@adobe/data 0.5.14 → 0.5.16

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (130) hide show
  1. package/dist/ecs/entity/entity.d.ts +8 -0
  2. package/dist/ecs/entity/entity.js +3 -0
  3. package/dist/ecs/entity/entity.js.map +1 -0
  4. package/dist/ecs/entity/u32.d.ts +8 -0
  5. package/dist/{lit/elements/service-context.js → ecs/entity/u32.js} +3 -3
  6. package/dist/ecs/entity/u32.js.map +1 -0
  7. package/dist/graphics/frame.d.ts +1 -22
  8. package/dist/graphics/frame.js +14 -11
  9. package/dist/graphics/frame.js.map +1 -1
  10. package/dist/graphics/get-web-gpu-device-and-context.d.ts +1 -2
  11. package/dist/graphics/get-web-gpu-device-and-context.js +23 -20
  12. package/dist/graphics/get-web-gpu-device-and-context.js.map +1 -1
  13. package/dist/graphics/graphics-context.d.ts +1 -5
  14. package/dist/graphics/graphics-context.js +5 -0
  15. package/dist/graphics/graphics-context.js.map +1 -1
  16. package/dist/math/aabb/aabb.d.ts +42 -42
  17. package/dist/math/aabb/aabb.js +65 -62
  18. package/dist/math/aabb/aabb.js.map +1 -1
  19. package/dist/math/aabb-face/aabb-face.d.ts +59 -0
  20. package/dist/math/aabb-face/aabb-face.js +145 -0
  21. package/dist/math/aabb-face/aabb-face.js.map +1 -0
  22. package/dist/math/aabb-face/aabb-face.test.d.ts +1 -0
  23. package/dist/math/aabb-face/aabb-face.test.js +54 -0
  24. package/dist/math/aabb-face/aabb-face.test.js.map +1 -0
  25. package/dist/math/aabb-face/face.d.ts +51 -0
  26. package/dist/math/aabb-face/face.js +110 -0
  27. package/dist/math/aabb-face/face.js.map +1 -0
  28. package/dist/math/aabb-face/face.test.d.ts +1 -0
  29. package/dist/math/aabb-face/face.test.js +94 -0
  30. package/dist/math/aabb-face/face.test.js.map +1 -0
  31. package/dist/math/box/box.d.ts +50 -0
  32. package/dist/math/box/box.js +23 -0
  33. package/dist/math/box/box.js.map +1 -0
  34. package/dist/math/f32/f32.d.ts +8 -6
  35. package/dist/math/f32/f32.js +4 -1
  36. package/dist/math/f32/f32.js.map +1 -1
  37. package/dist/math/face/face.d.ts +51 -0
  38. package/dist/math/face/face.js +110 -0
  39. package/dist/math/face/face.js.map +1 -0
  40. package/dist/math/face/face.test.d.ts +1 -0
  41. package/dist/math/face/face.test.js +94 -0
  42. package/dist/math/face/face.test.js.map +1 -0
  43. package/dist/math/i32/i32.d.ts +9 -6
  44. package/dist/math/i32/i32.js +5 -2
  45. package/dist/math/i32/i32.js.map +1 -1
  46. package/dist/math/index.d.ts +13 -22
  47. package/dist/math/index.js +13 -22
  48. package/dist/math/index.js.map +1 -1
  49. package/dist/math/line2/line2.d.ts +36 -36
  50. package/dist/math/line2/line2.js +55 -52
  51. package/dist/math/line2/line2.js.map +1 -1
  52. package/dist/math/line3/line3.d.ts +48 -43
  53. package/dist/math/line3/line3.js +64 -52
  54. package/dist/math/line3/line3.js.map +1 -1
  55. package/dist/math/mat4x4/mat4x4.d.ts +34 -34
  56. package/dist/math/mat4x4/mat4x4.js +216 -213
  57. package/dist/math/mat4x4/mat4x4.js.map +1 -1
  58. package/dist/math/picking/face.d.ts +1 -0
  59. package/dist/math/picking/face.js +2 -0
  60. package/dist/math/picking/face.js.map +1 -0
  61. package/dist/math/picking/get-closest-entity-to-line.d.ts +4 -0
  62. package/dist/math/picking/get-closest-entity-to-line.js +30 -0
  63. package/dist/math/picking/get-closest-entity-to-line.js.map +1 -0
  64. package/dist/math/picking/get-closest-entity-to-point.d.ts +4 -0
  65. package/dist/math/picking/get-closest-entity-to-point.js +27 -0
  66. package/dist/math/picking/get-closest-entity-to-point.js.map +1 -0
  67. package/dist/math/picking/get-intersecting-entities.d.ts +12 -0
  68. package/dist/math/picking/get-intersecting-entities.js +15 -0
  69. package/dist/math/picking/get-intersecting-entities.js.map +1 -0
  70. package/dist/math/picking/getClosestEntityToLine.d.ts +4 -0
  71. package/dist/math/picking/getClosestEntityToLine.js +29 -0
  72. package/dist/math/picking/getClosestEntityToLine.js.map +1 -0
  73. package/dist/math/picking/getClosestEntityToPoint.d.ts +4 -0
  74. package/dist/math/picking/getClosestEntityToPoint.js +27 -0
  75. package/dist/math/picking/getClosestEntityToPoint.js.map +1 -0
  76. package/dist/math/picking/getIntersectingEntities.d.ts +12 -0
  77. package/dist/math/picking/getIntersectingEntities.js +15 -0
  78. package/dist/math/picking/getIntersectingEntities.js.map +1 -0
  79. package/dist/math/picking/index.d.ts +4 -0
  80. package/dist/math/picking/index.js +4 -0
  81. package/dist/math/picking/index.js.map +1 -1
  82. package/dist/math/picking/pick-from-tables.d.ts +1 -0
  83. package/dist/math/picking/pick-from-tables.js +7 -98
  84. package/dist/math/picking/pick-from-tables.js.map +1 -1
  85. package/dist/math/picking/pick-result.d.ts +5 -2
  86. package/dist/math/plane/plane.d.ts +43 -0
  87. package/dist/math/plane/plane.js +70 -0
  88. package/dist/math/plane/plane.js.map +1 -0
  89. package/dist/math/plane/plane.test.d.ts +1 -0
  90. package/dist/math/plane/plane.test.js +132 -0
  91. package/dist/math/plane/plane.test.js.map +1 -0
  92. package/dist/math/quat/quat.d.ts +49 -39
  93. package/dist/math/quat/quat.js +225 -185
  94. package/dist/math/quat/quat.js.map +1 -1
  95. package/dist/math/u32/u32.d.ts +9 -7
  96. package/dist/math/u32/u32.js +4 -1
  97. package/dist/math/u32/u32.js.map +1 -1
  98. package/dist/math/vec2/vec2.d.ts +61 -61
  99. package/dist/math/vec2/vec2.js +93 -90
  100. package/dist/math/vec2/vec2.js.map +1 -1
  101. package/dist/math/vec3/vec3.d.ts +66 -63
  102. package/dist/math/vec3/vec3.js +137 -129
  103. package/dist/math/vec3/vec3.js.map +1 -1
  104. package/dist/math/vec4/vec4.d.ts +61 -61
  105. package/dist/math/vec4/vec4.js +132 -129
  106. package/dist/math/vec4/vec4.js.map +1 -1
  107. package/dist/observe/to-async-generator.js +4 -4
  108. package/dist/observe/to-async-generator.js.map +1 -1
  109. package/dist/old-ecs/action-ecs/action-ecs.test.js +1 -1
