are the same.</p>
|
|
164
|
+
* <ul>
|
|
165
|
+
* <li>
|
|
166
|
+
* <p>Examples for one input in dictionary format:</p>
|
|
167
|
+
* <ul>
|
|
168
|
+
* <li>
|
|
169
|
+
* <p>If using the console,
|
|
170
|
+
* <code>\{"input0":[1,3,224,224]\}</code>
|
|
171
|
+
* </p>
|
|
172
|
+
* </li>
|
|
173
|
+
* <li>
|
|
174
|
+
* <p>If using the CLI,
|
|
175
|
+
* <code>\{\"input0\":[1,3,224,224]\}</code>
|
|
176
|
+
* </p>
|
|
177
|
+
* </li>
|
|
178
|
+
* </ul>
|
|
179
|
+
* </li>
|
|
180
|
+
* <li>
|
|
181
|
+
* <p>Example for one input in list format:
|
|
182
|
+
* <code>[[1,3,224,224]]</code>
|
|
183
|
+
* </p>
|
|
184
|
+
* </li>
|
|
185
|
+
* <li>
|
|
186
|
+
* <p>Examples for two inputs in dictionary format:</p>
|
|
187
|
+
* <ul>
|
|
188
|
+
* <li>
|
|
189
|
+
* <p>If using the console, <code>\{"input0":[1,3,224,224],
|
|
190
|
+
* "input1":[1,3,224,224]\}</code>
|
|
191
|
+
* </p>
|
|
192
|
+
* </li>
|
|
193
|
+
* <li>
|
|
194
|
+
* <p>If using the CLI, <code>\{\"input0\":[1,3,224,224],
|
|
195
|
+
* \"input1\":[1,3,224,224]\} </code>
|
|
196
|
+
* </p>
|
|
197
|
+
* </li>
|
|
198
|
+
* </ul>
|
|
199
|
+
* </li>
|
|
200
|
+
* <li>
|
|
201
|
+
* <p>Example for two inputs in list format: <code>[[1,3,224,224],
|
|
202
|
+
* [1,3,224,224]]</code>
|
|
203
|
+
* </p>
|
|
204
|
+
* </li>
|
|
205
|
+
* </ul>
|
|
206
|
+
* </li>
|
|
207
|
+
* <li>
|
|
208
|
+
* <p>
|
|
209
|
+
* <code>XGBOOST</code>: input data name and shape are not needed.</p>
|
|
210
|
+
* </li>
|
|
211
|
+
* </ul>
|
|
212
|
+
* <p>
|
|
213
|
+
* <code>DataInputConfig</code> supports the following parameters for <code>CoreML</code>
|
|
214
|
+
* <code>TargetDevice</code> (ML Model format):</p>
|
|
215
|
+
* <ul>
|
|
216
|
+
* <li>
|
|
217
|
+
* <p>
|
|
218
|
+
* <code>shape</code>: Input shape, for example <code>\{"input_1": \{"shape":
|
|
219
|
+
* [1,224,224,3]\}\}</code>. In addition to static input shapes, CoreML converter
|
|
220
|
+
* supports Flexible input shapes:</p>
|
|
221
|
+
* <ul>
|
|
222
|
+
* <li>
|
|
223
|
+
* <p>Range Dimension. You can use the Range Dimension feature if you know
|
|
224
|
+
* the input shape will be within some specific interval in that dimension,
|
|
225
|
+
* for example: <code>\{"input_1": \{"shape": ["1..10", 224, 224,
|
|
226
|
+
* 3]\}\}</code>
|
|
227
|
+
* </p>
|
|
228
|
+
* </li>
|
|
229
|
+
* <li>
|
|
230
|
+
* <p>Enumerated shapes. Sometimes, the models are trained to work only on a
|
|
231
|
+
* select set of inputs. You can enumerate all supported input shapes, for
|
|
232
|
+
* example: <code>\{"input_1": \{"shape": [[1, 224, 224, 3], [1, 160, 160,
|
|
233
|
+
* 3]]\}\}</code>
|
|
234
|
+
* </p>
|
|
235
|
+
* </li>
|
|
236
|
+
* </ul>
|
|
237
|
+
* </li>
|
|
238
|
+
* <li>
|
|
239
|
+
* <p>
|
|
240
|
+
* <code>default_shape</code>: Default input shape. You can set a default shape
|
|
241
|
+
* during conversion for both Range Dimension and Enumerated Shapes. For example
|
|
242
|
+
* <code>\{"input_1": \{"shape": ["1..10", 224, 224, 3], "default_shape": [1,
|
|
243
|
+
* 224, 224, 3]\}\}</code>
|
|
244
|
+
* </p>
|
|
245
|
+
* </li>
|
|
246
|
+
* <li>
|
|
247
|
+
* <p>
|
|
248
|
+
