@adobe/data 0.5.14 → 0.5.16
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/dist/ecs/entity/entity.d.ts +8 -0
- package/dist/ecs/entity/entity.js +3 -0
- package/dist/ecs/entity/entity.js.map +1 -0
- package/dist/ecs/entity/u32.d.ts +8 -0
- package/dist/{lit/elements/service-context.js → ecs/entity/u32.js} +3 -3
- package/dist/ecs/entity/u32.js.map +1 -0
- package/dist/graphics/frame.d.ts +1 -22
- package/dist/graphics/frame.js +14 -11
- package/dist/graphics/frame.js.map +1 -1
- package/dist/graphics/get-web-gpu-device-and-context.d.ts +1 -2
- package/dist/graphics/get-web-gpu-device-and-context.js +23 -20
- package/dist/graphics/get-web-gpu-device-and-context.js.map +1 -1
- package/dist/graphics/graphics-context.d.ts +1 -5
- package/dist/graphics/graphics-context.js +5 -0
- package/dist/graphics/graphics-context.js.map +1 -1
- package/dist/math/aabb/aabb.d.ts +42 -42
- package/dist/math/aabb/aabb.js +65 -62
- package/dist/math/aabb/aabb.js.map +1 -1
- package/dist/math/aabb-face/aabb-face.d.ts +59 -0
- package/dist/math/aabb-face/aabb-face.js +145 -0
- package/dist/math/aabb-face/aabb-face.js.map +1 -0
- package/dist/math/aabb-face/aabb-face.test.d.ts +1 -0
- package/dist/math/aabb-face/aabb-face.test.js +54 -0
- package/dist/math/aabb-face/aabb-face.test.js.map +1 -0
- package/dist/math/aabb-face/face.d.ts +51 -0
- package/dist/math/aabb-face/face.js +110 -0
- package/dist/math/aabb-face/face.js.map +1 -0
- package/dist/math/aabb-face/face.test.d.ts +1 -0
- package/dist/math/aabb-face/face.test.js +94 -0
- package/dist/math/aabb-face/face.test.js.map +1 -0
- package/dist/math/box/box.d.ts +50 -0
- package/dist/math/box/box.js +23 -0
- package/dist/math/box/box.js.map +1 -0
- package/dist/math/f32/f32.d.ts +8 -6
- package/dist/math/f32/f32.js +4 -1
- package/dist/math/f32/f32.js.map +1 -1
- package/dist/math/face/face.d.ts +51 -0
- package/dist/math/face/face.js +110 -0
- package/dist/math/face/face.js.map +1 -0
- package/dist/math/face/face.test.d.ts +1 -0
- package/dist/math/face/face.test.js +94 -0
- package/dist/math/face/face.test.js.map +1 -0
- package/dist/math/i32/i32.d.ts +9 -6
- package/dist/math/i32/i32.js +5 -2
- package/dist/math/i32/i32.js.map +1 -1
- package/dist/math/index.d.ts +13 -22
- package/dist/math/index.js +13 -22
- package/dist/math/index.js.map +1 -1
- package/dist/math/line2/line2.d.ts +36 -36
- package/dist/math/line2/line2.js +55 -52
- package/dist/math/line2/line2.js.map +1 -1
- package/dist/math/line3/line3.d.ts +48 -43
- package/dist/math/line3/line3.js +64 -52
- package/dist/math/line3/line3.js.map +1 -1
- package/dist/math/mat4x4/mat4x4.d.ts +34 -34
- package/dist/math/mat4x4/mat4x4.js +216 -213
- package/dist/math/mat4x4/mat4x4.js.map +1 -1
- package/dist/math/picking/face.d.ts +1 -0
- package/dist/math/picking/face.js +2 -0
- package/dist/math/picking/face.js.map +1 -0
- package/dist/math/picking/get-closest-entity-to-line.d.ts +4 -0
- package/dist/math/picking/get-closest-entity-to-line.js +30 -0
- package/dist/math/picking/get-closest-entity-to-line.js.map +1 -0
- package/dist/math/picking/get-closest-entity-to-point.d.ts +4 -0
- package/dist/math/picking/get-closest-entity-to-point.js +27 -0
- package/dist/math/picking/get-closest-entity-to-point.js.map +1 -0
- package/dist/math/picking/get-intersecting-entities.d.ts +12 -0
- package/dist/math/picking/get-intersecting-entities.js +15 -0
- package/dist/math/picking/get-intersecting-entities.js.map +1 -0
- package/dist/math/picking/getClosestEntityToLine.d.ts +4 -0
- package/dist/math/picking/getClosestEntityToLine.js +29 -0
- package/dist/math/picking/getClosestEntityToLine.js.map +1 -0
- package/dist/math/picking/getClosestEntityToPoint.d.ts +4 -0
- package/dist/math/picking/getClosestEntityToPoint.js +27 -0
- package/dist/math/picking/getClosestEntityToPoint.js.map +1 -0
- package/dist/math/picking/getIntersectingEntities.d.ts +12 -0
- package/dist/math/picking/getIntersectingEntities.js +15 -0
- package/dist/math/picking/getIntersectingEntities.js.map +1 -0
- package/dist/math/picking/index.d.ts +4 -0
- package/dist/math/picking/index.js +4 -0
- package/dist/math/picking/index.js.map +1 -1
- package/dist/math/picking/pick-from-tables.d.ts +1 -0
- package/dist/math/picking/pick-from-tables.js +7 -98
- package/dist/math/picking/pick-from-tables.js.map +1 -1
- package/dist/math/picking/pick-result.d.ts +5 -2
- package/dist/math/plane/plane.d.ts +43 -0
- package/dist/math/plane/plane.js +70 -0
- package/dist/math/plane/plane.js.map +1 -0
- package/dist/math/plane/plane.test.d.ts +1 -0
- package/dist/math/plane/plane.test.js +132 -0
- package/dist/math/plane/plane.test.js.map +1 -0
- package/dist/math/quat/quat.d.ts +49 -39
- package/dist/math/quat/quat.js +225 -185
- package/dist/math/quat/quat.js.map +1 -1
- package/dist/math/u32/u32.d.ts +9 -7
- package/dist/math/u32/u32.js +4 -1
