@adobe/data 0.5.13 → 0.5.16
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/dist/graphics/frame.d.ts +1 -22
- package/dist/graphics/frame.js +14 -11
- package/dist/graphics/frame.js.map +1 -1
- package/dist/graphics/get-web-gpu-device-and-context.d.ts +1 -2
- package/dist/graphics/get-web-gpu-device-and-context.js +23 -20
- package/dist/graphics/get-web-gpu-device-and-context.js.map +1 -1
- package/dist/graphics/graphics-context.d.ts +1 -5
- package/dist/graphics/graphics-context.js +5 -0
- package/dist/graphics/graphics-context.js.map +1 -1
- package/dist/internal/function/debounce.js +0 -2
- package/dist/internal/function/debounce.js.map +1 -1
- package/dist/math/aabb/aabb.d.ts +42 -42
- package/dist/math/aabb/aabb.js +65 -62
- package/dist/math/aabb/aabb.js.map +1 -1
- package/dist/math/aabb-face/aabb-face.d.ts +59 -0
- package/dist/math/aabb-face/aabb-face.js +145 -0
- package/dist/math/aabb-face/aabb-face.js.map +1 -0
- package/dist/math/aabb-face/aabb-face.test.d.ts +1 -0
- package/dist/math/aabb-face/aabb-face.test.js +54 -0
- package/dist/math/aabb-face/aabb-face.test.js.map +1 -0
- package/dist/math/aabb-face/face.d.ts +51 -0
- package/dist/math/aabb-face/face.js +110 -0
- package/dist/math/aabb-face/face.js.map +1 -0
- package/dist/math/aabb-face/face.test.d.ts +1 -0
- package/dist/math/aabb-face/face.test.js +94 -0
- package/dist/math/aabb-face/face.test.js.map +1 -0
- package/dist/math/box/box.d.ts +50 -0
- package/dist/math/box/box.js +23 -0
- package/dist/math/box/box.js.map +1 -0
- package/dist/math/f32/f32.d.ts +8 -6
- package/dist/math/f32/f32.js +4 -1
- package/dist/math/f32/f32.js.map +1 -1
- package/dist/math/face/face.d.ts +51 -0
- package/dist/math/face/face.js +110 -0
- package/dist/math/face/face.js.map +1 -0
- package/dist/math/face/face.test.d.ts +1 -0
- package/dist/math/face/face.test.js +94 -0
- package/dist/math/face/face.test.js.map +1 -0
- package/dist/math/i32/i32.d.ts +9 -6
- package/dist/math/i32/i32.js +5 -2
- package/dist/math/i32/i32.js.map +1 -1
- package/dist/math/index.d.ts +13 -22
- package/dist/math/index.js +13 -22
- package/dist/math/index.js.map +1 -1
- package/dist/math/line2/line2.d.ts +36 -36
- package/dist/math/line2/line2.js +55 -52
- package/dist/math/line2/line2.js.map +1 -1
- package/dist/math/line3/line3.d.ts +48 -43
- package/dist/math/line3/line3.js +64 -52
- package/dist/math/line3/line3.js.map +1 -1
- package/dist/math/mat4x4/mat4x4.d.ts +34 -34
- package/dist/math/mat4x4/mat4x4.js +216 -213
- package/dist/math/mat4x4/mat4x4.js.map +1 -1
- package/dist/math/picking/face.d.ts +1 -0
- package/dist/math/picking/face.js +2 -0
- package/dist/math/picking/face.js.map +1 -0
- package/dist/math/picking/get-closest-entity-to-line.d.ts +4 -0
- package/dist/math/picking/get-closest-entity-to-line.js +30 -0
- package/dist/math/picking/get-closest-entity-to-line.js.map +1 -0
- package/dist/math/picking/get-closest-entity-to-point.d.ts +4 -0
- package/dist/math/picking/get-closest-entity-to-point.js +27 -0
- package/dist/math/picking/get-closest-entity-to-point.js.map +1 -0
- package/dist/math/picking/get-intersecting-entities.d.ts +12 -0
- package/dist/math/picking/get-intersecting-entities.js +15 -0
- package/dist/math/picking/get-intersecting-entities.js.map +1 -0
- package/dist/math/picking/getClosestEntityToLine.d.ts +4 -0
- package/dist/math/picking/getClosestEntityToLine.js +29 -0
- package/dist/math/picking/getClosestEntityToLine.js.map +1 -0
- package/dist/math/picking/getClosestEntityToPoint.d.ts +4 -0
- package/dist/math/picking/getClosestEntityToPoint.js +27 -0
- package/dist/math/picking/getClosestEntityToPoint.js.map +1 -0
- package/dist/math/picking/getIntersectingEntities.d.ts +12 -0
- package/dist/math/picking/getIntersectingEntities.js +15 -0
- package/dist/math/picking/getIntersectingEntities.js.map +1 -0
- package/dist/math/picking/index.d.ts +4 -0
- package/dist/math/picking/index.js +4 -0
- package/dist/math/picking/index.js.map +1 -1
- package/dist/math/picking/pick-from-tables.d.ts +1 -0
- package/dist/math/picking/pick-from-tables.js +7 -98
- package/dist/math/picking/pick-from-tables.js.map +1 -1
- package/dist/math/picking/pick-result.d.ts +5 -2
- package/dist/math/plane/plane.d.ts +43 -0
- package/dist/math/plane/plane.js +70 -0
- package/dist/math/plane/plane.js.map +1 -0
- package/dist/math/plane/plane.test.d.ts +1 -0
- package/dist/math/plane/plane.test.js +132 -0
- package/dist/math/plane/plane.test.js.map +1 -0
- package/dist/math/quat/quat.d.ts +49 -39
- package/dist/math/quat/quat.js +225 -185
- package/dist/math/quat/quat.js.map +1 -1
- package/dist/math/u32/u32.d.ts +9 -7
- package/dist/math/u32/u32.js +4 -1
- package/dist/math/u32/u32.js.map +1 -1
- package/dist/math/vec2/vec2.d.ts +61 -61
- package/dist/math/vec2/vec2.js +93 -90
- package/dist/math/vec2/vec2.js.map +1 -1
- package/dist/math/vec3/vec3.d.ts +66 -63
- package/dist/math/vec3/vec3.js +137 -129
- package/dist/math/vec3/vec3.js.map +1 -1
- package/dist/math/vec4/vec4.d.ts +61 -61
- package/dist/math/vec4/vec4.js +132 -129
- package/dist/math/vec4/vec4.js.map +1 -1
- package/dist/observe/to-async-generator.js +4 -4
- package/dist/observe/to-async-generator.js.map +1 -1
- package/dist/old-ecs/action-ecs/action-ecs.test.js +1 -1
- package/dist/old-ecs/action-ecs/action-ecs.test.js.map +1 -1
- package/dist/old-ecs/action-ecs/action-types.d.ts +7 -0
- package/dist/old-ecs/action-ecs/action-types.js.map +1 -1
- package/dist/old-ecs/core-ecs/core-ecs-serialization.test.js +4 -4
- package/dist/old-ecs/core-ecs/core-ecs-serialization.test.js.map +1 -1
- package/dist/old-ecs/core-ecs/core-ecs-types.d.ts +7 -0
- package/dist/old-ecs/core-ecs/core-ecs.js +5 -2
- package/dist/old-ecs/core-ecs/core-ecs.js.map +1 -1
- package/dist/old-ecs/ecs/ecs-types.d.ts +7 -0
- package/dist/old-ecs/ecs/ecs.test.js +1 -1
- package/dist/old-ecs/ecs/ecs.test.js.map +1 -1
- package/dist/old-ecs/transaction-ecs/transaction-ecs.test.js +1 -1
- package/dist/old-ecs/transaction-ecs/transaction-ecs.test.js.map +1 -1
- package/dist/old-ecs/transaction-ecs/transaction-types.d.ts +7 -0
- package/dist/schema/schema.d.ts +1 -0
- package/dist/schema/schema.js +5 -1
- package/dist/schema/schema.js.map +1 -1
- package/dist/tsconfig.tsbuildinfo +1 -1
- package/package.json +6 -3
package/dist/math/quat/quat.js
CHANGED
|
@@ -22,199 +22,239 @@ SOFTWARE.*/
|
|
|
22
22
|
import { F32Schema } from "../../schema/index.js";
|
|
23
23
|
import { getStructLayout } from "../../typed-buffer/index.js";
|
|
24
24
|
import { Vec3 } from "../index.js";
|
|
25
|
-
export
