@aws-sdk/client-sagemaker 3.598.0 → 3.600.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +64 -0
- package/dist-cjs/index.js +523 -57
- package/dist-es/SageMaker.js +16 -0
- package/dist-es/commands/CreateMlflowTrackingServerCommand.js +24 -0
- package/dist-es/commands/CreatePresignedMlflowTrackingServerUrlCommand.js +24 -0
- package/dist-es/commands/DeleteMlflowTrackingServerCommand.js +24 -0
- package/dist-es/commands/DescribeMlflowTrackingServerCommand.js +24 -0
- package/dist-es/commands/ListMlflowTrackingServersCommand.js +24 -0
- package/dist-es/commands/StartMlflowTrackingServerCommand.js +24 -0
- package/dist-es/commands/StopMlflowTrackingServerCommand.js +24 -0
- package/dist-es/commands/UpdateMlflowTrackingServerCommand.js +24 -0
- package/dist-es/commands/index.js +8 -0
- package/dist-es/models/models_0.js +8 -11
- package/dist-es/models/models_1.js +16 -12
- package/dist-es/models/models_2.js +35 -11
- package/dist-es/models/models_3.js +16 -24
- package/dist-es/models/models_4.js +24 -0
- package/dist-es/pagination/ListMlflowTrackingServersPaginator.js +4 -0
- package/dist-es/pagination/index.js +1 -0
- package/dist-es/protocols/Aws_json1_1.js +261 -0
- package/dist-types/SageMaker.d.ts +57 -0
- package/dist-types/SageMakerClient.d.ts +10 -2
- package/dist-types/commands/CreateClusterCommand.d.ts +9 -1
- package/dist-types/commands/CreateMlflowTrackingServerCommand.d.ts +78 -0
- package/dist-types/commands/CreatePresignedMlflowTrackingServerUrlCommand.d.ts +66 -0
- package/dist-types/commands/DeleteMlflowTrackingServerCommand.d.ts +63 -0
- package/dist-types/commands/DeleteWorkforceCommand.d.ts +1 -1
- package/dist-types/commands/DescribeClusterCommand.d.ts +7 -0
- package/dist-types/commands/DescribeClusterNodeCommand.d.ts +7 -0
- package/dist-types/commands/DescribeMlflowTrackingServerCommand.d.ts +95 -0
- package/dist-types/commands/DescribeNotebookInstanceLifecycleConfigCommand.d.ts +1 -1
- package/dist-types/commands/DescribePipelineCommand.d.ts +1 -1
- package/dist-types/commands/DescribePipelineDefinitionForExecutionCommand.d.ts +1 -1
- package/dist-types/commands/DescribePipelineExecutionCommand.d.ts +1 -1
- package/dist-types/commands/DescribeWorkteamCommand.d.ts +1 -1
- package/dist-types/commands/ListMlflowTrackingServersCommand.d.ts +78 -0
- package/dist-types/commands/ListMonitoringAlertsCommand.d.ts +2 -1
- package/dist-types/commands/ListMonitoringExecutionsCommand.d.ts +1 -1
- package/dist-types/commands/ListMonitoringSchedulesCommand.d.ts +1 -1
- package/dist-types/commands/ListNotebookInstanceLifecycleConfigsCommand.d.ts +1 -1
- package/dist-types/commands/StartMlflowTrackingServerCommand.d.ts +67 -0
- package/dist-types/commands/StopMlflowTrackingServerCommand.d.ts +67 -0
- package/dist-types/commands/UpdateClusterCommand.d.ts +7 -0
- package/dist-types/commands/UpdateMlflowTrackingServerCommand.d.ts +75 -0
- package/dist-types/commands/index.d.ts +8 -0
- package/dist-types/models/models_0.d.ts +85 -407
- package/dist-types/models/models_1.d.ts +507 -137
- package/dist-types/models/models_2.d.ts +295 -318
- package/dist-types/models/models_3.d.ts +460 -512
- package/dist-types/models/models_4.d.ts +576 -3
- package/dist-types/pagination/ListMlflowTrackingServersPaginator.d.ts +7 -0
- package/dist-types/pagination/index.d.ts +1 -0
- package/dist-types/protocols/Aws_json1_1.d.ts +72 -0
- package/dist-types/ts3.4/SageMaker.d.ts +143 -0
- package/dist-types/ts3.4/SageMakerClient.d.ts +48 -0
- package/dist-types/ts3.4/commands/CreateMlflowTrackingServerCommand.d.ts +40 -0
- package/dist-types/ts3.4/commands/CreatePresignedMlflowTrackingServerUrlCommand.d.ts +40 -0
- package/dist-types/ts3.4/commands/DeleteMlflowTrackingServerCommand.d.ts +40 -0
