@aivue/tabular-intelligence 1.5.1 โ 2.0.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +445 -18
- package/dist/advanced/automl.d.ts +29 -0
- package/dist/advanced/automl.d.ts.map +1 -0
- package/dist/advanced/explainability.d.ts +31 -0
- package/dist/advanced/explainability.d.ts.map +1 -0
- package/dist/advanced/featureEngineering.d.ts +28 -0
- package/dist/advanced/featureEngineering.d.ts.map +1 -0
- package/dist/advanced/index.d.ts +16 -0
- package/dist/advanced/index.d.ts.map +1 -0
- package/dist/advanced/multitable.d.ts +28 -0
- package/dist/advanced/multitable.d.ts.map +1 -0
- package/dist/advanced/privacy.d.ts +17 -0
- package/dist/advanced/privacy.d.ts.map +1 -0
- package/dist/advanced/reporting.d.ts +21 -0
- package/dist/advanced/reporting.d.ts.map +1 -0
- package/dist/advanced/statistical.d.ts +28 -0
- package/dist/advanced/statistical.d.ts.map +1 -0
- package/dist/advanced/streaming.d.ts +41 -0
- package/dist/advanced/streaming.d.ts.map +1 -0
- package/dist/advanced/timeseries.d.ts +36 -0
- package/dist/advanced/timeseries.d.ts.map +1 -0
- package/dist/advanced/versioning.d.ts +34 -0
- package/dist/advanced/versioning.d.ts.map +1 -0
- package/dist/advanced/visualization.d.ts +23 -0
- package/dist/advanced/visualization.d.ts.map +1 -0
- package/dist/composables/useTabularIntelligence.d.ts +1 -1
- package/dist/composables/useTabularIntelligence.d.ts.map +1 -1
- package/dist/index.d.ts +39 -10
- package/dist/index.d.ts.map +1 -1
- package/dist/index.js +75 -47
- package/dist/index.js.map +1 -1
- package/dist/index.mjs +2392 -657
- package/dist/index.mjs.map +1 -1
- package/dist/preprocessing/imputation.d.ts +9 -0
- package/dist/preprocessing/imputation.d.ts.map +1 -0
- package/dist/preprocessing/outliers.d.ts +10 -0
- package/dist/preprocessing/outliers.d.ts.map +1 -0
- package/dist/quality/profiling.d.ts +22 -0
- package/dist/quality/profiling.d.ts.map +1 -0
- package/dist/types/index.d.ts +573 -0
- package/dist/types/index.d.ts.map +1 -1
- package/package.json +4 -3
package/README.md
CHANGED
|
@@ -1,25 +1,48 @@
|
|
|
1
1
|
# @aivue/tabular-intelligence
|
|
2
2
|
|
|
3
|
-
>
|
|
3
|
+
> **The Most Comprehensive Tabular Data Analysis Package for Vue.js**
|
|
4
|
+
> Advanced AI, ML, Statistical Analysis, and Data Science capabilities in one powerful package
|
|
4
5
|
|
|
5
6
|
[](https://www.npmjs.com/package/@aivue/tabular-intelligence)
|
|
6
7
|
[](https://opensource.org/licenses/MIT)
|
|
7
|
-
|
|
8
|
-
|
|
9
|
-
|
|
10
|
-
|
|
11
|
-
|
|
12
|
-
|
|
13
|
-
- ๐ **
|
|
14
|
-
-
|
|
15
|
-
-
|
|
16
|
-
-
|
|
17
|
-
-
|
|
18
|
-
-
|
|
19
|
-
-
|
|
20
|
-
-
|
|
21
|
-
-
|
|
22
|
-
-
|
|
8
|
+
[](https://www.npmjs.com/package/@aivue/tabular-intelligence)
|
|
9
|
+
|
|
10
|
+
## ๐ What's New in v2.0
|
|
11
|
+
|
|
12
|
+
**Tabular Intelligence is now a complete data science toolkit!** We've added 15+ advanced features that make it completely different from @aivue/smart-datatable:
|
|
13
|
+
|
|
14
|
+
- ๐ **Data Quality Profiling** - Comprehensive data quality assessment and profiling
|
|
15
|
+
- ๐งน **Smart Data Cleaning** - Intelligent missing value imputation and outlier handling
|
|
16
|
+
- ๐ง **Feature Engineering** - Automated feature generation and selection
|
|
17
|
+
- โฐ **Time Series Analysis** - Forecasting, trend detection, seasonality analysis
|
|
18
|
+
- ๐ค **AutoML** - Automated model selection and hyperparameter tuning
|
|
19
|
+
- ๐ **Model Explainability** - SHAP values, feature importance, counterfactuals
|
|
20
|
+
- ๐ **Statistical Testing** - A/B testing, hypothesis testing, significance tests
|
|
21
|
+
- ๐ **Visualization Recommendations** - Smart chart suggestions based on data
|
|
22
|
+
- ๐ **Multi-Table Analysis** - Table joins, relationship detection, cross-table queries
|
|
23
|
+
- ๐ **Auto Reporting** - Generate comprehensive insights and reports
|
|
24
|
+
- ๐ **Privacy & Compliance** - PII detection, anonymization, GDPR/CCPA compliance
|
|
25
|
+
- ๐ฆ **Data Versioning** - Snapshots, lineage tracking, transformation pipelines
|
|
26
|
+
- ๐ **Streaming Data** - Real-time data processing and monitoring
|
|
27
|
+
- ๐ฏ **Smart Sampling** - Intelligent data sampling strategies
|
|
28
|
+
|
|
29
|
+
## ๐ฏ Core Features
|
|
30
|
+
|
|
31
|
+
### ๐ Foundation & Integration
|
|
32
|
+
- **Generic TFM Client** - Connect to any HTTP-based Tabular Foundation Model API
|
|
33
|
+
- **Natural Language Q&A** - Ask questions about your data in plain English
|
|
34
|
+
- **Postman Collection Integration** - Import Postman collections and query API data with AI
|
|
35
|
+
- **Table Extraction** - Extract data from HTML tables or Vue data grids
|
|
36
|
+
- **Local Fallback** - Built-in statistical analysis when API is unavailable
|
|
37
|
+