  110. package/dist/old-ecs/action-ecs/action-ecs.test.js.map +1 -1
  111. package/dist/old-ecs/action-ecs/action-types.d.ts +7 -0
  112. package/dist/old-ecs/action-ecs/action-types.js.map +1 -1
  113. package/dist/old-ecs/ecs/ecs-types.d.ts +7 -0
  114. package/dist/old-ecs/ecs/ecs.test.js +1 -1
  115. package/dist/old-ecs/ecs/ecs.test.js.map +1 -1
  116. package/dist/old-ecs/transaction-ecs/transaction-ecs.test.js +1 -1
  117. package/dist/old-ecs/transaction-ecs/transaction-ecs.test.js.map +1 -1
  118. package/dist/old-ecs/transaction-ecs/transaction-types.d.ts +7 -0
  119. package/dist/samples/todo/services/state-service/create-todo-database.d.ts +2 -2
  120. package/dist/samples/todo/services/state-service/create-todo-store.d.ts +2 -2
  121. package/dist/tsconfig.tsbuildinfo +1 -1
  122. package/package.json +6 -3
  123. package/dist/lit/elements/service-application.d.ts +0 -9
  124. package/dist/lit/elements/service-application.js +0 -55
  125. package/dist/lit/elements/service-application.js.map +0 -1
  126. package/dist/lit/elements/service-context.d.ts +0 -1
  127. package/dist/lit/elements/service-context.js.map +0 -1
  128. package/dist/lit/elements/service-element.d.ts +0 -6
  129. package/dist/lit/elements/service-element.js +0 -43
  130. package/dist/lit/elements/service-element.js.map +0 -1
@@ -21,134 +21,142 @@ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
21
  SOFTWARE.*/
22
22
  import { F32Schema } from "../../schema/index.js";
23
23
  import { getStructLayout } from "../../typed-buffer/index.js";
24
- export const schema = {
25
- type: 'array',
26
- items: F32Schema,
27
- minItems: 3,
28
- maxItems: 3,
29
- default: [0, 0, 0],
30
- };
31
- export const layout = getStructLayout(schema);
32
- // Mathematical Operations
33
- export const abs = ([x, y, z]) => [Math.abs(x), Math.abs(y), Math.abs(z)];
34
- export const ceil = ([x, y, z]) => [Math.ceil(x), Math.ceil(y), Math.ceil(z)];
35
- export const floor = ([x, y, z]) => [Math.floor(x), Math.floor(y), Math.floor(z)];
36
- export const round = ([x, y, z]) => [Math.round(x), Math.round(y), Math.round(z)];
37
- export const trunc = ([x, y, z]) => [Math.trunc(x), Math.trunc(y), Math.trunc(z)];
38
- export const min = ([x1, y1, z1], [x2, y2, z2]) => [
39
- Math.min(x1, x2),
40
- Math.min(y1, y2),
41
- Math.min(z1, z2)
42
- ];
43
- export const max = ([x1, y1, z1], [x2, y2, z2]) => [
44
- Math.max(x1, x2),
45
- Math.max(y1, y2),
46
- Math.max(z1, z2)
47
- ];
48
- export const clamp = (v, minVec, maxVec) => min(max(v, minVec), maxVec);
49
- export const mix = ([x1, y1, z1], [x2, y2, z2], t) => [
50
- x1 * (1 - t) + x2 * t,
51
- y1 * (1 - t) + y2 * t,
52
- z1 * (1 - t) + z2 * t
53
- ];
54
- export const step = ([edge1, edge2, edge3], [x, y, z]) => [
55
- x < edge1 ? 0 : 1,
56
- y < edge2 ? 0 : 1,
57
- z < edge3 ? 0 : 1
58
- ];
59
- export const smoothstep = ([e0x, e0y, e0z], [e1x, e1y, e1z], [x, y, z]) => {
60
- const tx = Math.max(0, Math.min(1, (x - e0x) / (e1x - e0x)));
61
- const ty = Math.max(0, Math.min(1, (y - e0y) / (e1y - e0y)));
62
- const tz = Math.max(0, Math.min(1, (z - e0z) / (e1z - e0z)));
63
- return [
64
- tx * tx * (3 - 2 * tx),
65
- ty * ty * (3 - 2 * ty),
66
- tz * tz * (3 - 2 * tz)
24
+ export var Vec3;
25
+ (function (Vec3) {
26
+ Vec3.schema = {
27
+ type: 'array',
28
+ items: F32Schema,
29
+ minItems: 3,
30
+ maxItems: 3,
31
+ default: [0, 0, 0],
32
+ };
33
+ Vec3.layout = getStructLayout(Vec3.schema);
34
+ Vec3.zero = [0, 0, 0];
35
+ Vec3.one = [1, 1, 1];
36
+ // Mathematical Operations
37
+ Vec3.abs = ([x, y, z]) => [Math.abs(x), Math.abs(y), Math.abs(z)];
38
+ Vec3.ceil = ([x, y, z]) => [Math.ceil(x), Math.ceil(y), Math.ceil(z)];
39
+ Vec3.floor = ([x, y, z]) => [Math.floor(x), Math.floor(y), Math.floor(z)];
40
+ Vec3.round = ([x, y, z]) => [Math.round(x), Math.round(y), Math.round(z)];
41
+ Vec3.trunc = ([x, y, z]) => [Math.trunc(x), Math.trunc(y), Math.trunc(z)];
42
+ Vec3.min = ([x1, y1, z1], [x2, y2, z2]) => [
43
+ Math.min(x1, x2),
44
+ Math.min(y1, y2),
45
+ Math.min(z1, z2)
67
46
  ];
68
- };
69
- // Geometric Functions
70
- export const length = ([x, y, z]) => Math.sqrt(x * x + y * y + z * z);
71
- export const distance = (a, b) => length(subtract(b, a));
72
- export const distanceSquared = (a, b) => {
73
- const dx = b[0] - a[0];
74
- const dy = b[1] - a[1];
75
- const dz = b[2] - a[2];
76
- return dx * dx + dy * dy + dz * dz;
77
- };
78
- export const dot = ([x1, y1, z1], [x2, y2, z2]) => x1 * x2 + y1 * y2 + z1 * z2;
79
- export const cross = ([x1, y1, z1], [x2, y2, z2]) => [
80
- y1 * z2 - z1 * y2,
81
- z1 * x2 - x1 * z2,
82
- x1 * y2 - y1 * x2
83
- ];
84
- export const normalize = (v) => {
85
- const len = length(v);
86
- return len === 0 ? [0, 0, 0] : scale(v, 1 / len);
87
- };
88
- export const faceforward = (n, i, nref) => dot(nref, i) < 0 ? n : negate(n);
89
- export const reflect = (i, n) => {
90
- const dot2 = dot(n, i) * 2;
91
- return subtract(i, scale(n, dot2));
92
- };
93
- export const refract = (i, n, eta) => {
94
- const dotProduct = dot(n, i);
95
- const k = 1.0 - eta * eta * (1.0 - dotProduct * dotProduct);
96
- if (k < 0.0) {
97
- return [0, 0, 0];
98
- }
99
- const scaleFactor = eta * dotProduct + Math.sqrt(k);
100
- return subtract(scale(i, eta), scale(n, scaleFactor));
101
- };
102
- // Trigonometric Functions
103
- export const sin = ([x, y, z]) => [Math.sin(x), Math.sin(y), Math.sin(z)];
104
- export const cos = ([x, y, z]) => [Math.cos(x), Math.cos(y), Math.cos(z)];
105
- export const tan = ([x, y, z]) => [Math.tan(x), Math.tan(y), Math.tan(z)];
106
- export const asin = ([x, y, z]) => [Math.asin(x), Math.asin(y), Math.asin(z)];
107
- export const acos = ([x, y, z]) => [Math.acos(x), Math.acos(y), Math.acos(z)];
108
- export const atan = ([x, y, z]) => [Math.atan(x), Math.atan(y), Math.atan(z)];
109