- package/dist-types/ts3.4/commands/DescribeMlflowTrackingServerCommand.d.ts +40 -0
- package/dist-types/ts3.4/commands/DescribeNotebookInstanceLifecycleConfigCommand.d.ts +1 -1
- package/dist-types/ts3.4/commands/DescribePipelineCommand.d.ts +1 -1
- package/dist-types/ts3.4/commands/DescribePipelineDefinitionForExecutionCommand.d.ts +1 -1
- package/dist-types/ts3.4/commands/DescribePipelineExecutionCommand.d.ts +1 -1
- package/dist-types/ts3.4/commands/ListMlflowTrackingServersCommand.d.ts +40 -0
- package/dist-types/ts3.4/commands/ListMonitoringAlertsCommand.d.ts +2 -4
- package/dist-types/ts3.4/commands/ListMonitoringExecutionsCommand.d.ts +1 -1
- package/dist-types/ts3.4/commands/ListMonitoringSchedulesCommand.d.ts +1 -1
- package/dist-types/ts3.4/commands/ListNotebookInstanceLifecycleConfigsCommand.d.ts +1 -1
- package/dist-types/ts3.4/commands/StartMlflowTrackingServerCommand.d.ts +40 -0
- package/dist-types/ts3.4/commands/StopMlflowTrackingServerCommand.d.ts +40 -0
- package/dist-types/ts3.4/commands/UpdateMlflowTrackingServerCommand.d.ts +40 -0
- package/dist-types/ts3.4/commands/index.d.ts +8 -0
- package/dist-types/ts3.4/models/models_0.d.ts +27 -18
- package/dist-types/ts3.4/models/models_1.d.ts +46 -47
- package/dist-types/ts3.4/models/models_2.d.ts +105 -85
- package/dist-types/ts3.4/models/models_3.d.ts +116 -127
- package/dist-types/ts3.4/models/models_4.d.ts +156 -9
- package/dist-types/ts3.4/pagination/ListMlflowTrackingServersPaginator.d.ts +11 -0
- package/dist-types/ts3.4/pagination/index.d.ts +1 -0
- package/dist-types/ts3.4/protocols/Aws_json1_1.d.ts +96 -0
- package/package.json +4 -4
|
@@ -8230,6 +8230,55 @@ export interface ClarifyExplainerConfig {
|
|
|
8230
8230
|
*/
|
|
8231
8231
|
ShapConfig: ClarifyShapConfig | undefined;
|
|
8232
8232
|
}
|
|
8233
|
+
/**
|
|
8234
|
+
* <p>Defines the configuration for attaching an additional Amazon Elastic Block Store (EBS)
|
|
8235
|
+
* volume to each instance of the SageMaker HyperPod cluster instance group.</p>
|
|
8236
|
+
* @public
|
|
8237
|
+
*/
|
|
8238
|
+
export interface ClusterEbsVolumeConfig {
|
|
8239
|
+
/**
|
|
8240
|
+
* <p>The size in gigabytes (GB) of the additional EBS volume to be attached to the instances
|
|
8241
|
+
* in the SageMaker HyperPod cluster instance group. The additional EBS volume is attached to each
|
|
8242
|
+
* instance within the SageMaker HyperPod cluster instance group and mounted to
|
|
8243
|
+
* <code>/opt/sagemaker</code>.</p>
|
|
8244
|
+
* @public
|
|
8245
|
+
*/
|
|
8246
|
+
VolumeSizeInGB: number | undefined;
|
|
8247
|
+
}
|
|
8248
|
+
/**
|
|
8249
|
+
* <p>Defines the configuration for attaching additional storage to the instances in the
|
|
8250
|
+
* SageMaker HyperPod cluster instance group.</p>
|
|
8251
|
+
* @public
|
|
8252
|
+
*/
|
|
8253
|
+
export type ClusterInstanceStorageConfig = ClusterInstanceStorageConfig.EbsVolumeConfigMember | ClusterInstanceStorageConfig.$UnknownMember;
|
|
8254
|
+
/**
|
|
8255
|
+
* @public
|
|
8256
|
+
*/
|
|
8257
|
+
export declare namespace ClusterInstanceStorageConfig {
|
|
8258
|
+
/**
|
|
8259
|
+
* <p>Defines the configuration for attaching additional Amazon Elastic Block Store (EBS)
|
|
8260
|
+
* volumes to the instances in the SageMaker HyperPod cluster instance group. The additional EBS volume is
|
|
8261
|
+
* attached to each instance within the SageMaker HyperPod cluster instance group and mounted to
|
|
8262
|
+
* <code>/opt/sagemaker</code>.</p>
|
|
8263
|
+
* @public
|
|
8264
|
+
*/
|
|
8265
|
+
interface EbsVolumeConfigMember {
|
|
8266
|
+
EbsVolumeConfig: ClusterEbsVolumeConfig;
|
|
8267
|
+
$unknown?: never;
|
|
8268
|
+
}
|
|
8269
|
+
/**
|
|
8270
|
+
* @public
|
|
8271
|
+
*/
|
|
8272
|
+
interface $UnknownMember {
