transformers-rb 0.1.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/CHANGELOG.md +3 -0
- data/LICENSE.txt +203 -0
- data/README.md +163 -0
- data/lib/transformers/activations.rb +57 -0
- data/lib/transformers/configuration_utils.rb +285 -0
- data/lib/transformers/convert_slow_tokenizer.rb +90 -0
- data/lib/transformers/data/processors/squad.rb +115 -0
- data/lib/transformers/dynamic_module_utils.rb +25 -0
- data/lib/transformers/feature_extraction_utils.rb +110 -0
- data/lib/transformers/hf_hub/constants.rb +71 -0
- data/lib/transformers/hf_hub/errors.rb +11 -0
- data/lib/transformers/hf_hub/file_download.rb +764 -0
- data/lib/transformers/hf_hub/utils/_errors.rb +94 -0
- data/lib/transformers/hf_hub/utils/_headers.rb +109 -0
- data/lib/transformers/image_processing_base.rb +169 -0
- data/lib/transformers/image_processing_utils.rb +63 -0
- data/lib/transformers/image_transforms.rb +208 -0
- data/lib/transformers/image_utils.rb +165 -0
- data/lib/transformers/modeling_outputs.rb +81 -0
- data/lib/transformers/modeling_utils.rb +888 -0
- data/lib/transformers/models/auto/auto_factory.rb +138 -0
- data/lib/transformers/models/auto/configuration_auto.rb +61 -0
- data/lib/transformers/models/auto/feature_extraction_auto.rb +20 -0
- data/lib/transformers/models/auto/image_processing_auto.rb +104 -0
- data/lib/transformers/models/auto/modeling_auto.rb +80 -0
- data/lib/transformers/models/auto/tokenization_auto.rb +160 -0
- data/lib/transformers/models/bert/configuration_bert.rb +65 -0
- data/lib/transformers/models/bert/modeling_bert.rb +836 -0
- data/lib/transformers/models/bert/tokenization_bert.rb +115 -0
- data/lib/transformers/models/bert/tokenization_bert_fast.rb +52 -0
- data/lib/transformers/models/distilbert/configuration_distilbert.rb +63 -0
- data/lib/transformers/models/distilbert/modeling_distilbert.rb +616 -0
- data/lib/transformers/models/distilbert/tokenization_distilbert.rb +114 -0
- data/lib/transformers/models/distilbert/tokenization_distilbert_fast.rb +71 -0
- data/lib/transformers/models/vit/configuration_vit.rb +60 -0
- data/lib/transformers/models/vit/image_processing_vit.rb +170 -0
- data/lib/transformers/models/vit/modeling_vit.rb +506 -0
- data/lib/transformers/pipelines/_init.rb +348 -0
- data/lib/transformers/pipelines/base.rb +301 -0
- data/lib/transformers/pipelines/feature_extraction.rb +47 -0
- data/lib/transformers/pipelines/image_classification.rb +110 -0
- data/lib/transformers/pipelines/image_feature_extraction.rb +56 -0
- data/lib/transformers/pipelines/pt_utils.rb +53 -0
- data/lib/transformers/pipelines/question_answering.rb +508 -0
- data/lib/transformers/pipelines/text_classification.rb +123 -0
- data/lib/transformers/pipelines/token_classification.rb +282 -0
- data/lib/transformers/ruby_utils.rb +33 -0
- data/lib/transformers/sentence_transformer.rb +37 -0
- data/lib/transformers/tokenization_utils.rb +152 -0
- data/lib/transformers/tokenization_utils_base.rb +937 -0
- data/lib/transformers/tokenization_utils_fast.rb +386 -0
- data/lib/transformers/torch_utils.rb +25 -0
- data/lib/transformers/utils/_init.rb +31 -0
- data/lib/transformers/utils/generic.rb +107 -0
- data/lib/transformers/utils/hub.rb +209 -0
- data/lib/transformers/utils/import_utils.rb +45 -0
- data/lib/transformers/utils/logging.rb +52 -0
- data/lib/transformers/version.rb +3 -0
- data/lib/transformers-rb.rb +1 -0
- data/lib/transformers.rb +100 -0
- data/licenses/LICENSE-huggingface-hub.txt +201 -0
- data/licenses/LICENSE-sentence-transformers.txt +201 -0
- data/licenses/NOTICE-sentence-transformers.txt +5 -0
- metadata +161 -0
@@ -0,0 +1,888 @@
|
|
1
|
+
# Copyright 2018 The Google AI Language Team Authors, Facebook AI Research authors and The HuggingFace Inc. team.
|
2
|
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
3
|
+
#
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5
|
+
# you may not use this file except in compliance with the License.
|
6
|
+
# You may obtain a copy of the License at
|
7
|
+
#
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9
|
+
#
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13
|
+
# See the License for the specific language governing permissions and
|
14
|
+
# limitations under the License.
|
15
|
+
|
16
|
+
module Transformers
|
17
|
+
module ModuleUtilsMixin
|
18
|
+
def get_extended_attention_mask(
|
19
|
+
attention_mask,
|
20
|
+
input_shape,
|
21
|
+
device: nil,
|
22
|
+
dtype: nil
|
23
|
+
)
|
24
|
+
if dtype.nil?
|
25
|
+
dtype = @dtype
|
26
|
+
end
|
27
|
+
|
28
|
+
if !(attention_mask.dim == 2 && @config.is_decoder)
|
29
|
+
# show warning only if it won't be shown in `create_extended_attention_mask_for_decoder`
|
30
|
+
if !device.nil?
|
31
|
+
raise Todo
|
32
|
+
end
|
33
|
+
end
|
34
|
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
35
|
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
36
|
+
if attention_mask.dim == 3
|
37
|
+
raise Todo
|
38
|
+
elsif attention_mask.dim == 2
|
39
|
+
# Provided a padding mask of dimensions [batch_size, seq_length]
|
40
|
+
# - if the model is a decoder, apply a causal mask in addition to the padding mask
|
41
|
+
# - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
42
|
+
if @config.is_decoder
|
43
|
+
raise Todo
|
44
|
+
else
|
45
|
+
extended_attention_mask = attention_mask[0.., nil, nil, 0..]