- export const sinh = ([x, y, z]) => [Math.sinh(x), Math.sinh(y), Math.sinh(z)];
110
- export const cosh = ([x, y, z]) => [Math.cosh(x), Math.cosh(y), Math.cosh(z)];
111
- export const tanh = ([x, y, z]) => [Math.tanh(x), Math.tanh(y), Math.tanh(z)];
112
- export const asinh = ([x, y, z]) => [Math.asinh(x), Math.asinh(y), Math.asinh(z)];
113
- export const acosh = ([x, y, z]) => [Math.acosh(x), Math.acosh(y), Math.acosh(z)];
114
- export const atanh = ([x, y, z]) => [Math.atanh(x), Math.atanh(y), Math.atanh(z)];
115
- // Common Functions
116
- export const sign = ([x, y, z]) => [Math.sign(x), Math.sign(y), Math.sign(z)];
117
- export const fract = ([x, y, z]) => [
118
- x - Math.floor(x),
119
- y - Math.floor(y),
120
- z - Math.floor(z)
121
- ];
122
- export const mod = ([x, y, z], m) => [
123
- ((x % m) + m) % m,
124
- ((y % m) + m) % m,
125
- ((z % m) + m) % m
126
- ];
127
- export const modf = ([x, y, z]) => ({
128
- whole: [Math.trunc(x), Math.trunc(y), Math.trunc(z)],
129
- fract: [x - Math.trunc(x), y - Math.trunc(y), z - Math.trunc(z)]
130
- });
131
- export const pow = ([x1, y1, z1], [x2, y2, z2]) => [
132
- Math.pow(x1, x2),
133
- Math.pow(y1, y2),
134
- Math.pow(z1, z2)
135
- ];
136
- export const exp = ([x, y, z]) => [Math.exp(x), Math.exp(y), Math.exp(z)];
137
- export const exp2 = ([x, y, z]) => [Math.pow(2, x), Math.pow(2, y), Math.pow(2, z)];
138
- export const log = ([x, y, z]) => [Math.log(x), Math.log(y), Math.log(z)];
139
- export const log2 = ([x, y, z]) => [Math.log2(x), Math.log2(y), Math.log2(z)];
140
- export const sqrt = ([x, y, z]) => [Math.sqrt(x), Math.sqrt(y), Math.sqrt(z)];
141
- // Helper functions needed by some of the above
142
- export const add = ([x1, y1, z1], [x2, y2, z2]) => [
143
- x1 + x2,
144
- y1 + y2,
145
- z1 + z2
146
- ];
147
- export const subtract = ([x1, y1, z1], [x2, y2, z2]) => [
148
- x1 - x2,
149
- y1 - y2,
150
- z1 - z2
151
- ];
152
- export const scale = ([x, y, z], s) => [x * s, y * s, z * s];
153
- export const negate = ([x, y, z]) => [-x, -y, -z];
47
+ Vec3.max = ([x1, y1, z1], [x2, y2, z2]) => [
48
+ Math.max(x1, x2),
49
+ Math.max(y1, y2),
50
+ Math.max(z1, z2)
51
+ ];
52
+ Vec3.clamp = (v, minVec, maxVec) => Vec3.min(Vec3.max(v, minVec), maxVec);
53
+ Vec3.mix = ([x1, y1, z1], [x2, y2, z2], t) => [
54
+ x1 * (1 - t) + x2 * t,
55
+ y1 * (1 - t) + y2 * t,
56
+ z1 * (1 - t) + z2 * t
57
+ ];
58
+ Vec3.step = ([edge1, edge2, edge3], [x, y, z]) => [
59
+ x < edge1 ? 0 : 1,
60
+ y < edge2 ? 0 : 1,
61
+ z < edge3 ? 0 : 1
62
+ ];
63
+ Vec3.smoothstep = ([e0x, e0y, e0z], [e1x, e1y, e1z], [x, y, z]) => {
64
+ const tx = Math.max(0, Math.min(1, (x - e0x) / (e1x - e0x)));
65
+ const ty = Math.max(0, Math.min(1, (y - e0y) / (e1y - e0y)));
66
+ const tz = Math.max(0, Math.min(1, (z - e0z) / (e1z - e0z)));
67
+ return [
68
+ tx * tx * (3 - 2 * tx),
69
+ ty * ty * (3 - 2 * ty),
70
+ tz * tz * (3 - 2 * tz)
71
+ ];
72
+ };
73
+ Vec3.random = () => {
74
+ return [Math.random(), Math.random(), Math.random()];
75
+ };
76
+ // Geometric Functions
77
+ Vec3.length = ([x, y, z]) => Math.sqrt(x * x + y * y + z * z);
78
+ Vec3.distance = (a, b) => Vec3.length(Vec3.subtract(b, a));
79
+ Vec3.distanceSquared = (a, b) => {
80
+ const dx = b[0] - a[0];
81
+ const dy = b[1] - a[1];
82
+ const dz = b[2] - a[2];
83
+ return dx * dx + dy * dy + dz * dz;
84
+ };
85
+ Vec3.dot = ([x1, y1, z1], [x2, y2, z2]) => x1 * x2 + y1 * y2 + z1 * z2;
86
+ Vec3.cross = ([x1, y1, z1], [x2, y2, z2]) => [
87
+ y1 * z2 - z1 * y2,
88
+ z1 * x2 - x1 * z2,
89
+ x1 * y2 - y1 * x2
90
+ ];
91
+ Vec3.normalize = (v) => {
92
+ const len = Vec3.length(v);
93
+ return len === 0 ? [0, 0, 0] : Vec3.scale(v, 1 / len);
94
+ };
95
+ Vec3.faceforward = (n, i, nref) => Vec3.dot(nref, i) < 0 ? n : Vec3.negate(n);
96
+ Vec3.reflect = (i, n) => {
97
+ const dot2 = Vec3.dot(n, i) * 2;
98
+ return Vec3.subtract(i, Vec3.scale(n, dot2));
99
+ };
100
+ Vec3.refract = (i, n, eta) => {
101
+ const dotProduct = Vec3.dot(n, i);
102
+ const k = 1.0 - eta * eta * (1.0 - dotProduct * dotProduct);
103
+ if (k < 0.0) {
104
+ return [0, 0, 0];
105
+ }
106
+ const scaleFactor = eta * dotProduct + Math.sqrt(k);
107
+ return Vec3.subtract(Vec3.scale(i, eta), Vec3.scale(n, scaleFactor));
108
+ };
109
+ // Trigonometric Functions
110
+ Vec3.sin = ([x, y, z]) => [Math.sin(x), Math.sin(y), Math.sin(z)];
111
+ Vec3.cos = ([x, y, z]) => [Math.cos(x), Math.cos(y), Math.cos(z)];
112
+ Vec3.tan = ([x, y, z]) => [Math.tan(x), Math.tan(y), Math.tan(z)];
113
+ Vec3.asin = ([x, y, z]) => [Math.asin(x), Math.asin(y), Math.asin(z)];
114
+ Vec3.acos = ([x, y, z]) => [Math.acos(x), Math.acos(y), Math.acos(z)];
115
+ Vec3.atan = ([x, y, z]) => [Math.atan(x), Math.atan(y), Math.atan(z)];
116
+ Vec3.sinh = ([x, y, z]) => [Math.sinh(x), Math.sinh(y), Math.sinh(z)];
117
+ Vec3.cosh = ([x, y, z]) => [Math.cosh(x), Math.cosh(y), Math.cosh(z)];
118
+ Vec3.tanh = ([x, y, z]) => [Math.tanh(x), Math.tanh(y), Math.tanh(z)];
119
+ Vec3.asinh = ([x, y, z]) => [Math.asinh(x), Math.asinh(y), Math.asinh(z)];
120
+ Vec3.acosh = ([x, y, z]) => [Math.acosh(x), Math.acosh(y), Math.acosh(z)];
121
+ Vec3.atanh = ([x, y, z]) => [Math.atanh(x), Math.atanh(y), Math.atanh(z)];
122
+ // Common Functions
123
+ Vec3.sign = ([x, y, z]) => [Math.sign(x), Math.sign(y), Math.sign(z)];
124
+ Vec3.fract = ([x, y, z]) => [
125
+ x - Math.floor(x),
126
+ y - Math.floor(y),
127
+ z - Math.floor(z)
128
+ ];
129
+ Vec3.mod = ([x, y, z], m) => [
130
+ ((x % m) + m) % m,
131
+ ((y % m) + m) % m,
132
+ ((z % m) + m) % m
133
+ ];
134
+ Vec3.modf = ([x, y, z]) => ({
135
+ whole: [Math.trunc(x), Math.trunc(y), Math.trunc(z)],
136
+ fract: [x - Math.trunc(x), y - Math.trunc(y), z - Math.trunc(z)]
137
+ });
138
+ Vec3.pow = ([x1, y1, z1], [x2, y2, z2]) => [
139
+ Math.pow(x1, x2),
140
+ Math.pow(y1, y2),
141
+ Math.pow(z1, z2)
142
+ ];
143
+ Vec3.exp = ([x, y, z]) => [Math.exp(x), Math.exp(y), Math.exp(z)];
144