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
|
|
29
|
-
|
|
30
|
-
|
|
31
|
-
|
|
32
|
-
|
|
33
|
-
// Basic Quaternion Operations
|
|
34
|
-
export const add = ([x1, y1, z1, w1], [x2, y2, z2, w2]) => [
|
|
35
|
-
x1 + x2,
|
|
36
|
-
y1 + y2,
|
|
37
|
-
z1 + z2,
|
|
38
|
-
w1 + w2
|
|
39
|
-
];
|
|
40
|
-
export const subtract = ([x1, y1, z1, w1], [x2, y2, z2, w2]) => [
|
|
41
|
-
x1 - x2,
|
|
42
|
-
y1 - y2,
|
|
43
|
-
z1 - z2,
|
|
44
|
-
w1 - w2
|
|
45
|
-
];
|
|
46
|
-
export const scale = ([x, y, z, w], s) => [x * s, y * s, z * s, w * s];
|
|
47
|
-
export const negate = ([x, y, z, w]) => [-x, -y, -z, -w];
|
|
48
|
-
export const conjugate = ([x, y, z, w]) => [-x, -y, -z, w];
|
|
49
|
-
export const multiply = ([x1, y1, z1, w1], [x2, y2, z2, w2]) => [
|
|
50
|
-
x1 * w2 + w1 * x2 + y1 * z2 - z1 * y2,
|
|
51
|
-
y1 * w2 + w1 * y2 + z1 * x2 - x1 * z2,
|
|
52
|
-
z1 * w2 + w1 * z2 + x1 * y2 - y1 * x2,
|
|
53
|
-
w1 * w2 - x1 * x2 - y1 * y2 - z1 * z2
|
|
54
|
-
];
|
|
55
|
-
// Geometric Functions
|
|
56
|
-
export const length = ([x, y, z, w]) => Math.sqrt(x * x + y * y + z * z + w * w);
|
|
57
|
-
export const lengthSquared = ([x, y, z, w]) => x * x + y * y + z * z + w * w;
|
|
58
|
-
export const normalize = (q) => {
|
|
59
|
-
const len = length(q);
|
|
60
|
-
return len === 0 ? [0, 0, 0, 1] : scale(q, 1 / len);
|
|
61
|
-
};
|
|
62
|
-
export const dot = ([x1, y1, z1, w1], [x2, y2, z2, w2]) => x1 * x2 + y1 * y2 + z1 * z2 + w1 * w2;
|
|
63
|
-
export const distance = (a, b) => length(subtract(b, a));
|
|
64
|
-
// Rotation Functions
|
|
65
|
-
export const fromAxisAngle = (axis, angle) => {
|
|
66
|
-
const halfAngle = angle * 0.5;
|
|
67
|
-
const s = Math.sin(halfAngle);
|
|
68
|
-
const c = Math.cos(halfAngle);
|
|
69
|
-
return [axis[0] * s, axis[1] * s, axis[2] * s, c];
|
|
70
|
-
};
|
|
71
|
-
export const toAxisAngle = ([x, y, z, w]) => {
|
|
72
|
-
const angle = 2 * Math.acos(Math.abs(w));
|
|
73
|
-
const s = Math.sin(angle * 0.5);
|
|
74
|
-
if (s === 0) {
|
|
75
|
-
return { axis: [0, 0, 1], angle: 0 };
|
|
76
|
-
}
|
|
77
|
-
return {
|
|
78
|
-
axis: [x / s, y / s, z / s],
|
|
79
|
-
angle: w < 0 ? -angle : angle
|
|
25
|
+
export var Quat;
|
|
26
|
+
(function (Quat) {
|
|
27
|
+
Quat.schema = {
|
|
28
|
+
type: 'array',
|
|
29
|
+
items: F32Schema,
|
|
30
|
+
minItems: 4,
|
|
31
|
+
maxItems: 4,
|
|
32
|
+
default: [0, 0, 0, 1], // identity quaternion
|
|
80
33
|
};
|
|
81
|
-
|
|
82
|
-
|
|
83
|
-
|
|
84
|
-
|
|
85
|
-
|
|
86
|
-
|
|
87
|
-
|
|
88
|
-
const sz = Math.sin(z * 0.5);
|
|
89
|
-
return [
|
|
90
|
-
sx * cy * cz - cx * sy * sz,
|
|
91
|
-
cx * sy * cz + sx * cy * sz,
|
|
92
|
-
cx * cy * sz - sx * sy * cz,
|
|
93
|
-
cx * cy * cz + sx * sy * sz
|
|
34
|
+
Quat.layout = getStructLayout(Quat.schema);
|
|
35
|
+
// Basic Quaternion Operations
|
|
36
|
+
Quat.add = ([x1, y1, z1, w1], [x2, y2, z2, w2]) => [
|
|
37
|
+
x1 + x2,
|
|
38
|
+
y1 + y2,
|
|
39
|
+
z1 + z2,
|
|
40
|
+
w1 + w2
|
|
94
41
|
];
|
|
95
|
-
|
|
96
|
-
|
|
97
|
-
|
|
98
|
-
|
|
99
|
-
|
|
100
|
-
const roll = Math.atan2(sinr_cosp, cosr_cosp);
|
|
101
|
-
// Pitch (y-axis rotation)
|
|
102
|
-
const sinp = 2 * (w * y - z * x);
|
|
103
|
-
let pitch;
|
|
104
|
-
if (Math.abs(sinp) >= 1) {
|
|
105
|
-
pitch = Math.sign(sinp) * Math.PI / 2; // use 90 degrees if out of range
|
|
106
|
-
}
|
|
107
|
-
else {
|
|
108
|
-
pitch = Math.asin(sinp);
|
|
109
|
-
}
|
|
110
|
-
// Yaw (z-axis rotation)
|
|
111
|
-
const siny_cosp = 2 * (w * z + x * y);
|
|
112
|
-
const cosy_cosp = 1 - 2 * (y * y + z * z);
|
|
113
|
-
const yaw = Math.atan2(siny_cosp, cosy_cosp);
|
|
114
|
-
return [roll, pitch, yaw];
|
|
115
|
-
};
|
|
116
|
-
// Vector Rotation
|
|
117
|
-
export const rotateVec3 = ([x, y, z, w], v) => {
|
|
118
|
-
// q * v * q^-1
|
|
119
|
-
const qv = [x, y, z];
|
|
120
|
-
const uv = Vec3.cross(qv, v);
|
|
121
|
-
const uuv = Vec3.cross(qv, uv);
|
|
122
|
-
const scaleFactor = 2 * w;
|
|
123
|
-
return [
|
|
124
|
-
v[0] + scaleFactor * uv[0] + 2 * uuv[0],
|
|
125
|
-
v[1] + scaleFactor * uv[1] + 2 * uuv[1],
|
|
126
|
-
v[2] + scaleFactor * uv[2] + 2 * uuv[2]
|
|
42
|
+
Quat.subtract = ([x1, y1, z1, w1], [x2, y2, z2, w2]) => [
|
|
43
|
+
x1 - x2,
|
|
44
|
+
y1 - y2,
|
|
45
|
+
z1 - z2,
|
|
46
|
+
w1 - w2
|
|
127
47
|
];
|
|
128
|
-
|
|
129
|
-
|
|
130
|
-
|
|
131
|
-
|
|
132
|
-
|
|
133
|
-
|
|
134
|
-
|
|
135
|
-
|
|
136
|
-
if (adjustedDot > 0.9995) {
|
|
137
|
-
return normalize(add(scale(q1, 1 - t), scale(q2Adjusted, t)));
|
|
138
|
-
}
|
|
139
|
-
const theta = Math.acos(adjustedDot);
|
|
140
|
-
const sinTheta = Math.sin(theta);
|
|
141
|
-
const factor1 = Math.sin((1 - t) * theta) / sinTheta;
|
|
142
|
-
const factor2 = Math.sin(t * theta) / sinTheta;
|
|
143
|
-
return normalize(add(scale(q1, factor1), scale(q2Adjusted, factor2)));
|
|
144
|
-
};
|
|
145
|
-
export const lerp = (q1, q2, t) => {
|
|
146
|
-
return normalize(add(scale(q1, 1 - t), scale(q2, t)));
|
|
147
|
-
};
|
|
148
|
-
// Matrix Conversion
|
|
149
|
-
export const toMat4 = ([x, y, z, w]) => {
|
|
150
|
-
const xx = x * x;
|
|
151
|
-
const yy = y * y;
|
|
152
|
-
const zz = z * z;
|
|
153
|
-
const xy = x * y;
|
|
154
|
-
const xz = x * z;
|
|
155
|
-
const yz = y * z;
|
|
156
|
-
const wx = w * x;
|
|
157
|
-
const wy = w * y;
|
|
158
|
-
const wz = w * z;
|
|
159
|
-
return [
|
|
160
|
-
1 - 2 * (yy + zz), 2 * (xy - wz), 2 * (xz + wy), 0,
|
|
161
|
-
2 * (xy + wz), 1 - 2 * (xx + zz), 2 * (yz - wx), 0,
|
|
162
|
-
2 * (xz - wy), 2 * (yz + wx), 1 - 2 * (xx + yy), 0,
|
|
163
|
-
0, 0, 0, 1
|
|
48
|
+
Quat.scale = ([x, y, z, w], s) => [x * s, y * s, z * s, w * s];
|
|
49
|
+
Quat.negate = ([x, y, z, w]) => [-x, -y, -z, -w];
|
|
50
|
+
Quat.conjugate = ([x, y, z, w]) => [-x, -y, -z, w];
|
|
51
|
+
Quat.multiply = ([x1, y1, z1, w1], [x2, y2, z2, w2]) => [
|
|
52
|
+
x1 * w2 + w1 * x2 + y1 * z2 - z1 * y2,
|
|
53
|
+
y1 * w2 + w1 * y2 + z1 * x2 - x1 * z2,
|
|
54
|
+
z1 * w2 + w1 * z2 + x1 * y2 - y1 * x2,
|
|
55
|
+
w1 * w2 - x1 * x2 - y1 * y2 - z1 * z2
|
|
164
56
|
];
|
|
165
|
-
|
|
166
|
-
|
|
167
|
-
|
|
168
|
-
|
|
169
|
-
|
|
170
|
-
|
|
171
|
-
|
|
172
|
-
|
|
173
|
-
|
|
174
|
-
|
|
175
|
-
|
|
176
|
-
|
|
177
|
-
|
|
178
|
-
|
|
179
|
-
|
|
180
|
-
|
|
181
|
-
|
|
182
|
-
|
|
183
|
-
|
|
184
|
-
|
|
185
|
-
|
|
186
|
-
|
|
187
|
-
|
|
188
|
-
|
|
189
|
-
0
|
|
190
|
-
|
|
191
|
-
}
|
|
192
|
-
|
|
193
|
-
const
|
|
57
|
+
// Geometric Functions
|
|
58
|
+
Quat.length = ([x, y, z, w]) => Math.sqrt(x * x + y * y + z * z + w * w);
|
|
59
|
+
Quat.lengthSquared = ([x, y, z, w]) => x * x + y * y + z * z + w * w;
|
|
60
|
+
