@aleph-ai/tinyaleph 1.3.0 → 1.4.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,369 @@
1
+ # CRT-Homology Framework
2
+
3
+ ## Overview
4
+
5
+ The CRT-Homology framework integrates **Chinese Remainder Theorem reconstruction** with **homological algebra** to detect and regularize semantic inconsistencies in the tinyaleph library. This enables:
6
+
7
+ 1. **Modular encoding** of semantic states over coprime bases
8
+ 2. **CRT reconstruction** for unique value recovery
9
+ 3. **Birkhoff polytope projection** for doubly-stochastic attention
10
+ 4. **Homology loss** for detecting topological "holes" (consistency failures)
11
+
12
+ ## Mathematical Foundation
13
+
14
+ ### Key Insight
15
+
16
+ > "Holes are not degrees of freedom. Holes are consistency failures that persist under perturbation."
17
+
18
+ In the CRT framework, a semantic "hole" occurs when:
19
+ - Residues `r_k` over coprime moduli `p_k` fail to reconstruct uniquely
20
+ - The reconstruction error `ε(r) = |ℛ(r) - nearest_valid|` exceeds threshold τ
21
+ - These failures form cycles in the kernel `Ker(ℛ)` with non-trivial Betti numbers
22
+
23
+ ### Core Equations
24
+
25
+ #### Residue Encoding
26
+ ```
27
+ r_k = softmax(W_k h + b_k) ∈ Δ(ℤ/p_k)
28
+ ```
29
+
30
+ Each hidden vector `h` is encoded into K probability distributions, one per coprime modulus.
31
+
32
+ #### CRT Reconstruction
33
+ ```
34
+ L̂ = Σ_k E[r_k] · (P/p_k) · (P/p_k)^{-1} mod p_k
35
+ ```
36
+
37
+ Where:
38
+ - `P = ∏_k p_k` (product of all moduli)
39
+ - `(P/p_k)^{-1}` is the modular inverse mod `p_k`
40
+ - `E[r_k]` is the expected residue
41
+
42
+ #### Birkhoff Projection
43
+ ```
44
+ A = Birkhoff(QK^T/√d) ⊙ V
45
+ ```
46
+
47
+ Attention matrices are projected onto the Birkhoff polytope (doubly-stochastic matrices) using Sinkhorn-Knopp iteration.
48
+
49
+ #### Homology Loss
50
+ ```
51
+ ℒ_homology = Σ_{cycles ∈ Ker(ℛ)} f(cycle)
52
+ f(cycle) = Σ_{r ∈ cycle} σ(ε(r) - τ) · |cycle|^α · β^γ
53
+ ```
54
+
55
+ ## API Reference
56
+
57
+ ### Core Classes
58
+
59
+ #### `ResidueEncoder`
60
+
61
+ Encodes hidden vectors into residue distributions over coprime moduli.
62
+
63
+ ```javascript
64
+ const { ResidueEncoder } = require('tinyaleph/core');
65
+
66
+ const primes = [2, 3, 5, 7]; // Coprime moduli
67
+ const hiddenDim = 32;
68
+ const encoder = new ResidueEncoder(primes, hiddenDim);
69
+
70
+ // Encode a hidden vector
71
+ const h = new Float64Array(32);
72
+ h.fill(0.5);
73
+ const residues = encoder.encode(h); // Array of K distributions
74
+
75
+ // Get expected residues
76
+ const expected = encoder.expectedResidues(residues);
77
+ console.log('Expected residues:', expected);
78
+ ```
79
+
80
+ #### `CRTReconstructor`
81
+
82
+ Reconstructs values from residues using Chinese Remainder Theorem.