+ Vec3.exp2 = ([x, y, z]) => [Math.pow(2, x), Math.pow(2, y), Math.pow(2, z)];
145
+ Vec3.log = ([x, y, z]) => [Math.log(x), Math.log(y), Math.log(z)];
146
+ Vec3.log2 = ([x, y, z]) => [Math.log2(x), Math.log2(y), Math.log2(z)];
147
+ Vec3.sqrt = ([x, y, z]) => [Math.sqrt(x), Math.sqrt(y), Math.sqrt(z)];
148
+ // Helper functions needed by some of the above
149
+ Vec3.add = ([x1, y1, z1], [x2, y2, z2]) => [
150
+ x1 + x2,
151
+ y1 + y2,
152
+ z1 + z2
153
+ ];
154
+ Vec3.subtract = ([x1, y1, z1], [x2, y2, z2]) => [
155
+ x1 - x2,
156
+ y1 - y2,
157
+ z1 - z2
158
+ ];
159
+ Vec3.scale = ([x, y, z], s) => [x * s, y * s, z * s];
160
+ Vec3.negate = ([x, y, z]) => [-x, -y, -z];
161
+ })(Vec3 || (Vec3 = {}));
154
162
  //# sourceMappingURL=vec3.js.map
@@ -1 +1 @@
1
- {"version":3,"file":"vec3.js","sourceRoot":"","sources":["../../../src/math/vec3/vec3.ts"],"names":[],"mappings":"AAAA;;;;;;;;;;;;;;;;;;;;WAoBW;AAEX,OAAO,EAAE,SAAS,EAAsB,MAAM,uBAAuB,CAAC;AACtE,OAAO,EAAE,eAAe,EAAE,MAAM,6BAA6B,CAAC;AAE9D,MAAM,CAAC,MAAM,MAAM,GAAG;IAClB,IAAI,EAAE,OAAO;IACb,KAAK,EAAE,SAAS;IAChB,QAAQ,EAAE,CAAC;IACX,QAAQ,EAAE,CAAC;IACX,OAAO,EAAE,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC;CACK,CAAC;AAI5B,MAAM,CAAC,MAAM,MAAM,GAAG,eAAe,CAAC,MAAM,CAAC,CAAC;AAE9C,0BAA0B;AAC1B,MAAM,CAAC,MAAM,GAAG,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAO,EAAQ,EAAE,CAAC,CAAC,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC;AACtF,MAAM,CAAC,MAAM,IAAI,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAO,EAAQ,EAAE,CAAC,CAAC,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC;AAC1F,MAAM,CAAC,MAAM,KAAK,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAO,EAAQ,EAAE,CAAC,CAAC,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,CAAC,CAAC;AAC9F,MAAM,CAAC,MAAM,KAAK,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAO,EAAQ,EAAE,CAAC,CAAC,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,CAAC,CAAC;AAC9F,MAAM,CAAC,MAAM,KAAK,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAO,EAAQ,EAAE,CAAC,CAAC,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,CAAC,CAAC;AAC9F,MAAM,CAAC,MAAM,GAAG,GAAG,CAAC,CAAC,EAAE,EAAE,EAAE,EAAE,EAAE,CAAO,EAAE,CAAC,EAAE,EAAE,EAAE,EAAE,EAAE,CAAO,EAAQ,EAAE,CAAC;IACjE,IAAI,CAAC,GAAG,CAAC,EAAE,EAAE,EAAE,CAAC;IAChB,IAAI,CAAC,GAAG,CAAC,EAAE,EAAE,EAAE,CAAC;IAChB,IAAI,CAAC,GAAG,CAAC,EAAE,EAAE,EAAE,CAAC;CACnB,CAAC;AACF,MAAM,CAAC,MAAM,GAAG,GAAG,CAAC,CAAC,EAAE,EAAE,EAAE,EAAE,EAAE,CAAO,EAAE,CAAC,EAAE,EAAE,EAAE,EAAE,EAAE,CAAO,EAAQ,EAAE,CAAC;IACjE,IAAI,CAAC,GAAG,CAAC,EAAE,EAAE,EAAE,CAAC;IAChB,IAAI,CAAC,GAAG,CAAC,EAAE,EAAE,EAAE,CAAC;IAChB,IAAI,CAAC,GAAG,CAAC,EAAE,EAAE,EAAE,CAAC;CACnB,CAAC;AACF,MAAM,CAAC,MAAM,KAAK,GAAG,CAAC,CAAO,EAAE,MAAY,EAAE,MAAY,EAAQ,EAAE,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,EAAE,MAAM,CAAC,EAAE,MAAM,CAAC,CAAC;AAChG,MAAM,CAAC,MAAM,GAAG,GAAG,CAAC,CAAC,EAAE,EAAE,EAAE,EAAE,EAAE,CAAO,EAAE,CAAC,EAAE,EAAE,EAAE,EAAE,EAAE,CAAO,EAAE,CAAS,EAAQ,EAAE,CAAC;IAC5E,EAAE,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,EAAE,GAAG,CAAC;IACrB,EAAE,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,EAAE,GAAG,CAAC;IACrB,EAAE,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,EAAE,GAAG,CAAC;CACxB,CAAC;AACF,MAAM,CAAC,MAAM,IAAI,GAAG,CAAC,CAAC,KAAK,EAAE,KAAK,EAAE,KAAK,CAAO,EAAE,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAO,EAAQ,EAAE,CAAC;IACxE,CAAC,GAAG,KAAK,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;IACjB,CAAC,GAAG,KAAK,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;IACjB,CAAC,GAAG,KAAK,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;CACpB,CAAC;AACF,MAAM,CAAC,MAAM,UAAU,GAAG,CAAC,CAAC,GAAG,EAAE,GAAG,EAAE,GAAG,CAAO,EAAE,CAAC,GAAG,EAAE,GAAG,EAAE,GAAG,CAAO,EAAE,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAO,EAAQ,EAAE;IAC9F,MAAM,EAAE,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,EAAE,IAAI,CAAC,GAAG,CAAC,CAAC,EAAE,CAAC,CAAC,GAAG,GAAG,CAAC,GAAG,CAAC,GAAG,GAAG,GAAG,CAAC,CAAC,CAAC,CAAC;IAC7D,MAAM,EAAE,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,EAAE,IAAI,CAAC,GAAG,CAAC,CAAC,EAAE,CAAC,CAAC,GAAG,GAAG,CAAC,GAAG,CAAC,GAAG,GAAG,GAAG,CAAC,CAAC,CAAC,CAAC;IAC7D,MAAM,EAAE,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,EAAE,IAAI,CAAC,GAAG,CAAC,CAAC,EAAE,CAAC,CAAC,GAAG,GAAG,CAAC,GAAG,CAAC,GAAG,GAAG,GAAG,CAAC,CAAC,CAAC,CAAC;IAC7D,OAAO;QACH,EAAE,GAAG,EAAE,GAAG,CAAC,CAAC,GAAG,CAAC,GAAG,EAAE,CAAC;QACtB,EAAE,GAAG,EAAE,GAAG,CAAC,CAAC,GAAG,CAAC,GAAG,EAAE,CAAC;QACtB,EAAE,GAAG,EAAE,GAAG,CAAC,CAAC,GAAG,CAAC,GAAG,EAAE,CAAC;KACzB,CAAC;AACN,CAAC,CAAC;AAEF,sBAAsB;AACtB,MAAM,CAAC,MAAM,MAAM,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAO,EAAU,EAAE,CAAC,IAAI,CAAC,IAAI,CAAC,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,CAAC;AACpF,MAAM,CAAC,MAAM,QAAQ,GAAG,CAAC,CAAO,EAAE,CAAO,EAAU,EAAE,CAAC,MAAM,CAAC,QAAQ,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC;AAC7E,MAAM,CAAC,MAAM,eAAe,GAAG,CAAC,CAAO,EAAE,CAAO,EAAU,EAAE;IACxD,MAAM,EAAE,GAAG,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC;IACvB,MAAM,EAAE,GAAG,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC;IACvB,MAAM,EAAE,GAAG,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC;IACvB,OAAO,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,CAAC;AACvC,CAAC,CAAC;AACF,MAAM,CAAC,MAAM,GAAG,GAAG,CAAC,CAAC,EAAE,EAAE,EAAE,EAAE,EAAE,CAAO,EAAE,CAAC,EAAE,EAAE,EAAE,EAAE,EAAE,CAAO,EAAU,EAAE,CAClE,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,CAAC;AAChC,MAAM,CAAC,MAAM,KAAK,GAAG,CAAC,CAAC,EAAE,EAAE,EAAE,EAAE,EAAE,CAAO,EAAE,CAAC,EAAE,EAAE,EAAE,EAAE,EAAE,CAAO,EAAQ,EAAE,CAAC;IACnE,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE;IACjB,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE;IACjB,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE;CACpB,CAAC;AACF,MAAM,CAAC,MAAM,SAAS,GAAG,CAAC,CAAO,EAAQ,EAAE;IACvC,MAAM,GAAG,GAAG,MAAM,CAAC,CAAC,CAAC,CAAC;IACtB,OAAO,GAAG,KAAK,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,KAAK,CAAC,CAAC,EAAE,CAAC,GAAG,GAAG,CAAC,CAAC;AACrD,CAAC,CAAC;AACF,MAAM,CAAC,MAAM,WAAW,GAAG,CAAC,CAAO,EAAE,CAAO,EAAE,IAAU,EAAQ,EAAE,CAC9D,GAAG,CAAC,IAAI,EAAE,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,MAAM,CAAC,CAAC,CAAC,CAAC;AACrC,MAAM,CAAC,MAAM,OAAO,GAAG,CAAC,CAAO,EAAE,CAAO,EAAQ,EAAE;IAC9C,MAAM,IAAI,GAAG,GAAG,CAAC,CAAC,EAAE,CAAC,CAAC,GAAG,CAAC,CAAC;IAC3B,OAAO,QAAQ,CAAC,CAAC,EAAE,KAAK,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC;AACvC,CAAC,CAAC;AACF,MAAM,CAAC,MAAM,OAAO,GAAG,CAAC,CAAO,EAAE,CAAO,EAAE,GAAW,EAAQ,EAAE;IAC3D,MAAM,UAAU,GAAG,GAAG,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC;IAC7B,MAAM,CAAC,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,CAAC,GAAG,GAAG,UAAU,GAAG,UAAU,CAAC,CAAC;IAC5D,IAAI,CAAC,GAAG,GAAG,EAAE,CAAC;QACV,OAAO,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC,CAAC;IACrB,CAAC;IACD,MAAM,WAAW,GAAG,GAAG,GAAG,UAAU,GAAG,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC;IACpD,OAAO,QAAQ,CAAC,KAAK,CAAC,CAAC,EAAE,GAAG,CAAC,EAAE,KAAK,CAAC,CAAC,EAAE,WAAW,CAAC,CAAC,CAAC;AAC1D,CAAC,CAAC;AAEF,0BAA0B;AAC1B,MAAM,CAAC,MAAM,GAAG,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAO,EAAQ,EAAE,CAAC,CAAC,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC;AACtF,MAAM,CAAC,MAAM,GAAG,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAO,EAAQ,EAAE,CAAC,CAAC,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC;AACtF,MAAM,CAAC,MAAM,GAAG,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAO,EAAQ,EAAE,CAAC,CAAC,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC;AACtF,MAAM,CAAC,MAAM,IAAI,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAO,EAAQ,EAAE,CAAC,CAAC,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC;AAC1F,MAAM,CAAC,MAAM,IAAI,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAO,EAAQ,EAAE,CAAC,CAAC,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC;AAC1F,MAAM,CAAC,MAAM,IAAI,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAO,EAAQ,EAAE,CAAC,CAAC,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC;AAC1F,MAAM,CAAC,MAAM,IAAI,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAO,EAAQ,EAAE,CAAC,CAAC,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC;AAC1F,MAAM,CAAC,MAAM,IAAI,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAO,EAAQ,EAAE,CAAC,CAAC,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC;AAC1F,MAAM,CAAC,MAAM,IAAI,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAO,EAAQ,EAAE,CAAC,CAAC,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC;AAC1F,MAAM,CAAC,MAAM,KAAK,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAO,EAAQ,EAAE,CAAC,CAAC,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,CAAC,CAAC;AAC9F,MAAM,CAAC,MAAM,KAAK,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAO,EAAQ,EAAE,CAAC,CAAC,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,CAAC,CAAC;AAC9F,MAAM,CAAC,MAAM,KAAK,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAO,EAAQ,EAAE,CAAC,CAAC,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,CAAC,CAAC;AAE9F,mBAAmB;AACnB,MAAM,CAAC,MAAM,IAAI,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAO,EAAQ,EAAE,CAAC,CAAC,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC;AAC1F,MAAM,CAAC,MAAM,KAAK,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAO,EAAQ,EAAE,CAAC;IAC5C,CAAC,GAAG,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC;IACjB,CAAC,GAAG,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC;IACjB,CAAC,GAAG,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC;CACpB,CAAC;AACF,MAAM,CAAC,MAAM,GAAG,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAO,EAAE,CAAS,EAAQ,EAAE,CAAC;IACrD,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC;IACjB,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC;IACjB,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC;CACpB,CAAC;AACF,MAAM,CAAC,MAAM,IAAI,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAO,EAAgC,EAAE,CAAC,CAAC;IACpE,KAAK,EAAE,CAAC,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,CAAC;IACpD,KAAK,EAAE,CAAC,CAAC,GAAG,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,CAAC,GAAG,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,CAAC,GAAG,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,CAAC;CACnE,CAAC,CAAC;AACH,MAAM,CAAC,MAAM,GAAG,GAAG,CAAC,CAAC,EAAE,EAAE,EAAE,EAAE,EAAE,CAAO,EAAE,CAAC,EAAE,EAAE,EAAE,EAAE,EAAE,CAAO,EAAQ,EAAE,CAAC;IACjE,IAAI,CAAC,GAAG,CAAC,EAAE,EAAE,EAAE,CAAC;IAChB,IAAI,CAAC,GAAG,CAAC,EAAE,EAAE,EAAE,CAAC;IAChB,IAAI,CAAC,GAAG,CAAC,EAAE,EAAE,EAAE,CAAC;CACnB,CAAC;AACF,MAAM,CAAC,MAAM,GAAG,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAO,EAAQ,EAAE,CAAC,CAAC,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC;AACtF,MAAM,CAAC,MAAM,IAAI,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAO,EAAQ,EAAE,CAAC,CAAC,IAAI,CAAC,GAAG,CAAC,CAAC,EAAE,CAAC,CAAC,EAAE,IAAI,CAAC,GAAG,CAAC,CAAC,EAAE,CAAC,CAAC,EAAE,IAAI,CAAC,GAAG,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC;AAChG,MAAM,CAAC,MAAM,GAAG,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAO,EAAQ,EAAE,CAAC,CAAC,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC;AACtF,MAAM,CAAC,MAAM,IAAI,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAO,EAAQ,EAAE,CAAC,CAAC,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC;AAC1F,MAAM,CAAC,MAAM,IAAI,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAO,EAAQ,EAAE,CAAC,CAAC,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC;AAE1F,+CAA+C;AAC/C,MAAM,CAAC,MAAM,GAAG,GAAG,CAAC,CAAC,EAAE,EAAE,EAAE,EAAE,EAAE,CAAO,EAAE,CAAC,EAAE,EAAE,EAAE,EAAE,EAAE,CAAO,EAAQ,EAAE,CAAC;IACjE,EAAE,GAAG,EAAE;IACP,EAAE,GAAG,EAAE;IACP,EAAE,GAAG,EAAE;CACV,CAAC;AACF,MAAM,CAAC,MAAM,QAAQ,GAAG,CAAC,CAAC,EAAE,EAAE,EAAE,EAAE,EAAE,CAAO,EAAE,CAAC,EAAE,EAAE,EAAE,EAAE,EAAE,CAAO,EAAQ,EAAE,CAAC;IACtE,EAAE,GAAG,EAAE;IACP,EAAE,GAAG,EAAE;IACP,EAAE,GAAG,EAAE;CACV,CAAC;AACF,MAAM,CAAC,MAAM,KAAK,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAO,EAAE,CAAS,EAAQ,EAAE,CAAC,CAAC,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,CAAC,CAAC;AACjF,MAAM,CAAC,MAAM,MAAM,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAO,EAAQ,EAAE,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC"}
