transformers-rb 0.1.2 → 0.1.3
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +7 -0
- data/README.md +61 -3
- data/lib/transformers/configuration_utils.rb +32 -4
- data/lib/transformers/modeling_utils.rb +10 -3
- data/lib/transformers/models/auto/auto_factory.rb +1 -1
- data/lib/transformers/models/auto/configuration_auto.rb +5 -2
- data/lib/transformers/models/auto/modeling_auto.rb +9 -3
- data/lib/transformers/models/auto/tokenization_auto.rb +5 -2
- data/lib/transformers/models/deberta_v2/configuration_deberta_v2.rb +80 -0
- data/lib/transformers/models/deberta_v2/modeling_deberta_v2.rb +1210 -0
- data/lib/transformers/models/deberta_v2/tokenization_deberta_v2_fast.rb +78 -0
- data/lib/transformers/models/mpnet/configuration_mpnet.rb +61 -0
- data/lib/transformers/models/mpnet/modeling_mpnet.rb +792 -0
- data/lib/transformers/models/mpnet/tokenization_mpnet_fast.rb +106 -0
- data/lib/transformers/models/xlm_roberta/configuration_xlm_roberta.rb +68 -0
- data/lib/transformers/models/xlm_roberta/modeling_xlm_roberta.rb +1216 -0
- data/lib/transformers/models/xlm_roberta/tokenization_xlm_roberta_fast.rb +68 -0
- data/lib/transformers/pipelines/_init.rb +10 -0
- data/lib/transformers/pipelines/reranking.rb +33 -0
- data/lib/transformers/version.rb +1 -1
- data/lib/transformers.rb +16 -0
- metadata +14 -4
@@ -0,0 +1,792 @@
|
|
1
|
+
# Copyright 2018 The HuggingFace Inc. team, Microsoft Corporation.
|
2
|
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
3
|
+
#
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5
|
+
# you may not use this file except in compliance with the License.
|
6
|
+
# You may obtain a copy of the License at
|
7
|
+
#
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9
|
+
#
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13
|
+
# See the License for the specific language governing permissions and
|
14
|
+
# limitations under the License.
|
15
|
+
|
16
|
+
module Transformers
|
17
|
+
module Mpnet
|
18
|
+
class MPNetPreTrainedModel < PreTrainedModel
|
19
|
+
self.config_class = MPNetConfig
|
20
|
+
self.base_model_prefix = "mpnet"
|
21
|
+
|
22
|
+
def _init_weights(module_)
|
23
|
+
if module_.is_a?(Torch::NN::Linear)
|
24
|
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
25
|
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
26
|
+
module_.weight.data.normal!(mean: 0.0, std: @config.initializer_range)
|
27
|
+
if !module_.bias.nil?
|
28
|
+
module_.bias.data.zero!
|
29
|
+
end
|
30
|
+
elsif module_.is_a?(Torch::NN::Embedding)
|
31
|
+
module_.weight.data.normal!(mean: 0.0, std: @config.initializer_range)
|
32
|
+
if !module_.padding_idx.nil?
|
33
|
+
module_.weight.data.fetch(module_.padding_idx).zero!
|
34
|
+
end
|
35
|
+
elsif module_.is_a?(Torch::NN::LayerNorm)
|
36
|
+
module_.bias.data.zero!
|
37
|
+
module_.weight.data.fill!(1.0)
|
38
|
+
end
|
39
|
+
end
|
40
|
+
end
|
41
|
+
|
42
|
+
class MPNetEmbeddings < Torch::NN::Module
|
43
|
+
def initialize(config)
|
44
|
+
super()
|
45
|
+
@padding_idx = 1
|
46
|
+
@word_embeddings = Torch::NN::Embedding.new(config.vocab_size, config.hidden_size, padding_idx: @padding_idx)
|
47
|
+
@position_embeddings = Torch::NN::Embedding.new(config.max_position_embeddings, config.hidden_size, padding_idx: @padding_idx)
|
48
|
+
|
49
|
+
@LayerNorm = Torch::NN::LayerNorm.new(config.hidden_size, eps: config.layer_norm_eps)
|
50
|
+
@dropout = Torch::NN::Dropout.new(p: config.hidden_dropout_prob)
|
51
|
+
register_buffer("position_ids", Torch.arange(config.max_position_embeddings).expand([1, -1]), persistent: false)
|
52
|
+
end
|
53
|
+
|
54
|
+
def forward(input_ids: nil, position_ids: nil, inputs_embeds: nil, **kwargs)
|
55
|
+
if position_ids.nil?
|
56
|
+
if !input_ids.nil?
|
57
|
+
position_ids = create_position_ids_from_input_ids(input_ids, @padding_idx)
|
58
|
+
else
|
59
|
+
position_ids = create_position_ids_from_inputs_embeds(inputs_embeds)
|
60
|
+
end
|
61
|
+
end
|
62
|
+
|
63
|
+
if !input_ids.nil?
|
64
|
+
input_shape = input_ids.size
|
65
|
+
else
|
66
|
+
input_shape = inputs_embeds.size[...-1]
|
67
|
+
end
|
68
|
+
|
69
|
+
seq_length = input_shape[1]
|
70
|
+
|
71
|
+
if position_ids.nil?
|
72
|
+
position_ids = @position_ids[0.., ...seq_length]
|
73
|
+
end
|
74
|
+
|
75
|
+
if inputs_embeds.nil?
