transformers-rb 0.1.2 → 0.1.3
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +7 -0
- data/README.md +61 -3
- data/lib/transformers/configuration_utils.rb +32 -4
- data/lib/transformers/modeling_utils.rb +10 -3
- data/lib/transformers/models/auto/auto_factory.rb +1 -1
- data/lib/transformers/models/auto/configuration_auto.rb +5 -2
- data/lib/transformers/models/auto/modeling_auto.rb +9 -3
- data/lib/transformers/models/auto/tokenization_auto.rb +5 -2
- data/lib/transformers/models/deberta_v2/configuration_deberta_v2.rb +80 -0
- data/lib/transformers/models/deberta_v2/modeling_deberta_v2.rb +1210 -0
- data/lib/transformers/models/deberta_v2/tokenization_deberta_v2_fast.rb +78 -0
- data/lib/transformers/models/mpnet/configuration_mpnet.rb +61 -0
- data/lib/transformers/models/mpnet/modeling_mpnet.rb +792 -0
- data/lib/transformers/models/mpnet/tokenization_mpnet_fast.rb +106 -0
- data/lib/transformers/models/xlm_roberta/configuration_xlm_roberta.rb +68 -0
- data/lib/transformers/models/xlm_roberta/modeling_xlm_roberta.rb +1216 -0
- data/lib/transformers/models/xlm_roberta/tokenization_xlm_roberta_fast.rb +68 -0
- data/lib/transformers/pipelines/_init.rb +10 -0
- data/lib/transformers/pipelines/reranking.rb +33 -0
- data/lib/transformers/version.rb +1 -1
- data/lib/transformers.rb +16 -0
- metadata +14 -4
@@ -0,0 +1,1216 @@
|
|
1
|
+
# Copyright 2019 Facebook AI Research and the HuggingFace Inc. team.
|
2
|
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
3
|
+
#
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5
|
+
# you may not use this file except in compliance with the License.
|
6
|
+
# You may obtain a copy of the License at
|
7
|
+
#
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9
|
+
#
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13
|
+
# See the License for the specific language governing permissions and
|
14
|
+
# limitations under the License.
|
15
|
+
|
16
|
+
module Transformers
|
17
|
+
module XlmRoberta
|
18
|
+
class XLMRobertaEmbeddings < Torch::NN::Module
|
19
|
+
def initialize(config)
|
20
|
+
super()
|
21
|
+
@word_embeddings = Torch::NN::Embedding.new(config.vocab_size, config.hidden_size, padding_idx: config.pad_token_id)
|
22
|
+
@position_embeddings = Torch::NN::Embedding.new(config.max_position_embeddings, config.hidden_size)
|
23
|
+
@token_type_embeddings = Torch::NN::Embedding.new(config.type_vocab_size, config.hidden_size)
|
24
|
+
|
25
|
+
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
26
|
+
# any TensorFlow checkpoint file
|
27
|
+
@LayerNorm = Torch::NN::LayerNorm.new(config.hidden_size, eps: config.layer_norm_eps)
|
28
|
+
@dropout = Torch::NN::Dropout.new(p: config.hidden_dropout_prob)
|
29
|
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
30
|
+
@position_embedding_type = config.getattr("position_embedding_type", "absolute")
|
31
|
+
register_buffer("position_ids", Torch.arange(config.max_position_embeddings).expand([1, -1]), persistent: false)
|
32
|
+
register_buffer("token_type_ids", Torch.zeros(@position_ids.size, dtype: Torch.long), persistent: false)
|
33
|
+
|
34
|
+
@padding_idx = config.pad_token_id
|
35
|
+
@position_embeddings = Torch::NN::Embedding.new(config.max_position_embeddings, config.hidden_size, padding_idx: @padding_idx)
|
36
|
+
end
|
37
|
+
|
38
|
+
def forward(input_ids: nil, token_type_ids: nil, position_ids: nil, inputs_embeds: nil, past_key_values_length: 0)
|
39
|
+
if position_ids.nil?
|
40
|
+
if !input_ids.nil?
|
41
|
+
# Create the position ids from the input token ids. Any padded tokens remain padded.
|
42
|
+
position_ids = create_position_ids_from_input_ids(input_ids, @padding_idx, past_key_values_length:)
|
43
|
+
else
|
44
|
+
position_ids = create_position_ids_from_inputs_embeds(inputs_embeds)
|
45
|
+
end
|
46
|
+
end
|
47
|
+
|
48
|
+
if !input_ids.nil?
|
49
|
+
input_shape = input_ids.size
|
50
|
+
else
|
51
|
+
input_shape = inputs_embeds.size[...-1]
|
52
|
+
end
|
53
|
+
|
54
|
+
seq_length = input_shape[1]
|
55
|
+
|
56
|
+
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
|
57
|
+
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
|
58
|
+
# issue #5664
|
59
|
+
if token_type_ids.nil?
|
60
|
+
if respond_to?(:token_type_ids)
|
61
|
+
buffered_token_type_ids = token_type_ids[0.., ...seq_length]
|
62
|
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
|
63
|
+
token_type_ids = buffered_token_type_ids_expanded
|
64
|
+
else
|
65
|
+
token_type_ids = Torch.zeros(input_shape, dtype: Torch.long, device: @position_ids.device)
|
66
|
+
end
|
67
|
+
end
|
68
|
+
|
69
|
+
if inputs_embeds.nil?
|
70
|
+
inputs_embeds = @word_embeddings.(input_ids)
|
71
|
+
end
|
72
|
+
token_type_embeddings = @token_type_embeddings.(token_type_ids)
|
73
|
+
|
74
|
+
embeddings = inputs_embeds + token_type_embeddings
|
75
|
+
if @position_embedding_type == "absolute"
|
76
|
+
position_embeddings = @position_embeddings.(position_ids)
|
77
|
+
embeddings += position_embeddings
|
78
|
+
end
|
79
|
+
embeddings = @LayerNorm.(embeddings)
|
80
|
+
embeddings = @dropout.(embeddings)
|
81
|
+
embeddings
|
82
|
+
end
|
83
|
+
|
84
|
+
def create_position_ids_from_inputs_embeds(inputs_embeds)
|
85
|
+
input_shape = inputs_embeds.size[...-1]
|
86
|
+
sequence_length = input_shape[1]
|
87
|
+
|
88
|
+
position_ids = Torch.arange(@padding_idx + 1, sequence_length + @padding_idx + 1, dtype: Torch.long, device: inputs_embeds.device)
|
89
|
+
position_ids.unsqueeze(0).expand(input_shape)
|
90
|
+
end
|
91
|
+
|
92
|
+
def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length: 0)
|
93
|
+
# The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
|
94
|
+
mask = input_ids.ne(padding_idx).int
|
95
|
+
incremental_indices = (Torch.cumsum(mask, dim: 1).type_as(mask) + past_key_values_length) * mask
|
96
|
+
incremental_indices.long + padding_idx
|
97
|
+
end
|
98
|
+
end
|
99
|
+
|
100
|
+
class XLMRobertaSelfAttention < Torch::NN::Module
|
101
|
+
def initialize(config, position_embedding_type: nil)
|
102
|
+
super()
|
103
|
+
if config.hidden_size % config.num_attention_heads != 0 && !config.hasattr("embedding_size")
|
104
|
+
raise ArgumentError, "The hidden size (#{config.hidden_size}) is not a multiple of the number of attention heads (#{config.num_attention_heads})"
|
105
|
+
end
|
106
|
+
|
107
|
+
@num_attention_heads = config.num_attention_heads
|
108
|
+
@attention_head_size = (config.hidden_size / config.num_attention_heads).to_i
|
109
|
+
@all_head_size = @num_attention_heads * @attention_head_size
|
110
|
+
|
111
|
+
@query = Torch::NN::Linear.new(config.hidden_size, @all_head_size)
|
112
|
+
@key = Torch::NN::Linear.new(config.hidden_size, @all_head_size)
|
113
|
+
@value = Torch::NN::Linear.new(config.hidden_size, @all_head_size)
|
114
|
+
|
115
|
+
@dropout = Torch::NN::Dropout.new(p: config.attention_probs_dropout_prob)
|
116
|
+
@position_embedding_type = position_embedding_type || config.getattr("position_embedding_type", "absolute")
|
117
|
+
if @position_embedding_type == "relative_key" || @position_embedding_type == "relative_key_query"
|
118
|
+
@max_position_embeddings = config.max_position_embeddings
|
119
|
+
@distance_embedding = Torch::NN::Embedding.new((2 * config.max_position_embeddings) - 1, @attention_head_size)
|
120
|
+
end
|
121
|
+
|
122
|
+
@is_decoder = config.is_decoder
|
123
|
+
end
|
124
|
+
|
125
|
+
def transpose_for_scores(x)
|
126
|
+
new_x_shape = x.size[...-1] + [@num_attention_heads, @attention_head_size]
|
127
|
+
x = x.view(new_x_shape)
|
128
|
+
x.permute(0, 2, 1, 3)
|
129
|
+
end
|
130
|
+
|
131
|
+
def forward(
|
132
|
+
hidden_states,
|
133
|
+
attention_mask: nil,
|
134
|
+
head_mask: nil,
|
135
|
+
encoder_hidden_states: nil,
|
136
|
+
encoder_attention_mask: nil,
|
137
|
+
past_key_value: nil,
|
138
|
+
output_attentions: false
|
139
|
+
)
|
140
|
+
mixed_query_layer = @query.(hidden_states)
|
141
|
+
|
142
|
+
# If this is instantiated as a cross-attention module, the keys
|
143
|
+
# and values come from an encoder; the attention mask needs to be
|
144
|
+
# such that the encoder's padding tokens are not attended to.
|
145
|
+
is_cross_attention = !encoder_hidden_states.nil?