* <code>type</code>: Input type. Allowed values: <code>Image</code> and
|
|
249
|
+
* <code>Tensor</code>. By default, the converter generates an ML Model with
|
|
250
|
+
* inputs of type Tensor (MultiArray). User can set input type to be Image. Image
|
|
251
|
+
* input type requires additional input parameters such as <code>bias</code> and
|
|
252
|
+
* <code>scale</code>.</p>
|
|
253
|
+
* </li>
|
|
254
|
+
* <li>
|
|
255
|
+
* <p>
|
|
256
|
+
* <code>bias</code>: If the input type is an Image, you need to provide the bias
|
|
257
|
+
* vector.</p>
|
|
258
|
+
* </li>
|
|
259
|
+
* <li>
|
|
260
|
+
* <p>
|
|
261
|
+
* <code>scale</code>: If the input type is an Image, you need to provide a scale
|
|
262
|
+
* factor.</p>
|
|
263
|
+
* </li>
|
|
264
|
+
* </ul>
|
|
265
|
+
* <p>CoreML <code>ClassifierConfig</code> parameters can be specified using <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html">OutputConfig</a>
|
|
266
|
+
* <code>CompilerOptions</code>. CoreML converter supports Tensorflow and PyTorch models.
|
|
267
|
+
* CoreML conversion examples:</p>
|
|
268
|
+
* <ul>
|
|
269
|
+
* <li>
|
|
270
|
+
* <p>Tensor type input:</p>
|
|
271
|
+
* <ul>
|
|
272
|
+
* <li>
|
|
273
|
+
* <p>
|
|
274
|
+
* <code>"DataInputConfig": \{"input_1": \{"shape": [[1,224,224,3],
|
|
275
|
+
* [1,160,160,3]], "default_shape": [1,224,224,3]\}\}</code>
|
|
276
|
+
* </p>
|
|
277
|
+
* </li>
|
|
278
|
+
* </ul>
|
|
279
|
+
* </li>
|
|
280
|
+
* <li>
|
|
281
|
+
* <p>Tensor type input without input name (PyTorch):</p>
|
|
282
|
+
* <ul>
|
|
283
|
+
* <li>
|
|
284
|
+
* <p>
|
|
285
|
+
* <code>"DataInputConfig": [\{"shape": [[1,3,224,224], [1,3,160,160]],
|
|
286
|
+
* "default_shape": [1,3,224,224]\}]</code>
|
|
287
|
+
* </p>
|
|
288
|
+
* </li>
|
|
289
|
+
* </ul>
|
|
290
|
+
* </li>
|
|
291
|
+
* <li>
|
|
292
|
+
* <p>Image type input:</p>
|
|
293
|
+
* <ul>
|
|
294
|
+
* <li>
|
|
295
|
+
* <p>
|
|
296
|
+
* <code>"DataInputConfig": \{"input_1": \{"shape": [[1,224,224,3],
|
|
297
|
+
* [1,160,160,3]], "default_shape": [1,224,224,3], "type": "Image",
|
|
298
|
+
* "bias": [-1,-1,-1], "scale": 0.007843137255\}\}</code>
|
|
299
|
+
* </p>
|
|
300
|
+
* </li>
|
|
301
|
+
* <li>
|
|
302
|
+
* <p>
|
|
303
|
+
* <code>"CompilerOptions": \{"class_labels":
|
|
304
|
+
* "imagenet_labels_1000.txt"\}</code>
|
|
305
|
+
* </p>
|
|
306
|
+
* </li>
|
|
307
|
+
* </ul>
|
|
308
|
+
* </li>
|
|
309
|
+
* <li>
|
|
310
|
+
* <p>Image type input without input name (PyTorch):</p>
|
|
311
|
+
* <ul>
|
|
312
|
+
* <li>
|
|
313
|
+
* <p>
|
|
314
|
+
* <code>"DataInputConfig": [\{"shape": [[1,3,224,224], [1,3,160,160]],
|
|
315
|
+
* "default_shape": [1,3,224,224], "type": "Image", "bias": [-1,-1,-1],
|
|
316
|
+
* "scale": 0.007843137255\}]</code>
|
|
317
|
+
* </p>
|
|
318
|
+
* </li>
|
|
319
|
+
* <li>
|
|
320
|
+
* <p>
|
|
321
|
+
* <code>"CompilerOptions": \{"class_labels":
|
|
322
|
+
* "imagenet_labels_1000.txt"\}</code>
|
|
323
|
+
* </p>
|
|
324
|
+
* </li>
|
|
325
|
+
* </ul>
|
|
326
|
+
* </li>
|
|
327
|
+
* </ul>
|
|
328
|
+
* <p>Depending on the model format, <code>DataInputConfig</code> requires the following
|
|
329
|
+
* parameters for <code>ml_eia2</code>
