transformers-rb 0.1.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/CHANGELOG.md +3 -0
- data/LICENSE.txt +203 -0
- data/README.md +163 -0
- data/lib/transformers/activations.rb +57 -0
- data/lib/transformers/configuration_utils.rb +285 -0
- data/lib/transformers/convert_slow_tokenizer.rb +90 -0
- data/lib/transformers/data/processors/squad.rb +115 -0
- data/lib/transformers/dynamic_module_utils.rb +25 -0
- data/lib/transformers/feature_extraction_utils.rb +110 -0
- data/lib/transformers/hf_hub/constants.rb +71 -0
- data/lib/transformers/hf_hub/errors.rb +11 -0
- data/lib/transformers/hf_hub/file_download.rb +764 -0
- data/lib/transformers/hf_hub/utils/_errors.rb +94 -0
- data/lib/transformers/hf_hub/utils/_headers.rb +109 -0
- data/lib/transformers/image_processing_base.rb +169 -0
- data/lib/transformers/image_processing_utils.rb +63 -0
- data/lib/transformers/image_transforms.rb +208 -0
- data/lib/transformers/image_utils.rb +165 -0
- data/lib/transformers/modeling_outputs.rb +81 -0
- data/lib/transformers/modeling_utils.rb +888 -0
- data/lib/transformers/models/auto/auto_factory.rb +138 -0
- data/lib/transformers/models/auto/configuration_auto.rb +61 -0
- data/lib/transformers/models/auto/feature_extraction_auto.rb +20 -0
- data/lib/transformers/models/auto/image_processing_auto.rb +104 -0
- data/lib/transformers/models/auto/modeling_auto.rb +80 -0
- data/lib/transformers/models/auto/tokenization_auto.rb +160 -0
- data/lib/transformers/models/bert/configuration_bert.rb +65 -0
- data/lib/transformers/models/bert/modeling_bert.rb +836 -0
- data/lib/transformers/models/bert/tokenization_bert.rb +115 -0
- data/lib/transformers/models/bert/tokenization_bert_fast.rb +52 -0
- data/lib/transformers/models/distilbert/configuration_distilbert.rb +63 -0
- data/lib/transformers/models/distilbert/modeling_distilbert.rb +616 -0
- data/lib/transformers/models/distilbert/tokenization_distilbert.rb +114 -0
- data/lib/transformers/models/distilbert/tokenization_distilbert_fast.rb +71 -0
- data/lib/transformers/models/vit/configuration_vit.rb +60 -0
- data/lib/transformers/models/vit/image_processing_vit.rb +170 -0
- data/lib/transformers/models/vit/modeling_vit.rb +506 -0
- data/lib/transformers/pipelines/_init.rb +348 -0
- data/lib/transformers/pipelines/base.rb +301 -0
- data/lib/transformers/pipelines/feature_extraction.rb +47 -0
- data/lib/transformers/pipelines/image_classification.rb +110 -0
- data/lib/transformers/pipelines/image_feature_extraction.rb +56 -0
- data/lib/transformers/pipelines/pt_utils.rb +53 -0
- data/lib/transformers/pipelines/question_answering.rb +508 -0
- data/lib/transformers/pipelines/text_classification.rb +123 -0
- data/lib/transformers/pipelines/token_classification.rb +282 -0
- data/lib/transformers/ruby_utils.rb +33 -0
- data/lib/transformers/sentence_transformer.rb +37 -0
- data/lib/transformers/tokenization_utils.rb +152 -0
- data/lib/transformers/tokenization_utils_base.rb +937 -0
- data/lib/transformers/tokenization_utils_fast.rb +386 -0
- data/lib/transformers/torch_utils.rb +25 -0
- data/lib/transformers/utils/_init.rb +31 -0
- data/lib/transformers/utils/generic.rb +107 -0
- data/lib/transformers/utils/hub.rb +209 -0
- data/lib/transformers/utils/import_utils.rb +45 -0
- data/lib/transformers/utils/logging.rb +52 -0
- data/lib/transformers/version.rb +3 -0
- data/lib/transformers-rb.rb +1 -0
- data/lib/transformers.rb +100 -0
- data/licenses/LICENSE-huggingface-hub.txt +201 -0
- data/licenses/LICENSE-sentence-transformers.txt +201 -0
- data/licenses/NOTICE-sentence-transformers.txt +5 -0
- metadata +161 -0
@@ -0,0 +1,836 @@
|
|
1
|
+
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
2
|
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
3
|
+
#
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5
|
+
# you may not use this file except in compliance with the License.
|
6
|
+
# You may obtain a copy of the License at
|
7
|
+
#
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9
|
+
#
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13
|
+
# See the License for the specific language governing permissions and
|
14
|
+
# limitations under the License.
|
15
|
+
|
16
|
+
module Transformers
|
17
|
+
module Bert
|
18
|
+
class BertEmbeddings < Torch::NN::Module
|
19
|
+
def initialize(config)
|
20
|
+
super()
|
21
|
+
@word_embeddings = Torch::NN::Embedding.new(config.vocab_size, config.hidden_size, padding_idx: config.pad_token_id)
|
22
|
+
@position_embeddings = Torch::NN::Embedding.new(config.max_position_embeddings, config.hidden_size)
|
23
|
+
@token_type_embeddings = Torch::NN::Embedding.new(config.type_vocab_size, config.hidden_size)
|
24
|
+
|
25
|
+
@LayerNorm = Torch::NN::LayerNorm.new(config.hidden_size, eps: config.layer_norm_eps)
|
26
|
+
@dropout = Torch::NN::Dropout.new(p: config.hidden_dropout_prob)
|
27
|
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
28
|
+
@position_embedding_type = config.position_embedding_type || "absolute"
|
29
|
+
register_buffer(
|
30
|
+
"position_ids", Torch.arange(config.max_position_embeddings).expand([1, -1]), persistent: false
|
31
|
+
)
|
32
|
+
register_buffer(
|
33
|
+
"token_type_ids", Torch.zeros(position_ids.size, dtype: Torch.long), persistent: false
|
34
|
+
)
|
35
|
+
end
|
36
|
+
|
37
|
+
def forward(
|
38
|
+
input_ids: nil,
|
39
|
+
token_type_ids: nil,
|
40
|
+
position_ids: nil,
|
41
|
+
inputs_embeds: nil,
|
42
|
+
past_key_values_length: 0
|
43
|
+
)
|
44
|
+
if !input_ids.nil?