|
146
|
+
|
147
|
+
if is_cross_attention && !past_key_value.nil?
|
148
|
+
# reuse k,v, cross_attentions
|
149
|
+
key_layer = past_key_value[0]
|
150
|
+
value_layer = past_key_value[1]
|
151
|
+
attention_mask = encoder_attention_mask
|
152
|
+
elsif is_cross_attention
|
153
|
+
key_layer = transpose_for_scores(@key.(encoder_hidden_states))
|
154
|
+
value_layer = transpose_for_scores(@value.(encoder_hidden_states))
|
155
|
+
attention_mask = encoder_attention_mask
|
156
|
+
elsif !past_key_value.nil?
|
157
|
+
key_layer = transpose_for_scores(@key.(hidden_states))
|
158
|
+
value_layer = transpose_for_scores(@value.(hidden_states))
|
159
|
+
key_layer = Torch.cat([past_key_value[0], key_layer], dim: 2)
|
160
|
+
value_layer = Torch.cat([past_key_value[1], value_layer], dim: 2)
|
161
|
+
else
|
162
|
+
key_layer = transpose_for_scores(@key.(hidden_states))
|
163
|
+
value_layer = transpose_for_scores(@value.(hidden_states))
|
164
|
+
end
|
165
|
+
|
166
|
+
query_layer = transpose_for_scores(mixed_query_layer)
|
167
|
+
|
168
|
+
use_cache = !past_key_value.nil?
|
169
|
+
if @is_decoder
|
170
|
+
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
171
|
+
# Further calls to cross_attention layer can then reuse all cross-attention
|
172
|
+
# key/value_states (first "if" case)
|
173
|
+
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
|
174
|
+
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
175
|
+
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
176
|
+
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
177
|
+
past_key_value = [key_layer, value_layer]
|
178
|
+
end
|
179
|
+
|
180
|
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
181
|
+
attention_scores = Torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
182
|
+
|
183
|
+
if @position_embedding_type == "relative_key" || @position_embedding_type == "relative_key_query"
|
184
|
+
query_length, key_length = [query_layer.shape[2], key_layer.shape[2]]
|
185
|
+
if use_cache
|
186
|
+
position_ids_l = Torch.tensor(key_length - 1, dtype: Torch.long, device: hidden_states.device).view(-1, 1)
|
187
|
+
else
|
188
|
+
position_ids_l = Torch.arange(query_length, dtype: Torch.long, device: hidden_states.device).view(-1, 1)
|
189
|
+
end
|
190
|
+
position_ids_r = Torch.arange(key_length, dtype: Torch.long, device: hidden_states.device).view(1, -1)
|
191
|
+
distance = position_ids_l - position_ids_r
|
192
|
+
|
193
|
+
positional_embedding = @distance_embedding.((distance + @max_position_embeddings) - 1)
|
194
|
+
positional_embedding = positional_embedding.to(dtype: query_layer.dtype)
|
195
|
+
|
196
|
+
if @position_embedding_type == "relative_key"
|
197
|
+
relative_position_scores = Torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
198
|
+
attention_scores = attention_scores + relative_position_scores
|
199
|
+
elsif @position_embedding_type == "relative_key_query"
|
200
|
+
relative_position_scores_query = Torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
201
|
+
relative_position_scores_key = Torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
|
202
|
+
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
|
203
|
+
end
|
204
|
+
end
|
205
|
+
|
206
|
+
attention_scores = attention_scores / Math.sqrt(@attention_head_size)
|
207
|
+
if !attention_mask.nil?
|
208
|
+
# Apply the attention mask is (precomputed for all layers in XLMRobertaModel forward() function)
|
209
|
+
attention_scores = attention_scores + attention_mask
|
210
|
+
end
|
211
|
+
|
212
|
+
# Normalize the attention scores to probabilities.
|
213
|
+
attention_probs = Torch::NN::Functional.softmax(attention_scores, dim: -1)
|
214
|
+
|
215
|
+
# This is actually dropping out entire tokens to attend to, which might
|
216
|
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
217
|
+
attention_probs = @dropout.(attention_probs)
|
218
|
+
|
219
|
+
# Mask heads if we want to
|
220
|
+
if !head_mask.nil?
|
221
|
+
attention_probs = attention_probs * head_mask
|
222
|
+
end
|
223
|
+
|
224
|
+
context_layer = Torch.matmul(attention_probs, value_layer)
|
225
|
+
|
226
|
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous
|
227
|
+
new_context_layer_shape = context_layer.size[...-2] + [@all_head_size]
|
228
|
+
context_layer = context_layer.view(new_context_layer_shape)
|
229
|
+
|
230
|
+
outputs = output_attentions ? [context_layer, attention_probs] : [context_layer]
|
231
|
+
|
232
|
+
if @is_decoder
|
233
|
+
outputs = outputs + [past_key_value]
|
234
|
+
end
|
235
|
+
outputs
|
236
|
+
end
|
237
|
+
end
|
238
|
+
|
239
|
+
class XLMRobertaSdpaSelfAttention < XLMRobertaSelfAttention
|
240
|
+
def initialize(config, position_embedding_type: nil)
|
241
|
+
super(config, position_embedding_type: position_embedding_type)
|
242
|
+
@dropout_prob = config.attention_probs_dropout_prob
|
243
|
+
@require_contiguous_qkv = Packaging::Version.parse(Utils.get_torch_version) < Packaging::Version.parse("2.2.0")
|
244
|
+
end
|
245
|
+
|
246
|
+
# Adapted from XLMRobertaSelfAttention
|
247
|
+
def forward(
|
248
|
+
hidden_states,
|
249
|
+
attention_mask: nil,
|
250
|
+
head_mask: nil,
|
251
|
+
encoder_hidden_states: nil,
|
252
|
+
encoder_attention_mask: nil,
|
253
|
+
past_key_value: nil,
|
254
|
+
output_attentions: false
|
255
|
+
)
|
256
|
+
if @position_embedding_type != "absolute" || output_attentions || !head_mask.nil?
|
257
|
+
# TODO: Improve this warning with e.g. `model.config._attn_implementation = "manual"` once implemented.
|
258
|
+
Transformers.logger.warn("XLMRobertaSdpaSelfAttention is used but `torch.nn.functional.scaled_dot_product_attention` does not support non-absolute `position_embedding_type` or `output_attentions: true` or `head_mask`. Falling back to the manual attention implementation, but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation: \"eager\"` when loading the model.")
|
259
|
+
return super(hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions)
|
260
|
+
end
|
261
|
+
|
262
|
+
bsz, tgt_len, _ = hidden_states.size
|
263
|
+
|
264
|
+
query_layer = transpose_for_scores(@query.(hidden_states))
|
265
|
+
|
266
|
+
# If this is instantiated as a cross-attention module, the keys and values come from an encoder; the attention
|
267
|
+
# mask needs to be such that the encoder's padding tokens are not attended to.
|
268
|
+
is_cross_attention = !encoder_hidden_states.nil?