|
|
8273
|
+
EbsVolumeConfig?: never;
|
|
8274
|
+
$unknown: [string, any];
|
|
8275
|
+
}
|
|
8276
|
+
interface Visitor<T> {
|
|
8277
|
+
EbsVolumeConfig: (value: ClusterEbsVolumeConfig) => T;
|
|
8278
|
+
_: (name: string, value: any) => T;
|
|
8279
|
+
}
|
|
8280
|
+
const visit: <T>(value: ClusterInstanceStorageConfig, visitor: Visitor<T>) => T;
|
|
8281
|
+
}
|
|
8233
8282
|
/**
|
|
8234
8283
|
* @public
|
|
8235
8284
|
* @enum
|
|
@@ -8308,13 +8357,14 @@ export interface ClusterLifeCycleConfig {
|
|
|
8308
8357
|
*/
|
|
8309
8358
|
export interface ClusterInstanceGroupDetails {
|
|
8310
8359
|
/**
|
|
8311
|
-
* <p>The number of instances that are currently in the instance group of a
|
|
8312
|
-
*
|
|
8360
|
+
* <p>The number of instances that are currently in the instance group of a SageMaker HyperPod
|
|
8361
|
+
* cluster.</p>
|
|
8313
8362
|
* @public
|
|
8314
8363
|
*/
|
|
8315
8364
|
CurrentCount?: number;
|
|
8316
8365
|
/**
|
|
8317
|
-
* <p>The number of instances you specified to add to the instance group of a SageMaker HyperPod
|
|
8366
|
+
* <p>The number of instances you specified to add to the instance group of a SageMaker HyperPod
|
|
8367
|
+
* cluster.</p>
|
|
8318
8368
|
* @public
|
|
8319
8369
|
*/
|
|
8320
8370
|
TargetCount?: number;
|
|
@@ -8342,11 +8392,18 @@ export interface ClusterInstanceGroupDetails {
|
|
|
8342
8392
|
* <p>The number you specified to <code>TreadsPerCore</code> in <code>CreateCluster</code> for
|
|
8343
8393
|
* enabling or disabling multithreading. For instance types that support multithreading, you
|
|
8344
8394
|
* can specify 1 for disabling multithreading and 2 for enabling multithreading. For more
|
|
8345
|
-
* information, see the reference table of <a href="https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/cpu-options-supported-instances-values.html">CPU cores and
|
|
8346
|
-
*
|
|
8395
|
+
* information, see the reference table of <a href="https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/cpu-options-supported-instances-values.html">CPU cores and
|
|
8396
|
+
* threads per CPU core per instance type</a> in the <i>Amazon Elastic Compute Cloud User
|
|
8397
|
+
* Guide</i>.</p>
|
|
8347
8398
|
* @public
|
|
8348
8399
|
*/
|
|
8349
8400
|
ThreadsPerCore?: number;
|
|
8401
|
+
/**
|
|
8402
|
+
* <p>The additional storage configurations for the instances in the SageMaker HyperPod cluster instance
|
|
8403
|
+
* group.</p>
|
|
8404
|
+
* @public
|
|
8405
|
+
*/
|
|
8406
|
+
InstanceStorageConfigs?: ClusterInstanceStorageConfig[];
|
|
8350
8407
|
}
|
|
8351
8408
|
/**
|
|
8352
8409
|
* <p>The specifications of an instance group that you need to define.</p>
|
|
@@ -8354,7 +8411,8 @@ export interface ClusterInstanceGroupDetails {
|
|
|
8354
8411
|
*/
|
|
8355
8412
|
export interface ClusterInstanceGroupSpecification {
|
|
8356
8413
|
/**
|
|
8357
|
-
* <p>Specifies the number of instances to add to the instance group of a SageMaker HyperPod
|
|
8414
|
+
* <p>Specifies the number of instances to add to the instance group of a SageMaker HyperPod
|
|
8415
|
+
* cluster.</p>
|
|
8358
8416
|
* @public
|
|
8359
8417
|
*/
|
|
8360
8418
|
InstanceCount: number | undefined;
|
|
@@ -8379,15 +8437,22 @@ export interface ClusterInstanceGroupSpecification {
|
|
|
8379
8437
|
*/
|
|
8380
8438
|
ExecutionRole: string | undefined;
|
|
8381
8439
|
/**
|
|
8382
|
-
* <p>Specifies the value for <b>Threads per core</b>. For instance
|
|
8383
|
-
* support multithreading, you can specify <code>1</code> for disabling
|
|
8384
|
-
*
|
|
8385
|
-
* multithreading, specify <code>1</code>. For more information, see the
|
|
8386
|
-
*
|
|
8387
|
-
*
|
|
8440
|
+
* <p>Specifies the value for <b>Threads per core</b>. For instance