|
45
|
+
input_shape = input_ids.size
|
46
|
+
else
|
47
|
+
input_shape = inputs_embeds.size[...-1]
|
48
|
+
end
|
49
|
+
|
50
|
+
seq_length = input_shape[1]
|
51
|
+
|
52
|
+
if position_ids.nil?
|
53
|
+
position_ids = @position_ids[0.., past_key_values_length...(seq_length + past_key_values_length)]
|
54
|
+
end
|
55
|
+
|
56
|
+
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
|
57
|
+
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
|
58
|
+
# issue #5664
|
59
|
+
if token_type_ids.nil?
|
60
|
+
raise Todo
|
61
|
+
end
|
62
|
+
|
63
|
+
if inputs_embeds.nil?
|
64
|
+
inputs_embeds = @word_embeddings.(input_ids)
|
65
|
+
end
|
66
|
+
token_type_embeddings = @token_type_embeddings.(token_type_ids)
|
67
|
+
|
68
|
+
embeddings = inputs_embeds + token_type_embeddings
|
69
|
+
if @position_embedding_type == "absolute"
|
70
|
+
position_embeddings = @position_embeddings.(position_ids)
|
71
|
+
embeddings += position_embeddings
|
72
|
+
end
|
73
|
+
embeddings = @LayerNorm.(embeddings)
|
74
|
+
embeddings = @dropout.(embeddings)
|
75
|
+
embeddings
|
76
|
+
end
|
77
|
+
end
|
78
|
+
|
79
|
+
class BertSelfAttention < Torch::NN::Module
|
80
|
+
def initialize(config, position_embedding_type: nil)
|
81
|
+
super()
|
82
|
+
if config.hidden_size % config.num_attention_heads != 0 && !config.embedding_size
|
83
|
+
raise ArgumentError,
|
84
|
+
"The hidden size (#{config.hidden_size}) is not a multiple of the number of attention " +
|
85
|
+
"heads (#{config.num_attention_heads})"
|
86
|
+
end
|
87
|
+
|
88
|
+
@num_attention_heads = config.num_attention_heads
|
89
|
+
@attention_head_size = (config.hidden_size / config.num_attention_heads).to_i
|
90
|
+
@all_head_size = @num_attention_heads * @attention_head_size
|
91
|
+
|
92
|
+
@query = Torch::NN::Linear.new(config.hidden_size, @all_head_size)
|
93
|
+
@key = Torch::NN::Linear.new(config.hidden_size, @all_head_size)
|
94
|
+
@value = Torch::NN::Linear.new(config.hidden_size, @all_head_size)
|
95
|
+
|
96
|
+
@dropout = Torch::NN::Dropout.new(p: config.attention_probs_dropout_prob)
|
97
|
+
@position_embedding_type = position_embedding_type || config.position_embedding_type || "absolute"
|
98
|
+
if @position_embedding_type == "relative_key" || @position_embedding_type == "relative_key_query"
|
99
|
+
@max_position_embeddings = config.max_position_embeddings
|
100
|
+
@distance_embedding = Torch:NN::Embedding.new(2 * config.max_position_embeddings - 1, @attention_head_size)
|
101
|
+
end
|
102
|
+
|
103
|
+
@is_decoder = config.is_decoder
|
104
|
+
end
|
105
|
+
|
106
|
+
def transpose_for_scores(x)
|
107
|
+
new_x_shape = x.size[...-1] + [@num_attention_heads, @attention_head_size]
|
108
|
+
x = x.view(new_x_shape)
|
109
|
+
x.permute(0, 2, 1, 3)
|
110
|
+
end
|
111
|
+
|
112
|
+
def forward(
|
113
|
+
hidden_states,
|
114
|
+
attention_mask: nil,
|
115
|
+
head_mask: nil,
|
116
|
+
encoder_hidden_states: nil,
|
117
|
+
encoder_attention_mask: nil,
|
118
|
+
past_key_value: nil,
|
119
|
+
output_attentions: false
|
120
|
+
)
|
121
|
+
mixed_query_layer = @query.(hidden_states)
|
122
|
+
|
123
|
+
# If this is instantiated as a cross-attention module, the keys
|
124
|
+
# and values come from an encoder; the attention mask needs to be
|
125
|
+
# such that the encoder's padding tokens are not attended to.
|
126
|
+
is_cross_attention = !encoder_hidden_states.nil?
|
127
|
+
|
128
|
+
if is_cross_attention && !past_key_value.nil?
|
129
|
+
# reuse k,v, cross_attentions
|
130
|
+
key_layer = past_key_value[0]
|
131
|
+
value_layer = past_key_value[1]
|
132
|
+
attention_mask = encoder_attention_mask
|
133
|
+
elsif is_cross_attention
|
134
|
+
key_layer = transpose_for_scores(@key.(encoder_hidden_states))
|
135
|
+
value_layer = transpose_for_scores(@value.(encoder_hidden_states))
|
136
|
+
attention_mask = encoder_attention_mask
|
137
|
+
elsif !past_key_value.nil?