|
269
|
+
|
270
|
+
current_states = is_cross_attention ? encoder_hidden_states : hidden_states
|
271
|
+
attention_mask = is_cross_attention ? encoder_attention_mask : attention_mask
|
272
|
+
|
273
|
+
# Check `seq_length` of `past_key_value` == `len(current_states)` to support prefix tuning
|
274
|
+
if is_cross_attention && past_key_value && past_key_value[0].shape[2] == current_states.shape[1]
|
275
|
+
key_layer, value_layer = past_key_value
|
276
|
+
else
|
277
|
+
key_layer = transpose_for_scores(@key.(current_states))
|
278
|
+
value_layer = transpose_for_scores(@value.(current_states))
|
279
|
+
if !past_key_value.nil? && !is_cross_attention
|
280
|
+
key_layer = Torch.cat([past_key_value[0], key_layer], dim: 2)
|
281
|
+
value_layer = Torch.cat([past_key_value[1], value_layer], dim: 2)
|
282
|
+
end
|
283
|
+
end
|
284
|
+
|
285
|
+
if @is_decoder
|
286
|
+
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
287
|
+
# Further calls to cross_attention layer can then reuse all cross-attention
|
288
|
+
# key/value_states (first "if" case)
|
289
|
+
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
|
290
|
+
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
291
|
+
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
292
|
+
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
293
|
+
past_key_value = [key_layer, value_layer]
|
294
|
+
end
|
295
|
+
|
296
|
+
# SDPA with memory-efficient backend is broken in torch==2.1.2 when using non-contiguous inputs and a custom
|
297
|
+
# attn_mask, so we need to call `.contiguous()` here. This was fixed in torch==2.2.0.
|
298
|
+
# Reference: https://github.com/pytorch/pytorch/issues/112577
|
299
|
+
if @require_contiguous_qkv && query_layer.device.type == "cuda" && !attention_mask.nil?
|
300
|
+
query_layer = query_layer.contiguous
|
301
|
+
key_layer = key_layer.contiguous
|
302
|
+
value_layer = value_layer.contiguous
|
303
|
+
end
|
304
|
+
|
305
|
+
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
|
306
|
+
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
|
307
|
+
# The tgt_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create
|
308
|
+
# a causal mask in case tgt_len == 1.
|
309
|
+
is_causal = @is_decoder && !is_cross_attention && attention_mask.nil? && tgt_len > 1 ? true : false
|
310
|
+
|
311
|
+
attn_output = Torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer, attn_mask: attention_mask, dropout_p: @training ? @dropout_prob : 0.0, is_causal: is_causal)
|
312
|
+
|
313
|
+
attn_output = attn_output.transpose(1, 2)
|
314
|
+
attn_output = attn_output.reshape(bsz, tgt_len, @all_head_size)
|
315
|
+
|
316
|
+
outputs = [attn_output]
|
317
|
+
if @is_decoder
|
318
|
+
outputs = outputs + [past_key_value]
|
319
|
+
end
|
320
|
+
outputs
|
321
|
+
end
|
322
|
+
end
|
323
|
+
|
324
|
+
class XLMRobertaSelfOutput < Torch::NN::Module
|
325
|
+
def initialize(config)
|
326
|
+
super()
|
327
|
+
@dense = Torch::NN::Linear.new(config.hidden_size, config.hidden_size)
|
328
|
+
@LayerNorm = Torch::NN::LayerNorm.new(config.hidden_size, eps: config.layer_norm_eps)
|
329
|
+
@dropout = Torch::NN::Dropout.new(p: config.hidden_dropout_prob)
|
330
|
+
end
|
331
|
+
|
332
|
+
def forward(hidden_states, input_tensor)
|
333
|
+
hidden_states = @dense.(hidden_states)
|
334
|
+
hidden_states = @dropout.(hidden_states)
|
335
|
+
hidden_states = @LayerNorm.(hidden_states + input_tensor)
|
336
|
+
hidden_states
|
337
|
+
end
|
338
|
+
end
|
339
|
+
|
340
|
+
XLM_ROBERTA_SELF_ATTENTION_CLASSES = {"eager" => XLMRobertaSelfAttention, "sdpa" => XLMRobertaSdpaSelfAttention}
|
341
|
+
|
342
|
+
class XLMRobertaAttention < Torch::NN::Module
|
343
|
+
def initialize(config, position_embedding_type: nil)
|
344
|
+
super()
|
345
|
+
@self = XLM_ROBERTA_SELF_ATTENTION_CLASSES.fetch(config._attn_implementation).new(config, position_embedding_type: position_embedding_type)
|
346
|
+
@output = XLMRobertaSelfOutput.new(config)
|
347
|
+
@pruned_heads = Set.new
|
348
|
+
end
|
349
|
+
|
350
|
+
def prune_heads(heads)
|
351
|
+
if heads.length == 0
|
352
|
+
return
|
353
|
+
end
|
354
|
+
heads, index = TorchUtils.find_pruneable_heads_and_indices(heads, @self.num_attention_heads, @self.attention_head_size, @pruned_heads)
|
355
|
+
|
356
|
+
# Prune linear layers
|
357
|
+
@query = TorchUtils.prune_linear_layer(@self.query, index)
|
358
|
+
@key = TorchUtils.prune_linear_layer(@self.key, index)
|
359
|
+
@value = TorchUtils.prune_linear_layer(@self.value, index)
|
360
|
+
@dense = TorchUtils.prune_linear_layer(@output.dense, index, dim: 1)
|
361
|
+
|
362
|
+
# Update hyper params and store pruned heads
|
363
|
+
@num_attention_heads = @self.num_attention_heads - heads.length
|
364
|
+
@all_head_size = @self.attention_head_size * @self.num_attention_heads
|
365
|
+
@pruned_heads = @pruned_heads.union(heads)
|
366
|
+
end
|
367
|
+
|
368
|
+
def forward(
|
369
|
+
hidden_states,
|
370
|
+
attention_mask: nil,
|
371
|
+
head_mask: nil,
|
372
|
+
encoder_hidden_states: nil,
|
373
|
+
encoder_attention_mask: nil,
|
374
|
+
past_key_value: nil,
|
375
|
+
output_attentions: false
|
376
|
+
)
|
377
|
+
self_outputs = @self.(hidden_states, attention_mask:, head_mask:, encoder_hidden_states:, encoder_attention_mask:, past_key_value:, output_attentions:)
|
378
|
+
attention_output = @output.(self_outputs[0], hidden_states)
|
379
|
+
outputs = [attention_output] + self_outputs[1..]
|
380
|
+
outputs
|
381
|
+
end
|
382
|
+
end
|
383
|
+
|
384
|
+
class XLMRobertaIntermediate < Torch::NN::Module
|
385
|
+
def initialize(config)
|
386
|
+
super()
|
387
|
+
@dense = Torch::NN::Linear.new(config.hidden_size, config.intermediate_size)
|
388
|
+
if config.hidden_act.is_a?(String)
|
389
|
+
@intermediate_act_fn = ACT2FN[config.hidden_act]
|
390
|
+
else
|
391
|
+
@intermediate_act_fn = config.hidden_act
|
392
|
+
end
|
393
|
+
end
|
394
|
+
|
395
|
+
def forward(hidden_states)
|
396
|
+
hidden_states = @dense.(hidden_states)
|
397
|
+
hidden_states = @intermediate_act_fn.(hidden_states)
|
398
|
+
hidden_states
|
399
|
+
end
|
400
|
+
end
|
401
|
+
|
402
|
+
class XLMRobertaOutput < Torch::NN::Module
|
403
|
+
def initialize(config)
|
404
|
+
super()
|
405
|
+
@dense = Torch::NN::Linear.new(config.intermediate_size, config.hidden_size)
|
406
|
+
@LayerNorm = Torch::NN::LayerNorm.new(config.hidden_size, eps: config.layer_norm_eps)
|
407
|
+
@dropout = Torch::NN::Dropout.new(p: config.hidden_dropout_prob)
|
408
|
+
end
|
409
|
+
|
410
|
+
def forward(hidden_states, input_tensor)
|
411
|
+
hidden_states = @dense.(hidden_states)
|
412
|
+
hidden_states = @dropout.(hidden_states)
|
413
|
+
hidden_states = @LayerNorm.(hidden_states + input_tensor)
|
414
|
+
hidden_states
|
415
|
+
end
|
416
|
+
end
|
417
|
+
|
418
|
+
class XLMRobertaLayer < Torch::NN::Module
|
419
|
+
def initialize(config)
|
420
|
+
super()
|
421
|
+
@chunk_size_feed_forward = config.chunk_size_feed_forward
|
422
|
+
@seq_len_dim = 1
|
423
|
+
@attention = XLMRobertaAttention.new(config)
|
424
|
+
@is_decoder = config.is_decoder
|
425
|
+
@add_cross_attention = config.add_cross_attention
|
426
|
+
if @add_cross_attention
|
427
|
+
if !@is_decoder
|
428
|
+
raise ArgumentError, "#{self} should be used as a decoder model if cross attention is added"
|
429
|
+
end
|
430
|
+
@crossattention = XLMRobertaAttention.new(config, position_embedding_type: "absolute")
|
431
|
+
end
|
432
|
+
@intermediate = XLMRobertaIntermediate.new(config)
|
433
|
+
@output = XLMRobertaOutput.new(config)
|
434
|
+
end
|
435
|
+
|
436
|
+
def forward(
|
437
|
+
hidden_states,
|
438
|
+
attention_mask: nil,
|
439
|
+
head_mask: nil,
|
440
|
+
encoder_hidden_states: nil,
|
441
|
+
encoder_attention_mask: nil,
|
442
|
+
past_key_value: nil,
|
443
|
+
output_attentions: false
|
444
|
+
)
|
445
|
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
446
|
+
self_attn_past_key_value = !past_key_value.nil? ? past_key_value[...2] : nil
|
447
|
+
self_attention_outputs = @attention.(hidden_states, attention_mask:, head_mask:, output_attentions: output_attentions, past_key_value: self_attn_past_key_value)
|
448
|
+
attention_output = self_attention_outputs[0]
|
449
|
+
|
450
|
+
# if decoder, the last output is tuple of self-attn cache
|
451
|
+
if @is_decoder
|
452
|
+
outputs = self_attention_outputs[1...-1]
|
453
|
+
present_key_value = self_attention_outputs[-1]
|
454
|
+
else
|
455
|
+
outputs = self_attention_outputs[1..]
