wapiti 0.0.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- data/.autotest +13 -0
- data/.gitignore +5 -0
- data/.rspec +3 -0
- data/Gemfile +6 -0
- data/LICENSE +30 -0
- data/README.md +153 -0
- data/Rakefile +33 -0
- data/ext/wapiti/bcd.c +392 -0
- data/ext/wapiti/decoder.c +535 -0
- data/ext/wapiti/decoder.h +46 -0
- data/ext/wapiti/extconf.rb +8 -0
- data/ext/wapiti/gradient.c +818 -0
- data/ext/wapiti/gradient.h +81 -0
- data/ext/wapiti/lbfgs.c +294 -0
- data/ext/wapiti/model.c +296 -0
- data/ext/wapiti/model.h +100 -0
- data/ext/wapiti/native.c +1238 -0
- data/ext/wapiti/native.h +15 -0
- data/ext/wapiti/options.c +278 -0
- data/ext/wapiti/options.h +91 -0
- data/ext/wapiti/pattern.c +395 -0
- data/ext/wapiti/pattern.h +56 -0
- data/ext/wapiti/progress.c +167 -0
- data/ext/wapiti/progress.h +43 -0
- data/ext/wapiti/quark.c +272 -0
- data/ext/wapiti/quark.h +46 -0
- data/ext/wapiti/reader.c +553 -0
- data/ext/wapiti/reader.h +73 -0
- data/ext/wapiti/rprop.c +191 -0
- data/ext/wapiti/sequence.h +148 -0
- data/ext/wapiti/sgdl1.c +218 -0
- data/ext/wapiti/thread.c +171 -0
- data/ext/wapiti/thread.h +42 -0
- data/ext/wapiti/tools.c +202 -0
- data/ext/wapiti/tools.h +54 -0
- data/ext/wapiti/trainers.h +39 -0
- data/ext/wapiti/vmath.c +372 -0
- data/ext/wapiti/vmath.h +51 -0
- data/ext/wapiti/wapiti.c +288 -0
- data/ext/wapiti/wapiti.h +45 -0
- data/lib/wapiti.rb +30 -0
- data/lib/wapiti/errors.rb +17 -0
- data/lib/wapiti/model.rb +49 -0
- data/lib/wapiti/options.rb +113 -0
- data/lib/wapiti/utility.rb +15 -0
- data/lib/wapiti/version.rb +3 -0
- data/spec/fixtures/ch.mod +18550 -0
- data/spec/fixtures/chpattern.txt +52 -0
- data/spec/fixtures/chtest.txt +1973 -0
- data/spec/fixtures/chtrain.txt +19995 -0
- data/spec/fixtures/nppattern.txt +52 -0
- data/spec/fixtures/nptest.txt +1973 -0
- data/spec/fixtures/nptrain.txt +19995 -0
- data/spec/fixtures/pattern.txt +14 -0
- data/spec/fixtures/test.txt +60000 -0
- data/spec/fixtures/train.txt +1200 -0
- data/spec/spec_helper.rb +21 -0
- data/spec/wapiti/model_spec.rb +173 -0
- data/spec/wapiti/native_spec.rb +12 -0
- data/spec/wapiti/options_spec.rb +175 -0
- data/spec/wapiti/utility_spec.rb +22 -0
- data/wapiti.gemspec +35 -0
- metadata +178 -0
@@ -0,0 +1,535 @@
|
|
1
|
+
/*
|
2
|
+
* Wapiti - A linear-chain CRF tool
|
3
|
+
*
|
4
|
+
* Copyright (c) 2009-2011 CNRS
|
5
|
+
* All rights reserved.
|
6
|
+
*
|
7
|
+
* Redistribution and use in source and binary forms, with or without
|
8
|
+
* modification, are permitted provided that the following conditions are met:
|
9
|
+
* * Redistributions of source code must retain the above copyright
|
10
|
+
* notice, this list of conditions and the following disclaimer.
|
11
|
+
* * Redistributions in binary form must reproduce the above copyright
|
12
|
+
* notice, this list of conditions and the following disclaimer in the
|
13
|
+
* documentation and/or other materials provided with the distribution.
