trueskill 0.1.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- data/.document +5 -0
- data/.gitignore +21 -0
- data/CHANGELOG +0 -0
- data/LICENSE +20 -0
- data/README.rdoc +17 -0
- data/Rakefile +46 -0
- data/VERSION +1 -0
- data/lib/saulabs/gauss.rb +3 -0
- data/lib/saulabs/gauss/distribution.rb +125 -0
- data/lib/saulabs/gauss/truncated_correction.rb +62 -0
- data/lib/saulabs/trueskill.rb +7 -0
- data/lib/saulabs/trueskill/factor_graph.rb +75 -0
- data/lib/saulabs/trueskill/factors/base.rb +50 -0
- data/lib/saulabs/trueskill/factors/greater_than.rb +45 -0
- data/lib/saulabs/trueskill/factors/likelihood.rb +45 -0
- data/lib/saulabs/trueskill/factors/prior.rb +35 -0
- data/lib/saulabs/trueskill/factors/weighted_sum.rb +80 -0
- data/lib/saulabs/trueskill/factors/within.rb +45 -0
- data/lib/saulabs/trueskill/layers/base.rb +32 -0
- data/lib/saulabs/trueskill/layers/iterated_team_performances.rb +72 -0
- data/lib/saulabs/trueskill/layers/performances_to_team_performances.rb +31 -0
- data/lib/saulabs/trueskill/layers/prior_to_skills.rb +32 -0
- data/lib/saulabs/trueskill/layers/skills_to_performances.rb +31 -0
- data/lib/saulabs/trueskill/layers/team_difference_comparision.rb +27 -0
- data/lib/saulabs/trueskill/layers/team_performance_differences.rb +22 -0
- data/lib/saulabs/trueskill/rating.rb +18 -0
- data/lib/saulabs/trueskill/schedules/base.rb +15 -0
- data/lib/saulabs/trueskill/schedules/loop.rb +26 -0
- data/lib/saulabs/trueskill/schedules/sequence.rb +23 -0
- data/lib/saulabs/trueskill/schedules/step.rb +20 -0
- data/spec/saulabs/gauss/distribution_spec.rb +162 -0
- data/spec/saulabs/gauss/truncated_correction_spec.rb +41 -0
- data/spec/saulabs/trueskill/factor_graph_spec.rb +29 -0
- data/spec/saulabs/trueskill/factors/greater_than_spec.rb +26 -0
- data/spec/saulabs/trueskill/factors/likelihood_spec.rb +32 -0
- data/spec/saulabs/trueskill/factors/prior_spec.rb +26 -0
- data/spec/saulabs/trueskill/factors/weighted_sum_spec.rb +67 -0
- data/spec/saulabs/trueskill/factors/within_spec.rb +26 -0
- data/spec/saulabs/trueskill/layers/prior_to_skills_spec.rb +39 -0
- data/spec/saulabs/trueskill/schedules_spec.rb +14 -0
- data/spec/spec.opts +1 -0
- data/spec/spec_helper.rb +29 -0
- data/trueskill.gemspec +99 -0
- metadata +143 -0
@@ -0,0 +1,45 @@
|
|
1
|
+
module Saulabs
|
2
|
+
module TrueSkill
|
3
|
+
module Factors
|
4
|
+
|
5
|
+
class GreaterThan < Base
|
6
|
+
|
7
|
+
def initialize(epsilon, variable)
|
8
|
+
super()
|
9
|
+
@epsilon = epsilon
|
10
|
+
bind(variable)
|
11
|
+
end
|
12
|
+
|
13
|
+
def log_normalization
|
14
|
+
msg = @variables[0] / @messages[0]
|
15
|
+
-Gauss::Distribution.log_product_normalization(msg, @messages[0]) +