|
456
|
+
end
|
457
|
+
|
458
|
+
cross_attn_present_key_value = nil
|
459
|
+
if @is_decoder && !encoder_hidden_states.nil?
|
460
|
+
if instance_variable_defined?(:@crossattention)
|
461
|
+
raise ArgumentError, "If `encoder_hidden_states` are passed, #{self} has to be instantiated with cross-attention layers by setting `config.add_cross_attention=True`"
|
462
|
+
end
|
463
|
+
|
464
|
+
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
|
465
|
+
cross_attn_past_key_value = !past_key_value.nil? ? past_key_value[-2..] : nil
|
466
|
+
cross_attention_outputs = @crossattention.(attention_output, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, cross_attn_past_key_value, output_attentions)
|
467
|
+
attention_output = cross_attention_outputs[0]
|
468
|
+
outputs = outputs + cross_attention_outputs[1...-1]
|
469
|
+
|
470
|
+
# add cross-attn cache to positions 3,4 of present_key_value tuple
|
471
|
+
cross_attn_present_key_value = cross_attention_outputs[-1]
|
472
|
+
present_key_value = present_key_value + cross_attn_present_key_value
|
473
|
+
end
|
474
|
+
|
475
|
+
layer_output = TorchUtils.apply_chunking_to_forward(method(:feed_forward_chunk), @chunk_size_feed_forward, @seq_len_dim, attention_output)
|
476
|
+
outputs = [layer_output] + outputs
|
477
|
+
|
478
|
+
# if decoder, return the attn key/values as the last output
|
479
|
+
if @is_decoder
|
480
|
+
outputs = outputs + [present_key_value]
|
481
|
+
end
|
482
|
+
|
483
|
+
outputs
|
484
|
+
end
|
485
|
+
|
486
|
+
def feed_forward_chunk(attention_output)
|
487
|
+
intermediate_output = @intermediate.(attention_output)
|
488
|
+
layer_output = @output.(intermediate_output, attention_output)
|
489
|
+
layer_output
|
490
|
+
end
|
491
|
+
end
|
492
|
+
|
493
|
+
class XLMRobertaEncoder < Torch::NN::Module
|
494
|
+
def initialize(config)
|
495
|
+
super()
|
496
|
+
@config = config
|
497
|
+
@layer = Torch::NN::ModuleList.new(config.num_hidden_layers.times.map { |_| XLMRobertaLayer.new(config) })
|
498
|
+
@gradient_checkpointing = false
|
499
|
+
end
|
500
|
+
|
501
|
+
def forward(
|
502
|
+
hidden_states,
|
503
|
+
attention_mask: nil,
|
504
|
+
head_mask: nil,
|
505
|
+
encoder_hidden_states: nil,
|
506
|
+
encoder_attention_mask: nil,
|
507
|
+
past_key_values: nil,
|
508
|
+
use_cache: nil,
|
509
|
+
output_attentions: false,
|
510
|
+
output_hidden_states: false,
|
511
|
+
return_dict: true
|
512
|
+
)
|
513
|
+
all_hidden_states = output_hidden_states ? [] : nil
|
514
|
+
all_self_attentions = output_attentions ? [] : nil
|
515
|
+
all_cross_attentions = output_attentions && @config.add_cross_attention ? [] : nil
|
516
|
+
|
517
|
+
if @gradient_checkpointing && @training
|
518
|
+
if use_cache
|
519
|
+
Transformers.logger.warn("`use_cache: true` is incompatible with gradient checkpointing. Setting `use_cache: false`...")
|
520
|
+
use_cache = false
|
521
|
+
end
|
522
|
+
end
|
523
|
+
|
524
|
+
next_decoder_cache = use_cache ? [] : nil
|
525
|
+
@layer.each_with_index do |layer_module, i|
|
526
|
+
if output_hidden_states
|
527
|
+
all_hidden_states = all_hidden_states + [hidden_states]
|
528
|
+
end
|
529
|
+
|
530
|
+
layer_head_mask = !head_mask.nil? ? head_mask[i] : nil
|
531
|
+
past_key_value = !past_key_values.nil? ? past_key_values[i] : nil
|
532
|
+
|
533
|
+
if @gradient_checkpointing && @training
|
534
|
+
layer_outputs = _gradient_checkpointing_func(layer_module.__call__, hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions)
|
535
|
+
else
|
536
|
+
layer_outputs = layer_module.(hidden_states, attention_mask:, head_mask: layer_head_mask, encoder_hidden_states:, encoder_attention_mask:, past_key_value:, output_attentions:)
|
537
|
+
end
|
538
|
+
|
539
|
+
hidden_states = layer_outputs[0]
|
540
|
+
if use_cache
|
541
|
+
next_decoder_cache += [layer_outputs[-1]]
|
542
|
+
end
|
543
|
+
if output_attentions
|
544
|
+
all_self_attentions = all_self_attentions + [layer_outputs[1]]
|
545
|
+
if @config.add_cross_attention
|
546
|
+
all_cross_attentions = all_cross_attentions + [layer_outputs[2]]
|
547
|
+
end
|
548
|
+
end
|
549
|
+
end
|
550
|
+
|
551
|
+
if output_hidden_states
|
552
|
+
all_hidden_states = all_hidden_states + [hidden_states]
|
553
|
+
end
|
554
|
+
|
555
|
+
if !return_dict
|
556
|
+
return Array([hidden_states, next_decoder_cache, all_hidden_states, all_self_attentions, all_cross_attentions].select { |v| !v.nil? })
|
557
|
+
end
|
558
|
+
BaseModelOutputWithPastAndCrossAttentions.new(last_hidden_state: hidden_states, past_key_values: next_decoder_cache, hidden_states: all_hidden_states, attentions: all_self_attentions, cross_attentions: all_cross_attentions)
|
559
|
+
end
|
560
|
+
end
|
561
|
+
|
562
|
+
class XLMRobertaPooler < Torch::NN::Module
|
563
|
+
def initialize(config)
|
564
|
+
super()
|
565
|
+
@dense = Torch::NN::Linear.new(config.hidden_size, config.hidden_size)
|
566
|
+
@activation = Torch::NN::Tanh.new
|
567
|
+
end
|
568
|
+
|
569
|
+
def forward(hidden_states)
|
570
|
+
# We "pool" the model by simply taking the hidden state corresponding
|
571
|
+
# to the first token.
|
572
|
+
first_token_tensor = hidden_states[0.., 0]
|
573
|
+
pooled_output = @dense.(first_token_tensor)
|
574
|
+
pooled_output = @activation.(pooled_output)
|
575
|
+
pooled_output
|
576
|
+
end
|
577
|
+
end
|
578
|
+
|
579
|
+
class XLMRobertaPreTrainedModel < PreTrainedModel
|
580
|
+
self.config_class = XLMRobertaConfig
|
581
|
+
self.base_model_prefix = "roberta"
|
582
|
+
# self.supports_gradient_checkpointing = true
|
583
|
+
# self._no_split_modules = ["XLMRobertaEmbeddings", "XLMRobertaSelfAttention", "XLMRobertaSdpaSelfAttention"]
|
584
|
+
# self._supports_sdpa = true
|
585
|
+
|
586
|
+
def _init_weights(module_)
|
587
|
+
if module_.is_a?(Torch::NN::Linear)
|
588
|
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
589
|
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
590
|
+
module_.weight.data.normal!(mean: 0.0, std: @config.initializer_range)
|
591
|
+
if !module_.bias.nil?
|
592
|
+
module_.bias.data.zero!