|
46
|
+
end
|
47
|
+
else
|
48
|
+
raise Todo
|
49
|
+
end
|
50
|
+
|
51
|
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
52
|
+
# masked positions, this operation will create a tensor which is 0.0 for
|
53
|
+
# positions we want to attend and the dtype's smallest value for masked positions.
|
54
|
+
# Since we are adding it to the raw scores before the softmax, this is
|
55
|
+
# effectively the same as removing these entirely.
|
56
|
+
extended_attention_mask = extended_attention_mask.to(dtype: dtype) # fp16 compatibility
|
57
|
+
# TODO use Torch.finfo
|
58
|
+
extended_attention_mask = (1.0 - extended_attention_mask) * -3.40282e+38
|
59
|
+
extended_attention_mask
|
60
|
+
end
|
61
|
+
|
62
|
+
def get_head_mask(head_mask, num_hidden_layers, is_attention_chunked: false)
|
63
|
+
if !head_mask.nil?
|
64
|
+
head_mask = _convert_head_mask_to_5d(head_mask, num_hidden_layers)
|
65
|
+
if is_attention_chunked == true
|
66
|
+
head_mask = head_mask.unsqueeze(-1)
|
67
|
+
end
|
68
|
+
else
|
69
|
+
head_mask = [nil] * num_hidden_layers
|
70
|
+
end
|
71
|
+
|
72
|
+
head_mask
|
73
|
+
end
|
74
|
+
end
|
75
|
+
|
76
|
+
class PreTrainedModel < Torch::NN::Module
|
77
|
+
extend ClassAttribute
|
78
|
+
include ModuleUtilsMixin
|
79
|
+
|
80
|
+
class_attribute :config_class
|
81
|
+
class_attribute :base_model_prefix, ""
|
82
|
+
class_attribute :main_input_name, "input_ids"
|
83
|
+
class_attribute :model_tags
|
84
|
+
|
85
|
+
class_attribute :_tied_weights_keys
|
86
|
+
|
87
|
+
attr_reader :config
|
88
|
+
|
89
|
+
def dummy_inputs
|
90
|
+
raise Todo
|
91
|
+
end
|
92
|
+
|
93
|
+
def framework
|
94
|
+
"pt"
|
95
|
+
end
|
96
|
+
|
97
|
+
def initialize(config, *inputs, **kwargs)
|
98
|
+
super()
|
99
|
+
@config = config
|
100
|
+
end
|
101
|
+
|
102
|
+
def post_init
|
103
|
+
init_weights
|
104
|
+
_backward_compatibility_gradient_checkpointing
|
105
|
+
end
|
106
|
+
|
107
|
+
def dequantize
|
108
|
+
raise Todo
|
109
|
+
end
|
110
|
+
|
111
|
+
def _backward_compatibility_gradient_checkpointing
|
112
|
+
# TODO
|
113
|
+
end
|
114
|
+
|
115
|
+
def base_model
|
116
|
+
instance_variable_get("@#{self.class.base_model_prefix}") || self
|
117
|
+
end
|
118
|
+
|
119
|
+
def can_generate
|
120
|
+
# TODO improve
|
121
|
+
false
|
122
|
+
end
|
123
|
+
|
124
|
+
def get_input_embeddings
|
125
|
+
raise Todo
|
126
|
+
end
|
127
|
+
|
128
|
+
def set_input_embeddings(value)
|
129
|
+
raise Todo
|
130
|
+
end
|
131
|
+
|
132
|
+
def get_output_embeddings
|
133
|
+
nil # Overwrite for models with output embeddings
|
134
|
+
end
|
135
|
+
|
136
|
+
def _init_weights(mod)
|
137
|
+
# pass
|
138
|
+
end
|
139
|
+
|
140
|
+
def _initialize_weights(mod)
|
141
|
+
_init_weights(mod)
|
142
|
+
end
|
143
|
+
|
144
|
+
def tie_weights
|
145
|
+
if @config.tie_word_embeddings != false
|
146
|
+
output_embeddings = get_output_embeddings
|
147
|
+
if !output_embeddings.nil?
|
148
|
+
raise Todo
|
149
|
+
end
|
150
|
+
end
|
151
|
+
|
152
|
+
if @config.is_encoder_decoder && @config.tie_encoder_decoder
|
153
|
+
raise Todo
|
154
|
+
end
|
155
|
+
|
156
|
+
modules.each do |mod|
|
157
|
+
if mod.respond_to?(:_tie_weights)
|
158
|
+
mod._tie_weights
|
159
|
+
end
|
160
|
+
end
|
161
|
+
end
|
162
|
+
|
163
|
+
def init_weights
|
164
|
+
# Prune heads if needed
|
165
|
+
if @config.pruned_heads
|
166
|
+
prune_heads(@config.pruned_heads)
|
167
|
+
end
|
168
|
+
|
169
|
+
if true
|
170
|
+
# Initialize weights
|
171
|
+
apply(method(:_initialize_weights))
|
172
|
+
|
173
|
+
# Tie weights should be skipped when not initializing all weights
|
174
|
+
# since from_pretrained(...) calls tie weights anyways
|
175
|
+
tie_weights
|
176
|
+
end
|
177
|
+
end
|
178
|
+
|
179
|
+
def prune_heads(heads_to_prune)
|
180
|
+
# save new sets of pruned heads as union of previously stored pruned heads and newly pruned heads
|
181
|
+
heads_to_prune.each do |layer, heads|
|
182
|
+
union_heads = Set.new(@config.pruned_heads.fetch(layer, [])) | Set.new(heads)
|
183
|
+
@config.pruned_heads[layer] = union_heads.to_a # Unfortunately we have to store it as list for JSON
|
184
|
+
end
|
185
|
+
|
186
|
+
base_model._prune_heads(heads_to_prune)
|
187
|
+
end
|
188
|
+
|
189
|
+
def warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
190
|
+
if !attention_mask.nil? || @config.pad_token_id.nil?
