@aivue/tabular-intelligence 1.5.1 → 2.0.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (42) hide show
  1. package/README.md +445 -18
  2. package/dist/advanced/automl.d.ts +29 -0
  3. package/dist/advanced/automl.d.ts.map +1 -0
  4. package/dist/advanced/explainability.d.ts +31 -0
  5. package/dist/advanced/explainability.d.ts.map +1 -0
  6. package/dist/advanced/featureEngineering.d.ts +28 -0
  7. package/dist/advanced/featureEngineering.d.ts.map +1 -0
  8. package/dist/advanced/index.d.ts +16 -0
  9. package/dist/advanced/index.d.ts.map +1 -0
  10. package/dist/advanced/multitable.d.ts +28 -0
  11. package/dist/advanced/multitable.d.ts.map +1 -0
  12. package/dist/advanced/privacy.d.ts +17 -0
  13. package/dist/advanced/privacy.d.ts.map +1 -0
  14. package/dist/advanced/reporting.d.ts +21 -0
  15. package/dist/advanced/reporting.d.ts.map +1 -0
  16. package/dist/advanced/statistical.d.ts +28 -0
  17. package/dist/advanced/statistical.d.ts.map +1 -0
  18. package/dist/advanced/streaming.d.ts +41 -0
  19. package/dist/advanced/streaming.d.ts.map +1 -0
  20. package/dist/advanced/timeseries.d.ts +36 -0
  21. package/dist/advanced/timeseries.d.ts.map +1 -0
  22. package/dist/advanced/versioning.d.ts +34 -0
  23. package/dist/advanced/versioning.d.ts.map +1 -0
  24. package/dist/advanced/visualization.d.ts +23 -0
  25. package/dist/advanced/visualization.d.ts.map +1 -0
  26. package/dist/composables/useTabularIntelligence.d.ts +1 -1
  27. package/dist/composables/useTabularIntelligence.d.ts.map +1 -1
  28. package/dist/index.d.ts +39 -10
  29. package/dist/index.d.ts.map +1 -1
  30. package/dist/index.js +75 -47
  31. package/dist/index.js.map +1 -1
  32. package/dist/index.mjs +2392 -657
  33. package/dist/index.mjs.map +1 -1
  34. package/dist/preprocessing/imputation.d.ts +9 -0
  35. package/dist/preprocessing/imputation.d.ts.map +1 -0
  36. package/dist/preprocessing/outliers.d.ts +10 -0
  37. package/dist/preprocessing/outliers.d.ts.map +1 -0
  38. package/dist/quality/profiling.d.ts +22 -0
  39. package/dist/quality/profiling.d.ts.map +1 -0
  40. package/dist/types/index.d.ts +573 -0
  41. package/dist/types/index.d.ts.map +1 -1
  42. package/package.json +4 -3
package/dist/index.mjs CHANGED
@@ -1,86 +1,87 @@
1
- import { ref as q, defineComponent as j, createElementBlock as y, openBlock as g, createElementVNode as p, createCommentVNode as _, withDirectives as ee, withKeys as H, withModifiers as J, vModelText as te, toDisplayString as C, normalizeClass as ne, createTextVNode as ae, Fragment as F, renderList as O, computed as se } from "vue";
2
- function N(l, e) {
3
- if (l.length === 0)
1
+ import { createCompatComponent as B, createCompatPlugin as se, registerCompatComponent as F } from "@aivue/core";
2
+ import { ref as x, defineComponent as W, createElementBlock as C, openBlock as A, createElementVNode as b, createCommentVNode as T, withDirectives as Se, withKeys as Z, withModifiers as ee, vModelText as Ne, toDisplayString as M, normalizeClass as ke, createTextVNode as Ie, Fragment as j, renderList as Q, computed as $e } from "vue";
3
+ function _(s, e) {
4
+ if (s.length === 0)
4
5
  return { columns: [], rowCount: 0, name: e };
5
- const n = l[0];
6
+ const t = s[0];
6
7
  return {
7
- columns: Object.keys(n).map((t) => {
8
- const r = L(l, t);
8
+ columns: Object.keys(t).map((o) => {
9
+ const a = oe(s, o);
9
10
  return {
10
- name: t,
11
- type: r,
12
- nullable: l.some((o) => o[t] == null)
11
+ name: o,
12
+ type: a,
13
+ nullable: s.some((i) => i[o] == null)
13
14
  };
14
15
  }),
15
- rowCount: l.length,
16
+ rowCount: s.length,
16
17
  name: e
17
18
  };
18
19
  }
19
- function L(l, e) {
20
- const n = l.map((t) => t[e]).filter((t) => t != null);
21
- if (n.length === 0) return "string";
22
- if (n.every((t) => typeof t == "number" || !isNaN(Number(t))))
20
+ function oe(s, e) {
21
+ const t = s.map((o) => o[e]).filter((o) => o != null);
22
+ if (t.length === 0) return "string";
23
+ if (t.every((o) => typeof o == "number" || !isNaN(Number(o))))
23
24
  return "number";
24
- if (n.every((t) => typeof t == "boolean" || t === "true" || t === "false"))
25
+ if (t.every((o) => typeof o == "boolean" || o === "true" || o === "false"))
25
26
  return "boolean";
26
- if (n.every((t) => !isNaN(Date.parse(t))))
27
+ if (t.every((o) => !isNaN(Date.parse(o))))
27
28
  return "date";
28
- const a = new Set(n);
29
- return a.size < n.length * 0.5 && a.size < 20 ? "categorical" : "string";
29
+ const n = new Set(t);
30
+ return n.size < t.length * 0.5 && n.size < 20 ? "categorical" : "string";
30
31
  }
31
- function B(l, e, n) {
32
- const a = l.map((s) => s[e]).filter((s) => s != null), t = a.length, r = l.length - t, o = {
32
+ function ae(s, e, t) {
33
+ const n = s.map((r) => r[e]).filter((r) => r != null), o = n.length, a = s.length - o, i = {
33
34
  column: e,
34
- count: t,
35
- nullCount: r
35
+ count: o,
36
+ nullCount: a
36
37
  };
37
- if (n === "number") {
38
- const s = a.map(Number).filter((i) => !isNaN(i));
39
- if (s.length > 0) {
40
- const i = [...s].sort((m, d) => m - d), c = s.reduce((m, d) => m + d, 0);
41
- o.mean = c / s.length, o.median = i[Math.floor(i.length / 2)], o.min = i[0], o.max = i[i.length - 1];
42
- const f = s.reduce((m, d) => m + Math.pow(d - o.mean, 2), 0) / s.length;
43
- o.std = Math.sqrt(f), o.percentiles = {
44
- 25: i[Math.floor(i.length * 0.25)],
45
- 50: o.median,
46
- 75: i[Math.floor(i.length * 0.75)],
47
- 90: i[Math.floor(i.length * 0.9)]
38
+ if (t === "number") {
39
+ const r = n.map(Number).filter((c) => !isNaN(c));
40
+ if (r.length > 0) {
41
+ const c = [...r].sort((m, d) => m - d), l = r.reduce((m, d) => m + d, 0);
42
+ i.mean = l / r.length, i.median = c[Math.floor(c.length / 2)], i.min = c[0], i.max = c[c.length - 1];
43
+ const u = r.reduce((m, d) => m + Math.pow(d - i.mean, 2), 0) / r.length;
44
+ i.std = Math.sqrt(u), i.percentiles = {
45
+ 25: c[Math.floor(c.length * 0.25)],
46
+ 50: i.median,
47
+ 75: c[Math.floor(c.length * 0.75)],
48
+ 90: c[Math.floor(c.length * 0.9)]
48
49
  };
49
50
  }
50
51
  } else {
51
- const s = new Set(a);
52
- o.uniqueValues = s.size;
53
- const i = {};
54
- a.forEach((f) => {
55
- const m = String(f);
56
- i[m] = (i[m] || 0) + 1;
52
+ const r = new Set(n);
53
+ i.uniqueValues = r.size;
54
+ const c = {};
55
+ n.forEach((u) => {
56
+ const m = String(u);
57
+ c[m] = (c[m] || 0) + 1;
57
58
  });
58
- const c = Math.max(...Object.values(i));
59
- o.mode = Object.keys(i).find((f) => i[f] === c);
59
+ const l = Math.max(...Object.values(c));
60
+ i.mode = Object.keys(c).find((u) => c[u] === l);
60
61
  }
61
- return o;
62
+ return i;
62
63
  }
63
- function re(l, e, n = 0.5) {
64
- const a = [], t = 1.5 + (1 - n) * 1.5;
65
- return e.forEach((r) => {
66
- const o = l.map((w, b) => ({ value: Number(w[r]), idx: b })).filter((w) => !isNaN(w.value));
67
- if (o.length === 0) return;
68
- const s = [...o].sort((w, b) => w.value - b.value), i = s[Math.floor(s.length * 0.25)].value, c = s[Math.floor(s.length * 0.75)].value, f = c - i, m = i - t * f, d = c + t * f;
69
- o.forEach(({ value: w, idx: b }) => {
70
- if (w < m || w > d) {
71
- const P = a.find((D) => D.rowIndex === b), $ = w < m ? `${r}: ${w.toFixed(2)} < ${m.toFixed(2)}` : `${r}: ${w.toFixed(2)} > ${d.toFixed(2)}`;
72
- P ? (P.reasons.push($), P.affectedColumns.push(r), P.score = Math.min(1, P.score + 0.2)) : a.push({
73
- rowIndex: b,
74
- row: l[b],
64
+ function Me(s, e, t = 0.5) {
65
+ const n = [], o = 1.5 + (1 - t) * 1.5;
66
+ return e.forEach((a) => {
67
+ const i = s.map((f, h) => ({ value: Number(f[a]), idx: h })).filter((f) => !isNaN(f.value));
68
+ if (i.length === 0) return;
69
+ const r = [...i].sort((f, h) => f.value - h.value), c = r[Math.floor(r.length * 0.25)].value, l = r[Math.floor(r.length * 0.75)].value, u = l - c, m = c - o * u, d = l + o * u;
70
+ i.forEach(({ value: f, idx: h }) => {
71
+ if (f < m || f > d) {
72
+ const p = n.find((g) => g.rowIndex === h), w = f < m ? `${a}: ${f.toFixed(2)} < ${m.toFixed(2)}` : `${a}: ${f.toFixed(2)} > ${d.toFixed(2)}`;
73
+ p ? (p.reasons.push(w), p.affectedColumns.push(a), p.score = Math.min(1, p.score + 0.2)) : n.push({
74
+ rowIndex: h,
75
+ row: s[h],
75
76
  score: 0.7,
76
- reasons: [$],
77
- affectedColumns: [r]
77
+ reasons: [w],
78
+ affectedColumns: [a]
78
79
  });
79
80
  }
80
81
  });
81
- }), a.sort((r, o) => o.score - r.score);
82
+ }), n.sort((a, i) => i.score - a.score);
82
83
  }
83
- class U {
84
+ class te {
84
85
  constructor(e) {
85
86
  this.config = {
86
87
  maxTokens: 1e3,
@@ -92,171 +93,171 @@ class U {
92
93
  * Answer a question about the table data
93
94
  */
94
95
  async answerQuestion(e) {
95
- const n = Date.now();
96
+ const t = Date.now();
96
97
  try {
97
- const { question: a, schema: t, data: r, sampleSize: o = 100, includeAggregates: s = !0 } = e;
98
- if (!r || !Array.isArray(r) || r.length === 0)
98
+ const { question: n, schema: o, data: a, sampleSize: i = 100, includeAggregates: r = !0 } = e;
99
+ if (!a || !Array.isArray(a) || a.length === 0)
99
100
  throw new Error("No data available. Please load data first.");
100
- if (!t || !t.columns || !Array.isArray(t.columns))
101
+ if (!o || !o.columns || !Array.isArray(o.columns))
101
102
  throw new Error("Invalid schema. Please ensure data has a valid schema.");
102
- const i = r.length > o ? this.sampleData(r, o) : r, c = s ? this.calculateAggregates(r, t) : void 0, f = this.buildPrompt(a, t, i, c, r.length), m = await this.callLLM(f);
103
+ const c = a.length > i ? this.sampleData(a, i) : a, l = r ? this.calculateAggregates(a, o) : void 0, u = this.buildPrompt(n, o, c, l, a.length), m = await this.callLLM(u);
103
104
  return {
104
- answer: this.parseResponse(m, a, r.length > o),
105
- processingTime: Date.now() - n
105
+ answer: this.parseResponse(m, n, a.length > i),
106
+ processingTime: Date.now() - t
106
107
  };
107
- } catch (a) {
108
- return console.error("Q&A error:", a), {
108
+ } catch (n) {
109
+ return console.error("Q&A error:", n), {
109
110
  answer: {
110
111
  questionId: this.generateId(),
111
112
  text: "I encountered an error while processing your question. Please try again.",
112
113
  timestamp: /* @__PURE__ */ new Date(),
113
114
  confidence: 0,
114
115
  cannotAnswer: !0,
115
- reason: a instanceof Error ? a.message : "Unknown error"
116
+ reason: n instanceof Error ? n.message : "Unknown error"
116
117
  },
117
- processingTime: Date.now() - n
118
+ processingTime: Date.now() - t
118
119
  };
119
120
  }
120
121
  }
121
122
  /**
122
123
  * Sample data for large datasets
123
124
  */
124
- sampleData(e, n) {
125
+ sampleData(e, t) {
125
126
  if (!e || !Array.isArray(e) || e.length === 0)
126
127
  return [];
127
- if (e.length <= n)
128
+ if (e.length <= t)
128
129
  return e;
129
- const a = Math.floor(e.length / n), t = [];
130
- for (let r = 0; r < e.length && t.length < n; r += a)
131
- t.push(e[r]);
132
- return t;
130
+ const n = Math.floor(e.length / t), o = [];
131
+ for (let a = 0; a < e.length && o.length < t; a += n)
132
+ o.push(e[a]);
133
+ return o;
133
134
  }
134
135
  /**
135
136
  * Calculate aggregates for numeric columns
136
137
  */
137
- calculateAggregates(e, n) {
138
- const a = {};
139
- if (!e || !Array.isArray(e) || e.length === 0 || !n || !n.columns || !Array.isArray(n.columns))
140
- return a;
141
- for (const t of n.columns)
142
- if (t.type === "number" && e.length > 0)
138
+ calculateAggregates(e, t) {
139
+ const n = {};
140
+ if (!e || !Array.isArray(e) || e.length === 0 || !t || !t.columns || !Array.isArray(t.columns))
141
+ return n;
142
+ for (const o of t.columns)
143
+ if (o.type === "number" && e.length > 0)
143
144
  try {
144
- const r = B(e, t.name, "number");
145
- a[t.name] = {
146
- mean: r.mean,
147
- median: r.median,
148
- min: r.min,
149
- max: r.max,
150
- count: r.count
145
+ const a = ae(e, o.name, "number");
146
+ n[o.name] = {
147
+ mean: a.mean,
148
+ median: a.median,
149
+ min: a.min,
150
+ max: a.max,
151
+ count: a.count
151
152
  };
152
153
  } catch {
153
154
  }
154
- else if (t.type === "categorical" || t.type === "string") {
155
- const r = e.map((s) => s[t.name]).filter((s) => s != null), o = new Set(r);
156
- a[t.name] = {
157
- uniqueCount: o.size,
158
- totalCount: r.length,
159
- topValues: this.getTopValues(r, 5)
155
+ else if (o.type === "categorical" || o.type === "string") {
156
+ const a = e.map((r) => r[o.name]).filter((r) => r != null), i = new Set(a);
157
+ n[o.name] = {
158
+ uniqueCount: i.size,
159
+ totalCount: a.length,
160
+ topValues: this.getTopValues(a, 5)
160
161
  };
161
162
  }
162
- return a;
163
+ return n;
163
164
  }
164
165
  /**
165
166
  * Get top N most frequent values
166
167
  */
167
- getTopValues(e, n) {
168
- const a = /* @__PURE__ */ new Map();
169
- for (const t of e)
170
- a.set(t, (a.get(t) || 0) + 1);
171
- return Array.from(a.entries()).map(([t, r]) => ({ value: t, count: r })).sort((t, r) => r.count - t.count).slice(0, n);
168
+ getTopValues(e, t) {
169
+ const n = /* @__PURE__ */ new Map();
170
+ for (const o of e)
171
+ n.set(o, (n.get(o) || 0) + 1);
172
+ return Array.from(n.entries()).map(([o, a]) => ({ value: o, count: a })).sort((o, a) => a.count - o.count).slice(0, t);
172
173
  }
173
174
  /**
174
175
  * Build prompt for LLM
175
176
  */
176
- buildPrompt(e, n, a, t, r) {
177
- const o = r && r > a.length;
178
- let s = `You are a data analyst assistant. Answer the following question about a table dataset.
177
+ buildPrompt(e, t, n, o, a) {
178
+ const i = a && a > n.length;
179
+ let r = `You are a data analyst assistant. Answer the following question about a table dataset.
179
180
 
180
181
  `;
181
- s += `**Table Schema:**
182
- `, s += `Table: ${n.name}
183
- `, s += `Columns:
182
+ r += `**Table Schema:**
183
+ `, r += `Table: ${t.name}
184
+ `, r += `Columns:
184
185
  `;
185
- for (const i of n.columns)
186
- s += `- ${i.name} (${i.type})
186
+ for (const c of t.columns)
187
+ r += `- ${c.name} (${c.type})
187
188
  `;
188
- return s += `
189
- `, t && Object.keys(t).length > 0 && (s += `**Summary Statistics:**
190
- `, s += JSON.stringify(t, null, 2), s += `
189
+ return r += `
190
+ `, o && Object.keys(o).length > 0 && (r += `**Summary Statistics:**
191
+ `, r += JSON.stringify(o, null, 2), r += `
191
192
 
192
- `), s += `**Sample Data** (${a.length} rows${o ? ` out of ${r} total` : ""}):
193
- `, s += JSON.stringify(a.slice(0, 10), null, 2), s += `
193
+ `), r += `**Sample Data** (${n.length} rows${i ? ` out of ${a} total` : ""}):
194
+ `, r += JSON.stringify(n.slice(0, 10), null, 2), r += `
194
195
 
195
- `, s += `**Question:** ${e}
196
+ `, r += `**Question:** ${e}
196
197
 
197
- `, s += `**Instructions:**
198
- `, s += `1. You are a helpful AI data analyst that can answer questions about the table data, perform statistical analysis, make predictions, identify trends, AND engage in normal conversation.
199
- `, s += `2. For data questions (e.g., "how many rows?", "what's the average?"), answer based on the data provided above.
200
- `, s += `3. For statistical analysis requests (e.g., "calculate descriptive statistics", "show me mean/median/std dev"), compute and present the statistics clearly.
201
- `, s += `4. For anomaly detection requests (e.g., "detect anomalies", "find outliers"), identify unusual data points and explain why they're anomalous.
202
- `, s += `5. For clustering requests (e.g., "perform clustering", "group similar data"), identify natural groupings in the data and describe their characteristics.
203
- `, s += `6. For correlation analysis requests (e.g., "show correlations", "what variables are related"), analyze relationships between variables and explain the strength and direction of correlations.
204
- `, s += `7. For predictive questions (e.g., "predict future trends", "what will happen next?", "forecast X"), analyze patterns in the data and make reasonable predictions based on trends, correlations, and statistical patterns you observe.
205
- `, s += `8. For analytical questions (e.g., "what insights?", "any patterns?", "recommendations?"), provide insights, trends, correlations, and actionable recommendations based on the data.
206
- `, s += `9. For conversational questions (e.g., "hi", "hello", "what can you do?"), respond naturally and mention your capabilities.
207
- `, s += `10. If a question is completely unrelated to data analysis (e.g., "what's the weather?"), politely explain you can only help with data analysis.
208
- `, s += `11. Provide clear, concise answers with specific numbers and examples.
209
- `, s += `12. When making predictions or identifying trends, explain your reasoning and mention the confidence level.
210
- `, s += `13. If the answer is based on sampled data, mention that it's an approximation.
211
- `, s += `14. Format your response as JSON with the following structure:
212
- `, s += `{
213
- `, s += ` "answer": "Your answer text here",
214
- `, s += ` "confidence": 0.0-1.0,
215
- `, s += ` "cannotAnswer": false,
216
- `, s += ` "isApproximate": ${o},
217
- `, s += ` "supportingData": { "key": "value" } // optional
218
- `, s += `}
198
+ `, r += `**Instructions:**
199
+ `, r += `1. You are a helpful AI data analyst that can answer questions about the table data, perform statistical analysis, make predictions, identify trends, AND engage in normal conversation.
200
+ `, r += `2. For data questions (e.g., "how many rows?", "what's the average?"), answer based on the data provided above.
201
+ `, r += `3. For statistical analysis requests (e.g., "calculate descriptive statistics", "show me mean/median/std dev"), compute and present the statistics clearly.
202
+ `, r += `4. For anomaly detection requests (e.g., "detect anomalies", "find outliers"), identify unusual data points and explain why they're anomalous.
203
+ `, r += `5. For clustering requests (e.g., "perform clustering", "group similar data"), identify natural groupings in the data and describe their characteristics.
204
+ `, r += `6. For correlation analysis requests (e.g., "show correlations", "what variables are related"), analyze relationships between variables and explain the strength and direction of correlations.
205
+ `, r += `7. For predictive questions (e.g., "predict future trends", "what will happen next?", "forecast X"), analyze patterns in the data and make reasonable predictions based on trends, correlations, and statistical patterns you observe.
206
+ `, r += `8. For analytical questions (e.g., "what insights?", "any patterns?", "recommendations?"), provide insights, trends, correlations, and actionable recommendations based on the data.
207
+ `, r += `9. For conversational questions (e.g., "hi", "hello", "what can you do?"), respond naturally and mention your capabilities.
208
+ `, r += `10. If a question is completely unrelated to data analysis (e.g., "what's the weather?"), politely explain you can only help with data analysis.
209
+ `, r += `11. Provide clear, concise answers with specific numbers and examples.
210
+ `, r += `12. When making predictions or identifying trends, explain your reasoning and mention the confidence level.
211
+ `, r += `13. If the answer is based on sampled data, mention that it's an approximation.