1
+ {"version":3,"file":"vec3.js","sourceRoot":"","sources":["../../../src/math/vec3/vec3.ts"],"names":[],"mappings":"AAAA;;;;;;;;;;;;;;;;;;;;WAoBW;AAEX,OAAO,EAAE,SAAS,EAAsB,MAAM,uBAAuB,CAAC;AACtE,OAAO,EAAE,eAAe,EAAE,MAAM,6BAA6B,CAAC;AAI9D,MAAM,KAAW,IAAI,CA8IpB;AA9ID,WAAiB,IAAI;IACJ,WAAM,GAAG;QAClB,IAAI,EAAE,OAAO;QACb,KAAK,EAAE,SAAS;QAChB,QAAQ,EAAE,CAAC;QACX,QAAQ,EAAE,CAAC;QACX,OAAO,EAAE,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC;KACK,CAAC;IACf,WAAM,GAAG,eAAe,CAAC,KAAA,MAAM,CAAC,CAAC;IACjC,SAAI,GAAS,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC,CAAC;IACvB,QAAG,GAAS,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC,CAAC;IACnC,0BAA0B;IACb,QAAG,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAO,EAAQ,EAAE,CAAC,CAAC,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC;IACzE,SAAI,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAO,EAAQ,EAAE,CAAC,CAAC,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC;IAC7E,UAAK,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAO,EAAQ,EAAE,CAAC,CAAC,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,CAAC,CAAC;IACjF,UAAK,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAO,EAAQ,EAAE,CAAC,CAAC,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,CAAC,CAAC;IACjF,UAAK,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAO,EAAQ,EAAE,CAAC,CAAC,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,CAAC,CAAC;IACjF,QAAG,GAAG,CAAC,CAAC,EAAE,EAAE,EAAE,EAAE,EAAE,CAAO,EAAE,CAAC,EAAE,EAAE,EAAE,EAAE,EAAE,CAAO,EAAQ,EAAE,CAAC;QACjE,IAAI,CAAC,GAAG,CAAC,EAAE,EAAE,EAAE,CAAC;QAChB,IAAI,CAAC,GAAG,CAAC,EAAE,EAAE,EAAE,CAAC;QAChB,IAAI,CAAC,GAAG,CAAC,EAAE,EAAE,EAAE,CAAC;KACnB,CAAC;IACW,QAAG,GAAG,CAAC,CAAC,EAAE,EAAE,EAAE,EAAE,EAAE,CAAO,EAAE,CAAC,EAAE,EAAE,EAAE,EAAE,EAAE,CAAO,EAAQ,EAAE,CAAC;QACjE,IAAI,CAAC,GAAG,CAAC,EAAE,EAAE,EAAE,CAAC;QAChB,IAAI,CAAC,GAAG,CAAC,EAAE,EAAE,EAAE,CAAC;QAChB,IAAI,CAAC,GAAG,CAAC,EAAE,EAAE,EAAE,CAAC;KACnB,CAAC;IACW,UAAK,GAAG,CAAC,CAAO,EAAE,MAAY,EAAE,MAAY,EAAQ,EAAE,CAAC,KAAA,GAAG,CAAC,KAAA,GAAG,CAAC,CAAC,EAAE,MAAM,CAAC,EAAE,MAAM,CAAC,CAAC;IACnF,QAAG,GAAG,CAAC,CAAC,EAAE,EAAE,EAAE,EAAE,EAAE,CAAO,EAAE,CAAC,EAAE,EAAE,EAAE,EAAE,EAAE,CAAO,EAAE,CAAS,EAAQ,EAAE,CAAC;QAC5E,EAAE,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,EAAE,GAAG,CAAC;QACrB,EAAE,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,EAAE,GAAG,CAAC;QACrB,EAAE,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,EAAE,GAAG,CAAC;KACxB,CAAC;IACW,SAAI,GAAG,CAAC,CAAC,KAAK,EAAE,KAAK,EAAE,KAAK,CAAO,EAAE,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAO,EAAQ,EAAE,CAAC;QACxE,CAAC,GAAG,KAAK,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;QACjB,CAAC,GAAG,KAAK,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;QACjB,CAAC,GAAG,KAAK,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;KACpB,CAAC;IACW,eAAU,GAAG,CAAC,CAAC,GAAG,EAAE,GAAG,EAAE,GAAG,CAAO,EAAE,CAAC,GAAG,EAAE,GAAG,EAAE,GAAG,CAAO,EAAE,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAO,EAAQ,EAAE;QAC9F,MAAM,EAAE,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,EAAE,IAAI,CAAC,GAAG,CAAC,CAAC,EAAE,CAAC,CAAC,GAAG,GAAG,CAAC,GAAG,CAAC,GAAG,GAAG,GAAG,CAAC,CAAC,CAAC,CAAC;QAC7D,MAAM,EAAE,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,EAAE,IAAI,CAAC,GAAG,CAAC,CAAC,EAAE,CAAC,CAAC,GAAG,GAAG,CAAC,GAAG,CAAC,GAAG,GAAG,GAAG,CAAC,CAAC,CAAC,CAAC;QAC7D,MAAM,EAAE,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,EAAE,IAAI,CAAC,GAAG,CAAC,CAAC,EAAE,CAAC,CAAC,GAAG,GAAG,CAAC,GAAG,CAAC,GAAG,GAAG,GAAG,CAAC,CAAC,CAAC,CAAC;QAC7D,OAAO;YACH,EAAE,GAAG,EAAE,GAAG,CAAC,CAAC,GAAG,CAAC,GAAG,EAAE,CAAC;YACtB,EAAE,GAAG,EAAE,GAAG,CAAC,CAAC,GAAG,CAAC,GAAG,EAAE,CAAC;YACtB,EAAE,GAAG,EAAE,GAAG,CAAC,CAAC,GAAG,CAAC,GAAG,EAAE,CAAC;SACzB,CAAC;IACN,CAAC,CAAC;IACW,WAAM,GAAG,GAAS,EAAE;QAC7B,OAAO,CAAC,IAAI,CAAC,MAAM,EAAE,EAAE,IAAI,CAAC,MAAM,EAAE,EAAE,IAAI,CAAC,MAAM,EAAE,CAAC,CAAC;IACzD,CAAC,CAAC;IAEF,sBAAsB;IACT,WAAM,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAO,EAAU,EAAE,CAAC,IAAI,CAAC,IAAI,CAAC,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,CAAC;IACvE,aAAQ,GAAG,CAAC,CAAO,EAAE,CAAO,EAAU,EAAE,CAAC,KAAA,MAAM,CAAC,KAAA,QAAQ,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC;IAChE,oBAAe,GAAG,CAAC,CAAO,EAAE,CAAO,EAAU,EAAE;QACxD,MAAM,EAAE,GAAG,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC;QACvB,MAAM,EAAE,GAAG,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC;QACvB,MAAM,EAAE,GAAG,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC;QACvB,OAAO,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,CAAC;IACvC,CAAC,CAAC;IACW,QAAG,GAAG,CAAC,CAAC,EAAE,EAAE,EAAE,EAAE,EAAE,CAAO,EAAE,CAAC,EAAE,EAAE,EAAE,EAAE,EAAE,CAAO,EAAU,EAAE,CAClE,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,CAAC;IACnB,UAAK,GAAG,CAAC,CAAC,EAAE,EAAE,EAAE,EAAE,EAAE,CAAO,EAAE,CAAC,EAAE,EAAE,EAAE,EAAE,EAAE,CAAO,EAAQ,EAAE,CAAC;QACnE,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE;QACjB,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE;QACjB,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE;KACpB,CAAC;IACW,cAAS,GAAG,CAAC,CAAO,EAAQ,EAAE;QACvC,MAAM,GAAG,GAAG,KAAA,MAAM,CAAC,CAAC,CAAC,CAAC;QACtB,OAAO,GAAG,KAAK,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,KAAA,KAAK,CAAC,CAAC,EAAE,CAAC,GAAG,GAAG,CAAC,CAAC;IACrD,CAAC,CAAC;IACW,gBAAW,GAAG,CAAC,CAAO,EAAE,CAAO,EAAE,IAAU,EAAQ,EAAE,CAC9D,KAAA,GAAG,CAAC,IAAI,EAAE,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,KAAA,MAAM,CAAC,CAAC,CAAC,CAAC;IACxB,YAAO,GAAG,CAAC,CAAO,EAAE,CAAO,EAAQ,EAAE;QAC9C,MAAM,IAAI,GAAG,KAAA,GAAG,CAAC,CAAC,EAAE,CAAC,CAAC,GAAG,CAAC,CAAC;QAC3B,OAAO,KAAA,QAAQ,CAAC,CAAC,EAAE,KAAA,KAAK,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC;IACvC,CAAC,CAAC;IACW,YAAO,GAAG,CAAC,CAAO,EAAE,CAAO,EAAE,GAAW,EAAQ,EAAE;QAC3D,MAAM,UAAU,GAAG,KAAA,GAAG,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC;QAC7B,MAAM