@aivue/tabular-intelligence 1.5.1 โ†’ 2.0.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (42) hide show
  1. package/README.md +445 -18
  2. package/dist/advanced/automl.d.ts +29 -0
  3. package/dist/advanced/automl.d.ts.map +1 -0
  4. package/dist/advanced/explainability.d.ts +31 -0
  5. package/dist/advanced/explainability.d.ts.map +1 -0
  6. package/dist/advanced/featureEngineering.d.ts +28 -0
  7. package/dist/advanced/featureEngineering.d.ts.map +1 -0
  8. package/dist/advanced/index.d.ts +16 -0
  9. package/dist/advanced/index.d.ts.map +1 -0
  10. package/dist/advanced/multitable.d.ts +28 -0
  11. package/dist/advanced/multitable.d.ts.map +1 -0
  12. package/dist/advanced/privacy.d.ts +17 -0
  13. package/dist/advanced/privacy.d.ts.map +1 -0
  14. package/dist/advanced/reporting.d.ts +21 -0
  15. package/dist/advanced/reporting.d.ts.map +1 -0
  16. package/dist/advanced/statistical.d.ts +28 -0
  17. package/dist/advanced/statistical.d.ts.map +1 -0
  18. package/dist/advanced/streaming.d.ts +41 -0
  19. package/dist/advanced/streaming.d.ts.map +1 -0
  20. package/dist/advanced/timeseries.d.ts +36 -0
  21. package/dist/advanced/timeseries.d.ts.map +1 -0
  22. package/dist/advanced/versioning.d.ts +34 -0
  23. package/dist/advanced/versioning.d.ts.map +1 -0
  24. package/dist/advanced/visualization.d.ts +23 -0
  25. package/dist/advanced/visualization.d.ts.map +1 -0
  26. package/dist/composables/useTabularIntelligence.d.ts +1 -1
  27. package/dist/composables/useTabularIntelligence.d.ts.map +1 -1
  28. package/dist/index.d.ts +39 -10
  29. package/dist/index.d.ts.map +1 -1
  30. package/dist/index.js +75 -47
  31. package/dist/index.js.map +1 -1
  32. package/dist/index.mjs +2392 -657
  33. package/dist/index.mjs.map +1 -1
  34. package/dist/preprocessing/imputation.d.ts +9 -0
  35. package/dist/preprocessing/imputation.d.ts.map +1 -0
  36. package/dist/preprocessing/outliers.d.ts +10 -0
  37. package/dist/preprocessing/outliers.d.ts.map +1 -0
  38. package/dist/quality/profiling.d.ts +22 -0
  39. package/dist/quality/profiling.d.ts.map +1 -0
  40. package/dist/types/index.d.ts +573 -0
  41. package/dist/types/index.d.ts.map +1 -1
  42. package/package.json +4 -3
package/README.md CHANGED
@@ -1,25 +1,48 @@
1
1
  # @aivue/tabular-intelligence
2
2
 
3
- > Tabular Foundation Model (TFM) integration for structured data analysis in Vue.js
3
+ > **The Most Comprehensive Tabular Data Analysis Package for Vue.js**
4
+ > Advanced AI, ML, Statistical Analysis, and Data Science capabilities in one powerful package
4
5
 
5
6
  [![npm version](https://img.shields.io/npm/v/@aivue/tabular-intelligence.svg)](https://www.npmjs.com/package/@aivue/tabular-intelligence)
6
7
  [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
7
-
8
- ## ๐ŸŽฏ Features
9
-
10
- - ๐Ÿ”Œ **Generic TFM Client** - Connect to any HTTP-based Tabular Foundation Model API
11
- - ๐Ÿ’ฌ **Natural Language Q&A** - Ask questions about your data in plain English
12
- - ๐Ÿ“ฎ **Postman Collection Integration** - Import Postman collections and query API data with AI
13
- - ๐Ÿ“Š **Descriptive Statistics** - Mean, median, mode, std dev, percentiles, distributions
14
- - ๐Ÿšจ **Anomaly Detection** - Statistical and ML-based outlier detection
15
- - ๐ŸŽฏ **Segmentation & Clustering** - K-means, DBSCAN, hierarchical clustering
16
- - ๐Ÿ”ฎ **Predictions** - Time series forecasting and predictive modeling
17
- - ๐Ÿ“ˆ **Correlation Analysis** - Pearson correlation matrices and significance testing
18
- - ๐Ÿค– **AI Summaries** - Generate intelligent summaries of your data
19
- - ๐ŸŒ **Table Extraction** - Extract data from HTML tables or Vue data grids
20
- - ๐Ÿ”„ **Local Fallback** - Built-in statistical analysis when API is unavailable
21
- - ๐ŸŽจ **Vue Integration** - Reactive composables for seamless Vue.js integration
22
- - ๐Ÿ“ฆ **Smart DataTable Ready** - Designed to work with @aivue/smart-datatable
8
+ [![Downloads](https://img.shields.io/npm/dm/@aivue/tabular-intelligence.svg)](https://www.npmjs.com/package/@aivue/tabular-intelligence)
9
+
10
+ ## ๐Ÿš€ What's New in v2.0
11
+
12
+ **Tabular Intelligence is now a complete data science toolkit!** We've added 15+ advanced features that make it completely different from @aivue/smart-datatable:
13
+
14
+ - ๐Ÿ“Š **Data Quality Profiling** - Comprehensive data quality assessment and profiling
15
+ - ๐Ÿงน **Smart Data Cleaning** - Intelligent missing value imputation and outlier handling
16
+ - ๐Ÿ”ง **Feature Engineering** - Automated feature generation and selection
17
+ - โฐ **Time Series Analysis** - Forecasting, trend detection, seasonality analysis
18
+ - ๐Ÿค– **AutoML** - Automated model selection and hyperparameter tuning
19
+ - ๐Ÿ” **Model Explainability** - SHAP values, feature importance, counterfactuals
20
+ - ๐Ÿ“ˆ **Statistical Testing** - A/B testing, hypothesis testing, significance tests
21
+ - ๐Ÿ“Š **Visualization Recommendations** - Smart chart suggestions based on data
22
+ - ๐Ÿ”— **Multi-Table Analysis** - Table joins, relationship detection, cross-table queries
23
+ - ๐Ÿ“ **Auto Reporting** - Generate comprehensive insights and reports
24
+ - ๐Ÿ”’ **Privacy & Compliance** - PII detection, anonymization, GDPR/CCPA compliance
25
+ - ๐Ÿ“ฆ **Data Versioning** - Snapshots, lineage tracking, transformation pipelines
26
+ - ๐ŸŒŠ **Streaming Data** - Real-time data processing and monitoring
27
+ - ๐ŸŽฏ **Smart Sampling** - Intelligent data sampling strategies
28
+
29
+ ## ๐ŸŽฏ Core Features
30
+
31
+ ### ๐Ÿ”Œ Foundation & Integration
32
+ - **Generic TFM Client** - Connect to any HTTP-based Tabular Foundation Model API
33
+ - **Natural Language Q&A** - Ask questions about your data in plain English
34
+ - **Postman Collection Integration** - Import Postman collections and query API data with AI
35
+ - **Table Extraction** - Extract data from HTML tables or Vue data grids
36
+ - **Local Fallback** - Built-in statistical analysis when API is unavailable
37
+ - **Vue Integration** - Reactive composables for seamless Vue.js integration
38
+
39
+ ### ๐Ÿ“Š Statistical Analysis
40
+ - **Descriptive Statistics** - Mean, median, mode, std dev, percentiles, distributions
41
+ - **Anomaly Detection** - Statistical and ML-based outlier detection
42
+ - **Segmentation & Clustering** - K-means, DBSCAN, hierarchical clustering
43
+ - **Predictions** - Time series forecasting and predictive modeling
44
+ - **Correlation Analysis** - Pearson correlation matrices and significance testing
45
+ - **AI Summaries** - Generate intelligent summaries of your data
23
46
 
24
47
  ### ๐Ÿ’ฌ Q&A Capabilities
25
48
 
@@ -49,9 +72,23 @@ See [POSTMAN-INTEGRATION.md](./POSTMAN-INTEGRATION.md) for detailed documentatio
49
72
  ## ๐Ÿ“ฆ Installation
50
73
 
51
74
  ```bash
52
- npm install @aivue/tabular-intelligence
75
+ # npm
76
+ npm install @aivue/tabular-intelligence @aivue/core
77
+
78
+ # yarn
79
+ yarn add @aivue/tabular-intelligence @aivue/core
80
+
81
+ # pnpm
82
+ pnpm add @aivue/tabular-intelligence @aivue/core
53
83
  ```
54
84
 
85
+ ### ๐Ÿ”„ Vue Compatibility
86
+
87
+ - **โœ… Vue 2**: Compatible with Vue 2.6.0 and higher
88
+ - **โœ… Vue 3**: Compatible with all Vue 3.x versions
89
+
90
+ > The package automatically detects which version of Vue you're using and provides the appropriate compatibility layer. This means you can use the same package regardless of whether your project is using Vue 2 or Vue 3.
91
+
55
92
  ## ๐Ÿš€ Quick Start
56
93
 
57
94
  ### Basic Usage (Local Mode)
@@ -261,6 +298,396 @@ intelligence.loadFromVueGrid(
261
298
  );
262
299
  ```
263
300
 
301
+ ## ๐Ÿš€ Advanced Features
302
+
303
+ ### ๐Ÿ“Š Data Quality Profiling
304
+
305
+ Comprehensive data quality assessment and profiling:
306
+
307
+ ```typescript
308
+ import { profileData, assessDataQuality, detectDataIssues, suggestCleaningSteps } from '@aivue/tabular-intelligence';
309
+
310
+ // Profile your data
311
+ const profile = await profileData(data, {
312
+ includeDistributions: true,
313
+ detectDataTypes: true,
314
+ findPatterns: true
315
+ });
316
+
317
+ // Assess data quality
318
+ const qualityReport = await assessDataQuality(data);
319
+ console.log('Quality Score:', qualityReport.overallScore); // 0-100
320
+
321
+ // Detect specific issues
322
+ const issues = await detectDataIssues(data);
323
+ // Returns: missing values, outliers, duplicates, type mismatches, etc.