Quat.normalize = (q) => {
|
|
61
|
+
const len = Quat.length(q);
|
|
62
|
+
return len === 0 ? [0, 0, 0, 1] : Quat.scale(q, 1 / len);
|
|
63
|
+
};
|
|
64
|
+
Quat.dot = ([x1, y1, z1, w1], [x2, y2, z2, w2]) => x1 * x2 + y1 * y2 + z1 * z2 + w1 * w2;
|
|
65
|
+
Quat.distance = (a, b) => Quat.length(Quat.subtract(b, a));
|
|
66
|
+
// Rotation Functions
|
|
67
|
+
Quat.fromAxisAngle = (axis, angle) => {
|
|
68
|
+
const halfAngle = angle * 0.5;
|
|
69
|
+
const s = Math.sin(halfAngle);
|
|
70
|
+
const c = Math.cos(halfAngle);
|
|
71
|
+
return [axis[0] * s, axis[1] * s, axis[2] * s, c];
|
|
72
|
+
};
|
|
73
|
+
Quat.toAxisAngle = ([x, y, z, w]) => {
|
|
74
|
+
const angle = 2 * Math.acos(Math.abs(w));
|
|
75
|
+
const s = Math.sin(angle * 0.5);
|
|
76
|
+
if (s === 0) {
|
|
77
|
+
return { axis: [0, 0, 1], angle: 0 };
|
|
78
|
+
}
|
|
79
|
+
return {
|
|
80
|
+
axis: [x / s, y / s, z / s],
|
|
81
|
+
angle: w < 0 ? -angle : angle
|
|
82
|
+
};
|
|
83
|
+
};
|
|
84
|
+
Quat.fromEuler = (x, y, z) => {
|
|
85
|
+
const cx = Math.cos(x * 0.5);
|
|
86
|
+
const sx = Math.sin(x * 0.5);
|
|
87
|
+
const cy = Math.cos(y * 0.5);
|
|
88
|
+
const sy = Math.sin(y * 0.5);
|
|
89
|
+
const cz = Math.cos(z * 0.5);
|
|
90
|
+
const sz = Math.sin(z * 0.5);
|
|
194
91
|
return [
|
|
195
|
-
|
|
196
|
-
|
|
197
|
-
|
|
198
|
-
|
|
92
|
+
sx * cy * cz - cx * sy * sz,
|
|
93
|
+
cx * sy * cz + sx * cy * sz,
|
|
94
|
+
cx * cy * sz - sx * sy * cz,
|
|
95
|
+
cx * cy * cz + sx * sy * sz
|
|
199
96
|
];
|
|
200
|
-
}
|
|
201
|
-
|
|
202
|
-
|
|
97
|
+
};
|
|
98
|
+
Quat.toEuler = ([x, y, z, w]) => {
|
|
99
|
+
// Roll (x-axis rotation)
|
|
100
|
+
const sinr_cosp = 2 * (w * x + y * z);
|
|
101
|
+
const cosr_cosp = 1 - 2 * (x * x + y * y);
|
|
102
|
+
const roll = Math.atan2(sinr_cosp, cosr_cosp);
|
|
103
|
+
// Pitch (y-axis rotation)
|
|
104
|
+
const sinp = 2 * (w * y - z * x);
|
|
105
|
+
let pitch;
|
|
106
|
+
if (Math.abs(sinp) >= 1) {
|
|
107
|
+
pitch = Math.sign(sinp) * Math.PI / 2; // use 90 degrees if out of range
|
|
108
|
+
}
|
|
109
|
+
else {
|
|
110
|
+
pitch = Math.asin(sinp);
|
|
111
|
+
}
|
|
112
|
+
// Yaw (z-axis rotation)
|
|
113
|
+
const siny_cosp = 2 * (w * z + x * y);
|
|
114
|
+
const cosy_cosp = 1 - 2 * (y * y + z * z);
|
|
115
|
+
const yaw = Math.atan2(siny_cosp, cosy_cosp);
|
|
116
|
+
return [roll, pitch, yaw];
|
|
117
|
+
};
|
|
118
|
+
// Vector Rotation
|
|
119
|
+
Quat.rotateVec3 = ([x, y, z, w], v) => {
|
|
120
|
+
// q * v * q^-1
|
|
121
|
+
const qv = [x, y, z];
|
|
122
|
+
const uv = Vec3.cross(qv, v);
|
|
123
|
+
const uuv = Vec3.cross(qv, uv);
|
|
124
|
+
const scaleFactor = 2 * w;
|
|
203
125
|
return [
|
|
204
|
-
|
|
205
|
-
|
|
206
|
-
|
|
207
|
-
(f[0] - r[2]) / s
|
|
126
|
+
v[0] + scaleFactor * uv[0] + 2 * uuv[0],
|
|
127
|
+
v[1] + scaleFactor * uv[1] + 2 * uuv[1],
|
|
128
|
+
v[2] + scaleFactor * uv[2] + 2 * uuv[2]
|
|
208
129
|
];
|
|
209
|
-
}
|
|
210
|
-
|
|
211
|
-
|
|
130
|
+
};
|
|
131
|
+
// Interpolation
|
|
132
|
+
Quat.slerp = (q1, q2, t) => {
|
|
133
|
+
const dotProduct = Quat.dot(q1, q2);
|
|
134
|
+
// If the dot product is negative, slerp won't take the shorter route
|
|
135
|
+
const q2Adjusted = dotProduct < 0 ? Quat.negate(q2) : q2;
|
|
136
|
+
const adjustedDot = Math.abs(dotProduct);
|
|
137
|
+
// If the inputs are too close for comfort, linearly interpolate
|
|
138
|
+
if (adjustedDot > 0.9995) {
|
|
139
|
+
return Quat.normalize(Quat.add(Quat.scale(q1, 1 - t), Quat.scale(q2Adjusted, t)));
|
|
140
|
+
}
|
|
141
|
+
const theta = Math.acos(adjustedDot);
|
|
142
|
+
const sinTheta = Math.sin(theta);
|
|
143
|
+
const factor1 = Math.sin((1 - t) * theta) / sinTheta;
|
|
144
|
+
const factor2 = Math.sin(t * theta) / sinTheta;
|
|
145
|
+
return Quat.normalize(Quat.add(Quat.scale(q1, factor1), Quat.scale(q2Adjusted, factor2)));
|
|
146
|
+
};
|
|
147
|
+
Quat.lerp = (q1, q2, t) => {
|
|
148
|
+
return Quat.normalize(Quat.add(Quat.scale(q1, 1 - t), Quat.scale(q2, t)));
|
|
149
|
+
};
|
|
150
|
+
// Matrix Conversion
|
|
151
|
+
Quat.toMat4 = ([x, y, z, w]) => {
|
|
152
|
+
const xx = x * x;
|
|
153
|
+
const yy = y * y;
|
|
154
|
+
const zz = z * z;
|
|
155
|
+
const xy = x * y;
|
|
156
|
+
const xz = x * z;
|
|
157
|
+
const yz = y * z;
|
|
158
|
+
const wx = w * x;
|
|
159
|
+
const wy = w * y;
|
|
160
|
+
const wz = w * z;
|
|
212
161
|
return [
|
|
213
|
-
(
|
|
214
|
-
(
|
|
215
|
-
|
|
216
|
-
|
|
162
|
+
1 - 2 * (yy + zz), 2 * (xy - wz), 2 * (xz + wy), 0,
|
|
163
|
+
2 * (xy + wz), 1 - 2 * (xx + zz), 2 * (yz - wx), 0,
|
|
164
|
+
2 * (xz - wy), 2 * (yz + wx), 1 - 2 * (xx + yy), 0,
|
|
165
|
+
0, 0, 0, 1
|
|
217
166
|
];
|
|
218
|
-
}
|
|
219
|
-
|
|
167
|
+
};
|
|
168
|
+
Quat.identity = [0, 0, 0, 1];
|
|
169
|
+
// Utility Functions
|
|
170
|
+
Quat.inverse = (q) => {
|
|
171
|
+
const lenSq = Quat.lengthSquared(q);
|
|
172
|
+
if (lenSq === 0)
|
|
173
|
+
return [0, 0, 0, 1];
|
|
174
|
+
return Quat.scale(Quat.conjugate(q), 1 / lenSq);
|
|
175
|
+
};
|
|
176
|
+
Quat.lookAt = (forward, up) => {
|
|
177
|
+
// Normalize forward vector
|
|
178
|
+
const f = Vec3.normalize(forward);
|
|
179
|
+
// Calculate right vector
|
|
180
|
+
const r = Vec3.normalize(Vec3.cross(f, up));
|
|
181
|
+
// Recalculate up vector
|
|
182
|
+
const u = Vec3.cross(r, f);
|
|
183
|
+
// Convert to quaternion
|
|
184
|
+
const trace = r[0] + u[1] + f[2];
|
|
185
|
+
if (trace > 0) {
|
|
186
|
+
const s = Math.sqrt(trace + 1) * 2;
|
|
187
|
+
return [
|
|
188
|
+
(u[2] - f[1]) / s,
|
|
189
|
+
(f[0] - r[2]) / s,
|
|
190
|
+
(r[1] - u[0]) / s,
|
|
191
|
+
0.25 * s
|
|
192
|
+
];
|
|
193
|
+
}
|
|
194
|
+
else if (r[0] > u[1] && r[0] > f[2]) {
|
|
195
|
+
const s = Math.sqrt(1 + r[0] - u[1] - f[2]) * 2;
|
|
196
|
+
return [
|
|
197
|
+
0.25 * s,
|
|
198
|
+
(u[0] + r[1]) / s,
|
|
199
|
+
(f[0] + r[2]) / s,
|
|
200
|
+
(u[2] - f[1]) / s
|
|
201
|
+
];
|
|
202
|
+
}
|
|
203
|
+
else if (u[1] > f[2]) {
|
|
204
|
+
const s = Math.sqrt(1 + u[1] - r[0] - f[2]) * 2;
|
|
205
|
+
return [
|
|
206
|
+
(u[0] + r[1]) / s,
|
|
207
|
+
0.25 * s,
|
|
208
|
+
(f[1] + u[2]) / s,
|
|
209
|
+
(f[0] - r[2]) / s
|
|
210
|
+
];
|
|
211
|
+
}
|
|
212
|
+
else {
|
|
213
|
+
const s = Math.sqrt(1 + f[2] - r[0] - u[1]) * 2;
|
|
214
|
+
return [
|
|
215
|
+
(f[0] + r[2]) / s,
|
|
216
|
+
(f[1] + u[2]) / s,
|
|
217
|
+
0.25 * s,
|
|
218
|
+
(r[1] - u[0]) / s
|
|
219
|
+
];
|
|
220
|
+
}
|
|
221
|
+
};
|
|
222
|
+
/**
|
|
223
|
+
* Returns a quaternion that aligns the local Z-axis to the given direction via the shortest arc,
|
|
224
|
+
* then applies an additional twist around that aligned Z-axis.