|
|
330
|
+
* <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html#sagemaker-Type-OutputConfig-TargetDevice">OutputConfig:TargetDevice</a>.</p>
|
|
331
|
+
* <ul>
|
|
332
|
+
* <li>
|
|
333
|
+
* <p>For TensorFlow models saved in the SavedModel format, specify the input names
|
|
334
|
+
* from <code>signature_def_key</code> and the input model shapes for
|
|
335
|
+
* <code>DataInputConfig</code>. Specify the <code>signature_def_key</code> in
|
|
336
|
+
* <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html#sagemaker-Type-OutputConfig-CompilerOptions">
|
|
337
|
+
* <code>OutputConfig:CompilerOptions</code>
|
|
338
|
+
* </a> if the model does not
|
|
339
|
+
* use TensorFlow's default signature def key. For example:</p>
|
|
340
|
+
* <ul>
|
|
341
|
+
* <li>
|
|
342
|
+
* <p>
|
|
343
|
+
* <code>"DataInputConfig": \{"inputs": [1, 224, 224, 3]\}</code>
|
|
344
|
+
* </p>
|
|
345
|
+
* </li>
|
|
346
|
+
* <li>
|
|
347
|
+
* <p>
|
|
348
|
+
* <code>"CompilerOptions": \{"signature_def_key":
|
|
349
|
+
* "serving_custom"\}</code>
|
|
350
|
+
* </p>
|
|
351
|
+
* </li>
|
|
352
|
+
* </ul>
|
|
353
|
+
* </li>
|
|
354
|
+
* <li>
|
|
355
|
+
* <p>For TensorFlow models saved as a frozen graph, specify the input tensor names
|
|
356
|
+
* and shapes in <code>DataInputConfig</code> and the output tensor names for
|
|
357
|
+
* <code>output_names</code> in <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html#sagemaker-Type-OutputConfig-CompilerOptions">
|
|
358
|
+
* <code>OutputConfig:CompilerOptions</code>
|
|
359
|
+
* </a>. For
|
|
360
|
+
* example:</p>
|
|
361
|
+
* <ul>
|
|
362
|
+
* <li>
|
|
363
|
+
* <p>
|
|
364
|
+
* <code>"DataInputConfig": \{"input_tensor:0": [1, 224, 224,
|
|
365
|
+
* 3]\}</code>
|
|
366
|
+
* </p>
|
|
367
|
+
* </li>
|
|
368
|
+
* <li>
|
|
369
|
+
* <p>
|
|
370
|
+
* <code>"CompilerOptions": \{"output_names":
|
|
371
|
+
* ["output_tensor:0"]\}</code>
|
|
372
|
+
* </p>
|
|
373
|
+
* </li>
|
|
374
|
+
* </ul>
|
|
375
|
+
* </li>
|
|
376
|
+
* </ul>
|
|
377
|
+
* @public
|
|
378
|
+
*/
|
|
379
|
+
DataInputConfig?: string;
|
|
380
|
+
/**
|
|
381
|
+
* <p>Identifies the framework in which the model was trained. For example:
|
|
382
|
+
* TENSORFLOW.</p>
|
|
383
|
+
* @public
|
|
384
|
+
*/
|
|
385
|
+
Framework: Framework | undefined;
|
|
386
|
+
/**
|
|
387
|
+
* <p>Specifies the framework version to use. This API field is only supported for the
|
|
388
|
+
* MXNet, PyTorch, TensorFlow and TensorFlow Lite frameworks.</p>
|
|
389
|
+
* <p>For information about framework versions supported for cloud targets and edge devices,
|
|
390
|
+
* see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/neo-supported-cloud.html">Cloud
|
|
391
|
+
* Supported Instance Types and Frameworks</a> and <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/neo-supported-devices-edge-frameworks.html">Edge Supported
|
|
392
|
+
* Frameworks</a>.</p>
|
|
393
|
+
* @public
|
|
394
|
+
*/
|
|
395
|
+
FrameworkVersion?: string;
|
|
396
|
+
}
|
|
3
397
|
/**
|
|
4
398
|
* <p>Contains information about a target platform that you want your model to run on, such
|
|
5
399
|