212
+ `, r += `14. Format your response as JSON with the following structure:
213
+ `, r += `{
214
+ `, r += ` "answer": "Your answer text here",
215
+ `, r += ` "confidence": 0.0-1.0,
216
+ `, r += ` "cannotAnswer": false,
217
+ `, r += ` "isApproximate": ${i},
218
+ `, r += ` "supportingData": { "key": "value" } // optional
219
+ `, r += `}
219
220
 
220
- `, s += `Examples:
221
- `, s += `- Question: "hi" → Answer: "Hello! I'm your AI data analyst. I can perform statistical analysis, detect anomalies, cluster data, analyze correlations, make predictions, and answer questions about this dataset."
222
- `, s += `- Question: "how many rows?" → Answer: "There are ${r || a.length} rows in the dataset."
223
- `, s += `- Question: "calculate descriptive statistics" → Answer: "Descriptive Statistics:\\n- Mean: 45.2\\n- Median: 42.0\\n- Std Dev: 12.5\\n- Min: 10\\n- Max: 95\\n- 25th Percentile: 35\\n- 75th Percentile: 58" (with confidence: 0.95)
224
- `, s += `- Question: "detect anomalies" → Answer: "I found 3 anomalies in the dataset:\\n1. Row 15: Value 250 is 3.5 standard deviations above the mean\\n2. Row 42: Value -10 is unusually low\\n3. Row 88: Value 300 is an extreme outlier" (with confidence: 0.85)
225
- `, s += `- Question: "perform clustering" → Answer: "I identified 3 natural clusters in the data:\\n- Cluster 1 (40%): Low values, avg 25\\n- Cluster 2 (35%): Medium values, avg 50\\n- Cluster 3 (25%): High values, avg 85" (with confidence: 0.8)
226
- `, s += `- Question: "show correlation analysis" → Answer: "Correlation Analysis:\\n- Price & Quantity: -0.65 (strong negative)\\n- Revenue & Price: 0.82 (strong positive)\\n- Quantity & Revenue: 0.45 (moderate positive)" (with confidence: 0.9)
227
- `, s += `- Question: "predict future sales" → Answer: "Based on the trend in the data, sales are increasing by 15% monthly. If this continues, next month's sales could reach approximately $50,000." (with confidence: 0.7)
228
- `, s += `- Question: "what insights can you give?" → Answer: "Key insights: 1) Sales peak on weekends, 2) Product A is the top seller, 3) Customer retention is 85%..."
229
- `, s += `- Question: "what's the weather?" → Answer: "I cannot answer this question as it's not related to the dataset. I can only help with questions about this data."
230
- `, s;
221
+ `, r += `Examples:
222
+ `, r += `- Question: "hi" → Answer: "Hello! I'm your AI data analyst. I can perform statistical analysis, detect anomalies, cluster data, analyze correlations, make predictions, and answer questions about this dataset."
223
+ `, r += `- Question: "how many rows?" → Answer: "There are ${a || n.length} rows in the dataset."
224
+ `, r += `- Question: "calculate descriptive statistics" → Answer: "Descriptive Statistics:\\n- Mean: 45.2\\n- Median: 42.0\\n- Std Dev: 12.5\\n- Min: 10\\n- Max: 95\\n- 25th Percentile: 35\\n- 75th Percentile: 58" (with confidence: 0.95)
225
+ `, r += `- Question: "detect anomalies" → Answer: "I found 3 anomalies in the dataset:\\n1. Row 15: Value 250 is 3.5 standard deviations above the mean\\n2. Row 42: Value -10 is unusually low\\n3. Row 88: Value 300 is an extreme outlier" (with confidence: 0.85)
226
+ `, r += `- Question: "perform clustering" → Answer: "I identified 3 natural clusters in the data:\\n- Cluster 1 (40%): Low values, avg 25\\n- Cluster 2 (35%): Medium values, avg 50\\n- Cluster 3 (25%): High values, avg 85" (with confidence: 0.8)
227
+ `, r += `- Question: "show correlation analysis" → Answer: "Correlation Analysis:\\n- Price & Quantity: -0.65 (strong negative)\\n- Revenue & Price: 0.82 (strong positive)\\n- Quantity & Revenue: 0.45 (moderate positive)" (with confidence: 0.9)
228
+ `, r += `- Question: "predict future sales" → Answer: "Based on the trend in the data, sales are increasing by 15% monthly. If this continues, next month's sales could reach approximately $50,000." (with confidence: 0.7)
229
+ `, r += `- Question: "what insights can you give?" → Answer: "Key insights: 1) Sales peak on weekends, 2) Product A is the top seller, 3) Customer retention is 85%..."
230
+ `, r += `- Question: "what's the weather?" → Answer: "I cannot answer this question as it's not related to the dataset. I can only help with questions about this data."
231
+ `, r;
231
232
  }
232
233
  /**
233
234
  * Call LLM API
234
235
  */
235
236
  async callLLM(e) {
236
- const { provider: n, apiKey: a, baseUrl: t, model: r, maxTokens: o, temperature: s } = this.config;
237
- if (!a && n !== "custom")
237
+ const { provider: t, apiKey: n, baseUrl: o, model: a, maxTokens: i, temperature: r } = this.config;
238
+ if (!n && t !== "custom")
238
239
  return this.fallbackResponse(e);
239
- if (n === "openai")
240
- return this.callOpenAI(e, a, r || "gpt-4-turbo-preview", o, s);
241
- if (n === "anthropic")
242
- return this.callAnthropic(e, a, r || "claude-3-5-sonnet-20241022", o, s);
243
- if (n === "custom" && t)
244
- return this.callCustomAPI(e, t, a);
245
- throw new Error(`Unsupported provider: ${n}`);
240
+ if (t === "openai")
241
+ return this.callOpenAI(e, n, a || "gpt-4-turbo-preview", i, r);
242
+ if (t === "anthropic")
243
+ return this.callAnthropic(e, n, a || "claude-3-5-sonnet-20241022", i, r);
244
+ if (t === "custom" && o)
245
+ return this.callCustomAPI(e, o, n);
246
+ throw new Error(`Unsupported provider: ${t}`);
246
247
  }
247
248
  /**
248
249
  * Fallback response when no API key is available
249
250
  */
250
251
  fallbackResponse(e) {
251
- const n = e.match(/\*\*Question:\*\* (.+)/), t = (n ? n[1].trim() : "").toLowerCase();
252
- if (/^(hi|hello|hey|greetings|good morning|good afternoon|good evening)/.test(t))
252
+ const t = e.match(/\*\*Question:\*\* (.+)/), o = (t ? t[1].trim() : "").toLowerCase();
253
+ if (/^(hi|hello|hey|greetings|good morning|good afternoon|good evening)/.test(o))
253
254
  return JSON.stringify({
254
255
  answer: "Hello! 👋 I'm your data analysis assistant. I can help you explore and understand this dataset. Try asking questions like 'How many rows are there?', 'What columns do we have?', or 'Show me a summary of the data'. For more advanced analysis, please configure an OpenAI or Anthropic API key in the settings.",
255
256
  confidence: 1,
256
257
  cannotAnswer: !1,
257
258
  isApproximate: !1
258
259
  });
259
- if (/what (can|do) you|help|capabilities|features/.test(t))
260
+ if (/what (can|do) you|help|capabilities|features/.test(o))
260
261
  return JSON.stringify({
261
262
  answer: `I can help you analyze tabular data! You can ask me questions like:
262
263
  • 'How many rows/columns are there?'
@@ -279,60 +280,60 @@ Please add your API key in the AI Chatbot Configuration section for advanced fea
279
280
  cannotAnswer: !1,
280
281
  isApproximate: !1
281
282
  });
282
- const r = e.match(/\*\*Sample Data\*\* \((\d+) rows/), o = e.match(/out of (\d+) total/), s = e.match(/Columns:\n((?:- .+\n)+)/), i = r ? parseInt(r[1]) : 0, c = o ? parseInt(o[1]) : i;
283
- if (/how many (rows|records|entries|items)/.test(t))
283
+ const a = e.match(/\*\*Sample Data\*\* \((\d+) rows/), i = e.match(/out of (\d+) total/), r = e.match(/Columns:\n((?:- .+\n)+)/), c = a ? parseInt(a[1]) : 0, l = i ? parseInt(i[1]) : c;
284
+ if (/how many (rows|records|entries|items)/.test(o))
284
285
  return JSON.stringify({
285
- answer: `There are ${c} rows in the dataset.`,
286
+ answer: `There are ${l} rows in the dataset.`,
286
287
  confidence: 1,
287
288
  cannotAnswer: !1,
288
289
  isApproximate: !1
289
290
  });
290
- if (/how many columns|what columns|column names|list columns/.test(t) && s) {
291
- const f = s[1].trim().split(`
291
+ if (/how many columns|what columns|column names|list columns/.test(o) && r) {
292
+ const u = r[1].trim().split(`
292
293
  `).map((m) => m.replace(/^- /, "").split(" (")[0]);
293
294
  return JSON.stringify({
294
- answer: `The dataset has ${f.length} columns: ${f.join(", ")}.`,
295
+ answer: `The dataset has ${u.length} columns: ${u.join(", ")}.`,
295
296
  confidence: 1,
296
297
  cannotAnswer: !1,
297
298
  isApproximate: !1
298
299
  });
299
300
  }
300
- if (/summary|overview|describe|what.*data|tell me about/.test(t) && s) {
301
- const f = s[1].trim().split(`
301
+ if (/summary|overview|describe|what.*data|tell me about/.test(o) && r) {
302
+ const u = r[1].trim().split(`
302
303
  `).map((m) => m.replace(/^- /, "").split(" (")[0]);
303
304
  return JSON.stringify({
304
- answer: `This dataset contains ${c} rows and ${f.length} columns. The columns are: ${f.join(", ")}. For detailed analysis and insights, please configure an OpenAI or Anthropic API key.`,
305
+ answer: `This dataset contains ${l} rows and ${u.length} columns. The columns are: ${u.join(", ")}. For detailed analysis and insights, please configure an OpenAI or Anthropic API key.`,
305
306
  confidence: 0.8,
306
307
  cannotAnswer: !1,
307
308
  isApproximate: !1
308
309
  });
309
310
  }
310
- return /descriptive statistics|calculate statistics|mean|median|std dev|standard deviation|percentile/.test(t) ? JSON.stringify({
311
+ return /descriptive statistics|calculate statistics|mean|median|std dev|standard deviation|percentile/.test(o) ? JSON.stringify({
311
312
  answer: "I can calculate descriptive statistics with an OpenAI or Anthropic API key! I'll provide mean, median, standard deviation, min, max, and percentiles for all numeric columns. Please add your API key in the 'AI Chatbot Configuration' section above.",
312
313
  confidence: 0.3,
313
314
  cannotAnswer: !0,
314
315
  reason: "Statistical analysis requires AI. Please configure an API key."
315
- }) : /anomaly|anomalies|outlier|outliers|detect anomal|find outlier/.test(t) ? JSON.stringify({
316
+ }) : /anomaly|anomalies|outlier|outliers|detect anomal|find outlier/.test(o) ? JSON.stringify({
316
317
  answer: "I can detect anomalies and outliers with an OpenAI or Anthropic API key! I'll identify unusual data points and explain why they're anomalous. Please add your API key in the 'AI Chatbot Configuration' section above.",
317
318
  confidence: 0.3,
318
319
  cannotAnswer: !0,
319
320
  reason: "Anomaly detection requires AI. Please configure an API key."
320
- }) : /cluster|clustering|group|grouping|segment|segmentation/.test(t) ? JSON.stringify({
321
+ }) : /cluster|clustering|group|grouping|segment|segmentation/.test(o) ? JSON.stringify({
321
322
  answer: "I can perform clustering analysis with an OpenAI or Anthropic API key! I'll identify natural groupings in your data and describe their characteristics. Please add your API key in the 'AI Chatbot Configuration' section above.",
322
323
  confidence: 0.3,
323
324
  cannotAnswer: !0,
324
325
  reason: "Clustering analysis requires AI. Please configure an API key."
325
- }) : /correlation|correlate|relationship|relate|association/.test(t) ? JSON.stringify({
326
+ }) : /correlation|correlate|relationship|relate|association/.test(o) ? JSON.stringify({
326
327
  answer: "I can analyze correlations between variables with an OpenAI or Anthropic API key! I'll show you the strength and direction of relationships between different columns. Please add your API key in the 'AI Chatbot Configuration' section above.",
327
328
  confidence: 0.3,
328
329
  cannotAnswer: !0,
329
330
  reason: "Correlation analysis requires AI. Please configure an API key."
330
- }) : /predict|forecast|future|trend|next|will be|gonna be|going to be/.test(t) ? JSON.stringify({
331
+ }) : /predict|forecast|future|trend|next|will be|gonna be|going to be/.test(o) ? JSON.stringify({
331
332
  answer: "I'd love to help you make predictions based on this data! However, I need an OpenAI or Anthropic API key to analyze patterns, identify trends, and make accurate forecasts. Please add your API key in the 'AI Chatbot Configuration' section above, and I'll be able to provide detailed predictions with confidence scores.",
332
333
  confidence: 0.3,
333
334
  cannotAnswer: !0,
334
335
  reason: "Predictions require AI analysis. Please configure an API key for advanced features."
335
- }) : /insight|pattern|analysis|analyze|recommendation/.test(t) ? JSON.stringify({
336
+ }) : /insight|pattern|analysis|analyze|recommendation/.test(o) ? JSON.stringify({
336
337
  answer: "I can provide deep insights and analysis with an OpenAI or Anthropic API key! I'll be able to identify patterns, trends, and give you actionable recommendations. Please add your API key in the 'AI Chatbot Configuration' section above.",
337
338
  confidence: 0.3,
338
339
  cannotAnswer: !0,
@@ -347,82 +348,82 @@ Please add your API key in the AI Chatbot Configuration section for advanced fea
347
348
  /**
348
349
  * Call OpenAI API
349
350
  */
350
- async callOpenAI(e, n, a, t, r) {
351
- var i, c;
352
- const o = await fetch("https://api.openai.com/v1/chat/completions", {
351
+ async callOpenAI(e, t, n, o, a) {
352
+ var c, l;
353
+ const i = await fetch("https://api.openai.com/v1/chat/completions", {
353
354
  method: "POST",
354
355
  headers: {
355
356
  "Content-Type": "application/json",
356
- Authorization: `Bearer ${n}`
357
+ Authorization: `Bearer ${t}`
357
358
  },
358
359
  body: JSON.stringify({
359
- model: a,
360
+ model: n,
360
361
  messages: [{ role: "user", content: e }],
361
- max_tokens: t,
362
- temperature: r,
362
+ max_tokens: o,
363
+ temperature: a,
363
364
  response_format: { type: "json_object" }
364
365
  })
365
366
  });
366
- if (!o.ok)
367
- throw new Error(`OpenAI API error: ${o.statusText}`);
368
- return ((c = (i = (await o.json()).choices[0]) == null ? void 0 : i.message) == null ? void 0 : c.content) || "";
367
+ if (!i.ok)
368
+ throw new Error(`OpenAI API error: ${i.statusText}`);
369
+ return ((l = (c = (await i.json()).choices[0]) == null ? void 0 : c.message) == null ? void 0 : l.content) || "";
369
370
  }
370
371
  /**
371
372
  * Call Anthropic API
372
373
  */
373
- async callAnthropic(e, n, a, t, r) {
374
- var i;
375
- const o = await fetch("https://api.anthropic.com/v1/messages", {
374
+ async callAnthropic(e, t, n, o, a) {
375
+ var c;
376
+ const i = await fetch("https://api.anthropic.com/v1/messages", {
376
377
  method: "POST",
377
378
  headers: {
378
379
  "Content-Type": "application/json",
379
- "x-api-key": n,
380
+ "x-api-key": t,
380
381
  "anthropic-version": "2023-06-01"
381
382
  },
382
383
  body: JSON.stringify({
383
- model: a,
384
- max_tokens: t,
385
- temperature: r,
384
+ model: n,
385
+ max_tokens: o,
386
+ temperature: a,
386
387
  messages: [{ role: "user", content: e }]
387
388
  })
388
389
  });
389
- if (!o.ok)
390
- throw new Error(`Anthropic API error: ${o.statusText}`);
391
- return ((i = (await o.json()).content[0]) == null ? void 0 : i.text) || "";
390
+ if (!i.ok)
391
+ throw new Error(`Anthropic API error: ${i.statusText}`);
392
+ return ((c = (await i.json()).content[0]) == null ? void 0 : c.text) || "";
392
393
  }
393
394
  /**
394
395
  * Call custom API
395
396
  */
396
- async callCustomAPI(e, n, a) {
397
- const t = {
397
+ async callCustomAPI(e, t, n) {
398
+ const o = {
398
399
  "Content-Type": "application/json"
399
400
  };
400
- a && (t.Authorization = `Bearer ${a}`);
401
- const r = await fetch(n, {
401
+ n && (o.Authorization = `Bearer ${n}`);
402
+ const a = await fetch(t, {
402
403
  method: "POST",
403
- headers: t,
404
+ headers: o,
404
405
  body: JSON.stringify({ prompt: e })
405
406
  });
406
- if (!r.ok)
407
- throw new Error(`Custom API error: ${r.statusText}`);
408
- const o = await r.json();
409
- return o.response || o.answer || JSON.stringify(o);
407
+ if (!a.ok)
408
+ throw new Error(`Custom API error: ${a.statusText}`);
409
+ const i = await a.json();
410
+ return i.response || i.answer || JSON.stringify(i);
410
411
  }
411
412
  /**
412
413
  * Parse LLM response
413
414
  */
414
- parseResponse(e, n, a) {
415
+ parseResponse(e, t, n) {
415
416
  try {
416
- const t = JSON.parse(e);
417
+ const o = JSON.parse(e);
417
418
  return {
418
419
  questionId: this.generateId(),
419
- text: t.answer || t.text || e,
420
+ text: o.answer || o.text || e,
420
421
  timestamp: /* @__PURE__ */ new Date(),
421
- confidence: t.confidence || 0.8,
422
- cannotAnswer: t.cannotAnswer || !1,
423
- isApproximate: t.isApproximate !== void 0 ? t.isApproximate : a,
424
- supportingData: t.supportingData,
425
- reason: t.reason
422
+ confidence: o.confidence || 0.8,
423
+ cannotAnswer: o.cannotAnswer || !1,
424
+ isApproximate: o.isApproximate !== void 0 ? o.isApproximate : n,
425
+ supportingData: o.supportingData,
426
+ reason: o.reason
426
427
  };
427
428
  } catch {
428
429
  return {
@@ -430,7 +431,7 @@ Please add your API key in the AI Chatbot Configuration section for advanced fea
430
431
  text: e,
431
432
  timestamp: /* @__PURE__ */ new Date(),
432
433
  confidence: 0.7,
433
- isApproximate: a
434
+ isApproximate: n
434
435
  };
435
436
  }
436
437
  }
@@ -441,239 +442,239 @@ Please add your API key in the AI Chatbot Configuration section for advanced fea
441
442
  return `qa_${Date.now()}_${Math.random().toString(36).substr(2, 9)}`;
442
443
  }
443
444
  }
444
- function oe(l = {}) {
445
+ function xe(s = {}) {
445
446
  const {
446
447
  selector: e = "table",
447
- includeHeaders: n = !0,
448
- maxRows: a,
449
- inferTypes: t = !0,
450
- skipEmptyRows: r = !0
451
- } = l, o = document.querySelector(e);
452
- if (!o || o.tagName !== "TABLE")
448
+ includeHeaders: t = !0,
449
+ maxRows: n,
450
+ inferTypes: o = !0,
451
+ skipEmptyRows: a = !0
452
+ } = s, i = document.querySelector(e);
453
+ if (!i || i.tagName !== "TABLE")
453
454
  return console.warn(`No table found with selector: ${e}`), null;
454
- const i = Array.from(o.rows);
455
- if (i.length === 0)
455
+ const c = Array.from(i.rows);
456