|
191
|
+
return
|
192
|
+
end
|
193
|
+
|
194
|
+
# Check only the first and last input IDs to reduce overhead.
|
195
|
+
if input_ids[0.., [-1, 0]].include?(@config.pad_token_id)
|
196
|
+
raise Todo
|
197
|
+
end
|
198
|
+
end
|
199
|
+
|
200
|
+
class << self
|
201
|
+
def from_pretrained(
|
202
|
+
pretrained_model_name_or_path,
|
203
|
+
*model_args,
|
204
|
+
config: nil,
|
205
|
+
cache_dir: nil,
|
206
|
+
ignore_mismatched_sizes: false,
|
207
|
+
force_download: false,
|
208
|
+
local_files_only: false,
|
209
|
+
token: nil,
|
210
|
+
revision: "main",
|
211
|
+
use_safetensors: nil,
|
212
|
+
**kwargs
|
213
|
+
)
|
214
|
+
state_dict = kwargs.delete(:state_dict)
|
215
|
+
from_tf = kwargs.delete(:from_tf) { false }
|
216
|
+
from_flax = kwargs.delete(:from_flax) { false }
|
217
|
+
resume_download = kwargs.delete(:resume_download) { false }
|
218
|
+
proxies = kwargs.delete(:proxies)
|
219
|
+
output_loading_info = kwargs.delete(:output_loading_info) { false }
|
220
|
+
_use_auth_token = kwargs.delete(:use_auth_token)
|
221
|
+
trust_remote_code = kwargs.delete(:trust_remote_code)
|
222
|
+
_ = kwargs.delete(:mirror)
|
223
|
+
from_pipeline = kwargs.delete(:_from_pipeline)
|
224
|
+
from_auto_class = kwargs.delete(:_from_auto) { false }
|
225
|
+
_fast_init = kwargs.delete(:_fast_init) { true }
|
226
|
+
torch_dtype = kwargs.delete(:torch_dtype)
|
227
|
+
low_cpu_mem_usage = kwargs.delete(:low_cpu_mem_usage)
|
228
|
+
device_map = kwargs.delete(:device_map)
|
229
|
+
_max_memory = kwargs.delete(:max_memory)
|
230
|
+
offload_folder = kwargs.delete(:offload_folder)
|
231
|
+
offload_state_dict = kwargs.delete(:offload_state_dict) { false }
|
232
|
+
load_in_8bit = kwargs.delete(:load_in_8bit) { false }
|
233
|
+
load_in_4bit = kwargs.delete(:load_in_4bit) { false }
|
234
|
+
quantization_config = kwargs.delete(:quantization_config)
|
235
|
+
subfolder = kwargs.delete(:subfolder) { "" }
|
236
|
+
commit_hash = kwargs.delete(:_commit_hash)
|
237
|
+
variant = kwargs.delete(:variant)
|
238
|
+
_adapter_kwargs = kwargs.delete(:adapter_kwargs) { {} }
|
239
|
+
_adapter_name = kwargs.delete(:adapter_name) { "default" }
|
240
|
+
_use_flash_attention_2 = kwargs.delete(:use_flash_attention_2) { false }
|
241
|
+
|
242
|
+
if use_safetensors.nil? && !is_safetensors_available
|
243
|
+
use_safetensors = false
|
244
|
+
end
|
245
|
+
if trust_remote_code
|
246
|
+
Transformers.logger.warn(
|
247
|
+
"The argument `trust_remote_code` is to be used with Auto classes. It has no effect here and is" +
|
248
|
+
" ignored."
|
249
|
+
)
|
250
|
+
end
|
251
|
+
|
252
|
+
if commit_hash.nil?
|
253
|
+
if !config.is_a?(PretrainedConfig)
|
254
|
+
# We make a call to the config file first (which may be absent) to get the commit hash as soon as possible
|
255
|
+
resolved_config_file =
|
256
|
+
Utils::Hub.cached_file(
|
257
|
+
pretrained_model_name_or_path,
|
258
|
+
CONFIG_NAME,
|
259
|
+
cache_dir: cache_dir,
|
260
|
+
force_download: force_download,
|
261
|
+
resume_download: resume_download,
|
262
|
+
proxies: proxies,
|
263
|
+
local_files_only: local_files_only,
|
264
|
+
token: token,
|
265
|
+
revision: revision,
|
266
|
+
subfolder: subfolder,
|
267
|
+
_raise_exceptions_for_gated_repo: false,
|
268
|
+
_raise_exceptions_for_missing_entries: false,
|
269
|
+
_raise_exceptions_for_connection_errors: false,
|
270
|
+
)
|
271
|
+
commit_hash = Utils::Hub.extract_commit_hash(resolved_config_file, commit_hash)
|
272
|
+
else
|
273
|
+
commit_hash = config._commit_hash
|
274
|
+
end
|
275
|
+
end
|
276
|
+
|
277
|
+
if !device_map.nil?
|
278
|
+
raise Todo
|
279
|
+
end
|
280
|
+
|
281
|
+
# handling bnb config from kwargs, remove after `load_in_{4/8}bit` deprecation.
|
282
|
+
if load_in_4bit || load_in_8bit
|
283
|
+
raise Todo
|
284
|
+
end
|
285
|
+
|
286
|
+
from_pt = !(from_tf || from_flax)
|
287
|
+
|
288
|
+
user_agent = {file_type: "model", framework: "pytorch", from_auto_class: from_auto_class}
|
289
|
+
if !from_pipeline.nil?