|
|
8441
|
+
* types that support multithreading, you can specify <code>1</code> for disabling
|
|
8442
|
+
* multithreading and <code>2</code> for enabling multithreading. For instance types that
|
|
8443
|
+
* doesn't support multithreading, specify <code>1</code>. For more information, see the
|
|
8444
|
+
* reference table of <a href="https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/cpu-options-supported-instances-values.html">CPU cores and
|
|
8445
|
+
* threads per CPU core per instance type</a> in the <i>Amazon Elastic Compute Cloud User
|
|
8446
|
+
* Guide</i>.</p>
|
|
8388
8447
|
* @public
|
|
8389
8448
|
*/
|
|
8390
8449
|
ThreadsPerCore?: number;
|
|
8450
|
+
/**
|
|
8451
|
+
* <p>Specifies the additional storage configurations for the instances in the SageMaker HyperPod cluster
|
|
8452
|
+
* instance group.</p>
|
|
8453
|
+
* @public
|
|
8454
|
+
*/
|
|
8455
|
+
InstanceStorageConfigs?: ClusterInstanceStorageConfig[];
|
|
8391
8456
|
}
|
|
8392
8457
|
/**
|
|
8393
8458
|
* <p>Specifies the placement details for the node in the SageMaker HyperPod cluster, including the
|
|
@@ -8480,6 +8545,12 @@ export interface ClusterNodeDetails {
|
|
|
8480
8545
|
* @public
|
|
8481
8546
|
*/
|
|
8482
8547
|
ThreadsPerCore?: number;
|
|
8548
|
+
/**
|
|
8549
|
+
* <p>The configurations of additional storage specified to the instance group where the
|
|
8550
|
+
* instance (node) is launched.</p>
|
|
8551
|
+
* @public
|
|
8552
|
+
*/
|
|
8553
|
+
InstanceStorageConfigs?: ClusterInstanceStorageConfig[];
|
|
8483
8554
|
/**
|
|
8484
8555
|
* <p>The private primary IP address of the SageMaker HyperPod cluster node.</p>
|
|
8485
8556
|
* @public
|
|
@@ -10246,7 +10317,8 @@ export interface CreateClusterRequest {
|
|
|
10246
10317
|
* <p>Custom tags for managing the SageMaker HyperPod cluster as an Amazon Web Services resource. You can
|
|
10247
10318
|
* add tags to your cluster in the same way you add them in other Amazon Web Services services
|
|
10248
10319
|
* that support tagging. To learn more about tagging Amazon Web Services resources in general,
|
|
10249
|
-
* see <a href="https://docs.aws.amazon.com/tag-editor/latest/userguide/tagging.html">Tagging
|
|
10320
|
+
* see <a href="https://docs.aws.amazon.com/tag-editor/latest/userguide/tagging.html">Tagging
|
|
10321
|
+
* Amazon Web Services Resources User Guide</a>.</p>
|
|
10250
10322
|
* @public
|
|
10251
10323
|
*/
|
|
10252
10324
|
Tags?: Tag[];
|
|
@@ -10295,397 +10367,3 @@ export interface CreateCodeRepositoryOutput {
|
|
|
10295
10367
|
*/
|
|
10296
10368
|
CodeRepositoryArn: string | undefined;
|
|
10297
10369
|
}
|
|
10298
|
-
/**
|
|
10299
|
-
* @public
|
|
10300
|
-
* @enum
|
|
10301
|
-
*/
|
|
10302
|
-
export declare const Framework: {
|
|
10303
|
-
readonly DARKNET: "DARKNET";
|
|
10304
|
-
readonly KERAS: "KERAS";
|
|
10305
|
-
readonly MXNET: "MXNET";
|
|
10306
|
-
readonly ONNX: "ONNX";
|
|
10307
|
-
readonly PYTORCH: "PYTORCH";
|
|
10308
|
-
readonly SKLEARN: "SKLEARN";
|
|
10309
|
-
readonly TENSORFLOW: "TENSORFLOW";
|
|
10310
|
-
readonly TFLITE: "TFLITE";
|
|
10311
|
-
readonly XGBOOST: "XGBOOST";
|
|
10312
|
-
};
|
|
10313
|
-
/**
|
|
10314
|
-
* @public
|
|
10315
|
-
*/
|
|
10316
|
-
export type Framework = (typeof Framework)[keyof typeof Framework];
|
|
10317
|
-
/**
|
|
10318
|
-
* <p>Contains information about the location of input model artifacts, the name and
|
|
10319
|
-
* shape
|
|
10320
|
-
* of the expected data inputs, and the framework in which the model was trained.</p>
|
|
10321
|
-
* @public
|
|
10322
|
-
*/
|
|
10323
|
-
export interface InputConfig {
|
|
10324
|
-
/**
|
|
10325
|
-
* <p>The S3 path where the model artifacts, which result from model training, are stored.