|
14
|
+
*
|
15
|
+
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
16
|
+
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
17
|
+
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
18
|
+
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
19
|
+
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
20
|
+
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
21
|
+
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
22
|
+
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
23
|
+
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
24
|
+
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
25
|
+
* POSSIBILITY OF SUCH DAMAGE.
|
26
|
+
*/
|
27
|
+
|
28
|
+
#include <float.h>
|
29
|
+
#include <stddef.h>
|
30
|
+
#include <stdlib.h>
|
31
|
+
#include <stdio.h>
|
32
|
+
|
33
|
+
#include "wapiti.h"
|
34
|
+
#include "gradient.h"
|
35
|
+
#include "model.h"
|
36
|
+
#include "quark.h"
|
37
|
+
#include "reader.h"
|
38
|
+
#include "sequence.h"
|
39
|
+
#include "thread.h"
|
40
|
+
#include "tools.h"
|
41
|
+
#include "decoder.h"
|
42
|
+
|
43
|
+
/******************************************************************************
|
44
|
+
* Sequence tagging
|
45
|
+
*
|
46
|
+
* This module implement sequence tagging using a trained model and model
|
47
|
+
* evaluation on devlopment set.
|
48
|
+
*
|
49
|
+
* The viterbi can be quite intensive on the stack if you push in it long
|
50
|
+
* sequence and use large labels set. It's less a problem than in gradient
|
51
|
+
* computations but it can show up in particular cases. The fix is to call it
|
52
|
+
* through the mth_spawn function and request enough stack space, this will be
|
53
|
+
* fixed in next version.
|
54
|
+
******************************************************************************/
|
55
|
+
|
56
|
+
/* tag_expsc:
|
57
|
+
* Compute the score lattice for classical Viterbi decoding. This is the same
|
58
|
+
* as for the first step of the gradient computation with the exception that
|
59
|
+
* we don't need to take the exponential of the scores as the Viterbi decoding
|
60
|
+
* works in log-space.
|
61
|
+
*/
|
62
|
+
static int tag_expsc(mdl_t *mdl, const seq_t *seq, double *vpsi) {
|
63
|
+
const double *x = mdl->theta;
|
64
|
+
const size_t Y = mdl->nlbl;
|
65
|
+
const int T = seq->len;
|
66
|
+
double (*psi)[T][Y][Y] = (void *)vpsi;
|
67
|
+
// We first have to compute the Ψ_t(y',y,x_t) weights defined as
|
68
|
+
// Ψ_t(y',y,x_t) = \exp( ∑_k θ_k f_k(y',y,x_t) )
|
69
|
+
// So at position 't' in the sequence, for each couple (y',y) we have
|
70
|
+
// to sum weights of all features.
|
71
|
+
// This is the same than what we do for computing the gradient but, as
|
72
|
+
// the viterbi algorithm also work in the logarithmic space, we can
|
73
|
+
// remove the exponential.
|
74
|
+
//
|
75
|
+
// Only the observations present at this position will have a non-nul
|
76
|
+
// weight so we can sum only on thoses.
|
77
|
+
//
|
78
|
+
// As we use only two kind of features: unigram and bigram, we can
|
79
|
+
// rewrite this as
|
80
|
+
// ∑_k μ_k(y, x_t) f_k(y, x_t) + ∑_k λ_k(y', y, x_t) f_k(y', y, x_t)
|
81
|
+
// Where the first sum is over the unigrams features and the second is
|
82
|
+
// over bigrams ones.