|
76
|
+
inputs_embeds = @word_embeddings.(input_ids)
|
77
|
+
end
|
78
|
+
position_embeddings = @position_embeddings.(position_ids)
|
79
|
+
|
80
|
+
embeddings = inputs_embeds + position_embeddings
|
81
|
+
embeddings = @LayerNorm.(embeddings)
|
82
|
+
embeddings = @dropout.(embeddings)
|
83
|
+
embeddings
|
84
|
+
end
|
85
|
+
|
86
|
+
def create_position_ids_from_inputs_embeds(inputs_embeds)
|
87
|
+
input_shape = inputs_embeds.size[...-1]
|
88
|
+
sequence_length = input_shape[1]
|
89
|
+
|
90
|
+
position_ids = Torch.arange(@padding_idx + 1, sequence_length + @padding_idx + 1, dtype: Torch.long, device: inputs_embeds.device)
|
91
|
+
position_ids.unsqueeze(0).expand(input_shape)
|
92
|
+
end
|
93
|
+
|
94
|
+
def create_position_ids_from_input_ids(input_ids, padding_idx)
|
95
|
+
# The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
|
96
|
+
mask = input_ids.ne(padding_idx).int
|
97
|
+
incremental_indices = Torch.cumsum(mask, dim: 1).type_as(mask) * mask
|
98
|
+
incremental_indices.long + padding_idx
|
99
|
+
end
|
100
|
+
end
|
101
|
+
|
102
|
+
class MPNetSelfAttention < Torch::NN::Module
|
103
|
+
def initialize(config)
|
104
|
+
super()
|
105
|
+
if config.hidden_size % config.num_attention_heads != 0 && !config.instance_variable_defined?(:@embedding_size)
|
106
|
+
raise ArgumentError, "The hidden size (#{config.hidden_size}) is not a multiple of the number of attention heads (#{config.num_attention_heads})"
|
107
|
+
end
|
108
|
+
|
109
|
+
@num_attention_heads = config.num_attention_heads
|
110
|
+
@attention_head_size = (config.hidden_size / config.num_attention_heads).to_i
|
111
|
+
@all_head_size = @num_attention_heads * @attention_head_size
|
112
|
+
|
113
|
+
@q = Torch::NN::Linear.new(config.hidden_size, @all_head_size)
|
114
|
+
@k = Torch::NN::Linear.new(config.hidden_size, @all_head_size)
|
115
|
+
@v = Torch::NN::Linear.new(config.hidden_size, @all_head_size)
|
116
|
+
@o = Torch::NN::Linear.new(config.hidden_size, config.hidden_size)
|
117
|
+
|
118
|
+
@dropout = Torch::NN::Dropout.new(p: config.attention_probs_dropout_prob)
|
119
|
+
end
|
120
|
+
|
121
|
+
def transpose_for_scores(x)
|
122
|
+
new_x_shape = x.size[...-1] + [@num_attention_heads, @attention_head_size]
|
123
|
+
x = x.view(*new_x_shape)
|
124
|
+
x.permute(0, 2, 1, 3)
|
125
|
+
end
|
126
|
+
|
127
|
+
def forward(
|
128
|
+
hidden_states,
|
129
|
+
attention_mask: nil,
|
130
|
+
head_mask: nil,
|
131
|
+
position_bias: nil,
|
132
|
+
output_attentions: false,
|
133
|
+
**kwargs
|
134
|
+
)
|
135
|
+
q = @q.(hidden_states)
|
136
|
+
k = @k.(hidden_states)
|
137
|
+
v = @v.(hidden_states)
|
138
|
+
|
139
|
+
q = transpose_for_scores(q)
|
140
|
+
k = transpose_for_scores(k)
|
141
|
+
v = transpose_for_scores(v)
|
142
|
+
|
143
|
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
144
|
+
attention_scores = Torch.matmul(q, k.transpose(-1, -2))
|
145
|
+
attention_scores = attention_scores / Math.sqrt(@attention_head_size)
|
146
|
+
|
147
|
+
# Apply relative position embedding (precomputed in MPNetEncoder) if provided.
|
148
|
+
if !position_bias.nil?
|
149
|
+
attention_scores += position_bias
|
150
|
+
end
|
151
|
+
|
152
|
+
if !attention_mask.nil?
|
153
|
+
attention_scores = attention_scores + attention_mask
|
154
|
+
end
|
155
|
+
|
156
|
+
# Normalize the attention scores to probabilities.
|
157
|
+
attention_probs = Torch::NN::Functional.softmax(attention_scores, dim: -1)
|
158
|
+
|
159
|
+
attention_probs = @dropout.(attention_probs)
|
160
|
+
|
161
|
+
if !head_mask.nil?