- package/dist/math/u32/u32.js.map +1 -1
- package/dist/math/vec2/vec2.d.ts +61 -61
- package/dist/math/vec2/vec2.js +93 -90
- package/dist/math/vec2/vec2.js.map +1 -1
- package/dist/math/vec3/vec3.d.ts +66 -63
- package/dist/math/vec3/vec3.js +137 -129
- package/dist/math/vec3/vec3.js.map +1 -1
- package/dist/math/vec4/vec4.d.ts +61 -61
- package/dist/math/vec4/vec4.js +132 -129
- package/dist/math/vec4/vec4.js.map +1 -1
- package/dist/observe/to-async-generator.js +4 -4
- package/dist/observe/to-async-generator.js.map +1 -1
- package/dist/old-ecs/action-ecs/action-ecs.test.js +1 -1
- package/dist/old-ecs/action-ecs/action-ecs.test.js.map +1 -1
- package/dist/old-ecs/action-ecs/action-types.d.ts +7 -0
- package/dist/old-ecs/action-ecs/action-types.js.map +1 -1
- package/dist/old-ecs/ecs/ecs-types.d.ts +7 -0
- package/dist/old-ecs/ecs/ecs.test.js +1 -1
- package/dist/old-ecs/ecs/ecs.test.js.map +1 -1
- package/dist/old-ecs/transaction-ecs/transaction-ecs.test.js +1 -1
- package/dist/old-ecs/transaction-ecs/transaction-ecs.test.js.map +1 -1
- package/dist/old-ecs/transaction-ecs/transaction-types.d.ts +7 -0
- package/dist/samples/todo/services/state-service/create-todo-database.d.ts +2 -2
- package/dist/samples/todo/services/state-service/create-todo-store.d.ts +2 -2
- package/dist/tsconfig.tsbuildinfo +1 -1
- package/package.json +6 -3
- package/dist/lit/elements/service-application.d.ts +0 -9
- package/dist/lit/elements/service-application.js +0 -55
- package/dist/lit/elements/service-application.js.map +0 -1
- package/dist/lit/elements/service-context.d.ts +0 -1
- package/dist/lit/elements/service-context.js.map +0 -1
- package/dist/lit/elements/service-element.d.ts +0 -6
- package/dist/lit/elements/service-element.js +0 -43
- package/dist/lit/elements/service-element.js.map +0 -1
package/dist/math/line3/line3.js
CHANGED
|
@@ -21,57 +21,69 @@ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
|
21
21
|
SOFTWARE.*/
|
|
22
22
|
import { getStructLayout } from "../../typed-buffer/index.js";
|
|
23
23
|
import { Vec3 } from "../index.js";
|
|
24
|
-
|
|
25
|
-
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
|
|
29
|
-
|
|
30
|
-
|
|
31
|
-
|
|
32
|
-
|
|
33
|
-
|
|
34
|
-
|
|
35
|
-
|
|
36
|
-
|
|
37
|
-
|
|
38
|
-
|
|
39
|
-
// Line3 utility functions
|
|
40
|
-
export const interpolate = (line, alpha) => {
|
|
41
|
-
const a = line.a;
|
|
42
|
-
const b = line.b;
|
|
43
|
-
return [a[0] + alpha * (b[0] - a[0]), a[1] + alpha * (b[1] - a[1]), a[2] + alpha * (b[2] - a[2])];
|
|
44
|
-
};
|
|
45
|
-
/**
|
|
46
|
-
* Calculates the alpha value (0-1) representing the closest point on a line to a given point.
|
|
47
|
-
*
|
|
48
|
-
* @param line - The line segment
|
|
49
|
-
* @param point - The point in 3D space
|
|
50
|
-
* @returns Alpha value, usually between 0 and 1, where 0 is line.a and 1 is line.b
|
|
51
|
-
*/
|
|
52
|
-
export const closestPointOnLine = (line, point) => {
|
|
53
|
-
const { a, b } = line;
|
|
54
|
-
// Calculate the direction vector of the line
|
|
55
|
-
const lineDirection = Vec3.subtract(b, a);
|
|
56
|
-
// Calculate the vector from line start to the point
|
|
57
|
-
const pointToStart = Vec3.subtract(point, a);
|
|
58
|
-
// Calculate the dot product to find the projection
|
|
59
|
-
const dotProduct = Vec3.dot(pointToStart, lineDirection);
|
|
60
|
-
const lineLengthSquared = Vec3.dot(lineDirection, lineDirection);
|
|
61
|
-
// Avoid division by zero
|
|
62
|
-
if (lineLengthSquared === 0) {
|
|
63
|
-
return 0;
|
|
64
|
-
}
|
|
65
|
-
// Calculate alpha (projection parameter)
|
|
66
|
-
const alpha = dotProduct / lineLengthSquared;
|
|
67
|
-
// Do not clamp alpha, it can be outside of [0, 1]
|
|
68
|
-
// User can clamp after if they want to.
|
|
69
|
-
return alpha;
|
|
70
|
-
};
|
|
71
|
-
export const subLine = (line, alpha, beta) => {
|
|
72
|
-
return {
|
|
73
|
-
a: interpolate(line, alpha),
|
|
74
|
-
b: interpolate(line, beta),
|
|
24
|
+
export var Line3;
|
|
25
|
+
(function (Line3) {
|
|
26
|
+
const { schema: Vec3Schema } = Vec3;
|
|
27
|
+
Line3.schema = {
|
|
28
|
+
type: 'object',
|
|
29
|
+
properties: {
|
|
30
|
+
a: Vec3Schema,
|
|
31
|
+
b: Vec3Schema,
|
|
32
|
+
},
|
|
33
|
+
required: ['a', 'b'],
|
|
34
|
+
additionalProperties: false,
|
|
35
|
+
default: {
|
|
36
|
+
a: Vec3Schema.default,
|
|
37
|
+
b: Vec3Schema.default,
|
|
38
|
+
}
|
|
75
39
|
};
|
|
76
|
-
|
|
40
|
+
Line3.layout = getStructLayout(Line3.schema);
|
|
41
|
+
// Line3 utility functions
|
|
42
|
+
Line3.interpolate = (line, alpha) => {
|
|
43
|
+
const a = line.a;
|
|
44
|
+
const b = line.b;
|
|
45
|
+
return [a[0] + alpha * (b[0] - a[0]), a[1] + alpha * (b[1] - a[1]), a[2] + alpha * (b[2] - a[2])];
|
|
46
|
+
};
|
|
47
|
+
/**
|
|
48
|
+
* Calculates the alpha value (0-1) representing the closest point on a line to a given point.