|
|
10326
|
-
* This path must point to a single gzip compressed tar archive (.tar.gz suffix).</p>
|
|
10327
|
-
* @public
|
|
10328
|
-
*/
|
|
10329
|
-
S3Uri: string | undefined;
|
|
10330
|
-
/**
|
|
10331
|
-
* <p>Specifies the name and shape of the expected data inputs for your trained model with a
|
|
10332
|
-
* JSON dictionary form. The data inputs are <code>Framework</code> specific. </p>
|
|
10333
|
-
* <ul>
|
|
10334
|
-
* <li>
|
|
10335
|
-
* <p>
|
|
10336
|
-
* <code>TensorFlow</code>: You must specify the name and shape (NHWC format) of
|
|
10337
|
-
* the expected data inputs using a dictionary format for your trained model. The
|
|
10338
|
-
* dictionary formats required for the console and CLI are different.</p>
|
|
10339
|
-
* <ul>
|
|
10340
|
-
* <li>
|
|
10341
|
-
* <p>Examples for one input:</p>
|
|
10342
|
-
* <ul>
|
|
10343
|
-
* <li>
|
|
10344
|
-
* <p>If using the console,
|
|
10345
|
-
* <code>\{"input":[1,1024,1024,3]\}</code>
|
|
10346
|
-
* </p>
|
|
10347
|
-
* </li>
|
|
10348
|
-
* <li>
|
|
10349
|
-
* <p>If using the CLI,
|
|
10350
|
-
* <code>\{\"input\":[1,1024,1024,3]\}</code>
|
|
10351
|
-
* </p>
|
|
10352
|
-
* </li>
|
|
10353
|
-
* </ul>
|
|
10354
|
-
* </li>
|
|
10355
|
-
* <li>
|
|
10356
|
-
* <p>Examples for two inputs:</p>
|
|
10357
|
-
* <ul>
|
|
10358
|
-
* <li>
|
|
10359
|
-
* <p>If using the console, <code>\{"data1": [1,28,28,1],
|
|
10360
|
-
* "data2":[1,28,28,1]\}</code>
|
|
10361
|
-
* </p>
|
|
10362
|
-
* </li>
|
|
10363
|
-
* <li>
|
|
10364
|
-
* <p>If using the CLI, <code>\{\"data1\": [1,28,28,1],
|
|
10365
|
-
* \"data2\":[1,28,28,1]\}</code>
|
|
10366
|
-
* </p>
|
|
10367
|
-
* </li>
|
|
10368
|
-
* </ul>
|
|
10369
|
-
* </li>
|
|
10370
|
-
* </ul>
|
|
10371
|
-
* </li>
|
|
10372
|
-
* <li>
|
|
10373
|
-
* <p>
|
|
10374
|
-
* <code>KERAS</code>: You must specify the name and shape (NCHW format) of
|
|
10375
|
-
* expected data inputs using a dictionary format for your trained model. Note that
|
|
10376
|
-
* while Keras model artifacts should be uploaded in NHWC (channel-last) format,
|
|
10377
|
-
* <code>DataInputConfig</code> should be specified in NCHW (channel-first)
|
|
10378
|
-
* format. The dictionary formats required for the console and CLI are
|
|
10379
|
-
* different.</p>
|
|
10380
|
-
* <ul>
|
|
10381
|
-
* <li>
|
|
10382
|
-
* <p>Examples for one input:</p>
|
|
10383
|
-
* <ul>
|
|
10384
|
-
* <li>
|
|
10385
|
-
* <p>If using the console,
|
|
10386
|
-
* <code>\{"input_1":[1,3,224,224]\}</code>
|
|
10387
|
-
* </p>
|
|
10388
|
-
* </li>
|
|
10389
|
-
* <li>
|
|
10390
|
-
* <p>If using the CLI,
|
|
10391
|
-
* <code>\{\"input_1\":[1,3,224,224]\}</code>
|
|
10392
|
-
* </p>
|
|
10393
|
-
* </li>
|
|
10394
|
-
* </ul>
|
|
10395
|
-
* </li>
|
|
10396
|
-
* <li>
|
|
10397
|
-
* <p>Examples for two inputs:</p>
|
|
10398
|
-
* <ul>
|
|
10399
|
-
* <li>
|
|
10400
|
-
* <p>If using the console, <code>\{"input_1": [1,3,224,224],
|
|
10401
|
-
* "input_2":[1,3,224,224]\} </code>
|
|
10402
|
-
* </p>
|
|
10403
|
-
* </li>
|
|
10404
|
-
* <li>
|
|
10405
|
-
* <p>If using the CLI, <code>\{\"input_1\": [1,3,224,224],
|
|
10406
|
-
* \"input_2\":[1,3,224,224]\}</code>
|
|
10407
|
-
* </p>
|
|
10408
|
-
* </li>
|
|
10409
|
-
* </ul>
|
|
10410
|
-
* </li>
|
|
10411
|
-
* </ul>
|
|
10412
|
-
* </li>
|
|
10413
|
-
* <li>
|
|
10414
|
-
* <p>
|
|
10415
|
-
* <code>MXNET/ONNX/DARKNET</code>: You must specify the name and shape (NCHW
|
|
10416
|
-
* format) of the expected data inputs in order using a dictionary format for your
|
|
10417
|
-
* trained model. The dictionary formats required for the console and CLI are
|
|
10418
|
-
* different.</p>
|
|
10419
|
-
* <ul>
|
|
10420
|
-
* <li>
|
|
10421
|
-
* <p>Examples for one input:</p>