- **Vue Integration** - Reactive composables for seamless Vue.js integration
|
|
38
|
+
|
|
39
|
+
### ๐ Statistical Analysis
|
|
40
|
+
- **Descriptive Statistics** - Mean, median, mode, std dev, percentiles, distributions
|
|
41
|
+
- **Anomaly Detection** - Statistical and ML-based outlier detection
|
|
42
|
+
- **Segmentation & Clustering** - K-means, DBSCAN, hierarchical clustering
|
|
43
|
+
- **Predictions** - Time series forecasting and predictive modeling
|
|
44
|
+
- **Correlation Analysis** - Pearson correlation matrices and significance testing
|
|
45
|
+
- **AI Summaries** - Generate intelligent summaries of your data
|
|
23
46
|
|
|
24
47
|
### ๐ฌ Q&A Capabilities
|
|
25
48
|
|
|
@@ -49,9 +72,23 @@ See [POSTMAN-INTEGRATION.md](./POSTMAN-INTEGRATION.md) for detailed documentatio
|
|
|
49
72
|
## ๐ฆ Installation
|
|
50
73
|
|
|
51
74
|
```bash
|
|
52
|
-
npm
|
|
75
|
+
# npm
|
|
76
|
+
npm install @aivue/tabular-intelligence @aivue/core
|
|
77
|
+
|
|
78
|
+
# yarn
|
|
79
|
+
yarn add @aivue/tabular-intelligence @aivue/core
|
|
80
|
+
|
|
81
|
+
# pnpm
|
|
82
|
+
pnpm add @aivue/tabular-intelligence @aivue/core
|
|
53
83
|
```
|
|
54
84
|
|
|
85
|
+
### ๐ Vue Compatibility
|
|
86
|
+
|
|
87
|
+
- **โ
Vue 2**: Compatible with Vue 2.6.0 and higher
|
|
88
|
+
- **โ
Vue 3**: Compatible with all Vue 3.x versions
|
|
89
|
+
|
|
90
|
+
> The package automatically detects which version of Vue you're using and provides the appropriate compatibility layer. This means you can use the same package regardless of whether your project is using Vue 2 or Vue 3.
|
|
91
|
+
|
|
55
92
|
## ๐ Quick Start
|
|
56
93
|
|
|
57
94
|
### Basic Usage (Local Mode)
|
|
@@ -261,6 +298,396 @@ intelligence.loadFromVueGrid(
|
|
|
261
298
|
);
|
|
262
299
|
```
|
|
263
300
|
|
|
301
|
+
## ๐ Advanced Features
|
|
302
|
+
|
|
303
|
+
### ๐ Data Quality Profiling
|
|
304
|
+
|
|
305
|
+
Comprehensive data quality assessment and profiling:
|
|
306
|
+
|
|
307
|
+
```typescript
|
|
308
|
+
import { profileData, assessDataQuality, detectDataIssues, suggestCleaningSteps } from '@aivue/tabular-intelligence';
|
|
309
|
+
|
|
310
|
+
// Profile your data
|
|
311
|
+
const profile = await profileData(data, {
|
|
312
|
+
includeDistributions: true,
|
|
313
|
+
detectDataTypes: true,
|
|
314
|
+
findPatterns: true
|
|
315
|
+
});
|
|
316
|
+
|
|
317
|
+
// Assess data quality
|
|
318
|
+
const qualityReport = await assessDataQuality(data);
|
|
319
|
+
console.log('Quality Score:', qualityReport.overallScore); // 0-100
|
|
320
|
+
|
|
321
|
+
// Detect specific issues
|
|
322
|
+
const issues = await detectDataIssues(data);
|
|
323
|
+
// Returns: missing values, outliers, duplicates, type mismatches, etc.
|
|
324
|
+
|
|
325
|
+
// Get cleaning recommendations
|
|
326
|
+
const recommendations = await suggestCleaningSteps(data);
|
|
327
|
+
// Returns prioritized list of cleaning actions
|
|
328
|
+
```
|
|
329
|
+
|
|
330
|
+
### ๐งน Smart Data Cleaning
|
|
331
|
+
|
|
332
|
+
Intelligent missing value imputation and outlier handling:
|
|
333
|
+
|
|
334
|
+
```typescript
|
|
335
|
+
import { imputeMissingValues, handleOutliers } from '@aivue/tabular-intelligence';
|
|
336
|
+
|
|
337
|
+
// Impute missing values
|
|
338
|
+
const imputationResult = await imputeMissingValues(data, {
|
|
339
|
+
strategy: 'knn', // 'mean' | 'median' | 'mode' | 'knn' | 'iterative' | 'ai'
|
|
340
|
+
columns: ['age', 'income']
|
|
341
|
+
});
|
|
342
|
+
|
|
343
|
+
// Handle outliers
|
|
344
|
+
const outlierResult = await handleOutliers(data, {
|
|
345
|
+
method: 'cap', // 'remove' | 'cap' | 'transform'
|
|
346
|
+
strategy: 'iqr', // 'iqr' | 'zscore' | 'isolation_forest'
|
|
347
|
+
columns: ['price', 'quantity']
|
|
348
|
+
});
|
|
349
|
+
```
|
|
350
|
+
|
|
351
|
+
### ๐ง Feature Engineering
|
|
352
|
+
|
|
353
|
+
Automated feature generation and selection:
|
|
354
|
+
|
|
355
|
+
```typescript
|
|
356
|
+
import { autoGenerateFeatures, analyzeFeatureImportance, selectBestFeatures } from '@aivue/tabular-intelligence';
|
|
357
|
+
|
|
358
|
+
// Auto-generate features
|
|
359
|
+
const engineeringResult = await autoGenerateFeatures(data, {
|
|
360
|
+
targetColumn: 'sales',
|
|
361
|
+
maxFeatures: 50,
|
|
362
|
+
includeInteractions: true,
|
|
363
|
+
includePolynomials: true,
|
|
364
|
+
includeAggregations: true
|
|
365
|
+
});
|
|
366
|
+
|
|
367
|
+
// Analyze feature importance
|
|
368
|
+
const importance = await analyzeFeatureImportance(data, 'sales');
|
|
369
|
+
|
|
370
|
+
// Select best features
|
|
371
|
+
const selection = await selectBestFeatures(data, {
|
|
372
|
+
targetColumn: 'sales',
|
|
373
|
+
k: 10, // Select top 10 features
|
|
374
|
+
method: 'correlation'
|
|
375
|
+
});
|
|
376
|
+
```
|
|
377
|
+
|
|
378
|
+
### โฐ Time Series Analysis
|
|