324
+
325
+ // Get cleaning recommendations
326
+ const recommendations = await suggestCleaningSteps(data);
327
+ // Returns prioritized list of cleaning actions
328
+ ```
329
+
330
+ ### ๐Ÿงน Smart Data Cleaning
331
+
332
+ Intelligent missing value imputation and outlier handling:
333
+
334
+ ```typescript
335
+ import { imputeMissingValues, handleOutliers } from '@aivue/tabular-intelligence';
336
+
337
+ // Impute missing values
338
+ const imputationResult = await imputeMissingValues(data, {
339
+ strategy: 'knn', // 'mean' | 'median' | 'mode' | 'knn' | 'iterative' | 'ai'
340
+ columns: ['age', 'income']
341
+ });
342
+
343
+ // Handle outliers
344
+ const outlierResult = await handleOutliers(data, {
345
+ method: 'cap', // 'remove' | 'cap' | 'transform'
346
+ strategy: 'iqr', // 'iqr' | 'zscore' | 'isolation_forest'
347
+ columns: ['price', 'quantity']
348
+ });
349
+ ```
350
+
351
+ ### ๐Ÿ”ง Feature Engineering
352
+
353
+ Automated feature generation and selection:
354
+
355
+ ```typescript
356
+ import { autoGenerateFeatures, analyzeFeatureImportance, selectBestFeatures } from '@aivue/tabular-intelligence';
357
+
358
+ // Auto-generate features
359
+ const engineeringResult = await autoGenerateFeatures(data, {
360
+ targetColumn: 'sales',
361
+ maxFeatures: 50,
362
+ includeInteractions: true,
363
+ includePolynomials: true,
364
+ includeAggregations: true
365
+ });
366
+
367
+ // Analyze feature importance
368
+ const importance = await analyzeFeatureImportance(data, 'sales');
369
+
370
+ // Select best features
371
+ const selection = await selectBestFeatures(data, {
372
+ targetColumn: 'sales',
373
+ k: 10, // Select top 10 features
374
+ method: 'correlation'
375
+ });
376
+ ```
377
+
378
+ ### โฐ Time Series Analysis
379
+
380
+ Forecasting, trend detection, and seasonality analysis:
381
+
382
+ ```typescript
383
+ import { forecastTimeSeries, detectTrends, detectSeasonality, detectChangePoints } from '@aivue/tabular-intelligence';
384
+
385
+ // Forecast time series
386
+ const forecast = await forecastTimeSeries(data, {
387
+ dateColumn: 'date',
388
+ valueColumn: 'sales',
389
+ horizon: 30, // Forecast 30 periods ahead
390
+ method: 'exponential_smoothing', // 'arima' | 'prophet' | 'exponential_smoothing' | 'lstm'
391
+ seasonality: 'auto',
392
+ confidence: 0.95
393
+ });
394
+
395
+ // Detect trends
396
+ const trends = await detectTrends(data, {
397
+ dateColumn: 'date',
398
+ valueColumn: 'sales'
399
+ });
400
+
401
+ // Detect seasonality
402
+ const seasonality = await detectSeasonality(data, {
403
+ dateColumn: 'date',
404
+ valueColumn: 'sales'
405
+ });
406
+
407
+ // Detect change points
408
+ const changePoints = await detectChangePoints(data, {
409
+ dateColumn: 'date',
410
+ valueColumn: 'sales',
411
+ sensitivity: 0.8
412
+ });
413
+ ```
414
+
415
+ ### ๐Ÿค– AutoML
416
+
417
+ Automated model selection and hyperparameter tuning:
418
+
419
+ ```typescript
420
+ import { autoTrain, compareModels, tuneHyperparameters } from '@aivue/tabular-intelligence';
421
+
422
+ // Auto-train best model
423
+ const autoMLResult = await autoTrain(data, {
424
+ targetColumn: 'churn',
425
+ taskType: 'classification', // 'classification' | 'regression'
426
+ metric: 'accuracy',
427
+ timeLimit: 300, // 5 minutes
428
+ models: ['linear', 'tree', 'ensemble', 'neural']
429
+ });
430
+
431
+ // Compare multiple models
432
+ const comparison = await compareModels(data, {
433
+ targetColumn: 'price',
434
+ taskType: 'regression',
435
+ models: ['linear', 'tree', 'ensemble'],
436
+ crossValidation: 5
437
+ });
438
+
439
+ // Tune hyperparameters
440
+ const tuningResult = await tuneHyperparameters(data, {
441
+ targetColumn: 'sales',
442
+ model: 'ensemble',
443
+ parameterGrid: {
444
+ n_estimators: [50, 100, 200],
445
+ max_depth: [5, 10, 15]
446
+ }
447
+ });
448
+ ```
449
+
450
+ ### ๐Ÿ” Model Explainability
451
+
452
+ SHAP values, feature importance, and counterfactuals:
453
+
454
+ ```typescript
455
+ import { explainPrediction, getFeatureImportance, getPartialDependence, generateCounterfactuals } from '@aivue/tabular-intelligence';
456
+
457
+ // Explain a specific prediction
458
+ const explanation = await explainPrediction(data, {
459
+ rowIndex: 0,
460
+ targetColumn: 'churn',
461
+ model: 'ensemble'
462
+ });
463
+
464
+ // Get feature importance
465
+ const importance = await getFeatureImportance(data, 'churn');
466
+
467
+ // Get partial dependence plot
468
+ const pdp = await getPartialDependence(data, {
469
+ feature: 'age',
470
+ targetColumn: 'churn'
471
+ });
472
+
473
+ // Generate counterfactuals
474
+ const counterfactuals = await generateCounterfactuals(data, {
475
+ rowIndex: 0,
476
+ desiredOutcome: 0, // Want churn = 0
477
+ targetColumn: 'churn',
478
+ maxChanges: 3
479
+ });
480
+ ```
481
+
482
+ ### ๐Ÿ“ˆ Statistical Testing & A/B Testing
483
+
484
+ Hypothesis testing and significance tests:
485
+
486
+ ```typescript
487
+ import { analyzeABTest, testSignificance, calculateSampleSize } from '@aivue/tabular-intelligence';
488
+
489
+ // Analyze A/B test
490
+ const abTestResult = await analyzeABTest({
491
+ controlGroup: controlData,
492
+ treatmentGroup: treatmentData,
493
+ metric: 'conversion_rate',
494
+ confidenceLevel: 0.95
495
+ });
496
+
497
+ // Test statistical significance
498
+ const significanceTest = await testSignificance({
499
+ test: 'ttest', // 'ttest' | 'chi2' | 'anova' | 'mann_whitney' | 'kruskal_wallis'
500
+ groups: [group1, group2],
501
+ metric: 'revenue',
502
+ alpha: 0.05
503
+ });
504
+
505
+ // Calculate required sample size
506
+ const sampleSize = await calculateSampleSize({
507
+ effect: 0.2, // Effect size
508
+ power: 0.8,
509
+ alpha: 0.05
510
+ });
511
+ ```
512
+
513
+ ### ๐Ÿ“Š Visualization Recommendations
514
+
515
+ Smart chart suggestions based on your data:
516
+
517
+ ```typescript
518
+ import { recommendVisualizations, generateChartSpec, detectPatterns } from '@aivue/tabular-intelligence';
519
+
520
+ // Get visualization recommendations
521
+ const recommendations = await recommendVisualizations(data, {
522
+ columns: ['date', 'sales', 'category'],
523
+ purpose: 'exploration' // 'exploration' | 'presentation' | 'analysis'
524
+ });
525
+
526
+ // Generate chart specification
527
+ const chartSpec = await generateChartSpec({
528
+ type: 'line',
529
+ xColumn: 'date',
530
+ yColumn: 'sales',
531
+ groupBy: 'category',
532
+ data
533
+ });
534
+
535
+ // Detect patterns in charts
536
+ const patterns = await detectPatterns('line', data);
537
+ ```
538
+
539
+ ### ๐Ÿ”— Multi-Table Analysis
540
+
541
+ Table joins, relationship detection, and cross-table queries:
542
+
543
+ ```typescript
544
+ import { joinTables, detectRelationships, analyzeCrossTables, inferDatabaseSchema } from '@aivue/tabular-intelligence';
545
+
546
+ // Join two tables
547
+ const joined = await joinTables({
548
+ leftTable: customers,
549
+ rightTable: orders,
550
+ leftKey: 'customer_id',
551
+ rightKey: 'customer_id',
552
+ joinType: 'inner' // 'inner' | 'left' | 'right' | 'outer'
553
+ });
554
+
555
+ // Detect relationships between tables
556
+ const relationships = await detectRelationships({
557
+ customers: customersData,
558
+ orders: ordersData,
559
+ products: productsData
560
+ });
561
+
562
+ // Analyze across multiple tables
563
+ const crossTableAnalysis = await analyzeCrossTables({
564
+ tables: { customers, orders, products },
565
+ relationships,
566
+ question: 'What is the total revenue by customer segment?'
567
+ });
568
+
569
+ // Infer database schema
570
+ const schema = await inferDatabaseSchema({
571
+ customers: customersData,
572
+ orders: ordersData
573
+ });
574
+ ```
575
+
576
+ ### ๐Ÿ“ Auto Reporting & Insights
577
+
578
+ Generate comprehensive reports and insights:
579
+
580
+ ```typescript
581
+ import { generateReport, generateExecutiveSummary, generateInsights } from '@aivue/tabular-intelligence';
582
+
583
+ // Generate comprehensive report
584
+ const report = await generateReport(data, {
585
+ format: 'markdown', // 'markdown' | 'html' | 'pdf' | 'json'
586
+ sections: ['summary', 'stats', 'anomalies', 'trends', 'recommendations'],
587
+ includeCharts: true
588
+ });
589
+
590
+ // Generate executive summary
591
+ const summary = await generateExecutiveSummary(data);
592
+
593
+ // Generate automated insights
594
+ const insights = await generateInsights(data, {
595
+ maxInsights: 10,
596
+ priority: 'high'
597
+ });
598
+ ```
599
+
600
+ ### ๐Ÿ”’ Privacy & Compliance
601
+
602
+ PII detection, anonymization, and compliance checking:
603
+
604
+ ```typescript
605
+ import { detectPII, anonymizeData, checkCompliance } from '@aivue/tabular-intelligence';
606
+
607
+ // Detect PII
608
+ const piiDetection = await detectPII(data);
609
+ console.log('PII Columns:', piiDetection.piiColumns);
610
+ console.log('Risk Level:', piiDetection.riskLevel);
611
+
612
+ // Anonymize data
613
+ const anonymized = await anonymizeData(data, {
614
+ method: 'hashing', // 'masking' | 'hashing' | 'generalization' | 'differential_privacy' | 'tokenization'
615
+ columns: ['email', 'phone', 'ssn']
616
+ });
617
+
618
+ // Check compliance
619
+ const complianceReport = await checkCompliance(data, 'GDPR'); // 'GDPR' | 'CCPA' | 'HIPAA' | 'SOC2'
620
+ console.log('Compliant:', complianceReport.compliant);
621
+ console.log('Score:', complianceReport.score);
622
+ ```
623
+
624
+ ### ๐Ÿ“ฆ Data Versioning & Pipelines
625
+
626
+ Snapshots, lineage tracking, and transformation pipelines:
627
+
628
+ ```typescript
629
+ import { createSnapshot, compareSnapshots, createPipeline, executePipeline } from '@aivue/tabular-intelligence';
630
+
631
+ // Create data snapshot
632
+ const snapshot1 = await createSnapshot(data, 'Before Cleaning');
633
+
634
+ // ... perform transformations ...