83
+
84
+ ```javascript
85
+ const { CRTReconstructor } = require('tinyaleph/core');
86
+
87
+ const primes = [2, 3, 5, 7];
88
+ const crt = new CRTReconstructor(primes);
89
+
90
+ // Reconstruct from expected residues
91
+ const residues = [1, 2, 3, 4]; // Expected values mod each prime
92
+ const L = crt.reconstruct(residues);
93
+ console.log('Reconstructed:', L, 'mod', crt.P);
94
+
95
+ // Detect kernel (consistency failure)
96
+ const inKernel = crt.detectKernel(residues, 0.1);
97
+ console.log('In kernel:', inKernel);
98
+
99
+ // Validate residues
100
+ const result = crt.validate(residues);
101
+ console.log('Valid:', result.valid, 'Error:', result.error);
102
+ ```
103
+
104
+ #### `BirkhoffProjector`
105
+
106
+ Projects matrices onto the Birkhoff polytope using Sinkhorn-Knopp.
107
+
108
+ ```javascript
109
+ const { BirkhoffProjector } = require('tinyaleph/core');
110
+
111
+ const projector = new BirkhoffProjector(10); // 10 iterations
112
+
113
+ // Project a matrix to doubly-stochastic
114
+ const matrix = [
115
+ [0.5, 0.3, 0.2],
116
+ [0.3, 0.4, 0.3],
117
+ [0.2, 0.3, 0.5]
118
+ ];
119
+ const doublyStochastic = projector.project(matrix);
120
+
121
+ // Validate result
122
+ const validation = projector.validate(doublyStochastic);
123
+ console.log('Is doubly-stochastic:', validation.isDoublyStochastic);
124
+
125
+ // Birkhoff attention
126
+ const Q = [[1, 0], [0, 1]];
127
+ const K = [[1, 0], [0, 1]];
128
+ const V = [[0.5, 0.5], [0.5, 0.5]];
129
+ const output = projector.attention(Q, K, V);
130
+ ```
131
+
132
+ #### `HomologyLoss`
133
+
134
+ Computes loss terms for obstruction cycles.
135
+
136
+ ```javascript
137
+ const { HomologyLoss, CRTReconstructor } = require('tinyaleph/core');
138
+
139
+ const crt = new CRTReconstructor([2, 3, 5, 7]);
140
+ const homology = new HomologyLoss({
141
+ tau: 0.1, // Kernel detection threshold
142
+ alpha: 0.5, // Cycle length exponent
143
+ beta: 1.0, // Residue weight
144
+ gamma: 0.5 // Residue exponent
145
+ });
146
+
147
+ // Batch of residue tuples
148
+ const batch = [
149
+ [0.1, 0.2, 0.3, 0.4],
150
+ [0.5, 0.6, 0.7, 0.8],
151
+ [0.9, 0.1, 0.2, 0.3]
152
+ ];
153
+
154
+ // Compute homology loss
155
+ const result = homology.compute(batch, crt);
156
+ console.log('Homology loss:', result.loss);
157
+ console.log('Cycles detected:', result.cycles);
158
+
159
+ // Compute Betti numbers
160
+ const betti = homology.computeBettiNumbers(batch, crt);
161
+ console.log('β₀ (components):', betti.beta0);
162
+ console.log('β₁ (holes):', betti.beta1);
163
+ ```
164
+
165
+ #### `CRTModularLayer`
166
+
167
+ Integrated layer combining encoding, reconstruction, and attention.
168
+
169
+ ```javascript
170
+ const { createCRTLayer } = require('tinyaleph/core');
171
+
172
+ const layer = createCRTLayer([2, 3, 5, 7], 32);
173
+
174
+ // Forward pass
175
+ const h = new Float64Array(32);
176
+ h.fill(0.5);
177
+ const result = layer.forward(h);
178
+
179
+ console.log('Latent:', result.latent);
180
+ console.log('In kernel:', result.inKernel);
181
+ console.log('Coherence:', result.coherence);
182
+
183
+ // Batch forward with homology loss
184
+ const batch = [h, h, h];
185
+ const batchResult = layer.forwardBatch(batch);
186
+ console.log('Homology loss:', batchResult.homologyLoss);
187
+ console.log('Betti numbers:', batchResult.bettiNumbers);
188
+ ```
189
+
190
+ ### CRT-Enhanced ResoFormer
191
+
192
+ #### `CRTResonantAttention`
193
+
194
+ Multi-head attention with per-modulus Birkhoff projection.