|
|
49
|
+
*
|
|
50
|
+
* @param line - The line segment
|
|
51
|
+
* @param point - The point in 3D space
|
|
52
|
+
* @returns Alpha value, usually between 0 and 1, where 0 is line.a and 1 is line.b
|
|
53
|
+
*/
|
|
54
|
+
Line3.closestPointOnLine = (line, point) => {
|
|
55
|
+
const { a, b } = line;
|
|
56
|
+
// Calculate the direction vector of the line
|
|
57
|
+
const lineDirection = Vec3.subtract(b, a);
|
|
58
|
+
// Calculate the vector from line start to the point
|
|
59
|
+
const pointToStart = Vec3.subtract(point, a);
|
|
60
|
+
// Calculate the dot product to find the projection
|
|
61
|
+
const dotProduct = Vec3.dot(pointToStart, lineDirection);
|
|
62
|
+
const lineLengthSquared = Vec3.dot(lineDirection, lineDirection);
|
|
63
|
+
// Avoid division by zero
|
|
64
|
+
if (lineLengthSquared === 0) {
|
|
65
|
+
return 0;
|
|
66
|
+
}
|
|
67
|
+
// Calculate alpha (projection parameter)
|
|
68
|
+
const alpha = dotProduct / lineLengthSquared;
|
|
69
|
+
// Do not clamp alpha, it can be outside of [0, 1]
|
|
70
|
+
// User can clamp after if they want to.
|
|
71
|
+
return alpha;
|
|
72
|
+
};
|
|
73
|
+
Line3.subLine = (line, alpha, beta) => {
|
|
74
|
+
return {
|
|
75
|
+
a: Line3.interpolate(line, alpha),
|
|
76
|
+
b: Line3.interpolate(line, beta),
|
|
77
|
+
};
|
|
78
|
+
};
|
|
79
|
+
/**
|
|
80
|
+
* Returns a unit vector pointing from line.a to line.b. If the line has zero length,
|
|
81
|
+
* returns the provided default direction (defaults to [0,0,1]).
|
|
82
|
+
*/
|
|
83
|
+
Line3.direction = (line) => {
|
|
84
|
+
const delta = Vec3.subtract(line.b, line.a);
|
|
85
|
+
const len = Vec3.length(delta);
|
|
86
|
+
return len === 0 ? [0, 0, 1] : Vec3.normalize(delta);
|
|
87
|
+
};
|
|
88
|
+
})(Line3 || (Line3 = {}));
|
|
77
89
|
//# sourceMappingURL=line3.js.map
|
|
@@ -1 +1 @@
|
|
|
1
|
-
{"version":3,"file":"line3.js","sourceRoot":"","sources":["../../../src/math/line3/line3.ts"],"names":[],"mappings":"AAAA;;;;;;;;;;;;;;;;;;;;WAoBW;AAGX,OAAO,EAAE,eAAe,EAAE,MAAM,6BAA6B,CAAC;AAC9D,OAAO,EAAE,IAAI,EAAE,MAAM,aAAa,CAAC;
|
|
1
|
+
{"version":3,"file":"line3.js","sourceRoot":"","sources":["../../../src/math/line3/line3.ts"],"names":[],"mappings":"AAAA;;;;;;;;;;;;;;;;;;;;WAoBW;AAGX,OAAO,EAAE,eAAe,EAAE,MAAM,6BAA6B,CAAC;AAC9D,OAAO,EAAE,IAAI,EAAE,MAAM,aAAa,CAAC;AAInC,MAAM,KAAW,KAAK,CA0ErB;AA1ED,WAAiB,KAAK;IAClB,MAAM,EAAE,MAAM,EAAE,UAAU,EAAE,GAAG,IAAI,CAAC;IAEvB,YAAM,GAAG;QAClB,IAAI,EAAE,QAAQ;QACd,UAAU,EAAE;YACR,CAAC,EAAE,UAAU;YACb,CAAC,EAAE,UAAU;SAChB;QACD,QAAQ,EAAE,CAAC,GAAG,EAAE,GAAG,CAAC;QACpB,oBAAoB,EAAE,KAAK;QAC3B,OAAO,EAAE;YACL,CAAC,EAAE,UAAU,CAAC,OAAO;YACrB,CAAC,EAAE,UAAU,CAAC,OAAO;SACxB;KACsB,CAAC;IACf,YAAM,GAAG,eAAe,CAAC,MAAA,MAAM,CAAC,CAAC;IAE9C,0BAA0B;IACb,iBAAW,GAAG,CAAC,IAAW,EAAE,KAAa,EAAQ,EAAE;QAC5D,MAAM,CAAC,GAAG,IAAI,CAAC,CAAC,CAAC;QACjB,MAAM,CAAC,GAAG,IAAI,CAAC,CAAC,CAAC;QACjB,OAAO,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,KAAK,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,GAAG,KAAK,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,GAAG,KAAK,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;IACtG,CAAC,CAAC;IAEF;;;;;;OAMG;IACU,wBAAkB,GAAG,CAAC,IAAW,EAAE,KAAW,EAAU,EAAE;QACnE,MAAM,EAAE,CAAC,EAAE,CAAC,EAAE,GAAG,IAAI,CAAC;QAEtB,6CAA6C;QAC7C,MAAM,aAAa,GAAG,IAAI,CAAC,QAAQ,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC;QAE1C,oDAAoD;QACpD,MAAM,YAAY,GAAG,IAAI,CAAC,QAAQ,CAAC,KAAK,EAAE,CAAC,CAAC,CAAC;QAE7C,mDAAmD;QACnD,MAAM,UAAU,GAAG,IAAI,CAAC,GAAG,CAAC,YAAY,EAAE,aAAa,CAAC,CAAC;QACzD,MAAM,iBAAiB,GAAG,IAAI,CAAC,GAAG,CAAC,aAAa,EAAE,aAAa,CAAC,CAAC;QAEjE,yBAAyB;QACzB,IAAI,iBAAiB,KAAK,CAAC,EAAE,CAAC;YAC1B,OAAO,CAAC,CAAC;QACb,CAAC;QAED,yCAAyC;QACzC,MAAM,KAAK,GAAG,UAAU,GAAG,iBAAiB,CAAC;QAE7C,kDAAkD;QAClD,wCAAwC;QACxC,OAAO,KAAK,CAAC;IACjB,CAAC,CAAC;IAEW,aAAO,GAAG,CAAC,IAAW,EAAE,KAAa,EAAE,IAAY,EAAS,EAAE;QACvE,OAAO;YACH,CAAC,EAAE,MAAA,WAAW,CAAC,IAAI,EAAE,KAAK,CAAC;YAC3B,CAAC,EAAE,MAAA,WAAW,CAAC,IAAI,EAAE,IAAI,CAAC;SAC7B,CAAC;IACN,CAAC,CAAC;IAEF;;;OAGG;IACU,eAAS,GAAG,CAAC,IAAW,EAAQ,EAAE;QAC3C,MAAM,KAAK,GAAG,IAAI,CAAC,QAAQ,CAAC,IAAI,CAAC,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,CAAC;QAC5C,MAAM,GAAG,GAAG,IAAI,CAAC,MAAM,CAAC,KAAK,CAAC,CAAC;QAC/B,OAAO,GAAG,KAAK,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,IAAI,CAAC,SAAS,CAAC,KAAK,CAAC,CAAC;IACzD,CAAC,CAAC;AACN,CAAC,EA1EgB,KAAK,KAAL,KAAK,QA0ErB"}