635
+
636
+ const snapshot2 = await createSnapshot(cleanedData, 'After Cleaning');
637
+
638
+ // Compare snapshots
639
+ const diff = await compareSnapshots(snapshot1.id, snapshot2.id);
640
+
641
+ // Create transformation pipeline
642
+ const pipeline = await createPipeline([
643
+ { operation: 'impute_missing', params: { strategy: 'mean' } },
644
+ { operation: 'handle_outliers', params: { method: 'cap' } },
645
+ { operation: 'normalize', params: { method: 'minmax' } }
646
+ ]);
647
+
648
+ // Execute pipeline
649
+ const result = await executePipeline(pipeline, data);
650
+ ```
651
+
652
+ ### ๐ŸŒŠ Streaming & Real-time Data
653
+
654
+ Real-time data processing and monitoring:
655
+
656
+ ```typescript
657
+ import { connectStream, detectStreamingAnomalies, calculateWindowedAggregations, smartSample } from '@aivue/tabular-intelligence';
658
+
659
+ // Connect to streaming source
660
+ const stream = await connectStream({
661
+ source: 'websocket', // 'websocket' | 'sse' | 'polling'
662
+ url: 'wss://api.example.com/stream',
663
+ updateInterval: 1000
664
+ });
665
+
666
+ // Detect anomalies in real-time
667
+ const anomalies = await detectStreamingAnomalies(streamData, {
668
+ columns: ['temperature', 'pressure'],
669
+ threshold: 3,
670
+ method: 'statistical'
671
+ });
672
+
673
+ // Calculate windowed aggregations
674
+ const aggregations = await calculateWindowedAggregations(streamData, {
675
+ windowType: 'tumbling', // 'tumbling' | 'sliding' | 'session'
676
+ windowSize: 100,
677
+ aggregations: [
678
+ { column: 'value', function: 'avg', alias: 'avg_value' },
679
+ { column: 'value', function: 'max', alias: 'max_value' }
680
+ ]
681
+ });
682
+
683
+ // Smart sampling
684
+ const sample = await smartSample(largeDataset, {
685
+ size: 1000,
686
+ method: 'stratified', // 'random' | 'stratified' | 'systematic' | 'cluster'
687
+ preserveDistribution: true
688
+ });
689
+ ```
690
+
264
691
  ## ๐Ÿ“– API Reference
265
692
 
266
693
  ### `useTabularIntelligence(options)`
@@ -0,0 +1,29 @@
1
+ import { AutoMLResult, ModelComparison, TuningResult } from '../types';
2
+ /**
3
+ * Auto train and select best model
4
+ */
5
+ export declare function autoTrain(data: any[], options: {
6
+ targetColumn: string;
7
+ taskType: 'classification' | 'regression';
8
+ metric?: string;
9
+ timeLimit?: number;
10
+ models?: Array<'linear' | 'tree' | 'ensemble' | 'neural'>;
11
+ }): Promise<AutoMLResult>;
12
+ /**
13
+ * Compare multiple models
14
+ */
15
+ export declare function compareModels(data: any[], options: {
16
+ targetColumn: string;
17
+ models: string[];
18
+ crossValidation?: number;
19
+ }): Promise<ModelComparison>;
20
+ /**
21
+ * Tune hyperparameters
22
+ */
23
+ export declare function tuneHyperparameters(data: any[], options: {
24
+ model: string;
25
+ targetColumn: string;
26
+ searchSpace?: any;
27
+ iterations?: number;
28
+ }): Promise<TuningResult>;
29
+ //# sourceMappingURL=automl.d.ts.map
@@ -0,0 +1 @@
1