|
16
|
+
Math.log(Gauss::Distribution.cdf((msg.mean - @epsilon) / msg.deviation))
|
17
|
+
end
|
18
|
+
|
19
|
+
def update_message_at(index)
|
20
|
+
raise "illegal message index: #{index}" if index < 0 || index > 0
|
21
|
+
message = @messages[index]
|
22
|
+
variable = @bindings[@messages[index]]
|
23
|
+
|
24
|
+
msg = variable / message
|
25
|
+
c = msg.precision
|
26
|
+
d = msg.precision_mean
|
27
|
+
sqrt_c = Math.sqrt(c)
|
28
|
+
d_sqrt_c = sqrt_c == 0 ? 0.0 : d / sqrt_c
|
29
|
+
e_sqrt_c = @epsilon * sqrt_c
|
30
|
+
denom = 1.0 - Gauss::TruncatedCorrection.w_exceeds_margin(d_sqrt_c, e_sqrt_c)
|
31
|
+
new_precision = c / denom
|
32
|
+
new_precision_mean = (d + sqrt_c * Gauss::TruncatedCorrection.v_exceeds_margin(d_sqrt_c, e_sqrt_c)) / denom
|
33
|
+
new_marginal = Gauss::Distribution.with_precision(new_precision_mean, new_precision)
|
34
|
+
new_message = message * new_marginal / variable
|
35
|
+
diff = new_marginal - variable
|
36
|
+
message.replace(new_message)
|
37
|
+
variable.replace(new_marginal)
|
38
|
+
return diff
|
39
|
+
end
|
40
|
+
|
41
|
+
end
|
42
|
+
|
43
|
+
end
|
44
|
+
end
|
45
|
+
end
|
@@ -0,0 +1,45 @@
|
|
1
|
+
module Saulabs
|
2
|
+
module TrueSkill
|
3
|
+
module Factors
|
4
|
+
|
5
|
+
class Likelihood < Base
|
6
|
+
|
7
|
+
def initialize(beta_squared, variable1, variable2)
|
8
|
+
super()
|
9
|
+
@precision = 1.0 / beta_squared
|
10
|
+
bind(variable1)
|
11
|
+
bind(variable2)
|
12
|
+
end
|
13
|
+
|
14
|
+
def update_message_at(index)
|
15
|
+
raise "illegal message index: #{index}" if index < 0 || index > 1
|
16
|
+
case index
|
17
|
+
when 0 then update_helper(@messages[0], @messages[1], @variables[0], @variables[1])
|
18
|
+
when 1 then update_helper(@messages[1], @messages[0], @variables[1], @variables[0])
|
19
|
+
end
|
20
|
+
end
|
21
|
+
|
22
|
+
def log_normalization
|
23
|
+
Gauss::Distribution.log_ratio_normalization(@variables[0], @messages[0])
|
24
|
+
end
|
25
|
+
|
26
|
+
private
|
27
|
+
|
28
|
+
def update_helper(message1, message2, variable1, variable2)
|
29
|
+
a = @precision / (@precision + variable2.precision - message2.precision)
|
30
|
+
new_message = Gauss::Distribution.with_precision(
|
31
|
+
a * (variable2.precision_mean - message2.precision_mean),
|
32
|
+
a * (variable2.precision - message2.precision)
|
33
|
+
)
|
34
|
+
new_marginal = (variable1 / message1) * new_message
|
35
|
+
diff = new_marginal - variable1
|
36
|
+
message1.replace(new_message)
|
37
|
+
variable1.replace(new_marginal)
|
38
|
+
return diff
|
39
|
+
end
|
40
|
+
|
41
|
+
end
|
42
|
+
|
43
|
+
end
|
44
|
+
end
|
45
|
+
end
|
@@ -0,0 +1,35 @@
|
|
1
|
+
module Saulabs
|
2
|
+