|
593
|
+
end
|
594
|
+
elsif module_.is_a?(Torch::NN::Embedding)
|
595
|
+
module_.weight.data.normal!(mean: 0.0, std: @config.initializer_range)
|
596
|
+
if !module_.padding_idx.nil?
|
597
|
+
module_.weight.data.fetch(module_.padding_idx).zero!
|
598
|
+
end
|
599
|
+
elsif module_.is_a?(Torch::NN::LayerNorm)
|
600
|
+
module_.bias.data.zero!
|
601
|
+
module_.weight.data.fill!(1.0)
|
602
|
+
end
|
603
|
+
end
|
604
|
+
end
|
605
|
+
|
606
|
+
class XLMRobertaModel < XLMRobertaPreTrainedModel
|
607
|
+
# self._no_split_modules = ["XLMRobertaEmbeddings", "XLMRobertaLayer"]
|
608
|
+
|
609
|
+
def initialize(config, add_pooling_layer: true)
|
610
|
+
super(config)
|
611
|
+
@config = config
|
612
|
+
|
613
|
+
@embeddings = XLMRobertaEmbeddings.new(config)
|
614
|
+
@encoder = XLMRobertaEncoder.new(config)
|
615
|
+
|
616
|
+
@pooler = add_pooling_layer ? XLMRobertaPooler.new(config) : nil
|
617
|
+
|
618
|
+
@attn_implementation = config._attn_implementation
|
619
|
+
@position_embedding_type = config.position_embedding_type
|
620
|
+
|
621
|
+
# Initialize weights and apply final processing
|
622
|
+
post_init
|
623
|
+
end
|
624
|
+
|
625
|
+
def get_input_embeddings
|
626
|
+
@embeddings.word_embeddings
|
627
|
+
end
|
628
|
+
|
629
|
+
def set_input_embeddings(value)
|
630
|
+
@word_embeddings = value
|
631
|
+
end
|
632
|
+
|
633
|
+
def _prune_heads(heads_to_prune)
|
634
|
+
heads_to_prune.each do |layer, heads|
|
635
|
+
@encoder.layer[layer].attention.prune_heads(heads)
|
636
|
+
end
|
637
|
+
end
|
638
|
+
|
639
|
+
def forward(
|
640
|
+
input_ids,
|
641
|
+
attention_mask: nil,
|
642
|
+
token_type_ids: nil,
|
643
|
+
position_ids: nil,
|
644
|
+
head_mask: nil,
|
645
|
+
inputs_embeds: nil,
|
646
|
+
encoder_hidden_states: nil,
|
647
|
+
encoder_attention_mask: nil,
|
648
|
+
past_key_values: nil,
|
649
|
+
use_cache: nil,
|
650
|
+
output_attentions: nil,
|
651
|
+
output_hidden_states: nil,
|
652
|
+
return_dict: nil
|
653
|
+
)
|
654
|
+
output_attentions = !output_attentions.nil? ? output_attentions : @config.output_attentions
|
655
|
+
output_hidden_states = !output_hidden_states.nil? ? output_hidden_states : @config.output_hidden_states
|
656
|
+
return_dict = !return_dict.nil? ? return_dict : @config.use_return_dict
|
657
|
+
|
658
|
+
if @config.is_decoder
|
659
|
+
use_cache = !use_cache.nil? ? use_cache : @config.use_cache
|
660
|
+
else
|
661
|
+
use_cache = false
|
662
|
+
end
|
663
|
+
|
664
|
+
if !input_ids.nil? && !inputs_embeds.nil?
|
665
|
+
raise ArgumentError, "You cannot specify both input_ids and inputs_embeds at the same time"
|
666
|
+
elsif !input_ids.nil?
|
667
|
+
warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
668
|
+
input_shape = input_ids.size
|
669
|
+
elsif !inputs_embeds.nil?
|
670
|
+
input_shape = inputs_embeds.size[...-1]
|
671
|
+
else
|
672
|
+
raise ArgumentError, "You have to specify either input_ids or inputs_embeds"
|
673
|
+
end
|
674
|
+
|
675
|
+
batch_size, seq_length = input_shape
|
676
|
+
device = !input_ids.nil? ? input_ids.device : inputs_embeds.device
|
677
|
+
|
678
|
+
# past_key_values_length
|
679
|
+
past_key_values_length = !past_key_values.nil? ? past_key_values[0][0].shape[2] : 0
|
680
|
+
|
681
|
+
if token_type_ids.nil?
|
682
|
+
if @embeddings.respond_to?(:token_type_ids)
|
683
|
+
buffered_token_type_ids = @embeddings.token_type_ids[0.., ...seq_length]
|
684
|
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
|
685
|
+
token_type_ids = buffered_token_type_ids_expanded
|
686
|
+
else
|
687
|
+
token_type_ids = Torch.zeros(input_shape, dtype: Torch.long, device: device)
|
688
|
+
end
|
689
|
+
end
|
690
|
+
|
691
|
+
embedding_output = @embeddings.(input_ids: input_ids, position_ids: position_ids, token_type_ids: token_type_ids, inputs_embeds: inputs_embeds, past_key_values_length: past_key_values_length)
|
692
|
+
|
693
|
+
if attention_mask.nil?
|
694
|
+
attention_mask = Torch.ones([batch_size, seq_length + past_key_values_length], device: device)
|
695
|
+
end
|
696
|
+
|
697
|
+
use_sdpa_attention_masks = @attn_implementation == "sdpa" && @position_embedding_type == "absolute" && head_mask.nil? && !output_attentions
|
698
|
+
|
699
|
+
# Expand the attention mask
|
700
|
+
if use_sdpa_attention_masks && attention_mask.dim == 2
|
701
|
+
# Expand the attention mask for SDPA.
|
702
|
+
# [bsz, seq_len] -> [bsz, 1, seq_len, seq_len]
|
703
|
+
if @config.is_decoder
|
704
|
+
extended_attention_mask = ModelingAttnMaskUtils._prepare_4d_causal_attention_mask_for_sdpa(attention_mask, input_shape, embedding_output, past_key_values_length)
|
705
|
+
else
|
706
|
+
extended_attention_mask = ModelingAttnMaskUtils._prepare_4d_attention_mask_for_sdpa(attention_mask, embedding_output.dtype, tgt_len: seq_length)
|
707
|
+
end
|
708
|
+
else
|
709
|
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
710
|
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
711
|
+
extended_attention_mask = get_extended_attention_mask(attention_mask, input_shape)
|
712
|
+
end
|
713
|
+
|
714
|
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
715
|
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
716
|
+
if @config.is_decoder && !encoder_hidden_states.nil?
|
717
|
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size
|
718
|
+
encoder_hidden_shape = [encoder_batch_size, encoder_sequence_length]
|
719
|
+
if encoder_attention_mask.nil?
|
720
|
+
encoder_attention_mask = Torch.ones(encoder_hidden_shape, device: device)
|
721
|
+
end
|
722
|
+
|
723
|
+
if use_sdpa_attention_masks && encoder_attention_mask.dim == 2
|
724
|
+
# Expand the attention mask for SDPA.
|
725
|
+
# [bsz, seq_len] -> [bsz, 1, seq_len, seq_len]
|
726
|
+
encoder_extended_attention_mask = ModelingAttnMaskUtils._prepare_4d_attention_mask_for_sdpa(encoder_attention_mask, embedding_output.dtype, tgt_len: seq_length)
|
727
|
+
else
|
728
|
+
encoder_extended_attention_mask = invert_attention_mask(encoder_attention_mask)
|
729
|
+
end
|
730
|
+
else
|
731
|
+
encoder_extended_attention_mask = nil
|
732
|
+
end
|
733
|
+
|
734
|
+
# Prepare head mask if needed
|
735
|
+
# 1.0 in head_mask indicate we keep the head
|
736
|
+
# attention_probs has shape bsz x n_heads x N x N
|
737
|
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
738
|
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
739
|
+
head_mask = get_head_mask(head_mask, @config.num_hidden_layers)
|
740
|
+
|
741
|
+
encoder_outputs = @encoder.(embedding_output, attention_mask: extended_attention_mask, head_mask: head_mask, encoder_hidden_states: encoder_hidden_states, encoder_attention_mask: encoder_extended_attention_mask, past_key_values: past_key_values, use_cache: use_cache, output_attentions: output_attentions, output_hidden_states: output_hidden_states, return_dict: return_dict)
|
742
|
+
sequence_output = encoder_outputs[0]
|
743
|
+
pooled_output = !@pooler.nil? ? @pooler.(sequence_output) : nil
|
744
|
+
|
745
|
+
if !return_dict
|
746
|
+
return [sequence_output, pooled_output] + encoder_outputs[1..]