* as OS, architecture, and accelerators. It is an alternative of
|
|
@@ -8464,6 +8858,87 @@ export interface CreateLabelingJobResponse {
|
|
|
8464
8858
|
*/
|
|
8465
8859
|
LabelingJobArn: string | undefined;
|
|
8466
8860
|
}
|
|
8861
|
+
/**
|
|
8862
|
+
* @public
|
|
8863
|
+
* @enum
|
|
8864
|
+
*/
|
|
8865
|
+
export declare const TrackingServerSize: {
|
|
8866
|
+
readonly L: "Large";
|
|
8867
|
+
readonly M: "Medium";
|
|
8868
|
+
readonly S: "Small";
|
|
8869
|
+
};
|
|
8870
|
+
/**
|
|
8871
|
+
* @public
|
|
8872
|
+
*/
|
|
8873
|
+
export type TrackingServerSize = (typeof TrackingServerSize)[keyof typeof TrackingServerSize];
|
|
8874
|
+
/**
|
|
8875
|
+
* @public
|
|
8876
|
+
*/
|
|
8877
|
+
export interface CreateMlflowTrackingServerRequest {
|
|
8878
|
+
/**
|
|
8879
|
+
* <p>A unique string identifying the tracking server name. This string is part of the tracking server
|
|
8880
|
+
* ARN.</p>
|
|
8881
|
+
* @public
|
|
8882
|
+
*/
|
|
8883
|
+
TrackingServerName: string | undefined;
|
|
8884
|
+
/**
|
|
8885
|
+
* <p>The S3 URI for a general purpose bucket to use as the MLflow Tracking Server artifact
|
|
8886
|
+
* store.</p>
|
|
8887
|
+
* @public
|
|
8888
|
+
*/
|
|
8889
|
+
ArtifactStoreUri: string | undefined;
|
|
8890
|
+
/**
|
|
8891
|
+
* <p>The size of the tracking server you want to create. You can choose between
|
|
8892
|
+
* <code>"Small"</code>, <code>"Medium"</code>, and <code>"Large"</code>. The default MLflow
|
|
8893
|
+
* Tracking Server configuration size is <code>"Small"</code>. You can choose a size depending on
|
|
8894
|
+
* the projected use of the tracking server such as the volume of data logged, number of users,
|
|
8895
|
+
* and frequency of use. </p>
|
|
8896
|
+
* <p>We recommend using a small tracking server for teams of up to 25 users, a medium tracking
|
|
8897
|
+
* server for teams of up to 50 users, and a large tracking server for teams of up to 100 users. </p>
|
|
8898
|
+
* @public
|
|
8899
|
+
*/
|
|
8900
|
+
TrackingServerSize?: TrackingServerSize;
|
|
8901
|
+
/**
|
|
8902
|
+
* <p>The version of MLflow that the tracking server uses. To see which MLflow versions are
|
|
8903
|
+
* available to use, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/mlflow.html#mlflow-create-tracking-server-how-it-works">How it works</a>.</p>
|
|
8904
|
+
* @public
|
|
8905
|
+
*/
|
|
8906
|
+
MlflowVersion?: string;
|
|
8907
|
+
/**
|
|
8908
|
+
* <p>The Amazon Resource Name (ARN) for an IAM role in your account that the MLflow Tracking Server uses to
|
|
8909
|
+
* access the artifact store in Amazon S3. The role should have <code>AmazonS3FullAccess</code>
|
|
8910
|
+
* permissions. For more information on IAM permissions for tracking server creation, see
|
|
8911
|
+
* <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/mlflow-create-tracking-server-iam.html">Set up IAM permissions for MLflow</a>.</p>
|
|
8912
|
+
* @public
|
|
8913
|
+
*/
|
|
8914
|
+
RoleArn: string | undefined;
|
|
8915
|
+
/**
|
|
8916
|
+
* <p>Whether to enable or disable automatic registration of new MLflow models to the SageMaker Model Registry. To enable automatic model registration, set this value to <code>True</code>.