module TrueSkill
|
3
|
+
module Factors
|
4
|
+
|
5
|
+
class Prior < Base
|
6
|
+
|
7
|
+
def initialize(mean, variance, variable)
|
8
|
+
super()
|
9
|
+
@message = Gauss::Distribution.with_variance(mean, variance)
|
10
|
+
bind(variable)
|
11
|
+
end
|
12
|
+
|
13
|
+
def update_message_at(index)
|
14
|
+
raise "illegal message index: #{index}" if index < 0 || index > 0
|
15
|
+
message = @messages[index]
|
16
|
+
variable = @variables[index]
|
17
|
+
new_marginal = Gauss::Distribution.with_precision(
|
18
|
+
variable.precision_mean + @message.precision_mean - message.precision_mean,
|
19
|
+
variable.precision + @message.precision - message.precision
|
20
|
+
)
|
21
|
+
diff = variable - new_marginal
|
22
|
+
variable.replace(new_marginal)
|
23
|
+
message.replace(@message)
|
24
|
+
return diff
|
25
|
+
end
|
26
|
+
|
27
|
+
def log_normalization
|
28
|
+
0.0
|
29
|
+
end
|
30
|
+
|
31
|
+
end
|
32
|
+
|
33
|
+
end
|
34
|
+
end
|
35
|
+
end
|
@@ -0,0 +1,80 @@
|
|
1
|
+
require 'pp'
|
2
|
+
|
3
|
+
module Saulabs
|
4
|
+
module TrueSkill
|
5
|
+
module Factors
|
6
|
+
|
7
|
+
class WeightedSum < Base
|
8
|
+
|
9
|
+
attr_reader :weights, :weights_squared, :index_order
|
10
|
+
|
11
|
+
def initialize(variable, ratings, weights)
|
12
|
+
super()
|
13
|
+
@weights = [weights]
|
14
|
+
@weights_squared = [@weights.first.map { |w| w**2 }]
|
15
|
+
@index_order = [(0..weights.size+1).to_a]
|
16
|
+
(1..weights.size).each do |idx|
|
17
|
+
dest_idx = 0
|
18
|
+
@weights[idx] = []
|
19
|
+
@weights_squared[idx] = []
|
20
|
+
@index_order << [idx]
|
21
|
+
(0..ratings.size-1).each do |src_idx|
|
22
|
+
next if src_idx == idx-1
|
23
|
+
weight = weights[idx-1] == 0 ? 0.0 : -weights[src_idx] / weights[idx-1]
|
24
|
+
@weights[idx][dest_idx] = weight
|
25
|
+
@weights_squared[idx][dest_idx] = weight**2
|
26
|
+
@index_order.last[dest_idx+1] = src_idx+1
|
27
|
+
dest_idx += 1
|
28
|
+
end
|
29
|
+
final_weight = weights[idx-1] == 0 ? 0.0 : 1.0 / weights[idx-1]
|
30
|
+
@weights[idx][dest_idx] = final_weight
|
31
|
+
@weights_squared[idx][dest_idx] = final_weight**2
|
32
|
+
@index_order.last[weights.size] = 0
|
33
|
+
end
|
34
|
+
bind(variable)
|
35
|
+
ratings.each { |v| bind(v) }
|
36
|
+
end
|
37
|
+
|
38
|
+
def update_message_at(index)
|
39
|
+
raise "illegal message index: #{index}" if index < 0 || index >= @messages.count
|
40
|
+
indices = @index_order[index]
|
41
|
+
updated_messages = []
|
42
|
+
updated_variables = []
|
43
|
+
@messages.each_index do |i|
|
44
|
+
updated_messages << @messages[indices[i]]
|
45
|
+
updated_variables << @variables[indices[i]]
|
46
|
+
end
|
47
|
+
update_helper(@weights[index], @weights_squared[index], updated_messages, updated_variables)