|
290
|
+
user_agent[:using_pipeline] = from_pipeline
|
291
|
+
end
|
292
|
+
|
293
|
+
if Utils::Hub.is_offline_mode && !local_files_only
|
294
|
+
Transformers.logger.info "Offline mode: forcing local_files_only: true"
|
295
|
+
local_files_only = true
|
296
|
+
end
|
297
|
+
|
298
|
+
# Load config if we don't provide a configuration
|
299
|
+
if !config.is_a?(PretrainedConfig)
|
300
|
+
config_path = !config.nil? ? config : pretrained_model_name_or_path
|
301
|
+
config, model_kwargs =
|
302
|
+
config_class.from_pretrained(
|
303
|
+
config_path,
|
304
|
+
cache_dir: cache_dir,
|
305
|
+
return_unused_kwargs: true,
|
306
|
+
force_download: force_download,
|
307
|
+
resume_download: resume_download,
|
308
|
+
proxies: proxies,
|
309
|
+
local_files_only: local_files_only,
|
310
|
+
token: token,
|
311
|
+
revision: revision,
|
312
|
+
subfolder: subfolder,
|
313
|
+
_from_auto: from_auto_class,
|
314
|
+
_from_pipeline: from_pipeline,
|
315
|
+
**kwargs
|
316
|
+
)
|
317
|
+
else
|
318
|
+
# In case one passes a config to `from_pretrained` + "attn_implementation"
|
319
|
+
# override the `_attn_implementation` attribute to `attn_implementation` of the kwargs
|
320
|
+
# Please see: https://github.com/huggingface/transformers/issues/28038
|
321
|
+
|
322
|
+
# Overwrite `config._attn_implementation` by the one from the kwargs --> in auto-factory
|
323
|
+
# we pop attn_implementation from the kwargs but this handles the case where users
|
324
|
+
# passes manually the config to `from_pretrained`.
|
325
|
+
config = Copy.deepcopy(config)
|
326
|
+
|
327
|
+
kwarg_attn_imp = kwargs.delete(:attn_implementation)
|
328
|
+
if !kwarg_attn_imp.nil? && config._attn_implementation != kwarg_attn_imp
|
329
|
+
config._attn_implementation = kwarg_attn_imp
|
330
|
+
end
|
331
|
+
model_kwargs = kwargs
|
332
|
+
end
|
333
|
+
|
334
|
+
pre_quantized = false # !config.quantization_config.nil?
|
335
|
+
if pre_quantized || !quantization_config.nil?
|
336
|
+
raise Todo
|
337
|
+
else
|
338
|
+
hf_quantizer = nil
|
339
|
+
end
|
340
|
+
|
341
|
+
if !hf_quantizer.nil?
|
342
|
+
raise Todo
|
343
|
+
end
|
344
|
+
|
345
|
+
# This variable will flag if we're loading a sharded checkpoint. In this case the archive file is just the
|
346
|
+
# index of the files.
|
347
|
+
is_sharded = false
|
348
|
+
sharded_metadata = nil
|
349
|
+
# Load model
|
350
|
+
_loading_info = nil
|
351
|
+
|
352
|
+
# Keep in fp32 modules
|
353
|
+
keep_in_fp32_modules = nil
|
354
|
+
_use_keep_in_fp32_modules = false
|
355
|
+
|
356
|
+
resolved_archive_file = nil
|
357
|
+
if !pretrained_model_name_or_path.nil?
|
358
|
+
pretrained_model_name_or_path = pretrained_model_name_or_path.to_s
|
359
|
+
is_local = Dir.exist?(pretrained_model_name_or_path)
|
360
|
+
if is_local
|
361
|
+
raise Todo
|
362
|
+
elsif File.exist?(File.join(subfolder, pretrained_model_name_or_path))
|
363
|
+
_archive_file = pretrained_model_name_or_path
|
364
|
+
is_local = true
|
365
|
+
else
|
366
|
+
# set correct filename
|
367
|
+
if use_safetensors != false
|
368
|
+
filename = _add_variant(SAFE_WEIGHTS_NAME, variant)
|
369
|
+
else
|
370
|
+
filename = _add_variant(WEIGHTS_NAME, variant)
|
371
|
+
end
|
372
|
+
|
373
|
+
# Load from URL or cache if already cached
|
374
|
+
cached_file_kwargs = {
|
375
|
+
cache_dir: cache_dir,
|
376
|
+
force_download: force_download,
|
377
|
+
proxies: proxies,
|
378
|
+
resume_download: resume_download,
|
379
|
+
local_files_only: local_files_only,
|
380
|
+
token: token,
|
381
|
+
user_agent: user_agent,
|
382
|
+
revision: revision,
|
383
|
+
subfolder: subfolder,
|
384
|
+
_raise_exceptions_for_gated_repo: false,
|
385
|
+
_raise_exceptions_for_missing_entries: false,
|
386
|
+
_commit_hash: commit_hash
|
387
|
+
}
|
388
|
+
resolved_archive_file = Utils::Hub.cached_file(pretrained_model_name_or_path, filename, **cached_file_kwargs)
|
389
|
+
|
390
|
+
# Since we set _raise_exceptions_for_missing_entries=False, we don't get an exception but a None
|
391
|
+
# result when internet is up, the repo and revision exist, but the file does not.
|
392
|
+
if resolved_archive_file.nil? && filename == _add_variant(SAFE_WEIGHTS_NAME, variant)
|
393
|
+
# Maybe the checkpoint is sharded, we try to grab the index name in this case.
|
394
|
+
resolved_archive_file = Utils::Hub.cached_file(
|
395
|
+
pretrained_model_name_or_path,
|
396
|
+
_add_variant(SAFE_WEIGHTS_INDEX_NAME, variant),
|
397
|
+
**cached_file_kwargs,
|
398
|
+
)
|
399
|
+
if !resolved_archive_file.nil?