|
83
|
+
//
|
84
|
+
// This allow us to compute Ψ efficiently in two steps
|
85
|
+
// 1/ we sum the unigrams features weights by looping over actives
|
86
|
+
// unigrams observations. (we compute this sum once and use it
|
87
|
+
// for each value of y')
|
88
|
+
// 2/ we add the bigrams features weights by looping over actives
|
89
|
+
// bigrams observations (we don't have to do this for t=0 since
|
90
|
+
// there is no bigrams here)
|
91
|
+
for (int t = 0; t < T; t++) {
|
92
|
+
const pos_t *pos = &(seq->pos[t]);
|
93
|
+
for (size_t y = 0; y < Y; y++) {
|
94
|
+
double sum = 0.0;
|
95
|
+
for (size_t n = 0; n < pos->ucnt; n++) {
|
96
|
+
const size_t o = pos->uobs[n];
|
97
|
+
sum += x[mdl->uoff[o] + y];
|
98
|
+
}
|
99
|
+
for (size_t yp = 0; yp < Y; yp++)
|
100
|
+
(*psi)[t][yp][y] = sum;
|
101
|
+
}
|
102
|
+
}
|
103
|
+
for (int t = 1; t < T; t++) {
|
104
|
+
const pos_t *pos = &(seq->pos[t]);
|
105
|
+
for (size_t yp = 0, d = 0; yp < Y; yp++) {
|
106
|
+
for (size_t y = 0; y < Y; y++, d++) {
|
107
|
+
double sum = 0.0;
|
108
|
+
for (size_t n = 0; n < pos->bcnt; n++) {
|
109
|
+
const size_t o = pos->bobs[n];
|
110
|
+
sum += x[mdl->boff[o] + d];
|
111
|
+
}
|
112
|
+
(*psi)[t][yp][y] += sum;
|
113
|
+
}
|
114
|
+
}
|
115
|
+
}
|
116
|
+
return 0;
|
117
|
+
}
|
118
|
+
|
119
|
+
/* tag_postsc:
|
120
|
+
* This function compute score lattice with posteriors. This generally result
|
121
|
+
* in a slightly best labelling and allow to output normalized score for the
|
122
|
+
* sequence and for each labels but this is more costly as we have to perform
|
123
|
+
* a full forward backward instead of just the forward pass.
|
124
|
+
*/
|
125
|
+
static int tag_postsc(mdl_t *mdl, const seq_t *seq, double *vpsi) {
|
126
|
+
const size_t Y = mdl->nlbl;
|
127
|
+
const int T = seq->len;
|
128
|
+
double (*psi)[T][Y][Y] = (void *)vpsi;
|
129
|
+
grd_t *grd = grd_new(mdl, NULL);
|
130
|
+
grd->first = 0;
|
131
|
+
grd->last = T - 1;
|
132
|
+
grd_check(grd, seq->len);
|
133
|
+
if (mdl->opt->sparse) {
|
134
|
+
grd_spdopsi(grd, seq);
|
135
|
+
grd_spfwdbwd(grd, seq);
|
136
|
+
} else {
|
137
|
+
grd_fldopsi(grd, seq);
|
138
|
+
grd_flfwdbwd(grd, seq);
|
139
|
+
}
|
140
|
+
double (*alpha)[T][Y] = (void *)grd->alpha;
|
141
|
+
double (*beta )[T][Y] = (void *)grd->beta;
|
142
|
+
double *unorm = grd->unorm;
|
143
|
+
for (int t = 0; t < T; t++) {
|
144
|
+
for (size_t y = 0; y < Y; y++) {
|
145
|
+
double e = (*alpha)[t][y] * (*beta)[t][y] * unorm[t];
|
146
|
+
for (size_t yp = 0; yp < Y; yp++)
|
147
|
+
(*psi)[t][yp][y] = e;
|
148
|
+
}
|
149
|
+
}
|
150
|
+
grd_free(grd);
|
151
|
+
return 1;
|
152
|
+
}
|
153
|
+
|
154
|
+
/* tag_viterbi:
|
155
|
+
* This function implement the Viterbi algorithm in order to decode the most
|
156
|
+
* probable sequence of labels according to the model. Some part of this code
|
157
|
+
* is very similar to the computation of the gradient as expected.
|
158
|
+
*
|
159
|
+
* And like for the gradient, the caller is responsible to ensure there is
|
160
|
+
* enough stack space.
|
161
|
+
*/
|
162
|
+
void tag_viterbi(mdl_t *mdl, const seq_t *seq,
|
163
|
+
size_t out[], double *sc, double psc[]) {
|
164
|
+
const size_t Y = mdl->nlbl;
|
165
|
+
const int T = seq->len;
|
166
|
+
double *vpsi = wapiti_xmalloc(sizeof(double) * T * Y * Y);
|
167
|
+
size_t *vback = wapiti_xmalloc(sizeof(size_t) * T * Y);
|
168
|
+
double (*psi) [T][Y][Y] = (void *)vpsi;
|
169
|
+
size_t (*back)[T][Y] = (void *)vback;
|
170
|
+
double *cur = wapiti_xmalloc(sizeof(double) * Y);
|
171
|
+
double *old = wapiti_xmalloc(sizeof(double) * Y);
|
172
|
+
// We first compute the scores for each transitions in the lattice of
|
173
|
+
// labels.
|
174
|
+
int op;
|
175
|
+
if (mdl->opt->lblpost)
|
176
|
+
op = tag_postsc(mdl, seq, vpsi);
|
177
|
+
else
|
178
|
+
op = tag_expsc(mdl, seq, vpsi);
|
179
|
+
// Now we can do the Viterbi algorithm. This is very similar to the
|
180
|
+
// forward pass
|
181
|
+
// | α_1(y) = Ψ_1(y,x_1)
|
182
|
+
// | α_t(y) = max_{y'} α_{t-1}(y') + Ψ_t(y',y,x_t)
|
183
|
+
// We just replace the sum by a max and as we do the computation in the
|
184
|
+
// logarithmic space the product become a sum. (this also mean that we
|
185
|
+
// don't have to worry about numerical problems)
|
186
|
+
//
|
187
|
+
// Next we have to walk backward over the α in order to find the best
|
188
|
+
// path. In order to do this efficiently, we keep in the 'back' array
|
189
|
+
// the indice of the y value selected by the max. This also mean that
|
190
|
+
// we only need the current and previous value of the α vectors, not
|
191
|
+
// the full matrix.
|
192
|
+
for (size_t y = 0; y < Y; y++)
|
193
|
+
cur[y] = (*psi)[0][0][y];
|
194
|
+
for (int t = 1; t < T; t++) {
|
195
|
+
for (size_t y = 0; y < Y; y++)
|
196
|
+
old[y] = cur[y];
|
197
|
+
for (size_t y = 0; y < Y; y++) {
|
198
|
+
double bst = -1.0;
|
199
|
+
int idx = 0;
|
200
|
+
for (size_t yp = 0; yp < Y; yp++) {
|
201
|
+
double val = old[yp];
|
202
|
+
if (op)
|
203
|
+
val *= (*psi)[t][yp][y];
|
204
|
+
else
|
205
|
+
val += (*psi)[t][yp][y];
|
206
|
+
if (val > bst) {
|
207
|
+
bst = val;
|
208
|
+
idx = yp;
|
209
|
+
}
|
210
|
+
}
|
211
|
+
(*back)[t][y] = idx;
|
212
|
+
cur[y] = bst;
|
213
|
+
}
|
214
|
+
}
|
215
|
+
// We can now build the sequence of labels predicted by the model. For
|
216
|
+
// this we search in the last α vector the best value. Using this index
|
217
|
+
// as a starting point in the back-pointer array we finally can decode
|
218
|
+
// the best sequence.
|
219
|
+
int bst = 0;
|
220
|
+
for (size_t y = 1; y < Y; y++)
|
221
|
+
if (cur[y] > cur[bst])
|
222
|
+
bst = y;
|
223
|
+
if (sc != NULL)
|
224
|
+
*sc = cur[bst];
|
225
|
+
for (int t = T; t > 0; t--) {
|
226
|
+
const size_t yp = (t != 1) ? (*back)[t - 1][bst] : 0;
|
227
|
+
const size_t y = bst;
|
228
|
+
out[t - 1] = y;
|
229
|
+
if (psc != NULL)
|
230
|
+
psc[t - 1] = (*psi)[t - 1][yp][y];
|
231
|
+
bst = yp;
|
232
|
+
}
|
233
|
+
free(old);
|
234
|
+
free(cur);
|
235
|
+
free(vback);
|
236
|
+
free(vpsi);
|
237
|
+
}
|
238
|
+
|
239
|
+
/* tag_nbviterbi:
|
240
|
+
* This function implement the Viterbi algorithm in order to decode the N-most
|
241
|
+
* probable sequences of labels according to the model. It can be used to
|
242
|
+
* compute only the best one and will return the same sequence than the
|
243
|
+
* previous function but will be slower to do it.