|
747
|
+
end
|
748
|
+
|
749
|
+
BaseModelOutputWithPoolingAndCrossAttentions.new(last_hidden_state: sequence_output, pooler_output: pooled_output, past_key_values: encoder_outputs.past_key_values, hidden_states: encoder_outputs.hidden_states, attentions: encoder_outputs.attentions, cross_attentions: encoder_outputs.cross_attentions)
|
750
|
+
end
|
751
|
+
end
|
752
|
+
|
753
|
+
class XLMRobertaForCausalLM < XLMRobertaPreTrainedModel
|
754
|
+
self._tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"]
|
755
|
+
|
756
|
+
def initialize(config)
|
757
|
+
super(config)
|
758
|
+
|
759
|
+
if !config.is_decoder
|
760
|
+
Transformers.logger.warn("If you want to use `XLMRobertaLMHeadModel` as a standalone, add `is_decoder=True.`")
|
761
|
+
end
|
762
|
+
|
763
|
+
@roberta = XLMRobertaModel.new(config, add_pooling_layer: false)
|
764
|
+
@lm_head = XLMRobertaLMHead.new(config)
|
765
|
+
|
766
|
+
# Initialize weights and apply final processing
|
767
|
+
post_init
|
768
|
+
end
|
769
|
+
|
770
|
+
def get_output_embeddings
|
771
|
+
@lm_head.decoder
|
772
|
+
end
|
773
|
+
|
774
|
+
def set_output_embeddings(new_embeddings)
|
775
|
+
@decoder = new_embeddings
|
776
|
+
end
|
777
|
+
|
778
|
+
def forward(
|
779
|
+
input_ids: nil,
|
780
|
+
attention_mask: nil,
|
781
|
+
token_type_ids: nil,
|
782
|
+
position_ids: nil,
|
783
|
+
head_mask: nil,
|
784
|
+
inputs_embeds: nil,
|
785
|
+
encoder_hidden_states: nil,
|
786
|
+
encoder_attention_mask: nil,
|
787
|
+
labels: nil,
|
788
|
+
past_key_values: nil,
|
789
|
+
use_cache: nil,
|
790
|
+
output_attentions: nil,
|
791
|
+
output_hidden_states: nil,
|
792
|
+
return_dict: nil
|
793
|
+
)
|
794
|
+
return_dict = !return_dict.nil? ? return_dict : @config.use_return_dict
|
795
|
+
if !labels.nil?
|
796
|
+
use_cache = false
|
797
|
+
end
|
798
|
+
|
799
|
+
outputs = @roberta.(input_ids, attention_mask: attention_mask, token_type_ids: token_type_ids, position_ids: position_ids, head_mask: head_mask, inputs_embeds: inputs_embeds, encoder_hidden_states: encoder_hidden_states, encoder_attention_mask: encoder_attention_mask, past_key_values: past_key_values, use_cache: use_cache, output_attentions: output_attentions, output_hidden_states: output_hidden_states, return_dict: return_dict)
|
800
|
+
|
801
|
+
sequence_output = outputs[0]
|
802
|
+
prediction_scores = @lm_head.(sequence_output)
|
803
|
+
|
804
|
+
lm_loss = nil
|
805
|
+
if !labels.nil?
|
806
|
+
# move labels to correct device to enable model parallelism
|
807
|
+
labels = labels.to(prediction_scores.device)
|
808
|
+
# we are doing next-token prediction; shift prediction scores and input ids by one
|
809
|
+
shifted_prediction_scores = prediction_scores[0.., ...-1, 0..].contiguous
|
810
|
+
labels = labels[0.., 1..].contiguous
|
811
|
+
loss_fct = Torch::NN::CrossEntropyLoss.new
|
812
|
+
lm_loss = loss_fct.(shifted_prediction_scores.view(-1, @config.vocab_size), labels.view(-1))
|
813
|
+
end
|
814
|
+
|
815
|
+
if !return_dict
|
816
|
+
output = [prediction_scores] + outputs[2..]
|
817
|
+
return !lm_loss.nil? ? [lm_loss] + output : output
|
818
|
+
end
|
819
|
+
|
820
|
+
CausalLMOutputWithCrossAttentions.new(loss: lm_loss, logits: prediction_scores, past_key_values: outputs.past_key_values, hidden_states: outputs.hidden_states, attentions: outputs.attentions, cross_attentions: outputs.cross_attentions)
|
821
|
+
end
|
822
|
+
|
823
|
+
def prepare_inputs_for_generation(input_ids, past_key_values: nil, attention_mask: nil, **model_kwargs)
|
824
|
+
input_shape = input_ids.shape
|
825
|
+
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
|
826
|
+
if attention_mask.nil?
|
827
|
+
attention_mask = input_ids.new_ones(input_shape)
|
828
|
+
end
|
829
|
+
|
830
|
+
# cut decoder_input_ids if past_key_values is used
|
831
|
+
if !past_key_values.nil?
|
832
|
+
past_length = past_key_values[0][0].shape[2]
|
833
|
+
|
834
|
+
# Some generation methods already pass only the last input ID
|
835
|
+
if input_ids.shape[1] > past_length
|
836
|
+
remove_prefix_length = past_length
|
837
|
+
else
|
838
|
+
# Default to old behavior: keep only final ID
|
839
|
+
remove_prefix_length = input_ids.shape[1] - 1
|
840
|
+
end
|
841
|
+
|
842
|
+
input_ids = input_ids[0.., remove_prefix_length..]
|
843
|
+
end
|
844
|
+
|
845
|
+
{"input_ids" => input_ids, "attention_mask" => attention_mask, "past_key_values" => past_key_values}
|
846
|
+
end
|
847
|
+
|
848
|
+
def _reorder_cache(past_key_values, beam_idx)
|
849
|
+
reordered_past = []
|
850
|
+
past_key_values.each do |layer_past|
|
851
|
+
reordered_past += [Array(layer_past.select { |past_state| past_state })]
|
852
|
+
end
|
853
|
+
reordered_past
|
854
|
+
end
|
855
|
+
end
|
856
|
+
|
857
|
+
class XLMRobertaForMaskedLM < XLMRobertaPreTrainedModel
|
858
|
+
self._tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"]
|
859
|
+
|
860
|
+
def initialize(config)
|
861
|
+
super(config)
|
862
|
+
|
863
|
+
if config.is_decoder
|
864
|
+
Transformers.logger.warn("If you want to use `XLMRobertaForMaskedLM` make sure `config.is_decoder: false` for bi-directional self-attention.")
|
865
|
+
end
|
866
|
+
|
867
|
+
@roberta = XLMRobertaModel.new(config, add_pooling_layer: false)
|
868
|
+
@lm_head = XLMRobertaLMHead.new(config)
|
869
|
+
|
870
|
+
# Initialize weights and apply final processing
|
871
|
+
post_init
|
872
|
+
end
|
873
|
+
|
874
|
+
def get_output_embeddings
|
875
|
+
@lm_head.decoder
|
876
|
+
end
|
877
|
+
|
878
|
+
def set_output_embeddings(new_embeddings)
|
879
|
+
@decoder = new_embeddings
|
880
|
+
end
|
881
|
+
|
882
|
+
def forward(
|
883
|
+
input_ids: nil,
|
884
|
+
attention_mask: nil,
|
885
|
+
token_type_ids: nil,
|
886
|
+
position_ids: nil,
|
887
|
+
head_mask: nil,
|
888
|
+
inputs_embeds: nil,
|
889
|
+
encoder_hidden_states: nil,
|
890
|
+
encoder_attention_mask: nil,
|
891
|
+
labels: nil,
|
892
|
+
output_attentions: nil,
|
893
|
+
output_hidden_states: nil,
|
894
|
+
return_dict: nil
|
895
|
+
)
|
896
|
+
return_dict = !return_dict.nil? ? return_dict : @config.use_return_dict
|
897
|
+
|
898
|
+
outputs = @roberta.(input_ids, attention_mask: attention_mask, token_type_ids: token_type_ids, position_ids: position_ids, head_mask: head_mask, inputs_embeds: inputs_embeds, encoder_hidden_states: encoder_hidden_states, encoder_attention_mask: encoder_attention_mask, output_attentions: output_attentions, output_hidden_states: output_hidden_states, return_dict: return_dict)
|
899
|
+
sequence_output = outputs[0]
|
900
|
+
prediction_scores = @lm_head.(sequence_output)
|
901
|
+
|
902
|
+
masked_lm_loss = nil
|
903
|
+
if !labels.nil?
|
904
|
+
# move labels to correct device to enable model parallelism
|
905
|
+
labels = labels.to(prediction_scores.device)
|
906
|
+
loss_fct = Torch::NN::CrossEntropyLoss.new
|
907
|
+
masked_lm_loss = loss_fct.(prediction_scores.view(-1, @config.vocab_size), labels.view(-1))
|
908
|
+
end
|
909
|
+
|
910
|
+
if !return_dict
|
911
|
+
output = [prediction_scores] + outputs[2..]