|
400
|
+
is_sharded = true
|
401
|
+
elsif use_safetensors
|
402
|
+
raise Todo
|
403
|
+
else
|
404
|
+
# This repo has no safetensors file of any kind, we switch to PyTorch.
|
405
|
+
filename = _add_variant(WEIGHTS_NAME, variant)
|
406
|
+
resolved_archive_file = Utils::Hub.cached_file(
|
407
|
+
pretrained_model_name_or_path, filename, **cached_file_kwargs
|
408
|
+
)
|
409
|
+
end
|
410
|
+
end
|
411
|
+
if resolved_archive_file.nil? && filename == _add_variant(WEIGHTS_NAME, variant)
|
412
|
+
# Maybe the checkpoint is sharded, we try to grab the index name in this case.
|
413
|
+
resolved_archive_file = Utils::Hub.cached_file(
|
414
|
+
pretrained_model_name_or_path,
|
415
|
+
_add_variant(WEIGHTS_INDEX_NAME, variant),
|
416
|
+
**cached_file_kwargs
|
417
|
+
)
|
418
|
+
if !resolved_archive_file.nil?
|
419
|
+
is_sharded = true
|
420
|
+
end
|
421
|
+
end
|
422
|
+
if !local_files_only && !Utils::Hub.is_offline_mode
|
423
|
+
if !resolved_archive_file.nil?
|
424
|
+
if [WEIGHTS_NAME, WEIGHTS_INDEX_NAME].include?(filename)
|
425
|
+
# If the PyTorch file was found, check if there is a safetensors file on the repository
|
426
|
+
# If there is no safetensors file on the repositories, start an auto conversion
|
427
|
+
_safe_weights_name = is_sharded ? SAFE_WEIGHTS_INDEX_NAME : SAFE_WEIGHTS_NAME
|
428
|
+
has_file_kwargs = {
|
429
|
+
revision: revision,
|
430
|
+
proxies: proxies,
|
431
|
+
token: token,
|
432
|
+
cache_dir: cache_dir,
|
433
|
+
local_files_only: local_files_only
|
434
|
+
}
|
435
|
+
cached_file_kwargs = {
|
436
|
+
cache_dir: cache_dir,
|
437
|
+
force_download: force_download,
|
438
|
+
resume_download: resume_download,
|
439
|
+
local_files_only: local_files_only,
|
440
|
+
user_agent: user_agent,
|
441
|
+
subfolder: subfolder,
|
442
|
+
_raise_exceptions_for_gated_repo: false,
|
443
|
+
_raise_exceptions_for_missing_entries: false,
|
444
|
+
_commit_hash: commit_hash,
|
445
|
+
**has_file_kwargs
|
446
|
+
}
|
447
|
+
# skip auto conversion
|
448
|
+
# if !Utils::Hub.has_file(pretrained_model_name_or_path, safe_weights_name, **has_file_kwargs)
|
449
|
+
# end
|
450
|
+
end
|
451
|
+
else
|
452
|
+
raise Todo
|
453
|
+
end
|
454
|
+
end
|
455
|
+
|
456
|
+
if is_local
|
457
|
+
Transformers.logger.info("loading weights file #{archive_file}")
|
458
|
+
resolved_archive_file = archive_file
|
459
|
+
else
|
460
|
+
Transformers.logger.info("loading weights file #{filename} from cache at #{resolved_archive_file}")
|
461
|
+
end
|
462
|
+
end
|
463
|
+
else
|
464
|
+
resolved_archive_file = nil
|
465
|
+
end
|
466
|
+
|
467
|
+
# We'll need to download and cache each checkpoint shard if the checkpoint is sharded.
|
468
|
+
if is_sharded
|
469
|
+
raise Todo
|
470
|
+
end
|
471
|
+
|
472
|
+
metadata = nil
|
473
|
+
if is_safetensors_available && resolved_archive_file.is_a?(String) && resolved_archive_file.end_with?(".safetensors")
|
474
|
+
Safetensors.safe_open(resolved_archive_file, framework: "pt") do |f|
|
475
|
+
metadata = f.metadata
|
476
|
+
end
|
477
|
+
|
478
|
+
if metadata["format"] == "pt"
|
479
|
+
# do nothing
|
480
|
+
else
|
481
|
+
raise ArgumentError,
|
482
|
+
"Incompatible safetensors file. File metadata is not ['pt'] but #{metadata["format"]}"
|
483
|
+
end
|
484
|
+
end
|
485
|
+
|
486
|
+
from_pt = !(from_tf || from_flax)
|
487
|
+
|
488
|
+
# load pt weights early so that we know which dtype to init the model under
|
489
|
+
if from_pt
|
490
|
+
if !is_sharded && state_dict.nil?
|
491
|
+
# Time to load the checkpoint
|
492
|
+
state_dict = load_state_dict(resolved_archive_file)
|
493
|
+
end
|
494
|
+
|
495
|
+
# set dtype to instantiate the model under:
|
496
|
+
# 1. If torch_dtype is not None, we use that dtype
|
497
|
+
# 2. If torch_dtype is "auto", we auto-detect dtype from the loaded state_dict, by checking its first
|
498
|
+
# weights entry that is of a floating type - we assume all floating dtype weights are of the same dtype
|
499
|
+
# we also may have config.torch_dtype available, but we won't rely on it till v5
|
500
|
+
dtype_orig = nil
|
501
|
+
|
502
|
+
if !torch_dtype.nil?
|
503
|
+
raise Todo
|
504
|
+
end
|
505
|
+
|
506
|
+
if is_sharded
|
507
|
+
loaded_state_dict_keys = sharded_metadata["all_checkpoint_keys"]
|
508
|
+
else
|
509
|
+
loaded_state_dict_keys = state_dict.keys
|
510
|
+
end
|
511
|
+
end
|
512
|
+
|
513
|
+
config.name_or_path = pretrained_model_name_or_path
|
514
|
+
|
515
|
+
model_kwargs = {}
|
516
|
+
model = new(config, *model_args, **model_kwargs)
|
517
|
+
|
518
|
+
# make sure we use the model's config since the __init__ call might have copied it
|
519
|
+
config = model.config
|
520
|
+
|
521
|
+
if device_map.is_a?(String)
|
522
|
+
raise Todo
|
523
|
+
elsif !device_map.nil?
|
524
|
+
raise Todo
|
525
|
+
end
|
526
|
+
|
527
|
+
if from_pt
|
528
|
+
# restore default dtype
|
529
|
+
if !dtype_orig.nil?