379
|
+
|
|
380
|
+
Forecasting, trend detection, and seasonality analysis:
|
|
381
|
+
|
|
382
|
+
```typescript
|
|
383
|
+
import { forecastTimeSeries, detectTrends, detectSeasonality, detectChangePoints } from '@aivue/tabular-intelligence';
|
|
384
|
+
|
|
385
|
+
// Forecast time series
|
|
386
|
+
const forecast = await forecastTimeSeries(data, {
|
|
387
|
+
dateColumn: 'date',
|
|
388
|
+
valueColumn: 'sales',
|
|
389
|
+
horizon: 30, // Forecast 30 periods ahead
|
|
390
|
+
method: 'exponential_smoothing', // 'arima' | 'prophet' | 'exponential_smoothing' | 'lstm'
|
|
391
|
+
seasonality: 'auto',
|
|
392
|
+
confidence: 0.95
|
|
393
|
+
});
|
|
394
|
+
|
|
395
|
+
// Detect trends
|
|
396
|
+
const trends = await detectTrends(data, {
|
|
397
|
+
dateColumn: 'date',
|
|
398
|
+
valueColumn: 'sales'
|
|
399
|
+
});
|
|
400
|
+
|
|
401
|
+
// Detect seasonality
|
|
402
|
+
const seasonality = await detectSeasonality(data, {
|
|
403
|
+
dateColumn: 'date',
|
|
404
|
+
valueColumn: 'sales'
|
|
405
|
+
});
|
|
406
|
+
|
|
407
|
+
// Detect change points
|
|
408
|
+
const changePoints = await detectChangePoints(data, {
|
|
409
|
+
dateColumn: 'date',
|
|
410
|
+
valueColumn: 'sales',
|
|
411
|
+
sensitivity: 0.8
|
|
412
|
+
});
|
|
413
|
+
```
|
|
414
|
+
|
|
415
|
+
### ๐ค AutoML
|
|
416
|
+
|
|
417
|
+
Automated model selection and hyperparameter tuning:
|
|
418
|
+
|
|
419
|
+
```typescript
|
|
420
|
+
import { autoTrain, compareModels, tuneHyperparameters } from '@aivue/tabular-intelligence';
|
|
421
|
+
|
|
422
|
+
// Auto-train best model
|
|
423
|
+
const autoMLResult = await autoTrain(data, {
|
|
424
|
+
targetColumn: 'churn',
|
|
425
|
+
taskType: 'classification', // 'classification' | 'regression'
|
|
426
|
+
metric: 'accuracy',
|
|
427
|
+
timeLimit: 300, // 5 minutes
|
|
428
|
+
models: ['linear', 'tree', 'ensemble', 'neural']
|
|
429
|
+
});
|
|
430
|
+
|
|
431
|
+
// Compare multiple models
|
|
432
|
+
const comparison = await compareModels(data, {
|
|
433
|
+
targetColumn: 'price',
|
|
434
|
+
taskType: 'regression',
|
|
435
|
+
models: ['linear', 'tree', 'ensemble'],
|
|
436
|
+
crossValidation: 5
|
|
437
|
+
});
|
|
438
|
+
|
|
439
|
+
// Tune hyperparameters
|
|
440
|
+
const tuningResult = await tuneHyperparameters(data, {
|
|
441
|
+
targetColumn: 'sales',
|
|
442
|
+
model: 'ensemble',
|
|
443
|
+
parameterGrid: {
|
|
444
|
+
n_estimators: [50, 100, 200],
|
|
445
|
+
max_depth: [5, 10, 15]
|
|
446
|
+
}
|
|
447
|
+
});
|
|
448
|
+
```
|
|
449
|
+
|
|
450
|
+
### ๐ Model Explainability
|
|
451
|
+
|
|
452
|
+
SHAP values, feature importance, and counterfactuals:
|
|
453
|
+
|
|
454
|
+
```typescript
|
|
455
|
+
import { explainPrediction, getFeatureImportance, getPartialDependence, generateCounterfactuals } from '@aivue/tabular-intelligence';
|
|
456
|
+
|
|
457
|
+
// Explain a specific prediction
|
|
458
|
+
const explanation = await explainPrediction(data, {
|
|
459
|
+
rowIndex: 0,
|
|
460
|
+
targetColumn: 'churn',
|
|
461
|
+
model: 'ensemble'
|
|
462
|
+
});
|
|
463
|
+
|
|
464
|
+
// Get feature importance
|
|
465
|
+
const importance = await getFeatureImportance(data, 'churn');
|
|
466
|
+
|
|
467
|
+
// Get partial dependence plot
|
|
468
|
+
const pdp = await getPartialDependence(data, {
|
|
469
|
+
feature: 'age',
|
|
470
|
+
targetColumn: 'churn'
|
|
471
|
+
});
|
|
472
|
+
|
|
473
|
+
// Generate counterfactuals
|
|
474
|
+
const counterfactuals = await generateCounterfactuals(data, {
|
|
475
|
+
rowIndex: 0,
|
|
476
|
+
desiredOutcome: 0, // Want churn = 0
|
|
477
|
+
targetColumn: 'churn',
|
|
478
|
+
maxChanges: 3
|
|
479
|
+
});
|
|
480
|
+
```
|
|
481
|
+
|
|
482
|
+
### ๐ Statistical Testing & A/B Testing
|
|
483
|
+
|
|
484
|
+
Hypothesis testing and significance tests:
|
|
485
|
+
|
|
486
|
+
```typescript
|
|
487
|
+
import { analyzeABTest, testSignificance, calculateSampleSize } from '@aivue/tabular-intelligence';
|
|
488
|
+
|
|
489
|
+
// Analyze A/B test
|
|
490
|
+
const abTestResult = await analyzeABTest({
|
|
491
|
+
controlGroup: controlData,
|
|
492
|
+
treatmentGroup: treatmentData,
|
|
493
|
+
metric: 'conversion_rate',
|
|
494
|
+
confidenceLevel: 0.95
|
|
495
|
+
});
|
|
496
|
+
|
|
497
|
+
// Test statistical significance
|
|
498
|
+
const significanceTest = await testSignificance({
|
|
499
|
+
test: 'ttest', // 'ttest' | 'chi2' | 'anova' | 'mann_whitney' | 'kruskal_wallis'
|
|
500
|
+
groups: [group1, group2],
|
|
501
|
+
metric: 'revenue',
|
|
502
|
+
alpha: 0.05
|
|
503
|
+
});
|
|
504
|
+
|
|
505
|
+
// Calculate required sample size
|
|
506
|
+
const sampleSize = await calculateSampleSize({
|
|
507
|
+
effect: 0.2, // Effect size
|
|
508
|
+
power: 0.8,
|
|
509
|
+
alpha: 0.05
|
|
510
|
+
});
|
|
511
|
+
```
|
|
512
|
+
|
|
513
|
+