|
162
|
+
attention_probs = attention_probs * head_mask
|
163
|
+
end
|
164
|
+
|
165
|
+
c = Torch.matmul(attention_probs, v)
|
166
|
+
|
167
|
+
c = c.permute(0, 2, 1, 3).contiguous
|
168
|
+
new_c_shape = c.size[...-2] + [@all_head_size]
|
169
|
+
c = c.view(*new_c_shape)
|
170
|
+
|
171
|
+
o = @o.(c)
|
172
|
+
|
173
|
+
outputs = output_attentions ? [o, attention_probs] : [o]
|
174
|
+
outputs
|
175
|
+
end
|
176
|
+
end
|
177
|
+
|
178
|
+
class MPNetAttention < Torch::NN::Module
|
179
|
+
def initialize(config)
|
180
|
+
super()
|
181
|
+
@attn = MPNetSelfAttention.new(config)
|
182
|
+
@LayerNorm = Torch::NN::LayerNorm.new(config.hidden_size, eps: config.layer_norm_eps)
|
183
|
+
@dropout = Torch::NN::Dropout.new(p: config.hidden_dropout_prob)
|
184
|
+
|
185
|
+
@pruned_heads = Set.new
|
186
|
+
end
|
187
|
+
|
188
|
+
def prune_heads(heads)
|
189
|
+
if heads.length == 0
|
190
|
+
return
|
191
|
+
end
|
192
|
+
heads, index = TorchUtils.find_pruneable_heads_and_indices(heads, @attn.num_attention_heads, @attn.attention_head_size, @pruned_heads)
|
193
|
+
|
194
|
+
@q = TorchUtils.prune_linear_layer(@attn.q, index)
|
195
|
+
@k = TorchUtils.prune_linear_layer(@attn.k, index)
|
196
|
+
@v = TorchUtils.prune_linear_layer(@attn.v, index)
|
197
|
+
@o = TorchUtils.prune_linear_layer(@attn.o, index, dim: 1)
|
198
|
+
|
199
|
+
@num_attention_heads = @attn.num_attention_heads - heads.length
|
200
|
+
@all_head_size = @attn.attention_head_size * @attn.num_attention_heads
|
201
|
+
@pruned_heads = @pruned_heads.union(heads)
|
202
|
+
end
|
203
|
+
|
204
|
+
def forward(
|
205
|
+
hidden_states,
|
206
|
+
attention_mask: nil,
|
207
|
+
head_mask: nil,
|
208
|
+
position_bias: nil,
|
209
|
+
output_attentions: false,
|
210
|
+
**kwargs
|
211
|
+
)
|
212
|
+
self_outputs = @attn.(hidden_states, attention_mask: attention_mask, head_mask: head_mask, position_bias: position_bias, output_attentions: output_attentions)
|
213
|
+
attention_output = @LayerNorm.(@dropout.(self_outputs[0]) + hidden_states)
|
214
|
+
outputs = [attention_output] + self_outputs[1..]
|
215
|
+
outputs
|
216
|
+
end
|
217
|
+
end
|
218
|
+
|
219
|
+
class MPNetIntermediate < Torch::NN::Module
|
220
|
+
def initialize(config)
|
221
|
+
super()
|
222
|
+
@dense = Torch::NN::Linear.new(config.hidden_size, config.intermediate_size)
|
223
|
+
if config.hidden_act.is_a?(String)
|
224
|
+
@intermediate_act_fn = ACT2FN[config.hidden_act]
|
225
|
+
else
|
226
|
+
@intermediate_act_fn = config.hidden_act
|
227
|
+
end
|
228
|
+
end
|
229
|
+
|
230
|
+
def forward(hidden_states)
|
231
|
+
hidden_states = @dense.(hidden_states)
|
232
|
+
hidden_states = @intermediate_act_fn.(hidden_states)
|
233
|
+
hidden_states
|
234
|
+
end
|
235
|
+
end
|
236
|
+
|
237
|
+
class MPNetOutput < Torch::NN::Module
|
238
|
+
def initialize(config)
|
239
|
+
super()
|
240
|
+
@dense = Torch::NN::Linear.new(config.intermediate_size, config.hidden_size)
|
241
|
+
@LayerNorm = Torch::NN::LayerNorm.new(config.hidden_size, eps: config.layer_norm_eps)
|
242
|
+
@dropout = Torch::NN::Dropout.new(p: config.hidden_dropout_prob)
|
243
|
+
end
|
244
|
+
|
245
|
+
def forward(hidden_states, input_tensor)
|
246
|
+
hidden_states = @dense.(hidden_states)
|
247
|
+
hidden_states = @dropout.(hidden_states)
|
248
|
+
hidden_states = @LayerNorm.(hidden_states + input_tensor)
|
249
|
+
hidden_states
|
250
|
+
end
|
251
|
+
end
|
252
|
+
|
253
|
+
class MPNetLayer < Torch::NN::Module
|
254
|
+
def initialize(config)
|
255
|
+
super()
|
256
|
+
@attention = MPNetAttention.new(config)
|
257
|
+
@intermediate = MPNetIntermediate.new(config)
|
258
|
+
@output = MPNetOutput.new(config)
|
259
|
+
end
|
260
|
+
|
261
|
+
def forward(
|
262
|
+
hidden_states,
|
263
|
+
attention_mask: nil,
|
264
|
+
head_mask: nil,
|
265
|
+
position_bias: nil,
|
266
|
+
output_attentions: false,
|
267
|
+
**kwargs
|
268
|
+
)
|
269
|
+
self_attention_outputs = @attention.(hidden_states, attention_mask: attention_mask, head_mask: head_mask, position_bias: position_bias, output_attentions: output_attentions)
|
270
|
+
attention_output = self_attention_outputs[0]
|
271
|
+
outputs = self_attention_outputs[1..]