|
138
|
+
key_layer = transpose_for_scores(@key.(hidden_states))
|
139
|
+
value_layer = transpose_for_scores(@value.(hidden_states))
|
140
|
+
key_layer = Torch.cat([past_key_value[0], key_layer], dim: 2)
|
141
|
+
value_layer = Torch.cat([past_key_value[1], value_layer], dim: 2)
|
142
|
+
else
|
143
|
+
key_layer = transpose_for_scores(@key.(hidden_states))
|
144
|
+
value_layer = transpose_for_scores(@value.(hidden_states))
|
145
|
+
end
|
146
|
+
|
147
|
+
query_layer = transpose_for_scores(mixed_query_layer)
|
148
|
+
|
149
|
+
_use_cache = !past_key_value.nil?
|
150
|
+
if @is_decoder
|
151
|
+
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
152
|
+
# Further calls to cross_attention layer can then reuse all cross-attention
|
153
|
+
# key/value_states (first "if" case)
|
154
|
+
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
|
155
|
+
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
156
|
+
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
157
|
+
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
158
|
+
past_key_value = [key_layer, value_layer]
|
159
|
+
end
|
160
|
+
|
161
|
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
162
|
+
attention_scores = Torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
163
|
+
|
164
|
+
if @position_embedding_type == "relative_key" || @position_embedding_type == "relative_key_query"
|
165
|
+
raise Todo
|
166
|
+
end
|
167
|
+
|
168
|
+
attention_scores = attention_scores / Math.sqrt(@attention_head_size)
|
169
|
+
if !attention_mask.nil?
|
170
|
+
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
|
171
|
+
attention_scores = attention_scores + attention_mask
|
172
|
+
end
|
173
|
+
|
174
|
+
# Normalize the attention scores to probabilities.
|
175
|
+
attention_probs = Torch::NN::Functional.softmax(attention_scores, dim: -1)
|
176
|
+
|
177
|
+
# This is actually dropping out entire tokens to attend to, which might
|
178
|
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
179
|
+
attention_probs = @dropout.(attention_probs)
|
180
|
+
|
181
|
+
# Mask heads if we want to
|
182
|
+
if !head_mask.nil?
|
183
|
+
attention_probs = attention_probs * head_mask
|
184
|
+
end
|
185
|
+
|
186
|
+
context_layer = Torch.matmul(attention_probs, value_layer)
|
187
|
+
|
188
|
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous
|
189
|
+
new_context_layer_shape = context_layer.size[...-2] + [@all_head_size]
|
190
|
+
context_layer = context_layer.view(new_context_layer_shape)
|
191
|
+
|
192
|
+
outputs = output_attentions ? [context_layer, attention_probs] : [context_layer]
|
193
|
+
|
194
|
+
if @is_decoder
|
195
|
+
outputs = outputs + [past_key_value]
|
196
|
+
end
|
197
|
+
outputs
|
198
|
+
end
|
199
|
+
end
|
200
|
+
|
201
|
+
class BertSelfOutput < Torch::NN::Module
|
202
|
+
def initialize(config)
|
203
|
+
super()
|
204
|
+
@dense = Torch::NN::Linear.new(config.hidden_size, config.hidden_size)
|
205
|
+
@LayerNorm = Torch::NN::LayerNorm.new(config.hidden_size, eps: config.layer_norm_eps)
|
206
|
+
@dropout = Torch::NN::Dropout.new(p: config.hidden_dropout_prob)
|
207
|
+
end
|
208
|
+
|
209
|
+
def forward(hidden_states, input_tensor)
|
210
|
+
hidden_states = @dense.(hidden_states)
|
211
|
+
hidden_states = @dropout.(hidden_states)
|
212
|
+
hidden_states = @LayerNorm.(hidden_states + input_tensor)
|
213
|
+
hidden_states
|
214
|
+
end
|
215
|
+
end
|
216
|
+
|
217
|
+
BERT_SELF_ATTENTION_CLASSES = {
|
218
|
+
"eager" => BertSelfAttention
|
219
|
+
}
|
220
|
+
|
221
|
+
class BertAttention < Torch::NN::Module
|
222
|
+
def initialize(config, position_embedding_type: nil)
|
223
|
+
super()
|
224
|
+
@self = BERT_SELF_ATTENTION_CLASSES.fetch(config._attn_implementation).new(
|
225
|
+
config, position_embedding_type: position_embedding_type
|
226
|
+
)
|
227
|
+
@output = BertSelfOutput.new(config)
|
228
|
+
@pruned_heads = Set.new
|
229
|
+
end
|
230
|
+
|
231
|
+
def forward(
|
232
|
+
hidden_states,
|
233