+ {"version":3,"file":"automl.d.ts","sourceRoot":"","sources":["../../src/advanced/automl.ts"],"names":[],"mappings":"AAAA;;;GAGG;AAEH,OAAO,KAAK,EACV,YAAY,EAEZ,eAAe,EACf,YAAY,EAEb,MAAM,UAAU,CAAC;AAElB;;GAEG;AACH,wBAAsB,SAAS,CAC7B,IAAI,EAAE,GAAG,EAAE,EACX,OAAO,EAAE;IACP,YAAY,EAAE,MAAM,CAAC;IACrB,QAAQ,EAAE,gBAAgB,GAAG,YAAY,CAAC;IAC1C,MAAM,CAAC,EAAE,MAAM,CAAC;IAChB,SAAS,CAAC,EAAE,MAAM,CAAC;IACnB,MAAM,CAAC,EAAE,KAAK,CAAC,QAAQ,GAAG,MAAM,GAAG,UAAU,GAAG,QAAQ,CAAC,CAAC;CAC3D,GACA,OAAO,CAAC,YAAY,CAAC,CAyCvB;AAED;;GAEG;AACH,wBAAsB,aAAa,CACjC,IAAI,EAAE,GAAG,EAAE,EACX,OAAO,EAAE;IACP,YAAY,EAAE,MAAM,CAAC;IACrB,MAAM,EAAE,MAAM,EAAE,CAAC;IACjB,eAAe,CAAC,EAAE,MAAM,CAAC;CAC1B,GACA,OAAO,CAAC,eAAe,CAAC,CA0B1B;AAED;;GAEG;AACH,wBAAsB,mBAAmB,CACvC,IAAI,EAAE,GAAG,EAAE,EACX,OAAO,EAAE;IACP,KAAK,EAAE,MAAM,CAAC;IACd,YAAY,EAAE,MAAM,CAAC;IACrB,WAAW,CAAC,EAAE,GAAG,CAAC;IAClB,UAAU,CAAC,EAAE,MAAM,CAAC;CACrB,GACA,OAAO,CAAC,YAAY,CAAC,CAoCvB"}
@@ -0,0 +1,31 @@
1
+ import { SHAPExplanation, PartialDependencePlot, Counterfactual, FeatureImportance } from '../types';
2
+ /**
3
+ * Explain prediction using SHAP values
4
+ */
5
+ export declare function explainPrediction(data: any[], options: {
6
+ rowIndex: number;
7
+ model?: string;
8
+ targetColumn: string;
9
+ }): Promise<SHAPExplanation>;
10
+ /**
11
+ * Get feature importance
12
+ */
13
+ export declare function getFeatureImportance(data: any[], targetColumn: string, model?: string): Promise<FeatureImportance[]>;
14
+ /**
15
+ * Get partial dependence plot data
16
+ */
17
+ export declare function getPartialDependence(data: any[], options: {
18
+ feature: string;
19
+ targetColumn: string;
20
+ model?: string;
21
+ }): Promise<PartialDependencePlot>;
22
+ /**
23
+ * Generate counterfactual explanations
24
+ */
25
+ export declare function generateCounterfactuals(data: any[], options: {
26
+ rowIndex: number;
27
+ desiredOutcome: any;
28
+ targetColumn: string;
29
+ maxChanges?: number;
30
+ }): Promise<Counterfactual[]>;
31
+ //# sourceMappingURL=explainability.d.ts.map
@@ -0,0 +1 @@
1
+ {"version":3,"file":"explainability.d.ts","sourceRoot":"","sources":["../../src/advanced/explainability.ts"],"names":[],"mappings":"AAAA;;;GAGG;AAEH,OAAO,KAAK,EACV,eAAe,EACf,qBAAqB,EACrB,cAAc,EACd,iBAAiB,EAClB,MAAM,UAAU,CAAC;AAElB;;GAEG;AACH,wBAAsB,iBAAiB,CACrC,IAAI,EAAE,GAAG,EAAE,EACX,OAAO,EAAE;IACP,QAAQ,EAAE,MAAM,CAAC;IACjB,KAAK,CAAC,EAAE,MAAM,CAAC;IACf,YAAY,EAAE,MAAM,CAAC;CACtB,GACA,OAAO,CAAC,eAAe,CAAC,CAsC1B;AAED;;GAEG;AACH,wBAAsB,oBAAoB,CACxC,IAAI,EAAE,GAAG,EAAE,EACX,YAAY,EAAE,MAAM,EACpB,KAAK,CAAC,EAAE,MAAM,GACb,OAAO,CAAC,iBAAiB,EAAE,CAAC,CAU9B;AAED;;GAEG;AACH,wBAAsB,oBAAoB,CACxC,IAAI,EAAE,GAAG,EAAE,EACX,OAAO,EAAE;IACP,OAAO,EAAE,MAAM,CAAC;IAChB,YAAY,EAAE,MAAM,CAAC;IACrB,KAAK,CAAC,EAAE,MAAM,CAAC;CAChB,GACA,OAAO,CAAC,qBAAqB,CAAC,CAuBhC;AAED;;GAEG;AACH,wBAAsB,uBAAuB,CAC3C,IAAI,EAAE,GAAG,EAAE,EACX,OAAO,EAAE;IACP,QAAQ,EAAE,MAAM,CAAC;IACjB,cAAc,EAAE,GAAG,CAAC;IACpB,YAAY,EAAE,MAAM,CAAC;IACrB,UAAU,CAAC,EAAE,MAAM,CAAC;CACrB,GACA,OAAO,CAAC,cAAc,EAAE,CAAC,CAwC3B"}
@@ -0,0 +1,28 @@
1
+ import { FeatureEngineeringResult, FeatureImportance, FeatureTransformation, FeatureSelectionResult } from '../types';
2
+ /**
3
+ * Auto-generate features
4
+ */
5