|
244
|
+
*/
|
245
|
+
void tag_nbviterbi(mdl_t *mdl, const seq_t *seq, size_t N,
|
246
|
+
size_t out[][N], double sc[], double psc[][N]) {
|
247
|
+
const size_t Y = mdl->nlbl;
|
248
|
+
const int T = seq->len;
|
249
|
+
double *vpsi = wapiti_xmalloc(sizeof(double) * T * Y * Y);
|
250
|
+
size_t *vback = wapiti_xmalloc(sizeof(size_t) * T * Y * N);
|
251
|
+
double (*psi) [T][Y ][Y] = (void *)vpsi;
|
252
|
+
size_t (*back)[T][Y * N] = (void *)vback;
|
253
|
+
double *cur = wapiti_xmalloc(sizeof(double) * Y * N);
|
254
|
+
double *old = wapiti_xmalloc(sizeof(double) * Y * N);
|
255
|
+
// We first compute the scores for each transitions in the lattice of
|
256
|
+
// labels.
|
257
|
+
int op;
|
258
|
+
if (mdl->opt->lblpost)
|
259
|
+
op = tag_postsc(mdl, seq, (double *)psi);
|
260
|
+
else
|
261
|
+
op = tag_expsc(mdl, seq, (double *)psi);
|
262
|
+
// Here also, it's classical but we have to keep the N best paths
|
263
|
+
// leading to each nodes of the lattice instead of only the best one.
|
264
|
+
// This mean that code is less trivial and the current implementation is
|
265
|
+
// not the most efficient way to do this but it works well and is good
|
266
|
+
// enough for the moment.
|
267
|
+
// We first build the list of all incoming arcs from all paths from all
|
268
|
+
// N-best nodes and next select the N-best one. There is a lot of room
|
269
|
+
// here for later optimisations if needed.
|
270
|
+
for (size_t y = 0, d = 0; y < Y; y++) {
|
271
|
+
cur[d++] = (*psi)[0][0][y];
|
272
|
+
for (size_t n = 1; n < N; n++)
|
273
|
+
cur[d++] = -DBL_MAX;
|
274
|
+
}
|
275
|
+
for (int t = 1; t < T; t++) {
|
276
|
+
for (size_t d = 0; d < Y * N; d++)
|
277
|
+
old[d] = cur[d];
|
278
|
+
for (size_t y = 0; y < Y; y++) {
|
279
|
+
// 1st, build the list of all incoming
|
280
|
+
double lst[Y * N];
|
281
|
+
for (size_t yp = 0, d = 0; yp < Y; yp++) {
|
282
|
+
for (size_t n = 0; n < N; n++, d++) {
|
283
|
+
lst[d] = old[d];
|
284
|
+
if (op)
|
285
|
+
lst[d] *= (*psi)[t][yp][y];
|
286
|
+
else
|
287
|
+
lst[d] += (*psi)[t][yp][y];
|
288
|
+
}
|
289
|
+
}
|
290
|
+
// 2nd, init the back with the N first
|
291
|
+
size_t *bk = &(*back)[t][y * N];
|
292
|
+
for (size_t n = 0; n < N; n++)
|
293
|
+
bk[n] = n;
|
294
|
+
// 3rd, search the N highest values
|
295
|
+
for (size_t i = N; i < N * Y; i++) {
|
296
|
+
// Search the smallest current value
|
297
|
+
size_t idx = 0;
|
298
|
+
for (size_t n = 1; n < N; n++)
|
299
|
+
if (lst[bk[n]] < lst[bk[idx]])
|
300
|
+
idx = n;
|
301
|
+
// And replace it if needed
|
302
|
+
if (lst[i] > lst[bk[idx]])
|
303
|
+
bk[idx] = i;
|
304
|
+
}
|
305
|
+
// 4th, get the new scores
|
306
|
+
for (size_t n = 0; n < N; n++)
|
307
|
+
cur[y * N + n] = lst[bk[n]];
|
308
|
+
}
|
309
|
+
}
|
310
|
+
// Retrieving the best paths is similar to classical Viterbi except that
|
311
|
+
// we have to search for the N bet ones and there is N time more
|
312
|
+
// possibles starts.