|
+
attention_mask: nil,
|
234
|
+
head_mask: nil,
|
235
|
+
encoder_hidden_states: nil,
|
236
|
+
encoder_attention_mask: nil,
|
237
|
+
past_key_value: nil,
|
238
|
+
output_attentions: false
|
239
|
+
)
|
240
|
+
self_outputs = @self.(
|
241
|
+
hidden_states,
|
242
|
+
attention_mask: attention_mask,
|
243
|
+
head_mask: head_mask,
|
244
|
+
encoder_hidden_states: encoder_hidden_states,
|
245
|
+
encoder_attention_mask: encoder_attention_mask,
|
246
|
+
past_key_value: past_key_value,
|
247
|
+
output_attentions: output_attentions
|
248
|
+
)
|
249
|
+
attention_output = @output.(self_outputs[0], hidden_states)
|
250
|
+
outputs = [attention_output] + self_outputs[1..] # add attentions if we output them
|
251
|
+
outputs
|
252
|
+
end
|
253
|
+
end
|
254
|
+
|
255
|
+
class BertIntermediate < Torch::NN::Module
|
256
|
+
def initialize(config)
|
257
|
+
super()
|
258
|
+
@dense = Torch::NN::Linear.new(config.hidden_size, config.intermediate_size)
|
259
|
+
if config.hidden_act.is_a?(String)
|
260
|
+
@intermediate_act_fn = ACT2FN[config.hidden_act]
|
261
|
+
else
|
262
|
+
@intermediate_act_fn = config.hidden_act
|
263
|
+
end
|
264
|
+
end
|
265
|
+
|
266
|
+
def forward(hidden_states)
|
267
|
+
hidden_states = @dense.(hidden_states)
|
268
|
+
hidden_states = @intermediate_act_fn.(hidden_states)
|
269
|
+
hidden_states
|
270
|
+
end
|
271
|
+
end
|
272
|
+
|
273
|
+
class BertOutput < Torch::NN::Module
|
274
|
+
def initialize(config)
|
275
|
+
super()
|
276
|
+
@dense = Torch::NN::Linear.new(config.intermediate_size, config.hidden_size)
|
277
|
+
@LayerNorm = Torch::NN::LayerNorm.new(config.hidden_size, eps: config.layer_norm_eps)
|
278
|
+
@dropout = Torch::NN::Dropout.new(p: config.hidden_dropout_prob)
|
279
|
+
end
|
280
|
+
|
281
|
+
def forward(hidden_states, input_tensor)
|
282
|
+
hidden_states = @dense.(hidden_states)
|
283
|
+
hidden_states = @dropout.(hidden_states)
|
284
|
+
hidden_states = @LayerNorm.(hidden_states + input_tensor)
|
285
|
+
hidden_states
|
286
|
+
end
|
287
|
+
end
|
288
|
+
|
289
|
+
class BertLayer < Torch::NN::Module
|
290
|
+
def initialize(config)
|
291
|
+
super()
|
292
|
+
@chunk_size_feed_forward = config.chunk_size_feed_forward
|
293
|
+
@seq_len_dim = 1
|
294
|
+
@attention = BertAttention.new(config)
|
295
|
+
@is_decoder = config.is_decoder
|
296
|
+
@add_cross_attention = config.add_cross_attention
|
297
|
+
if @add_cross_attention
|
298
|
+
if !@is_decoder
|
299
|
+
raise ArgumentError, "#{self} should be used as a decoder model if cross attention is added"
|
300
|
+
end
|
301
|
+
@crossattention = BertAttention.new(config, position_embedding_type: "absolute")
|
302
|
+
end
|
303
|
+
@intermediate = BertIntermediate.new(config)
|
304
|
+
@output = BertOutput.new(config)
|
305
|
+
end
|
306
|
+
|
307
|
+
def forward(
|
308
|
+
hidden_states,
|
309
|
+
attention_mask: nil,
|
310
|
+
head_mask: nil,
|
311
|
+
encoder_hidden_states: nil,
|
312
|
+
encoder_attention_mask: nil,
|
313
|
+
past_key_value: nil,
|
314
|
+
output_attentions: false
|
315
|
+
)
|
316
|
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
317
|
+
self_attn_past_key_value = !past_key_value.nil? ? past_key_value[...2] : nil
|
318
|
+
self_attention_outputs = @attention.(
|
319
|
+
hidden_states,
|
320
|
+
attention_mask: attention_mask,
|
321
|
+
head_mask: head_mask,
|
322
|
+
output_attentions: output_attentions,
|
323
|
+
past_key_value: self_attn_past_key_value
|
324
|
+
)
|
325
|
+
attention_output = self_attention_outputs[0]
|
326
|
+
|
327
|
+
# if decoder, the last output is tuple of self-attn cache
|
328
|
+
if @is_decoder
|
329
|
+
outputs = self_attention_outputs[1...-1]
|
330
|
+
present_key_value = self_attention_outputs[-1]
|
331
|
+
else
|
332
|
+
outputs = self_attention_outputs[1..] # add self attentions if we output attention weights
|
333
|
+
end
|
334
|
+
|
335
|
+
_cross_attn_present_key_value = nil
|
336
|
+
if @is_decoder && !encoder_hidden_states.nil?