|
272
|
+
|
273
|
+
intermediate_output = @intermediate.(attention_output)
|
274
|
+
layer_output = @output.(intermediate_output, attention_output)
|
275
|
+
outputs = [layer_output] + outputs
|
276
|
+
outputs
|
277
|
+
end
|
278
|
+
end
|
279
|
+
|
280
|
+
class MPNetEncoder < Torch::NN::Module
|
281
|
+
def initialize(config)
|
282
|
+
super()
|
283
|
+
@config = config
|
284
|
+
@n_heads = config.num_attention_heads
|
285
|
+
@layer = Torch::NN::ModuleList.new(config.num_hidden_layers.times.map { |_| MPNetLayer.new(config) })
|
286
|
+
@relative_attention_bias = Torch::NN::Embedding.new(config.relative_attention_num_buckets, @n_heads)
|
287
|
+
end
|
288
|
+
|
289
|
+
def forward(
|
290
|
+
hidden_states,
|
291
|
+
attention_mask: nil,
|
292
|
+
head_mask: nil,
|
293
|
+
output_attentions: false,
|
294
|
+
output_hidden_states: false,
|
295
|
+
return_dict: false,
|
296
|
+
**kwargs
|
297
|
+
)
|
298
|
+
position_bias = compute_position_bias(hidden_states)
|
299
|
+
all_hidden_states = output_hidden_states ? [] : nil
|
300
|
+
all_attentions = output_attentions ? [] : nil
|
301
|
+
@layer.each_with_index do |layer_module, i|
|
302
|
+
if output_hidden_states
|
303
|
+
all_hidden_states = all_hidden_states + [hidden_states]
|
304
|
+
end
|
305
|
+
|
306
|
+
layer_outputs = layer_module.(hidden_states, attention_mask: attention_mask, head_mask: head_mask[i], position_bias: position_bias, output_attentions: output_attentions, **kwargs)
|
307
|
+
hidden_states = layer_outputs[0]
|
308
|
+
|
309
|
+
if output_attentions
|
310
|
+
all_attentions = all_attentions + [layer_outputs[1]]
|
311
|
+
end
|
312
|
+
end
|
313
|
+
|
314
|
+
# Add last layer
|
315
|
+
if output_hidden_states
|
316
|
+
all_hidden_states = all_hidden_states + [hidden_states]
|
317
|
+
end
|
318
|
+
|
319
|
+
if !return_dict
|
320
|
+
return Array([hidden_states, all_hidden_states, all_attentions].select { |v| !v.nil? })
|
321
|
+
end
|
322
|
+
BaseModelOutput.new(last_hidden_state: hidden_states, hidden_states: all_hidden_states, attentions: all_attentions)
|
323
|
+
end
|
324
|
+
|
325
|
+
def compute_position_bias(x, position_ids: nil, num_buckets: 32)
|
326
|
+
bsz, qlen, klen = [x.size(0), x.size(1), x.size(1)]
|
327
|
+
if !position_ids.nil?
|
328
|
+
context_position = position_ids[0.., 0.., nil]
|
329
|
+
memory_position = position_ids[0.., nil, 0..]
|
330
|
+
else
|
331
|
+
context_position = Torch.arange(qlen, dtype: Torch.long)[0.., nil]
|
332
|
+
memory_position = Torch.arange(klen, dtype: Torch.long)[nil, 0..]
|
333
|
+
end
|
334
|
+
|
335
|
+
relative_position = memory_position - context_position
|
336
|
+
|
337
|
+
rp_bucket = self.class.relative_position_bucket(relative_position, num_buckets: num_buckets)
|
338
|
+
rp_bucket = rp_bucket.to(x.device)
|
339
|
+
values = @relative_attention_bias.(rp_bucket)
|
340
|
+
values = values.permute([2, 0, 1]).unsqueeze(0)
|
341
|
+
values = values.expand([bsz, -1, qlen, klen]).contiguous
|
342
|
+
values
|
343
|
+
end
|
344
|
+
|
345
|
+
def self.relative_position_bucket(relative_position, num_buckets: 32, max_distance: 128)
|
346
|
+
ret = 0
|
347
|
+
n = -relative_position
|
348
|
+
|
349
|
+
num_buckets /= 2
|
350
|
+
ret += n.lt(0).to(Torch.long) * num_buckets
|
351
|
+
n = Torch.abs(n)
|
352
|
+
|
353
|
+
max_exact = num_buckets / 2
|
354
|
+
is_small = n.lt(max_exact)
|
355
|
+
|
356
|
+
val_if_large = max_exact + (
|
357
|
+
Torch.log(n.float / max_exact) / Math.log(max_distance / max_exact) * (num_buckets - max_exact)
|
358
|
+
).to(Torch.long)
|
359
|
+
|
360
|
+
val_if_large = Torch.min(val_if_large, Torch.full_like(val_if_large, num_buckets - 1))
|
361
|
+
ret += Torch.where(is_small, n, val_if_large)
|
362
|
+
ret
|
363
|
+
end
|
364
|
+
end
|
365
|
+
|
366
|
+
class MPNetPooler < Torch::NN::Module
|
367
|
+
def initialize(config)
|
368
|
+
super()
|
369
|
+
@dense = Torch::NN::Linear.new(config.hidden_size, config.hidden_size)
|
370
|
+
@activation = Torch::NN::Tanh.new
|
371
|
+
end
|
372
|
+
|
373
|
+
def forward(hidden_states)