|
48
|
+
end
|
49
|
+
|
50
|
+
def log_normalization
|
51
|
+
res = 0
|
52
|
+
(1..@variables.size-1).each do |i|
|
53
|
+
res += Gauss::Distribution.log_ratio_normalization(@variables[i], @messages[i])
|
54
|
+
end
|
55
|
+
res
|
56
|
+
end
|
57
|
+
|
58
|
+
private
|
59
|
+
|
60
|
+
def update_helper(weights, weights_squared, messages, variables)
|
61
|
+
marginal0 = variables[0].clone
|
62
|
+
ips, wms = 0.0, 0.0
|
63
|
+
weights_squared.each_index do |i|
|
64
|
+
ips += weights_squared[i] / (variables[i+1].precision - messages[i+1].precision)
|
65
|
+
diff = variables[i+1] / messages[i+1]
|
66
|
+
wms += weights[i] * (variables[i+1].precision_mean - messages[i+1].precision_mean) / (variables[i+1].precision - messages[i+1].precision)
|
67
|
+
end
|
68
|
+
new_message = Gauss::Distribution.with_precision(1.0/ips*wms, 1.0/ips)
|
69
|
+
old_marginal = marginal0 / messages[0]
|
70
|
+
new_marginal = old_marginal * new_message
|
71
|
+
messages[0].replace(new_message)
|
72
|
+
variables[0].replace(new_marginal)
|
73
|
+
return new_marginal - marginal0
|
74
|
+
end
|
75
|
+
|
76
|
+
end
|
77
|
+
|
78
|
+
end
|
79
|
+
end
|
80
|
+
end
|
@@ -0,0 +1,45 @@
|
|
1
|
+
module Saulabs
|
2
|
+
module TrueSkill
|
3
|
+
module Factors
|
4
|
+
|
5
|
+
class Within < Base
|
6
|
+
|
7
|
+
def initialize(epsilon, variable)
|
8
|
+
super()
|
9
|
+
@epsilon = epsilon
|
10
|
+
bind(variable)
|
11
|
+
end
|
12
|
+
|
13
|
+
def log_normalization
|
14
|
+
msg = @variables[0] / @messages[0]
|
15
|
+
mean = msg.mean
|
16
|
+
dev = msg.deviation
|
17
|
+
z = Gauss::Distribution.cdf((@epsilon - mean) / dev) - Gauss::Distribution.cdf((-@epsilon - mean) / dev)
|
18
|
+
-Gauss::Distribution.log_product_normalization(msg, @messages[0]) + Math.log(z)
|
19
|
+
end
|
20
|
+
|
21
|
+
def update_message_at(index)
|
22
|
+
message = @messages[index]
|
23
|
+
variable = @variables[index]
|
24
|
+
msg = variable / message
|
25
|
+
c = msg.precision
|
26
|
+
d = msg.precision_mean
|
27
|
+
sqrt_c = Math.sqrt(c)
|
28
|
+
d_sqrt_c = sqrt_c == 0 ? 0.0 : d / sqrt_c
|
29
|
+
e_sqrt_c = @epsilon * sqrt_c
|
30
|
+
denom = 1.0 - Gauss::TruncatedCorrection.w_within_margin(d_sqrt_c, e_sqrt_c)
|
31
|
+
new_precision = c / denom
|
32
|
+
new_precision_mean = (d + sqrt_c * Gauss::TruncatedCorrection.v_within_margin(d_sqrt_c, e_sqrt_c)) / denom
|
33
|
+
new_marginal = Gauss::Distribution.with_precision(new_precision_mean, new_precision)
|
34
|
+
new_message = message * new_marginal / variable
|
35
|
+
diff = new_marginal - variable
|
36
|
+
message.replace(new_message)
|
37
|
+
variable.replace(new_marginal)
|
38
|
+
return diff
|
39
|
+
end
|
40
|
+