|
337
|
+
raise Todo
|
338
|
+
end
|
339
|
+
|
340
|
+
layer_output = TorchUtils.apply_chunking_to_forward(
|
341
|
+
method(:feed_forward_chunk), @chunk_size_feed_forward, @seq_len_dim, attention_output
|
342
|
+
)
|
343
|
+
outputs = [layer_output] + outputs
|
344
|
+
|
345
|
+
# if decoder, return the attn key/values as the last output
|
346
|
+
if @is_decoder
|
347
|
+
outputs = outputs + [present_key_value]
|
348
|
+
end
|
349
|
+
|
350
|
+
outputs
|
351
|
+
end
|
352
|
+
|
353
|
+
def feed_forward_chunk(attention_output)
|
354
|
+
intermediate_output = @intermediate.(attention_output)
|
355
|
+
layer_output = @output.(intermediate_output, attention_output)
|
356
|
+
return layer_output
|
357
|
+
end
|
358
|
+
end
|
359
|
+
|
360
|
+
class BertEncoder < Torch::NN::Module
|
361
|
+
def initialize(config)
|
362
|
+
super()
|
363
|
+
@config = config
|
364
|
+
@layer = Torch::NN::ModuleList.new(config.num_hidden_layers.times.map { BertLayer.new(config) })
|
365
|
+
@gradient_checkpointing = false
|
366
|
+
end
|
367
|
+
|
368
|
+
def forward(
|
369
|
+
hidden_states,
|
370
|
+
attention_mask: nil,
|
371
|
+
head_mask: nil,
|
372
|
+
encoder_hidden_states: nil,
|
373
|
+
encoder_attention_mask:nil,
|
374
|
+
past_key_values: nil,
|
375
|
+
use_cache: nil,
|
376
|
+
output_attentions: false,
|
377
|
+
output_hidden_states: false,
|
378
|
+
return_dict: true
|
379
|
+
)
|
380
|
+
all_hidden_states = output_hidden_states ? [] : nil
|
381
|
+
all_self_attentions = output_attentions ? [] : nil
|
382
|
+
all_cross_attentions = output_attentions && @config.add_cross_attention ? [] : nil
|
383
|
+
|
384
|
+
if @gradient_checkpointing && @raining
|
385
|
+
raise Todo
|
386
|
+
end
|
387
|
+
|
388
|
+
next_decoder_cache = use_cache ? [] : nil
|
389
|
+
@layer.each_with_index do |layer_module, i|
|
390
|
+
if output_hidden_states
|
391
|
+
all_hidden_states = all_hidden_states + [hidden_states]
|
392
|
+
end
|
393
|
+
|
394
|
+
layer_head_mask = !head_mask.nil? ? head_mask[i] : nil
|
395
|
+
past_key_value = !past_key_values.nil? ? past_key_values[i] : nil
|
396
|
+
|
397
|
+
if @gradient_checkpointing && @training
|
398
|
+
raise Todo
|
399
|
+
else
|
400
|
+
layer_outputs = layer_module.(
|
401
|
+
hidden_states,
|
402
|
+
attention_mask: attention_mask,
|
403
|
+
head_mask: layer_head_mask,
|
404
|
+
encoder_hidden_states: encoder_hidden_states,
|
405
|
+
encoder_attention_mask: encoder_attention_mask,
|
406
|
+
past_key_value: past_key_value,
|
407
|
+
output_attentions: output_attentions
|
408
|
+
)
|
409
|
+
end
|
410
|
+
|
411
|
+
hidden_states = layer_outputs[0]
|
412
|
+
if use_cache
|
413
|
+
next_decoder_cache += [layer_outputs[-1]]
|
414
|
+
end
|
415
|
+
if output_attentions
|
416
|
+
all_self_attentions = all_self_attentions + [layer_outputs[1]]
|
417
|
+
if @config.add_cross_attention
|
418
|
+
all_cross_attentions = all_cross_attentions + [layer_outputs[2]]
|
419
|
+
end
|
420
|
+
end
|
421
|
+
end
|
422
|
+
|
423
|
+
if output_hidden_states
|
424
|
+
all_hidden_states = all_hidden_states + [hidden_states]
|
425
|
+
end
|
426
|
+
|
427
|
+
if !return_dict
|
428
|
+
raise Todo
|
429
|
+
end
|
430
|
+
BaseModelOutputWithPastAndCrossAttentions.new(
|
431
|
+
last_hidden_state: hidden_states,
|
432
|
+
past_key_values: next_decoder_cache,
|
433
|
+
hidden_states: all_hidden_states,
|
434
|
+
attentions: all_self_attentions,
|
435
|
+
cross_attentions: all_cross_attentions
|
436
|
+
)
|
437
|
+
end
|
438
|
+
end
|
439
|
+
|
440
|
+
class BertPooler < Torch::NN::Module
|
441
|
+
def initialize(config)
|
442
|
+
super()
|
443
|
+
@dense = Torch::NN::Linear.new(config.hidden_size, config.hidden_size)
|
444
|
+
@activation = Torch::NN::Tanh.new
|
445
|
+
end
|
446
|
+
|
447
|
+
def forward(hidden_states)
|
448
|
+
# We "pool" the model by simply taking the hidden state corresponding
|
449
|
+
# to the first token.
|
450
|
+
first_token_tensor = hidden_states[0.., 0]
|
451
|
+
pooled_output = @dense.(first_token_tensor)
|
452
|
+
pooled_output = @activation.(pooled_output)
|
453
|
+
pooled_output
|
454
|
+
end
|
455
|
+
end
|
456
|
+
|
457
|
+
class BertPredictionHeadTransform < Torch::NN::Module
|
458
|
+
def initialize(config)
|
459
|
+
super()
|
460
|
+
@dense = Torch::NN::Linear.new(config.hidden_size, config.hidden_size)
|
461
|
+
if config.hidden_act.is_a?(String)
|
462
|
+
@transform_act_fn = ACT2FN[config.hidden_act]
|
463
|
+
else
|
464
|
+
@transform_act_fn = config.hidden_act
|
465
|
+
end
|
466
|
+
@LayerNorm = Torch::NN::LayerNorm.new(config.hidden_size, eps: config.layer_norm_eps)
|
467
|
+
end
|
468
|
+
|
469
|
+
def forward(hidden_states)
|
470
|
+
hidden_states = @dense.(hidden_states)
|
471
|
+
hidden_states = @transform_act_fn.(hidden_states)
|
472
|
+
hidden_states = @LayerNorm.(hidden_states)
|
473
|
+
hidden_states
|
474
|
+
end
|
475
|
+
end
|
476
|
+
|
477
|
+
class BertLMPredictionHead < Torch::NN::Module
|
478
|
+
def initialize(config)
|
479
|
+
super()
|
480
|
+
@transform = BertPredictionHeadTransform.new(config)