+ if (c.length === 0)
456
457
  return null;
457
- let c = [], f = 0;
458
- if (n && i[0]) {
459
- const b = i[0];
460
- c = Array.from(b.cells).map((P, $) => {
461
- var x;
462
- return ((x = P.textContent) == null ? void 0 : x.trim()) || "" || `Column${$ + 1}`;
463
- }), f = 1;
458
+ let l = [], u = 0;
459
+ if (t && c[0]) {
460
+ const h = c[0];
461
+ l = Array.from(h.cells).map((p, w) => {
462
+ var S;
463
+ return ((S = p.textContent) == null ? void 0 : S.trim()) || "" || `Column${w + 1}`;
464
+ }), u = 1;
464
465
  } else {
465
- const b = i[0];
466
- c = Array.from(b.cells).map((P, $) => `Column${$ + 1}`);
467
- }
468
- const m = [], d = a ? i.slice(f, f + a) : i.slice(f);
469
- for (const b of d) {
470
- const P = Array.from(b.cells);
471
- if (r && P.every((D) => {
472
- var x;
473
- return !((x = D.textContent) != null && x.trim());
466
+ const h = c[0];
467
+ l = Array.from(h.cells).map((p, w) => `Column${w + 1}`);
468
+ }
469
+ const m = [], d = n ? c.slice(u, u + n) : c.slice(u);
470
+ for (const h of d) {
471
+ const p = Array.from(h.cells);
472
+ if (a && p.every((g) => {
473
+ var S;
474
+ return !((S = g.textContent) != null && S.trim());
474
475
  }))
475
476
  continue;
476
- const $ = {};
477
- P.forEach((D, x) => {
478
- var Q;
479
- const z = c[x] || `Column${x + 1}`;
480
- let E = ((Q = D.textContent) == null ? void 0 : Q.trim()) || "";
481
- if (t && E) {
482
- const M = parseFloat(E);
483
- !isNaN(M) && E === M.toString() && (E = M);
477
+ const w = {};
478
+ p.forEach((g, S) => {
479
+ var E;
480
+ const O = l[S] || `Column${S + 1}`;
481
+ let q = ((E = g.textContent) == null ? void 0 : E.trim()) || "";
482
+ if (o && q) {
483
+ const z = parseFloat(q);
484
+ !isNaN(z) && q === z.toString() && (q = z);
484
485
  }
485
- $[z] = E;
486
- }), m.push($);
486
+ w[O] = q;
487
+ }), m.push(w);
487
488
  }
488
489
  return {
489
- schema: t && m.length > 0 ? N(m, "Extracted Table") : le(c, m.length),
490
+ schema: o && m.length > 0 ? _(m, "Extracted Table") : Pe(l, m.length),
490
491
  data: m,
491
492
  source: "dom",
492
493
  metadata: {
493
494
  selector: e,
494
495
  rowCount: m.length,
495
- columnCount: c.length,
496
+ columnCount: l.length,
496
497
  extractedAt: /* @__PURE__ */ new Date()
497
498
  }
498
499
  };
499
500
  }
500
- function ie(l, e, n = {}) {
501
- const { maxRows: a, inferTypes: t = !0 } = n, r = a ? l.slice(0, a) : l;
502
- let o;
503
- return e && e.length > 0 ? o = {
501
+ function qe(s, e, t = {}) {
502
+ const { maxRows: n, inferTypes: o = !0 } = t, a = n ? s.slice(0, n) : s;
503
+ let i;
504
+ return e && e.length > 0 ? i = {
504
505
  name: "Vue Data Grid",
505
- columns: e.map((s) => ({
506
- name: s.field,
507
- type: t && r.length > 0 ? L(r, s.field) : "string",
506
+ columns: e.map((r) => ({
507
+ name: r.field,
508
+ type: o && a.length > 0 ? oe(a, r.field) : "string",
508
509
  nullable: !0
509
510
  })),
510
- rowCount: r.length
511
- } : r.length > 0 ? o = N(r, "Vue Data Grid") : o = { name: "Vue Data Grid", columns: [], rowCount: 0 }, {
512
- schema: o,
513
- data: r,
511
+ rowCount: a.length
512
+ } : a.length > 0 ? i = _(a, "Vue Data Grid") : i = { name: "Vue Data Grid", columns: [], rowCount: 0 }, {
513
+ schema: i,
514
+ data: a,
514
515
  source: "vue",
515
516
  metadata: {
516
- rowCount: r.length,
517
- columnCount: o.columns.length,
517
+ rowCount: a.length,
518
+ columnCount: i.columns.length,
518
519
  extractedAt: /* @__PURE__ */ new Date()
519
520
  }
520
521
  };
521
522
  }
522
- function le(l, e = 0) {
523
+ function Pe(s, e = 0) {
523
524
  return {
524
525
  name: "Extracted Table",
525
- columns: l.map((n) => ({
526
- name: n,
526
+ columns: s.map((t) => ({
527
+ name: t,
527
528
  type: "string",
528
529
  nullable: !0
529
530
  })),
530
531
  rowCount: e
531
532
  };
532
533
  }
533
- function ce(l) {
534
+ function Te(s) {
534
535
  const e = {};
535
- l.variable && l.variable.forEach((r) => {
536
- e[r.key] = r.value;
536
+ s.variable && s.variable.forEach((a) => {
537
+ e[a.key] = a.value;
537
538
  });
538
- const n = l.auth ? K(l.auth) : void 0, a = [];
539
- function t(r, o = "") {
540
- r.forEach((s) => {
541
- s.item ? t(s.item, o ? `${o}/${s.name}` : s.name) : s.request && a.push(ue(s, n));
539
+ const t = s.auth ? re(s.auth) : void 0, n = [];
540
+ function o(a, i = "") {
541
+ a.forEach((r) => {
542
+ r.item ? o(r.item, i ? `${i}/${r.name}` : r.name) : r.request && n.push(De(r, t));
542
543
  });
543
544
  }
544
- return t(l.item), {
545
- name: l.info.name,
546
- description: l.info.description,
547
- endpoints: a,
545
+ return o(s.item), {
546
+ name: s.info.name,
547
+ description: s.info.description,
548
+ endpoints: n,
548
549
  variables: e,
549
- auth: n
550
+ auth: t
550
551
  };
551
552
  }
552
- function ue(l, e) {
553
- const n = l.request, a = {};
554
- n.header && n.header.forEach((o) => {
555
- a[o.key] = o.value;
553
+ function De(s, e) {
554
+ const t = s.request, n = {};
555
+ t.header && t.header.forEach((i) => {
556
+ n[i.key] = i.value;
556
557
  });
557
- const t = {};
558
- n.url.query && n.url.query.forEach((o) => {
559
- t[o.key] = o.value;
558
+ const o = {};
559
+ t.url.query && t.url.query.forEach((i) => {
560
+ o[i.key] = i.value;
560
561
  });
561
- const r = n.auth ? K(n.auth) : e;
562
+ const a = t.auth ? re(t.auth) : e;
562
563
  return {
563
- name: l.name,
564
- method: n.method,
565
- url: n.url.raw,
566
- description: n.description,
567
- headers: a,
568
- queryParams: t,
569
- auth: r
564
+ name: s.name,
565
+ method: t.method,
566
+ url: t.url.raw,
567
+ description: t.description,
568
+ headers: n,
569
+ queryParams: o,
570
+ auth: a
570
571
  };
571
572
  }
572
- function K(l) {
573
+ function re(s) {
573
574
  const e = {};
574
- return l.apikey ? l.apikey.forEach((n) => {
575
- e[n.key] = n.value;
576
- }) : l.bearer ? l.bearer.forEach((n) => {
577
- e[n.key] = n.value;
578
- }) : l.basic && l.basic.forEach((n) => {
579
- e[n.key] = n.value;
575
+ return s.apikey ? s.apikey.forEach((t) => {
576
+ e[t.key] = t.value;
577
+ }) : s.bearer ? s.bearer.forEach((t) => {
578
+ e[t.key] = t.value;
579
+ }) : s.basic && s.basic.forEach((t) => {
580
+ e[t.key] = t.value;
580
581
  }), {
581
- type: l.type,
582
+ type: s.type,
582
583
  credentials: e
583
584
  };
584
585
  }
585
- function T(l, e) {
586
- let n = l;
587
- return Object.keys(e).forEach((a) => {
588
- const t = new RegExp(`{{${a}}}`, "g");
589
- n = n.replace(t, e[a]);
590
- }), n;
586
+ function D(s, e) {
587
+ let t = s;
588
+ return Object.keys(e).forEach((n) => {
589
+ const o = new RegExp(`{{${n}}}`, "g");
590
+ t = t.replace(o, e[n]);
591
+ }), t;
591
592
  }
592
- async function W(l) {
593
- const { endpoint: e, variables: n = {}, additionalHeaders: a = {}, additionalParams: t = {} } = l;
593
+ async function ie(s) {
594
+ const { endpoint: e, variables: t = {}, additionalHeaders: n = {}, additionalParams: o = {} } = s;
594
595
  try {
595
- let r = T(e.url, n);
596
- const o = { ...e.queryParams, ...n, ...t }, s = Object.keys(o).filter((d) => o[d] !== void 0 && o[d] !== "").map((d) => `${encodeURIComponent(d)}=${encodeURIComponent(T(String(o[d]), n))}`).join("&");
597
- s && (r = r.includes("?") ? `${r}&${s}` : `${r}?${s}`);
598
- const i = {
596
+ let a = D(e.url, t);
597
+ const i = { ...e.queryParams, ...t, ...o }, r = Object.keys(i).filter((d) => i[d] !== void 0 && i[d] !== "").map((d) => `${encodeURIComponent(d)}=${encodeURIComponent(D(String(i[d]), t))}`).join("&");
598
+ r && (a = a.includes("?") ? `${a}&${r}` : `${a}?${r}`);
599
+ const c = {
599
600
  "Content-Type": "application/json",
600
601
  ...e.headers,
601
- ...a
602
+ ...n
602
603
  };
603
- if (Object.keys(i).forEach((d) => {
604
- i[d] = T(i[d], n);
604
+ if (Object.keys(c).forEach((d) => {
605
+ c[d] = D(c[d], t);
605
606
  }), e.auth) {
606
607
  if (e.auth.type === "apikey") {
607
- const d = e.auth.credentials.key || "access_key", w = T(e.auth.credentials.value || "", n);
608
- e.auth.credentials.in === "header" && (i[d] = w);
608
+ const d = e.auth.credentials.key || "access_key", f = D(e.auth.credentials.value || "", t);
609
+ e.auth.credentials.in === "header" && (c[d] = f);
609
610
  } else if (e.auth.type === "bearer") {
610
- const d = T(e.auth.credentials.token || "", n);
611
- i.Authorization = `Bearer ${d}`;
611
+ const d = D(e.auth.credentials.token || "", t);
612
+ c.Authorization = `Bearer ${d}`;
612
613
  } else if (e.auth.type === "basic") {
613
- const d = T(e.auth.credentials.username || "", n), w = T(e.auth.credentials.password || "", n), b = btoa(`${d}:${w}`);
614
- i.Authorization = `Basic ${b}`;
614
+ const d = D(e.auth.credentials.username || "", t), f = D(e.auth.credentials.password || "", t), h = btoa(`${d}:${f}`);
615
+ c.Authorization = `Basic ${h}`;
615
616
  }
616
617
  }
617
- const c = await fetch(r, {
618
+ const l = await fetch(a, {
618
619
  method: e.method,
619
- headers: i
620
- }), f = {};
621
- return c.headers.forEach((d, w) => {
622
- f[w] = d;
623
- }), c.ok ? {
620
+ headers: c
621
+ }), u = {};
622
+ return l.headers.forEach((d, f) => {
623
+ u[f] = d;
624
+ }), l.ok ? {
624
625
  success: !0,
625
- data: await c.json(),
626
- statusCode: c.status,
627
- headers: f
626
+ data: await l.json(),
627
+ statusCode: l.status,
628
+ headers: u
628
629
  } : {
629
630
  success: !1,
630
- error: `HTTP ${c.status}: ${c.statusText}`,
631
- statusCode: c.status,
632
- headers: f
631
+ error: `HTTP ${l.status}: ${l.statusText}`,
632
+ statusCode: l.status,
633
+ headers: u
633
634
  };
634
- } catch (r) {
635
+ } catch (a) {
635
636
  return {
636
637
  success: !1,
637
- error: r.message || "Unknown error occurred"
638
+ error: a.message || "Unknown error occurred"
638
639
  };
639
640
  }
640
641
  }
641
- async function Ge(l, e = {}) {
642
- const n = [];
643
- for (const a of l) {
644
- const t = await W({ endpoint: a, variables: e });
645
- n.push(t);
642
+ async function Nn(s, e = {}) {
643
+ const t = [];
644
+ for (const n of s) {
645
+ const o = await ie({ endpoint: n, variables: e });
646
+ t.push(o);
646
647
  }
647
- return n;
648
+ return t;
648
649
  }
649
- function de(l) {
650
- if (!l.success || !l.data)
650
+ function _e(s) {
651
+ if (!s.success || !s.data)
651
652
  return [];
652
- const e = l.data;
653
+ const e = s.data;
653
654
  return Array.isArray(e) ? e : e.data && Array.isArray(e.data) ? e.data : e.results && Array.isArray(e.results) ? e.results : e.items && Array.isArray(e.items) ? e.items : typeof e == "object" ? [e] : [];
654
655
  }
655
- class he {
656
- constructor(e, n) {
656
+ class ce {
657
+ constructor(e, t) {
657
658
  this.config = {
658
659
  timeout: 3e4,
659
660
  ...e
660
- }, n && (this.qaEngine = new U(n));
661
+ }, t && (this.qaEngine = new te(t));
661
662
  }
662
663
  /**
663
664
  * Initialize or update Q&A engine
664
665
  */
665
666
  initializeQA(e) {
666
- this.qaEngine = new U(e);
667
+ this.qaEngine = new te(e);
667
668
  }
668
669
  /**
669
670
  * Generic API call to TFM endpoint
670
671
  */
671
672
  async callTFM(e) {
672
- const n = Date.now();
673
+ const t = Date.now();
673
674
  try {
674
- let a = this.config.baseUrl;
675
- this.config.useCorsProxy && this.config.corsProxyUrl && (this.config.corsProxyUrl.includes("?") ? a = this.config.corsProxyUrl + encodeURIComponent(a) : a = (this.config.corsProxyUrl.endsWith("/") ? this.config.corsProxyUrl : this.config.corsProxyUrl + "/") + a, console.log("Using CORS proxy for TFM API call:", this.config.corsProxyUrl), console.log("Proxied URL:", a));
676
- const t = await fetch(a, {
675
+ let n = this.config.baseUrl;
676
+ this.config.useCorsProxy && this.config.corsProxyUrl && (this.config.corsProxyUrl.includes("?") ? n = this.config.corsProxyUrl + encodeURIComponent(n) : n = (this.config.corsProxyUrl.endsWith("/") ? this.config.corsProxyUrl : this.config.corsProxyUrl + "/") + n, console.log("Using CORS proxy for TFM API call:", this.config.corsProxyUrl), console.log("Proxied URL:", n));
677
+ const o = await fetch(n, {
677
678
  method: "POST",
678
679
  headers: {
679
680
  "Content-Type": "application/json",
@@ -686,26 +687,26 @@ class he {
686
687
  }),
687
688
  signal: AbortSignal.timeout(this.config.timeout || 3e4)
688
689
  });
689
- if (!t.ok) {
690
- const s = await t.text();
691
- throw new Error(`TFM API error: ${t.status} - ${s}`);
690
+ if (!o.ok) {
691
+ const r = await o.text();
692
+ throw new Error(`TFM API error: ${o.status} - ${r}`);
692
693
  }
693
- const r = await t.json(), o = Date.now() - n;
694
+ const a = await o.json(), i = Date.now() - t;
694
695
  return {
695
696
  success: !0,
696
- result: r.result || r,
697
+ result: a.result || a,
697
698
  metadata: {
698
- processingTime: o,
699
+ processingTime: i,
699
700
  model: this.config.model || "unknown",
700
- version: r.version
701
+ version: a.version
701
702
  }
702
703
  };
703
- } catch (a) {
704
+ } catch (n) {
704
705
  return {
705
706
  success: !1,
706
- error: a instanceof Error ? a.message : "Unknown error",
707
+ error: n instanceof Error ? n.message : "Unknown error",
707
708
  metadata: {
708
- processingTime: Date.now() - n,
709
+ processingTime: Date.now() - t,
709
710
  model: this.config.model || "unknown"
710
711
  }
711
712
  };
@@ -715,68 +716,68 @@ class he {
715
716
  * Perform analysis on tabular data
716
717
  */
717
718
  async analyze(e) {
718
- const n = {
719
+ const t = {
719
720
  operation: e.type,
720
721
  data: e.data,
721
722
  schema: e.schema,
722
723
  parameters: e.options
723
- }, a = await this.callTFM(n);
724
- if (!a.success)
725
- throw new Error(a.error || "Analysis failed");
726
- return this.parseAnalysisResult(e.type, a.result, a.metadata);
724
+ }, n = await this.callTFM(t);
725
+ if (!n.success)
726
+ throw new Error(n.error || "Analysis failed");
727
+ return this.parseAnalysisResult(e.type, n.result, n.metadata);
727
728
  }
728
729
  /**
729
730
  * Parse TFM response into structured AnalysisResult
730
731
  */
731
- parseAnalysisResult(e, n, a) {
732
- const t = {
732
+ parseAnalysisResult(e, t, n) {
733
+ const o = {
733
734
  type: e,
734
735
  timestamp: /* @__PURE__ */ new Date(),
735
- summary: n.summary || "",
736
- insights: n.insights || [],
737
- recommendations: n.recommendations,
738
- confidence: n.confidence || 0.8,
739
- processingTime: a == null ? void 0 : a.processingTime
736
+ summary: t.summary || "",
737
+ insights: t.insights || [],
738
+ recommendations: t.recommendations,
739
+ confidence: t.confidence || 0.8,
740
+ processingTime: n == null ? void 0 : n.processingTime
740
741
  };
741
742
  switch (e) {
742
743
  case "descriptive_stats":
743
744
  return {
744
- ...t,
745
- descriptiveStats: n.stats || n.descriptiveStats
745
+ ...o,
746
+ descriptiveStats: t.stats || t.descriptiveStats
746
747
  };
747
748
  case "anomaly_detection":
748
749
  return {
749
- ...t,
750
- anomalies: n.anomalies || []
750
+ ...o,
751
+ anomalies: t.anomalies || []
751
752
  };
752
753
  case "segmentation":
753
754
  case "clustering":
754
755
  return {
755
- ...t,
756
- clusters: n.clusters || []
756
+ ...o,
757
+ clusters: t.clusters || []
757
758
  };
758
759
  case "prediction":
759
760
  return {
760
- ...t,
761
- predictions: n.predictions || n
761
+ ...o,
762
+ predictions: t.predictions || t
762
763
  };
763
764
  case "correlation":
764
765
  return {
765
- ...t,
766
- correlations: n.correlations || n
766
+ ...o,
767
+ correlations: t.correlations || t
767
768
  };
768
769
  case "summary":
769
770
  return {
770
- ...t,
771
- aiSummary: n.summary || n
771
+ ...o,
772
+ aiSummary: t.summary || t
772
773
  };
773
774
  case "qa":
774
775
  return {
775
- ...t,
776
- qaAnswer: n.answer || n
776
+ ...o,
777
+ qaAnswer: t.answer || t
777
778
  };
778
779
  default:
779
- return t;
780
+ return o;
780
781
  }
781
782
  }
782
783
  /**
@@ -790,27 +791,27 @@ class he {
790
791
  /**
791
792
  * Generate AI summary of table data
792
793
  */
793
- async generateSummary(e, n) {
794
- const a = {
794
+ async generateSummary(e, t) {
795
+ const n = {
795
796
  type: "summary",
796
797
  data: e,
797
- schema: n
798
- }, t = await this.analyze(a);
799
- if (!t.aiSummary)
798
+ schema: t
799
+ }, o = await this.analyze(n);
800
+ if (!o.aiSummary)
800
801
  throw new Error("Failed to generate summary");
801
- return t.aiSummary;
802
+ return o.aiSummary;
802
803
  }
803
804
  /**
804
805
  * Extract table from DOM
805
806
  */
806
807
  extractFromDOM(e) {
807
- return oe(e);
808
+ return xe(e);
808
809
  }
809
810
  /**
810
811
  * Normalize Vue data grid data
811
812
  */
812
- normalizeVueData(e, n, a) {
813
- return ie(e, n, a);
813
+ normalizeVueData(e, t, n) {
814
+ return qe(e, t, n);
814
815
  }
815
816
  /**
816
817
  * Update configuration
@@ -822,8 +823,8 @@ class he {
822
823
  * Get current configuration (without sensitive data)
823
824
  */
824
825
  getConfig() {
825
- const { apiKey: e, ...n } = this.config;
826
- return n;
826
+ const { apiKey: e, ...t } = this.config;
827
+ return t;
827
828
  }
828
829
  // ============================================================================
829
830
  // API Integration Methods
@@ -832,7 +833,7 @@ class he {
832
833
  * Load Postman collection
833
834
  */
834
835
  loadPostmanCollection(e) {
835
- return this.parsedCollection = ce(e), this.parsedCollection;
836
+ return this.parsedCollection = Te(e), this.parsedCollection;
836
837
  }
837
838
  /**
838
839
  * Get loaded collection
@@ -850,20 +851,20 @@ class he {
850
851
  /**
851
852
  * Execute API request and get data
852
853
  */
853
- async fetchDataFromAPI(e, n) {
854
+ async fetchDataFromAPI(e, t) {
854
855
  if (!this.parsedCollection)
855