|
530
|
+
Torch.set_default_dtype(dtype_orig)
|
531
|
+
end
|
532
|
+
|
533
|
+
model, _missing_keys, _unexpected_keys, _mismatched_keys, _offload_index, _error_msgs =
|
534
|
+
_load_pretrained_model(
|
535
|
+
model,
|
536
|
+
state_dict,
|
537
|
+
loaded_state_dict_keys, # XXX: rename?
|
538
|
+
resolved_archive_file,
|
539
|
+
pretrained_model_name_or_path,
|
540
|
+
ignore_mismatched_sizes: ignore_mismatched_sizes,
|
541
|
+
sharded_metadata: sharded_metadata,
|
542
|
+
_fast_init: _fast_init,
|
543
|
+
low_cpu_mem_usage: low_cpu_mem_usage,
|
544
|
+
device_map: device_map,
|
545
|
+
offload_folder: offload_folder,
|
546
|
+
offload_state_dict: offload_state_dict,
|
547
|
+
dtype: torch_dtype,
|
548
|
+
hf_quantizer: hf_quantizer,
|
549
|
+
keep_in_fp32_modules: keep_in_fp32_modules
|
550
|
+
)
|
551
|
+
end
|
552
|
+
|
553
|
+
# make sure token embedding weights are still tied if needed
|
554
|
+
model.tie_weights
|
555
|
+
|
556
|
+
# Set model in evaluation mode to deactivate DropOut modules by default
|
557
|
+
model.eval
|
558
|
+
|
559
|
+
# If it is a model with generation capabilities, attempt to load the generation config
|
560
|
+
if model.can_generate && !pretrained_model_name_or_path.nil?
|
561
|
+
raise Todo
|
562
|
+
end
|
563
|
+
|
564
|
+
# Dispatch model with hooks on all devices if necessary
|
565
|
+
if !device_map.nil?
|
566
|
+
raise Todo
|
567
|
+
end
|
568
|
+
|
569
|
+
if !hf_quantizer.nil?
|
570
|
+
raise Todo
|
571
|
+
end
|
572
|
+
|
573
|
+
if output_loading_info
|
574
|
+
raise Todo
|
575
|
+
end
|
576
|
+
|
577
|
+
model
|
578
|
+
end
|
579
|
+
|
580
|
+
private
|
581
|
+
|
582
|
+
def _load_pretrained_model(
|
583
|
+
model,
|
584
|
+
state_dict,
|
585
|
+
loaded_keys,
|
586
|
+
resolved_archive_file,
|
587
|
+
pretrained_model_name_or_path,
|
588
|
+
ignore_mismatched_sizes: false,
|
589
|
+
sharded_metadata: nil,
|
590
|
+
_fast_init: true,
|
591
|
+
low_cpu_mem_usage: false,
|
592
|
+
device_map: nil,
|
593
|
+
offload_folder: nil,
|
594
|
+
offload_state_dict: nil,
|
595
|
+
dtype: nil,
|
596
|
+
hf_quantizer: nil,
|
597
|
+
keep_in_fp32_modules: nil
|
598
|
+
)
|
599
|
+
is_safetensors = false
|
600
|
+
|
601
|
+
_is_sharded_safetensors = is_safetensors && !sharded_metadata.nil?
|
602
|
+
|
603
|
+
# tie the model weights before retrieving the state_dict
|
604
|
+
model.tie_weights
|
605
|
+
|
606
|
+
# Retrieve missing & unexpected_keys
|
607
|
+
model_state_dict = model.state_dict
|
608
|
+
expected_keys = model_state_dict.keys
|
609
|
+
prefix = model.class.base_model_prefix
|
610
|
+
|
611
|
+
_fix_key = lambda do |key|
|
612
|
+
if key.include?("beta")
|
613
|
+
key.gsub("beta", "bias")
|
614
|
+
end
|
615
|
+
if key.include?("gamma")
|
616
|
+
key.gsub("gamma", "weight")
|
617
|
+
else
|
618
|
+
key
|
619
|
+
end
|
620
|
+
end
|
621
|
+
|
622
|
+
original_loaded_keys = loaded_keys
|
623
|
+
loaded_keys = loaded_keys.map { |key| _fix_key.(key) }
|
624
|
+
|
625
|
+
if prefix.length > 0
|
626
|
+
has_prefix_module = loaded_keys.any? { |s| s.start_with?(prefix) }
|
627
|
+
expects_prefix_module = expected_keys.any? { |s| s.start_with?(prefix) }
|
628
|
+
else
|
629
|
+
has_prefix_module = false
|
630
|
+
expects_prefix_module = false
|
631
|
+
end
|
632
|
+
|
633
|
+
# key re-naming operations are never done on the keys
|
634
|
+
# that are loaded, but always on the keys of the newly initialized model
|
635
|
+
remove_prefix_from_model = !has_prefix_module && expects_prefix_module
|
636
|
+
add_prefix_to_model = has_prefix_module && !expects_prefix_module
|
637
|
+
|
638
|
+
if remove_prefix_from_model
|
639
|
+
_prefix = "#{prefix}."
|
640
|
+
expected_keys_not_prefixed = expected_keys.select { |s| !s.start_with?(_prefix) }
|
641
|
+
expected_keys = expected_keys.map { |s| s.start_with?(_prefix) ? s[_prefix.length..] : s }
|
642
|
+
elsif add_prefix_to_model
|
643
|
+
expected_keys = expected_keys.map { |s| [prefix, s].join(".") }
|
644
|
+
end
|
645
|
+
|
646
|
+
missing_keys = (Set.new(expected_keys) - Set.new(loaded_keys)).sort
|
647
|
+
unexpected_keys = Set.new(loaded_keys) - Set.new(expected_keys)
|
648
|
+
# Remove nonpersistent buffers from unexpected keys: they are not in the state dict but will be in the model
|
649
|
+
# buffers
|
650
|
+
model_buffers = model.named_buffers(recurse: true).keys
|
651
|
+
if remove_prefix_from_model
|
652
|
+
raise Todo
|
653
|
+
elsif add_prefix_to_model
|
654
|
+
model_buffers = model_buffers.map { |key| [prefix, key].join(".") }
|
655
|
+
end
|
656
|
+
unexpected_keys = (unexpected_keys - model_buffers).sort
|
657
|
+
|
658
|
+
model.tie_weights
|
659
|
+
if device_map.nil?