+ export declare function autoGenerateFeatures(data: any[], options: {
6
+ targetColumn?: string;
7
+ maxFeatures?: number;
8
+ includeInteractions?: boolean;
9
+ includePolynomials?: boolean;
10
+ includeAggregations?: boolean;
11
+ }): Promise<FeatureEngineeringResult>;
12
+ /**
13
+ * Create features with specific transformations
14
+ */
15
+ export declare function createFeatures(data: any[], transformations: FeatureTransformation[]): Promise<any[]>;
16
+ /**
17
+ * Analyze feature importance
18
+ */
19
+ export declare function analyzeFeatureImportance(data: any[], targetColumn: string): Promise<FeatureImportance[]>;
20
+ /**
21
+ * Select best features
22
+ */
23
+ export declare function selectBestFeatures(data: any[], options: {
24
+ targetColumn: string;
25
+ method: 'correlation' | 'mutual_info' | 'chi2' | 'recursive';
26
+ topK?: number;
27
+ }): Promise<FeatureSelectionResult>;
28
+ //# sourceMappingURL=featureEngineering.d.ts.map
@@ -0,0 +1 @@
1
+ {"version":3,"file":"featureEngineering.d.ts","sourceRoot":"","sources":["../../src/advanced/featureEngineering.ts"],"names":[],"mappings":"AAAA;;;GAGG;AAEH,OAAO,KAAK,EACV,wBAAwB,EAExB,iBAAiB,EACjB,qBAAqB,EACrB,sBAAsB,EACvB,MAAM,UAAU,CAAC;AAElB;;GAEG;AACH,wBAAsB,oBAAoB,CACxC,IAAI,EAAE,GAAG,EAAE,EACX,OAAO,EAAE;IACP,YAAY,CAAC,EAAE,MAAM,CAAC;IACtB,WAAW,CAAC,EAAE,MAAM,CAAC;IACrB,mBAAmB,CAAC,EAAE,OAAO,CAAC;IAC9B,kBAAkB,CAAC,EAAE,OAAO,CAAC;IAC7B,mBAAmB,CAAC,EAAE,OAAO,CAAC;CAC/B,GACA,OAAO,CAAC,wBAAwB,CAAC,CAuEnC;AAED;;GAEG;AACH,wBAAsB,cAAc,CAClC,IAAI,EAAE,GAAG,EAAE,EACX,eAAe,EAAE,qBAAqB,EAAE,GACvC,OAAO,CAAC,GAAG,EAAE,CAAC,CAQhB;AAED;;GAEG;AACH,wBAAsB,wBAAwB,CAC5C,IAAI,EAAE,GAAG,EAAE,EACX,YAAY,EAAE,MAAM,GACnB,OAAO,CAAC,iBAAiB,EAAE,CAAC,CAuB9B;AAED;;GAEG;AACH,wBAAsB,kBAAkB,CACtC,IAAI,EAAE,GAAG,EAAE,EACX,OAAO,EAAE;IACP,YAAY,EAAE,MAAM,CAAC;IACrB,MAAM,EAAE,aAAa,GAAG,aAAa,GAAG,MAAM,GAAG,WAAW,CAAC;IAC7D,IAAI,CAAC,EAAE,MAAM,CAAC;CACf,GACA,OAAO,CAAC,sBAAsB,CAAC,CAYjC"}
@@ -0,0 +1,16 @@
1
+ /**
2
+ * Advanced Tabular Intelligence Features
3
+ * Comprehensive data analysis, ML, and AI capabilities
4
+ */
5
+ export * from './timeseries';
6
+ export * from './automl';
7
+ export * from './explainability';
8
+ export * from './statistical';
9
+ export * from './visualization';
10
+ export * from './multitable';
11
+ export * from './reporting';
12
+ export * from './privacy';
13
+ export * from './versioning';
14
+ export * from './streaming';
15
+ export * from './featureEngineering';
16
+ //# sourceMappingURL=index.d.ts.map
@@ -0,0 +1 @@
1
+ {"version":3,"file":"index.d.ts","sourceRoot":"","sources":["../../src/advanced/index.ts"],"names":[],"mappings":"AAAA;;;GAGG;AAGH,cAAc,cAAc,CAAC;AAC7B,cAAc,UAAU,CAAC;AACzB,cAAc,kBAAkB,CAAC;AACjC,cAAc,eAAe,CAAC;AAC9B,cAAc,iBAAiB,CAAC;AAChC,cAAc,cAAc,CAAC;AAC7B,cAAc,aAAa,CAAC;AAC5B,cAAc,WAAW,CAAC;AAC1B,cAAc,cAAc,CAAC;AAC7B,cAAc,aAAa,CAAC;AAC5B,cAAc,sBAAsB,CAAC"}
@@ -0,0 +1,28 @@
1
+ import { TableRelationship, CrossTableAnalysis, DatabaseSchema } from '../types';
2
+ /**
3
+ * Join two tables
4
+ */
5
+ export declare function joinTables(options: {
6
+ leftTable: any[];
7