### ๐ Visualization Recommendations
|
|
514
|
+
|
|
515
|
+
Smart chart suggestions based on your data:
|
|
516
|
+
|
|
517
|
+
```typescript
|
|
518
|
+
import { recommendVisualizations, generateChartSpec, detectPatterns } from '@aivue/tabular-intelligence';
|
|
519
|
+
|
|
520
|
+
// Get visualization recommendations
|
|
521
|
+
const recommendations = await recommendVisualizations(data, {
|
|
522
|
+
columns: ['date', 'sales', 'category'],
|
|
523
|
+
purpose: 'exploration' // 'exploration' | 'presentation' | 'analysis'
|
|
524
|
+
});
|
|
525
|
+
|
|
526
|
+
// Generate chart specification
|
|
527
|
+
const chartSpec = await generateChartSpec({
|
|
528
|
+
type: 'line',
|
|
529
|
+
xColumn: 'date',
|
|
530
|
+
yColumn: 'sales',
|
|
531
|
+
groupBy: 'category',
|
|
532
|
+
data
|
|
533
|
+
});
|
|
534
|
+
|
|
535
|
+
// Detect patterns in charts
|
|
536
|
+
const patterns = await detectPatterns('line', data);
|
|
537
|
+
```
|
|
538
|
+
|
|
539
|
+
### ๐ Multi-Table Analysis
|
|
540
|
+
|
|
541
|
+
Table joins, relationship detection, and cross-table queries:
|
|
542
|
+
|
|
543
|
+
```typescript
|
|
544
|
+
import { joinTables, detectRelationships, analyzeCrossTables, inferDatabaseSchema } from '@aivue/tabular-intelligence';
|
|
545
|
+
|
|
546
|
+
// Join two tables
|
|
547
|
+
const joined = await joinTables({
|
|
548
|
+
leftTable: customers,
|
|
549
|
+
rightTable: orders,
|
|
550
|
+
leftKey: 'customer_id',
|
|
551
|
+
rightKey: 'customer_id',
|
|
552
|
+
joinType: 'inner' // 'inner' | 'left' | 'right' | 'outer'
|
|
553
|
+
});
|
|
554
|
+
|
|
555
|
+
// Detect relationships between tables
|
|
556
|
+
const relationships = await detectRelationships({
|
|
557
|
+
customers: customersData,
|
|
558
|
+
orders: ordersData,
|
|
559
|
+
products: productsData
|
|
560
|
+
});
|
|
561
|
+
|
|
562
|
+
// Analyze across multiple tables
|
|
563
|
+
const crossTableAnalysis = await analyzeCrossTables({
|
|
564
|
+
tables: { customers, orders, products },
|
|
565
|
+
relationships,
|
|
566
|
+
question: 'What is the total revenue by customer segment?'
|
|
567
|
+
});
|
|
568
|
+
|
|
569
|
+
// Infer database schema
|
|
570
|
+
const schema = await inferDatabaseSchema({
|
|
571
|
+
customers: customersData,
|
|
572
|
+
orders: ordersData
|
|
573
|
+
});
|
|
574
|
+
```
|
|
575
|
+
|
|
576
|
+
### ๐ Auto Reporting & Insights
|
|
577
|
+
|
|
578
|
+
Generate comprehensive reports and insights:
|
|
579
|
+
|
|
580
|
+
```typescript
|
|
581
|
+
import { generateReport, generateExecutiveSummary, generateInsights } from '@aivue/tabular-intelligence';
|
|
582
|
+
|
|
583
|
+
// Generate comprehensive report
|
|
584
|
+
const report = await generateReport(data, {
|
|
585
|
+
format: 'markdown', // 'markdown' | 'html' | 'pdf' | 'json'
|
|
586
|
+
sections: ['summary', 'stats', 'anomalies', 'trends', 'recommendations'],
|
|
587
|
+
includeCharts: true
|
|
588
|
+
});
|
|
589
|
+
|
|
590
|
+
// Generate executive summary
|
|
591
|
+
const summary = await generateExecutiveSummary(data);
|
|
592
|
+
|
|
593
|
+
// Generate automated insights
|
|
594
|
+
const insights = await generateInsights(data, {
|
|
595
|
+
maxInsights: 10,
|
|
596
|
+
priority: 'high'
|
|
597
|
+
});
|
|
598
|
+
```
|
|
599
|
+
|
|
600
|
+
### ๐ Privacy & Compliance
|
|
601
|
+
|
|
602
|
+
PII detection, anonymization, and compliance checking:
|
|
603
|
+
|
|
604
|
+
```typescript
|
|
605
|
+
import { detectPII, anonymizeData, checkCompliance } from '@aivue/tabular-intelligence';
|
|
606
|
+
|
|
607
|
+
// Detect PII
|
|
608
|
+
const piiDetection = await detectPII(data);
|
|
609
|
+
console.log('PII Columns:', piiDetection.piiColumns);
|
|
610
|
+
console.log('Risk Level:', piiDetection.riskLevel);
|
|
611
|
+
|
|
612
|
+
// Anonymize data
|
|
613
|
+
const anonymized = await anonymizeData(data, {
|
|
614
|
+
method: 'hashing', // 'masking' | 'hashing' | 'generalization' | 'differential_privacy' | 'tokenization'
|
|
615
|
+
columns: ['email', 'phone', 'ssn']
|
|
616
|
+
});
|
|
617
|
+
|
|
618
|
+
// Check compliance
|
|
619
|
+
const complianceReport = await checkCompliance(data, 'GDPR'); // 'GDPR' | 'CCPA' | 'HIPAA' | 'SOC2'
|
|
620
|
+
console.log('Compliant:', complianceReport.compliant);
|
|
621
|
+
console.log('Score:', complianceReport.score);
|
|
622
|
+
```
|
|
623
|
+
|
|
624
|
+
### ๐ฆ Data Versioning & Pipelines
|
|
625
|
+
|
|
626
|
+
Snapshots, lineage tracking, and transformation pipelines:
|
|
627
|
+
|
|
628
|
+
```typescript
|
|
629
|
+
import { createSnapshot, compareSnapshots, createPipeline, executePipeline } from '@aivue/tabular-intelligence';
|
|
630
|
+
|
|
631
|
+
// Create data snapshot
|
|
632
|
+
const snapshot1 = await createSnapshot(data, 'Before Cleaning');
|
|
633
|
+
|
|
634
|
+
// ... perform transformations ...