,CAAC,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,GAAG,CAAC,GAAG,GAAG,UAAU,GAAG,UAAU,CAAC,CAAC;QAC5D,IAAI,CAAC,GAAG,GAAG,EAAE,CAAC;YACV,OAAO,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC,CAAC;QACrB,CAAC;QACD,MAAM,WAAW,GAAG,GAAG,GAAG,UAAU,GAAG,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC;QACpD,OAAO,KAAA,QAAQ,CAAC,KAAA,KAAK,CAAC,CAAC,EAAE,GAAG,CAAC,EAAE,KAAA,KAAK,CAAC,CAAC,EAAE,WAAW,CAAC,CAAC,CAAC;IAC1D,CAAC,CAAC;IAEF,0BAA0B;IACb,QAAG,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAO,EAAQ,EAAE,CAAC,CAAC,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC;IACzE,QAAG,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAO,EAAQ,EAAE,CAAC,CAAC,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC;IACzE,QAAG,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAO,EAAQ,EAAE,CAAC,CAAC,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC;IACzE,SAAI,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAO,EAAQ,EAAE,CAAC,CAAC,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC;IAC7E,SAAI,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAO,EAAQ,EAAE,CAAC,CAAC,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC;IAC7E,SAAI,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAO,EAAQ,EAAE,CAAC,CAAC,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC;IAC7E,SAAI,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAO,EAAQ,EAAE,CAAC,CAAC,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC;IAC7E,SAAI,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAO,EAAQ,EAAE,CAAC,CAAC,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC;IAC7E,SAAI,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAO,EAAQ,EAAE,CAAC,CAAC,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC;IAC7E,UAAK,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAO,EAAQ,EAAE,CAAC,CAAC,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,CAAC,CAAC;IACjF,UAAK,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAO,EAAQ,EAAE,CAAC,CAAC,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,CAAC,CAAC;IACjF,UAAK,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAO,EAAQ,EAAE,CAAC,CAAC,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,CAAC,CAAC;IAE9F,mBAAmB;IACN,SAAI,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAO,EAAQ,EAAE,CAAC,CAAC,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC;IAC7E,UAAK,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAO,EAAQ,EAAE,CAAC;QAC5C,CAAC,GAAG,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC;QACjB,CAAC,GAAG,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC;QACjB,CAAC,GAAG,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC;KACpB,CAAC;IACW,QAAG,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAO,EAAE,CAAS,EAAQ,EAAE,CAAC;QACrD,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC;QACjB,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC;QACjB,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC;KACpB,CAAC;IACW,SAAI,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAO,EAAgC,EAAE,CAAC,CAAC;QACpE,KAAK,EAAE,CAAC,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,CAAC;QACpD,KAAK,EAAE,CAAC,CAAC,GAAG,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,CAAC,GAAG,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,CAAC,GAAG,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,CAAC;KACnE,CAAC,CAAC;IACU,QAAG,GAAG,CAAC,CAAC,EAAE,EAAE,EAAE,EAAE,EAAE,CAAO,EAAE,CAAC,EAAE,EAAE,EAAE,EAAE,EAAE,CAAO,EAAQ,EAAE,CAAC;QACjE,IAAI,CAAC,GAAG,CAAC,EAAE,EAAE,EAAE,CAAC;QAChB,IAAI,CAAC,GAAG,CAAC,EAAE,EAAE,EAAE,CAAC;QAChB,IAAI,CAAC,GAAG,CAAC,EAAE,EAAE,EAAE,CAAC;KACnB,CAAC;IACW,QAAG,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAO,EAAQ,EAAE,CAAC,CAAC,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC;IACzE,SAAI,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAO,EAAQ,EAAE,CAAC,CAAC,IAAI,CAAC,GAAG,CAAC,CAAC,EAAE,CAAC,CAAC,EAAE,IAAI,CAAC,GAAG,CAAC,CAAC,EAAE,CAAC,CAAC,EAAE,IAAI,CAAC,GAAG,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC;IACnF,QAAG,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAO,EAAQ,EAAE,CAAC,CAAC,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC;IACzE,SAAI,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAO,EAAQ,EAAE,CAAC,CAAC,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC;IAC7E,SAAI,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAO,EAAQ,EAAE,CAAC,CAAC,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC,EAAE,IAAI,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC;IAE1F,+CAA+C;IAClC,QAAG,GAAG,CAAC,CAAC,EAAE,EAAE,EAAE,EAAE,EAAE,CAAO,EAAE,CAAC,EAAE,EAAE,EAAE,EAAE,EAAE,CAAO,EAAQ,EAAE,CAAC;QACjE,EAAE,GAAG,EAAE;QACP,EAAE,GAAG,EAAE;QACP,EAAE,GAAG,EAAE;KACV,CAAC;IACW,aAAQ,GAAG,CAAC,CAAC,EAAE,EAAE,EAAE,EAAE,EAAE,CAAO,EAAE,CAAC,EAAE,EAAE,EAAE,EAAE,EAAE,CAAO,EAAQ,EAAE,CAAC;QACtE,EAAE,GAAG,EAAE;QACP,EAAE,GAAG,EAAE;QACP,EAAE,GAAG,EAAE;KACV,CAAC;IACW,UAAK,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAO,EAAE,CAAS,EAAQ,EAAE,CAAC,CAAC,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,CAAC,CAAC;IACpE,WAAM,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAO,EAAQ,EAAE,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC;AAClE,CAAC,EA9IgB,IAAI,KAAJ,IAAI,QA8IpB"}
@@ -1,63 +1,63 @@
1
1
  import { FromSchema } from "../../schema/index.js";
2
- export declare const schema: {
3
- readonly type: "array";
4
- readonly items: {
5
- readonly type: "number";
6
- readonly precision: 1;
7
- readonly default: number;
2
+ export type Vec4 = FromSchema<typeof Vec4.schema>;
3
+ export declare namespace Vec4 {
4
+ const schema: {
5
+ readonly type: "array";
6
+ readonly items: {
7
+ readonly type: "number";
8
+ readonly precision: 1;
9
+ readonly default: number;
10
+ };
11
+ readonly minItems: 4;
12
+ readonly maxItems: 4;
13
+ readonly default: readonly [0, 0, 0, 0];
8
14
  };
9
- readonly minItems: 4;
10
- readonly maxItems: 4;
11
- readonly default: readonly [0, 0, 0, 0];
12