|
313
|
+
for (size_t n = 0; n < N; n++) {
|
314
|
+
int bst = 0;
|
315
|
+
for (size_t d = 1; d < Y * N; d++)
|
316
|
+
if (cur[d] > cur[bst])
|
317
|
+
bst = d;
|
318
|
+
if (sc != NULL)
|
319
|
+
sc[n] = cur[bst];
|
320
|
+
cur[bst] = -DBL_MAX;
|
321
|
+
for (int t = T; t > 0; t--) {
|
322
|
+
const size_t yp = (t != 1) ? (*back)[t - 1][bst] / N: 0;
|
323
|
+
const size_t y = bst / N;
|
324
|
+
out[t - 1][n] = y;
|
325
|
+
if (psc != NULL)
|
326
|
+
psc[t - 1][n] = (*psi)[t - 1][yp][y];
|
327
|
+
bst = (*back)[t - 1][bst];
|
328
|
+
}
|
329
|
+
}
|
330
|
+
free(old);
|
331
|
+
free(cur);
|
332
|
+
free(vback);
|
333
|
+
free(vpsi);
|
334
|
+
}
|
335
|
+
|
336
|
+
/* tag_label:
|
337
|
+
* Label a data file using the current model. This output an almost exact copy
|
338
|
+
* of the input file with an additional column with the predicted label. If
|
339
|
+
* the check option is specified, the input file must be labelled and the
|
340
|
+
* predicted labels will be checked against the provided ones. This will
|
341
|
+
* output error rates during the labelling and detailed statistics per label
|
342
|
+
* at the end.
|
343
|
+
*/
|
344
|
+
void tag_label(mdl_t *mdl, FILE *fin, FILE *fout) {
|
345
|
+
qrk_t *lbls = mdl->reader->lbl;
|
346
|
+
const size_t Y = mdl->nlbl;
|
347
|
+
const size_t N = mdl->opt->nbest;
|
348
|
+
// We start by preparing the statistic collection to be ready if check
|
349
|
+
// option is used. The stat array hold the following for each label
|
350
|
+
// [0] # of reference with this label
|
351
|
+
// [1] # of token we have taged with this label
|
352
|
+
// [2] # of match of the two preceding
|
353
|
+
size_t tcnt = 0, terr = 0;
|
354
|
+
size_t scnt = 0, serr = 0;
|
355
|
+
size_t stat[3][Y];
|
356
|
+
for (size_t y = 0; y < Y; y++)
|
357
|
+
stat[0][y] = stat[1][y] = stat[2][y] = 0;
|
358
|
+
// Next read the input file sequence by sequence and label them, we have
|
359
|
+
// to take care of not discarding the raw input as we want to send it
|
360
|
+
// back to the output with the additional predicted labels.
|
361
|
+
while (!feof(fin)) {
|
362
|
+
// So, first read an input sequence keeping the raw_t object
|
363
|
+
// available, and label it with Viterbi.
|
364
|
+
raw_t *raw = rdr_readraw(mdl->reader, fin);
|
365
|
+
if (raw == NULL)
|
366
|
+
break;
|
367
|
+
seq_t *seq = rdr_raw2seq(mdl->reader, raw, mdl->opt->check);
|
368
|
+
const int T = seq->len;
|
369
|
+
size_t *out = wapiti_xmalloc(sizeof(size_t) * T * N);
|
370
|
+
double *psc = wapiti_xmalloc(sizeof(double) * T * N);
|
371
|
+
double *scs = wapiti_xmalloc(sizeof(double) * N);
|
372
|
+
if (N == 1)
|
373
|
+
tag_viterbi(mdl, seq, (size_t*)out, scs, (double*)psc);
|
374
|
+
else
|
375
|
+
tag_nbviterbi(mdl, seq, N, (void*)out, scs, (void*)psc);
|
376
|
+
// Next we output the raw sequence with an aditional column for
|
377
|
+
// the predicted labels
|
378
|
+
for (size_t n = 0; n < N; n++) {
|
379
|
+
if (mdl->opt->outsc)
|
380
|
+
fprintf(fout, "# %d %f\n", (int)n, scs[n]);
|
381
|
+
for (int t = 0; t < T; t++) {
|
382
|
+
if (!mdl->opt->label)
|
383
|
+
fprintf(fout, "%s\t", raw->lines[t]);
|
384
|
+
size_t lbl = out[t * N + n];
|
385
|
+
const char *lblstr = qrk_id2str(lbls, lbl);
|
386
|
+
fprintf(fout, "%s", lblstr);
|
387
|
+
if (mdl->opt->outsc) {
|
388
|
+
fprintf(fout, "\t%s", lblstr);
|
389
|
+
fprintf(fout, "/%f", psc[t * N + n]);
|
390
|
+
}
|
391
|
+
fprintf(fout, "\n");
|
392
|
+
}
|
393
|
+
fprintf(fout, "\n");
|
394
|
+
}
|
395
|
+
fflush(fout);
|
396
|
+
// If user provided reference labels, use them to collect
|
397
|
+
// statistics about how well we have performed here.