195
+
196
+ ```javascript
197
+ const { CRTResonantAttention } = require('tinyaleph/core');
198
+
199
+ const attention = new CRTResonantAttention({
200
+ numHeads: 4,
201
+ numPrimes: 4096,
202
+ activeK: 32,
203
+ sinkhornIterations: 10
204
+ });
205
+
206
+ // Forward pass
207
+ const query = SparsePrimeState.fromHash('query');
208
+ const keys = [SparsePrimeState.fromHash('key1'), SparsePrimeState.fromHash('key2')];
209
+ const values = [SparsePrimeState.fromHash('val1'), SparsePrimeState.fromHash('val2')];
210
+
211
+ const result = attention.forward(query, keys, values);
212
+ console.log('Result:', result.result);
213
+ console.log('Homology info:', result.homologyInfo);
214
+ console.log('Has holes:', result.homologyInfo.hasHoles);
215
+ ```
216
+
217
+ #### `CRTResoFormer`
218
+
219
+ Complete CRT-enhanced ResoFormer model.
220
+
221
+ ```javascript
222
+ const { createCRTResoFormer, SparsePrimeState } = require('tinyaleph/core');
223
+
224
+ const model = createCRTResoFormer({
225
+ numLayers: 6,
226
+ numHeads: 8,
227
+ hiddenDim: 256,
228
+ numPrimes: 4096,
229
+ activeK: 32,
230
+ homologyWeight: 0.1
231
+ });
232
+
233
+ // Single input
234
+ const input = SparsePrimeState.fromHash('hello world');
235
+ const output = model.forward(input);
236
+
237
+ console.log('Output:', output.output);
238
+ console.log('Total homology loss:', output.totalLoss);
239
+ console.log('Holes detected:', output.homologyReport.totalHolesDetected);
240
+
241
+ // Sequence input
242
+ const sequence = [
243
+ SparsePrimeState.fromHash('the'),
244
+ SparsePrimeState.fromHash('quick'),
245
+ SparsePrimeState.fromHash('brown'),
246
+ SparsePrimeState.fromHash('fox')
247
+ ];
248
+ const seqOutput = model.forward(sequence);
249
+ console.log('Sequence output length:', seqOutput.output.length);
250
+ ```
251
+
252
+ ### Homology-Aware Stabilization
253
+
254
+ The `StabilizationController` in `observer/hqe.js` now includes homology detection:
255
+
256
+ ```javascript
257
+ const { StabilizationController } = require('tinyaleph/observer/hqe');
258
+
259
+ const controller = new StabilizationController({
260
+ lambda0: 0.1,
261
+ aC: 1.0, // Coherence weight
262
+ aS: 0.8, // Entropy weight
263
+ aH: 0.3, // Homology weight (NEW)
264
+ homology: {
265
+ enabled: true,
266
+ numModuli: 4,
267
+ tau: 0.1
268
+ }
269
+ });
270
+
271
+ // Compute λ(t) with homology awareness
272
+ const lambda = controller.computeLambda(
273
+ 0.8, // coherence
274
+ 0.3, // entropy
275
+ 0.1, // SMF entropy
276
+ { coherence: 0.8, entropy: 0.3 } // state for homology analysis
277
+ );
278
+
279
+ console.log('Lambda:', lambda);
280
+ console.log('Betti numbers:', controller.getHomologyState().bettiNumbers);
281
+ console.log('Holes detected:', controller.getHomologyState().holesDetected);
282
+ ```
283
+
284
+ ## Integration with Lyapunov Stability
285
+
286
+ The CRT kernel detection correlates with Lyapunov instability:
287
+
288
+ - **λ > 0** (unstable): High reconstruction error, in kernel
289
+ - **λ ≈ 0** (marginal): Near threshold, transitional
290
+ - **λ < 0** (stable): Low error, consistent reconstruction
291