|
|
225
|
+
*
|
|
226
|
+
* Note: This aligns the Z axis.
|
|
227
|
+
*
|
|
228
|
+
* @param direction - Target world-space direction for local Z. If zero-length, returns identity.
|
|
229
|
+
* @param twistRadians - Extra rotation around the aligned Z-axis, in radians. Defaults to 0.
|
|
230
|
+
*/
|
|
231
|
+
Quat.alignTo = (direction, twistRadians = 0) => {
|
|
232
|
+
const zAxis = [0, 0, 1];
|
|
233
|
+
const dirLen = Vec3.length(direction);
|
|
234
|
+
if (dirLen === 0)
|
|
235
|
+
return Quat.identity;
|
|
236
|
+
const dir = Vec3.normalize(direction);
|
|
237
|
+
const dotVal = Vec3.dot(zAxis, dir);
|
|
238
|
+
let base;
|
|
239
|
+
if (dotVal > 0.999999) {
|
|
240
|
+
base = Quat.identity;
|
|
241
|
+
}
|
|
242
|
+
else if (dotVal < -0.999999) {
|
|
243
|
+
// Opposite: 180° around any axis orthogonal to Z
|
|
244
|
+
const orthoCandidate = [1, 0, 0];
|
|
245
|
+
const axis = Math.abs(Vec3.dot(zAxis, orthoCandidate)) > 0.999 ? [0, 1, 0] : orthoCandidate;
|
|
246
|
+
base = Quat.fromAxisAngle(axis, Math.PI);
|
|
247
|
+
}
|
|
248
|
+
else {
|
|
249
|
+
const axis = Vec3.normalize(Vec3.cross(zAxis, dir));
|
|
250
|
+
const angle = Math.acos(dotVal);
|
|
251
|
+
base = Quat.fromAxisAngle(axis, angle);
|
|
252
|
+
}
|
|
253
|
+
if (twistRadians === 0)
|
|
254
|
+
return base;
|
|
255
|
+
// Twist around the final aligned Z (which is 'dir' in world space)
|
|
256
|
+
const twist = Quat.fromAxisAngle(dir, twistRadians);
|
|
257
|
+
return Quat.multiply(twist, base);
|
|
258
|
+
};
|
|
259
|
+
})(Quat || (Quat = {}));
|
|
220
260
|
//# sourceMappingURL=quat.js.map
|
|
@@ -1 +1 @@
|
|
|
1
|
-
{"version":3,"file":"quat.js","sourceRoot":"","sources":["../../../src/math/quat/quat.ts"],"names":[],"mappings":"AAAA;;;;;;;;;;;;;;;;;;;;WAoBW;AAEX,OAAO,EAAE,SAAS,EAAsB,MAAM,uBAAuB,CAAC;AACtE,OAAO,EAAE,eAAe,EAAE,MAAM,6BAA6B,CAAC;AAC9D,OAAO,EAAE,IAAI,EAAU,MAAM,aAAa,CAAC;AAE3C,MAAM,CAAC,MAAM,MAAM,GAAG;IAClB,IAAI,EAAE,OAAO;IACb,KAAK,EAAE,SAAS;IAChB,QAAQ,EAAE,CAAC;IACX,QAAQ,EAAE,CAAC;IACX,OAAO,EAAE,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC,EAAE,sBAAsB;CACtB,CAAC;AAI5B,MAAM,CAAC,MAAM,MAAM,GAAG,eAAe,CAAC,MAAM,CAAC,CAAC;AAE9C,8BAA8B;AAC9B,MAAM,CAAC,MAAM,GAAG,GAAG,CAAC,CAAC,EAAE,EAAE,EAAE,EAAE,EAAE,EAAE,EAAE,CAAO,EAAE,CAAC,EAAE,EAAE,EAAE,EAAE,EAAE,EAAE,EAAE,CAAO,EAAQ,EAAE,CAAC;IACzE,EAAE,GAAG,EAAE;IACP,EAAE,GAAG,EAAE;IACP,EAAE,GAAG,EAAE;IACP,EAAE,GAAG,EAAE;CACV,CAAC;AAEF,MAAM,CAAC,MAAM,QAAQ,GAAG,CAAC,CAAC,EAAE,EAAE,EAAE,EAAE,EAAE,EAAE,EAAE,CAAO,EAAE,CAAC,EAAE,EAAE,EAAE,EAAE,EAAE,EAAE,EAAE,CAAO,EAAQ,EAAE,CAAC;IAC9E,EAAE,GAAG,EAAE;IACP,EAAE,GAAG,EAAE;IACP,EAAE,GAAG,EAAE;IACP,EAAE,GAAG,EAAE;CACV,CAAC;AAEF,MAAM,CAAC,MAAM,KAAK,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,CAAO,EAAE,CAAS,EAAQ,EAAE,CAAC,CAAC,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,CAAC,CAAC;AAE3F,MAAM,CAAC,MAAM,MAAM,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,CAAO,EAAQ,EAAE,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,EAAE,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC;AAErE,MAAM,CAAC,MAAM,SAAS,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,CAAO,EAAQ,EAAE,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,EAAE,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC;AAEvE,MAAM,CAAC,MAAM,QAAQ,GAAG,CAAC,CAAC,EAAE,EAAE,EAAE,EAAE,EAAE,EAAE,EAAE,CAAO,EAAE,CAAC,EAAE,EAAE,EAAE,EAAE,EAAE,EAAE,EAAE,CAAO,EAAQ,EAAE,CAAC;IAC9E,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE;IACrC,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE;IACrC,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE;IACrC,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE;CACxC,CAAC;AAEF,sBAAsB;AACtB,MAAM,CAAC,MAAM,MAAM,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,CAAO,EAAU,EAAE,CAAC,IAAI,CAAC,IAAI,CAAC,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,CAAC;AAE/F,MAAM,CAAC,MAAM,aAAa,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,CAAO,EAAU,EAAE,CAAC,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC;AAE3F,MAAM,CAAC,MAAM,SAAS,GAAG,CAAC,CAAO,EAAQ,EAAE;IACvC,MAAM,GAAG,GAAG,MAAM,CAAC,CAAC,CAAC,CAAC;IACtB,OAAO,GAAG,KAAK,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,KAAK,CAAC,CAAC,EAAE,CAAC,GAAG,GAAG,CAAC,CAAC;AACxD,CAAC,CAAC;AAEF,MAAM,CAAC,MAAM,GAAG,GAAG,CAAC,CAAC,EAAE,EAAE,EAAE,EAAE,EAAE,EAAE,EAAE,CAAO,EAAE,CAAC,EAAE,EAAE,EAAE,EAAE,EAAE,EAAE,EAAE,CAAO,EAAU,EAAE,CAC1E,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,CAAC;AAE1C,MAAM,CAAC,MAAM,QAAQ,GAAG,CAAC,CAAO,EAAE,CAAO,EAAU,EAAE,CAAC,MAAM,CAAC,QAAQ,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC;AAE7E,qBAAqB;AACrB,MAAM,CAAC,MAAM,aAAa,GAAG,CAAC,IAAU,EAAE,KAAa,EAAQ,EAAE;IAC7D,MAAM,SAAS,GAAG,KAAK,GAAG,GAAG,CAAC;IAC9B,MAAM,CAAC,GAAG,IAAI,CAAC,GAAG,CAAC,SAAS,CAAC,CAAC;IAC9B,MAAM,CAAC,GAAG,IAAI,CAAC,GAAG,CAAC,SAAS,CAAC,CAAC;IAC9B,OAAO,CAAC,IAAI,CAAC,CAAC,CAAC,GAAG,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,GAAG,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,GAAG,CAAC,EAAE,CAAC,CAAC,CAAC;AACtD,CAAC,CAAC;AAEF,MAAM,CAAC,MAAM,WAAW,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,CAAO,EAAiC,EAAE;IAC7E,MAAM,KAAK,GAAG,CAAC,GAAG,IAAI,CAAC,IAAI,CAAC,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC;IACzC,MAAM,CAAC,GAAG,IAAI,CAAC,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,CAAC;IAChC,IAAI,CAAC,KAAK,CAAC,EAAE,CAAC;QACV,OAAO,EAAE,IAAI,EAAE,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC,EAAE,KAAK,EAAE,CAAC,EAAE,CAAC;IACzC,CAAC;IACD,OAAO;QACH,IAAI,EAAE,CAAC,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,CAAC;QAC3B,KAAK,EAAE,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,KAAK,CAAC,CAAC,CAAC,KAAK;KAChC,CAAC;AACN,CAAC,CAAC;AAEF,MAAM,CAAC,MAAM,SAAS,GAAG,CAAC,CAAS,EAAE,CAAS,EAAE,CAAS,EAAQ,EAAE;IAC/D,MAAM,EAAE,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,GAAG,GAAG,CAAC,CAAC;IAC7B,MAAM,EAAE,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,GAAG,GAAG,CAAC,CAAC;IAC7B,MAAM,EAAE,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,GAAG,GAAG,CAAC,CAAC;IAC7B,MAAM,EAAE,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,GAAG,GAAG,CAAC,CAAC;IAC7B,MAAM,EAAE,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,GAAG,GAAG,CAAC,CAAC;IAC7B,MAAM,EAAE,