|
912
|
+
return !masked_lm_loss.nil? ? [masked_lm_loss] + output : output
|
913
|
+
end
|
914
|
+
|
915
|
+
MaskedLMOutput.new(loss: masked_lm_loss, logits: prediction_scores, hidden_states: outputs.hidden_states, attentions: outputs.attentions)
|
916
|
+
end
|
917
|
+
end
|
918
|
+
|
919
|
+
class XLMRobertaLMHead < Torch::NN::Module
|
920
|
+
def initialize(config)
|
921
|
+
super()
|
922
|
+
@dense = Torch::NN::Linear.new(config.hidden_size, config.hidden_size)
|
923
|
+
@layer_norm = Torch::NN::LayerNorm.new(config.hidden_size, eps: config.layer_norm_eps)
|
924
|
+
|
925
|
+
@decoder = Torch::NN::Linear.new(config.hidden_size, config.vocab_size)
|
926
|
+
@bias = Torch::NN::Parameter.new(Torch.zeros(config.vocab_size))
|
927
|
+
@bias = @bias
|
928
|
+
end
|
929
|
+
|
930
|
+
def forward(features, **kwargs)
|
931
|
+
x = @dense.(features)
|
932
|
+
x = Activations.gelu(x)
|
933
|
+
x = @layer_norm.(x)
|
934
|
+
|
935
|
+
# project back to size of vocabulary with bias
|
936
|
+
x = @decoder.(x)
|
937
|
+
|
938
|
+
x
|
939
|
+
end
|
940
|
+
|
941
|
+
def _tie_weights
|
942
|
+
# To tie those two weights if they get disconnected (on TPU or when the bias is resized)
|
943
|
+
# For accelerate compatibility and to not break backward compatibility
|
944
|
+
if @decoder.bias.device.type == "meta"
|
945
|
+
@bias = @bias
|
946
|
+
else
|
947
|
+
@bias = @decoder.bias
|
948
|
+
end
|
949
|
+
end
|
950
|
+
end
|
951
|
+
|
952
|
+
class XLMRobertaForSequenceClassification < XLMRobertaPreTrainedModel
|
953
|
+
def initialize(config)
|
954
|
+
super(config)
|
955
|
+
@num_labels = config.num_labels
|
956
|
+
@config = config
|
957
|
+
|
958
|
+
@roberta = XLMRobertaModel.new(config, add_pooling_layer: false)
|
959
|
+
@classifier = XLMRobertaClassificationHead.new(config)
|
960
|
+
|
961
|
+
# Initialize weights and apply final processing
|
962
|
+
post_init
|
963
|
+
end
|
964
|
+
|
965
|
+
def forward(
|
966
|
+
input_ids: nil,
|
967
|
+
attention_mask: nil,
|
968
|
+
token_type_ids: nil,
|
969
|
+
position_ids: nil,
|
970
|
+
head_mask: nil,
|
971
|
+
inputs_embeds: nil,
|
972
|
+
labels: nil,
|
973
|
+
output_attentions: nil,
|
974
|
+
output_hidden_states: nil,
|
975
|
+
return_dict: nil
|
976
|
+
)
|
977
|
+
return_dict = !return_dict.nil? ? return_dict : @config.use_return_dict
|
978
|
+
|
979
|
+
outputs = @roberta.(input_ids, attention_mask: attention_mask, token_type_ids: token_type_ids, position_ids: position_ids, head_mask: head_mask, inputs_embeds: inputs_embeds, output_attentions: output_attentions, output_hidden_states: output_hidden_states, return_dict: return_dict)
|
980
|
+
sequence_output = outputs[0]
|
981
|
+
logits = @classifier.(sequence_output)
|
982
|
+
|
983
|
+
loss = nil
|
984
|
+
if !labels.nil?
|
985
|
+
# move labels to correct device to enable model parallelism
|
986
|
+
labels = labels.to(logits.device)
|
987
|
+
if @config.problem_type.nil?
|
988
|
+
if @num_labels == 1
|
989
|
+
@problem_type = "regression"
|
990
|
+
elsif @num_labels > 1 && labels.dtype == Torch.long || labels.dtype == Torch.int
|
991
|
+
@problem_type = "single_label_classification"
|
992
|
+
else
|
993
|
+
@problem_type = "multi_label_classification"
|
994
|
+
end
|
995
|
+
end
|
996
|
+
|
997
|
+
if @config.problem_type == "regression"
|
998
|
+
loss_fct = Torch::NN::MSELoss.new
|
999
|
+
if @num_labels == 1
|
1000
|
+
loss = loss_fct.(logits.squeeze, labels.squeeze)
|
1001
|
+
else
|
1002
|
+
loss = loss_fct.(logits, labels)
|
1003
|
+
end
|
1004
|
+
elsif @config.problem_type == "single_label_classification"
|
1005
|
+
loss_fct = Torch::NN::CrossEntropyLoss.new
|
1006
|
+
loss = loss_fct.(logits.view(-1, @num_labels), labels.view(-1))
|
1007
|
+
elsif @config.problem_type == "multi_label_classification"
|
1008
|
+
loss_fct = Torch::NN::BCEWithLogitsLoss.new
|
1009
|
+
loss = loss_fct.(logits, labels)
|
1010
|
+
end
|
1011
|
+
end
|
1012
|
+
|
1013
|
+
if !return_dict
|
1014
|
+
output = [logits] + outputs[2..]
|
1015
|
+
return !loss.nil? ? [loss] + output : output
|
1016
|
+
end
|
1017
|
+
|
1018
|
+
SequenceClassifierOutput.new(loss: loss, logits: logits, hidden_states: outputs.hidden_states, attentions: outputs.attentions)
|
1019
|
+
end
|
1020
|
+
end
|
1021
|
+
|
1022
|
+
class XLMRobertaForMultipleChoice < XLMRobertaPreTrainedModel
|
1023
|
+
def initialize(config)
|
1024
|
+
super(config)
|
1025
|
+
|
1026
|
+
@roberta = XLMRobertaModel.new(config)
|
1027
|
+
@dropout = Torch::NN::Dropout.new(p: config.hidden_dropout_prob)
|
1028
|
+
@classifier = Torch::NN::Linear.new(config.hidden_size, 1)
|
1029
|
+
|
1030
|
+
# Initialize weights and apply final processing
|
1031
|
+
post_init
|
1032
|
+
end
|
1033
|
+
|
1034
|
+
def forward(
|
1035
|
+
input_ids: nil,
|
1036
|
+
token_type_ids: nil,
|
1037
|
+
attention_mask: nil,
|
1038
|
+
labels: nil,
|
1039
|
+
position_ids: nil,
|
1040
|
+
head_mask: nil,
|
1041
|
+
inputs_embeds: nil,
|
1042
|
+
output_attentions: nil,
|
1043
|
+
output_hidden_states: nil,
|
1044
|
+
return_dict: nil
|
1045
|
+
)
|
1046
|
+
return_dict = !return_dict.nil? ? return_dict : @config.use_return_dict
|
1047
|
+
num_choices = !input_ids.nil? ? input_ids.shape[1] : inputs_embeds.shape[1]
|
1048
|
+
|
1049
|
+
flat_input_ids = !input_ids.nil? ? input_ids.view(-1, input_ids.size(-1)) : nil
|
1050
|
+
flat_position_ids = !position_ids.nil? ? position_ids.view(-1, position_ids.size(-1)) : nil
|
1051
|
+
flat_token_type_ids = !token_type_ids.nil? ? token_type_ids.view(-1, token_type_ids.size(-1)) : nil
|
1052
|
+
flat_attention_mask = !attention_mask.nil? ? attention_mask.view(-1, attention_mask.size(-1)) : nil
|
1053
|
+
flat_inputs_embeds = !inputs_embeds.nil? ? inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) : nil
|
1054
|
+
|
1055
|
+
outputs = @roberta.(flat_input_ids, position_ids: flat_position_ids, token_type_ids: flat_token_type_ids, attention_mask: flat_attention_mask, head_mask: head_mask, inputs_embeds: flat_inputs_embeds, output_attentions: output_attentions, output_hidden_states: output_hidden_states, return_dict: return_dict)
|
1056
|
+
pooled_output = outputs[1]
|
1057
|
+
|
1058
|
+
pooled_output = @dropout.(pooled_output)
|
1059
|
+
logits = @classifier.(pooled_output)
|
1060
|
+
reshaped_logits = logits.view(-1, num_choices)
|
1061
|
+
|
1062
|
+
loss = nil
|
1063
|
+
if !labels.nil?