|
|
@@ -1,37 +1,37 @@
|
|
|
1
1
|
import { FromSchema } from "../../schema/index.js";
|
|
2
2
|
import { Vec3, Vec4 } from "../index.js";
|
|
3
|
-
export
|
|
4
|
-
|
|
5
|
-
|
|
6
|
-
readonly type: "
|
|
7
|
-
readonly
|
|
8
|
-
|
|
3
|
+
export type Mat4x4 = FromSchema<typeof Mat4x4.schema>;
|
|
4
|
+
export declare namespace Mat4x4 {
|
|
5
|
+
const schema: {
|
|
6
|
+
readonly type: "array";
|
|
7
|
+
readonly items: {
|
|
8
|
+
readonly type: "number";
|
|
9
|
+
readonly precision: 1;
|
|
10
|
+
readonly default: number;
|
|
11
|
+
};
|
|
12
|
+
readonly minItems: 16;
|
|
13
|
+
readonly maxItems: 16;
|
|
14
|
+
readonly default: readonly [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1];
|
|
9
15
|
};
|
|
10
|
-
|
|
11
|
-
|
|
12
|
-
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
|
|
18
|
-
|
|
19
|
-
|
|
20
|
-
|
|
21
|
-
|
|
22
|
-
|
|
23
|
-
|
|
24
|
-
|
|
25
|
-
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
|
|
29
|
-
|
|
30
|
-
|
|
31
|
-
|
|
32
|
-
export declare const rotationY: (angle: number) => Mat4x4;
|
|
33
|
-
export declare const rotationZ: (angle: number) => Mat4x4;
|
|
34
|
-
export declare const perspective: (fovy: number, aspect: number, near: number, far: number) => Mat4x4;
|
|
35
|
-
export declare const orthographic: (left: number, right: number, bottom: number, top: number, near: number, far: number) => Mat4x4;
|
|
36
|
-
export declare const lookAt: (eye: Vec3, center: Vec3, up: Vec3) => Mat4x4;
|
|
37
|
-
export {};
|
|
16
|
+
const layout: import("../../typed-buffer/index.js").StructLayout;
|
|
17
|
+
type Index = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15;
|
|
18
|
+
const identity: Mat4x4;
|
|
19
|
+
const zero: Mat4x4;
|
|
20
|
+
const add: (a: Mat4x4, b: Mat4x4) => Mat4x4;
|
|
21
|
+
const subtract: (a: Mat4x4, b: Mat4x4) => Mat4x4;
|
|
22
|
+
const multiply: (a: Mat4x4, b: Mat4x4) => Mat4x4;
|
|
23
|
+
const scale: (m: Mat4x4, s: number) => Mat4x4;
|
|
24
|
+
const multiplyVec4: (m: Mat4x4, v: Vec4) => Vec4;
|
|
25
|
+
const multiplyVec3: (m: Mat4x4, v: Vec3) => Vec3;
|
|
26
|
+
const determinant: (m: Mat4x4) => number;
|
|
27
|
+
const inverse: (m: Mat4x4) => Mat4x4;
|
|
28
|
+
const transpose: (m: Mat4x4) => Mat4x4;
|
|
29
|
+
const translation: (x: number, y: number, z: number) => Mat4x4;
|
|
30
|
+
const scaling: (x: number, y: number, z: number) => Mat4x4;
|
|
31
|
+
const rotationX: (angle: number) => Mat4x4;
|
|
32
|
+
const rotationY: (angle: number) => Mat4x4;
|
|
33
|
+
const rotationZ: (angle: number) => Mat4x4;
|
|
34
|
+
const perspective: (fovy: number, aspect: number, near: number, far: number) => Mat4x4;
|
|
35
|
+
const orthographic: (left: number, right: number, bottom: number, top: number, near: number, far: number) => Mat4x4;
|
|
36
|
+
const lookAt: (eye: Vec3, center: Vec3, up: Vec3) => Mat4x4;
|
|
37
|
+
}
|
|
@@ -22,225 +22,228 @@ SOFTWARE.*/
|
|
|
22
22
|
import { F32Schema } from "../../schema/index.js";
|
|
23
23
|
import { getStructLayout } from "../../typed-buffer/index.js";
|
|
24
24
|
import { Vec3 } from "../index.js";
|
|
25
|
-
export
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
|
|
29
|
-
|
|
30
|
-
|
|
31
|
-
|
|
32
|
-
|
|
33
|
-
|
|
34
|
-
|
|
35
|
-
|
|
36
|
-
|
|
37
|
-
0, 0, 1, 0,
|
|
38
|
-
0, 0, 0, 1
|
|
39
|
-
];
|
|
40
|
-
export const zero = () => [
|
|
41
|
-
0, 0, 0, 0,
|
|
42
|
-
0, 0, 0, 0,
|
|
43
|
-
0, 0, 0, 0,
|
|
44
|
-
0, 0, 0, 0
|
|
45
|
-
];
|
|
46
|
-
// Matrix-Matrix Operations
|
|
47
|
-
export const add = (a, b) => [
|
|
48
|
-
a[0] + b[0], a[1] + b[1], a[2] + b[2], a[3] + b[3],
|
|
49
|
-
a[4] + b[4], a[5] + b[5], a[6] + b[6], a[7] + b[7],
|