|
|
635
|
+
|
|
636
|
+
const snapshot2 = await createSnapshot(cleanedData, 'After Cleaning');
|
|
637
|
+
|
|
638
|
+
// Compare snapshots
|
|
639
|
+
const diff = await compareSnapshots(snapshot1.id, snapshot2.id);
|
|
640
|
+
|
|
641
|
+
// Create transformation pipeline
|
|
642
|
+
const pipeline = await createPipeline([
|
|
643
|
+
{ operation: 'impute_missing', params: { strategy: 'mean' } },
|
|
644
|
+
{ operation: 'handle_outliers', params: { method: 'cap' } },
|
|
645
|
+
{ operation: 'normalize', params: { method: 'minmax' } }
|
|
646
|
+
]);
|
|
647
|
+
|
|
648
|
+
// Execute pipeline
|
|
649
|
+
const result = await executePipeline(pipeline, data);
|
|
650
|
+
```
|
|
651
|
+
|
|
652
|
+
### ๐ Streaming & Real-time Data
|
|
653
|
+
|
|
654
|
+
Real-time data processing and monitoring:
|
|
655
|
+
|
|
656
|
+
```typescript
|
|
657
|
+
import { connectStream, detectStreamingAnomalies, calculateWindowedAggregations, smartSample } from '@aivue/tabular-intelligence';
|
|
658
|
+
|
|
659
|
+
// Connect to streaming source
|
|
660
|
+
const stream = await connectStream({
|
|
661
|
+
source: 'websocket', // 'websocket' | 'sse' | 'polling'
|
|
662
|
+
url: 'wss://api.example.com/stream',
|
|
663
|
+
updateInterval: 1000
|
|
664
|
+
});
|
|
665
|
+
|
|
666
|
+
// Detect anomalies in real-time
|
|
667
|
+
const anomalies = await detectStreamingAnomalies(streamData, {
|
|
668
|
+
columns: ['temperature', 'pressure'],
|
|
669
|
+
threshold: 3,
|
|
670
|
+
method: 'statistical'
|
|
671
|
+
});
|
|
672
|
+
|
|
673
|
+
// Calculate windowed aggregations
|
|
674
|
+
const aggregations = await calculateWindowedAggregations(streamData, {
|
|
675
|
+
windowType: 'tumbling', // 'tumbling' | 'sliding' | 'session'
|
|
676
|
+
windowSize: 100,
|
|
677
|
+
aggregations: [
|
|
678
|
+
{ column: 'value', function: 'avg', alias: 'avg_value' },
|
|
679
|
+
{ column: 'value', function: 'max', alias: 'max_value' }
|
|
680
|
+
]
|
|
681
|
+
});
|
|
682
|
+
|
|
683
|
+
// Smart sampling
|
|
684
|
+
const sample = await smartSample(largeDataset, {
|
|
685
|
+
size: 1000,
|
|
686
|
+
method: 'stratified', // 'random' | 'stratified' | 'systematic' | 'cluster'
|
|
687
|
+
preserveDistribution: true
|
|
688
|
+
});
|
|
689
|
+
```
|
|
690
|
+
|
|
264
691
|
## ๐ API Reference
|
|
265
692
|
|
|
266
693
|
### `useTabularIntelligence(options)`
|
|
@@ -0,0 +1,29 @@
|
|
|
1
|
+
import { AutoMLResult, ModelComparison, TuningResult } from '../types';
|
|
2
|
+
/**
|
|
3
|
+
* Auto train and select best model
|
|
4
|
+
*/
|
|
5
|
+
export declare function autoTrain(data: any[], options: {
|
|
6
|
+
targetColumn: string;
|
|
7
|
+
taskType: 'classification' | 'regression';
|
|
8
|
+
metric?: string;
|
|
9
|
+
timeLimit?: number;
|
|
10
|
+
models?: Array<'linear' | 'tree' | 'ensemble' | 'neural'>;
|
|
11
|
+
}): Promise<AutoMLResult>;
|
|
12
|
+
/**
|
|
13
|
+
* Compare multiple models
|
|
14
|
+
*/
|
|
15
|
+
export declare function compareModels(data: any[], options: {
|
|
16
|
+
targetColumn: string;
|
|
17
|
+
models: string[];
|
|
18
|
+
crossValidation?: number;
|
|
19
|
+
}): Promise<ModelComparison>;
|
|
20
|
+
/**
|
|
21
|
+
* Tune hyperparameters
|
|
22
|
+
*/
|
|
23
|
+
export declare function tuneHyperparameters(data: any[], options: {
|
|
24
|
+
model: string;
|
|
25
|
+
targetColumn: string;
|
|
26
|
+
searchSpace?: any;
|
|
27
|
+
iterations?: number;
|
|
28
|
+
}): Promise<TuningResult>;
|
|
29
|
+
//# sourceMappingURL=automl.d.ts.map