|
1064
|
+
# move labels to correct device to enable model parallelism
|
1065
|
+
labels = labels.to(reshaped_logits.device)
|
1066
|
+
loss_fct = Torch::NN::CrossEntropyLoss.new
|
1067
|
+
loss = loss_fct.(reshaped_logits, labels)
|
1068
|
+
end
|
1069
|
+
|
1070
|
+
if !return_dict
|
1071
|
+
output = [reshaped_logits] + outputs[2..]
|
1072
|
+
return !loss.nil? ? [loss] + output : output
|
1073
|
+
end
|
1074
|
+
|
1075
|
+
MultipleChoiceModelOutput.new(loss: loss, logits: reshaped_logits, hidden_states: outputs.hidden_states, attentions: outputs.attentions)
|
1076
|
+
end
|
1077
|
+
end
|
1078
|
+
|
1079
|
+
class XLMRobertaForTokenClassification < XLMRobertaPreTrainedModel
|
1080
|
+
def initialize(config)
|
1081
|
+
super(config)
|
1082
|
+
@num_labels = config.num_labels
|
1083
|
+
|
1084
|
+
@roberta = XLMRobertaModel.new(config, add_pooling_layer: false)
|
1085
|
+
classifier_dropout = !config.classifier_dropout.nil? ? config.classifier_dropout : config.hidden_dropout_prob
|
1086
|
+
@dropout = Torch::NN::Dropout.new(p: classifier_dropout)
|
1087
|
+
@classifier = Torch::NN::Linear.new(config.hidden_size, config.num_labels)
|
1088
|
+
|
1089
|
+
# Initialize weights and apply final processing
|
1090
|
+
post_init
|
1091
|
+
end
|
1092
|
+
|
1093
|
+
def forward(
|
1094
|
+
input_ids: nil,
|
1095
|
+
attention_mask: nil,
|
1096
|
+
token_type_ids: nil,
|
1097
|
+
position_ids: nil,
|
1098
|
+
head_mask: nil,
|
1099
|
+
inputs_embeds: nil,
|
1100
|
+
labels: nil,
|
1101
|
+
output_attentions: nil,
|
1102
|
+
output_hidden_states: nil,
|
1103
|
+
return_dict: nil
|
1104
|
+
)
|
1105
|
+
return_dict = !return_dict.nil? ? return_dict : @config.use_return_dict
|
1106
|
+
|
1107
|
+
outputs = @roberta.(input_ids, attention_mask: attention_mask, token_type_ids: token_type_ids, position_ids: position_ids, head_mask: head_mask, inputs_embeds: inputs_embeds, output_attentions: output_attentions, output_hidden_states: output_hidden_states, return_dict: return_dict)
|
1108
|
+
|
1109
|
+
sequence_output = outputs[0]
|
1110
|
+
|
1111
|
+
sequence_output = @dropout.(sequence_output)
|
1112
|
+
logits = @classifier.(sequence_output)
|
1113
|
+
|
1114
|
+
loss = nil
|
1115
|
+
if !labels.nil?
|
1116
|
+
# move labels to correct device to enable model parallelism
|
1117
|
+
labels = labels.to(logits.device)
|
1118
|
+
loss_fct = Torch::NN::CrossEntropyLoss.new
|
1119
|
+
loss = loss_fct.(logits.view(-1, @num_labels), labels.view(-1))
|
1120
|
+
end
|
1121
|
+
|
1122
|
+
if !return_dict
|
1123
|
+
output = [logits] + outputs[2..]
|
1124
|
+
return !loss.nil? ? [loss] + output : output
|
1125
|
+
end
|
1126
|
+
|
1127
|
+
TokenClassifierOutput.new(loss: loss, logits: logits, hidden_states: outputs.hidden_states, attentions: outputs.attentions)
|
1128
|
+
end
|
1129
|
+
end
|
1130
|
+
|
1131
|
+
class XLMRobertaClassificationHead < Torch::NN::Module
|
1132
|
+
def initialize(config)
|
1133
|
+
super()
|
1134
|
+
@dense = Torch::NN::Linear.new(config.hidden_size, config.hidden_size)
|
1135
|
+
classifier_dropout = !config.classifier_dropout.nil? ? config.classifier_dropout : config.hidden_dropout_prob
|
1136
|
+
@dropout = Torch::NN::Dropout.new(p: classifier_dropout)
|
1137
|
+
@out_proj = Torch::NN::Linear.new(config.hidden_size, config.num_labels)
|
1138
|
+
end
|
1139
|
+
|
1140
|
+
def forward(features, **kwargs)
|
1141
|
+
x = features[0.., 0, 0..]
|
1142
|
+
x = @dropout.(x)
|
1143
|
+
x = @dense.(x)
|
1144
|
+
x = Torch.tanh(x)
|
1145
|
+
x = @dropout.(x)
|
1146
|
+
x = @out_proj.(x)
|
1147
|
+
x
|
1148
|
+
end
|
1149
|
+
end
|
1150
|
+
|
1151
|
+
class XLMRobertaForQuestionAnswering < XLMRobertaPreTrainedModel
|
1152
|
+
def initialize(config)
|
1153
|
+
super(config)
|
1154
|
+
@num_labels = config.num_labels
|
1155
|
+
|
1156
|
+
@roberta = XLMRobertaModel.new(config, add_pooling_layer: false)
|
1157
|
+
@qa_outputs = Torch::NN::Linear.new(config.hidden_size, config.num_labels)
|
1158
|
+
|
1159
|
+
# Initialize weights and apply final processing
|
1160
|
+
post_init
|
1161
|
+
end
|
1162
|
+
|
1163
|
+
def forward(
|
1164
|
+
input_ids: nil,
|
1165
|
+
attention_mask: nil,
|
1166
|
+
token_type_ids: nil,
|
1167
|
+
position_ids: nil,
|
1168
|
+
head_mask: nil,
|
1169
|
+
inputs_embeds: nil,
|
1170
|
+
start_positions: nil,
|
1171
|
+
end_positions: nil,
|
1172
|
+
output_attentions: nil,
|
1173
|
+
output_hidden_states: nil,
|
1174
|
+
return_dict: nil
|
1175
|
+
)
|
1176
|
+
return_dict = !return_dict.nil? ? return_dict : @config.use_return_dict
|
1177
|
+
|
1178
|
+
outputs = @roberta.(input_ids, attention_mask: attention_mask, token_type_ids: token_type_ids, position_ids: position_ids, head_mask: head_mask, inputs_embeds: inputs_embeds, output_attentions: output_attentions, output_hidden_states: output_hidden_states, return_dict: return_dict)
|
1179
|
+
|
1180
|
+
sequence_output = outputs[0]
|
1181
|
+
|
1182
|
+
logits = @qa_outputs.(sequence_output)
|
1183
|
+
start_logits, end_logits = logits.split(1, dim: -1)
|
1184
|
+
start_logits = start_logits.squeeze(-1).contiguous
|
1185
|
+
end_logits = end_logits.squeeze(-1).contiguous
|
1186
|
+
|
1187
|
+
total_loss = nil
|
1188
|
+
if !start_positions.nil? && !end_positions.nil?
|
1189
|
+
# If we are on multi-GPU, split add a dimension
|
1190
|
+
if start_positions.size.length > 1
|
1191
|
+
start_positions = start_positions.squeeze(-1)
|
1192
|
+
end
|
1193
|
+
if end_positions.size.length > 1
|
1194
|
+
end_positions = end_positions.squeeze(-1)
|
1195
|
+
end
|
1196
|
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
1197
|
+
ignored_index = start_logits.size(1)
|
1198
|
+
start_positions = start_positions.clamp(0, ignored_index)
|
1199
|
+
end_positions = end_positions.clamp(0, ignored_index)
|
1200
|
+
|
1201
|
+
loss_fct = Torch::NN::CrossEntropyLoss.new(ignore_index: ignored_index)
|
1202
|
+
start_loss = loss_fct.(start_logits, start_positions)
|
1203
|
+
end_loss = loss_fct.(end_logits, end_positions)
|
1204
|
+
total_loss = (start_loss + end_loss) / 2
|
1205
|
+
end
|
1206
|
+
|
1207
|
+
if !return_dict
|
1208
|
+
output = [start_logits, end_logits] + outputs[2..]
|
1209
|
+
return !total_loss.nil? ? [total_loss] + output : output
|
1210
|
+
end
|
1211
|
+
|
1212
|
+
QuestionAnsweringModelOutput.new(loss: total_loss, start_logits: start_logits, end_logits: end_logits, hidden_states: outputs.hidden_states, attentions: outputs.attentions)
|
1213
|
+
end
|
1214
|
+
end
|
1215
|
+
end
|
1216
|
+
end
|