|
398
|
+
if (mdl->opt->check) {
|
399
|
+
bool err = false;
|
400
|
+
for (int t = 0; t < T; t++) {
|
401
|
+
stat[0][seq->pos[t].lbl]++;
|
402
|
+
stat[1][out[t * N]]++;
|
403
|
+
if (seq->pos[t].lbl != out[t * N])
|
404
|
+
terr++, err = true;
|
405
|
+
else
|
406
|
+
stat[2][out[t * N]]++;
|
407
|
+
}
|
408
|
+
tcnt += (size_t)T;
|
409
|
+
serr += err;
|
410
|
+
}
|
411
|
+
// Cleanup memory used for this sequence
|
412
|
+
free(scs);
|
413
|
+
free(psc);
|
414
|
+
free(out);
|
415
|
+
rdr_freeseq(seq);
|
416
|
+
rdr_freeraw(raw);
|
417
|
+
// And report our progress, at regular interval we display how
|
418
|
+
// much sequence are labelled and if possible the current tokens
|
419
|
+
// and sequence error rates.
|
420
|
+
if (++scnt % 1000 == 0) {
|
421
|
+
info("%10zu sequences labeled", scnt);
|
422
|
+
if (mdl->opt->check) {
|
423
|
+
const double te = (double)terr / tcnt * 100.0;
|
424
|
+
const double se = (double)serr / scnt * 100.0;
|
425
|
+
info("\t%5.2f%%/%5.2f%%", te, se);
|
426
|
+
}
|
427
|
+
info("\n");
|
428
|
+
}
|
429
|
+
}
|
430
|
+
// If user have provided reference labels, we have collected a lot of
|
431
|
+
// statistics and we can repport global token and sequence error rate as
|
432
|
+
// well as precision recall and f-measure for each labels.
|
433
|
+
if (mdl->opt->check) {
|
434
|
+
const double te = (double)terr / tcnt * 100.0;
|
435
|
+
const double se = (double)serr / scnt * 100.0;
|
436
|
+
info(" Nb sequences : %zu\n", scnt);
|
437
|
+
info(" Token error : %5.2f%%\n", te);
|
438
|
+
info(" Sequence error: %5.2f%%\n", se);
|
439
|
+
info("* Per label statistics\n");
|
440
|
+
for (size_t y = 0; y < Y; y++) {
|
441
|
+
const char *lbl = qrk_id2str(lbls, y);
|
442
|
+
const double Rc = (double)stat[2][y] / stat[0][y];
|
443
|
+
const double Pr = (double)stat[2][y] / stat[1][y];
|
444
|
+
const double F1 = 2.0 * (Pr * Rc) / (Pr + Rc);
|
445
|
+
info(" %-6s", lbl);
|
446
|
+
info(" Pr=%.2f", Pr);
|
447
|
+
info(" Rc=%.2f", Rc);
|
448
|
+
info(" F1=%.2f\n", F1);
|
449
|
+
}
|
450
|
+
}
|
451
|
+
}
|
452
|
+
|
453
|
+
/* eval_t:
|
454
|
+
* This a state tracker used to communicate between the main eval function and
|
455
|
+
* its workers threads, the <mdl> and <dat> fields are used to transmit to the
|
456
|
+
* workers informations needed to make the computation, the other fields are
|
457
|
+
* for returning the partial results.