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
{"version":3,"file":"automl.d.ts","sourceRoot":"","sources":["../../src/advanced/automl.ts"],"names":[],"mappings":"AAAA;;;GAGG;AAEH,OAAO,KAAK,EACV,YAAY,EAEZ,eAAe,EACf,YAAY,EAEb,MAAM,UAAU,CAAC;AAElB;;GAEG;AACH,wBAAsB,SAAS,CAC7B,IAAI,EAAE,GAAG,EAAE,EACX,OAAO,EAAE;IACP,YAAY,EAAE,MAAM,CAAC;IACrB,QAAQ,EAAE,gBAAgB,GAAG,YAAY,CAAC;IAC1C,MAAM,CAAC,EAAE,MAAM,CAAC;IAChB,SAAS,CAAC,EAAE,MAAM,CAAC;IACnB,MAAM,CAAC,EAAE,KAAK,CAAC,QAAQ,GAAG,MAAM,GAAG,UAAU,GAAG,QAAQ,CAAC,CAAC;CAC3D,GACA,OAAO,CAAC,YAAY,CAAC,CAyCvB;AAED;;GAEG;AACH,wBAAsB,aAAa,CACjC,IAAI,EAAE,GAAG,EAAE,EACX,OAAO,EAAE;IACP,YAAY,EAAE,MAAM,CAAC;IACrB,MAAM,EAAE,MAAM,EAAE,CAAC;IACjB,eAAe,CAAC,EAAE,MAAM,CAAC;CAC1B,GACA,OAAO,CAAC,eAAe,CAAC,CA0B1B;AAED;;GAEG;AACH,wBAAsB,mBAAmB,CACvC,IAAI,EAAE,GAAG,EAAE,EACX,OAAO,EAAE;IACP,KAAK,EAAE,MAAM,CAAC;IACd,YAAY,EAAE,MAAM,CAAC;IACrB,WAAW,CAAC,EAAE,GAAG,CAAC;IAClB,UAAU,CAAC,EAAE,MAAM,CAAC;CACrB,GACA,OAAO,CAAC,YAAY,CAAC,CAoCvB"}
|
|
@@ -0,0 +1,31 @@
|
|
|
1
|
+
import { SHAPExplanation, PartialDependencePlot, Counterfactual, FeatureImportance } from '../types';
|
|
2
|
+
/**
|
|
3
|
+
* Explain prediction using SHAP values
|
|
4
|
+
*/
|
|
5
|
+
export declare function explainPrediction(data: any[], options: {
|
|
6
|
+
rowIndex: number;
|
|
7
|
+
model?: string;
|
|
8
|
+
targetColumn: string;
|
|
9
|
+
}): Promise<SHAPExplanation>;
|
|
10
|
+
/**
|
|
11
|
+
* Get feature importance
|
|
12
|
+
*/
|
|
13
|
+
export declare function getFeatureImportance(data: any[], targetColumn: string, model?: string): Promise<FeatureImportance[]>;
|
|
14
|
+
/**
|
|
15
|
+
* Get partial dependence plot data
|
|
16
|
+
*/
|
|
17
|
+
export declare function getPartialDependence(data: any[], options: {
|
|
18
|
+
feature: string;
|
|
19
|
+
targetColumn: string;
|
|
20
|
+
model?: string;
|
|
21
|
+
}): Promise<PartialDependencePlot>;
|
|
22
|
+
/**
|
|
23
|
+
* Generate counterfactual explanations
|
|
24
|
+
*/
|
|
25
|
+
export declare function generateCounterfactuals(data: any[], options: {
|
|
26
|
+
rowIndex: number;
|
|
27
|
+
desiredOutcome: any;
|
|
28
|
+
targetColumn: string;
|
|
29
|
+
maxChanges?: number;
|
|
30
|
+
}): Promise<Counterfactual[]>;
|
|
31
|
+
//# sourceMappingURL=explainability.d.ts.map
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
{"version":3,"file":"explainability.d.ts","sourceRoot":"","sources":["../../src/advanced/explainability.ts"],"names":[],"mappings":"AAAA;;;GAGG;AAEH,OAAO,KAAK,EACV,eAAe,EACf,qBAAqB,EACrB,cAAc,EACd,iBAAiB,EAClB,MAAM,UAAU,CAAC;AAElB;;GAEG;AACH,wBAAsB,iBAAiB,CACrC,IAAI,EAAE,GAAG,EAAE,EACX,OAAO,EAAE;IACP,QAAQ,EAAE,MAAM,CAAC;IACjB,KAAK,CAAC,EAAE,MAAM,CAAC;IACf,YAAY,EAAE,MAAM,CAAC;CACtB,GACA,OAAO,CAAC,eAAe,CAAC,CAsC1B;AAED;;GAEG;AACH,wBAAsB,oBAAoB,CACxC,IAAI,EAAE,GAAG,EAAE,EACX,YAAY,EAAE,MAAM,EACpB,KAAK,CAAC,EAAE,MAAM,GACb,OAAO,CAAC,iBAAiB,EAAE,CAAC,CAU9B;AAED;;GAEG;AACH,wBAAsB,oBAAoB,CACxC,IAAI,EAAE,GAAG,EAAE,EACX,OAAO,EAAE;IACP,OAAO,EAAE,MAAM,CAAC;IAChB,YAAY,EAAE,MAAM,CAAC;IACrB,KAAK,CAAC,EAAE,MAAM,CAAC;CAChB,GACA,OAAO,CAAC,qBAAqB,CAAC,CAuBhC;AAED;;GAEG;AACH,wBAAsB,uBAAuB,CAC3C,IAAI,EAAE,GAAG,EAAE,EACX,OAAO,EAAE;IACP,QAAQ,EAAE,MAAM,CAAC;IACjB,cAAc,EAAE,GAAG,CAAC;IACpB,YAAY,EAAE,MAAM,CAAC;IACrB,UAAU,CAAC,EAAE,MAAM,CAAC;CACrB,GACA,OAAO,CAAC,cAAc,EAAE,CAAC,CAwC3B"}
|
|
@@ -0,0 +1,28 @@
|
|
|
1
|
+
import { FeatureEngineeringResult, FeatureImportance, FeatureTransformation, FeatureSelectionResult } from '../types';
|
|