856
  throw new Error("No Postman collection loaded. Call loadPostmanCollection() first.");
856
- const a = this.parsedCollection.endpoints.find((i) => i.name === e);
857
- if (!a)
857
+ const n = this.parsedCollection.endpoints.find((c) => c.name === e);
858
+ if (!n)
858
859
  throw new Error(`Endpoint "${e}" not found in collection.`);
859
- const t = {
860
+ const o = {
860
861
  ...this.parsedCollection.variables,
861
- ...n
862
- }, r = await W({ endpoint: a, variables: t });
863
- if (!r.success)
864
- throw new Error(`API request failed: ${r.error}`);
865
- const o = de(r), s = N(o);
866
- return { data: o, schema: s };
862
+ ...t
863
+ }, a = await ie({ endpoint: n, variables: o });
864
+ if (!a.success)
865
+ throw new Error(`API request failed: ${a.error}`);
866
+ const i = _e(a), r = _(i);
867
+ return { data: i, schema: r };
867
868
  }
868
869
  /**
869
870
  * Query API data with natural language
@@ -871,19 +872,19 @@ class he {
871
872
  async queryAPI(e) {
872
873
  if (!this.qaEngine)
873
874
  throw new Error("Q&A engine not initialized. Provide qaConfig in constructor or call initializeQA().");
874
- const n = Date.now(), { data: a, schema: t } = await this.fetchDataFromAPI(
875
+ const t = Date.now(), { data: n, schema: o } = await this.fetchDataFromAPI(
875
876
  e.dataSource.endpoint || "",
876
877
  e.variables
877
- ), r = {
878
+ ), a = {
878
879
  question: e.question,
879
- schema: t,
880
- data: a
881
- }, o = await this.qaEngine.answerQuestion(r), s = Date.now() - n;
880
+ schema: o,
881
+ data: n
882
+ }, i = await this.qaEngine.answerQuestion(a), r = Date.now() - t;
882
883
  return {
883
- answer: o.answer,
884
- apiResponse: a,
884
+ answer: i.answer,
885
+ apiResponse: n,
885
886
  endpoint: e.dataSource.endpoint,
886
- executionTime: s
887
+ executionTime: r
887
888
  };
888
889
  }
889
890
  /**
@@ -897,206 +898,206 @@ class he {
897
898
  })) : [];
898
899
  }
899
900
  }
900
- function Ye(l) {
901
- const e = new he(l.config, l.qaConfig), n = q(!1), a = q(null), t = q(null), r = l.data || q([]), o = l.schema || q(null), s = q([]), i = q([]), c = q(null), f = l.maxQuestionHistory || 50, m = l.useLocalFallback !== !1;
902
- async function d(u, h) {
903
- n.value = !0, a.value = null;
901
+ function Oe(s) {
902
+ const e = new ce(s.config, s.qaConfig), t = x(!1), n = x(null), o = x(null), a = s.data || x([]), i = s.schema || x(null), r = x([]), c = x([]), l = x(null), u = s.maxQuestionHistory || 50, m = s.useLocalFallback !== !1;
903
+ async function d(y, v) {
904
+ t.value = !0, n.value = null;
904
905
  try {
905
- if (l.config.provider === "local" || m) {
906
+ if (s.config.provider === "local" || m) {
906
907
  console.log("🔧 Using local analysis (no API call)");
907
- const A = w(u, h);
908
- return t.value = A, A;
908
+ const k = f(y, v);
909
+ return o.value = k, k;
909
910
  }
910
911
  const I = {
911
- type: u,
912
- data: r.value,
913
- schema: o.value || void 0,
914
- options: h
915
- }, k = await e.analyze(I);
916
- return t.value = k, k;
912
+ type: y,
913
+ data: a.value,
914
+ schema: i.value || void 0,
915
+ options: v
916
+ }, $ = await e.analyze(I);
917
+ return o.value = $, $;
917
918
  } catch (I) {
918
- if (a.value = I instanceof Error ? I : new Error("Analysis failed"), m)
919
- return console.log("⚠️ API call failed, falling back to local analysis"), w(u, h);
920
- throw a.value;
919
+ if (n.value = I instanceof Error ? I : new Error("Analysis failed"), m)
920
+ return console.log("⚠️ API call failed, falling back to local analysis"), f(y, v);
921
+ throw n.value;
921
922
  } finally {
922
- n.value = !1;
923
+ t.value = !1;
923
924
  }
924
925
  }
925
- function w(u, h) {
926
- const I = o.value || N(r.value);
927
- switch (u) {
926
+ function f(y, v) {
927
+ const I = i.value || _(a.value);
928
+ switch (y) {
928
929
  case "descriptive_stats": {
929
- const k = I.columns.map(
930
- (A) => B(r.value, A.name, A.type)
930
+ const $ = I.columns.map(
931
+ (k) => ae(a.value, k.name, k.type)
931
932
  );
932
933
  return {
933
- type: u,
934
+ type: y,
934
935
  timestamp: /* @__PURE__ */ new Date(),
935
- descriptiveStats: k,
936
- summary: `Calculated statistics for ${k.length} columns`,
936
+ descriptiveStats: $,
937
+ summary: `Calculated statistics for ${$.length} columns`,
937
938
  insights: [],
938
939
  confidence: 0.9
939
940
  };
940
941
  }
941
942
  case "anomaly_detection": {
942
- const k = I.columns.filter((v) => v.type === "number").map((v) => v.name), A = re(
943
- r.value,
944
- k,
945
- h == null ? void 0 : h.sensitivity
943
+ const $ = I.columns.filter((N) => N.type === "number").map((N) => N.name), k = Me(
944
+ a.value,
945
+ $,
946
+ v == null ? void 0 : v.sensitivity
946
947
  );
947
948
  return {
948
- type: u,
949
+ type: y,
949
950
  timestamp: /* @__PURE__ */ new Date(),
950
- anomalies: A,
951
- summary: `Found ${A.length} anomalies`,
952
- insights: A.slice(0, 3).map((v) => v.reasons[0]),
951
+ anomalies: k,
952
+ summary: `Found ${k.length} anomalies`,
953
+ insights: k.slice(0, 3).map((N) => N.reasons[0]),
953
954
  confidence: 0.8
954
955
  };
955
956
  }
956
957
  case "clustering":
957
958
  case "segmentation": {
958
- const k = (h == null ? void 0 : h.features) || I.columns.filter((S) => S.type === "number").map((S) => S.name), A = (h == null ? void 0 : h.numClusters) || 3, v = Array.from({ length: A }, (S, R) => ({
959
- id: R,
960
- label: `Cluster ${R + 1}`,
959
+ const $ = (v == null ? void 0 : v.features) || I.columns.filter((P) => P.type === "number").map((P) => P.name), k = (v == null ? void 0 : v.numClusters) || 3, N = Array.from({ length: k }, (P, L) => ({
960
+ id: L,
961
+ label: `Cluster ${L + 1}`,
961
962
  centroid: {},
962
- size: Math.floor(r.value.length / A),
963
- characteristics: [`Group ${R + 1} characteristics`]
963
+ size: Math.floor(a.value.length / k),
964
+ characteristics: [`Group ${L + 1} characteristics`]
964
965
  }));
965
966
  return {
966
- type: u,
967
+ type: y,
967
968
  timestamp: /* @__PURE__ */ new Date(),
968
- clusters: v,
969
- summary: `Created ${A} clusters based on ${k.length} features`,
970
- insights: [`Data segmented into ${A} distinct groups`],
969
+ clusters: N,
970
+ summary: `Created ${k} clusters based on ${$.length} features`,
971
+ insights: [`Data segmented into ${k} distinct groups`],
971
972
  confidence: 0.75
972
973
  };
973
974
  }
974
975
  case "correlation": {
975
- const k = (h == null ? void 0 : h.features) || I.columns.filter((v) => v.type === "number").map((v) => v.name), A = {};
976
- return k.forEach((v) => {
977
- A[v] = {}, k.forEach((S) => {
978
- A[v][S] = v === S ? 1 : Math.random() * 0.8 - 0.4;
976
+ const $ = (v == null ? void 0 : v.features) || I.columns.filter((N) => N.type === "number").map((N) => N.name), k = {};
977
+ return $.forEach((N) => {
978
+ k[N] = {}, $.forEach((P) => {
979
+ k[N][P] = N === P ? 1 : Math.random() * 0.8 - 0.4;
979
980
  });
980
981
  }), {
981
- type: u,
982
+ type: y,
982
983
  timestamp: /* @__PURE__ */ new Date(),
983
- correlations: A,
984
- summary: `Calculated correlations for ${k.length} features`,
984
+ correlations: k,
985
+ summary: `Calculated correlations for ${$.length} features`,
985
986
  insights: ["Correlation matrix computed for numeric columns"],
986
987
  confidence: 0.85
987
988
  };
988
989
  }
989
990
  default:
990
- throw new Error(`Local analysis not supported for type: ${u}`);
991
+ throw new Error(`Local analysis not supported for type: ${y}`);
991
992
  }
992
993
  }
993
- async function b() {
994
+ async function h() {
994
995
  return (await d("descriptive_stats")).descriptiveStats || [];
995
996
  }
996
- async function P(u, h) {
997
- return (await d("anomaly_detection", { sensitivity: h, features: u })).anomalies || [];
997
+ async function p(y, v) {
998
+ return (await d("anomaly_detection", { sensitivity: v, features: y })).anomalies || [];
998
999
  }
999
- async function $(u, h = 3) {
1000
- return d("clustering", { features: u, numClusters: h });
1000
+ async function w(y, v = 3) {
1001
+ return d("clustering", { features: y, numClusters: v });
1001
1002
  }
1002
- async function D(u, h) {
1003
- return d("prediction", { targetColumn: u, ...h });
1003
+ async function g(y, v) {
1004
+ return d("prediction", { targetColumn: y, ...v });
1004
1005
  }
1005
- function x(u) {
1006
- e.updateConfig(u);
1006
+ function S(y) {
1007
+ e.updateConfig(y);
1007
1008
  }
1008
- function z(u, h = !0) {
1009
- r.value = u, h && (o.value = N(u));
1009
+ function O(y, v = !0) {
1010
+ a.value = y, v && (i.value = _(y));
1010
1011
  }
1011
- function E() {
1012
- n.value = !1, a.value = null, t.value = null, s.value = [], i.value = [], c.value = null;
1012
+ function q() {
1013
+ t.value = !1, n.value = null, o.value = null, r.value = [], c.value = [], l.value = null;
1013
1014
  }
1014
- async function Q(u, h) {
1015
- n.value = !0, a.value = null;
1015
+ async function E(y, v) {
1016
+ t.value = !0, n.value = null;
1016
1017
  try {
1017
- if (!r.value || !Array.isArray(r.value) || r.value.length === 0)
1018
+ if (!a.value || !Array.isArray(a.value) || a.value.length === 0)
1018
1019
  throw new Error("No data available. Please load data first.");
1019
- const I = o.value || N(r.value), k = {
1020
- question: u,
1020
+ const I = i.value || _(a.value), $ = {
1021
+ question: y,
1021
1022
  schema: I,
1022
- data: r.value,
1023
+ data: a.value,
1023
1024
  sampleSize: 100,
1024
1025
  includeAggregates: !0,
1025
- ...h
1026
- }, v = (await e.askQuestion(k)).answer, S = {
1027
- id: v.questionId,
1028
- text: u,
1026
+ ...v
1027
+ }, N = (await e.askQuestion($)).answer, P = {
1028
+ id: N.questionId,
1029
+ text: y,
1029
1030
  timestamp: /* @__PURE__ */ new Date(),
1030
1031
  context: {
1031
1032
  tableSchema: I,
1032
- rowCount: r.value.length
1033
+ rowCount: a.value.length
1033
1034
  }
1034
1035
  };
1035
- return s.value || (s.value = []), i.value || (i.value = []), s.value.push(S), i.value.push(v), c.value = v, s.value.length > f && (s.value.shift(), i.value.shift()), v;
1036
+ return r.value || (r.value = []), c.value || (c.value = []), r.value.push(P), c.value.push(N), l.value = N, r.value.length > u && (r.value.shift(), c.value.shift()), N;
1036
1037
  } catch (I) {
1037
- throw a.value = I instanceof Error ? I : new Error("Q&A failed"), a.value;
1038
+ throw n.value = I instanceof Error ? I : new Error("Q&A failed"), n.value;
1038
1039
  } finally {
1039
- n.value = !1;
1040
+ t.value = !1;
1040
1041
  }
1041
1042
  }
1042
- async function M() {
1043
- n.value = !0, a.value = null;
1043
+ async function z() {
1044
+ t.value = !0, n.value = null;
1044
1045
  try {
1045
- const u = o.value || N(r.value);
1046
- return await e.generateSummary(r.value, u);
1047
- } catch (u) {
1048
- throw a.value = u instanceof Error ? u : new Error("Summary generation failed"), a.value;
1046
+ const y = i.value || _(a.value);
1047
+ return await e.generateSummary(a.value, y);
1048
+ } catch (y) {
1049
+ throw n.value = y instanceof Error ? y : new Error("Summary generation failed"), n.value;
1049
1050
  } finally {
1050
- n.value = !1;
1051
+ t.value = !1;
1051
1052
  }
1052
1053
  }
1053
- function G() {
1054
- s.value = [], i.value = [], c.value = null;
1054
+ function ve() {
1055
+ r.value = [], c.value = [], l.value = null;
1055
1056
  }
1056
- function Y(u) {
1057
- const h = e.extractFromDOM(u);
1058
- return h && (r.value = h.data, o.value = h.schema), h;
1057
+ function be(y) {
1058
+ const v = e.extractFromDOM(y);
1059
+ return v && (a.value = v.data, i.value = v.schema), v;
1059
1060
  }
1060
- function X(u, h, I) {
1061
- const k = e.normalizeVueData(u, h, I);
1062
- r.value = k.data, o.value = k.schema;
1061
+ function Ce(y, v, I) {
1062
+ const $ = e.normalizeVueData(y, v, I);
1063
+ a.value = $.data, i.value = $.schema;
1063
1064
  }
1064
- function Z(u) {
1065
- e.initializeQA(u);
1065
+ function Ae(y) {
1066
+ e.initializeQA(y);
1066
1067
  }
1067
1068
  return {
1068
1069
  client: e,
1069
- loading: n,
1070
- error: a,
1071
- lastResult: t,
1072
- data: r,
1073
- schema: o,
1074
- questionHistory: s,
1075
- answerHistory: i,
1076
- lastAnswer: c,
1070
+ loading: t,
1071
+ error: n,
1072
+ lastResult: o,
1073
+ data: a,
1074
+ schema: i,
1075
+ questionHistory: r,
1076
+ answerHistory: c,
1077
+ lastAnswer: l,
1077
1078
  analyze: d,
1078
- getDescriptiveStats: b,
1079
- detectAnomalies: P,
1080
- performClustering: $,
1081
- predict: D,
1082
- askQuestion: Q,
1083
- generateSummary: M,
1084
- clearHistory: G,
1085
- extractFromDOM: Y,
1086
- loadFromVueGrid: X,
1087
- updateConfig: x,
1088
- initializeQA: Z,
1089
- setData: z,
1090
- reset: E
1079
+ getDescriptiveStats: h,
1080
+ detectAnomalies: p,
1081
+ performClustering: w,
1082
+ predict: g,
1083
+ askQuestion: E,
1084
+ generateSummary: z,
1085
+ clearHistory: ve,
1086
+ extractFromDOM: be,
1087
+ loadFromVueGrid: Ce,
1088
+ updateConfig: S,
1089
+ initializeQA: Ae,
1090
+ setData: O,
1091
+ reset: q
1091
1092
  };
1092
1093
  }
1093
- const me = { class: "ti-question-input" }, fe = { class: "ti-input-wrapper" }, pe = ["placeholder", "disabled", "onKeydown"], ye = ["disabled"], ge = { key: 0 }, we = {
1094
+ const Re = { class: "ti-question-input" }, ze = { class: "ti-input-wrapper" }, Ee = ["placeholder", "disabled", "onKeydown"], Ve = ["disabled"], Fe = { key: 0 }, je = {
1094
1095
  key: 1,
1095
1096
  class: "ti-loading"
1096
- }, ve = {
1097
+ }, Qe = {
1097
1098
  key: 0,
1098
1099
  class: "ti-hint"
1099
- }, Ae = /* @__PURE__ */ j({
1100
+ }, Je = /* @__PURE__ */ W({
1100
1101
  __name: "QuestionInput",
1101
1102
  props: {
1102
1103
  placeholder: { default: "Ask a question about this data..." },
@@ -1108,189 +1109,1923 @@ const me = { class: "ti-question-input" }, fe = { class: "ti-input-wrapper" }, p
1108
1109
  loading: { type: Boolean, default: !1 }
1109
1110
  },
1110
1111
  emits: ["submit"],
1111
- setup(l, { emit: e }) {
1112
- const n = l, a = e, t = q("");
1113
- function r() {
1114
- t.value.trim() && !n.disabled && !n.loading && (a("submit", t.value.trim()), t.value = "");
1112
+ setup(s, { emit: e }) {
1113
+ const t = s, n = e, o = x("");
1114
+ function a() {
1115
+ o.value.trim() && !t.disabled && !t.loading && (n("submit", o.value.trim()), o.value = "");
1115
1116
  }
1116
- function o(s) {
1117
+ function i(r) {
1117
1118
  }
1118
- return (s, i) => (g(), y("div", me, [
1119
- p("div", fe, [
1120
- ee(p("textarea", {
1121
- "onUpdate:modelValue": i[0] || (i[0] = (c) => t.value = c),
1122
- placeholder: s.placeholder,
1123
- disabled: s.disabled,
1119
+ return (r, c) => (A(), C("div", Re, [
1120
+ b("div", ze, [
1121
+ Se(b("textarea", {
1122
+ "onUpdate:modelValue": c[0] || (c[0] = (l) => o.value = l),
1123
+ placeholder: r.placeholder,
1124
+ disabled: r.disabled,
1124
1125
  class: "ti-textarea",
1125
1126
  rows: "1",
1126
1127
  onKeydown: [
1127
- H(J(r, ["exact", "prevent"]), ["enter"]),
1128
- H(J(o, ["shift"]), ["enter"])
1128
+ Z(ee(a, ["exact", "prevent"]), ["enter"]),
1129
+ Z(ee(i, ["shift"]), ["enter"])
1129
1130
  ]
1130
- }, null, 40, pe), [
1131
- [te, t.value]
1131
+ }, null, 40, Ee), [
1132
+ [Ne, o.value]
1132
1133
  ]),
1133
- p("button", {
1134
- disabled: s.disabled || !t.value.trim(),
1134
+ b("button", {
1135
+ disabled: r.disabled || !o.value.trim(),
1135
1136
  class: "ti-submit-btn",
1136
- onClick: r
1137
+ onClick: a
1137
1138
  }, [
1138
- s.loading ? (g(), y("span", we, C(s.loadingLabel), 1)) : (g(), y("span", ge, C(s.submitLabel), 1))
1139
- ], 8, ye)
1139
+ r.loading ? (A(), C("span", je, M(r.loadingLabel), 1)) : (A(), C("span", Fe, M(r.submitLabel), 1))
1140
+ ], 8, Ve)
1140
1141
  ]),
1141
- s.showHint ? (g(), y("div", ve, C(s.hint), 1)) : _("", !0)
1142
+ r.showHint ? (A(), C("div", Qe, M(r.hint), 1)) : T("", !0)
1142
1143
  ]));
1143
1144
  }
1144
- }), V = (l, e) => {
1145
- const n = l.__vccOpts || l;
1146
- for (const [a, t] of e)
1147
- n[a] = t;
1148
- return n;
1149
- }, Xe = /* @__PURE__ */ V(Ae, [["__scopeId", "data-v-f96008f3"]]), be = { class: "ti-answer-header" }, Ie = { class: "ti-answer-icon" }, ke = { key: 0 }, Ce = { key: 1 }, Pe = { class: "ti-answer-meta" }, $e = { class: "ti-confidence" }, xe = { class: "ti-timestamp" }, qe = { class: "ti-answer-text" }, Se = {
1145
+ }), X = (s, e) => {
1146
+ const t = s.__vccOpts || s;
1147
+ for (const [n, o] of e)
1148
+ t[n] = o;
1149
+ return t;
1150
+ }, le = /* @__PURE__ */ X(Je, [["__scopeId", "data-v-f96008f3"]]), He = { class: "ti-answer-header" }, Be = { class: "ti-answer-icon" }, Le = { key: 0 }, Ue = { key: 1 }, Ke = { class: "ti-answer-meta" }, Ge = { class: "ti-confidence" }, We = { class: "ti-timestamp" }, Xe = { class: "ti-answer-text" }, Ye = {
1150
1151
  key: 0,
1151
1152
  class: "ti-approximate-notice"
1152
- }, _e = {
1153
+ }, Ze = {
1153
1154
  key: 1,
1154
1155
  class: "ti-reason"
1155
- }, De = {
1156
+ }, et = {
1156
1157
  key: 2,
1157
1158
  class: "ti-supporting-data"
1158
- }, Ee = {
1159
+ }, tt = {
1159
1160
  key: 0,
1160
1161
  class: "ti-supporting-content"
1161
- }, Te = {
1162
+ }, nt = {
1162
1163
  key: 0,
1163
1164
  class: "ti-aggregates"
1164
- }, Ne = {
1165
+ }, st = {
1165
1166
  key: 1,
1166
1167
  class: "ti-rows"
1167
- }, Me = { class: "ti-table-wrapper" }, Qe = { class: "ti-table" }, Fe = /* @__PURE__ */ j({
1168
+ }, ot = { class: "ti-table-wrapper" }, at = { class: "ti-table" }, rt = /* @__PURE__ */ W({
1168
1169
  __name: "AnswerDisplay",
1169
1170
  props: {
1170
1171
  answer: {}
1171
1172
  },
1172
- setup(l) {
1173
- const e = q(!1);
1174
- function n(a) {
1175
- return new Date(a).toLocaleTimeString();
1173
+ setup(s) {
1174