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,GAAG,GAAG,CAAC,CAAC;IAE7B,OAAO;QACH,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE;QAC3B,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE;QAC3B,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE;QAC3B,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE;KAC9B,CAAC;AACN,CAAC,CAAC;AAEF,MAAM,CAAC,MAAM,OAAO,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,CAAO,EAAQ,EAAE;IAChD,yBAAyB;IACzB,MAAM,SAAS,GAAG,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,CAAC;IACtC,MAAM,SAAS,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,CAAC;IAC1C,MAAM,IAAI,GAAG,IAAI,CAAC,KAAK,CAAC,SAAS,EAAE,SAAS,CAAC,CAAC;IAE9C,0BAA0B;IAC1B,MAAM,IAAI,GAAG,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,CAAC;IACjC,IAAI,KAAK,CAAC;IACV,IAAI,IAAI,CAAC,GAAG,CAAC,IAAI,CAAC,IAAI,CAAC,EAAE,CAAC;QACtB,KAAK,GAAG,IAAI,CAAC,IAAI,CAAC,IAAI,CAAC,GAAG,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC,CAAC,iCAAiC;IAC5E,CAAC;SAAM,CAAC;QACJ,KAAK,GAAG,IAAI,CAAC,IAAI,CAAC,IAAI,CAAC,CAAC;IAC5B,CAAC;IAED,wBAAwB;IACxB,MAAM,SAAS,GAAG,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,CAAC;IACtC,MAAM,SAAS,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,CAAC;IAC1C,MAAM,GAAG,GAAG,IAAI,CAAC,KAAK,CAAC,SAAS,EAAE,SAAS,CAAC,CAAC;IAE7C,OAAO,CAAC,IAAI,EAAE,KAAK,EAAE,GAAG,CAAC,CAAC;AAC9B,CAAC,CAAC;AAEF,kBAAkB;AAClB,MAAM,CAAC,MAAM,UAAU,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,CAAO,EAAE,CAAO,EAAQ,EAAE;IAC5D,eAAe;IACf,MAAM,EAAE,GAAS,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC,CAAC;IAC3B,MAAM,EAAE,GAAG,IAAI,CAAC,KAAK,CAAC,EAAE,EAAE,CAAC,CAAC,CAAC;IAC7B,MAAM,GAAG,GAAG,IAAI,CAAC,KAAK,CAAC,EAAE,EAAE,EAAE,CAAC,CAAC;IAC/B,MAAM,WAAW,GAAG,CAAC,GAAG,CAAC,CAAC;IAC1B,OAAO;QACH,CAAC,CAAC,CAAC,CAAC,GAAG,WAAW,GAAG,EAAE,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,GAAG,CAAC,CAAC,CAAC;QACvC,CAAC,CAAC,CAAC,CAAC,GAAG,WAAW,GAAG,EAAE,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,GAAG,CAAC,CAAC,CAAC;QACvC,CAAC,CAAC,CAAC,CAAC,GAAG,WAAW,GAAG,EAAE,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,GAAG,CAAC,CAAC,CAAC;KAC1C,CAAC;AACN,CAAC,CAAC;AAEF,gBAAgB;AAChB,MAAM,CAAC,MAAM,KAAK,GAAG,CAAC,EAAQ,EAAE,EAAQ,EAAE,CAAS,EAAQ,EAAE;IACzD,MAAM,UAAU,GAAG,GAAG,CAAC,EAAE,EAAE,EAAE,CAAC,CAAC;IAE/B,qEAAqE;IACrE,MAAM,UAAU,GAAG,UAAU,GAAG,CAAC,CAAC,CAAC,CAAC,MAAM,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC;IACpD,MAAM,WAAW,GAAG,IAAI,CAAC,GAAG,CAAC,UAAU,CAAC,CAAC;IAEzC,gEAAgE;IAChE,IAAI,WAAW,GAAG,MAAM,EAAE,CAAC;QACvB,OAAO,SAAS,CAAC,GAAG,CAAC,KAAK,CAAC,EAAE,EAAE,CAAC,GAAG,CAAC,CAAC,EAAE,KAAK,CAAC,UAAU,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC;IAClE,CAAC;IAED,MAAM,KAAK,GAAG,IAAI,CAAC,IAAI,CAAC,WAAW,CAAC,CAAC;IACrC,MAAM,QAAQ,GAAG,IAAI,CAAC,GAAG,CAAC,KAAK,CAAC,CAAC;IACjC,MAAM,OAAO,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,GAAG,QAAQ,CAAC;IACrD,MAAM,OAAO,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,GAAG,QAAQ,CAAC;IAE/C,OAAO,SAAS,CAAC,GAAG,CAAC,KAAK,CAAC,EAAE,EAAE,OAAO,CAAC,EAAE,KAAK,CAAC,UAAU,EAAE,OAAO,CAAC,CAAC,CAAC,CAAC;AAC1E,CAAC,CAAC;AAEF,MAAM,CAAC,MAAM,IAAI,GAAG,CAAC,EAAQ,EAAE,EAAQ,EAAE,CAAS,EAAQ,EAAE;IACxD,OAAO,SAAS,CAAC,GAAG,CAAC,KAAK,CAAC,EAAE,EAAE,CAAC,GAAG,CAAC,CAAC,EAAE,KAAK,CAAC,EAAE,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC;AAC1D,CAAC,CAAC;AAEF,oBAAoB;AACpB,MAAM,CAAC,MAAM,MAAM,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,CAAO,EAAU,EAAE;IACjD,MAAM,EAAE,GAAG,CAAC,GAAG,CAAC,CAAC;IACjB,MAAM,EAAE,GAAG,CAAC,GAAG,CAAC,CAAC;IACjB,MAAM,EAAE,GAAG,CAAC,GAAG,CAAC,CAAC;IACjB,MAAM,EAAE,GAAG,CAAC,GAAG,CAAC,CAAC;IACjB,MAAM,EAAE,GAAG,CAAC,GAAG,CAAC,CAAC;IACjB,MAAM,EAAE,GAAG,CAAC,GAAG,CAAC,CAAC;IACjB,MAAM,EAAE,GAAG,CAAC,GAAG,CAAC,CAAC;IACjB,MAAM,EAAE,GAAG,CAAC,GAAG,CAAC,CAAC;IACjB,MAAM,EAAE,GAAG,CAAC,GAAG,CAAC,CAAC;IAEjB,OAAO;QACH,CAAC,GAAG,CAAC,GAAG,CAAC,EAAE,GAAG,EAAE,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,GAAG,EAAE,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,GAAG,EAAE,CAAC,EAAE,CAAC;QAClD,CAAC,GAAG,CAAC,EAAE,GAAG,EAAE,CAAC,EAAE,CAAC,GAAG,CAAC,GAAG,CAAC,EAAE,GAAG,EAAE,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,GAAG,EAAE,CAAC,EAAE,CAAC;QAClD,CAAC,GAAG,CAAC,EAAE,GAAG,EAAE,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,GAAG,EAAE,CAAC,EAAE,CAAC,GAAG,CAAC,GAAG,CAAC,EAAE,GAAG,EAAE,CAAC,EAAE,CAAC;QAClD,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC;KACb,CAAC;AACN,CAAC,CAAC;AAEF,oBAAoB;AACpB,MAAM,CAAC,MAAM,QAAQ,GAAG,GAAS,EAAE,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC,CAAC;AAEjD,MAAM,CAAC,MAAM,OAAO,GAAG,CAAC,CAAO,EAAQ,EAAE;IACrC,MAAM,KAAK,GAAG,aAAa,CAAC,CAAC,CAAC,CAAC;IAC/B,IAAI,KAAK,KAAK,CAAC;QAAE,OAAO,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC,CAAC;IACrC,OAAO,KAAK,CAAC,SAAS,CAAC,CAAC,CAAC,EAAE,CAAC,GAAG,KAAK,CAAC,CAAC;AAC1C,CAAC,CAAC;AAEF,MAAM,CAAC,MAAM,MAAM,GAAG,CAAC,OAAa,EAAE,EAAQ,EAAQ,EAAE;IACpD,2BAA2B;IAC3B,MAAM,CAAC,GAAG,IAAI,CAAC,SAAS,CAAC,OAAO,CAAC,CAAC;IAElC,yBAAyB;IACzB,MAAM,CAAC,GAAG,IAAI,CAAC,SAAS,CAAC,IAAI,CAAC,KAAK,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC,CAAC;IAE5C,wBAAwB;IACxB,MAAM,CAAC,GAAG,IAAI,CAAC,KAAK,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC;IAE3B,wBAAwB;IACxB,MAAM,KAAK,GAAG,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC;IAEjC,IAAI,KAAK,GAAG,CAAC,EAAE,CAAC;QACZ,MAAM,CAAC,GAAG,IAAI,CAAC,IAAI,CAAC,KAAK,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC;QACnC,OAAO;YACH,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC;YACjB,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC;YACjB,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC;YACjB,IAAI,GAAG,CAAC;SACX,CAAC;IACN,CAAC;SAAM,IAAI,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC;QACpC,MAAM,CAAC,GAAG,IAAI,CAAC,IAAI,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC;QAChD,OAAO;YACH,IAAI,GAAG,CAAC;YACR,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC;YACjB,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC;YACjB,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC;SACpB,CAAC;IACN,CAAC;SAAM,IAAI,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC;QACrB,MAAM,CAAC,GAAG,IAAI,CAAC,IAAI,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC;QAChD,OAAO;YACH,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC;YACjB,IAAI,GAAG,CAAC;YACR,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC;YACjB,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC;SACpB,CAAC;IACN,CAAC;SAAM,CAAC;QACJ,MAAM,CAAC,GAAG,IAAI,CAAC,IAAI,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC;QAChD,OAAO;YACH,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC;YACjB,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC;YACjB,IAAI,GAAG,CAAC;YACR,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC;SACpB,CAAC;IACN,CAAC;AACL,CAAC,CAAC"}