2
|
+
/**
|
|
3
|
+
* Auto-generate features
|
|
4
|
+
*/
|
|
5
|
+
export declare function autoGenerateFeatures(data: any[], options: {
|
|
6
|
+
targetColumn?: string;
|
|
7
|
+
maxFeatures?: number;
|
|
8
|
+
includeInteractions?: boolean;
|
|
9
|
+
includePolynomials?: boolean;
|
|
10
|
+
includeAggregations?: boolean;
|
|
11
|
+
}): Promise<FeatureEngineeringResult>;
|
|
12
|
+
/**
|
|
13
|
+
* Create features with specific transformations
|
|
14
|
+
*/
|
|
15
|
+
export declare function createFeatures(data: any[], transformations: FeatureTransformation[]): Promise<any[]>;
|
|
16
|
+
/**
|
|
17
|
+
* Analyze feature importance
|
|
18
|
+
*/
|
|
19
|
+
export declare function analyzeFeatureImportance(data: any[], targetColumn: string): Promise<FeatureImportance[]>;
|
|
20
|
+
/**
|
|
21
|
+
* Select best features
|
|
22
|
+
*/
|
|
23
|
+
export declare function selectBestFeatures(data: any[], options: {
|
|
24
|
+
targetColumn: string;
|
|
25
|
+
method: 'correlation' | 'mutual_info' | 'chi2' | 'recursive';
|
|
26
|
+
topK?: number;
|
|
27
|
+
}): Promise<FeatureSelectionResult>;
|
|
28
|
+
//# sourceMappingURL=featureEngineering.d.ts.map
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
{"version":3,"file":"featureEngineering.d.ts","sourceRoot":"","sources":["../../src/advanced/featureEngineering.ts"],"names":[],"mappings":"AAAA;;;GAGG;AAEH,OAAO,KAAK,EACV,wBAAwB,EAExB,iBAAiB,EACjB,qBAAqB,EACrB,sBAAsB,EACvB,MAAM,UAAU,CAAC;AAElB;;GAEG;AACH,wBAAsB,oBAAoB,CACxC,IAAI,EAAE,GAAG,EAAE,EACX,OAAO,EAAE;IACP,YAAY,CAAC,EAAE,MAAM,CAAC;IACtB,WAAW,CAAC,EAAE,MAAM,CAAC;IACrB,mBAAmB,CAAC,EAAE,OAAO,CAAC;IAC9B,kBAAkB,CAAC,EAAE,OAAO,CAAC;IAC7B,mBAAmB,CAAC,EAAE,OAAO,CAAC;CAC/B,GACA,OAAO,CAAC,wBAAwB,CAAC,CAuEnC;AAED;;GAEG;AACH,wBAAsB,cAAc,CAClC,IAAI,EAAE,GAAG,EAAE,EACX,eAAe,EAAE,qBAAqB,EAAE,GACvC,OAAO,CAAC,GAAG,EAAE,CAAC,CAQhB;AAED;;GAEG;AACH,wBAAsB,wBAAwB,CAC5C,IAAI,EAAE,GAAG,EAAE,EACX,YAAY,EAAE,MAAM,GACnB,OAAO,CAAC,iBAAiB,EAAE,CAAC,CAuB9B;AAED;;GAEG;AACH,wBAAsB,kBAAkB,CACtC,IAAI,EAAE,GAAG,EAAE,EACX,OAAO,EAAE;IACP,YAAY,EAAE,MAAM,CAAC;IACrB,MAAM,EAAE,aAAa,GAAG,aAAa,GAAG,MAAM,GAAG,WAAW,CAAC;IAC7D,IAAI,CAAC,EAAE,MAAM,CAAC;CACf,GACA,OAAO,CAAC,sBAAsB,CAAC,CAYjC"}
|
|
@@ -0,0 +1,16 @@
|
|
|
1
|
+
/**
|
|
2
|
+
* Advanced Tabular Intelligence Features
|
|
3
|
+
* Comprehensive data analysis, ML, and AI capabilities
|
|
4
|
+
*/
|
|
5
|
+
export * from './timeseries';
|
|
6
|
+
export * from './automl';
|
|
7
|
+
export * from './explainability';
|
|
8
|
+
export * from './statistical';
|
|
9
|
+
export * from './visualization';
|
|
10
|
+
export * from './multitable';
|
|
11
|
+
export * from './reporting';
|
|
12
|
+
export * from './privacy';
|
|
13
|
+
export * from './versioning';
|
|
14
|
+
export * from './streaming';
|
|
15
|
+
export * from './featureEngineering';
|
|
16
|
+
//# sourceMappingURL=index.d.ts.map
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
{"version":3,"file":"index.d.ts","sourceRoot":"","sources":["../../src/advanced/index.ts"],"names":[],"mappings":"AAAA;;;GAGG;AAGH,cAAc,cAAc,CAAC;AAC7B,cAAc,UAAU,CAAC;AACzB,cAAc,kBAAkB,CAAC;AACjC,cAAc,eAAe,CAAC;AAC9B,cAAc,iBAAiB,CAAC;AAChC,cAAc,cAAc,CAAC;AAC7B,cAAc,aAAa,CAAC;AAC5B,cAAc,WAAW,CAAC;AAC1B,cAAc,cAAc,CAAC;AAC7B,cAAc,aAAa,CAAC;AAC5B,cAAc,sBAAsB,CAAC"}
|
|
@@ -0,0 +1,28 @@
|
|
|
1
|
+
import { TableRelationship, CrossTableAnalysis, DatabaseSchema } from '../types';
|
|
2
|
+
/**
|
|
3
|
+
* Join two tables
|
|
4
|
+
*/
|
|
5
|
+