|
481
|
+
|
482
|
+
# The output weights are the same as the input embeddings, but there is
|
483
|
+
# an output-only bias for each token.
|
484
|
+
@decoder = Torch::NN::Linear.new(config.hidden_size, config.vocab_size, bias: false)
|
485
|
+
|
486
|
+
@bias = Torch::NN::Parameter.new(Torch.zeros(config.vocab_size))
|
487
|
+
|
488
|
+
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
|
489
|
+
@decoder.instance_variable_set(:@bias, @bias)
|
490
|
+
end
|
491
|
+
|
492
|
+
def _tie_weights
|
493
|
+
@decoder.instance_variable_set(:@bias, @bias)
|
494
|
+
end
|
495
|
+
|
496
|
+
def forward(hidden_states)
|
497
|
+
hidden_states = @transform.(hidden_states)
|
498
|
+
hidden_states = @decoder.(hidden_states)
|
499
|
+
hidden_states
|
500
|
+
end
|
501
|
+
end
|
502
|
+
|
503
|
+
class BertOnlyMLMHead < Torch::NN::Module
|
504
|
+
def initialize(config)
|
505
|
+
super()
|
506
|
+
@predictions = BertLMPredictionHead.new(config)
|
507
|
+
end
|
508
|
+
|
509
|
+
def forward(sequence_output)
|
510
|
+
prediction_scores = @predictions.(sequence_output)
|
511
|
+
prediction_scores
|
512
|
+
end
|
513
|
+
end
|
514
|
+
|
515
|
+
class BertPreTrainedModel < PreTrainedModel
|
516
|
+
self.config_class = BertConfig
|
517
|
+
self.base_model_prefix = "bert"
|
518
|
+
|
519
|
+
def _init_weights(mod)
|
520
|
+
if mod.is_a?(Torch::NN::Linear)
|
521
|
+
mod.weight.data.normal!(mean: 0.0, std: @config.initializer_range)
|
522
|
+
if !mod.bias.nil?
|
523
|
+
mod.bias.data.zero!
|
524
|
+
end
|
525
|
+
elsif mod.is_a?(Torch::NN::Embedding)
|
526
|
+
mod.weight.data.normal!(mean: 0.0, std: @config.initializer_range)
|
527
|
+
if !mod.instance_variable_get(:@padding_idx).nil?
|
528
|
+
mod.weight.data[mod.instance_variable_get(:@padding_idx)].zero!
|
529
|
+
end
|
530
|
+
elsif mod.is_a?(Torch::NN::LayerNorm)
|
531
|
+
mod.bias.data.zero!
|
532
|
+
mod.weight.data.fill!(1.0)
|
533
|
+
end
|
534
|
+
end
|
535
|
+
end
|
536
|
+
|
537
|
+
class BertModel < BertPreTrainedModel
|
538
|
+
def initialize(config, add_pooling_layer: true)
|
539
|
+
super(config)
|
540
|
+
@config = config
|
541
|
+
|
542
|
+
@embeddings = BertEmbeddings.new(config)
|
543
|
+
@encoder = BertEncoder.new(config)
|
544
|
+
|
545
|
+
@pooler = add_pooling_layer ? BertPooler.new(config) : nil
|
546
|
+
|
547
|
+
@attn_implementation = config._attn_implementation
|
548
|
+
@position_embedding_type = config.position_embedding_type
|
549
|
+
|
550
|
+
# Initialize weights and apply final processing
|
551
|
+
post_init
|
552
|
+
end
|
553
|
+
|
554
|
+
def _prune_heads(heads_to_prune)
|
555
|
+
heads_to_prune.each do |layer, heads|
|
556
|
+
@encoder.layer[layer].attention.prune_heads(heads)
|
557
|
+
end
|
558
|
+
end
|
559
|
+
|
560
|
+
def forward(
|
561
|
+
input_ids: nil,
|
562
|
+
attention_mask: nil,
|
563
|
+
token_type_ids: nil,
|
564
|
+
position_ids: nil,
|
565
|
+
head_mask: nil,
|
566
|
+
inputs_embeds: nil,
|
567
|
+
encoder_hidden_states: nil,
|
568
|
+
encoder_attention_mask: nil,
|
569
|
+
past_key_values: nil,
|
570
|
+
use_cache: nil,
|
571
|
+
output_attentions: nil,
|
572
|
+
output_hidden_states: nil,
|
573
|
+
return_dict: nil
|
574
|
+
)
|
575
|
+
output_attentions = !output_attentions.nil? ? output_attentions : @config.output_attentions
|
576
|
+
output_hidden_states = (
|
577
|
+
!output_hidden_states.nil? ? output_hidden_states : @config.output_hidden_states
|
578
|
+
)
|
579
|
+
return_dict = !return_dict.nil? ? return_dict : @config.use_return_dict
|
580
|
+
|
581
|
+
if @config.is_decoder
|
582
|
+
use_cache = !use_cache.nil? ? use_cache : @config.use_cache
|
583
|
+
else
|
584
|
+
use_cache = false
|
585
|
+
end
|
586
|
+
|
587
|
+
if !input_ids.nil? && !inputs_embeds.nil?
|
588
|
+
raise ArgumentError, "You cannot specify both input_ids and inputs_embeds at the same time"
|
589
|
+
elsif !input_ids.nil?
|
590
|
+
# self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
591
|
+
input_shape = input_ids.size
|
592
|
+
elsif !inputs_embeds.nil?