|
|
8917
|
+
* To disable automatic model registration, set this value to <code>False</code>. If not specified, <code>AutomaticModelRegistration</code> defaults to <code>False</code>.</p>
|
|
8918
|
+
* @public
|
|
8919
|
+
*/
|
|
8920
|
+
AutomaticModelRegistration?: boolean;
|
|
8921
|
+
/**
|
|
8922
|
+
* <p>The day and time of the week in Coordinated Universal Time (UTC) 24-hour standard time that weekly maintenance updates are scheduled. For example: TUE:03:30.</p>
|
|
8923
|
+
* @public
|
|
8924
|
+
*/
|
|
8925
|
+
WeeklyMaintenanceWindowStart?: string;
|
|
8926
|
+
/**
|
|
8927
|
+
* <p>Tags consisting of key-value pairs used to manage metadata for the tracking server.</p>
|
|
8928
|
+
* @public
|
|
8929
|
+
*/
|
|
8930
|
+
Tags?: Tag[];
|
|
8931
|
+
}
|
|
8932
|
+
/**
|
|
8933
|
+
* @public
|
|
8934
|
+
*/
|
|
8935
|
+
export interface CreateMlflowTrackingServerResponse {
|
|
8936
|
+
/**
|
|
8937
|
+
* <p>The ARN of the tracking server.</p>
|
|
8938
|
+
* @public
|
|
8939
|
+
*/
|
|
8940
|
+
TrackingServerArn?: string;
|
|
8941
|
+
}
|
|
8467
8942
|
/**
|
|
8468
8943
|
* @public
|
|
8469
8944
|
* @enum
|
|
@@ -10438,6 +10913,37 @@ export interface CreatePresignedDomainUrlResponse {
|
|
|
10438
10913
|
*/
|
|
10439
10914
|
AuthorizedUrl?: string;
|
|
10440
10915
|
}
|
|
10916
|
+
/**
|
|
10917
|
+
* @public
|
|
10918
|
+
*/
|
|
10919
|
+
export interface CreatePresignedMlflowTrackingServerUrlRequest {
|
|
10920
|
+
/**
|
|
10921
|
+
* <p>The name of the tracking server to connect to your MLflow UI.</p>
|
|
10922
|
+
* @public
|
|
10923
|
+
*/
|
|
10924
|
+
TrackingServerName: string | undefined;
|
|
10925
|
+
/**
|
|
10926
|
+
* <p>The duration in seconds that your presigned URL is valid. The presigned URL can be used
|
|
10927
|
+
* only once.</p>
|
|
10928
|
+
* @public
|
|
10929
|
+
*/
|
|
10930
|
+
ExpiresInSeconds?: number;
|
|
10931
|
+
/**
|
|
10932
|
+
* <p>The duration in seconds that your MLflow UI session is valid.</p>
|
|
10933
|
+
* @public
|
|
10934
|
+
*/
|
|
10935
|
+
SessionExpirationDurationInSeconds?: number;
|
|
10936
|
+
}
|
|
10937
|
+
/**
|
|
10938
|
+
* @public
|
|
10939
|
+
*/
|
|
10940
|
+
export interface CreatePresignedMlflowTrackingServerUrlResponse {
|
|
10941
|
+
/**
|
|
10942
|
+
* <p>A presigned URL with an authorization token.</p>
|
|
10943
|
+
* @public
|
|
10944
|
+
*/
|
|
10945
|
+
AuthorizedUrl?: string;
|
|
10946
|
+
}
|
|
10441
10947
|
/**
|
|
10442
10948
|
* @public
|
|
10443
10949
|
*/
|
|
@@ -11139,142 +11645,6 @@ export interface EFSFileSystem {
|
|
|
11139
11645
|
*/
|
|
11140
11646
|