|
50
|
-
a[8] + b[8], a[9] + b[9], a[10] + b[10], a[11] + b[11],
|
|
51
|
-
a[12] + b[12], a[13] + b[13], a[14] + b[14], a[15] + b[15]
|
|
52
|
-
];
|
|
53
|
-
export const subtract = (a, b) => [
|
|
54
|
-
a[0] - b[0], a[1] - b[1], a[2] - b[2], a[3] - b[3],
|
|
55
|
-
a[4] - b[4], a[5] - b[5], a[6] - b[6], a[7] - b[7],
|
|
56
|
-
a[8] - b[8], a[9] - b[9], a[10] - b[10], a[11] - b[11],
|
|
57
|
-
a[12] - b[12], a[13] - b[13], a[14] - b[14], a[15] - b[15]
|
|
58
|
-
];
|
|
59
|
-
export const multiply = (a, b) => {
|
|
60
|
-
const result = new Array(16);
|
|
61
|
-
for (let i = 0; i < 4; i++) {
|
|
62
|
-
for (let j = 0; j < 4; j++) {
|
|
63
|
-
let sum = 0;
|
|
64
|
-
for (let k = 0; k < 4; k++) {
|
|
65
|
-
sum += a[k * 4 + i] * b[j * 4 + k];
|
|
66
|
-
}
|
|
67
|
-
result[j * 4 + i] = sum;
|
|
68
|
-
}
|
|
69
|
-
}
|
|
70
|
-
return result;
|
|
71
|
-
};
|
|
72
|
-
// Matrix-Scalar Operations
|
|
73
|
-
export const scale = (m, s) => [
|
|
74
|
-
m[0] * s, m[1] * s, m[2] * s, m[3] * s,
|
|
75
|
-
m[4] * s, m[5] * s, m[6] * s, m[7] * s,
|
|
76
|
-
m[8] * s, m[9] * s, m[10] * s, m[11] * s,
|
|
77
|
-
m[12] * s, m[13] * s, m[14] * s, m[15] * s
|
|
78
|
-
];
|
|
79
|
-
// Matrix-Vector Operations
|
|
80
|
-
export const multiplyVec4 = (m, v) => [
|
|
81
|
-
m[0] * v[0] + m[4] * v[1] + m[8] * v[2] + m[12] * v[3],
|
|
82
|
-
m[1] * v[0] + m[5] * v[1] + m[9] * v[2] + m[13] * v[3],
|
|
83
|
-
m[2] * v[0] + m[6] * v[1] + m[10] * v[2] + m[14] * v[3],
|
|
84
|
-
m[3] * v[0] + m[7] * v[1] + m[11] * v[2] + m[15] * v[3]
|
|
85
|
-
];
|
|
86
|
-
export const multiplyVec3 = (m, v) => [
|
|
87
|
-
m[0] * v[0] + m[4] * v[1] + m[8] * v[2] + m[12],
|
|
88
|
-
m[1] * v[0] + m[5] * v[1] + m[9] * v[2] + m[13],
|
|
89
|
-
m[2] * v[0] + m[6] * v[1] + m[10] * v[2] + m[14]
|
|
90
|
-
];
|
|
91
|
-
// Matrix Properties
|
|
92
|
-
export const determinant = (m) => {
|
|
93
|
-
const [m00, m01, m02, m03, m10, m11, m12, m13, m20, m21, m22, m23, m30, m31, m32, m33] = m;
|
|
94
|
-
const b00 = m00 * m11 - m01 * m10;
|
|
95
|
-
const b01 = m00 * m12 - m02 * m10;
|
|
96
|
-
const b02 = m00 * m13 - m03 * m10;
|
|
97
|
-
const b03 = m01 * m12 - m02 * m11;
|
|
98
|
-
const b04 = m01 * m13 - m03 * m11;
|
|
99
|
-
const b05 = m02 * m13 - m03 * m12;
|
|
100
|
-
const b06 = m20 * m31 - m21 * m30;
|
|
101
|
-
const b07 = m20 * m32 - m22 * m30;
|
|
102
|
-
const b08 = m20 * m33 - m23 * m30;
|
|
103
|
-
const b09 = m21 * m32 - m22 * m31;
|
|
104
|
-
const b10 = m21 * m33 - m23 * m31;
|
|
105
|
-
const b11 = m22 * m33 - m23 * m32;
|
|
106
|
-
return b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06;
|
|
107
|
-
};
|
|
108
|
-
export const inverse = (m) => {
|
|
109
|
-
const det = determinant(m);
|
|
110
|
-
if (det === 0) {
|
|
111
|
-
throw new Error('Matrix is not invertible');
|
|
112
|
-
}
|
|
113
|
-
const [m00, m01, m02, m03, m10, m11, m12, m13, m20, m21, m22, m23, m30, m31, m32, m33] = m;
|
|
114
|
-
const b00 = m00 * m11 - m01 * m10;
|
|
115
|
-
const b01 = m00 * m12 - m02 * m10;
|
|
116
|
-
const b02 = m00 * m13 - m03 * m10;
|
|
117
|
-
const b03 = m01 * m12 - m02 * m11;
|
|
118
|
-
const b04 = m01 * m13 - m03 * m11;
|
|
119
|
-
const b05 = m02 * m13 - m03 * m12;
|
|
120
|
-
const b06 = m20 * m31 - m21 * m30;
|
|
121
|
-
const b07 = m20 * m32 - m22 * m30;
|
|
122
|
-
const b08 = m20 * m33 - m23 * m30;
|
|
123
|
-
const b09 = m21 * m32 - m22 * m31;
|
|
124
|
-
const b10 = m21 * m33 - m23 * m31;
|
|
125
|
-
const b11 = m22 * m33 - m23 * m32;
|
|
126
|
-
const invDet = 1.0 / det;
|
|
127
|
-
return [
|
|
128
|
-
(m11 * b11 - m12 * b10 + m13 * b09) * invDet,
|
|
129
|
-
(m02 * b10 - m01 * b11 - m03 * b09) * invDet,
|
|
130
|
-
(m31 * b05 - m32 * b04 + m33 * b03) * invDet,
|
|
131
|
-
(m22 * b04 - m21 * b05 - m23 * b03) * invDet,
|
|
132
|
-
(m12 * b08 - m10 * b11 - m13 * b07) * invDet,
|
|
133
|
-
(m00 * b11 - m02 * b08 + m03 * b07) * invDet,
|
|
134
|
-
(m32 * b02 - m30 * b05 - m33 * b01) * invDet,
|
|
135
|
-
(m20 * b05 - m22 * b02 + m23 * b01) * invDet,