+ const e = x(!1);
1175
+ function t(n) {
1176
+ return new Date(n).toLocaleTimeString();
1176
1177
  }
1177
- return (a, t) => (g(), y("div", {
1178
- class: ne(["ti-answer-display", { "ti-cannot-answer": a.answer.cannotAnswer }])
1178
+ return (n, o) => (A(), C("div", {
1179
+ class: ke(["ti-answer-display", { "ti-cannot-answer": n.answer.cannotAnswer }])
1179
1180
  }, [
1180
- p("div", be, [
1181
- p("div", Ie, [
1182
- a.answer.cannotAnswer ? (g(), y("span", Ce, "⚠️")) : (g(), y("span", ke, "💡"))
1181
+ b("div", He, [
1182
+ b("div", Be, [
1183
+ n.answer.cannotAnswer ? (A(), C("span", Ue, "⚠️")) : (A(), C("span", Le, "💡"))
1183
1184
  ]),
1184
- p("div", Pe, [
1185
- p("div", $e, " Confidence: " + C(Math.round(a.answer.confidence * 100)) + "% ", 1),
1186
- p("div", xe, C(n(a.answer.timestamp)), 1)
1185
+ b("div", Ke, [
1186
+ b("div", Ge, " Confidence: " + M(Math.round(n.answer.confidence * 100)) + "% ", 1),
1187
+ b("div", We, M(t(n.answer.timestamp)), 1)
1187
1188
  ])
1188
1189
  ]),
1189
- p("div", qe, C(a.answer.text), 1),
1190
- a.answer.isApproximate ? (g(), y("div", Se, " ℹ️ This answer is based on sampled data and may be approximate. ")) : _("", !0),
1191
- a.answer.reason && a.answer.cannotAnswer ? (g(), y("div", _e, [
1192
- t[1] || (t[1] = p("strong", null, "Reason:", -1)),
1193
- ae(" " + C(a.answer.reason), 1)
1194
- ])) : _("", !0),
1195
- a.answer.supportingData ? (g(), y("div", De, [
1196
- p("button", {
1190
+ b("div", Xe, M(n.answer.text), 1),
1191
+ n.answer.isApproximate ? (A(), C("div", Ye, " ℹ️ This answer is based on sampled data and may be approximate. ")) : T("", !0),
1192
+ n.answer.reason && n.answer.cannotAnswer ? (A(), C("div", Ze, [
1193
+ o[1] || (o[1] = b("strong", null, "Reason:", -1)),
1194
+ Ie(" " + M(n.answer.reason), 1)
1195
+ ])) : T("", !0),
1196
+ n.answer.supportingData ? (A(), C("div", et, [
1197
+ b("button", {
1197
1198
  class: "ti-toggle-btn",
1198
- onClick: t[0] || (t[0] = (r) => e.value = !e.value)
1199
- }, C(e.value ? "▼" : "▶") + " Supporting Data ", 1),
1200
- e.value ? (g(), y("div", Ee, [
1201
- a.answer.supportingData.aggregates ? (g(), y("div", Te, [
1202
- t[2] || (t[2] = p("h4", null, "Aggregates:", -1)),
1203
- p("pre", null, C(JSON.stringify(a.answer.supportingData.aggregates, null, 2)), 1)
1204
- ])) : _("", !0),
1205
- a.answer.supportingData.rows && a.answer.supportingData.rows.length > 0 ? (g(), y("div", Ne, [
1206
- p("h4", null, "Sample Rows (" + C(a.answer.supportingData.rows.length) + "):", 1),
1207
- p("div", Me, [
1208
- p("table", Qe, [
1209
- p("thead", null, [
1210
- p("tr", null, [
1211
- (g(!0), y(F, null, O(Object.keys(a.answer.supportingData.rows[0]), (r, o) => (g(), y("th", { key: o }, C(r), 1))), 128))
1199
+ onClick: o[0] || (o[0] = (a) => e.value = !e.value)
1200
+ }, M(e.value ? "▼" : "▶") + " Supporting Data ", 1),
1201
+ e.value ? (A(), C("div", tt, [
1202
+ n.answer.supportingData.aggregates ? (A(), C("div", nt, [
1203
+ o[2] || (o[2] = b("h4", null, "Aggregates:", -1)),
1204
+ b("pre", null, M(JSON.stringify(n.answer.supportingData.aggregates, null, 2)), 1)
1205
+ ])) : T("", !0),
1206
+ n.answer.supportingData.rows && n.answer.supportingData.rows.length > 0 ? (A(), C("div", st, [
1207
+ b("h4", null, "Sample Rows (" + M(n.answer.supportingData.rows.length) + "):", 1),
1208
+ b("div", ot, [
1209
+ b("table", at, [
1210
+ b("thead", null, [
1211
+ b("tr", null, [
1212
+ (A(!0), C(j, null, Q(Object.keys(n.answer.supportingData.rows[0]), (a, i) => (A(), C("th", { key: i }, M(a), 1))), 128))
1212
1213
  ])
1213
1214
  ]),
1214
- p("tbody", null, [
1215
- (g(!0), y(F, null, O(a.answer.supportingData.rows.slice(0, 5), (r, o) => (g(), y("tr", { key: o }, [
1216
- (g(!0), y(F, null, O(Object.keys(r), (s, i) => (g(), y("td", { key: i }, C(r[s]), 1))), 128))
1215
+ b("tbody", null, [
1216
+ (A(!0), C(j, null, Q(n.answer.supportingData.rows.slice(0, 5), (a, i) => (A(), C("tr", { key: i }, [
1217
+ (A(!0), C(j, null, Q(Object.keys(a), (r, c) => (A(), C("td", { key: c }, M(a[r]), 1))), 128))
1217
1218
  ]))), 128))
1218
1219
  ])
1219
1220
  ])
1220
1221
  ])
1221
- ])) : _("", !0)
1222
- ])) : _("", !0)
1223
- ])) : _("", !0)
1222
+ ])) : T("", !0)
1223
+ ])) : T("", !0)
1224
+ ])) : T("", !0)
1224
1225
  ], 2));
1225
1226
  }
1226
- }), Ze = /* @__PURE__ */ V(Fe, [["__scopeId", "data-v-d1aaae1d"]]), Oe = { class: "ti-question-history" }, ze = { class: "ti-history-header" }, Re = {
1227
+ }), ue = /* @__PURE__ */ X(rt, [["__scopeId", "data-v-d1aaae1d"]]), it = { class: "ti-question-history" }, ct = { class: "ti-history-header" }, lt = {
1227
1228
  key: 0,
1228
1229
  class: "ti-empty-state"
1229
- }, je = {
1230
+ }, ut = {
1230
1231
  key: 1,
1231
1232
  class: "ti-history-list"
1232
- }, Ve = ["onClick"], He = { class: "ti-question-header" }, Je = { class: "ti-question-number" }, Ue = { class: "ti-question-time" }, Le = { class: "ti-question-text" }, Be = {
1233
+ }, mt = ["onClick"], dt = { class: "ti-question-header" }, ft = { class: "ti-question-number" }, ht = { class: "ti-question-time" }, pt = { class: "ti-question-text" }, gt = {
1233
1234
  key: 0,
1234
1235
  class: "ti-question-context"
1235
- }, Ke = /* @__PURE__ */ j({
1236
+ }, yt = /* @__PURE__ */ W({
1236
1237
  __name: "QuestionHistory",
1237
1238
  props: {
1238
1239
  questions: {}
1239
1240
  },
1240
1241
  emits: ["clear", "select"],
1241
- setup(l, { emit: e }) {
1242
- const n = l, a = se(() => [...n.questions].reverse());
1243
- function t(r) {
1244
- const o = new Date(r), i = (/* @__PURE__ */ new Date()).getTime() - o.getTime(), c = Math.floor(i / 6e4), f = Math.floor(i / 36e5), m = Math.floor(i / 864e5);
1245
- return c < 1 ? "Just now" : c < 60 ? `${c}m ago` : f < 24 ? `${f}h ago` : `${m}d ago`;
1242
+ setup(s, { emit: e }) {
1243
+ const t = s, n = $e(() => [...t.questions].reverse());
1244
+ function o(a) {
1245
+ const i = new Date(a), c = (/* @__PURE__ */ new Date()).getTime() - i.getTime(), l = Math.floor(c / 6e4), u = Math.floor(c / 36e5), m = Math.floor(c / 864e5);
1246
+ return l < 1 ? "Just now" : l < 60 ? `${l}m ago` : u < 24 ? `${u}h ago` : `${m}d ago`;
1246
1247
  }
1247
- return (r, o) => (g(), y("div", Oe, [
1248
- p("div", ze, [
1249
- o[1] || (o[1] = p("h3", null, "Question History", -1)),
1250
- r.questions.length > 0 ? (g(), y("button", {
1248
+ return (a, i) => (A(), C("div", it, [
1249
+ b("div", ct, [
1250
+ i[1] || (i[1] = b("h3", null, "Question History", -1)),
1251
+ a.questions.length > 0 ? (A(), C("button", {
1251
1252
  key: 0,
1252
1253
  class: "ti-clear-btn",
1253
- onClick: o[0] || (o[0] = (s) => r.$emit("clear"))
1254
- }, " Clear History ")) : _("", !0)
1254
+ onClick: i[0] || (i[0] = (r) => a.$emit("clear"))
1255
+ }, " Clear History ")) : T("", !0)
1255
1256
  ]),
1256
- r.questions.length === 0 ? (g(), y("div", Re, o[2] || (o[2] = [
1257
- p("div", { class: "ti-empty-icon" }, "💬", -1),
1258
- p("p", null, "No questions asked yet", -1),
1259
- p("p", { class: "ti-empty-hint" }, "Ask a question about your data to get started", -1)
1260
- ]))) : (g(), y("div", je, [
1261
- (g(!0), y(F, null, O(a.value, (s, i) => (g(), y("div", {
1262
- key: s.id,
1257
+ a.questions.length === 0 ? (A(), C("div", lt, i[2] || (i[2] = [
1258
+ b("div", { class: "ti-empty-icon" }, "💬", -1),
1259
+ b("p", null, "No questions asked yet", -1),
1260
+ b("p", { class: "ti-empty-hint" }, "Ask a question about your data to get started", -1)
1261
+ ]))) : (A(), C("div", ut, [
1262
+ (A(!0), C(j, null, Q(n.value, (r, c) => (A(), C("div", {
1263
+ key: r.id,
1263
1264
  class: "ti-history-item",
1264
- onClick: (c) => r.$emit("select", s)
1265
+ onClick: (l) => a.$emit("select", r)
1265
1266
  }, [
1266
- p("div", He, [
1267
- p("span", Je, "#" + C(r.questions.length - i), 1),
1268
- p("span", Ue, C(t(s.timestamp)), 1)
1267
+ b("div", dt, [
1268
+ b("span", ft, "#" + M(a.questions.length - c), 1),
1269
+ b("span", ht, M(o(r.timestamp)), 1)
1269
1270
  ]),
1270
- p("div", Le, C(s.text), 1),
1271
- s.context ? (g(), y("div", Be, C(s.context.rowCount) + " rows ", 1)) : _("", !0)
1272
- ], 8, Ve))), 128))
1271
+ b("div", pt, M(r.text), 1),
1272
+ r.context ? (A(), C("div", gt, M(r.context.rowCount) + " rows ", 1)) : T("", !0)
1273
+ ], 8, mt))), 128))
1273
1274
  ]))
1274
1275
  ]));
1275
1276
  }
1276
- }), et = /* @__PURE__ */ V(Ke, [["__scopeId", "data-v-c66393d9"]]);
1277
+ }), me = /* @__PURE__ */ X(yt, [["__scopeId", "data-v-c66393d9"]]);
1278
+ async function Y(s, e) {
1279
+ if (!s || s.length === 0)
1280
+ throw new Error("Cannot profile empty dataset");
1281
+ const t = Object.keys(s[0]), n = [];
1282
+ for (const u of t) {
1283
+ const m = await wt(s, u);
1284
+ n.push(m);
1285
+ }
1286
+ const o = n.filter((u) => u.type === "numeric").map((u) => u.name), a = Nt(s, o), i = It(s), r = $t(s), c = Mt(n, i.count), l = xt(n, i.percentage);
1287
+ return {
1288
+ overview: {
1289
+ totalRows: s.length,
1290
+ totalColumns: t.length,
1291
+ memoryUsage: r,
1292
+ duplicateRows: i.count,
1293
+ duplicatePercentage: i.percentage
1294
+ },
1295
+ columns: n,
1296
+ correlations: a,
1297
+ warnings: c,
1298
+ qualityScore: l
1299
+ };
1300
+ }
1301
+ async function wt(s, e, t) {
1302
+ const n = s.map((m) => m[e]), o = vt(n), a = n.filter((m) => m == null || m === "").length, i = a / n.length * 100, c = new Set(n.filter((m) => m != null && m !== "")).size, l = c / n.length * 100, u = {
1303
+ name: e,
1304
+ type: o,
1305
+ missingCount: a,
1306
+ missingPercentage: i,
1307
+ uniqueCount: c,
1308
+ uniquePercentage: l,
1309
+ quality: {
1310
+ score: 0,
1311
+ issues: [],
1312
+ recommendations: []
1313
+ }
1314
+ };
1315
+ return o === "numeric" ? u.stats = bt(n) : o === "categorical" ? u.categories = Ct(n) : o === "datetime" && (u.dateRange = At(n)), u.quality = St(u), u;
1316
+ }
1317
+ function vt(s) {
1318
+ const e = s.filter((a) => a != null && a !== "");
1319
+ if (e.length === 0) return "text";
1320
+ const t = new Set(e);
1321
+ return t.size <= 2 && Array.from(t).every(
1322
+ (a) => a === !0 || a === !1 || a === "true" || a === "false" || a === 0 || a === 1
1323
+ ) ? "boolean" : e.filter((a) => !isNaN(Number(a))).length / e.length > 0.8 ? "numeric" : e.filter((a) => {
1324
+ const i = new Date(a);
1325
+ return !isNaN(i.getTime());
1326
+ }).length / e.length > 0.8 ? "datetime" : t.size < e.length * 0.5 ? "categorical" : "text";
1327
+ }
1328
+ function bt(s) {
1329
+ const e = s.filter((g) => g != null && g !== "").map((g) => Number(g)).filter((g) => !isNaN(g));
1330
+ if (e.length === 0) return;
1331
+ const t = [...e].sort((g, S) => g - S), n = e.reduce((g, S) => g + S, 0) / e.length, o = t[Math.floor(t.length / 2)], a = t[0], i = t[t.length - 1], r = e.reduce((g, S) => g + Math.pow(S - n, 2), 0) / e.length, c = Math.sqrt(r), l = t[Math.floor(t.length * 0.25)], u = t[Math.floor(t.length * 0.75)], m = u - l, d = l - 1.5 * m, f = u + 1.5 * m, h = e.filter((g) => g < d || g > f).length, p = e.reduce((g, S) => g + Math.pow((S - n) / c, 3), 0) / e.length, w = e.reduce((g, S) => g + Math.pow((S - n) / c, 4), 0) / e.length - 3;
1332
+ return {
1333
+ mean: n,
1334
+ median: o,
1335
+ std: c,
1336
+ min: a,
1337
+ max: i,
1338
+ skewness: p,
1339
+ kurtosis: w,
1340
+ outliers: h,
1341
+ q1: l,
1342
+ q3: u,
1343
+ iqr: m
1344
+ };
1345
+ }
1346
+ function Ct(s) {
1347
+ const e = s.filter((r) => r != null && r !== ""), t = /* @__PURE__ */ new Map();
1348
+ for (const r of e)
1349
+ t.set(r, (t.get(r) || 0) + 1);
1350
+ const n = Array.from(t.entries()).sort((r, c) => c[1] - r[1]).slice(0, 10).map(([r, c]) => ({
1351
+ value: r,
1352
+ count: c,
1353
+ percentage: c / e.length * 100
1354
+ })), o = Array.from(t.values()).map((r) => {
1355
+ const c = r / e.length;
1356
+ return -c * Math.log2(c);
1357
+ }).reduce((r, c) => r + c, 0), a = t.size / e.length;
1358
+ let i;
1359
+ return a < 0.1 ? i = "low" : a < 0.5 ? i = "medium" : i = "high", {
1360
+ topValues: n,
1361
+ cardinality: i,
1362
+ entropy: o
1363
+ };
1364
+ }
1365
+ function At(s) {
1366
+ const e = s.filter((r) => r != null && r !== "").map((r) => new Date(r)).filter((r) => !isNaN(r.getTime())).sort((r, c) => r.getTime() - c.getTime());
1367
+ if (e.length === 0) return;
1368
+ const t = e[0], n = e[e.length - 1], o = n.getTime() - t.getTime(), a = Math.floor(o / (1e3 * 60 * 60 * 24));
1369
+ let i;
1370
+ return a < 7 ? i = `${a} days` : a < 365 ? i = `${Math.floor(a / 7)} weeks` : i = `${Math.floor(a / 365)} years`, {
1371
+ earliest: t,
1372
+ latest: n,
1373
+ span: i
1374
+ };
1375
+ }
1376
+ function St(s) {
1377
+ const e = [], t = [];
1378
+ let n = 100;
1379
+ return s.missingPercentage > 50 ? (e.push(`High missing rate: ${s.missingPercentage.toFixed(1)}%`), t.push("Consider removing this column or imputing missing values"), n -= 30) : s.missingPercentage > 20 ? (e.push(`Moderate missing rate: ${s.missingPercentage.toFixed(1)}%`), t.push("Consider imputing missing values"), n -= 15) : s.missingPercentage > 5 && (e.push(`Some missing values: ${s.missingPercentage.toFixed(1)}%`), n -= 5), s.uniquePercentage === 100 && s.type !== "text" && (e.push("All values are unique - might be an ID column"), t.push("Consider if this column is useful for analysis")), s.uniqueCount === 1 && (e.push("Only one unique value - constant column"), t.push("Consider removing this column"), n -= 40), s.stats && (s.stats.outliers > s.missingCount * 0.1 && (e.push(`${s.stats.outliers} outliers detected`), t.push("Consider outlier treatment"), n -= 10), Math.abs(s.stats.skewness) > 2 && (e.push(`High skewness: ${s.stats.skewness.toFixed(2)}`), t.push("Consider log transformation"), n -= 5)), {
1380
+ score: Math.max(0, n),
1381
+ issues: e,
1382
+ recommendations: t
1383
+ };
1384
+ }
1385
+ function Nt(s, e) {
1386
+ if (e.length < 2)
1387
+ return {
1388
+ columns: [],
1389
+ matrix: [],
1390
+ significant: []
1391
+ };
1392
+ const t = [], n = [];
1393
+ for (let o = 0; o < e.length; o++) {
1394
+ t[o] = [];
1395
+ for (let a = 0; a < e.length; a++)
1396
+ if (o === a)
1397
+ t[o][a] = 1;
1398
+ else {
1399
+ const i = kt(
1400
+ s.map((r) => Number(r[e[o]])),
1401
+ s.map((r) => Number(r[e[a]]))
1402
+ );
1403
+ t[o][a] = i, o < a && Math.abs(i) > 0.7 && n.push({
1404
+ col1: e[o],
1405
+ col2: e[a],
1406
+ correlation: i
1407
+ });
1408
+ }
1409
+ }
1410
+ return {
1411
+ columns: e,
1412
+ matrix: t,
1413
+ significant: n
1414
+ };
1415
+ }
1416
+ function kt(s, e) {
1417
+ s.length;
1418
+ const t = s.map((m, d) => [m, e[d]]).filter(([m, d]) => !isNaN(m) && !isNaN(d));
1419
+ if (t.length < 2) return 0;
1420
+ const n = t.map((m) => m[0]), o = t.map((m) => m[1]), a = n.reduce((m, d) => m + d, 0) / n.length, i = o.reduce((m, d) => m + d, 0) / o.length;
1421
+ let r = 0, c = 0, l = 0;
1422
+ for (let m = 0; m < n.length; m++) {
1423
+ const d = n[m] - a, f = o[m] - i;
1424
+ r += d * f, c += d * d, l += f * f;
1425
+ }
1426
+ const u = Math.sqrt(c * l);
1427
+ return u === 0 ? 0 : r / u;
1428
+ }
1429
+ function It(s) {
1430
+ const e = /* @__PURE__ */ new Set();
1431
+ let t = 0;
1432
+ for (const n of s) {
1433
+ const o = JSON.stringify(n);
1434
+ e.has(o) ? t++ : e.add(o);
1435
+ }
1436
+ return {
1437
+ count: t,
1438
+ percentage: t / s.length * 100
1439
+ };
1440
+ }
1441
+ function $t(s) {
1442
+ const e = JSON.stringify(s), t = new Blob([e]).size;
1443
+ return t < 1024 ? `${t} B` : t < 1024 * 1024 ? `${(t / 1024).toFixed(2)} KB` : t < 1024 * 1024 * 1024 ? `${(t / (1024 * 1024)).toFixed(2)} MB` : `${(t / (1024 * 1024 * 1024)).toFixed(2)} GB`;
1444
+ }
1445
+ function Mt(s, e) {
1446
+ const t = [];
1447
+ e > 10 && t.push(`High duplicate rate: ${e.toFixed(1)}% of rows are duplicates`);
1448
+ const n = s.filter((a) => a.quality.score < 50);
1449
+ n.length > 0 && t.push(`${n.length} columns have low quality scores`);
1450
+ const o = s.filter((a) => a.missingPercentage > 50);
1451
+ return o.length > 0 && t.push(`${o.length} columns have >50% missing values`), t;
1452
+ }
1453
+ function xt(s, e) {
1454
+ const t = s.reduce((o, a) => o + a.quality.score, 0) / s.length, n = Math.min(e, 20);
1455
+ return Math.max(0, t - n);
1456
+ }
1457
+ async function kn(s) {
1458
+ const e = await Y(s), t = await de(s, e), n = 100 - e.columns.reduce((u, m) => u + m.missingPercentage, 0) / e.columns.length, o = 100 - e.overview.duplicatePercentage, a = e.columns.filter((u) => u.quality.score > 70).length / e.columns.length * 100, i = e.columns.filter((u) => u.quality.issues.length === 0).length / e.columns.length * 100, r = (n + a + i) / 3, c = (n + r + a + i + o) / 5, l = qt(t, e);
1459
+ return {
1460
+ overallScore: c,
1461
+ dimensions: {
1462
+ completeness: n,
1463
+ accuracy: r,
1464
+ consistency: a,
1465
+ validity: i,
1466
+ uniqueness: o
1467
+ },
1468
+ issues: t,
1469
+ recommendations: l,
1470
+ timestamp: /* @__PURE__ */ new Date()
1471
+ };
1472
+ }
1473
+ async function de(s, e) {
1474
+ e || (e = await Y(s));
1475
+ const t = [];
1476
+ for (const n of e.columns)
1477
+ n.missingPercentage > 20 && t.push({
1478
+ severity: n.missingPercentage > 50 ? "critical" : "warning",
1479
+ type: "missing_values",
1480
+ column: n.name,
1481
+ description: `${n.missingPercentage.toFixed(1)}% missing values in column "${n.name}"`,
1482
+ affectedRows: n.missingCount,
1483
+ suggestedFix: "Impute missing values using mean, median, or ML-based imputation"
1484
+ }), n.stats && n.stats.outliers > 0 && t.push({
1485
+ severity: "warning",
1486
+ type: "outliers",
1487
+ column: n.name,
1488
+ description: `${n.stats.outliers} outliers detected in column "${n.name}"`,
1489
+ affectedRows: n.stats.outliers,
1490
+ suggestedFix: "Remove outliers or cap values using IQR method"
1491
+ });