|
374
|
+
# We "pool" the model by simply taking the hidden state corresponding
|
375
|
+
# to the first token.
|
376
|
+
first_token_tensor = hidden_states[0.., 0]
|
377
|
+
pooled_output = @dense.(first_token_tensor)
|
378
|
+
pooled_output = @activation.(pooled_output)
|
379
|
+
pooled_output
|
380
|
+
end
|
381
|
+
end
|
382
|
+
|
383
|
+
class MPNetModel < MPNetPreTrainedModel
|
384
|
+
def initialize(config, add_pooling_layer: true)
|
385
|
+
super(config)
|
386
|
+
@config = config
|
387
|
+
|
388
|
+
@embeddings = MPNetEmbeddings.new(config)
|
389
|
+
@encoder = MPNetEncoder.new(config)
|
390
|
+
@pooler = add_pooling_layer ? MPNetPooler.new(config) : nil
|
391
|
+
|
392
|
+
# Initialize weights and apply final processing
|
393
|
+
post_init
|
394
|
+
end
|
395
|
+
|
396
|
+
def get_input_embeddings
|
397
|
+
@embeddings.word_embeddings
|
398
|
+
end
|
399
|
+
|
400
|
+
def set_input_embeddings(value)
|
401
|
+
@word_embeddings = value
|
402
|
+
end
|
403
|
+
|
404
|
+
def _prune_heads(heads_to_prune)
|
405
|
+
heads_to_prune.each do |layer, heads|
|
406
|
+
@encoder.layer[layer].attention.prune_heads(heads)
|
407
|
+
end
|
408
|
+
end
|
409
|
+
|
410
|
+
def forward(
|
411
|
+
input_ids: nil,
|
412
|
+
attention_mask: nil,
|
413
|
+
position_ids: nil,
|
414
|
+
head_mask: nil,
|
415
|
+
inputs_embeds: nil,
|
416
|
+
output_attentions: nil,
|
417
|
+
output_hidden_states: nil,
|
418
|
+
return_dict: nil,
|
419
|
+
**kwargs
|
420
|
+
)
|
421
|
+
output_attentions = !output_attentions.nil? ? output_attentions : @config.output_attentions
|
422
|
+
output_hidden_states = !output_hidden_states.nil? ? output_hidden_states : @config.output_hidden_states
|
423
|
+
return_dict = !return_dict.nil? ? return_dict : @config.use_return_dict
|
424
|
+
|
425
|
+
if !input_ids.nil? && !inputs_embeds.nil?
|
426
|
+
raise ArgumentError, "You cannot specify both input_ids and inputs_embeds at the same time"
|
427
|
+
elsif !input_ids.nil?
|
428
|
+
warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
429
|
+
input_shape = input_ids.size
|
430
|
+
elsif !inputs_embeds.nil?
|
431
|
+
input_shape = inputs_embeds.size[...-1]
|
432
|
+
else
|
433
|
+
raise ArgumentError, "You have to specify either input_ids or inputs_embeds"
|
434
|
+
end
|
435
|
+
|
436
|
+
device = !input_ids.nil? ? input_ids.device : inputs_embeds.device
|
437
|
+
|
438
|
+
if attention_mask.nil?
|
439
|
+
attention_mask = Torch.ones(input_shape, device: device)
|
440
|
+
end
|
441
|
+
extended_attention_mask = get_extended_attention_mask(attention_mask, input_shape)
|
442
|
+
|
443
|
+
head_mask = get_head_mask(head_mask, @config.num_hidden_layers)
|
444
|
+
embedding_output = @embeddings.(input_ids: input_ids, position_ids: position_ids, inputs_embeds: inputs_embeds)
|
445
|
+
encoder_outputs = @encoder.(embedding_output, attention_mask: extended_attention_mask, head_mask: head_mask, output_attentions: output_attentions, output_hidden_states: output_hidden_states, return_dict: return_dict)
|
446
|
+
sequence_output = encoder_outputs[0]
|
447
|
+
pooled_output = !@pooler.nil? ? @pooler.(sequence_output) : nil
|
448
|
+
|
449
|
+
if !return_dict
|
450
|
+
return [sequence_output, pooled_output] + encoder_outputs[1..]
|
451
|
+
end
|
452
|
+
|
453
|
+
BaseModelOutputWithPooling.new(last_hidden_state: sequence_output, pooler_output: pooled_output, hidden_states: encoder_outputs.hidden_states, attentions: encoder_outputs.attentions)
|
454
|
+
end
|
455
|
+
end
|
456
|
+
|
457
|
+
class MPNetForMaskedLM < MPNetPreTrainedModel
|
458
|
+
self._tied_weights_keys = ["lm_head.decoder"]
|
459
|
+
|
460
|
+
def initialize(config)
|
461
|
+
super(config)
|
462
|
+
|
463
|
+
@mpnet = MPNetModel.new(config, add_pooling_layer: false)
|
464
|
+
@lm_head = MPNetLMHead.new(config)
|
465
|
+
|
466
|
+
# Initialize weights and apply final processing
|
467
|
+
post_init
|
468
|
+
end
|
469
|
+
|
470
|
+
def get_output_embeddings
|
471
|
+
@lm_head.decoder
|
472
|
+
end
|
473
|
+
|
474
|
+
def set_output_embeddings(new_embeddings)
|
475
|
+
@decoder = new_embeddings
|
476
|
+
@bias = new_embeddings.bias
|
477
|
+
end
|
478
|
+
|
479
|
+
def forward(
|
480
|
+
input_ids: nil,
|
481
|
+
attention_mask: nil,
|
482
|
+
position_ids: nil,
|
483
|
+
head_mask: nil,
|
484
|
+
inputs_embeds: nil,
|
485
|
+
labels: nil,
|
486
|
+
output_attentions: nil,
|
487
|
+
output_hidden_states: nil,
|
488
|
+
return_dict: nil
|
489
|
+
)
|
490
|
+
return_dict = !return_dict.nil? ? return_dict : @config.use_return_dict
|
491
|
+
|
492
|
+
outputs = @mpnet.(input_ids, attention_mask: attention_mask, position_ids: position_ids, head_mask: head_mask, inputs_embeds: inputs_embeds, output_attentions: output_attentions, output_hidden_states: output_hidden_states, return_dict: return_dict)
|
493
|
+
|
494
|
+
sequence_output = outputs[0]
|
495
|
+
prediction_scores = @lm_head.(sequence_output)
|
496
|
+
|
497
|
+
masked_lm_loss = nil
|
498
|
+
if !labels.nil?