|
458
|
+
*/
|
459
|
+
typedef struct eval_s eval_t;
|
460
|
+
struct eval_s {
|
461
|
+
mdl_t *mdl;
|
462
|
+
dat_t *dat;
|
463
|
+
size_t tcnt; // Processed tokens count
|
464
|
+
size_t terr; // Tokens error found
|
465
|
+
size_t scnt; // Processes sequences count
|
466
|
+
size_t serr; // Sequence error found
|
467
|
+
};
|
468
|
+
|
469
|
+
/* tag_evalsub:
|
470
|
+
* This is where the real evaluation is done by the workers, we process data
|
471
|
+
* by batch and for each batch do a simple Viterbi and scan the result to find
|
472
|
+
* errors.
|
473
|
+
*/
|
474
|
+
static void tag_evalsub(job_t *job, int id, int cnt, eval_t *eval) {
|
475
|
+
unused(id && cnt);
|
476
|
+
mdl_t *mdl = eval->mdl;
|
477
|
+
dat_t *dat = eval->dat;
|
478
|
+
eval->tcnt = 0;
|
479
|
+
eval->terr = 0;
|
480
|
+
eval->scnt = 0;
|
481
|
+
eval->serr = 0;
|
482
|
+
// We just get a job a process all the squence in it.
|
483
|
+
size_t count, pos;
|
484
|
+
while (mth_getjob(job, &count, &pos)) {
|
485
|
+
for (size_t s = pos; s < pos + count; s++) {
|
486
|
+
// Tag the sequence with the viterbi
|
487
|
+
const seq_t *seq = dat->seq[s];
|
488
|
+
const int T = seq->len;
|
489
|
+
size_t out[T];
|
490
|
+
tag_viterbi(mdl, seq, out, NULL, NULL);
|
491
|
+
// And check for eventual (probable ?) errors
|
492
|
+
bool err = false;
|
493
|
+
for (int t = 0; t < T; t++)
|
494
|
+
if (seq->pos[t].lbl != out[t])
|
495
|
+
eval->terr++, err = true;
|
496
|
+
eval->tcnt += (size_t)T;
|
497
|
+
eval->scnt += 1;
|
498
|
+
eval->serr += err;
|
499
|
+
}
|
500
|
+
}
|
501
|
+
}
|
502
|
+
|
503
|
+
/* tag_eval:
|
504
|
+
* Compute the token error rate and sequence error rate over the devel set (or
|
505
|
+
* taining set if not available).
|
506
|
+
*/
|
507
|
+
void tag_eval(mdl_t *mdl, double *te, double *se) {
|
508
|
+
const size_t W = mdl->opt->nthread;
|
509
|
+
dat_t *dat = (mdl->devel == NULL) ? mdl->train : mdl->devel;
|
510
|
+
// First we prepare the eval state for all the workers threads, we just
|
511
|
+
// have to give them the model and dataset to use. This state will be
|
512
|
+
// used to retrieve partial result they computed.
|
513
|
+
eval_t *eval[W];
|
514
|
+
for (size_t w = 0; w < W; w++) {
|
515
|
+
eval[w] = wapiti_xmalloc(sizeof(eval_t));
|
516
|
+
eval[w]->mdl = mdl;
|
517
|
+
eval[w]->dat = dat;
|
518
|
+
}
|
519
|
+
// And next, we call the workers to do the job and reduce the partial
|
520
|
+
// result by summing them and computing the final error rates.
|
521
|
+
mth_spawn((func_t *)tag_evalsub, W, (void *)eval, dat->nseq,
|
522
|
+
mdl->opt->jobsize);
|
523
|
+
size_t tcnt = 0, terr = 0;
|
524
|
+
size_t scnt = 0, serr = 0;
|
525
|
+
for (size_t w = 0; w < W; w++) {
|
526
|
+
tcnt += eval[w]->tcnt;
|
527
|
+
terr += eval[w]->terr;
|
528
|
+
scnt += eval[w]->scnt;
|
529
|
+
serr += eval[w]->serr;
|
530
|
+
free(eval[w]);
|
531
|
+
}
|
532
|
+
*te = (double)terr / tcnt * 100.0;
|
533
|
+
*se = (double)serr / scnt * 100.0;
|
534
|
+
}
|
535
|
+
|