+
292
+ ```javascript
293
+ const { lyapunovExponent } = require('tinyaleph/physics');
294
+ const { CRTReconstructor } = require('tinyaleph/core');
295
+
296
+ const crt = new CRTReconstructor([2, 3, 5, 7]);
297
+
298
+ // Track correlation between Lyapunov and CRT error
299
+ function correlateStability(trajectory) {
300
+ const correlations = [];
301
+
302
+ for (const state of trajectory) {
303
+ const lambda = lyapunovExponent(state);
304
+ const residues = extractResidues(state);
305
+ const crtError = crt.reconstructionError(residues);
306
+
307
+ correlations.push({
308
+ lambda,
309
+ crtError,
310
+ inKernel: crtError > 0.1
311
+ });
312
+ }
313
+
314
+ return correlations;
315
+ }
316
+ ```
317
+
318
+ ## Theoretical Background
319
+
320
+ ### Chinese Remainder Theorem
321
+
322
+ For pairwise coprime moduli `p₁, p₂, ..., p_k`:
323
+
324
+ 1. Any tuple `(r₁, r₂, ..., r_k)` with `0 ≤ r_i < p_i` corresponds to a unique integer `x ∈ [0, P)` where `P = ∏ p_i`
325
+ 2. Reconstruction uses: `x = Σ_i r_i · M_i · M_i^{-1} mod P`
326
+ 3. Where `M_i = P/p_i` and `M_i^{-1}` is the modular inverse
327
+
328
+ ### Birkhoff-von Neumann Theorem
329
+
330
+ Every doubly-stochastic matrix is a convex combination of permutation matrices:
331
+
332
+ 1. Row sums = 1, column sums = 1
333
+ 2. Birkhoff polytope = convex hull of permutation matrices
334
+ 3. Sinkhorn-Knopp alternates row/column normalization
335
+
336
+ ### Homology and Betti Numbers
337
+
338
+ - **β₀**: Number of connected components in kernel
339
+ - **β₁**: Number of 1-dimensional holes (cycles that don't bound)
340
+ - Persistence: How long holes survive under parameter changes
341
+
342
+ ## Performance Considerations
343
+
344
+ ### Coprime Selection
345
+
346
+ Use small primes for efficiency:
347
+ - `[2, 3, 5, 7]`: P = 210, good for most applications
348
+ - `[5, 7, 11, 13]`: P = 5005, for larger latent spaces
349
+ - `[2, 3, 5, 7, 11]`: P = 2310, semantic applications
350
+
351
+ ### Sinkhorn Iterations
352
+
353
+ - 5-10 iterations suffice for most applications
354
+ - Higher tolerance (1e-3) for speed, lower (1e-6) for precision
355
+ - Monitor convergence via `maxRowError` and `maxColError`
356
+
357
+ ### Homology Computation
358
+
359
+ - Cycle detection scales with kernel size
360
+ - Betti number computation is approximate (not full persistent homology)
361
+ - Consider batching for large sequences
362
+
363
+ ## References
364
+
365
+ 1. Chinese Remainder Theorem - Hardy & Wright, "An Introduction to the Theory of Numbers"
366
+ 2. Birkhoff-von Neumann Theorem - Birkhoff, "Three Observations on Linear Algebra"
367
+ 3. Sinkhorn-Knopp Algorithm - Sinkhorn, "A Relationship Between Arbitrary Positive Matrices and Doubly Stochastic Matrices"
368
+ 4. Topological Data Analysis - Carlsson, "Topology and Data"
369
+ 5. Lyapunov Stability - Strogatz, "Nonlinear Dynamics and Chaos"
package/modular.js CHANGED
@@ -1,14 +1,51 @@
1
1
  /**
2
2
  * TinyAleph Modular - Main entry point
3
- *
3
+ *
4
4
  * A backend-agnostic prime-based computing framework supporting:
5
5
  * - Semantic Computing (NLP, concept mapping)
6
6