|
593
|
+
input_shape = inputs_embeds.size[...-1]
|
594
|
+
else
|
595
|
+
raise ArgumentError, "You have to specify either input_ids or inputs_embeds"
|
596
|
+
end
|
597
|
+
|
598
|
+
batch_size, seq_length = input_shape
|
599
|
+
device = !input_ids.nil? ? input_ids.device : inputs_embeds.device
|
600
|
+
|
601
|
+
# past_key_values_length
|
602
|
+
past_key_values_length = !past_key_values.nil? ? past_key_values[0][0].shape[2] : 0
|
603
|
+
|
604
|
+
if token_type_ids.nil?
|
605
|
+
if @embeddings.token_type_ids
|
606
|
+
buffered_token_type_ids = @embeddings.token_type_ids[0.., 0...seq_length]
|
607
|
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
|
608
|
+
token_type_ids = buffered_token_type_ids_expanded
|
609
|
+
else
|
610
|
+
token_type_ids = Torch.zeros(input_shape, dtype: Torch.long, device: device)
|
611
|
+
end
|
612
|
+
end
|
613
|
+
|
614
|
+
embedding_output = @embeddings.(
|
615
|
+
input_ids: input_ids,
|
616
|
+
position_ids: position_ids,
|
617
|
+
token_type_ids: token_type_ids,
|
618
|
+
inputs_embeds: inputs_embeds,
|
619
|
+
past_key_values_length: past_key_values_length
|
620
|
+
)
|
621
|
+
|
622
|
+
if attention_mask.nil?
|
623
|
+
attention_mask = Torch.ones([batch_size, seq_length + past_key_values_length], device: device)
|
624
|
+
end
|
625
|
+
|
626
|
+
use_sdpa_attention_masks = (
|
627
|
+
@attn_implementation == "sdpa" &&
|
628
|
+
@position_embedding_type == "absolute" &&
|
629
|
+
head_mask.nil? &&
|
630
|
+
!output_attentions
|
631
|
+
)
|
632
|
+
|
633
|
+
# Expand the attention mask
|
634
|
+
if use_sdpa_attention_masks
|
635
|
+
raise Todo
|
636
|
+
else
|
637
|
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
638
|
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
639
|
+
extended_attention_mask = get_extended_attention_mask(attention_mask, input_shape)
|
640
|
+
end
|
641
|
+
|
642
|
+
# # If a 2D or 3D attention mask is provided for the cross-attention
|
643
|
+
# # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
644
|
+
if @config.is_decoder && !encoder_hidden_states.nil?
|
645
|
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size
|
646
|
+
encoder_hidden_shape = [encoder_batch_size, encoder_sequence_length]
|
647
|
+
if encoder_attention_mask.nil?
|
648
|
+
encoder_attention_mask = Torch.ones(encoder_hidden_shape, device: device)
|
649
|
+
end
|
650
|
+
|
651
|
+
if use_sdpa_attention_masks
|
652
|
+
# Expand the attention mask for SDPA.
|
653
|
+
# [bsz, seq_len] -> [bsz, 1, seq_len, seq_len]
|
654
|
+
encoder_extended_attention_mask = _prepare_4d_attention_mask_for_sdpa(
|
655
|
+
encoder_attention_mask, embedding_output.dtype, tgt_len: seq_length
|
656
|
+
)
|
657
|
+
else
|
658
|
+
encoder_extended_attention_mask = invert_attention_mask(encoder_attention_mask)
|
659
|
+
end
|
660
|
+
else
|
661
|
+
encoder_extended_attention_mask = nil
|
662
|
+
end
|
663
|
+
|
664
|
+
# Prepare head mask if needed
|
665
|
+
# 1.0 in head_mask indicate we keep the head
|
666
|
+
# attention_probs has shape bsz x n_heads x N x N
|
667
|
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
668
|
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
669
|
+
head_mask = get_head_mask(head_mask, @config.num_hidden_layers)
|
670
|
+
|
671
|
+
encoder_outputs = @encoder.(
|
672
|
+
embedding_output,
|
673
|
+
attention_mask: extended_attention_mask,
|
674
|
+
head_mask: head_mask,
|
675
|
+
encoder_hidden_states: encoder_hidden_states,
|
676
|
+
encoder_attention_mask: encoder_extended_attention_mask,
|
677
|
+
past_key_values: past_key_values,
|
678
|
+
use_cache: use_cache,
|
679
|
+
output_attentions: output_attentions,
|
680
|
+
output_hidden_states: output_hidden_states,
|
681
|
+
return_dict: return_dict
|
682
|
+
)
|
683
|
+
sequence_output = encoder_outputs[0]
|
684
|
+
pooled_output = !@pooler.nil? ? @pooler.(sequence_output) : nil
|
685
|
+
|
686
|
+
if !return_dict
|
687
|
+
raise Todo
|
688
|
+
end
|
689
|
+
|
690
|
+
BaseModelOutputWithPoolingAndCrossAttentions.new(
|
691
|
+
last_hidden_state: sequence_output,
|
692
|
+
pooler_output: pooled_output,
|
693
|
+
past_key_values: encoder_outputs.past_key_values,
|
694
|
+
hidden_states: encoder_outputs.hidden_states,
|
695
|
+
attentions: encoder_outputs.attentions,
|
696
|
+
cross_attentions: encoder_outputs.cross_attentions
|
697
|
+
)
|
698
|
+
end
|
699
|
+
end
|
700
|
+
|
701
|
+
class BertForMaskedLM < BertPreTrainedModel
|
702
|
+
def initialize(config)
|
703
|
+
super(config)
|
704
|
+
|
705
|
+
if config.is_decoder
|
706
|
+
Transformers.logger.warn(
|
707
|
+
"If you want to use `BertForMaskedLM` make sure `config.is_decoder: false` for " +
|
708
|
+
"bi-directional self-attention."