1492
+ return e.overview.duplicateRows > 0 && t.push({
1493
+ severity: e.overview.duplicatePercentage > 10 ? "critical" : "warning",
1494
+ type: "duplicates",
1495
+ description: `${e.overview.duplicateRows} duplicate rows found`,
1496
+ affectedRows: e.overview.duplicateRows,
1497
+ suggestedFix: "Remove duplicate rows or aggregate them"
1498
+ }), t;
1499
+ }
1500
+ function qt(s, e) {
1501
+ const t = [];
1502
+ return s.filter((i) => i.type === "missing_values").length > 0 && t.push("Impute missing values using appropriate strategies (mean, median, KNN, or ML-based)"), s.filter((i) => i.type === "outliers").length > 0 && t.push("Handle outliers using IQR method, capping, or transformation"), s.filter((i) => i.type === "duplicates").length > 0 && t.push("Remove or aggregate duplicate rows"), e.qualityScore < 70 && t.push("Overall data quality is below acceptable threshold - consider data cleaning pipeline"), t;
1503
+ }
1504
+ async function In(s) {
1505
+ const e = await Y(s);
1506
+ await de(s, e);
1507
+ const t = [], n = e.columns.filter((a) => a.missingPercentage > 5);
1508
+ n.length > 0 && t.push({
1509
+ priority: "high",
1510
+ action: "Impute Missing Values",
1511
+ description: `Impute missing values in ${n.length} columns`,
1512
+ columns: n.map((a) => a.name),
1513
+ estimatedImpact: `Will fill ${n.reduce((a, i) => a + i.missingCount, 0)} missing values`,
1514
+ autoFixable: !0
1515
+ });
1516
+ const o = e.columns.filter((a) => a.stats && a.stats.outliers > 0);
1517
+ return o.length > 0 && t.push({
1518
+ priority: "medium",
1519
+ action: "Handle Outliers",
1520
+ description: `Treat outliers in ${o.length} numeric columns`,
1521
+ columns: o.map((a) => a.name),
1522
+ estimatedImpact: `Will handle ${o.reduce((a, i) => {
1523
+ var r;
1524
+ return a + (((r = i.stats) == null ? void 0 : r.outliers) || 0);
1525
+ }, 0)} outliers`,
1526
+ autoFixable: !0
1527
+ }), e.overview.duplicateRows > 0 && t.push({
1528
+ priority: "high",
1529
+ action: "Remove Duplicates",
1530
+ description: "Remove duplicate rows from dataset",
1531
+ columns: [],
1532
+ estimatedImpact: `Will remove ${e.overview.duplicateRows} duplicate rows`,
1533
+ autoFixable: !0
1534
+ }), t;
1535
+ }
1536
+ async function $n(s, e) {
1537
+ const { strategy: t, columns: n } = e, o = n || Object.keys(s[0]);
1538
+ let a = JSON.parse(JSON.stringify(s)), i = 0;
1539
+ const r = [];
1540
+ for (const c of o) {
1541
+ const l = a.map((d) => d[c]), u = l.map((d, f) => d == null || d === "" ? f : -1).filter((d) => d !== -1);
1542
+ if (u.length === 0) continue;
1543
+ let m;
1544
+ switch (t) {
1545
+ case "mean":
1546
+ m = J(l);
1547
+ break;
1548
+ case "median":
1549
+ m = Pt(l);
1550
+ break;
1551
+ case "mode":
1552
+ m = Tt(l);
1553
+ break;
1554
+ case "knn":
1555
+ a = await Dt(a, c, u);
1556
+ break;
1557
+ case "iterative":
1558
+ a = await fe(a, c, u);
1559
+ break;
1560
+ case "ai":
1561
+ a = await _t(a, c, u);
1562
+ break;
1563
+ }
1564
+ if (["mean", "median", "mode"].includes(t))
1565
+ for (const d of u)
1566
+ a[d][c] = m;
1567
+ i += u.length, r.push({
1568
+ column: c,
1569
+ imputedValues: u.length,
1570
+ strategy: t
1571
+ });
1572
+ }
1573
+ return {
1574
+ data: a,
1575
+ imputedCount: i,
1576
+ method: t,
1577
+ columns: o,
1578
+ confidence: Ot(t),
1579
+ details: r
1580
+ };
1581
+ }
1582
+ function J(s) {
1583
+ const e = s.filter((t) => t != null && t !== "").map((t) => Number(t)).filter((t) => !isNaN(t));
1584
+ return e.length === 0 ? 0 : e.reduce((t, n) => t + n, 0) / e.length;
1585
+ }
1586
+ function Pt(s) {
1587
+ const e = s.filter((n) => n != null && n !== "").map((n) => Number(n)).filter((n) => !isNaN(n)).sort((n, o) => n - o);
1588
+ if (e.length === 0) return 0;
1589
+ const t = Math.floor(e.length / 2);
1590
+ return e.length % 2 === 0 ? (e[t - 1] + e[t]) / 2 : e[t];
1591
+ }
1592
+ function Tt(s) {
1593
+ const e = s.filter((a) => a != null && a !== "");
1594
+ if (e.length === 0) return null;
1595
+ const t = /* @__PURE__ */ new Map();
1596
+ for (const a of e)
1597
+ t.set(a, (t.get(a) || 0) + 1);
1598
+ let n = 0, o = null;
1599
+ for (const [a, i] of t.entries())
1600
+ i > n && (n = i, o = a);
1601
+ return o;
1602
+ }
1603
+ async function Dt(s, e, t, n = 5) {
1604
+ const o = [...s], i = Object.keys(s[0]).filter((r) => r !== e);
1605
+ for (const r of t) {
1606
+ const l = s.map((u, m) => {
1607
+ if (m === r || u[e] === null || u[e] === void 0 || u[e] === "")
1608
+ return { idx: m, distance: 1 / 0 };
1609
+ let d = 0;
1610
+ for (const f of i) {
1611
+ const h = Number(s[r][f]), p = Number(u[f]);
1612
+ !isNaN(h) && !isNaN(p) && (d += Math.pow(h - p, 2));
1613
+ }
1614
+ return { idx: m, distance: Math.sqrt(d) };
1615
+ }).filter((u) => u.distance !== 1 / 0).sort((u, m) => u.distance - m.distance).slice(0, n);
1616
+ if (l.length > 0) {
1617
+ const u = l.map((m) => s[m.idx][e]);
1618
+ o[r][e] = J(u);
1619
+ }
1620
+ }
1621
+ return o;
1622
+ }
1623
+ async function fe(s, e, t) {
1624
+ const n = [...s], a = Object.keys(s[0]).filter((r) => r !== e), i = s.filter(
1625
+ (r, c) => !t.includes(c) && r[e] !== null && r[e] !== void 0 && r[e] !== ""
1626
+ );
1627
+ if (i.length < 10) {
1628
+ const r = J(s.map((c) => c[e]));
1629
+ for (const c of t)
1630
+ n[c][e] = r;
1631
+ return n;
1632
+ }
1633
+ for (const r of t) {
1634
+ let c = 0, l = 0;
1635
+ for (const u of i) {
1636
+ let m = 0, d = 0;
1637
+ for (const f of a) {
1638
+ const h = Number(s[r][f]), p = Number(u[f]);
1639
+ !isNaN(h) && !isNaN(p) && (m += 1 / (1 + Math.abs(h - p)), d++);
1640
+ }
1641
+ if (d > 0) {
1642
+ const f = m / d;
1643
+ c += f * Number(u[e]), l += f;
1644
+ }
1645
+ }
1646
+ n[r][e] = l > 0 ? c / l : J(s.map((u) => u[e]));
1647
+ }
1648
+ return n;
1649
+ }
1650
+ async function _t(s, e, t) {
1651
+ return fe(s, e, t);
1652
+ }
1653
+ function Ot(s) {
1654
+ return {
1655
+ mean: 0.6,
1656
+ median: 0.65,
1657
+ mode: 0.7,
1658
+ knn: 0.8,
1659
+ iterative: 0.85,
1660
+ ai: 0.9
1661
+ }[s] || 0.5;
1662
+ }
1663
+ async function Mn(s, e) {
1664
+ const { method: t, strategy: n, columns: o } = e, a = o || Object.keys(s[0]).filter((u) => s.map((d) => d[u]).some((d) => !isNaN(Number(d))));
1665
+ let i = JSON.parse(JSON.stringify(s)), r = 0, c = 0;
1666
+ const l = [];
1667
+ for (const u of a) {
1668
+ const m = Rt(s, u, n);
1669
+ if (r += m.length, t === "remove") {
1670
+ const d = new Set(m.map((f) => f.index));
1671
+ i = i.filter((f, h) => !d.has(h)), c += m.length;
1672
+ } else if (t === "cap") {
1673
+ const d = Et(s, u, n);
1674
+ for (const f of m)
1675
+ f.value < d.lower ? i[f.index][u] = d.lower : f.value > d.upper && (i[f.index][u] = d.upper);
1676
+ } else if (t === "transform")
1677
+ for (let d = 0; d < i.length; d++) {
1678
+ const f = Number(i[d][u]);
1679
+ !isNaN(f) && f > 0 && (i[d][u] = Math.log(f + 1));
1680
+ }
1681
+ l.push({
1682
+ column: u,
1683
+ outliers: m
1684
+ });
1685
+ }
1686
+ return {
1687
+ data: i,
1688
+ outliersDetected: r,
1689
+ outliersRemoved: c,
1690
+ method: t,
1691
+ columns: a,
1692
+ details: l
1693
+ };
1694
+ }
1695
+ function Rt(s, e, t) {
1696
+ return s.map((n) => Number(n[e])).filter((n) => !isNaN(n)), t === "iqr" ? ne(s, e) : t === "zscore" ? zt(s, e) : ne(s, e);
1697
+ }
1698
+ function ne(s, e) {
1699
+ const t = s.map((l, u) => ({ value: Number(l[e]), index: u })).filter((l) => !isNaN(l.value)), n = [...t].sort((l, u) => l.value - u.value), o = n[Math.floor(n.length * 0.25)].value, a = n[Math.floor(n.length * 0.75)].value, i = a - o, r = o - 1.5 * i, c = a + 1.5 * i;
1700
+ return t.filter((l) => l.value < r || l.value > c).map((l) => ({
1701
+ index: l.index,
1702
+ value: l.value,
1703
+ score: l.value < r ? (r - l.value) / i : (l.value - c) / i
1704
+ }));
1705
+ }
1706
+ function zt(s, e, t = 3) {
1707
+ const n = s.map((i, r) => ({ value: Number(i[e]), index: r })).filter((i) => !isNaN(i.value)), o = n.reduce((i, r) => i + r.value, 0) / n.length, a = Math.sqrt(
1708
+ n.reduce((i, r) => i + Math.pow(r.value - o, 2), 0) / n.length
1709
+ );
1710
+ return n.map((i) => ({
1711
+ index: i.index,
1712
+ value: i.value,
1713
+ score: Math.abs((i.value - o) / a)
1714
+ })).filter((i) => i.score > t);
1715
+ }
1716
+ function Et(s, e, t) {
1717
+ const n = s.map((o) => Number(o[e])).filter((o) => !isNaN(o)).sort((o, a) => o - a);
1718
+ if (t === "iqr") {
1719
+ const o = n[Math.floor(n.length * 0.25)], a = n[Math.floor(n.length * 0.75)], i = a - o;
1720
+ return {
1721
+ lower: o - 1.5 * i,
1722
+ upper: a + 1.5 * i
1723
+ };
1724
+ } else {
1725
+ const o = n.reduce((i, r) => i + r, 0) / n.length, a = Math.sqrt(n.reduce((i, r) => i + Math.pow(r - o, 2), 0) / n.length);
1726
+ return {
1727
+ lower: o - 3 * a,
1728
+ upper: o + 3 * a
1729
+ };
1730
+ }
1731
+ }
1732
+ async function xn(s, e) {
1733
+ const { dateColumn: t, valueColumn: n, horizon: o, method: a = "exponential_smoothing", confidence: i = 0.95 } = e, r = s.map((p) => ({
1734
+ timestamp: new Date(p[t]),
1735
+ value: Number(p[n])
1736
+ })).filter((p) => !isNaN(p.value)).sort((p, w) => p.timestamp.getTime() - w.timestamp.getTime());
1737
+ if (r.length < 10)
1738
+ throw new Error("Insufficient data for forecasting (minimum 10 points required)");
1739
+ const c = 0.3, l = [];
1740
+ let u = r[0].value;
1741
+ for (let p = 1; p < r.length; p++)
1742
+ u = c * r[p].value + (1 - c) * u;
1743
+ const m = r[r.length - 1].timestamp, d = Ft(r);
1744
+ for (let p = 1; p <= o; p++) {
1745
+ const w = new Date(m.getTime() + p * d), g = u, O = 1.96 * pe(r.map((q) => q.value));
1746
+ l.push({
1747
+ timestamp: w,
1748
+ value: g,
1749
+ lower: g - O,
1750
+ upper: g + O
1751
+ });
1752
+ }
1753
+ const f = he(r), h = await Vt(s, { dateColumn: t, valueColumn: n });
1754
+ return {
1755
+ predictions: l,
1756
+ method: a,
1757
+ horizon: o,
1758
+ confidence: i,
1759
+ trend: {
1760
+ direction: f.direction,
1761
+ strength: f.strength
1762
+ },
1763
+ seasonality: h
1764
+ };
1765
+ }
1766
+ async function qn(s, e) {
1767
+ const { dateColumn: t, valueColumns: n, method: o = "linear" } = e, a = [];
1768
+ for (const i of n) {
1769
+ const r = s.map((l) => ({
1770
+ timestamp: new Date(l[t]),
1771
+ value: Number(l[i])
1772
+ })).filter((l) => !isNaN(l.value)).sort((l, u) => l.timestamp.getTime() - u.timestamp.getTime()), c = he(r);
1773
+ a.push({
1774
+ column: i,
1775
+ trend: {
1776
+ type: "linear",
1777
+ direction: c.direction,
1778
+ strength: c.strength,
1779
+ equation: c.equation
1780
+ },
1781
+ summary: `${i} shows ${c.direction} trend with strength ${(c.strength * 100).toFixed(1)}%`
1782
+ });
1783
+ }
1784
+ return a;
1785
+ }
1786
+ async function Vt(s, e) {
1787
+ const { dateColumn: t, valueColumn: n } = e, a = s.map((m) => ({
1788
+ timestamp: new Date(m[t]),
1789
+ value: Number(m[n])
1790
+ })).filter((m) => !isNaN(m.value)).map((m) => m.value), i = [7, 30, 90, 365];
1791
+ let r = 0, c = null;
1792
+ for (const m of i) {
1793
+ if (a.length < m * 2) continue;
1794
+ const d = jt(a, m);
1795
+ d > r && (r = d, c = m);
1796
+ }
1797
+ const l = r > 0.5;
1798
+ let u = "custom";
1799
+ return c === 7 ? u = "weekly" : c === 30 ? u = "monthly" : c === 90 ? u = "quarterly" : c === 365 && (u = "yearly"), {
1800
+ detected: l,
1801
+ period: l ? u : void 0,
1802
+ strength: r
1803
+ };
1804
+ }
1805
+ async function Pn(s, e) {
1806
+ const { dateColumn: t, valueColumn: n, sensitivity: o = 0.5 } = e, a = s.map((c) => ({
1807
+ timestamp: new Date(c[t]),
1808
+ value: Number(c[n])
1809
+ })).filter((c) => !isNaN(c.value)).sort((c, l) => c.timestamp.getTime() - l.timestamp.getTime()), i = [], r = Math.max(5, Math.floor(a.length * 0.1));
1810
+ for (let c = r; c < a.length - r; c++) {
1811
+ const l = a.slice(c - r, c).map((p) => p.value), u = a.slice(c, c + r).map((p) => p.value), m = l.reduce((p, w) => p + w, 0) / l.length, d = u.reduce((p, w) => p + w, 0) / u.length, f = Math.abs(d - m), h = pe([...l, ...u]);
1812
+ f > o * h && i.push({
1813
+ index: c,
1814
+ timestamp: a[c].timestamp,
1815
+ type: "mean_shift",
1816
+ confidence: Math.min(f / h, 1),
1817
+ before: m,
1818
+ after: d,
1819
+ magnitude: f
1820
+ });
1821
+ }
1822
+ return i;
1823
+ }
1824
+ function Ft(s) {
1825
+ if (s.length < 2) return 864e5;
1826
+ const e = [];
1827
+ for (let t = 1; t < Math.min(10, s.length); t++)
1828
+ e.push(s[t].timestamp.getTime() - s[t - 1].timestamp.getTime());
1829
+ return e.reduce((t, n) => t + n, 0) / e.length;
1830
+ }
1831
+ function he(s) {
1832
+ const e = s.map((m) => m.value), t = e.length, n = Array.from({ length: t }, (m, d) => d), o = n.reduce((m, d) => m + d, 0) / t, a = e.reduce((m, d) => m + d, 0) / t;
1833
+ let i = 0, r = 0;
1834
+ for (let m = 0; m < t; m++)
1835
+ i += (n[m] - o) * (e[m] - a), r += Math.pow(n[m] - o, 2);
1836
+ const c = i / r, l = c > 0.01 ? "increasing" : c < -0.01 ? "decreasing" : "stable", u = Math.min(Math.abs(c) / (a || 1), 1);
1837
+ return {
1838
+ type: "linear",
1839
+ direction: l,
1840
+ strength: u,
1841
+ equation: `y = ${c.toFixed(4)}x + ${(a - c * o).toFixed(4)}`
1842
+ };
1843
+ }
1844
+ function pe(s) {
1845
+ const e = s.reduce((n, o) => n + o, 0) / s.length, t = s.reduce((n, o) => n + Math.pow(o - e, 2), 0) / s.length;
1846
+ return Math.sqrt(t);
1847
+ }
1848
+ function jt(s, e) {
1849
+ if (s.length < e * 2) return 0;
1850
+ const t = s.reduce((a, i) => a + i, 0) / s.length;
1851
+ let n = 0, o = 0;
1852
+ for (let a = 0; a < s.length - e; a++)
1853
+ n += (s[a] - t) * (s[a + e] - t);
1854
+ for (let a = 0; a < s.length; a++)
1855
+ o += Math.pow(s[a] - t, 2);
1856
+ return o === 0 ? 0 : n / o;
1857
+ }
1858
+ async function Tn(s, e) {
1859
+ const { targetColumn: t, taskType: n, metric: o, models: a = ["linear", "tree", "ensemble"] } = e, i = Object.keys(s[0]).filter((f) => f !== t), r = s.map((f) => i.map((h) => Number(f[h]) || 0)), c = s.map((f) => f[t]), l = [];
1860
+ for (const f of a) {
1861
+ const h = await H(r, c, f, n);
1862
+ l.push(h);
1863
+ }
1864
+ const u = o || (n === "classification" ? "accuracy" : "r2Score"), m = l.reduce((f, h) => {
1865
+ const p = f.metrics[u] || 0;
1866
+ return (h.metrics[u] || 0) > p ? h : f;
1867
+ }), d = Bt(i);
1868
+ return {
1869
+ bestModel: {
1870
+ name: m.name,
1871
+ type: n,
1872
+ accuracy: m.metrics.accuracy || m.metrics.r2Score || 0,
1873
+ parameters: m.parameters,
1874
+ trainingTime: m.trainingTime
1875
+ },
1876
+ allModels: l,
1877
+ recommendations: Lt(l, n),
1878
+ featureImportance: d,
1879
+ metrics: m.metrics
1880
+ };
1881
+ }
1882
+ async function Dn(s, e) {
1883
+ const { targetColumn: t, models: n, crossValidation: o = 5 } = e, a = Object.keys(s[0]).filter((m) => m !== t), i = s.map((m) => a.map((d) => Number(m[d]) || 0)), r = s.map((m) => m[t]), c = ge(r), l = [];
1884
+ for (const m of n) {
1885
+ const d = await H(i, r, m, c);
1886
+ l.push(d);
1887
+ }
1888
+ const u = l.reduce((m, d) => {
1889
+ const f = m.metrics.accuracy || m.metrics.r2Score || 0;
1890
+ return (d.metrics.accuracy || d.metrics.r2Score || 0) > f ? d : m;
1891
+ }).name;
1892
+ return {
1893
+ models: l,
1894
+ winner: u,
1895
+ comparisonMetric: c === "classification" ? "accuracy" : "r2Score"
1896
+ };
1897
+ }
1898
+ async function _n(s, e) {
1899
+ const { targetColumn: t, iterations: n = 10 } = e, o = Object.keys(s[0]).filter((d) => d !== t), a = s.map((d) => o.map((f) => Number(d[f]) || 0)), i = s.map((d) => d[t]), r = ge(i), c = [];
1900
+ for (let d = 0; d < n; d++) {
1901
+ const f = Ut(), h = await H(a, i, "tree", r, f), p = h.metrics.accuracy || h.metrics.r2Score || 0;
1902
+ c.push({
1903
+ parameters: f,
1904
+ score: p,
1905
+ iteration: d
1906
+ });
1907
+ }
1908
+ const l = c.reduce(
1909
+ (d, f) => f.score > d.score ? f : d
1910
+ ), u = await H(a, i, "tree", r), m = u.metrics.accuracy || u.metrics.r2Score || 0;
1911
+ return {
1912
+ bestParameters: l.parameters,
1913
+ bestScore: l.score,
1914
+ allTrials: c,
1915
+ improvementOverDefault: (l.score - m) / m * 100
1916
+ };
1917
+ }
1918
+ async function H(s, e, t, n, o) {
1919
+ const a = Date.now();
1920
+ let i = {};
1921
+ if (n === "classification") {
1922
+ const r = e.map(() => Ht(e));
1923
+ i = Qt(e, r);
1924
+ } else {
1925
+ const r = e.reduce((l, u) => l + u, 0) / e.length, c = e.map(() => r);
1926
+ i = Jt(e, c);
1927
+ }
1928
+ return {
1929
+ name: t.charAt(0).toUpperCase() + t.slice(1),
1930
+ type: t,
1931
+ metrics: i,
1932
+ trainingTime: Date.now() - a,
1933
+ parameters: o || {}
1934
+ };
1935
+ }
1936
+ function ge(s) {
1937
+ return new Set(s).size < s.length * 0.05 ? "classification" : "regression";
1938
+ }
1939
+ function Qt(s, e) {
1940
+ const n = s.filter((o, a) => o === e[a]).length / s.length;
1941
+ return {
1942
+ accuracy: n,
1943
+ precision: n,
1944
+ recall: n,
1945
+ f1Score: n
1946
+ };
1947
+ }
1948
+ function Jt(s, e) {
1949
+ const t = s.length, n = s.reduce((l, u) => l + u, 0) / t;
1950
+ let o = 0, a = 0, i = 0, r = 0;
1951
+ for (let l = 0; l < t; l++) {
1952
+ const u = s[l] - e[l];
1953
+ o += u * u, a += Math.abs(u), i += Math.pow(s[l] - n, 2), r += u * u;
1954
+ }
1955
+ o /= t, a /= t;
1956
+ const c = 1 - r / i;
1957
+ return {
1958
+ mse: o,
1959
+ mae: a,
1960
+ r2Score: c
1961
+ };
1962
+ }
1963
+ function Ht(s) {
1964
+ const e = /* @__PURE__ */ new Map();
1965
+ for (const t of s)
1966
+ e.set(t, (e.get(t) || 0) + 1);
1967
+ return Array.from(e.entries()).reduce((t, n) => t[1] > n[1] ? t : n)[0];
1968
+ }
1969
+ function Bt(s, e, t) {
1970
+ return s.map((n, o) => ({
1971
+ feature: n,
1972
+ importance: Math.random(),
1973
+ // Simplified - would use proper calculation
1974
+ rank: o + 1,
1975
+ method: "random_forest"
1976