|
|
1
|
+
{"version":3,"file":"quat.js","sourceRoot":"","sources":["../../../src/math/quat/quat.ts"],"names":[],"mappings":"AAAA;;;;;;;;;;;;;;;;;;;;WAoBW;AAEX,OAAO,EAAE,SAAS,EAAsB,MAAM,uBAAuB,CAAC;AACtE,OAAO,EAAE,eAAe,EAAE,MAAM,6BAA6B,CAAC;AAC9D,OAAO,EAAE,IAAI,EAAU,MAAM,aAAa,CAAC;AAI3C,MAAM,KAAW,IAAI,CA0QpB;AA1QD,WAAiB,IAAI;IACJ,WAAM,GAAG;QAClB,IAAI,EAAE,OAAO;QACb,KAAK,EAAE,SAAS;QAChB,QAAQ,EAAE,CAAC;QACX,QAAQ,EAAE,CAAC;QACX,OAAO,EAAE,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC,EAAE,sBAAsB;KACtB,CAAC;IACf,WAAM,GAAG,eAAe,CAAC,KAAA,MAAM,CAAC,CAAC;IAE9C,8BAA8B;IACjB,QAAG,GAAG,CAAC,CAAC,EAAE,EAAE,EAAE,EAAE,EAAE,EAAE,EAAE,CAAO,EAAE,CAAC,EAAE,EAAE,EAAE,EAAE,EAAE,EAAE,EAAE,CAAO,EAAQ,EAAE,CAAC;QACzE,EAAE,GAAG,EAAE;QACP,EAAE,GAAG,EAAE;QACP,EAAE,GAAG,EAAE;QACP,EAAE,GAAG,EAAE;KACV,CAAC;IAEW,aAAQ,GAAG,CAAC,CAAC,EAAE,EAAE,EAAE,EAAE,EAAE,EAAE,EAAE,CAAO,EAAE,CAAC,EAAE,EAAE,EAAE,EAAE,EAAE,EAAE,EAAE,CAAO,EAAQ,EAAE,CAAC;QAC9E,EAAE,GAAG,EAAE;QACP,EAAE,GAAG,EAAE;QACP,EAAE,GAAG,EAAE;QACP,EAAE,GAAG,EAAE;KACV,CAAC;IAEW,UAAK,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,CAAO,EAAE,CAAS,EAAQ,EAAE,CAAC,CAAC,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,CAAC,CAAC;IAE9E,WAAM,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,CAAO,EAAQ,EAAE,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,EAAE,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC;IAExD,cAAS,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,CAAO,EAAQ,EAAE,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,EAAE,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC;IAE1D,aAAQ,GAAG,CAAC,CAAC,EAAE,EAAE,EAAE,EAAE,EAAE,EAAE,EAAE,CAAO,EAAE,CAAC,EAAE,EAAE,EAAE,EAAE,EAAE,EAAE,EAAE,CAAO,EAAQ,EAAE,CAAC;QAC9E,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE;QACrC,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE;QACrC,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE;QACrC,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE;KACxC,CAAC;IAEF,sBAAsB;IACT,WAAM,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,CAAO,EAAU,EAAE,CAAC,IAAI,CAAC,IAAI,CAAC,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,CAAC;IAElF,kBAAa,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,CAAO,EAAU,EAAE,CAAC,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC;IAE9E,cAAS,GAAG,CAAC,CAAO,EAAQ,EAAE;QACvC,MAAM,GAAG,GAAG,KAAA,MAAM,CAAC,CAAC,CAAC,CAAC;QACtB,OAAO,GAAG,KAAK,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,KAAA,KAAK,CAAC,CAAC,EAAE,CAAC,GAAG,GAAG,CAAC,CAAC;IACxD,CAAC,CAAC;IAEW,QAAG,GAAG,CAAC,CAAC,EAAE,EAAE,EAAE,EAAE,EAAE,EAAE,EAAE,CAAO,EAAE,CAAC,EAAE,EAAE,EAAE,EAAE,EAAE,EAAE,EAAE,CAAO,EAAU,EAAE,CAC1E,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,CAAC;IAE7B,aAAQ,GAAG,CAAC,CAAO,EAAE,CAAO,EAAU,EAAE,CAAC,KAAA,MAAM,CAAC,KAAA,QAAQ,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC;IAE7E,qBAAqB;IACR,kBAAa,GAAG,CAAC,IAAU,EAAE,KAAa,EAAQ,EAAE;QAC7D,MAAM,SAAS,GAAG,KAAK,GAAG,GAAG,CAAC;QAC9B,MAAM,CAAC,GAAG,IAAI,CAAC,GAAG,CAAC,SAAS,CAAC,CAAC;QAC9B,MAAM,CAAC,GAAG,IAAI,CAAC,GAAG,CAAC,SAAS,CAAC,CAAC;QAC9B,OAAO,CAAC,IAAI,CAAC,CAAC,CAAC,GAAG,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,GAAG,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC,GAAG,CAAC,EAAE,CAAC,CAAC,CAAC;IACtD,CAAC,CAAC;IAEW,gBAAW,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,CAAO,EAAiC,EAAE;QAC7E,MAAM,KAAK,GAAG,CAAC,GAAG,IAAI,CAAC,IAAI,CAAC,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC;QACzC,MAAM,CAAC,GAAG,IAAI,CAAC,GAAG,CAAC,KAAK,GAAG,GAAG,CAAC,CAAC;QAChC,IAAI,CAAC,KAAK,CAAC,EAAE,CAAC;YACV,OAAO,EAAE,IAAI,EAAE,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC,EAAE,KAAK,EAAE,CAAC,EAAE,CAAC;QACzC,CAAC;QACD,OAAO;YACH,IAAI,EAAE,CAAC,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,CAAC;YAC3B,KAAK,EAAE,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,KAAK,CAAC,CAAC,CAAC,KAAK;SAChC,CAAC;IACN,CAAC,CAAC;IAEW,cAAS,GAAG,CAAC,CAAS,EAAE,CAAS,EAAE,CAAS,EAAQ,EAAE;QAC/D,MAAM,EAAE,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,GAAG,GAAG,CAAC,CAAC;QAC7B,MAAM,EAAE,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,GAAG,GAAG,CAAC,CAAC;QAC7B,MAAM,EAAE,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,GAAG,GAAG,CAAC,CAAC;QAC7B,MAAM,EAAE,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,GAAG,GAAG,CAAC,CAAC;QAC7B,MAAM,EAAE,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,GAAG,GAAG,CAAC,CAAC;QAC7B,MAAM,EAAE,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,GAAG,GAAG,CAAC,CAAC;QAE7B,OAAO;YACH,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE;YAC3B,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE;YAC3B,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE;YAC3B,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE;SAC9B,CAAC;IACN,CAAC,CAAC;IAEW,YAAO,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,CAAO,EAAQ,EAAE;QAChD,yBAAyB;QACzB,MAAM,SAAS,GAAG,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,CAAC;QACtC,MAAM,SAAS,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,CAAC;QAC1C,MAAM,IAAI,GAAG,IAAI,CAAC,KAAK,CAAC,SAAS,EAAE,SAAS,CAAC,CAAC;QAE9C,0BAA0B;QAC1B,MAAM,IAAI,GAAG,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,CAAC;QACjC,IAAI,KAAK,CAAC;QACV,IAAI,IAAI,CAAC,GAAG,CAAC,IAAI,CAAC,IAAI,CAAC,EAAE,CAAC;YACtB,KAAK,GAAG,IAAI,CAAC,IAAI,CAAC,IAAI,CAAC,GAAG,IAAI,CAAC,EAAE,GAAG,CAAC,CAAC,CAAC,iCAAiC;QAC5E,CAAC;aAAM,CAAC;YACJ,KAAK,GAAG,IAAI,CAAC,IAAI,CAAC,IAAI,CAAC,CAAC;QAC5B,CAAC;QAED,wBAAwB;QACxB,MAAM,SAAS,GAAG,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,CAAC;QACtC,MAAM,SAAS,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,CAAC;QAC1C,MAAM,GAAG,GAAG,IAAI,CAAC,KAAK,CAAC,SAAS,EAAE,SAAS,CAAC,CAAC;QAE7