  * - Cryptographic Applications (hashing, key derivation)
7
7
  * - Scientific Computing (quantum simulation, particle physics)
8
+ *
9
+ * Browser-compatible utilities:
10
+ * - Error Handling (custom errors, error boundary, event emitter)
11
+ * - Logging (structured logging with console API)
12
+ * - Metrics (Prometheus/OTLP compatible telemetry)
13
+ * - Transport (WebSocket, SSE, polling)
14
+ * - Profiling (timers, histograms, sampling)
15
+ *
16
+ * Observer Architecture (Sentient Observer core):
17
+ * - SMF (Sedenion Memory Field) - 16-dimensional semantic orientation
18
+ * - PRSC (Prime Resonance Semantic Computation) - Kuramoto oscillator dynamics
19
+ * - Temporal Layer - Emergent time from coherence dynamics
20
+ * - Entanglement Layer - Semantic binding between concepts
21
+ * - Agency Layer - Attention and goal-directed behavior
22
+ * - Boundary Layer - Self/environment distinction (objectivity gate)
23
+ * - Safety Layer - Ethical constraints and emergency shutdown
8
24
  */
9
25
 
10
26
  // Core mathematical foundation
11
27
  const core = require('./core');
28
+
29
+ // Enochian Packet Layer (Section 7.4 of whitepaper)
30
+ const enochian = require('./core/enochian');
31
+ const enochianVocabulary = require('./core/enochian-vocabulary');
32
+
33
+ // Browser-compatible utilities (extracted from apps/sentient)
34
+ const errors = require('./core/errors');
35
+ const logger = require('./core/logger');
36
+ const metrics = require('./telemetry/metrics');
37
+ const transport = require('./transport');
38
+ const profiling = require('./profiling/primitives');
39
+
40
+ // Observer architecture (Sentient Observer core modules)
41
+ const smf = require('./observer/smf');
42
+ const prsc = require('./observer/prsc');
43
+ const temporal = require('./observer/temporal');
44
+ const entanglement = require('./observer/entanglement');
45
+ const agency = require('./observer/agency');
46
+ const boundary = require('./observer/boundary');
47
+ const safety = require('./observer/safety');
48
+ const hqe = require('./observer/hqe');
12
49
  const {
13
50
  Hypercomplex,
14
51
  FANO_LINES,
@@ -69,6 +106,37 @@ const {
69
106
  Oscillator,
70
107
  OscillatorBank,
71
108
  KuramotoModel,
109
+ // Extended sync models
110
+ NetworkKuramoto,
111
+ AdaptiveKuramoto,
112
+ SakaguchiKuramoto,
113
+ SmallWorldKuramoto,
114
+ MultiSystemCoupling,
115
+ createHierarchicalCoupling,
116
+ createPeerCoupling,
117
+ // Stochastic models
118
+ StochasticKuramoto,
119
+ ColoredNoiseKuramoto,
120
+ ThermalKuramoto,
121
+ gaussianRandom,
122
+ // Primeon Z-Ladder
123
+ PrimeonZLadderU,
124
+ createPrimeonLadder,
125
+ shannonEntropyNats,
126
+ probsOf,
127
+ normalizeComplex,
128
+ // Multi-channel ladder
129
+ ZChannel,
130
+ PrimeonZLadderMulti,
131
+ createMultiChannelLadder,
132
+ createAdiabaticSchedule,
133
+ // Kuramoto-coupled ladder
134
+ KuramotoCoupledLadder,
135
+ createKuramotoLadder,
136
+ runCollapsePressureExperiment,
137
+ kuramotoOrderParameter,
138
+ getPhase,
139
+ // Entropy & Information
72
140
  shannonEntropy,
73
141
  stateEntropy,
74
142
  coherence,
@@ -212,10 +280,41 @@ module.exports = {