|
499
|
+
loss_fct = Torch::NN::CrossEntropyLoss.new
|
500
|
+
masked_lm_loss = loss_fct.(prediction_scores.view(-1, @config.vocab_size), labels.view(-1))
|
501
|
+
end
|
502
|
+
|
503
|
+
if !return_dict
|
504
|
+
output = [prediction_scores] + outputs[2..]
|
505
|
+
return !masked_lm_loss.nil? ? [masked_lm_loss] + output : output
|
506
|
+
end
|
507
|
+
|
508
|
+
MaskedLMOutput.new(loss: masked_lm_loss, logits: prediction_scores, hidden_states: outputs.hidden_states, attentions: outputs.attentions)
|
509
|
+
end
|
510
|
+
end
|
511
|
+
|
512
|
+
class MPNetLMHead < Torch::NN::Module
|
513
|
+
def initialize(config)
|
514
|
+
super()
|
515
|
+
@dense = Torch::NN::Linear.new(config.hidden_size, config.hidden_size)
|
516
|
+
@layer_norm = Torch::NN::LayerNorm.new(config.hidden_size, eps: config.layer_norm_eps)
|
517
|
+
|
518
|
+
@decoder = Torch::NN::Linear.new(config.hidden_size, config.vocab_size, bias: false)
|
519
|
+
@bias = Torch::NN::Parameter.new(Torch.zeros(config.vocab_size))
|
520
|
+
|
521
|
+
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
|
522
|
+
@bias = @bias
|
523
|
+
end
|
524
|
+
|
525
|
+
def _tie_weights
|
526
|
+
@bias = @bias
|
527
|
+
end
|
528
|
+
|
529
|
+
def forward(features, **kwargs)
|
530
|
+
x = @dense.(features)
|
531
|
+
x = Activations.gelu(x)
|
532
|
+
x = @layer_norm.(x)
|
533
|
+
|
534
|
+
# project back to size of vocabulary with bias
|
535
|
+
x = @decoder.(x)
|
536
|
+
|
537
|
+
x
|
538
|
+
end
|
539
|
+
end
|
540
|
+
|
541
|
+
class MPNetForSequenceClassification < MPNetPreTrainedModel
|
542
|
+
def initialize(config)
|
543
|
+
super(config)
|
544
|
+
|
545
|
+
@num_labels = config.num_labels
|
546
|
+
@mpnet = MPNetModel.new(config, add_pooling_layer: false)
|
547
|
+
@classifier = MPNetClassificationHead.new(config)
|
548
|
+
|
549
|
+
# Initialize weights and apply final processing
|
550
|
+
post_init
|
551
|
+
end
|
552
|
+
|
553
|
+
def forward(
|
554
|
+
input_ids: nil,
|
555
|
+
attention_mask: nil,
|
556
|
+
position_ids: nil,
|
557
|
+
head_mask: nil,
|
558
|
+
inputs_embeds: nil,
|
559
|
+
labels: nil,
|
560
|
+
output_attentions: nil,
|
561
|
+
output_hidden_states: nil,
|
562
|
+
return_dict: nil
|
563
|
+
)
|
564
|
+
return_dict = !return_dict.nil? ? return_dict : @config.use_return_dict
|
565
|
+
|
566
|
+
outputs = @mpnet.(input_ids, attention_mask: attention_mask, position_ids: position_ids, head_mask: head_mask, inputs_embeds: inputs_embeds, output_attentions: output_attentions, output_hidden_states: output_hidden_states, return_dict: return_dict)
|
567
|
+
sequence_output = outputs[0]
|
568
|
+
logits = @classifier.(sequence_output)
|
569
|
+
|
570
|
+
loss = nil
|
571
|
+
if !labels.nil?
|
572
|
+
if @config.problem_type.nil?
|
573
|
+
if @num_labels == 1
|
574
|
+
@problem_type = "regression"
|
575
|
+
elsif @num_labels > 1 && labels.dtype == Torch.long || labels.dtype == Torch.int
|
576
|
+
@problem_type = "single_label_classification"
|
577
|
+
else
|
578
|
+
@problem_type = "multi_label_classification"
|
579
|
+
end
|
580
|
+
end
|
581
|
+
|
582
|
+
if @config.problem_type == "regression"
|
583
|
+
loss_fct = Torch::NN::MSELoss.new
|
584
|
+
if @num_labels == 1
|
585
|
+
loss = loss_fct.(logits.squeeze, labels.squeeze)
|
586
|
+
else
|
587
|
+
loss = loss_fct.(logits, labels)
|
588
|
+
end
|
589
|
+
elsif @config.problem_type == "single_label_classification"
|
590
|
+
loss_fct = Torch::NN::CrossEntropyLoss.new
|
591
|
+
loss = loss_fct.(logits.view(-1, @num_labels), labels.view(-1))
|
592
|
+
elsif @config.problem_type == "multi_label_classification"
|
593
|
+
loss_fct = Torch::NN::BCEWithLogitsLoss.new
|
594
|
+
loss = loss_fct.(logits, labels)
|
595
|
+
end
|
596
|
+
end
|
597
|
+
if !return_dict
|
598
|
+
output = [logits] + outputs[2..]