FileSystemId: string | undefined;
|
|
11141
11647
|
}
|
|
11142
|
-
/**
|
|
11143
|
-
* <p>A file system, created by you, that you assign to a user profile or space for an
|
|
11144
|
-
* Amazon SageMaker Domain. Permitted users can access this file system in Amazon SageMaker Studio.</p>
|
|
11145
|
-
* @public
|
|
11146
|
-
*/
|
|
11147
|
-
export type CustomFileSystem = CustomFileSystem.EFSFileSystemMember | CustomFileSystem.$UnknownMember;
|
|
11148
|
-
/**
|
|
11149
|
-
* @public
|
|
11150
|
-
*/
|
|
11151
|
-
export declare namespace CustomFileSystem {
|
|
11152
|
-
/**
|
|
11153
|
-
* <p>A custom file system in Amazon EFS.</p>
|
|
11154
|
-
* @public
|
|
11155
|
-
*/
|
|
11156
|
-
interface EFSFileSystemMember {
|
|
11157
|
-
EFSFileSystem: EFSFileSystem;
|
|
11158
|
-
$unknown?: never;
|
|
11159
|
-
}
|
|
11160
|
-
/**
|
|
11161
|
-
* @public
|
|
11162
|
-
*/
|
|
11163
|
-
interface $UnknownMember {
|
|
11164
|
-
EFSFileSystem?: never;
|
|
11165
|
-
$unknown: [string, any];
|
|
11166
|
-
}
|
|
11167
|
-
interface Visitor<T> {
|
|
11168
|
-
EFSFileSystem: (value: EFSFileSystem) => T;
|
|
11169
|
-
_: (name: string, value: any) => T;
|
|
11170
|
-
}
|
|
11171
|
-
const visit: <T>(value: CustomFileSystem, visitor: Visitor<T>) => T;
|
|
11172
|
-
}
|
|
11173
|
-
/**
|
|
11174
|
-
* <p>The settings for the JupyterLab application within a space.</p>
|
|
11175
|
-
* @public
|
|
11176
|
-
*/
|
|
11177
|
-
export interface SpaceJupyterLabAppSettings {
|
|
11178
|
-
/**
|
|
11179
|
-
* <p>Specifies the ARN's of a SageMaker image and SageMaker image version, and the instance type that
|
|
11180
|
-
* the version runs on.</p>
|
|
11181
|
-
* @public
|
|
11182
|
-
*/
|
|
11183
|
-
DefaultResourceSpec?: ResourceSpec;
|
|
11184
|
-
/**
|
|
11185
|
-
* <p>A list of Git repositories that SageMaker automatically displays to users for cloning in the JupyterLab application.</p>
|
|
11186
|
-
* @public
|
|
11187
|
-
*/
|
|
11188
|
-
CodeRepositories?: CodeRepository[];
|
|
11189
|
-
}
|
|
11190
|
-
/**
|
|
11191
|
-
* <p>A collection of EBS storage settings that apply to both private and shared spaces.</p>
|
|
11192
|
-
* @public
|
|
11193
|
-
*/
|
|
11194
|
-
export interface EbsStorageSettings {
|
|
11195
|
-
/**
|
|
11196
|
-
* <p>The size of an EBS storage volume for a space.</p>
|
|
11197
|
-
* @public
|
|
11198
|
-
*/
|
|
11199
|
-
EbsVolumeSizeInGb: number | undefined;
|
|
11200
|
-
}
|
|
11201
|
-
/**
|
|
11202
|
-
* <p>The storage settings for a space.</p>
|
|
11203
|
-
* @public
|
|
11204
|
-
*/
|
|
11205
|
-
export interface SpaceStorageSettings {
|
|
11206