export declare function joinTables(options: {
|
|
6
|
+
leftTable: any[];
|
|
7
|
+
rightTable: any[];
|
|
8
|
+
leftKey: string;
|
|
9
|
+
rightKey: string;
|
|
10
|
+
joinType: 'inner' | 'left' | 'right' | 'outer';
|
|
11
|
+
}): Promise<any[]>;
|
|
12
|
+
/**
|
|
13
|
+
* Detect relationships between tables
|
|
14
|
+
*/
|
|
15
|
+
export declare function detectRelationships(tables: Record<string, any[]>): Promise<TableRelationship[]>;
|
|
16
|
+
/**
|
|
17
|
+
* Analyze cross-table query
|
|
18
|
+
*/
|
|
19
|
+
export declare function analyzeCrossTables(options: {
|
|
20
|
+
tables: Record<string, any[]>;
|
|
21
|
+
relationships: TableRelationship[];
|
|
22
|
+
question: string;
|
|
23
|
+
}): Promise<CrossTableAnalysis>;
|
|
24
|
+
/**
|
|
25
|
+
* Infer database schema
|
|
26
|
+
*/
|
|
27
|
+
export declare function inferDatabaseSchema(tables: Record<string, any[]>): Promise<DatabaseSchema>;
|
|
28
|
+
//# sourceMappingURL=multitable.d.ts.map
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
{"version":3,"file":"multitable.d.ts","sourceRoot":"","sources":["../../src/advanced/multitable.ts"],"names":[],"mappings":"AAAA;;;GAGG;AAEH,OAAO,KAAK,EACV,iBAAiB,EACjB,kBAAkB,EAClB,cAAc,EAEf,MAAM,UAAU,CAAC;AAElB;;GAEG;AACH,wBAAsB,UAAU,CAC9B,OAAO,EAAE;IACP,SAAS,EAAE,GAAG,EAAE,CAAC;IACjB,UAAU,EAAE,GAAG,EAAE,CAAC;IAClB,OAAO,EAAE,MAAM,CAAC;IAChB,QAAQ,EAAE,MAAM,CAAC;IACjB,QAAQ,EAAE,OAAO,GAAG,MAAM,GAAG,OAAO,GAAG,OAAO,CAAC;CAChD,GACA,OAAO,CAAC,GAAG,EAAE,CAAC,CAuChB;AAED;;GAEG;AACH,wBAAsB,mBAAmB,CACvC,MAAM,EAAE,MAAM,CAAC,MAAM,EAAE,GAAG,EAAE,CAAC,GAC5B,OAAO,CAAC,iBAAiB,EAAE,CAAC,CA6B9B;AAED;;GAEG;AACH,wBAAsB,kBAAkB,CACtC,OAAO,EAAE;IACP,MAAM,EAAE,MAAM,CAAC,MAAM,EAAE,GAAG,EAAE,CAAC,CAAC;IAC9B,aAAa,EAAE,iBAAiB,EAAE,CAAC;IACnC,QAAQ,EAAE,MAAM,CAAC;CAClB,GACA,OAAO,CAAC,kBAAkB,CAAC,CAqC7B;AAED;;GAEG;AACH,wBAAsB,mBAAmB,CACvC,MAAM,EAAE,MAAM,CAAC,MAAM,EAAE,GAAG,EAAE,CAAC,GAC5B,OAAO,CAAC,cAAc,CAAC,CAyBzB"}
|
|
@@ -0,0 +1,17 @@
|
|
|
1
|
+
import { PIIDetectionResult, AnonymizationResult, ComplianceReport } from '../types';
|
|
2
|
+
/**
|
|
3
|
+
* Detect PII (Personally Identifiable Information)
|
|
4
|
+
*/
|
|
5
|
+
export declare function detectPII(data: any[]): Promise<PIIDetectionResult>;
|
|
6
|
+
/**
|
|
7
|
+
* Anonymize data
|
|
8
|
+
*/
|
|
9
|
+
export declare function anonymizeData(data: any[], options: {
|
|
10
|
+
method: 'masking' | 'hashing' | 'generalization' | 'differential_privacy' | 'tokenization';
|
|
11
|
+
columns?: string[];
|
|
12
|
+
}): Promise<AnonymizationResult>;
|
|
13
|
+
/**
|
|
14
|
+
* Check compliance with standards
|
|
15
|
+
*/
|
|
16
|
+
export declare function checkCompliance(data: any[], standard: 'GDPR' | 'CCPA' | 'HIPAA' | 'SOC2'): Promise<ComplianceReport>;
|
|
17
|
+
//# sourceMappingURL=privacy.d.ts.map
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
{"version":3,"file":"privacy.d.ts","sourceRoot":"","sources":["../../src/advanced/privacy.ts"],"names":[],"mappings":"AAAA;;;GAGG;AAEH,OAAO,KAAK,EACV,kBAAkB,EAClB,mBAAmB,EACnB,gBAAgB,EACjB,MAAM,UAAU,CAAC;AAElB;;GAEG;AACH,wBAAsB,SAAS,CAAC,IAAI,EAAE,GAAG,EAAE,GAAG,OAAO,CAAC,kBAAkB,CAAC,CAuExE;AAED;;GAEG;AACH,wBAAsB,aAAa,CACjC,IAAI,EAAE,GAAG,EAAE,EACX,OAAO,EAAE;IACP,MAAM,EAAE,SAAS,GAAG,SAAS,GAAG,gBAAgB,GAAG,sBAAsB,GAAG,cAAc,CAAC;IAC3F,OAAO,CAAC,EAAE,MAAM,EAAE,CAAC;CACpB,GACA,OAAO,CAAC,mBAAmB,CAAC,CAmB9B;AAED;;GAEG;AACH,wBAAsB,eAAe,CACnC,IAAI,EAAE,GAAG,EAAE,EACX,QAAQ,EAAE,MAAM,GAAG,MAAM,GAAG,OAAO,GAAG,MAAM,GAC3C,OAAO,CAAC,gBAAgB,CAAC,CA8B3B"}
|