212
280
  sumOfTwoSquares,
213
281
  DEFAULT_PRIMES,
214
282
 
215
- // Physics
283
+ // Physics - Core oscillators
216
284
  Oscillator,
217
285
  OscillatorBank,
218
286
  KuramotoModel,
287
+ // Extended sync models
288
+ NetworkKuramoto,
289
+ AdaptiveKuramoto,
290
+ SakaguchiKuramoto,
291
+ SmallWorldKuramoto,
292
+ MultiSystemCoupling,
293
+ createHierarchicalCoupling,
294
+ createPeerCoupling,
295
+ // Stochastic models
296
+ StochasticKuramoto,
297
+ ColoredNoiseKuramoto,
298
+ ThermalKuramoto,
299
+ gaussianRandom,
300
+ // Primeon Z-Ladder
301
+ PrimeonZLadderU,
302
+ createPrimeonLadder,
303
+ shannonEntropyNats,
304
+ probsOf,
305
+ normalizeComplex,
306
+ // Multi-channel ladder
307
+ ZChannel,
308
+ PrimeonZLadderMulti,
309
+ createMultiChannelLadder,
310
+ createAdiabaticSchedule,
311
+ // Kuramoto-coupled ladder
312
+ KuramotoCoupledLadder,
313
+ createKuramotoLadder,
314
+ runCollapsePressureExperiment,
315
+ kuramotoOrderParameter,
316
+ getPhase,
317
+ // Entropy & Information
219
318
  shannonEntropy,
220
319
  stateEntropy,
221
320
  coherence,
@@ -282,5 +381,134 @@ module.exports = {
282
381
  core,
283
382
  physics,
284
383
  backends,
285
- engine
384
+ engine,
385
+
386
+ // Browser-compatible utilities (extracted from apps/sentient)
387
+ // Error handling
388
+ errors,
389
+ SimpleEventEmitter: errors.SimpleEventEmitter,
390
+ AlephError: errors.AlephError,
391
+ NetworkError: errors.NetworkError,
392
+ LLMError: errors.LLMError,
393
+ ValidationError: errors.ValidationError,
394
+ TimeoutError: errors.TimeoutError,
395
+ ErrorHandler: errors.ErrorHandler,
396
+ withErrorHandling: errors.withErrorHandling,
397
+ errorBoundary: errors.errorBoundary,
398
+ withTimeout: errors.withTimeout,
399
+ LogLevel: errors.LogLevel,
400
+ ErrorCategory: errors.ErrorCategory,
401
+
402
+ // Logging
403
+ logger,
404
+ Logger: logger.Logger,
405
+ createLogger: logger.createLogger,
406
+
407
+ // Metrics/Telemetry
408
+ metrics,
409
+ Counter: metrics.Counter,
410
+ Gauge: metrics.Gauge,
411
+ Histogram: metrics.Histogram,
412
+ Summary: metrics.Summary,
413
+ MetricRegistry: metrics.MetricRegistry,
414
+ MetricType: metrics.MetricType,
415
+
416
+ // Transport
417
+ transport,
418
+ Transport: transport.Transport,
419
+ WebSocketTransport: transport.WebSocketTransport,
420
+ SSETransport: transport.SSETransport,
421
+ MemoryTransport: transport.MemoryTransport,
422
+ PollingTransport: transport.PollingTransport,
423
+ TransportManager: transport.TransportManager,
424
+ TransportState: transport.TransportState,
425
+
426
+ // Profiling primitives
427
+ profiling,
428
+ RingBuffer: profiling.RingBuffer,
429
+ Timer: profiling.Timer,
430
+ Sampler: profiling.Sampler,
431
+ RateCalculator: profiling.RateCalculator,
432
+ MovingAverage: profiling.MovingAverage,
433
+ Profiler: profiling.Profiler,
434
+ hrtime: profiling.hrtime,
435
+ hrtimeNs: profiling.hrtimeNs,
436
+
437
+ // Observer Architecture (Sentient Observer core)
438
+ // SMF - Sedenion Memory Field
439
+ smf,
440
+ SedenionMemoryField: smf.SedenionMemoryField,
441
+ SMF_AXES: smf.SMF_AXES,
442