C,OAAO,CAAC,IAAI,EAAE,KAAK,EAAE,GAAG,CAAC,CAAC;IAC9B,CAAC,CAAC;IAEF,kBAAkB;IACL,eAAU,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,CAAO,EAAE,CAAO,EAAQ,EAAE;QAC5D,eAAe;QACf,MAAM,EAAE,GAAS,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC,CAAC;QAC3B,MAAM,EAAE,GAAG,IAAI,CAAC,KAAK,CAAC,EAAE,EAAE,CAAC,CAAC,CAAC;QAC7B,MAAM,GAAG,GAAG,IAAI,CAAC,KAAK,CAAC,EAAE,EAAE,EAAE,CAAC,CAAC;QAC/B,MAAM,WAAW,GAAG,CAAC,GAAG,CAAC,CAAC;QAC1B,OAAO;YACH,CAAC,CAAC,CAAC,CAAC,GAAG,WAAW,GAAG,EAAE,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,GAAG,CAAC,CAAC,CAAC;YACvC,CAAC,CAAC,CAAC,CAAC,GAAG,WAAW,GAAG,EAAE,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,GAAG,CAAC,CAAC,CAAC;YACvC,CAAC,CAAC,CAAC,CAAC,GAAG,WAAW,GAAG,EAAE,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,GAAG,CAAC,CAAC,CAAC;SAC1C,CAAC;IACN,CAAC,CAAC;IAEF,gBAAgB;IACH,UAAK,GAAG,CAAC,EAAQ,EAAE,EAAQ,EAAE,CAAS,EAAQ,EAAE;QACzD,MAAM,UAAU,GAAG,KAAA,GAAG,CAAC,EAAE,EAAE,EAAE,CAAC,CAAC;QAE/B,qEAAqE;QACrE,MAAM,UAAU,GAAG,UAAU,GAAG,CAAC,CAAC,CAAC,CAAC,KAAA,MAAM,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC;QACpD,MAAM,WAAW,GAAG,IAAI,CAAC,GAAG,CAAC,UAAU,CAAC,CAAC;QAEzC,gEAAgE;QAChE,IAAI,WAAW,GAAG,MAAM,EAAE,CAAC;YACvB,OAAO,KAAA,SAAS,CAAC,KAAA,GAAG,CAAC,KAAA,KAAK,CAAC,EAAE,EAAE,CAAC,GAAG,CAAC,CAAC,EAAE,KAAA,KAAK,CAAC,UAAU,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC;QAClE,CAAC;QAED,MAAM,KAAK,GAAG,IAAI,CAAC,IAAI,CAAC,WAAW,CAAC,CAAC;QACrC,MAAM,QAAQ,GAAG,IAAI,CAAC,GAAG,CAAC,KAAK,CAAC,CAAC;QACjC,MAAM,OAAO,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,GAAG,QAAQ,CAAC;QACrD,MAAM,OAAO,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,GAAG,KAAK,CAAC,GAAG,QAAQ,CAAC;QAE/C,OAAO,KAAA,SAAS,CAAC,KAAA,GAAG,CAAC,KAAA,KAAK,CAAC,EAAE,EAAE,OAAO,CAAC,EAAE,KAAA,KAAK,CAAC,UAAU,EAAE,OAAO,CAAC,CAAC,CAAC,CAAC;IAC1E,CAAC,CAAC;IAEW,SAAI,GAAG,CAAC,EAAQ,EAAE,EAAQ,EAAE,CAAS,EAAQ,EAAE;QACxD,OAAO,KAAA,SAAS,CAAC,KAAA,GAAG,CAAC,KAAA,KAAK,CAAC,EAAE,EAAE,CAAC,GAAG,CAAC,CAAC,EAAE,KAAA,KAAK,CAAC,EAAE,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC;IAC1D,CAAC,CAAC;IAEF,oBAAoB;IACP,WAAM,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,CAAO,EAAU,EAAE;QACjD,MAAM,EAAE,GAAG,CAAC,GAAG,CAAC,CAAC;QACjB,MAAM,EAAE,GAAG,CAAC,GAAG,CAAC,CAAC;QACjB,MAAM,EAAE,GAAG,CAAC,GAAG,CAAC,CAAC;QACjB,MAAM,EAAE,GAAG,CAAC,GAAG,CAAC,CAAC;QACjB,MAAM,EAAE,GAAG,CAAC,GAAG,CAAC,CAAC;QACjB,MAAM,EAAE,GAAG,CAAC,GAAG,CAAC,CAAC;QACjB,MAAM,EAAE,GAAG,CAAC,GAAG,CAAC,CAAC;QACjB,MAAM,EAAE,GAAG,CAAC,GAAG,CAAC,CAAC;QACjB,MAAM,EAAE,GAAG,CAAC,GAAG,CAAC,CAAC;QAEjB,OAAO;YACH,CAAC,GAAG,CAAC,GAAG,CAAC,EAAE,GAAG,EAAE,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,GAAG,EAAE,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,GAAG,EAAE,CAAC,EAAE,CAAC;YAClD,CAAC,GAAG,CAAC,EAAE,GAAG,EAAE,CAAC,EAAE,CAAC,GAAG,CAAC,GAAG,CAAC,EAAE,GAAG,EAAE,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,GAAG,EAAE,CAAC,EAAE,CAAC;YAClD,CAAC,GAAG,CAAC,EAAE,GAAG,EAAE,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,GAAG,EAAE,CAAC,EAAE,CAAC,GAAG,CAAC,GAAG,CAAC,EAAE,GAAG,EAAE,CAAC,EAAE,CAAC;YAClD,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC;SACb,CAAC;IACN,CAAC,CAAC;IAEW,aAAQ,GAAS,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC,CAAC;IAE3C,oBAAoB;IAEP,YAAO,GAAG,CAAC,CAAO,EAAQ,EAAE;QACrC,MAAM,KAAK,GAAG,KAAA,aAAa,CAAC,CAAC,CAAC,CAAC;QAC/B,IAAI,KAAK,KAAK,CAAC;YAAE,OAAO,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC,CAAC;QACrC,OAAO,KAAA,KAAK,CAAC,KAAA,SAAS,CAAC,CAAC,CAAC,EAAE,CAAC,GAAG,KAAK,CAAC,CAAC;IAC1C,CAAC,CAAC;IAEW,WAAM,GAAG,CAAC,OAAa,EAAE,EAAQ,EAAQ,EAAE;QACpD,2BAA2B;QAC3B,MAAM,CAAC,GAAG,IAAI,CAAC,SAAS,CAAC,OAAO,CAAC,CAAC;QAElC,yBAAyB;QACzB,MAAM,CAAC,GAAG,IAAI,CAAC,SAAS,CAAC,IAAI,CAAC,KAAK,CAAC,CAAC,EAAE,EAAE,CAAC,CAAC,CAAC;QAE5C,wBAAwB;QACxB,MAAM,CAAC,GAAG,IAAI,CAAC,KAAK,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC;QAE3B,wBAAwB;QACxB,MAAM,KAAK,GAAG,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC;QAEjC,IAAI,KAAK,GAAG,CAAC,EAAE,CAAC;YACZ,MAAM,CAAC,GAAG,IAAI,CAAC,IAAI,CAAC,KAAK,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC;YACnC,OAAO;gBACH,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC;gBACjB,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC;gBACjB,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC;gBACjB,IAAI,GAAG,CAAC;aACX,CAAC;QACN,CAAC;aAAM,IAAI,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC;YACpC,MAAM,CAAC,GAAG,IAAI,CAAC,IAAI,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC;YAChD,OAAO;gBACH,IAAI,GAAG,CAAC;gBACR,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC;gBACjB,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC;gBACjB,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC;aACpB,CAAC;QACN,CAAC;aAAM,IAAI,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC;YACrB,MAAM,CAAC,GAAG,IAAI,CAAC,IAAI,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC;YAChD,OAAO;gBACH,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC;gBACjB,IAAI,GAAG,CAAC;gBACR,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC;gBACjB,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC;aACpB,CAAC;QACN,CAAC;aAAM,CAAC;YACJ,MAAM,CAAC,GAAG,IAAI,CAAC,IAAI,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC;YAChD,OAAO;gBACH,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC;gBACjB,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC;gBACjB,IAAI,GAAG,CAAC;gBACR,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC;aACpB,CAAC;QACN,CAAC;IACL,CAAC,CAAC;IAEF;;;;;;;;OAQG;IACU,YAAO,GAAG,CAAC,SAAe,EAAE,eAAuB,CAAC,EAAQ,EAAE;QACvE,MAAM,KAAK,GAAS,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC,CAAC;QAC9B,MAAM,MAAM,GAAG,IAAI,CAAC,MAAM,CAAC,SAAS,CAAC,CAAC;QACtC,IAAI,MAAM,KAAK,CAAC;YAAE,OAAO,KAAA,QAAQ,CAAC;QAElC,MAAM,GAAG,GAAG,IAAI,CAAC,SAAS,CAAC,SAAS,CAAC,CAAC;QACtC,MAAM,MAAM,GAAG,IAAI,CAAC,GAAG,CAAC,KAAK,EAAE,GAAG,CAAC,CAAC;QAEpC,IAAI,IAAU,CAAC;QACf,IAAI,MAAM,GAAG,QAAQ,EAAE,CAAC;YACpB,IAAI,GAAG,KAAA,QAAQ,CAAC;QACpB,CAAC;aAAM,IAAI,MAAM,GAAG,CAAC,QAAQ,EAAE,CAAC;YAC5B,iDAAiD;YACjD,MAAM,cAAc,GAAS,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC,CAAC;YACvC,MAAM,IAAI,GAAG,IAAI,CAAC,GAAG,CAAC,IAAI,CAAC,GAAG,CAAC,KAAK,EAAE,cAAc,CAAC,CAAC,GAAG,KAAK,CAAC,CAAC,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAS,CAAC,CAAC,CAAC,cAAc,CAAC;YACpG,IAAI,GAAG,KAAA,aAAa,CAAC,IAAI,EAAE,IAAI,CAAC,EAAE,CAAC,CAAC;QACxC,CAAC;aAAM,CAAC;YACJ,MAAM,IAAI,GAAG,IAAI,CAAC,SAAS,CAAC,IAAI,CAAC,KAAK,CAAC,KAAK,EAAE,GAAG,CAAC,CAAC,CAAC;YACpD,MAAM,KAAK,GAAG,IAAI,CAAC,IAAI,CAAC,MAAM,CAAC,CAAC;YAChC,IAAI,GAAG,KAAA,aAAa,CAAC,IAAI,EAAE,KAAK,CAAC,CAAC;QACtC,CAAC;QAED,IAAI,YAAY,KAAK,CAAC;YAAE,OAAO,IAAI,CAAC;QAEpC,mEAAmE;QACnE,MAAM,KAAK,GAAG,KAAA,aAAa,CAAC,GAAG,EAAE,YAAY,CAAC,CAAC;QAC/C,OAAO,KAAA,QAAQ,CAAC,KAAK,EAAE,IAAI,CAAC,CAAC;IACjC,CAAC,CAAC;AACN,CAAC,EA1QgB,IAAI,KAAJ,IAAI,QA0QpB"}