|
599
|
+
return !loss.nil? ? [loss] + output : output
|
600
|
+
end
|
601
|
+
|
602
|
+
SequenceClassifierOutput.new(loss: loss, logits: logits, hidden_states: outputs.hidden_states, attentions: outputs.attentions)
|
603
|
+
end
|
604
|
+
end
|
605
|
+
|
606
|
+
class MPNetForMultipleChoice < MPNetPreTrainedModel
|
607
|
+
def initialize(config)
|
608
|
+
super(config)
|
609
|
+
|
610
|
+
@mpnet = MPNetModel.new(config)
|
611
|
+
@dropout = Torch::NN::Dropout.new(p: config.hidden_dropout_prob)
|
612
|
+
@classifier = Torch::NN::Linear.new(config.hidden_size, 1)
|
613
|
+
|
614
|
+
# Initialize weights and apply final processing
|
615
|
+
post_init
|
616
|
+
end
|
617
|
+
|
618
|
+
def forward(
|
619
|
+
input_ids: nil,
|
620
|
+
attention_mask: nil,
|
621
|
+
position_ids: nil,
|
622
|
+
head_mask: nil,
|
623
|
+
inputs_embeds: nil,
|
624
|
+
labels: nil,
|
625
|
+
output_attentions: nil,
|
626
|
+
output_hidden_states: nil,
|
627
|
+
return_dict: nil
|
628
|
+
)
|
629
|
+
return_dict = !return_dict.nil? ? return_dict : @config.use_return_dict
|
630
|
+
num_choices = !input_ids.nil? ? input_ids.shape[1] : inputs_embeds.shape[1]
|
631
|
+
|
632
|
+
flat_input_ids = !input_ids.nil? ? input_ids.view(-1, input_ids.size(-1)) : nil
|
633
|
+
flat_position_ids = !position_ids.nil? ? position_ids.view(-1, position_ids.size(-1)) : nil
|
634
|
+
flat_attention_mask = !attention_mask.nil? ? attention_mask.view(-1, attention_mask.size(-1)) : nil
|
635
|
+
flat_inputs_embeds = !inputs_embeds.nil? ? inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) : nil
|
636
|
+
|
637
|
+
outputs = @mpnet.(flat_input_ids, position_ids: flat_position_ids, attention_mask: flat_attention_mask, head_mask: head_mask, inputs_embeds: flat_inputs_embeds, output_attentions: output_attentions, output_hidden_states: output_hidden_states, return_dict: return_dict)
|
638
|
+
pooled_output = outputs[1]
|
639
|
+
|
640
|
+
pooled_output = @dropout.(pooled_output)
|
641
|
+
logits = @classifier.(pooled_output)
|
642
|
+
reshaped_logits = logits.view(-1, num_choices)
|
643
|
+
|
644
|
+
loss = nil
|
645
|
+
if !labels.nil?
|
646
|
+
loss_fct = Torch::NN::CrossEntropyLoss.new
|
647
|
+
loss = loss_fct.(reshaped_logits, labels)
|
648
|
+
end
|
649
|
+
|
650
|
+
if !return_dict
|
651
|
+
output = [reshaped_logits] + outputs[2..]
|
652
|
+
return !loss.nil? ? [loss] + output : output
|
653
|
+
end
|
654
|
+
|
655
|
+
MultipleChoiceModelOutput.new(loss: loss, logits: reshaped_logits, hidden_states: outputs.hidden_states, attentions: outputs.attentions)
|
656
|
+
end
|
657
|
+
end
|
658
|
+
|
659
|
+
class MPNetForTokenClassification < MPNetPreTrainedModel
|
660
|
+
def initialize(config)
|
661
|
+
super(config)
|
662
|
+
@num_labels = config.num_labels
|
663
|
+
|
664
|
+
@mpnet = MPNetModel.new(config, add_pooling_layer: false)
|
665
|
+
@dropout = Torch::NN::Dropout.new(p: config.hidden_dropout_prob)
|
666
|
+
@classifier = Torch::NN::Linear.new(config.hidden_size, config.num_labels)
|
667
|
+
|
668
|
+
# Initialize weights and apply final processing
|
669
|
+
post_init
|
670
|
+
end
|
671
|
+
|
672
|
+
def forward(
|
673
|
+
input_ids: nil,
|
674
|
+
attention_mask: nil,
|
675
|
+
position_ids: nil,
|
676
|
+
head_mask: nil,
|
677
|
+
inputs_embeds: nil,
|
678
|
+
labels: nil,
|
679
|
+
output_attentions: nil,
|
680
|
+
output_hidden_states: nil,
|
681
|
+
return_dict: nil
|
682
|
+
)
|
683
|
+
return_dict = !return_dict.nil? ? return_dict : @config.use_return_dict
|
684
|
+
|
685
|
+
outputs = @mpnet.(input_ids, attention_mask: attention_mask, position_ids: position_ids, head_mask: head_mask, inputs_embeds: inputs_embeds, output_attentions: output_attentions, output_hidden_states: output_hidden_states, return_dict: return_dict)
|
686
|
+
|
687
|
+
sequence_output = outputs[0]
|
688
|
+
|
689
|
+
sequence_output = @dropout.(sequence_output)
|
690
|
+
logits = @classifier.(sequence_output)
|
691
|
+
|
692
|
+
loss = nil
|
693
|
+
if !labels.nil?