|
41
|
+
end
|
42
|
+
|
43
|
+
end
|
44
|
+
end
|
45
|
+
end
|
@@ -0,0 +1,32 @@
|
|
1
|
+
module Saulabs
|
2
|
+
module TrueSkill
|
3
|
+
module Layers
|
4
|
+
|
5
|
+
class Base
|
6
|
+
|
7
|
+
attr_accessor :graph, :factors, :output, :input
|
8
|
+
|
9
|
+
def initialize(graph)
|
10
|
+
@graph = graph
|
11
|
+
@factors = []
|
12
|
+
@output = []
|
13
|
+
@input = []
|
14
|
+
end
|
15
|
+
|
16
|
+
def build
|
17
|
+
raise "Abstract method Layers::Base#build called"
|
18
|
+
end
|
19
|
+
|
20
|
+
def prior_schedule
|
21
|
+
nil
|
22
|
+
end
|
23
|
+
|
24
|
+
def posterior_schedule
|
25
|
+
nil
|
26
|
+
end
|
27
|
+
|
28
|
+
end
|
29
|
+
|
30
|
+
end
|
31
|
+
end
|
32
|
+
end
|
@@ -0,0 +1,72 @@
|
|
1
|
+
module Saulabs
|
2
|
+
module TrueSkill
|
3
|
+
module Layers
|
4
|
+
|
5
|
+
class IteratedTeamPerformances < Base
|
6
|
+
|
7
|
+
def initialize(graph, team_perf_diff, team_diff_comp)
|
8
|
+
super(graph)
|
9
|
+
@tpd = team_perf_diff
|
10
|
+
@tdc = team_diff_comp
|
11
|
+
end
|
12
|
+
|
13
|
+
def build
|
14
|
+
@tpd.input = @input
|
15
|
+
@tpd.build
|
16
|
+
@tdc.input = @tpd.output
|
17
|
+
@tdc.build
|
18
|
+
end
|
19
|
+
|
20
|
+
def factors
|
21
|
+
@tpd.factors + @tdc.factors
|
22
|
+
end
|
23
|
+
|
24
|
+
def prior_schedule
|
25
|
+
loop_schedule = if @input.size == 2
|
26
|
+
two_team_loop_schedule
|
27
|
+
elsif @input.size > 2
|
28
|
+
multiple_team_loop_schedule
|
29
|
+
else
|
30
|
+
raise 'Illegal input'
|
31
|
+
end
|
32
|
+
team_diffs = @tpd.factors.size;
|
33
|
+
Schedules::Sequence.new([loop_schedule,
|
34
|
+
Schedules::Step.new(@tpd.factors[0], 1),
|
35
|
+
Schedules::Step.new(@tpd.factors[team_diffs-1], 2)])
|
36
|
+
end
|
37
|
+
|
38
|
+
private
|
39
|
+
|
40
|
+
def two_team_loop_schedule
|
41
|
+
Schedules::Sequence.new([
|
42
|
+
Schedules::Step.new(@tpd.factors[0], 0),
|
43
|
+
Schedules::Step.new(@tdc.factors[0], 0)
|
44
|
+
])
|
45
|
+
end
|
46
|
+
|
47
|
+
def multiple_team_loop_schedule
|
48
|
+
team_diff = @tpd.factors.size
|
49
|
+
forward_schedule = Schedules::Sequence.new(
|
50
|
+
(0..team_diff-2).map { |i|
|
51
|
+
Schedules::Sequence.new([
|
52
|
+
Schedules::Step.new(@tpd.factors[i], 0),
|
53
|
+
Schedules::Step.new(@tdc.factors[i], 0),
|
54
|
+
Schedules::Step.new(@tpd.factors[i], 2)
|
55
|
+
])
|
56
|
+
})
|
57
|
+
backward_schedule = Schedules::Sequence.new(
|
58
|
+
(0..team_diff-2).map { |i|
|
59
|
+
Schedules::Sequence.new([
|
60
|
+
Schedules::Step.new(@tpd.factors[team_diff-1-i], 0),
|
61
|
+
Schedules::Step.new(@tdc.factors[team_diff-1-i], 0),
|
62
|
+
Schedules::Step.new(@tpd.factors[team_diff-1-i], 1)
|
63
|
+
])
|
64
|
+
})
|
65
|
+
Schedules::Loop.new(Schedules::Sequence.new([forward_schedule, backward_schedule]), 0.0001)