+ rightTable: any[];
8
+ leftKey: string;
9
+ rightKey: string;
10
+ joinType: 'inner' | 'left' | 'right' | 'outer';
11
+ }): Promise<any[]>;
12
+ /**
13
+ * Detect relationships between tables
14
+ */
15
+ export declare function detectRelationships(tables: Record<string, any[]>): Promise<TableRelationship[]>;
16
+ /**
17
+ * Analyze cross-table query
18
+ */
19
+ export declare function analyzeCrossTables(options: {
20
+ tables: Record<string, any[]>;
21
+ relationships: TableRelationship[];
22
+ question: string;
23
+ }): Promise<CrossTableAnalysis>;
24
+ /**
25
+ * Infer database schema
26
+ */
27
+ export declare function inferDatabaseSchema(tables: Record<string, any[]>): Promise<DatabaseSchema>;
28
+ //# sourceMappingURL=multitable.d.ts.map
@@ -0,0 +1 @@
1
+ {"version":3,"file":"multitable.d.ts","sourceRoot":"","sources":["../../src/advanced/multitable.ts"],"names":[],"mappings":"AAAA;;;GAGG;AAEH,OAAO,KAAK,EACV,iBAAiB,EACjB,kBAAkB,EAClB,cAAc,EAEf,MAAM,UAAU,CAAC;AAElB;;GAEG;AACH,wBAAsB,UAAU,CAC9B,OAAO,EAAE;IACP,SAAS,EAAE,GAAG,EAAE,CAAC;IACjB,UAAU,EAAE,GAAG,EAAE,CAAC;IAClB,OAAO,EAAE,MAAM,CAAC;IAChB,QAAQ,EAAE,MAAM,CAAC;IACjB,QAAQ,EAAE,OAAO,GAAG,MAAM,GAAG,OAAO,GAAG,OAAO,CAAC;CAChD,GACA,OAAO,CAAC,GAAG,EAAE,CAAC,CAuChB;AAED;;GAEG;AACH,wBAAsB,mBAAmB,CACvC,MAAM,EAAE,MAAM,CAAC,MAAM,EAAE,GAAG,EAAE,CAAC,GAC5B,OAAO,CAAC,iBAAiB,EAAE,CAAC,CA6B9B;AAED;;GAEG;AACH,wBAAsB,kBAAkB,CACtC,OAAO,EAAE;IACP,MAAM,EAAE,MAAM,CAAC,MAAM,EAAE,GAAG,EAAE,CAAC,CAAC;IAC9B,aAAa,EAAE,iBAAiB,EAAE,CAAC;IACnC,QAAQ,EAAE,MAAM,CAAC;CAClB,GACA,OAAO,CAAC,kBAAkB,CAAC,CAqC7B;AAED;;GAEG;AACH,wBAAsB,mBAAmB,CACvC,MAAM,EAAE,MAAM,CAAC,MAAM,EAAE,GAAG,EAAE,CAAC,GAC5B,OAAO,CAAC,cAAc,CAAC,CAyBzB"}
@@ -0,0 +1,17 @@
1
+ import { PIIDetectionResult, AnonymizationResult, ComplianceReport } from '../types';
2
+ /**
3
+ * Detect PII (Personally Identifiable Information)
4
+ */
5
+ export declare function detectPII(data: any[]): Promise<PIIDetectionResult>;
6
+ /**
7
+ * Anonymize data
8
+ */
9
+ export declare function anonymizeData(data: any[], options: {
10
+ method: 'masking' | 'hashing' | 'generalization' | 'differential_privacy' | 'tokenization';
11
+ columns?: string[];
12
+ }): Promise<AnonymizationResult>;
13
+ /**
14
+ * Check compliance with standards
15
+ */
16
+ export declare function checkCompliance(data: any[], standard: 'GDPR' | 'CCPA' | 'HIPAA' | 'SOC2'): Promise<ComplianceReport>;
17
+ //# sourceMappingURL=privacy.d.ts.map
@@ -0,0 +1 @@
1
+ {"version":3,"file":"privacy.d.ts","sourceRoot":"","sources":["../../src/advanced/privacy.ts"],"names":[],"mappings":"AAAA;;;GAGG;AAEH,OAAO,KAAK,EACV,kBAAkB,EAClB,mBAAmB,EACnB,gBAAgB,EACjB,MAAM,UAAU,CAAC;AAElB;;GAEG;AACH,wBAAsB,SAAS,CAAC,IAAI,EAAE,GAAG,EAAE,GAAG,OAAO,CAAC,kBAAkB,CAAC,CAuExE;AAED;;GAEG;AACH,wBAAsB,aAAa,CACjC,IAAI,EAAE,GAAG,EAAE,EACX,OAAO,EAAE;IACP,MAAM,EAAE,SAAS,GAAG,SAAS,GAAG,gBAAgB,GAAG,sBAAsB,GAAG,cAAc,CAAC;IAC3F,OAAO,CAAC,EAAE,MAAM,EAAE,CAAC;CACpB,GACA,OAAO,CAAC,mBAAmB,CAAC,CAmB9B;AAED;;GAEG;AACH,wBAAsB,eAAe,CACnC,IAAI,EAAE,GAAG,EAAE,EACX,QAAQ,EAAE,MAAM,GAAG,MAAM,GAAG,OAAO,GAAG,MAAM,GAC3C,OAAO,CAAC,gBAAgB,CAAC,CA8B3B"}