+ AXIS_INDEX: smf.AXIS_INDEX,
443
+ SMF_CODEBOOK: smf.SMF_CODEBOOK,
444
+ CODEBOOK_SIZE: smf.CODEBOOK_SIZE,
445
+ nearestCodebookAttractor: smf.nearestCodebookAttractor,
446
+ codebookTunnel: smf.codebookTunnel,
447
+ getTunnelingCandidates: smf.getTunnelingCandidates,
448
+
449
+ // PRSC - Prime Resonance Semantic Computation
450
+ prsc,
451
+ PRSCLayer: prsc.PRSCLayer,
452
+ PrimeOscillator: prsc.PrimeOscillator,
453
+ EntanglementDetector: prsc.EntanglementDetector,
454
+
455
+ // Temporal Layer
456
+ temporal,
457
+ TemporalLayer: temporal.TemporalLayer,
458
+ Moment: temporal.Moment,
459
+ TemporalPatternDetector: temporal.TemporalPatternDetector,
460
+
461
+ // Entanglement Layer
462
+ entanglement,
463
+ EntanglementLayer: entanglement.EntanglementLayer,
464
+ EntangledPair: entanglement.EntangledPair,
465
+ Phrase: entanglement.Phrase,
466
+
467
+ // Agency Layer
468
+ agency,
469
+ AgencyLayer: agency.AgencyLayer,
470
+ AttentionFocus: agency.AttentionFocus,
471
+ Goal: agency.Goal,
472
+ Action: agency.Action,
473
+
474
+ // Boundary Layer
475
+ boundary,
476
+ BoundaryLayer: boundary.BoundaryLayer,
477
+ SensoryChannel: boundary.SensoryChannel,
478
+ MotorChannel: boundary.MotorChannel,
479
+ EnvironmentalModel: boundary.EnvironmentalModel,
480
+ SelfModel: boundary.SelfModel,
481
+ ObjectivityGate: boundary.ObjectivityGate,
482
+
483
+ // Safety Layer
484
+ safety,
485
+ SafetyLayer: safety.SafetyLayer,
486
+ SafetyConstraint: safety.SafetyConstraint,
487
+ ViolationEvent: safety.ViolationEvent,
488
+ SafetyMonitor: safety.SafetyMonitor,
489
+
490
+ // HQE - Holographic Quantum Encoding (discrete.pdf equations 12-15)
491
+ hqe,
492
+ TickGate: hqe.TickGate,
493
+ StabilizationController: hqe.StabilizationController,
494
+ HolographicEncoder: hqe.HolographicEncoder,
495
+ HolographicMemory: hqe.HolographicMemory,
496
+ HolographicSimilarity: hqe.HolographicSimilarity,
497
+
498
+ // Enochian Packet Layer (Section 7.4 - prime-indexed twist encoding)
499
+ enochian,
500
+ enochianVocabulary,
501
+ ENOCHIAN_ALPHABET: enochianVocabulary.ENOCHIAN_ALPHABET,
502
+ ENOCHIAN_LETTER_PRIMES: enochianVocabulary.ENOCHIAN_LETTER_PRIMES,
503
+ ENOCHIAN_VOCABULARY: enochianVocabulary.ENOCHIAN_VOCABULARY,
504
+ ENOCHIAN_CALLS: enochianVocabulary.ENOCHIAN_CALLS,
505
+ SedenionElement: enochianVocabulary.SedenionElement,
506
+ TwistOperator: enochianVocabulary.TwistOperator,
507
+ EnochianWord: enochianVocabulary.EnochianWord,
508
+ EnochianCall: enochianVocabulary.EnochianCall,
509
+ EnochianPacket: enochian.EnochianPacket,
510
+ EnochianEncoder: enochian.EnochianEncoder,
511
+ EnochianDecoder: enochian.EnochianDecoder,
512
+ EnhancedEnochianEncoder: enochian.EnhancedEnochianEncoder,
513
+ EnhancedEnochianDecoder: enochian.EnhancedEnochianDecoder
286
514
  };
package/package.json CHANGED
@@ -1,6 +1,6 @@
1
1
  {
2
2
  "name": "@aleph-ai/tinyaleph",
3
- "version": "1.3.0",
3
+ "version": "1.4.0",
4
4
  "description": "Prime-resonant semantic computing framework - hypercomplex algebra, oscillator dynamics, and entropy-minimizing reasoning",
5
5
  "main": "index.js",
6
6
  "types": "types/index.d.ts",