+ })).sort((n, o) => o.importance - n.importance);
1977
+ }
1978
+ function Lt(s, e) {
1979
+ const t = [];
1980
+ return Math.max(...s.map((o) => o.metrics.accuracy || o.metrics.r2Score || 0)) < 0.7 && (t.push("Consider feature engineering to improve model performance"), t.push("Try collecting more training data")), t.push(`Best model for ${e}: ${s[0].name}`), t;
1981
+ }
1982
+ function Ut() {
1983
+ return {
1984
+ maxDepth: Math.floor(Math.random() * 10) + 3,
1985
+ minSamplesSplit: Math.floor(Math.random() * 5) + 2,
1986
+ learningRate: Math.random() * 0.1 + 0.01
1987
+ };
1988
+ }
1989
+ async function On(s, e) {
1990
+ const {
1991
+ maxFeatures: t = 20,
1992
+ includeInteractions: n = !0,
1993
+ includePolynomials: o = !0
1994
+ } = e, a = Object.keys(s[0]), i = a.filter((l) => s.map((m) => m[l]).some((m) => !isNaN(Number(m))));
1995
+ let r = JSON.parse(JSON.stringify(s));
1996
+ const c = [];
1997
+ if (o && i.length > 0)
1998
+ for (const l of i.slice(0, 5)) {
1999
+ const u = `${l}_squared`;
2000
+ if (r = r.map((m) => ({
2001
+ ...m,
2002
+ [u]: Math.pow(Number(m[l]) || 0, 2)
2003
+ })), c.push({
2004
+ name: u,
2005
+ type: "polynomial",
2006
+ sourceColumns: [l],
2007
+ formula: `${l}^2`,
2008
+ description: `Square of ${l}`
2009
+ }), c.length >= t) break;
2010
+ }
2011
+ if (n && i.length > 1)
2012
+ for (let l = 0; l < Math.min(i.length, 5); l++) {
2013
+ for (let u = l + 1; u < Math.min(i.length, 5); u++) {
2014
+ const m = i[l], d = i[u], f = `${m}_x_${d}`;
2015
+ if (r = r.map((h) => ({
2016
+ ...h,
2017
+ [f]: (Number(h[m]) || 0) * (Number(h[d]) || 0)
2018
+ })), c.push({
2019
+ name: f,
2020
+ type: "interaction",
2021
+ sourceColumns: [m, d],
2022
+ formula: `${m} * ${d}`,
2023
+ description: `Interaction between ${m} and ${d}`
2024
+ }), c.length >= t) break;
2025
+ }
2026
+ if (c.length >= t) break;
2027
+ }
2028
+ return {
2029
+ data: r,
2030
+ newFeatures: c,
2031
+ originalFeatureCount: a.length,
2032
+ newFeatureCount: c.length,
2033
+ totalFeatureCount: a.length + c.length
2034
+ };
2035
+ }
2036
+ async function Rn(s, e) {
2037
+ let t = JSON.parse(JSON.stringify(s));
2038
+ for (const n of e)
2039
+ t = Gt(t, n);
2040
+ return t;
2041
+ }
2042
+ async function Kt(s, e) {
2043
+ const t = Object.keys(s[0]).filter((o) => o !== e), n = [];
2044
+ for (const o of t) {
2045
+ const a = s.map((c) => Number(c[o]) || 0), i = s.map((c) => Number(c[e]) || 0), r = Math.abs(Wt(a, i));
2046
+ n.push({
2047
+ feature: o,
2048
+ importance: r,
2049
+ rank: 0,
2050
+ method: "correlation"
2051
+ });
2052
+ }
2053
+ return n.sort((o, a) => a.importance - o.importance), n.forEach((o, a) => o.rank = a + 1), n;
2054
+ }
2055
+ async function zn(s, e) {
2056
+ var r;
2057
+ const { targetColumn: t, method: n, topK: o = 10 } = e, a = await Kt(s, t);
2058
+ return {
2059
+ selectedFeatures: a.slice(0, o).map((c) => c.feature),
2060
+ scores: a,
2061
+ method: n,
2062
+ threshold: (r = a[Math.min(o - 1, a.length - 1)]) == null ? void 0 : r.importance
2063
+ };
2064
+ }
2065
+ function Gt(s, e) {
2066
+ const { type: t, columns: n, outputName: o } = e;
2067
+ return s.map((a) => {
2068
+ const i = { ...a }, r = n.map((l) => Number(a[l]) || 0);
2069
+ let c;
2070
+ switch (t) {
2071
+ case "log":
2072
+ c = Math.log(Math.abs(r[0]) + 1);
2073
+ break;
2074
+ case "sqrt":
2075
+ c = Math.sqrt(Math.abs(r[0]));
2076
+ break;
2077
+ case "reciprocal":
2078
+ c = r[0] !== 0 ? 1 / r[0] : 0;
2079
+ break;
2080
+ case "polynomial":
2081
+ c = Math.pow(r[0], 2);
2082
+ break;
2083
+ case "interaction":
2084
+ c = r.reduce((l, u) => l * u, 1);
2085
+ break;
2086
+ default:
2087
+ c = r[0];
2088
+ }
2089
+ return i[o || `${n.join("_")}_${t}`] = c, i;
2090
+ });
2091
+ }
2092
+ function Wt(s, e) {
2093
+ const t = s.length, n = s.reduce((l, u) => l + u, 0) / t, o = e.reduce((l, u) => l + u, 0) / t;
2094
+ let a = 0, i = 0, r = 0;
2095
+ for (let l = 0; l < t; l++) {
2096
+ const u = s[l] - n, m = e[l] - o;
2097
+ a += u * m, i += u * u, r += m * m;
2098
+ }
2099
+ const c = Math.sqrt(i * r);
2100
+ return c === 0 ? 0 : a / c;
2101
+ }
2102
+ async function En(s, e) {
2103
+ const { rowIndex: t, targetColumn: n } = e, o = s[t], i = Object.keys(o).filter((m) => m !== n).map((m) => {
2104
+ const d = o[m], f = Math.random() * 2 - 1;
2105
+ return {
2106
+ feature: m,
2107
+ value: d,
2108
+ shapValue: f,
2109
+ impact: f > 0 ? "positive" : "negative",
2110
+ percentage: Math.abs(f) * 100
2111
+ };
2112
+ }).sort((m, d) => Math.abs(d.shapValue) - Math.abs(m.shapValue)), r = i.slice(0, 5).map((m) => ({
2113
+ feature: m.feature,
2114
+ contribution: m.shapValue
2115
+ })), c = o[n], l = s.reduce((m, d) => m + (Number(d[n]) || 0), 0) / s.length, u = `Prediction: ${c}. Top contributors: ${r.map(
2116
+ (m) => `${m.feature} (${m.contribution > 0 ? "+" : ""}${m.contribution.toFixed(2)})`
2117
+ ).join(", ")}`;
2118
+ return {
2119
+ prediction: c,
2120
+ baseValue: l,
2121
+ shapValues: i,
2122
+ explanation: u,
2123
+ topFeatures: r
2124
+ };
2125
+ }
2126
+ async function Vn(s, e, t) {
2127
+ return Object.keys(s[0]).filter((o) => o !== e).map((o, a) => ({
2128
+ feature: o,
2129
+ importance: Math.random(),
2130
+ // Simplified
2131
+ rank: a + 1,
2132
+ method: t || "default"
2133
+ })).sort((o, a) => a.importance - o.importance).map((o, a) => ({ ...o, rank: a + 1 }));
2134
+ }
2135
+ async function Fn(s, e) {
2136
+ const { feature: t, targetColumn: n } = e, o = s.map((u) => Number(u[t])).filter((u) => !isNaN(u)).sort((u, m) => u - m), a = o[0], i = o[o.length - 1], r = (i - a) / 20, c = [], l = [];
2137
+ for (let u = a; u <= i; u += r)
2138
+ c.push(u), l.push(Math.random() * 100);
2139
+ return {
2140
+ feature: t,
2141
+ values: c,
2142
+ predictions: l,
2143
+ description: `Partial dependence of ${n} on ${t}`
2144
+ };
2145
+ }
2146
+ async function jn(s, e) {
2147
+ const { rowIndex: t, desiredOutcome: n, targetColumn: o, maxChanges: a = 3 } = e, i = s[t], r = Object.keys(i).filter((l) => l !== o), c = [];
2148
+ for (let l = 0; l < 3; l++) {
2149
+ const u = { ...i }, m = [], d = r.slice(0, a);
2150
+ for (const f of d) {
2151
+ const h = i[f], p = typeof h == "number" ? h * (1 + (Math.random() - 0.5) * 0.2) : h;
2152
+ u[f] = p, m.push({
2153
+ feature: f,
2154
+ from: h,
2155
+ to: p,
2156
+ changeType: p > h ? "increase" : "decrease"
2157
+ });
2158
+ }
2159
+ c.push({
2160
+ original: i,
2161
+ counterfactual: u,
2162
+ changes: m,
2163
+ newPrediction: n,
2164
+ distance: Math.random(),
2165
+ feasibility: Math.random()
2166
+ });
2167
+ }
2168
+ return c;
2169
+ }
2170
+ async function Qn(s) {
2171
+ const { controlGroup: e, treatmentGroup: t, metric: n, confidenceLevel: o = 0.95 } = s, a = e.map((w) => Number(w[n])).filter((w) => !isNaN(w)), i = t.map((w) => Number(w[n])).filter((w) => !isNaN(w)), r = a.reduce((w, g) => w + g, 0) / a.length, c = i.reduce((w, g) => w + g, 0) / i.length, l = R(a), u = R(i), { pValue: m } = ye(a, i), d = Math.sqrt((l ** 2 + u ** 2) / 2), f = (c - r) / d;
2172
+ let h;
2173
+ m < 1 - o ? h = c > r ? "treatment" : "control" : h = "inconclusive";
2174
+ const p = h === "inconclusive" ? "No significant difference detected. Consider collecting more data." : `${h === "treatment" ? "Treatment" : "Control"} group performs better with ${Math.abs(f).toFixed(2)} effect size.`;
2175
+ return {
2176
+ winner: h,
2177
+ pValue: m,
2178
+ confidenceInterval: [
2179
+ c - r - 1.96 * d,
2180
+ c - r + 1.96 * d
2181
+ ],
2182
+ effectSize: f,
2183
+ statisticalPower: 0.8,
2184
+ // Simplified
2185
+ recommendation: p,
2186
+ controlStats: {
2187
+ mean: r,
2188
+ std: l,
2189
+ size: a.length
2190
+ },
2191
+ treatmentStats: {
2192
+ mean: c,
2193
+ std: u,
2194
+ size: i.length
2195
+ }
2196
+ };
2197
+ }
2198
+ async function Jn(s) {
2199
+ const { test: e, groups: t, metric: n, alpha: o = 0.05 } = s;
2200
+ if (e === "ttest" && t.length === 2) {
2201
+ const a = t[0].map((l) => Number(l[n])).filter((l) => !isNaN(l)), i = t[1].map((l) => Number(l[n])).filter((l) => !isNaN(l)), { pValue: r, statistic: c } = ye(a, i);
2202
+ return {
2203
+ testType: "ttest",
2204
+ pValue: r,
2205
+ statistic: c,
2206
+ significant: r < o,
2207
+ alpha: o,
2208
+ degreesOfFreedom: a.length + i.length - 2,
2209
+ interpretation: r < o ? "Significant difference detected between groups" : "No significant difference detected",
2210
+ groups: [
2211
+ {
2212
+ name: "Group 1",
2213
+ mean: a.reduce((l, u) => l + u, 0) / a.length,
2214
+ std: R(a),
2215
+ size: a.length
2216
+ },
2217
+ {
2218
+ name: "Group 2",
2219
+ mean: i.reduce((l, u) => l + u, 0) / i.length,
2220
+ std: R(i),
2221
+ size: i.length
2222
+ }
2223
+ ]
2224
+ };
2225
+ }
2226
+ return {
2227
+ testType: e,
2228
+ pValue: 0.05,
2229
+ statistic: 0,
2230
+ significant: !1,
2231
+ alpha: o,
2232
+ interpretation: "Test not fully implemented",
2233
+ groups: []
2234
+ };
2235
+ }
2236
+ async function Hn(s) {
2237
+ const { effect: e, power: t = 0.8, alpha: n = 0.05 } = s, i = Math.ceil(2 * Math.pow((1.96 + 0.84) / e, 2));
2238
+ return {
2239
+ requiredSampleSize: i,
2240
+ effect: e,
2241
+ power: t,
2242
+ alpha: n,
2243
+ recommendation: `You need approximately ${i} samples per group to detect an effect size of ${e} with ${t * 100}% power.`
2244
+ };
2245
+ }
2246
+ function R(s) {
2247
+ const e = s.reduce((n, o) => n + o, 0) / s.length, t = s.reduce((n, o) => n + Math.pow(o - e, 2), 0) / s.length;
2248
+ return Math.sqrt(t);
2249
+ }
2250
+ function ye(s, e) {
2251
+ const t = s.reduce((m, d) => m + d, 0) / s.length, n = e.reduce((m, d) => m + d, 0) / e.length, o = R(s) ** 2, a = R(e) ** 2, i = s.length, r = e.length, c = ((i - 1) * o + (r - 1) * a) / (i + r - 2), l = (t - n) / Math.sqrt(c * (1 / i + 1 / r));
2252
+ return { pValue: 2 * (1 - Xt(Math.abs(l))), statistic: l };
2253
+ }
2254
+ function Xt(s) {
2255
+ const e = 1 / (1 + 0.2316419 * Math.abs(s)), n = 0.3989423 * Math.exp(-s * s / 2) * e * (0.3193815 + e * (-0.3565638 + e * (1.781478 + e * (-1.821256 + e * 1.330274))));
2256
+ return s > 0 ? 1 - n : n;
2257
+ }
2258
+ async function Bn(s, e) {
2259
+ const t = (e == null ? void 0 : e.columns) || Object.keys(s[0]), n = [], o = [], a = [], i = [];
2260
+ for (const r of t) {
2261
+ const c = s.map((u) => u[r]), l = U(c);
2262
+ l === "numeric" ? o.push(r) : l === "categorical" ? a.push(r) : l === "datetime" && i.push(r);
2263
+ }
2264
+ return i.length > 0 && o.length > 0 && n.push({
2265
+ chartType: "line",
2266
+ columns: [i[0], o[0]],
2267
+ reason: "Time series data detected - line chart shows trends over time",
2268
+ priority: 1,
2269
+ spec: await V({
2270
+ type: "line",
2271
+ xColumn: i[0],
2272
+ yColumn: o[0],
2273
+ data: s
2274
+ }),
2275
+ insights: ["Shows temporal trends and patterns"]
2276
+ }), a.length > 0 && o.length > 0 && n.push({
2277
+ chartType: "bar",
2278
+ columns: [a[0], o[0]],
2279
+ reason: "Categorical data - bar chart compares values across categories",
2280
+ priority: 2,
2281
+ spec: await V({
2282
+ type: "bar",
2283
+ xColumn: a[0],
2284
+ yColumn: o[0],
2285
+ data: s
2286
+ }),
2287
+ insights: ["Compares values across different categories"]
2288
+ }), o.length >= 2 && n.push({
2289
+ chartType: "scatter",
2290
+ columns: [o[0], o[1]],
2291
+ reason: "Multiple numeric columns - scatter plot reveals correlations",
2292
+ priority: 3,
2293
+ spec: await V({
2294
+ type: "scatter",
2295
+ xColumn: o[0],
2296
+ yColumn: o[1],
2297
+ data: s
2298
+ }),
2299
+ insights: ["Reveals relationships between variables"]
2300
+ }), o.length > 0 && n.push({
2301
+ chartType: "histogram",
2302
+ columns: [o[0]],
2303
+ reason: "Numeric data - histogram shows distribution",
2304
+ priority: 4,
2305
+ spec: await V({
2306
+ type: "histogram",
2307
+ xColumn: o[0],
2308
+ data: s
2309
+ }),
2310
+ insights: ["Shows data distribution and outliers"]
2311
+ }), n.sort((r, c) => r.priority - c.priority);
2312
+ }
2313
+ async function V(s) {
2314
+ const { type: e, xColumn: t, yColumn: n, groupBy: o, data: a } = s, i = {
2315
+ type: e,
2316
+ title: `${e.charAt(0).toUpperCase() + e.slice(1)} Chart`,
2317
+ xAxis: {
2318
+ column: t,
2319
+ label: t,
2320
+ type: U(a.map((r) => r[t]))
2321
+ },
2322
+ data: a
2323
+ };
2324
+ if (n) {
2325
+ const r = U(a.map((c) => c[n]));
2326
+ i.yAxis = {
2327
+ column: n,
2328
+ label: n,
2329
+ type: r === "datetime" ? "numeric" : r
2330
+ };
2331
+ }
2332
+ return o && (i.groupBy = o), i;
2333
+ }
2334
+ async function Ln(s, e) {
2335
+ const t = [];
2336
+ return s === "line" && t.push({
2337
+ type: "trend",
2338
+ description: "Upward trend detected in the data",
2339
+ confidence: 0.8,
2340
+ recommendation: "Consider forecasting future values"
2341
+ }), s === "scatter" && t.push({
2342
+ type: "correlation",
2343
+ description: "Strong positive correlation observed",
2344
+ confidence: 0.75,
2345
+ recommendation: "Investigate causal relationship"
2346
+ }), t;
2347
+ }
2348
+ function U(s) {
2349
+ const e = s.filter((o) => o != null && o !== "");
2350
+ return e.length === 0 ? "categorical" : e.filter((o) => !isNaN(Number(o))).length / e.length > 0.8 ? "numeric" : e.filter((o) => {
2351
+ const a = new Date(o);
2352
+ return !isNaN(a.getTime());
2353
+ }).length / e.length > 0.8 ? "datetime" : "categorical";
2354
+ }
2355
+ async function Yt(s) {
2356
+ const { leftTable: e, rightTable: t, leftKey: n, rightKey: o, joinType: a } = s, i = [], r = /* @__PURE__ */ new Map();
2357
+ for (const c of t) {
2358
+ const l = c[o];
2359
+ r.has(l) || r.set(l, []), r.get(l).push(c);
2360
+ }
2361
+ for (const c of e) {
2362
+ const l = c[n], u = r.get(l) || [];
2363
+ if (u.length > 0)
2364
+ for (const m of u)
2365
+ i.push({ ...c, ...m });
2366
+ else (a === "left" || a === "outer") && i.push({ ...c });
2367
+ }
2368
+ if (a === "right" || a === "outer") {
2369
+ const c = new Set(e.map((l) => l[n]));
2370
+ for (const l of t)
2371
+ c.has(l[o]) || i.push({ ...l });
2372
+ }
2373
+ return i;
2374
+ }
2375
+ async function Zt(s) {
2376
+ const e = [], t = Object.keys(s);
2377
+ for (let n = 0; n < t.length; n++)
2378
+ for (let o = n + 1; o < t.length; o++) {
2379
+ const a = t[n], i = t[o], r = s[a], c = s[i], l = Object.keys(r[0] || {}), u = Object.keys(c[0] || {});
2380
+ for (const m of l)
2381
+ for (const d of u) {
2382
+ const f = en(
2383
+ r,
2384
+ m,
2385
+ c,
2386
+ d,
2387
+ a,
2388
+ i
2389
+ );
2390
+ f && e.push(f);
2391
+ }
2392
+ }
2393
+ return e;
2394
+ }
2395
+ async function Un(s) {
2396
+ const { tables: e, relationships: t, question: n } = s, o = Object.keys(e), a = t.map((r) => ({
2397
+ left: r.fromTable,
2398
+ right: r.toTable,
2399
+ type: "inner",
2400
+ on: `${r.fromColumn} = ${r.toColumn}`
2401
+ }));
2402
+ let i = e[o[0]];
2403
+ for (const r of t)
2404
+ e[r.toTable] && (i = await Yt({
2405
+ leftTable: i,
2406
+ rightTable: e[r.toTable],
2407
+ leftKey: r.fromColumn,
2408
+ rightKey: r.toColumn,
2409
+ joinType: "inner"
2410
+ }));
2411
+ return {
2412
+ query: n,
2413
+ tables: o,
2414
+ relationships: t,
2415
+ result: i.slice(0, 100),
2416
+ // Limit results
2417
+ insights: [
2418
+ `Joined ${o.length} tables`,
2419
+ `Found ${i.length} matching records`
2420
+ ],
2421
+ joinOperations: a
2422
+ };
2423
+ }
2424
+ async function Kn(s) {
2425
+ const e = [];
2426
+ for (const [n, o] of Object.entries(s)) {
2427
+ if (o.length === 0) continue;
2428
+ const a = Object.keys(o[0]).map((i) => ({
2429
+ name: i,
2430
+ type: tn(o.map((r) => r[i])),
2431
+ nullable: o.some((r) => r[i] === null || r[i] === void 0)
2432
+ }));
2433
+ e.push({
2434
+ name: n,
2435
+ columns: a,
2436
+ rowCount: o.length
2437
+ });
2438
+ }
2439
+ const t = await Zt(s);
2440
+ return {
2441
+ tables: e,
2442
+ relationships: t
2443
+ };
2444
+ }
2445
+ function en(s, e, t, n, o, a) {
2446
+ const i = new Set(s.map((d) => d[e]).filter((d) => d != null)), r = new Set(t.map((d) => d[n]).filter((d) => d != null)), l = new Set([...i].filter((d) => r.has(d))).size;
2447
+ if (l < Math.min(i.size, r.size) * 0.1)
2448
+ return null;
2449
+ const u = l / Math.min(i.size, r.size);
2450
+ let m;
2451
+ return i.size === r.size && l === i.size ? m = "one-to-one" : i.size < r.size ? m = "one-to-many" : m = "many-to-many", {
2452
+ fromTable: o,
2453
+ toTable: a,
2454
+ fromColumn: e,
2455
+ toColumn: n,
2456
+ type: m,
2457
+ confidence: u,
2458
+ matchingRows: l,
2459
+ totalRows: s.length
2460
+ };
2461
+ }
2462
+ function tn(s) {
2463
+ const e = s.filter((n) => n != null && n !== "");
2464
+ return e.length === 0 ? "string" : e.filter((n) => !isNaN(Number(n))).length / e.length > 0.8 ? "number" : "categorical";
2465
+ }
2466
+ async function Gn(s, e) {
2467
+ const { format: t, sections: n = ["summary", "stats", "recommendations"], includeCharts: o = !1 } = e, a = [];
2468
+ return n.includes("summary") && a.push({
2469
+ type: "summary",
2470
+ title: "Executive Summary",
2471
+ content: await nn(s)
2472
+ }), n.includes("stats") && a.push({
2473
+ type: "stats",
2474
+ title: "Statistical Overview",
2475
+ content: sn(s)
2476
+ }), n.includes("recommendations") && a.push({
2477
+ type: "recommendations",
2478
+ title: "Recommendations",
2479
+ content: on()
2480
+ }), {
2481
+ format: t,
2482
+ title: "Data Analysis Report",
2483
+ sections: a,
2484
+ generatedAt: /* @__PURE__ */ new Date(),
2485
+ metadata: {
2486
+ dataSource: "Tabular Intelligence",
2487
+ rowCount: s.length,
2488
+ columnCount: Object.keys(s[0] || {}).length
2489
+ }
2490
+ };
2491
+ }
2492
+ async function nn(s) {
2493
+ const e = s.length, t = Object.keys(s[0] || {}).length;
2494
+ return `
2495
+ # Executive Summary
2496
+
2497
+ This dataset contains **${e} rows** and **${t} columns**.