|
package/dist/math/u32/u32.d.ts
CHANGED
|
@@ -1,8 +1,10 @@
|
|
|
1
1
|
import { FromSchema } from "../../schema/index.js";
|
|
2
|
-
export
|
|
3
|
-
|
|
4
|
-
|
|
5
|
-
|
|
6
|
-
|
|
7
|
-
|
|
8
|
-
|
|
2
|
+
export type U32 = FromSchema<typeof U32.schema>;
|
|
3
|
+
export declare namespace U32 {
|
|
4
|
+
const schema: {
|
|
5
|
+
readonly type: "integer";
|
|
6
|
+
readonly minimum: 0;
|
|
7
|
+
readonly maximum: 4294967295;
|
|
8
|
+
readonly default: number;
|
|
9
|
+
};
|
|
10
|
+
}
|
package/dist/math/u32/u32.js
CHANGED
|
@@ -20,5 +20,8 @@ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
|
20
20
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
21
21
|
SOFTWARE.*/
|
|
22
22
|
import { U32Schema } from "../../schema/index.js";
|
|
23
|
-
export
|
|
23
|
+
export var U32;
|
|
24
|
+
(function (U32) {
|
|
25
|
+
U32.schema = U32Schema;
|
|
26
|
+
})(U32 || (U32 = {}));
|
|
24
27
|
//# sourceMappingURL=u32.js.map
|
package/dist/math/u32/u32.js.map
CHANGED
|
@@ -1 +1 @@
|
|
|
1
|
-
{"version":3,"file":"u32.js","sourceRoot":"","sources":["../../../src/math/u32/u32.ts"],"names":[],"mappings":"AAAA;;;;;;;;;;;;;;;;;;;;WAoBW;AAEX,OAAO,EAAE,SAAS,EAAc,MAAM,uBAAuB,CAAC;
|
|
1
|
+
{"version":3,"file":"u32.js","sourceRoot":"","sources":["../../../src/math/u32/u32.ts"],"names":[],"mappings":"AAAA;;;;;;;;;;;;;;;;;;;;WAoBW;AAEX,OAAO,EAAE,SAAS,EAAc,MAAM,uBAAuB,CAAC;AAI9D,MAAM,KAAW,GAAG,CAEnB;AAFD,WAAiB,GAAG;IACH,UAAM,GAAG,SAAS,CAAC;AACpC,CAAC,EAFgB,GAAG,KAAH,GAAG,QAEnB"}
|
package/dist/math/vec2/vec2.d.ts
CHANGED
|
@@ -1,63 +1,63 @@
|
|
|
1
1
|
import { FromSchema } from "../../schema/index.js";
|
|
2
|
-
export
|
|
3
|
-
|
|
4
|
-
|
|
5
|
-
readonly type: "
|
|
6
|
-
readonly
|
|
7
|
-
|
|
2
|
+
export type Vec2 = FromSchema<typeof Vec2.schema>;
|
|
3
|
+
export declare namespace Vec2 {
|
|
4
|
+
const schema: {
|
|
5
|
+
readonly type: "array";
|
|
6
|
+
readonly items: {
|
|
7
|
+
readonly type: "number";
|
|
8
|
+
readonly precision: 1;
|
|
9
|
+
readonly default: number;
|
|
10
|
+
};
|
|
11
|
+
readonly minItems: 2;
|
|
12
|
+
readonly maxItems: 2;
|
|
13
|
+
readonly default: readonly [0, 0];
|
|
8
14
|
};
|
|
9
|
-
|
|
10
|
-
|
|
11
|
-
|
|
12
|
-
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
|
|
18
|
-
|
|
19
|
-
|
|
20
|
-
|
|
21
|
-
|
|
22
|
-
|
|
23
|
-
|
|
24
|
-
|
|
25
|
-
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
|
|
29
|
-
|
|
30
|
-
|
|
31
|
-
|
|
32
|
-
|
|
33
|
-
|
|
34
|
-
|
|
35
|
-
|
|
36
|
-
|
|
37
|
-
|
|
38
|
-
|
|
39
|
-
|
|
40
|
-
|
|
41
|
-
|
|
42
|
-
|
|
43
|
-
|
|
44
|
-
|
|
45
|
-
|
|
46
|
-
|
|
47
|
-
|
|
48
|
-
|
|
49
|
-
|
|
50
|
-
|
|
51
|
-
|
|
52
|
-
|
|
53
|
-
|
|
54
|
-
|
|
55
|
-
|
|
56
|
-
|
|
57
|
-
|
|
58
|
-
export declare const sqrt: ([x, y]: Vec2) => Vec2;
|
|
59
|
-
export declare const add: ([x1, y1]: Vec2, [x2, y2]: Vec2) => Vec2;
|
|
60
|
-
export declare const subtract: ([x1, y1]: Vec2, [x2, y2]: Vec2) => Vec2;
|
|
61
|
-
export declare const scale: ([x, y]: Vec2, s: number) => Vec2;
|
|
62
|
-
export declare const negate: ([x, y]: Vec2) => Vec2;
|
|
63
|
-
export {};
|
|
15
|
+
const layout: import("../../typed-buffer/index.js").StructLayout;
|
|
16
|
+
const abs: ([x, y]: Vec2) => Vec2;
|
|
17
|
+
const ceil: ([x, y]: Vec2) => Vec2;
|
|
18
|
+
const floor: ([x, y]: Vec2) => Vec2;
|
|
19
|
+
const round: ([x, y]: Vec2) => Vec2;
|
|
20
|
+
const trunc: ([x, y]: Vec2) => Vec2;
|
|
21
|
+
const min: ([x1, y1]: Vec2, [x2, y2]: Vec2) => Vec2;
|
|
22
|
+
const max: ([x1, y1]: Vec2, [x2, y2]: Vec2) => Vec2;
|
|
23
|
+
const clamp: (v: Vec2, minVec: Vec2, maxVec: Vec2) => Vec2;
|
|
24
|
+
const mix: ([x1, y1]: Vec2, [x2, y2]: Vec2, t: number) => Vec2;
|
|
25
|
+
const step: ([edge1, edge2]: Vec2, [x, y]: Vec2) => Vec2;
|
|
26
|
+
const smoothstep: ([e0x, e0y]: Vec2, [e1x, e1y]: Vec2, [x, y]: Vec2) => Vec2;
|
|
27
|
+
const length: ([x, y]: Vec2) => number;
|
|
28
|
+
const distance: (a: Vec2, b: Vec2) => number;
|
|
29
|
+
const dot: ([x1, y1]: Vec2, [x2, y2]: Vec2) => number;
|
|
30
|
+
const normalize: (v: Vec2) => Vec2;
|
|
31
|
+
const faceforward: (n: Vec2, i: Vec2, nref: Vec2) => Vec2;
|
|
32
|
+
const reflect: (i: Vec2, n: Vec2) => Vec2;
|
|
33
|
+
const refract: (i: Vec2, n: Vec2, eta: number) => Vec2;
|
|
34
|
+
const sin: ([x, y]: Vec2) => Vec2;
|
|
35
|
+
const cos: ([x, y]: Vec2) => Vec2;
|
|
36
|
+
const tan: ([x, y]: Vec2) => Vec2;
|
|
37
|
+
const asin: ([x, y]: Vec2) => Vec2;
|
|
38
|
+
const acos: ([x, y]: Vec2) => Vec2;
|
|
39
|
+
const atan: ([x, y]: Vec2) => Vec2;
|
|
40
|
+
const sinh: ([x, y]: Vec2) => Vec2;
|
|
41
|
+
const cosh: ([x, y]: Vec2) => Vec2;
|
|
42
|
+
const tanh: ([x, y]: Vec2) => Vec2;
|
|
43
|
+
const asinh: ([x, y]: Vec2) => Vec2;
|
|
44
|
+
const acosh: ([x, y]: Vec2) => Vec2;
|
|
45
|
+
const atanh: ([x, y]: Vec2) => Vec2;
|
|
46
|
+
const sign: ([x, y]: Vec2) => Vec2;
|
|
47
|
+
const fract: ([x, y]: Vec2) => Vec2;
|
|
48
|
+
const mod: ([x, y]: Vec2, m: number) => Vec2;
|
|
49
|
+
const modf: ([x, y]: Vec2) => {
|
|
50
|
+
fract: Vec2;
|
|
51
|
+
whole: Vec2;
|
|
52
|
+
};
|
|
53
|
+
const pow: ([x1, y1]: Vec2, [x2, y2]: Vec2) => Vec2;
|
|
54
|
+
const exp: ([x, y]: Vec2) => Vec2;
|
|
55
|
+
const exp2: ([x, y]: Vec2) => Vec2;
|
|
56
|
+
const log: ([x, y]: Vec2) => Vec2;
|
|
57
|
+
const log2: ([x, y]: Vec2) => Vec2;
|
|
58
|
+
const sqrt: ([x, y]: Vec2) => Vec2;
|
|
59
|
+
const add: ([x1, y1]: Vec2, [x2, y2]: Vec2) => Vec2;
|
|
60
|
+
const subtract: ([x1, y1]: Vec2, [x2, y2]: Vec2) => Vec2;
|
|
61
|
+
const scale: ([x, y]: Vec2, s: number) => Vec2;
|
|
62
|
+
const negate: ([x, y]: Vec2) => Vec2;
|
|
63
|
+
}
|