|
|
136
|
-
(m10 * b10 - m11 * b08 + m13 * b06) * invDet,
|
|
137
|
-
(m01 * b08 - m00 * b10 - m03 * b06) * invDet,
|
|
138
|
-
(m30 * b04 - m31 * b02 + m33 * b00) * invDet,
|
|
139
|
-
(m21 * b02 - m20 * b04 - m23 * b00) * invDet,
|
|
140
|
-
(m11 * b07 - m10 * b09 - m12 * b06) * invDet,
|
|
141
|
-
(m00 * b09 - m01 * b07 + m02 * b06) * invDet,
|
|
142
|
-
(m31 * b01 - m30 * b03 - m32 * b00) * invDet,
|
|
143
|
-
(m20 * b03 - m21 * b01 + m22 * b00) * invDet
|
|
144
|
-
];
|
|
145
|
-
};
|
|
146
|
-
export const transpose = (m) => [
|
|
147
|
-
m[0], m[4], m[8], m[12],
|
|
148
|
-
m[1], m[5], m[9], m[13],
|
|
149
|
-
m[2], m[6], m[10], m[14],
|
|
150
|
-
m[3], m[7], m[11], m[15]
|
|
151
|
-
];
|
|
152
|
-
// Transformation Matrices
|
|
153
|
-
export const translation = (x, y, z) => [
|
|
154
|
-
1, 0, 0, 0,
|
|
155
|
-
0, 1, 0, 0,
|
|
156
|
-
0, 0, 1, 0,
|
|
157
|
-
x, y, z, 1
|
|
158
|
-
];
|
|
159
|
-
export const scaling = (x, y, z) => [
|
|
160
|
-
x, 0, 0, 0,
|
|
161
|
-
0, y, 0, 0,
|
|
162
|
-
0, 0, z, 0,
|
|
163
|
-
0, 0, 0, 1
|
|
164
|
-
];
|
|
165
|
-
export const rotationX = (angle) => {
|
|
166
|
-
const c = Math.cos(angle);
|
|
167
|
-
const s = Math.sin(angle);
|
|
168
|
-
return [
|
|
25
|
+
export var Mat4x4;
|
|
26
|
+
(function (Mat4x4) {
|
|
27
|
+
Mat4x4.schema = {
|
|
28
|
+
type: 'array',
|
|
29
|
+
items: F32Schema,
|
|
30
|
+
minItems: 16,
|
|
31
|
+
maxItems: 16,
|
|
32
|
+
default: [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], // identity matrix
|
|
33
|
+
};
|
|
34
|
+
Mat4x4.layout = getStructLayout(Mat4x4.schema);
|
|
35
|
+
// Basic Matrix Operations
|
|
36
|
+
Mat4x4.identity = [
|
|
169
37
|
1, 0, 0, 0,
|
|
170
|
-
0, c, s, 0,
|
|
171
|
-
0, -s, c, 0,
|
|
172
|
-
0, 0, 0, 1
|
|
173
|
-
];
|
|
174
|
-
};
|
|
175
|
-
export const rotationY = (angle) => {
|
|
176
|
-
const c = Math.cos(angle);
|
|
177
|
-
const s = Math.sin(angle);
|
|
178
|
-
return [
|
|
179
|
-
c, 0, s, 0,
|
|
180
38
|
0, 1, 0, 0,
|
|
181
|
-
-s, 0, c, 0,
|
|
182
|
-
0, 0, 0, 1
|
|
183
|
-
];
|
|
184
|
-
};
|
|
185
|
-
export const rotationZ = (angle) => {
|
|
186
|
-
const c = Math.cos(angle);
|
|
187
|
-
const s = Math.sin(angle);
|
|
188
|
-
return [
|
|
189
|
-
c, -s, 0, 0,
|
|
190
|
-
s, c, 0, 0,
|
|
191
39
|
0, 0, 1, 0,
|
|
192
40
|
0, 0, 0, 1
|
|
193
41
|
];
|
|
194
|
-
|
|
195
|
-
|
|
196
|
-
|
|
197
|
-
|
|
198
|
-
|
|
199
|
-
|
|
200
|
-
|
|
201
|
-
|
|
202
|
-
|
|
203
|
-
|
|
204
|
-
|
|
205
|
-
|
|
206
|
-
|
|
207
|
-
|
|
208
|
-
|
|
209
|
-
|
|
210
|
-
|
|
211
|
-
|
|
42
|
+
Mat4x4.zero = [
|
|
43
|
+
0, 0, 0, 0,
|
|
44
|
+
0, 0, 0, 0,
|
|
45
|
+
0, 0, 0, 0,
|
|
46
|
+
0, 0, 0, 0
|
|
47
|
+
];
|
|
48
|
+
// Matrix-Matrix Operations
|
|
49
|
+
Mat4x4.add = (a, b) => [
|
|
50
|
+
a[0] + b[0], a[1] + b[1], a[2] + b[2], a[3] + b[3],
|
|
51
|
+
a[4] + b[4], a[5] + b[5], a[6] + b[6], a[7] + b[7],
|
|
52
|
+
a[8] + b[8], a[9] + b[9], a[10] + b[10], a[11] + b[11],
|
|
53
|
+
a[12] + b[12], a[13] + b[13], a[14] + b[14], a[15] + b[15]
|
|
54
|
+
];
|
|
55
|
+
Mat4x4.subtract = (a, b) => [
|
|
56
|
+
a[0] - b[0], a[1] - b[1], a[2] - b[2], a[3] - b[3],
|
|
57
|
+
a[4] - b[4], a[5] - b[5], a[6] - b[6], a[7] - b[7],
|
|
58
|
+
a[8] - b[8], a[9] - b[9], a[10] - b[10], a[11] - b[11],
|
|
59
|
+
a[12] - b[12], a[13] - b[13], a[14] - b[14], a[15] - b[15]
|
|
60
|
+
];
|
|
61
|
+
Mat4x4.multiply = (a, b) => {
|
|
62
|
+
const result = new Array(16);
|
|
63
|
+
for (let i = 0; i < 4; i++) {
|
|
64
|
+
for (let j = 0; j < 4; j++) {
|
|
65
|
+
let sum = 0;
|
|
66
|
+
for (let k = 0; k < 4; k++) {
|
|
67
|
+
sum += a[k * 4 + i] * b[j * 4 + k];
|
|
68
|
+
}
|
|
69
|
+
result[j * 4 + i] = sum;
|
|
70
|
+
}
|
|
71
|
+
}
|
|
72
|
+
return result;
|
|
73
|
+
};
|
|
74
|
+
// Matrix-Scalar Operations
|
|
75
|
+
Mat4x4.scale = (m, s) => [
|
|
76
|
+
m[0] * s, m[1] * s, m[2] * s, m[3] * s,
|
|
77
|
+
m[4] * s, m[5] * s, m[6] * s, m[7] * s,
|
|
78
|
+
m[8] * s, m[9] * s, m[10] * s, m[11] * s,
|
|
79
|
+