|
660
|
+
ptrs = Hash.new { |hash, key| hash[key] = [] }
|
661
|
+
|
662
|
+
model.state_dict.each do |name, tensor|
|
663
|
+
# TODO fix
|
664
|
+
id_tensor = tensor.object_id # id_tensor_storage(tensor)
|
665
|
+
ptrs[id_tensor] << name
|
666
|
+
end
|
667
|
+
|
668
|
+
# These are all the pointers of shared tensors.
|
669
|
+
tied_params = ptrs.select { |_, names| names.length > 1 }.values
|
670
|
+
else
|
671
|
+
raise Todo
|
672
|
+
end
|
673
|
+
|
674
|
+
tied_params.each do |group|
|
675
|
+
if remove_prefix_from_model
|
676
|
+
group = group.map { |key| key.delete_prefix(_prefix) }
|
677
|
+
elsif add_prefix_to_model
|
678
|
+
group = group.map { |key| [prefix, key].join(".") }
|
679
|
+
end
|
680
|
+
missing_in_group = missing_keys.select { |k| group.include?(k) }
|
681
|
+
if missing_in_group.length > 0 && missing_in_group.length < group.length
|
682
|
+
missing_keys = missing_keys.select { |k| !missing_in_group.include?(k) }
|
683
|
+
end
|
684
|
+
end
|
685
|
+
|
686
|
+
# Make sure we are able to load base models as well as derived models (with heads)
|
687
|
+
start_prefix = ""
|
688
|
+
model_to_load = model
|
689
|
+
if base_model_prefix.length > 0 && !model.instance_variable_defined?("@#{base_model_prefix}") && has_prefix_module
|
690
|
+
start_prefix = base_model_prefix + "."
|
691
|
+
end
|
692
|
+
if base_model_prefix.length > 0 && model.instance_variable_defined?("@#{base_model_prefix}") && !has_prefix_module
|
693
|
+
model_to_load = model.instance_variable_get("@#{base_model_prefix}")
|
694
|
+
base_model_expected_keys = model_to_load.state_dict.keys
|
695
|
+
if loaded_keys.any? { |key| expected_keys_not_prefixed.include?(key) && !base_model_expected_keys.include?(key) }
|
696
|
+
raise ArgumentError, "The state dictionary of the model you are trying to load is corrupted. Are you sure it was properly saved?"
|
697
|
+
end
|
698
|
+
if !device_map.nil?
|
699
|
+
raise Todo
|
700
|
+
end
|
701
|
+
end
|
702
|
+
|
703
|
+
_find_mismatched_keys = lambda do |state_dict, model_state_dict, loaded_keys, add_prefix_to_model, remove_prefix_from_model, ignore_mismatched_sizes|
|
704
|
+
mismatched_keys = []
|
705
|
+
if ignore_mismatched_sizes
|
706
|
+
loaded_keys.each do |checkpoint_key|
|
707
|
+
# If the checkpoint is sharded, we may not have the key here.
|
708
|
+
if !state_dict.include?(checkpoint_key)
|
709
|
+
next
|
710
|
+
end
|
711
|
+
model_key = checkpoint_key
|
712
|
+
if remove_prefix_from_model
|
713
|
+
# The model key starts with `prefix` but `checkpoint_key` doesn't so we add it.
|
714
|
+
model_key = "#{prefix}.#{checkpoint_key}"
|
715
|
+
elsif add_prefix_to_model
|
716
|
+
# The model key doesn't start with `prefix` but `checkpoint_key` does so we remove it.
|
717
|
+
model_key = checkpoint_key.split(".")[1..].join(".")
|
718
|
+
end
|
719
|
+
|
720
|
+
if model_state_dict.include?(model_key) && state_dict[checkpoint_key].shape != model_state_dict[model_key].shape
|
721
|
+
raise Todo
|
722
|
+
end
|
723
|
+
end
|
724
|
+
end
|
725
|
+
mismatched_keys
|
726
|
+
end
|
727
|
+
|
728
|
+
if !resolved_archive_file.nil?
|
729
|
+
_folder = File.dirname(resolved_archive_file)
|
730
|
+
else
|
731
|
+
_folder = nil
|
732
|
+
end
|
733
|
+
|
734
|
+
if !device_map.nil? && is_safetensors
|
735
|
+
raise Todo
|
736
|
+
end
|
737
|
+
|
738
|
+
if !state_dict.nil?
|
739
|
+
# Whole checkpoint
|
740
|
+
mismatched_keys =
|
741
|
+
_find_mismatched_keys.(
|
742
|
+
state_dict,
|
743
|
+
model_state_dict,
|
744
|
+
original_loaded_keys,
|
745
|
+
add_prefix_to_model,
|
746
|
+
remove_prefix_from_model,
|
747
|
+
ignore_mismatched_sizes
|
748
|
+
)
|
749
|
+
error_msgs = _load_state_dict_into_model(model_to_load, state_dict, start_prefix)
|
750
|
+
offload_index = nil
|
751
|
+
else
|
752
|
+
raise Todo
|
753
|
+
end
|
754
|
+
|
755
|
+
if error_msgs.length > 0
|
756
|
+
raise Todo
|
757
|
+
end
|
758
|
+
|
759
|
+
if unexpected_keys.length > 0
|
760
|
+
archs = model.config.architectures.nil? ? [] : model.config.architectures
|
761
|
+
warner = archs.include?(model.class.name) ? Transformers.logger.method(:warn) : Transformers.logger.method(:info)
|
762
|
+
warner.(
|
763
|
+
"Some weights of the model checkpoint at #{pretrained_model_name_or_path} were not used when" +
|
764
|
+
" initializing #{model.class.name}: #{unexpected_keys}\n- This IS expected if you are" +
|
765
|
+
" initializing #{model.class.name} from the checkpoint of a model trained on another task or" +
|
766
|
+
" with another architecture (e.g. initializing a BertForSequenceClassification model from a" +
|
767
|
+
" BertForPreTraining model).\n- This IS NOT expected if you are initializing" +
|
768
|
+
" #{model.class.name} from the checkpoint of a model that you expect to be exactly identical" +
|
769
|
+
" (initializing a BertForSequenceClassification model from a BertForSequenceClassification model)."