|
709
|
+
)
|
710
|
+
end
|
711
|
+
|
712
|
+
@bert = BertModel.new(config, add_pooling_layer: false)
|
713
|
+
@cls = BertOnlyMLMHead.new(config)
|
714
|
+
end
|
715
|
+
|
716
|
+
def forward(
|
717
|
+
input_ids: nil,
|
718
|
+
attention_mask: nil,
|
719
|
+
token_type_ids: nil,
|
720
|
+
position_ids: nil,
|
721
|
+
head_mask: nil,
|
722
|
+
inputs_embeds: nil,
|
723
|
+
encoder_hidden_states: nil,
|
724
|
+
encoder_attention_mask: nil,
|
725
|
+
labels: nil,
|
726
|
+
output_attentions: nil,
|
727
|
+
output_hidden_states: nil,
|
728
|
+
return_dict: nil
|
729
|
+
)
|
730
|
+
return_dict = !return_dict.nil? ? return_dict : config.use_return_dict
|
731
|
+
|
732
|
+
outputs = @bert.(
|
733
|
+
input_ids: input_ids,
|
734
|
+
attention_mask: attention_mask,
|
735
|
+
token_type_ids: token_type_ids,
|
736
|
+
position_ids: position_ids,
|
737
|
+
head_mask: head_mask,
|
738
|
+
inputs_embeds: inputs_embeds,
|
739
|
+
encoder_hidden_states: encoder_hidden_states,
|
740
|
+
encoder_attention_mask: encoder_attention_mask,
|
741
|
+
output_attentions: output_attentions,
|
742
|
+
output_hidden_states: output_hidden_states,
|
743
|
+
return_dict: return_dict
|
744
|
+
)
|
745
|
+
|
746
|
+
sequence_output = outputs[0]
|
747
|
+
prediction_scores = @cls.(sequence_output)
|
748
|
+
|
749
|
+
masked_lm_loss = nil
|
750
|
+
if !labels.nil?
|
751
|
+
raise Todo
|
752
|
+
end
|
753
|
+
|
754
|
+
if !return_dict
|
755
|
+
raise Todo
|
756
|
+
end
|
757
|
+
|
758
|
+
MaskedLMOutput.new(
|
759
|
+
loss: masked_lm_loss,
|
760
|
+
logits: prediction_scores,
|
761
|
+
hidden_states: outputs.hidden_states,
|
762
|
+
attentions: outputs.attentions
|
763
|
+
)
|
764
|
+
end
|
765
|
+
end
|
766
|
+
|
767
|
+
class BertForTokenClassification < BertPreTrainedModel
|
768
|
+
def initialize(config)
|
769
|
+
super(config)
|
770
|
+
@num_labels = config.num_labels
|
771
|
+
|
772
|
+
@bert = BertModel.new(config, add_pooling_layer: false)
|
773
|
+
classifier_dropout = (
|
774
|
+
!config.classifier_dropout.nil? ? config.classifier_dropout : config.hidden_dropout_prob
|
775
|
+
)
|
776
|
+
@dropout = Torch::NN::Dropout.new(p: classifier_dropout)
|
777
|
+
@classifier = Torch::NN::Linear.new(config.hidden_size, config.num_labels)
|
778
|
+
|
779
|
+
# Initialize weights and apply final processing
|
780
|
+
post_init
|
781
|
+
end
|
782
|
+
|
783
|
+
def forward(
|
784
|
+
input_ids: nil,
|
785
|
+
attention_mask: nil,
|
786
|
+
token_type_ids: nil,
|
787
|
+
position_ids: nil,
|
788
|
+
head_mask: nil,
|
789
|
+
inputs_embeds: nil,
|
790
|
+
labels: nil,
|
791
|
+
output_attentions: nil,
|
792
|
+
output_hidden_states: nil,
|
793
|
+
return_dict: nil
|
794
|
+
)
|
795
|
+
return_dict = !return_dict.nil? ? return_dict : @config.use_return_dict
|
796
|
+
|
797
|
+
outputs = @bert.(
|
798
|
+
input_ids: input_ids,
|
799
|
+
attention_mask: attention_mask,
|
800
|
+
token_type_ids: token_type_ids,
|
801
|
+
position_ids: position_ids,
|
802
|
+
head_mask: head_mask,
|
803
|
+
inputs_embeds: inputs_embeds,
|
804
|
+
output_attentions: output_attentions,
|
805
|
+
output_hidden_states: output_hidden_states,
|
806
|
+
return_dict: return_dict
|
807
|
+
)
|
808
|
+
|
809
|
+
sequence_output = outputs[0]
|
810
|
+
|
811
|
+
sequence_output = @dropout.(sequence_output)
|
812
|
+
logits = @classifier.(sequence_output)
|
813
|
+
|
814
|
+
loss = nil
|
815
|
+
if !labels.nil?
|
816
|
+
loss_fct = CrossEntropyLoss.new
|
817
|
+
loss = loss_fct.(logits.view(-1,@num_labels), labels.view(-1))
|
818
|
+
end
|
819
|
+
|
820
|
+
if !return_dict
|
821
|
+
raise Todo
|
822
|
+
end
|
823
|
+
|
824
|
+
TokenClassifierOutput.new(
|
825
|
+
loss: loss,
|
826
|
+
logits: logits,
|
827
|
+
hidden_states: outputs.hidden_states,
|
828
|
+
attentions: outputs.attentions
|
829
|
+
)
|
830
|
+
end
|
831
|
+
end
|
832
|
+
end
|
833
|
+
|
834
|
+
BertModel = Bert::BertModel
|
835
|
+
BertForTokenClassification = Bert::BertForTokenClassification
|
836
|
+
end
|