|
66
|
+
end
|
67
|
+
|
68
|
+
end
|
69
|
+
|
70
|
+
end
|
71
|
+
end
|
72
|
+
end
|
@@ -0,0 +1,31 @@
|
|
1
|
+
module Saulabs
|
2
|
+
module TrueSkill
|
3
|
+
module Layers
|
4
|
+
|
5
|
+
class PerformancesToTeamPerformances < Base
|
6
|
+
|
7
|
+
def build
|
8
|
+
@input.each do |ratings|
|
9
|
+
variable = Gauss::Distribution.new
|
10
|
+
@factors << Factors::WeightedSum.new(variable, ratings, ratings.map(&:activity))
|
11
|
+
@output << [variable]
|
12
|
+
end
|
13
|
+
end
|
14
|
+
|
15
|
+
def prior_schedule
|
16
|
+
Schedules::Sequence.new(@factors.map { |f| Schedules::Step.new(f, 0) })
|
17
|
+
end
|
18
|
+
|
19
|
+
def posterior_schedule
|
20
|
+
steps = []
|
21
|
+
@factors.each do |f|
|
22
|
+
(1..f.message_count-1).each { |i| steps << Schedules::Step.new(f, i) }
|
23
|
+
end
|
24
|
+
Schedules::Sequence.new(steps)
|
25
|
+
end
|
26
|
+
|
27
|
+
end
|
28
|
+
|
29
|
+
end
|
30
|
+
end
|
31
|
+
end
|
@@ -0,0 +1,32 @@
|
|
1
|
+
module Saulabs
|
2
|
+
module TrueSkill
|
3
|
+
module Layers
|
4
|
+
|
5
|
+
class PriorToSkills < Base
|
6
|
+
|
7
|
+
def initialize(graph, teams)
|
8
|
+
super(graph)
|
9
|
+
@teams = teams
|
10
|
+
end
|
11
|
+
|
12
|
+
def build
|
13
|
+
@teams.each do |team|
|
14
|
+
team_skills = []
|
15
|
+
team.each do |rating|
|
16
|
+
variable = TrueSkill::Rating.new(0.0, 0.0, rating.activity, rating.tau)
|
17
|
+
@factors << Factors::Prior.new(rating.mean, rating.variance + rating.tau_squared, variable)
|
18
|
+
team_skills << variable
|
19
|
+
end
|
20
|
+
@output << team_skills
|
21
|
+
end
|
22
|
+
end
|
23
|
+
|
24
|
+
def prior_schedule
|
25
|
+
Schedules::Sequence.new(@factors.map { |f| Schedules::Step.new(f, 0) })
|
26
|
+
end
|
27
|
+
|
28
|
+
end
|
29
|
+
|
30
|
+
end
|
31
|
+
end
|
32
|
+
end
|
@@ -0,0 +1,31 @@
|
|
1
|
+
module Saulabs
|
2
|
+
module TrueSkill
|
3
|
+
module Layers
|
4
|
+
|
5
|
+
class SkillsToPerformances < Base
|
6
|
+
|
7
|
+
def build
|
8
|
+
@input.each do |team|
|
9
|
+
team_performances = []
|
10
|
+
team.each do |rating|
|
11
|
+
variable = TrueSkill::Rating.new(0.0, 0.0, rating.activity, rating.tau)
|
12
|
+
@factors << Factors::Likelihood.new(@graph.beta_squared, variable, rating)
|
13
|
+
team_performances << variable
|
14
|
+
end
|
15
|
+
@output << team_performances
|
16
|
+
end
|
17
|
+
end
|
18
|
+
|
19
|
+
def prior_schedule
|
20
|
+
Schedules::Sequence.new(@factors.map { |f| Schedules::Step.new(f, 0) })
|
21
|
+
end
|
22
|
+
|
23
|
+
def posterior_schedule
|
24
|
+
Schedules::Sequence.new(@factors.map { |f| Schedules::Step.new(f, 1) })
|
25
|
+
end
|
26
|
+
|
27
|
+
end
|
28
|
+
|
29
|
+
end
|
30
|
+
end
|
31
|
+
end
|