|
-
/**
|
|
11207
|
-
* <p>A collection of EBS storage settings for a space.</p>
|
|
11208
|
-
* @public
|
|
11209
|
-
*/
|
|
11210
|
-
EbsStorageSettings?: EbsStorageSettings;
|
|
11211
|
-
}
|
|
11212
|
-
/**
|
|
11213
|
-
* <p>A collection of space settings.</p>
|
|
11214
|
-
* @public
|
|
11215
|
-
*/
|
|
11216
|
-
export interface SpaceSettings {
|
|
11217
|
-
/**
|
|
11218
|
-
* <p>The JupyterServer app settings.</p>
|
|
11219
|
-
* @public
|
|
11220
|
-
*/
|
|
11221
|
-
JupyterServerAppSettings?: JupyterServerAppSettings;
|
|
11222
|
-
/**
|
|
11223
|
-
* <p>The KernelGateway app settings.</p>
|
|
11224
|
-
* @public
|
|
11225
|
-
*/
|
|
11226
|
-
KernelGatewayAppSettings?: KernelGatewayAppSettings;
|
|
11227
|
-
/**
|
|
11228
|
-
* <p>The Code Editor application settings.</p>
|
|
11229
|
-
* @public
|
|
11230
|
-
*/
|
|
11231
|
-
CodeEditorAppSettings?: SpaceCodeEditorAppSettings;
|
|
11232
|
-
/**
|
|
11233
|
-
* <p>The settings for the JupyterLab application.</p>
|
|
11234
|
-
* @public
|
|
11235
|
-
*/
|
|
11236
|
-
JupyterLabAppSettings?: SpaceJupyterLabAppSettings;
|
|
11237
|
-
/**
|
|
11238
|
-
* <p>The type of app created within the space.</p>
|
|
11239
|
-
* @public
|
|
11240
|
-
*/
|
|
11241
|
-
AppType?: AppType;
|
|
11242
|
-
/**
|
|
11243
|
-
* <p>The storage settings for a space.</p>
|
|
11244
|
-
* @public
|
|
11245
|
-
*/
|
|
11246
|
-
SpaceStorageSettings?: SpaceStorageSettings;
|
|
11247
|
-
/**
|
|
11248
|
-
* <p>A file system, created by you, that you assign to a space for an Amazon SageMaker
|
|
11249
|
-
* Domain. Permitted users can access this file system in Amazon SageMaker
|
|
11250
|
-
* Studio.</p>
|
|
11251
|
-
* @public
|
|
11252
|
-
*/
|
|
11253
|
-
CustomFileSystems?: CustomFileSystem[];
|
|
11254
|
-
}
|
|
11255
|
-
/**
|
|
11256
|
-
* @public
|
|
11257
|
-
* @enum
|
|
11258
|
-
*/
|
|
11259
|
-
export declare const SharingType: {
|
|
11260
|
-
readonly Private: "Private";
|
|
11261
|
-
readonly Shared: "Shared";
|
|
11262
|
-
};
|
|
11263
|
-
/**
|
|
11264
|
-
* @public
|
|
11265
|
-
*/
|
|
11266
|
-
export type SharingType = (typeof SharingType)[keyof typeof SharingType];
|
|
11267
|
-
/**
|
|
11268
|
-
* <p>A collection of space sharing settings.</p>
|
|
11269
|
-
* @public
|
|
11270
|
-
*/
|
|
11271
|
-
export interface SpaceSharingSettings {
|
|
11272
|
-
/**
|
|
11273
|
-
* <p>Specifies the sharing type of the space.</p>
|
|
11274
|
-
* @public
|
|
11275
|
-
*/
|
|
11276
|
-
SharingType: SharingType | undefined;
|
|
11277
|
-
}
|
|
11278
11648
|
/**
|
|
11279
11649
|
* @internal
|
|
11280
11650
|
*/
|