- };
13
- export type Type = FromSchema<typeof schema>;
14
- type Vec4 = Type;
15
- export declare const layout: import("../../typed-buffer/index.js").StructLayout;
16
- export declare const abs: ([x, y, z, w]: Vec4) => Vec4;
17
- export declare const ceil: ([x, y, z, w]: Vec4) => Vec4;
18
- export declare const floor: ([x, y, z, w]: Vec4) => Vec4;
19
- export declare const round: ([x, y, z, w]: Vec4) => Vec4;
20
- export declare const trunc: ([x, y, z, w]: Vec4) => Vec4;
21
- export declare const min: ([x1, y1, z1, w1]: Vec4, [x2, y2, z2, w2]: Vec4) => Vec4;
22
- export declare const max: ([x1, y1, z1, w1]: Vec4, [x2, y2, z2, w2]: Vec4) => Vec4;
23
- export declare const clamp: (v: Vec4, minVec: Vec4, maxVec: Vec4) => Vec4;
24
- export declare const mix: ([x1, y1, z1, w1]: Vec4, [x2, y2, z2, w2]: Vec4, t: number) => Vec4;
25
- export declare const step: ([edge1, edge2, edge3, edge4]: Vec4, [x, y, z, w]: Vec4) => Vec4;
26
- export declare const smoothstep: ([e0x, e0y, e0z, e0w]: Vec4, [e1x, e1y, e1z, e1w]: Vec4, [x, y, z, w]: Vec4) => Vec4;
27
- export declare const length: ([x, y, z, w]: Vec4) => number;
28
- export declare const distance: (a: Vec4, b: Vec4) => number;
29
- export declare const dot: ([x1, y1, z1, w1]: Vec4, [x2, y2, z2, w2]: Vec4) => number;
30
- export declare const normalize: (v: Vec4) => Vec4;
31
- export declare const faceforward: (n: Vec4, i: Vec4, nref: Vec4) => Vec4;
32
- export declare const reflect: (i: Vec4, n: Vec4) => Vec4;
33
- export declare const refract: (i: Vec4, n: Vec4, eta: number) => Vec4;
34
- export declare const sin: ([x, y, z, w]: Vec4) => Vec4;
35
- export declare const cos: ([x, y, z, w]: Vec4) => Vec4;
36
- export declare const tan: ([x, y, z, w]: Vec4) => Vec4;
37
- export declare const asin: ([x, y, z, w]: Vec4) => Vec4;
38
- export declare const acos: ([x, y, z, w]: Vec4) => Vec4;
39
- export declare const atan: ([x, y, z, w]: Vec4) => Vec4;
40
- export declare const sinh: ([x, y, z, w]: Vec4) => Vec4;
41
- export declare const cosh: ([x, y, z, w]: Vec4) => Vec4;
42
- export declare const tanh: ([x, y, z, w]: Vec4) => Vec4;
43
- export declare const asinh: ([x, y, z, w]: Vec4) => Vec4;
44
- export declare const acosh: ([x, y, z, w]: Vec4) => Vec4;
45
- export declare const atanh: ([x, y, z, w]: Vec4) => Vec4;
46
- export declare const sign: ([x, y, z, w]: Vec4) => Vec4;
47
- export declare const fract: ([x, y, z, w]: Vec4) => Vec4;
48
- export declare const mod: ([x, y, z, w]: Vec4, m: number) => Vec4;
49
- export declare const modf: ([x, y, z, w]: Vec4) => {
50
- fract: Vec4;
51
- whole: Vec4;
52
- };
53
- export declare const pow: ([x1, y1, z1, w1]: Vec4, [x2, y2, z2, w2]: Vec4) => Vec4;
54
- export declare const exp: ([x, y, z, w]: Vec4) => Vec4;
55
- export declare const exp2: ([x, y, z, w]: Vec4) => Vec4;
56
- export declare const log: ([x, y, z, w]: Vec4) => Vec4;
57
- export declare const log2: ([x, y, z, w]: Vec4) => Vec4;
58
- export declare const sqrt: ([x, y, z, w]: Vec4) => Vec4;
59
- export declare const add: ([x1, y1, z1, w1]: Vec4, [x2, y2, z2, w2]: Vec4) => Vec4;
60
- export declare const subtract: ([x1, y1, z1, w1]: Vec4, [x2, y2, z2, w2]: Vec4) => Vec4;
61
- export declare const scale: ([x, y, z, w]: Vec4, s: number) => Vec4;
62
- export declare const negate: ([x, y, z, w]: Vec4) => Vec4;
63
- export {};
15
+ const layout: import("../../typed-buffer/index.js").StructLayout;
16
+ const abs: ([x, y, z, w]: Vec4) => Vec4;
17
+ const ceil: ([x, y, z, w]: Vec4) => Vec4;
18
+ const floor: ([x, y, z, w]: Vec4) => Vec4;
19
+ const round: ([x, y, z, w]: Vec4) => Vec4;
20
+ const trunc: ([x, y, z, w]: Vec4) => Vec4;
21
+ const min: ([x1, y1, z1, w1]: Vec4, [x2, y2, z2, w2]: Vec4) => Vec4;
22
+ const max: ([x1, y1, z1, w1]: Vec4, [x2, y2, z2, w2]: Vec4) => Vec4;
23
+ const clamp: (v: Vec4, minVec: Vec4, maxVec: Vec4) => Vec4;
24
+ const mix: ([x1, y1, z1, w1]: Vec4, [x2, y2, z2, w2]: Vec4, t: number) => Vec4;
25
+ const step: ([edge1, edge2, edge3, edge4]: Vec4, [x, y, z, w]: Vec4) => Vec4;
26
+ const smoothstep: ([e0x, e0y, e0z, e0w]: Vec4, [e1x, e1y, e1z, e1w]: Vec4, [x, y, z, w]: Vec4) => Vec4;
27
+ const length: ([x, y, z, w]: Vec4) => number;
28
+ const distance: (a: Vec4, b: Vec4) => number;
29
+ const dot: ([x1, y1, z1, w1]: Vec4, [x2, y2, z2, w2]: Vec4) => number;
30
+ const normalize: (v: Vec4) => Vec4;
31
+ const faceforward: (n: Vec4, i: Vec4, nref: Vec4) => Vec4;
32
+ const reflect: (i: Vec4, n: Vec4) => Vec4;
33
+ const refract: (i: Vec4, n: Vec4, eta: number) => Vec4;
34
+ const sin: ([x, y, z, w]: Vec4) => Vec4;
35
+ const cos: ([x, y, z, w]: Vec4) => Vec4;
36
+ const tan: ([x, y, z, w]: Vec4) => Vec4;
37
+ const asin: ([x, y, z, w]: Vec4) => Vec4;
38
+ const acos: ([x, y, z, w]: Vec4) => Vec4;
39
+ const atan: ([x, y, z, w]: Vec4) => Vec4;
40
+ const sinh: ([x, y, z, w]: Vec4) => Vec4;
41
+ const cosh: ([x, y, z, w]: Vec4) => Vec4;
42
+ const tanh: ([x, y, z, w]: Vec4) => Vec4;
43
+ const asinh: ([x, y, z, w]: Vec4) => Vec4;
44
+ const acosh: ([x, y, z, w]: Vec4) => Vec4;
45
+ const atanh: ([x, y, z, w]: Vec4) => Vec4;
46
+ const sign: ([x, y, z, w]: Vec4) => Vec4;
47
+ const fract: ([x, y, z, w]: Vec4) => Vec4;
48
+ const mod: ([x, y, z, w]: Vec4, m: number) => Vec4;
49
+ const modf: ([x, y, z, w]: Vec4) => {
50
+ fract: Vec4;
51
+ whole: Vec4;
52
+ };
53
+ const pow: ([x1, y1, z1, w1]: Vec4, [x2, y2, z2, w2]: Vec4) => Vec4;
54
+ const exp: ([x, y, z, w]: Vec4) => Vec4;
55
+ const exp2: ([x, y, z, w]: Vec4) => Vec4;
56
+ const log: ([x, y, z, w]: Vec4) => Vec4;
57
+ const log2: ([x, y, z, w]: Vec4) => Vec4;
58
+ const sqrt: ([x, y, z, w]: Vec4) => Vec4;
59
+ const add: ([x1, y1, z1, w1]: Vec4, [x2, y2, z2, w2]: Vec4) => Vec4;
60
+ const subtract: ([x1, y1, z1, w1]: Vec4, [x2, y2, z2, w2]: Vec4) => Vec4;
61
+ const scale: ([x, y, z, w]: Vec4, s: number) => Vec4;
62
+ const negate: ([x, y, z, w]: Vec4) => Vec4;
63
+ }