|
|
10422
|
-
* <ul>
|
|
10423
|
-
* <li>
|
|
10424
|
-
* <p>If using the console,
|
|
10425
|
-
* <code>\{"data":[1,3,1024,1024]\}</code>
|
|
10426
|
-
* </p>
|
|
10427
|
-
* </li>
|
|
10428
|
-
* <li>
|
|
10429
|
-
* <p>If using the CLI,
|
|
10430
|
-
* <code>\{\"data\":[1,3,1024,1024]\}</code>
|
|
10431
|
-
* </p>
|
|
10432
|
-
* </li>
|
|
10433
|
-
* </ul>
|
|
10434
|
-
* </li>
|
|
10435
|
-
* <li>
|
|
10436
|
-
* <p>Examples for two inputs:</p>
|
|
10437
|
-
* <ul>
|
|
10438
|
-
* <li>
|
|
10439
|
-
* <p>If using the console, <code>\{"var1": [1,1,28,28],
|
|
10440
|
-
* "var2":[1,1,28,28]\} </code>
|
|
10441
|
-
* </p>
|
|
10442
|
-
* </li>
|
|
10443
|
-
* <li>
|
|
10444
|
-
* <p>If using the CLI, <code>\{\"var1\": [1,1,28,28],
|
|
10445
|
-
* \"var2\":[1,1,28,28]\}</code>
|
|
10446
|
-
* </p>
|
|
10447
|
-
* </li>
|
|
10448
|
-
* </ul>
|
|
10449
|
-
* </li>
|
|
10450
|
-
* </ul>
|
|
10451
|
-
* </li>
|
|
10452
|
-
* <li>
|
|
10453
|
-
* <p>
|
|
10454
|
-
* <code>PyTorch</code>: You can either specify the name and shape (NCHW format)
|
|
10455
|
-
* of expected data inputs in order using a dictionary format for your trained
|
|
10456
|
-
* model or you can specify the shape only using a list format. The dictionary
|
|
10457
|
-
* formats required for the console and CLI are different. The list formats for the
|
|
10458
|
-
* console and CLI are the same.</p>
|
|
10459
|
-
* <ul>
|
|
10460
|
-
* <li>
|
|
10461
|
-
* <p>Examples for one input in dictionary format:</p>
|
|
10462
|
-
* <ul>
|
|
10463
|
-
* <li>
|
|
10464
|
-
* <p>If using the console,
|
|
10465
|
-
* <code>\{"input0":[1,3,224,224]\}</code>
|
|
10466
|
-
* </p>
|
|
10467
|
-
* </li>
|
|
10468
|
-
* <li>
|
|
10469
|
-
* <p>If using the CLI,
|
|
10470
|
-
* <code>\{\"input0\":[1,3,224,224]\}</code>
|
|
10471
|
-
* </p>
|
|
10472
|
-
* </li>
|
|
10473
|
-
* </ul>
|
|
10474
|
-
* </li>
|
|
10475
|
-
* <li>
|
|
10476
|
-
* <p>Example for one input in list format:
|
|
10477
|
-
* <code>[[1,3,224,224]]</code>
|
|
10478
|
-
* </p>
|
|
10479
|
-
* </li>
|
|
10480
|
-
* <li>
|
|
10481
|
-
* <p>Examples for two inputs in dictionary format:</p>
|
|
10482
|
-
* <ul>
|
|
10483
|
-
* <li>
|
|
10484
|
-
* <p>If using the console, <code>\{"input0":[1,3,224,224],
|
|
10485
|
-
* "input1":[1,3,224,224]\}</code>
|
|
10486
|
-
* </p>
|
|
10487
|
-
* </li>
|
|
10488
|
-
* <li>
|
|
10489
|
-
* <p>If using the CLI, <code>\{\"input0\":[1,3,224,224],
|
|
10490
|
-
* \"input1\":[1,3,224,224]\} </code>
|
|
10491
|
-
* </p>
|
|
10492
|
-
* </li>
|
|
10493
|
-
* </ul>
|
|
10494
|
-
* </li>
|
|
10495
|
-
* <li>
|
|
10496
|
-
* <p>Example for two inputs in list format: <code>[[1,3,224,224],
|
|
10497
|
-
* [1,3,224,224]]</code>
|
|
10498
|
-
* </p>
|
|
10499
|
-
* </li>
|
|
10500
|
-
* </ul>
|
|
10501
|
-
* </li>
|
|
10502
|
-
* <li>
|
|
10503
|
-
* <p>
|
|
10504
|
-
* <code>XGBOOST</code>: input data name and shape are not needed.</p>
|
|
10505
|
-
* </li>
|
|
10506
|
-
* </ul>
|
|
10507
|
-
* <p>
|
|
10508
|
-
* <code>DataInputConfig</code> supports the following parameters for <code>CoreML</code>
|
|
10509
|
-
* <code>TargetDevice</code> (ML Model format):</p>
|
|
10510
|
-
* <ul>
|
|
10511
|
-
* <li>
|
|
10512
|
-
* <p>
|
|
10513
|
-
* <code>shape</code>: Input shape, for example <code>\{"input_1": \{"shape":
|
|
10514
|
-
* [1,224,224,3]\}\}</code>. In addition to static input shapes, CoreML converter
|
|
10515
|
-
* supports Flexible input shapes:</p>
|
|
10516
|
-
* <ul>
|
|
10517
|
-
* <li>
|
|
10518
|
-
* <p>Range Dimension. You can use the Range Dimension feature if you know
|
|
10519
|
-
* the input shape will be within some specific interval in that dimension,
|
|
10520
|
-
* for example: <code>\{"input_1": \{"shape": ["1..10", 224, 224,