|
694
|
+
loss_fct = Torch::NN::CrossEntropyLoss.new
|
695
|
+
loss = loss_fct.(logits.view(-1, @num_labels), labels.view(-1))
|
696
|
+
end
|
697
|
+
|
698
|
+
if !return_dict
|
699
|
+
output = [logits] + outputs[2..]
|
700
|
+
return !loss.nil? ? [loss] + output : output
|
701
|
+
end
|
702
|
+
|
703
|
+
TokenClassifierOutput.new(loss: loss, logits: logits, hidden_states: outputs.hidden_states, attentions: outputs.attentions)
|
704
|
+
end
|
705
|
+
end
|
706
|
+
|
707
|
+
class MPNetClassificationHead < Torch::NN::Module
|
708
|
+
def initialize(config)
|
709
|
+
super()
|
710
|
+
@dense = Torch::NN::Linear.new(config.hidden_size, config.hidden_size)
|
711
|
+
@dropout = Torch::NN::Dropout.new(p: config.hidden_dropout_prob)
|
712
|
+
@out_proj = Torch::NN::Linear.new(config.hidden_size, config.num_labels)
|
713
|
+
end
|
714
|
+
|
715
|
+
def forward(features, **kwargs)
|
716
|
+
x = features[0.., 0, 0..]
|
717
|
+
x = @dropout.(x)
|
718
|
+
x = @dense.(x)
|
719
|
+
x = Torch.tanh(x)
|
720
|
+
x = @dropout.(x)
|
721
|
+
x = @out_proj.(x)
|
722
|
+
x
|
723
|
+
end
|
724
|
+
end
|
725
|
+
|
726
|
+
class MPNetForQuestionAnswering < MPNetPreTrainedModel
|
727
|
+
def initialize(config)
|
728
|
+
super(config)
|
729
|
+
|
730
|
+
@num_labels = config.num_labels
|
731
|
+
@mpnet = MPNetModel.new(config, add_pooling_layer: false)
|
732
|
+
@qa_outputs = Torch::NN::Linear.new(config.hidden_size, config.num_labels)
|
733
|
+
|
734
|
+
# Initialize weights and apply final processing
|
735
|
+
post_init
|
736
|
+
end
|
737
|
+
|
738
|
+
def forward(
|
739
|
+
input_ids: nil,
|
740
|
+
attention_mask: nil,
|
741
|
+
position_ids: nil,
|
742
|
+
head_mask: nil,
|
743
|
+
inputs_embeds: nil,
|
744
|
+
start_positions: nil,
|
745
|
+
end_positions: nil,
|
746
|
+
output_attentions: nil,
|
747
|
+
output_hidden_states: nil,
|
748
|
+
return_dict: nil
|
749
|
+
)
|
750
|
+
return_dict = !return_dict.nil? ? return_dict : @config.use_return_dict
|
751
|
+
|
752
|
+
outputs = @mpnet.(input_ids, attention_mask: attention_mask, position_ids: position_ids, head_mask: head_mask, inputs_embeds: inputs_embeds, output_attentions: output_attentions, output_hidden_states: output_hidden_states, return_dict: return_dict)
|
753
|
+
|
754
|
+
sequence_output = outputs[0]
|
755
|
+
|
756
|
+
logits = @qa_outputs.(sequence_output)
|
757
|
+
start_logits, end_logits = logits.split(1, dim: -1)
|
758
|
+
start_logits = start_logits.squeeze(-1).contiguous
|
759
|
+
end_logits = end_logits.squeeze(-1).contiguous
|
760
|
+
|
761
|
+
total_loss = nil
|
762
|
+
if !start_positions.nil? && !end_positions.nil?
|
763
|
+
# If we are on multi-GPU, split add a dimension
|
764
|
+
if start_positions.size.length > 1
|
765
|
+
start_positions = start_positions.squeeze(-1)
|
766
|
+
end
|
767
|
+
if end_positions.size.length > 1
|
768
|
+
end_positions = end_positions.squeeze(-1)
|
769
|
+
end
|
770
|
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
771
|
+
ignored_index = start_logits.size(1)
|
772
|
+
start_positions = start_positions.clamp(0, ignored_index)
|
773
|
+
end_positions = end_positions.clamp(0, ignored_index)
|
774
|
+
|
775
|
+
loss_fct = Torch::NN::CrossEntropyLoss.new(ignore_index: ignored_index)
|
776
|
+
start_loss = loss_fct.(start_logits, start_positions)
|
777
|
+
end_loss = loss_fct.(end_logits, end_positions)
|
778
|
+
total_loss = (start_loss + end_loss) / 2
|
779
|
+
end
|
780
|
+
|
781
|
+
if !return_dict
|
782
|
+
output = [start_logits, end_logits] + outputs[2..]
|
783
|
+
return !total_loss.nil? ? [total_loss] + output : output
|
784
|
+
end
|
785
|
+
|
786
|
+
QuestionAnsweringModelOutput.new(loss: total_loss, start_logits: start_logits, end_logits: end_logits, hidden_states: outputs.hidden_states, attentions: outputs.attentions)
|
787
|
+
end
|
788
|
+
end
|
789
|
+
end
|
790
|
+
|
791
|
+
MPNetForMaskedLM = Mpnet::MPNetForMaskedLM
|
792
|
+
end
|