m[12] * s, m[13] * s, m[14] * s, m[15] * s
|
|
80
|
+
];
|
|
81
|
+
// Matrix-Vector Operations
|
|
82
|
+
Mat4x4.multiplyVec4 = (m, v) => [
|
|
83
|
+
m[0] * v[0] + m[4] * v[1] + m[8] * v[2] + m[12] * v[3],
|
|
84
|
+
m[1] * v[0] + m[5] * v[1] + m[9] * v[2] + m[13] * v[3],
|
|
85
|
+
m[2] * v[0] + m[6] * v[1] + m[10] * v[2] + m[14] * v[3],
|
|
86
|
+
m[3] * v[0] + m[7] * v[1] + m[11] * v[2] + m[15] * v[3]
|
|
87
|
+
];
|
|
88
|
+
Mat4x4.multiplyVec3 = (m, v) => [
|
|
89
|
+
m[0] * v[0] + m[4] * v[1] + m[8] * v[2] + m[12],
|
|
90
|
+
m[1] * v[0] + m[5] * v[1] + m[9] * v[2] + m[13],
|
|
91
|
+
m[2] * v[0] + m[6] * v[1] + m[10] * v[2] + m[14]
|
|
92
|
+
];
|
|
93
|
+
// Matrix Properties
|
|
94
|
+
Mat4x4.determinant = (m) => {
|
|
95
|
+
const [m00, m01, m02, m03, m10, m11, m12, m13, m20, m21, m22, m23, m30, m31, m32, m33] = m;
|
|
96
|
+
const b00 = m00 * m11 - m01 * m10;
|
|
97
|
+
const b01 = m00 * m12 - m02 * m10;
|
|
98
|
+
const b02 = m00 * m13 - m03 * m10;
|
|
99
|
+
const b03 = m01 * m12 - m02 * m11;
|
|
100
|
+
const b04 = m01 * m13 - m03 * m11;
|
|
101
|
+
const b05 = m02 * m13 - m03 * m12;
|
|
102
|
+
const b06 = m20 * m31 - m21 * m30;
|
|
103
|
+
const b07 = m20 * m32 - m22 * m30;
|
|
104
|
+
const b08 = m20 * m33 - m23 * m30;
|
|
105
|
+
const b09 = m21 * m32 - m22 * m31;
|
|
106
|
+
const b10 = m21 * m33 - m23 * m31;
|
|
107
|
+
const b11 = m22 * m33 - m23 * m32;
|
|
108
|
+
return b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06;
|
|
109
|
+
};
|
|
110
|
+
Mat4x4.inverse = (m) => {
|
|
111
|
+
const det = Mat4x4.determinant(m);
|
|
112
|
+
if (det === 0) {
|
|
113
|
+
throw new Error('Matrix is not invertible');
|
|
114
|
+
}
|
|
115
|
+
const [m00, m01, m02, m03, m10, m11, m12, m13, m20, m21, m22, m23, m30, m31, m32, m33] = m;
|
|
116
|
+
const b00 = m00 * m11 - m01 * m10;
|
|
117
|
+
const b01 = m00 * m12 - m02 * m10;
|
|
118
|
+
const b02 = m00 * m13 - m03 * m10;
|
|
119
|
+
const b03 = m01 * m12 - m02 * m11;
|
|
120
|
+
const b04 = m01 * m13 - m03 * m11;
|
|
121
|
+
const b05 = m02 * m13 - m03 * m12;
|
|
122
|
+
const b06 = m20 * m31 - m21 * m30;
|
|
123
|
+
const b07 = m20 * m32 - m22 * m30;
|
|
124
|
+
const b08 = m20 * m33 - m23 * m30;
|
|
125
|
+
const b09 = m21 * m32 - m22 * m31;
|
|
126
|
+
const b10 = m21 * m33 - m23 * m31;
|
|
127
|
+
const b11 = m22 * m33 - m23 * m32;
|
|
128
|
+
const invDet = 1.0 / det;
|
|
129
|
+
return [
|
|
130
|
+
(m11 * b11 - m12 * b10 + m13 * b09) * invDet,
|
|
131
|
+
(m02 * b10 - m01 * b11 - m03 * b09) * invDet,
|
|
132
|
+
(m31 * b05 - m32 * b04 + m33 * b03) * invDet,
|
|
133
|
+
(m22 * b04 - m21 * b05 - m23 * b03) * invDet,
|
|
134
|
+
(m12 * b08 - m10 * b11 - m13 * b07) * invDet,
|
|
135
|
+
(m00 * b11 - m02 * b08 + m03 * b07) * invDet,
|
|
136
|
+
(m32 * b02 - m30 * b05 - m33 * b01) * invDet,
|
|
137
|
+
(m20 * b05 - m22 * b02 + m23 * b01) * invDet,
|
|
138
|
+
(m10 * b10 - m11 * b08 + m13 * b06) * invDet,
|
|
139
|
+
(m01 * b08 - m00 * b10 - m03 * b06) * invDet,
|
|
140
|
+
(m30 * b04 - m31 * b02 + m33 * b00) * invDet,
|
|
141
|
+
(m21 * b02 - m20 * b04 - m23 * b00) * invDet,
|
|
142
|
+
(m11 * b07 - m10 * b09 - m12 * b06) * invDet,
|
|
143
|
+
(m00 * b09 - m01 * b07 + m02 * b06) * invDet,
|
|
144
|
+
(m31 * b01 - m30 * b03 - m32 * b00) * invDet,
|
|
145
|
+
(m20 * b03 - m21 * b01 + m22 * b00) * invDet
|
|
146
|
+
];
|
|
147
|
+
};
|
|
148
|
+
Mat4x4.transpose = (m) => [
|
|
149
|
+
m[0], m[4], m[8], m[12],
|
|
150
|
+
m[1], m[5], m[9], m[13],
|
|
151
|
+
m[2], m[6], m[10], m[14],
|
|
152
|
+
m[3], m[7], m[11], m[15]
|
|
212
153
|
];
|
|
213
|
-
|
|
214
|
-
|
|
215
|
-
|
|
216
|
-
|
|
217
|
-
|
|
218
|
-
|
|
219
|
-
-2 * lr, 0, 0, 0,
|
|
220
|
-
0, -2 * bt, 0, 0,
|
|
221
|
-
0, 0, 2 * nf, 0,
|
|
222
|
-
(left + right) * lr, (bottom + top) * bt, (far + near) * nf, 1
|
|
154
|
+
// Transformation Matrices
|
|
155
|
+
Mat4x4.translation = (x, y, z) => [
|
|
156
|
+
1, 0, 0, 0,
|
|
157
|
+
0, 1, 0, 0,
|
|
158
|
+
0, 0, 1, 0,
|
|
159
|
+
x, y, z, 1
|
|
223
160
|
];
|
|
224