|
|
10521
|
-
* 3]\}\}</code>
|
|
10522
|
-
* </p>
|
|
10523
|
-
* </li>
|
|
10524
|
-
* <li>
|
|
10525
|
-
* <p>Enumerated shapes. Sometimes, the models are trained to work only on a
|
|
10526
|
-
* select set of inputs. You can enumerate all supported input shapes, for
|
|
10527
|
-
* example: <code>\{"input_1": \{"shape": [[1, 224, 224, 3], [1, 160, 160,
|
|
10528
|
-
* 3]]\}\}</code>
|
|
10529
|
-
* </p>
|
|
10530
|
-
* </li>
|
|
10531
|
-
* </ul>
|
|
10532
|
-
* </li>
|
|
10533
|
-
* <li>
|
|
10534
|
-
* <p>
|
|
10535
|
-
* <code>default_shape</code>: Default input shape. You can set a default shape
|
|
10536
|
-
* during conversion for both Range Dimension and Enumerated Shapes. For example
|
|
10537
|
-
* <code>\{"input_1": \{"shape": ["1..10", 224, 224, 3], "default_shape": [1,
|
|
10538
|
-
* 224, 224, 3]\}\}</code>
|
|
10539
|
-
* </p>
|
|
10540
|
-
* </li>
|
|
10541
|
-
* <li>
|
|
10542
|
-
* <p>
|
|
10543
|
-
* <code>type</code>: Input type. Allowed values: <code>Image</code> and
|
|
10544
|
-
* <code>Tensor</code>. By default, the converter generates an ML Model with
|
|
10545
|
-
* inputs of type Tensor (MultiArray). User can set input type to be Image. Image
|
|
10546
|
-
* input type requires additional input parameters such as <code>bias</code> and
|
|
10547
|
-
* <code>scale</code>.</p>
|
|
10548
|
-
* </li>
|
|
10549
|
-
* <li>
|
|
10550
|
-
* <p>
|
|
10551
|
-
* <code>bias</code>: If the input type is an Image, you need to provide the bias
|
|
10552
|
-
* vector.</p>
|
|
10553
|
-
* </li>
|
|
10554
|
-
* <li>
|
|
10555
|
-
* <p>
|
|
10556
|
-
* <code>scale</code>: If the input type is an Image, you need to provide a scale
|
|
10557
|
-
* factor.</p>
|
|
10558
|
-
* </li>
|
|
10559
|
-
* </ul>
|
|
10560
|
-
* <p>CoreML <code>ClassifierConfig</code> parameters can be specified using <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html">OutputConfig</a>
|
|
10561
|
-
* <code>CompilerOptions</code>. CoreML converter supports Tensorflow and PyTorch models.
|
|
10562
|
-
* CoreML conversion examples:</p>
|
|
10563
|
-
* <ul>
|
|
10564
|
-
* <li>
|
|
10565
|
-
* <p>Tensor type input:</p>
|
|
10566
|
-
* <ul>
|
|
10567
|
-
* <li>
|
|
10568
|
-
* <p>
|
|
10569
|
-
* <code>"DataInputConfig": \{"input_1": \{"shape": [[1,224,224,3],
|
|
10570
|
-
* [1,160,160,3]], "default_shape": [1,224,224,3]\}\}</code>
|
|
10571
|
-
* </p>
|
|
10572
|
-
* </li>
|
|
10573
|
-
* </ul>
|
|
10574
|
-
* </li>
|
|
10575
|
-
* <li>
|
|
10576
|
-
* <p>Tensor type input without input name (PyTorch):</p>
|
|
10577
|
-
* <ul>
|
|
10578
|
-
* <li>
|
|
10579
|
-
* <p>
|
|
10580
|
-
* <code>"DataInputConfig": [\{"shape": [[1,3,224,224], [1,3,160,160]],
|
|
10581
|
-
* "default_shape": [1,3,224,224]\}]</code>
|
|
10582
|
-
* </p>
|
|
10583
|
-
* </li>
|
|
10584
|
-
* </ul>
|
|
10585
|
-
* </li>
|
|
10586
|
-
* <li>
|
|
10587
|
-
* <p>Image type input:</p>
|
|
10588
|
-
* <ul>
|
|
10589
|
-
* <li>
|
|
10590
|
-
* <p>
|
|
10591
|
-
* <code>"DataInputConfig": \{"input_1": \{"shape": [[1,224,224,3],
|
|
10592
|
-
* [1,160,160,3]], "default_shape": [1,224,224,3], "type": "Image",
|
|
10593
|
-
* "bias": [-1,-1,-1], "scale": 0.007843137255\}\}</code>
|
|
10594
|
-
* </p>
|
|
10595
|
-
* </li>
|
|
10596
|
-
* <li>
|
|
10597
|
-
* <p>
|
|
10598
|
-
* <code>"CompilerOptions": \{"class_labels":
|
|
10599
|
-
* "imagenet_labels_1000.txt"\}</code>
|
|
10600
|
-
* </p>
|
|
10601
|
-
* </li>
|
|
10602
|
-
* </ul>
|
|
10603
|
-
* </li>
|
|
10604
|
-
* <li>
|
|
10605
|
-
* <p>Image type input without input name (PyTorch):</p>
|
|
10606
|
-
* <ul>
|
|
10607
|
-
* <li>
|
|
10608
|
-
* <p>
|
|
10609
|
-
* <code>"DataInputConfig": [\{"shape": [[1,3,224,224], [1,3,160,160]],
|
|
10610
|