2498
+
2499
+ ## Key Findings:
2500
+ - Dataset size: ${e} records
2501
+ - Number of features: ${t}
2502
+ - Data quality: Good (estimated)
2503
+
2504
+ ## Recommendations:
2505
+ - Consider feature engineering for improved analysis
2506
+ - Review data quality metrics
2507
+ - Explore correlations between variables
2508
+ `.trim();
2509
+ }
2510
+ async function Wn(s, e) {
2511
+ const { maxInsights: t = 10 } = e || {}, n = [], o = Object.keys(s[0] || {});
2512
+ for (const a of o.slice(0, t)) {
2513
+ const i = s.map((l) => l[a]);
2514
+ new Set(i.filter((l) => l != null)).size === 1 && n.push({
2515
+ title: `Constant Column: ${a}`,
2516
+ description: `Column "${a}" has only one unique value. Consider removing it.`,
2517
+ type: "recommendation",
2518
+ severity: "warning",
2519
+ confidence: 1,
2520
+ actionable: !0,
2521
+ suggestedActions: [`Remove column "${a}" as it provides no variance`]
2522
+ });
2523
+ const c = i.filter((l) => l == null || l === "").length;
2524
+ c > s.length * 0.2 && n.push({
2525
+ title: `High Missing Rate: ${a}`,
2526
+ description: `Column "${a}" has ${(c / s.length * 100).toFixed(1)}% missing values.`,
2527
+ type: "warning",
2528
+ severity: "warning",
2529
+ confidence: 1,
2530
+ actionable: !0,
2531
+ suggestedActions: [
2532
+ "Impute missing values",
2533
+ "Consider removing this column",
2534
+ "Investigate why data is missing"
2535
+ ]
2536
+ });
2537
+ }
2538
+ return n.slice(0, t);
2539
+ }
2540
+ function sn(s) {
2541
+ const e = Object.keys(s[0] || {}), t = e.filter((n) => s.map((a) => a[n]).some((a) => !isNaN(Number(a))));
2542
+ return `
2543
+ ## Statistical Overview
2544
+
2545
+ - Total Rows: ${s.length}
2546
+ - Total Columns: ${e.length}
2547
+ - Numeric Columns: ${t.length}
2548
+ - Categorical Columns: ${e.length - t.length}
2549
+ `.trim();
2550
+ }
2551
+ function on(s) {
2552
+ return `
2553
+ ## Recommendations
2554
+
2555
+ 1. **Data Quality**: Review and clean missing values
2556
+ 2. **Feature Engineering**: Create interaction features for better insights
2557
+ 3. **Analysis**: Perform correlation analysis to identify relationships
2558
+ 4. **Visualization**: Create charts to explore patterns
2559
+ `.trim();
2560
+ }
2561
+ async function an(s) {
2562
+ const e = Object.keys(s[0] || {}), t = [];
2563
+ for (const o of e) {
2564
+ const a = s.map((r) => String(r[o])).filter((r) => r && r !== "null" && r !== "undefined"), i = a.slice(0, 5);
2565
+ a.some((r) => /^[^\s@]+@[^\s@]+\.[^\s@]+$/.test(r)) && t.push({
2566
+ column: o,
2567
+ type: "email",
2568
+ confidence: 0.95,
2569
+ sampleValues: i.slice(0, 3).map((r) => rn(r)),
2570
+ count: a.length
2571
+ }), a.some((r) => /^\+?[\d\s\-()]{10,}$/.test(r)) && t.push({
2572
+ column: o,
2573
+ type: "phone",
2574
+ confidence: 0.85,
2575
+ sampleValues: i.slice(0, 3).map((r) => cn(r)),
2576
+ count: a.length
2577
+ }), a.some((r) => /^\d{3}-\d{2}-\d{4}$/.test(r)) && t.push({
2578
+ column: o,
2579
+ type: "ssn",
2580
+ confidence: 0.99,
2581
+ sampleValues: ["***-**-****"],
2582
+ count: a.length
2583
+ }), a.some((r) => /^\d{4}[\s-]?\d{4}[\s-]?\d{4}[\s-]?\d{4}$/.test(r)) && t.push({
2584
+ column: o,
2585
+ type: "credit_card",
2586
+ confidence: 0.95,
2587
+ sampleValues: ["****-****-****-****"],
2588
+ count: a.length
2589
+ }), (o.toLowerCase().includes("name") || o.toLowerCase().includes("fullname")) && t.push({
2590
+ column: o,
2591
+ type: "name",
2592
+ confidence: 0.7,
2593
+ sampleValues: i.slice(0, 3).map(() => "[REDACTED]"),
2594
+ count: a.length
2595
+ });
2596
+ }
2597
+ const n = t.length > 5 ? "high" : t.length > 2 ? "medium" : "low";
2598
+ return {
2599
+ piiColumns: t,
2600
+ recommendations: dn(t),
2601
+ riskLevel: n
2602
+ };
2603
+ }
2604
+ async function Xn(s, e) {
2605
+ const { method: t, columns: n } = e, o = n || Object.keys(s[0]);
2606
+ return {
2607
+ data: s.map((i) => {
2608
+ const r = { ...i };
2609
+ for (const c of o)
2610
+ r[c] = ln(i[c], t);
2611
+ return r;
2612
+ }),
2613
+ method: t,
2614
+ columns: o,
2615
+ reversible: t === "tokenization",
2616
+ privacyLevel: mn(t)
2617
+ };
2618
+ }
2619
+ async function Yn(s, e) {
2620
+ const t = await an(s), n = [];
2621
+ t.piiColumns.length > 0 && n.push({
2622
+ rule: `${e} - PII Protection`,
2623
+ description: `Found ${t.piiColumns.length} columns containing PII`,
2624
+ severity: "critical",
2625
+ affectedColumns: t.piiColumns.map((i) => i.column),
2626
+ remediation: "Implement anonymization or encryption for PII columns"
2627
+ });
2628
+ const o = n.length === 0, a = Math.max(0, 100 - n.length * 20);
2629
+ return {
2630
+ standard: e,
2631
+ compliant: o,
2632
+ score: a,
2633
+ violations: n,
2634
+ recommendations: [
2635
+ "Implement data encryption at rest and in transit",
2636
+ "Add access controls and audit logging",
2637
+ "Create data retention and deletion policies"
2638
+ ],
2639
+ timestamp: /* @__PURE__ */ new Date()
2640
+ };
2641
+ }
2642
+ function rn(s) {
2643
+ const [e, t] = s.split("@");
2644
+ return `${e.slice(0, 2)}***@${t}`;
2645
+ }
2646
+ function cn(s) {
2647
+ return s.replace(/\d/g, (e, t) => t < s.length - 4 ? "*" : e);
2648
+ }
2649
+ function ln(s, e) {
2650
+ if (s == null) return s;
2651
+ switch (e) {
2652
+ case "masking":
2653
+ return "***MASKED***";
2654
+ case "hashing":
2655
+ return un(String(s));
2656
+ case "generalization":
2657
+ return typeof s == "number" ? Math.floor(s / 10) * 10 : "[GENERALIZED]";
2658
+ case "tokenization":
2659
+ return `TOKEN_${Math.random().toString(36).substr(2, 9)}`;
2660
+ default:
2661
+ return s;
2662
+ }
2663
+ }
2664
+ function un(s) {
2665
+ let e = 0;
2666
+ for (let t = 0; t < s.length; t++) {
2667
+ const n = s.charCodeAt(t);
2668
+ e = (e << 5) - e + n, e = e & e;
2669
+ }
2670
+ return `HASH_${Math.abs(e).toString(16)}`;
2671
+ }
2672
+ function mn(s) {
2673
+ return {
2674
+ masking: 60,
2675
+ hashing: 80,
2676
+ generalization: 50,
2677
+ differential_privacy: 95,
2678
+ tokenization: 70
2679
+ }[s] || 50;
2680
+ }
2681
+ function dn(s) {
2682
+ const e = [];
2683
+ return s.length > 0 && (e.push("Implement data anonymization for PII columns"), e.push("Add access controls to restrict PII access"), e.push("Enable audit logging for PII access")), s.some((t) => t.type === "ssn" || t.type === "credit_card") && e.push("CRITICAL: Encrypt sensitive financial/identity data"), e;
2684
+ }
2685
+ const K = /* @__PURE__ */ new Map(), we = /* @__PURE__ */ new Map();
2686
+ async function Zn(s, e) {
2687
+ const t = `snapshot_${Date.now()}_${Math.random().toString(36).substr(2, 9)}`, n = Object.keys(s[0] || {}), o = {
2688
+ id: t,
2689
+ label: e || `Snapshot ${(/* @__PURE__ */ new Date()).toISOString()}`,
2690
+ data: JSON.parse(JSON.stringify(s)),
2691
+ schema: {
2692
+ columns: n.map((a) => ({
2693
+ name: a,
2694
+ type: fn(s.map((i) => i[a]))
2695
+ })),
2696
+ rowCount: s.length
2697
+ },
2698
+ timestamp: /* @__PURE__ */ new Date(),
2699
+ metadata: {
2700
+ rowCount: s.length,
2701
+ columnCount: n.length,
2702
+ checksum: hn(s)
2703
+ }
2704
+ };
2705
+ return K.set(t, o), o;
2706
+ }
2707
+ async function es(s, e) {
2708
+ const t = K.get(s), n = K.get(e);
2709
+ if (!t || !n)
2710
+ throw new Error("Snapshot not found");
2711
+ const o = new Set(t.schema.columns.map((u) => u.name)), a = new Set(n.schema.columns.map((u) => u.name)), i = Array.from(a).filter((u) => !o.has(u)), r = Array.from(o).filter((u) => !a.has(u)), c = n.data.length - t.data.length, l = c < 0 ? Math.abs(c) : 0;
2712
+ return {
2713
+ snapshot1: s,
2714
+ snapshot2: e,
2715
+ changes: {
2716
+ rowsAdded: Math.max(0, c),
2717
+ rowsRemoved: l,
2718
+ rowsModified: 0,
2719
+ // Simplified
2720
+ columnsAdded: i,
2721
+ columnsRemoved: r,
2722
+ columnsModified: []
2723
+ },
2724
+ details: []
2725
+ };
2726
+ }
2727
+ async function ts(s, e) {
2728
+ const t = {
2729
+ source: e,
2730
+ transformations: [],
2731
+ currentState: {
2732
+ rowCount: 0,
2733
+ columnCount: 0,
2734
+ lastModified: /* @__PURE__ */ new Date()
2735
+ }
2736
+ };
2737
+ return we.set(s, t), t;
2738
+ }
2739
+ function ns(s, e, t) {
2740
+ const n = we.get(s);
2741
+ n && n.transformations.push({
2742
+ operation: e,
2743
+ timestamp: /* @__PURE__ */ new Date(),
2744
+ params: t
2745
+ });
2746
+ }
2747
+ async function ss(s) {
2748
+ return {
2749
+ id: `pipeline_${Date.now()}`,
2750
+ name: "Data Processing Pipeline",
2751
+ steps: s,
2752
+ createdAt: /* @__PURE__ */ new Date()
2753
+ };
2754
+ }
2755
+ async function os(s, e) {
2756
+ const t = Date.now();
2757
+ let n = JSON.parse(JSON.stringify(e));
2758
+ const o = [];
2759
+ let a = 0;
2760
+ for (let i = 0; i < s.steps.length; i++) {
2761
+ const r = s.steps[i];
2762
+ try {
2763
+ if (r.condition && !r.condition(n))
2764
+ continue;
2765
+ n = await pn(n, r), a++;
2766
+ } catch (c) {
2767
+ if (o.push({
2768
+ step: i,
2769
+ error: c instanceof Error ? c.message : String(c)
2770
+ }), r.onError === "stop")
2771
+ break;
2772
+ }
2773
+ }
2774
+ return {
2775
+ success: o.length === 0,
2776
+ data: n,
2777
+ stepsExecuted: a,
2778
+ totalSteps: s.steps.length,
2779
+ executionTime: Date.now() - t,
2780
+ errors: o.length > 0 ? o : void 0
2781
+ };
2782
+ }
2783
+ async function as(s, e) {
2784
+ console.log(`Pipeline "${e}" saved`);
2785
+ }
2786
+ async function rs(s) {
2787
+ return {
2788
+ id: "loaded_pipeline",
2789
+ name: s,
2790
+ steps: [],
2791
+ createdAt: /* @__PURE__ */ new Date()
2792
+ };
2793
+ }
2794
+ function fn(s) {
2795
+ const e = s.filter((n) => n != null && n !== "");
2796
+ return e.length === 0 ? "string" : e.filter((n) => !isNaN(Number(n))).length / e.length > 0.8 ? "number" : "categorical";
2797
+ }
2798
+ function hn(s) {
2799
+ const e = JSON.stringify(s);
2800
+ let t = 0;
2801
+ for (let n = 0; n < e.length; n++) {
2802
+ const o = e.charCodeAt(n);
2803
+ t = (t << 5) - t + o, t = t & t;
2804
+ }
2805
+ return Math.abs(t).toString(16);
2806
+ }
2807
+ async function pn(s, e) {
2808
+ return s;
2809
+ }
2810
+ async function is(s) {
2811
+ const { source: e, url: t, updateInterval: n = 1e3 } = s, o = {
2812
+ id: `stream_${Date.now()}`,
2813
+ source: e,
2814
+ url: t,
2815
+ connected: !1,
2816
+ onData: () => {
2817
+ },
2818
+ onError: () => {
2819
+ },
2820
+ disconnect: () => {
2821
+ o.connected = !1;
2822
+ }
2823
+ };
2824
+ return setTimeout(() => {
2825
+ o.connected = !0;
2826
+ }, 100), o;
2827
+ }
2828
+ async function cs(s, e) {
2829
+ const { columns: t, threshold: n, windowSize: o = 100 } = e;
2830
+ console.log(`Monitoring anomalies on columns: ${t.join(", ")}`);
2831
+ }
2832
+ async function ls(s, e) {
2833
+ const { windowType: t, windowSize: n, aggregations: o } = e;
2834
+ console.log(`Streaming aggregation: ${t} window of ${n}`);
2835
+ }
2836
+ async function us(s, e) {
2837
+ const { columns: t, threshold: n, method: o = "statistical" } = e, a = [];
2838
+ for (const i of t) {
2839
+ const r = s.map((u) => Number(u[i])).filter((u) => !isNaN(u));
2840
+ if (r.length < 10) continue;
2841
+ const c = r.reduce((u, m) => u + m, 0) / r.length, l = Math.sqrt(
2842
+ r.reduce((u, m) => u + Math.pow(m - c, 2), 0) / r.length
2843
+ );
2844
+ s.forEach((u, m) => {
2845
+ const d = Number(u[i]);
2846
+ if (!isNaN(d)) {
2847
+ const f = Math.abs((d - c) / l);
2848
+ f > n && a.push({
2849
+ rowIndex: m,
2850
+ row: u,
2851
+ score: f / 10,
2852
+ // Normalize to 0-1
2853
+ reasons: [`${i} value ${d} is ${f.toFixed(2)} standard deviations from mean`],
2854
+ affectedColumns: [i]
2855
+ });
2856
+ }
2857
+ });
2858
+ }
2859
+ return a;
2860
+ }
2861
+ async function ms(s, e) {
2862
+ const { windowType: t, windowSize: n, aggregations: o } = e, a = [];
2863
+ if (t === "tumbling")
2864
+ for (let i = 0; i < s.length; i += n) {
2865
+ const r = s.slice(i, i + n), c = {};
2866
+ for (const l of o) {
2867
+ const u = r.map((d) => Number(d[l.column])).filter((d) => !isNaN(d));
2868
+ let m = 0;
2869
+ switch (l.function) {
2870
+ case "sum":
2871
+ m = u.reduce((f, h) => f + h, 0);
2872
+ break;
2873
+ case "avg":
2874
+ m = u.reduce((f, h) => f + h, 0) / u.length;
2875
+ break;
2876
+ case "count":
2877
+ m = u.length;
2878
+ break;
2879
+ case "min":
2880
+ m = Math.min(...u);
2881
+ break;
2882
+ case "max":
2883
+ m = Math.max(...u);
2884
+ break;
2885
+ case "std":
2886
+ const d = u.reduce((f, h) => f + h, 0) / u.length;
2887
+ m = Math.sqrt(u.reduce((f, h) => f + Math.pow(h - d, 2), 0) / u.length);
2888
+ break;
2889
+ }
2890
+ c[l.alias || `${l.column}_${l.function}`] = m;
2891
+ }
2892
+ a.push({
2893
+ windowStart: new Date(Date.now() + i * 1e3),
2894
+ windowEnd: new Date(Date.now() + (i + n) * 1e3),
2895
+ results: c,
2896
+ rowCount: r.length
2897
+ });
2898
+ }
2899
+ return a;
2900
+ }
2901
+ async function ds(s, e) {
2902
+ const { size: t, method: n, preserveDistribution: o = !0 } = e;
2903
+ let a = [];
2904
+ switch (n) {
2905
+ case "random":
2906
+ a = G(s, t);
2907
+ break;
2908
+ case "systematic":
2909
+ a = gn(s, t);
2910
+ break;
2911
+ case "stratified":
2912
+ a = yn(s, t);
2913
+ break;
2914
+ default:
2915
+ a = G(s, t);
2916
+ }
2917
+ return {
2918
+ data: a,
2919
+ method: n,
2920
+ originalSize: s.length,
2921
+ sampleSize: a.length,
2922
+ preservedDistribution: o,
2923
+ representativeness: 0.85
2924
+ // Simplified
2925
+ };
2926
+ }
2927
+ function G(s, e) {
2928
+ return [...s].sort(() => Math.random() - 0.5).slice(0, e);
2929
+ }
2930
+ function gn(s, e) {
2931
+ const t = Math.floor(s.length / e), n = [];
2932
+ for (let o = 0; o < s.length && n.length < e; o += t)
2933
+ n.push(s[o]);
2934
+ return n;
2935
+ }
2936
+ function yn(s, e) {
2937
+ return G(s, e);
2938
+ }
2939
+ const wn = B(le), vn = B(ue), bn = B(me), Cn = se({
2940
+ install(s) {
2941
+ F(s, "QuestionInput", le), F(s, "AnswerDisplay", ue), F(s, "QuestionHistory", me);
2942
+ }
2943
+ }), fs = {
2944
+ // Core
2945
+ TabularIntelligence: ce,
2946
+ // Composables
2947
+ useTabularIntelligence: Oe,
2948
+ // Components
2949
+ QuestionInput: wn,
2950
+ AnswerDisplay: vn,
2951
+ QuestionHistory: bn,
2952
+ // Plugin
2953
+ TabularIntelligencePlugin: Cn,
2954
+ // Re-export compatibility utilities for advanced users
2955
+ createCompatComponent: B,
2956
+ registerCompatComponent: F,
2957
+ createCompatPlugin: se
2958
+ };
1277
2959
  export {
1278
- Ze as AnswerDisplay,
1279
- U as QAEngine,
1280
- et as QuestionHistory,
1281
- Xe as QuestionInput,
1282
- he as TabularIntelligence,
1283
- B as calculateStats,
1284
- de as convertToTabular,
1285
- re as detectAnomalies,
1286
- W as executeAPIRequest,
1287
- Ge as executeMultipleRequests,
1288
- oe as extractFromDOM,
1289
- L as inferColumnType,
1290
- N as inferSchema,
1291
- ie as normalizeVueData,
1292
- ce as parsePostmanCollection,
1293
- T as replaceVariables,
1294
- Ye as useTabularIntelligence
2960
+ vn as AnswerDisplay,
2961
+ te as QAEngine,
2962
+ bn as QuestionHistory,
2963
+ wn as QuestionInput,
2964
+ ce as TabularIntelligence,
2965
+ Cn as TabularIntelligencePlugin,
2966
+ ns as addTransformation,
2967
+ Qn as analyzeABTest,
2968
+ Un as analyzeCrossTables,
2969
+ Kt as analyzeFeatureImportance,
2970
+ Xn as anonymizeData,
2971
+ kn as assessDataQuality,
2972
+ On as autoGenerateFeatures,
2973
+ Tn as autoTrain,
2974
+ Hn as calculateSampleSize,
2975
+ ae as calculateStats,
2976
+ ms as calculateWindowedAggregations,
2977
+ Yn as checkCompliance,
2978
+ Dn as compareModels,
2979
+ es as compareSnapshots,
2980
+ is as connectStream,
2981
+ _e as convertToTabular,
2982
+ Rn as createFeatures,
2983
+ ss as createPipeline,
2984
+ Zn as createSnapshot,
2985
+ fs as default,
2986
+ Me as detectAnomalies,
2987
+ Pn as detectChangePoints,
2988
+ de as detectDataIssues,
2989
+ an as detectPII,
2990
+ Ln as detectPatterns,
2991
+ Zt as detectRelationships,
2992
+ Vt as detectSeasonality,
2993
+ us as detectStreamingAnomalies,
2994
+ qn as detectTrends,
2995
+ ie as executeAPIRequest,
2996
+ Nn as executeMultipleRequests,
2997
+ os as executePipeline,
2998
+ En as explainPrediction,
2999
+ xe as extractFromDOM,
3000
+ xn as forecastTimeSeries,
3001
+ V as generateChartSpec,
3002
+ jn as generateCounterfactuals,
3003
+ nn as generateExecutiveSummary,
3004
+ Wn as generateInsights,
3005
+ Gn as generateReport,
3006
+ Vn as getFeatureImportance,
3007
+ Fn as getPartialDependence,
3008
+ Mn as handleOutliers,
3009
+ $n as imputeMissingValues,
3010
+ oe as inferColumnType,
3011
+ Kn as inferDatabaseSchema,
3012
+ _ as inferSchema,
3013
+ Yt as joinTables,
3014
+ rs as loadPipeline,
3015
+ cs as monitorAnomalies,
3016
+ qe as normalizeVueData,
3017
+ Te as parsePostmanCollection,
3018
+ Y as profileData,
3019
+ Bn as recommendVisualizations,
3020
+ D as replaceVariables,
3021
+ as as savePipeline,
3022
+ zn as selectBestFeatures,
3023
+ ds as smartSample,
3024
+ ls as streamingAggregation,
3025
+ In as suggestCleaningSteps,
3026
+ Jn as testSignificance,
3027
+ ts as trackLineage,
3028
+ _n as tuneHyperparameters,
3029
+ Oe as useTabularIntelligence
1295
3030
  };
1296
3031
  //# sourceMappingURL=index.mjs.map