|
-
|
|
225
|
-
|
|
226
|
-
|
|
227
|
-
|
|
228
|
-
|
|
229
|
-
throw new Error('Up vector cannot be zero');
|
|
230
|
-
const forward = Vec3.subtract(center, eye);
|
|
231
|
-
if (Vec3.length(forward) === 0)
|
|
232
|
-
throw new Error('Eye and center cannot be the same position');
|
|
233
|
-
const f = Vec3.normalize(forward);
|
|
234
|
-
const s = Vec3.normalize(Vec3.cross(f, up));
|
|
235
|
-
// Check if up vector is parallel to view direction
|
|
236
|
-
if (Vec3.length(s) === 0)
|
|
237
|
-
throw new Error('Up vector cannot be parallel to view direction');
|
|
238
|
-
const u = Vec3.normalize(Vec3.cross(s, f));
|
|
239
|
-
return [
|
|
240
|
-
s[0], u[0], -f[0], 0,
|
|
241
|
-
s[1], u[1], -f[1], 0,
|
|
242
|
-
s[2], u[2], -f[2], 0,
|
|
243
|
-
-Vec3.dot(s, eye), -Vec3.dot(u, eye), Vec3.dot(f, eye), 1
|
|
161
|
+
Mat4x4.scaling = (x, y, z) => [
|
|
162
|
+
x, 0, 0, 0,
|
|
163
|
+
0, y, 0, 0,
|
|
164
|
+
0, 0, z, 0,
|
|
165
|
+
0, 0, 0, 1
|
|
244
166
|
];
|
|
245
|
-
|
|
167
|
+
Mat4x4.rotationX = (angle) => {
|
|
168
|
+
const c = Math.cos(angle);
|
|
169
|
+
const s = Math.sin(angle);
|
|
170
|
+
return [
|
|
171
|
+
1, 0, 0, 0,
|
|
172
|
+
0, c, s, 0,
|
|
173
|
+
0, -s, c, 0,
|
|
174
|
+
0, 0, 0, 1
|
|
175
|
+
];
|
|
176
|
+
};
|
|
177
|
+
Mat4x4.rotationY = (angle) => {
|
|
178
|
+
const c = Math.cos(angle);
|
|
179
|
+
const s = Math.sin(angle);
|
|
180
|
+
return [
|
|
181
|
+
c, 0, s, 0,
|
|
182
|
+
0, 1, 0, 0,
|
|
183
|
+
-s, 0, c, 0,
|
|
184
|
+
0, 0, 0, 1
|
|
185
|
+
];
|
|
186
|
+
};
|
|
187
|
+
Mat4x4.rotationZ = (angle) => {
|
|
188
|
+
const c = Math.cos(angle);
|
|
189
|
+
const s = Math.sin(angle);
|
|
190
|
+
return [
|
|
191
|
+
c, -s, 0, 0,
|
|
192
|
+
s, c, 0, 0,
|
|
193
|
+
0, 0, 1, 0,
|
|
194
|
+
0, 0, 0, 1
|
|
195
|
+
];
|
|
196
|
+
};
|
|
197
|
+
// Projection Matrices
|
|
198
|
+
Mat4x4.perspective = (fovy, aspect, near, far) => {
|
|
199
|
+
if (fovy <= 0)
|
|
200
|
+
throw new Error('Field of view must be greater than 0');
|
|
201
|
+
if (aspect <= 0)
|
|
202
|
+
throw new Error('Aspect ratio must be greater than 0');
|
|
203
|
+
if (near <= 0)
|
|
204
|
+
throw new Error('Near plane must be greater than 0');
|
|
205
|
+
if (far <= near)
|
|
206
|
+
throw new Error('Far plane must be greater than near plane');
|
|
207
|
+
const f = 1.0 / Math.tan(fovy / 2);
|
|
208
|
+
const nf = near / (near - far);
|
|
209
|
+
return [
|
|
210
|
+
f / aspect, 0, 0, 0,
|
|
211
|
+
0, f, 0, 0,
|
|
212
|
+
0, 0, nf, -1,
|
|
213
|
+
0, 0, near * nf, 0
|
|
214
|
+
];
|
|
215
|
+
};
|
|
216
|
+
Mat4x4.orthographic = (left, right, bottom, top, near, far) => {
|
|
217
|
+
const lr = 1 / (left - right);
|
|
218
|
+
const bt = 1 / (bottom - top);
|
|
219
|
+
const nf = 1 / (near - far);
|
|
220
|
+
return [
|
|
221
|
+
-2 * lr, 0, 0, 0,
|
|
222
|
+
0, -2 * bt, 0, 0,
|
|
223
|
+
0, 0, 2 * nf, 0,
|
|
224
|
+
(left + right) * lr, (bottom + top) * bt, (far + near) * nf, 1
|
|
225
|
+
];
|
|
226
|
+
};
|
|
227
|
+
// View Matrix
|
|
228
|
+
Mat4x4.lookAt = (eye, center, up) => {
|
|
229
|
+
// Validate inputs
|
|
230
|
+
if (Vec3.length(up) === 0)
|
|
231
|
+
throw new Error('Up vector cannot be zero');
|
|
232
|
+
const forward = Vec3.subtract(center, eye);
|
|
233
|
+
if (Vec3.length(forward) === 0)
|
|
234
|
+
throw new Error('Eye and center cannot be the same position');
|
|
235
|
+
const f = Vec3.normalize(forward);
|
|
236
|
+
const s = Vec3.normalize(Vec3.cross(f, up));
|
|
237
|
+
// Check if up vector is parallel to view direction
|
|
238
|
+
if (Vec3.length(s) === 0)
|
|
239
|
+
throw new Error('Up vector cannot be parallel to view direction');
|
|
240
|
+
const u = Vec3.normalize(Vec3.cross(s, f));
|
|
241
|
+
return [
|
|
242
|
+
s[0], u[0], -f[0], 0,
|
|
243
|
+
s[1], u[1], -f[1], 0,
|
|
244
|
+
s[2], u[2], -f[2], 0,
|
|
245
|
+
-Vec3.dot(s, eye), -Vec3.dot(u, eye), Vec3.dot(f, eye), 1
|
|
246
|
+
];
|
|
247
|
+
};
|
|
248
|
+
})(Mat4x4 || (Mat4x4 = {}));
|
|
246
249
|
//# sourceMappingURL=mat4x4.js.map
|