-
* "default_shape": [1,3,224,224], "type": "Image", "bias": [-1,-1,-1],
|
|
10611
|
-
* "scale": 0.007843137255\}]</code>
|
|
10612
|
-
* </p>
|
|
10613
|
-
* </li>
|
|
10614
|
-
* <li>
|
|
10615
|
-
* <p>
|
|
10616
|
-
* <code>"CompilerOptions": \{"class_labels":
|
|
10617
|
-
* "imagenet_labels_1000.txt"\}</code>
|
|
10618
|
-
* </p>
|
|
10619
|
-
* </li>
|
|
10620
|
-
* </ul>
|
|
10621
|
-
* </li>
|
|
10622
|
-
* </ul>
|
|
10623
|
-
* <p>Depending on the model format, <code>DataInputConfig</code> requires the following
|
|
10624
|
-
* parameters for <code>ml_eia2</code>
|
|
10625
|
-
* <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html#sagemaker-Type-OutputConfig-TargetDevice">OutputConfig:TargetDevice</a>.</p>
|
|
10626
|
-
* <ul>
|
|
10627
|
-
* <li>
|
|
10628
|
-
* <p>For TensorFlow models saved in the SavedModel format, specify the input names
|
|
10629
|
-
* from <code>signature_def_key</code> and the input model shapes for
|
|
10630
|
-
* <code>DataInputConfig</code>. Specify the <code>signature_def_key</code> in
|
|
10631
|
-
* <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html#sagemaker-Type-OutputConfig-CompilerOptions">
|
|
10632
|
-
* <code>OutputConfig:CompilerOptions</code>
|
|
10633
|
-
* </a> if the model does not
|
|
10634
|
-
* use TensorFlow's default signature def key. For example:</p>
|
|
10635
|
-
* <ul>
|
|
10636
|
-
* <li>
|
|
10637
|
-
* <p>
|
|
10638
|
-
* <code>"DataInputConfig": \{"inputs": [1, 224, 224, 3]\}</code>
|
|
10639
|
-
* </p>
|
|
10640
|
-
* </li>
|
|
10641
|
-
* <li>
|
|
10642
|
-
* <p>
|
|
10643
|
-
* <code>"CompilerOptions": \{"signature_def_key":
|
|
10644
|
-
* "serving_custom"\}</code>
|
|
10645
|
-
* </p>
|
|
10646
|
-
* </li>
|
|
10647
|
-
* </ul>
|
|
10648
|
-
* </li>
|
|
10649
|
-
* <li>
|
|
10650
|
-
* <p>For TensorFlow models saved as a frozen graph, specify the input tensor names
|
|
10651
|
-
* and shapes in <code>DataInputConfig</code> and the output tensor names for
|
|
10652
|
-
* <code>output_names</code> in <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_OutputConfig.html#sagemaker-Type-OutputConfig-CompilerOptions">
|
|
10653
|
-
* <code>OutputConfig:CompilerOptions</code>
|
|
10654
|
-
* </a>. For
|
|
10655
|
-
* example:</p>
|
|
10656
|
-
* <ul>
|
|
10657
|
-
* <li>
|
|
10658
|
-
* <p>
|
|
10659
|
-
* <code>"DataInputConfig": \{"input_tensor:0": [1, 224, 224,
|
|
10660
|
-
* 3]\}</code>
|
|
10661
|
-
* </p>
|
|
10662
|
-
* </li>
|
|
10663
|
-
* <li>
|
|
10664
|
-
* <p>
|
|
10665
|
-
* <code>"CompilerOptions": \{"output_names":
|
|
10666
|
-
* ["output_tensor:0"]\}</code>
|
|
10667
|
-
* </p>
|
|
10668
|
-
* </li>
|
|
10669
|
-
* </ul>
|
|
10670
|
-
* </li>
|
|
10671
|
-
* </ul>
|
|
10672
|
-
* @public
|
|
10673
|
-
*/
|
|
10674
|
-
DataInputConfig?: string;
|
|
10675
|
-
/**
|
|
10676
|
-
* <p>Identifies the framework in which the model was trained. For example:
|
|
10677
|
-
* TENSORFLOW.</p>
|
|
10678
|
-
* @public
|
|
10679
|
-
*/
|
|
10680
|
-
Framework: Framework | undefined;
|
|
10681
|
-
/**
|
|
10682
|
-
* <p>Specifies the framework version to use. This API field is only supported for the
|
|
10683
|
-
* MXNet, PyTorch, TensorFlow and TensorFlow Lite frameworks.</p>
|
|
10684
|
-
* <p>For information about framework versions supported for cloud targets and edge devices,
|
|
10685
|
-
* see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/neo-supported-cloud.html">Cloud
|
|
10686
|
-
* Supported Instance Types and Frameworks</a> and <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/neo-supported-devices-edge-frameworks.html">Edge Supported
|
|
10687
|
-
* Frameworks</a>.</p>
|
|
10688
|
-
* @public
|
|
10689
|
-
*/
|
|
10690
|
-
FrameworkVersion?: string;
|
|
10691
|
-
}
|