|
770
|
+
)
|
771
|
+
else
|
772
|
+
Transformers.logger.info("All model checkpoint weights were used when initializing #{model.class.name}.\n")
|
773
|
+
end
|
774
|
+
if missing_keys.length > 0
|
775
|
+
Transformers.logger.info("Some weights of #{model.class.name} were not initialized from the model checkpoint at #{pretrained_model_name_or_path} and are newly initialized: #{missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.")
|
776
|
+
elsif mismatched_keys.length == 0
|
777
|
+
Transformers.logger.info(
|
778
|
+
"All the weights of #{model.class.name} were initialized from the model checkpoint at" +
|
779
|
+
" #{pretrained_model_name_or_path}.\nIf your task is similar to the task the model of the checkpoint" +
|
780
|
+
" was trained on, you can already use #{model.class.name} for predictions without further" +
|
781
|
+
" training."
|
782
|
+
)
|
783
|
+
end
|
784
|
+
if mismatched_keys.length > 0
|
785
|
+
raise Todo
|
786
|
+
end
|
787
|
+
|
788
|
+
[model, missing_keys, unexpected_keys, mismatched_keys, offload_index, error_msgs]
|
789
|
+
end
|
790
|
+
|
791
|
+
def _load_state_dict_into_model(model_to_load, state_dict, start_prefix)
|
792
|
+
# Convert old format to new format if needed from a PyTorch state_dict
|
793
|
+
old_keys = []
|
794
|
+
new_keys = []
|
795
|
+
state_dict.each_key do |key|
|
796
|
+
new_key = nil
|
797
|
+
if key.include?("gamma")
|
798
|
+
new_key = key.gsub("gamma", "weight")
|
799
|
+
end
|
800
|
+
if key.include?("beta")
|
801
|
+
new_key = key.gsub("beta", "bias")
|
802
|
+
end
|
803
|
+
if new_key
|
804
|
+
old_keys << key
|
805
|
+
new_keys << new_key
|
806
|
+
end
|
807
|
+
end
|
808
|
+
old_keys.zip(new_keys) do |old_key, new_key|
|
809
|
+
state_dict[new_key] = state_dict.delete(old_key)
|
810
|
+
end
|
811
|
+
|
812
|
+
# copy state_dict so _load_from_state_dict can modify it
|
813
|
+
metadata = nil #getattr(state_dict, "_metadata", None)
|
814
|
+
state_dict = state_dict.dup
|
815
|
+
if !metadata.nil?
|
816
|
+
state_dict._metadata = metadata
|
817
|
+
end
|
818
|
+
|
819
|
+
error_msgs = []
|
820
|
+
|
821
|
+
# PyTorch's `_load_from_state_dict` does not copy parameters in a module's descendants
|
822
|
+
# so we need to apply the function recursively.
|
823
|
+
load = lambda do |mod, state_dict, prefix|
|
824
|
+
local_metadata = metadata.nil? ? {} : metadata.fetch(prefix[...-1], {})
|
825
|
+
args = [state_dict, prefix, local_metadata, true, [], [], error_msgs]
|
826
|
+
# Parameters of module and children will start with prefix. We can exit early if there are none in this
|
827
|
+
# state_dict
|
828
|
+
if state_dict.any? { |key, _| key.start_with?(prefix) }
|
829
|
+
mod.send(:load_from_state_dict, *args)
|
830
|
+
end
|
831
|
+
|
832
|
+
mod.named_children.each do |name, child|
|
833
|
+
if !child.nil?
|
834
|
+
load.(child, state_dict, prefix + name + ".")
|
835
|
+
end
|
836
|
+
end
|
837
|
+
end
|
838
|
+
|
839
|
+
load.(model_to_load, state_dict, start_prefix)
|
840
|
+
|
841
|
+
error_msgs
|
842
|
+
end
|
843
|
+
|
844
|
+
def is_safetensors_available
|
845
|
+
defined?(Safetensors)
|
846
|
+
end
|
847
|
+
|
848
|
+
def load_state_dict(checkpoint_file)
|
849
|
+
if checkpoint_file.end_with?(".safetensors") && is_safetensors_available
|
850
|
+
# Check format of the archive
|
851
|
+
metadata = nil
|
852
|
+
Safetensors.safe_open(checkpoint_file, framework: "pt") do |f|
|
853
|
+
metadata = f.metadata
|
854
|
+
end
|
855
|
+
if !["pt", "tf", "flax"].include?(metadata["format"])
|
856
|
+
raise OSError, "The safetensors archive passed at #{checkpoint_file} does not contain the valid metadata. Make sure you save your model with the `save_pretrained` method."
|
857
|
+
end
|
858
|
+
return Safetensors::Torch.load_file(checkpoint_file)
|
859
|
+
end
|
860
|
+
begin
|
861
|
+
_map_location = "cpu"
|
862
|
+
_extra_args = {}
|
863
|
+
_weights_only_kwarg = {weights_only: true}
|
864
|
+
Torch.load(
|
865
|
+
checkpoint_file,
|
866
|
+
# Torch.rb does not currently support additional options
|
867
|
+
# map_location: map_location,
|
868
|
+
# **weights_only_kwarg,
|
869
|
+
# **extra_args
|
870
|
+
)
|
871
|
+
rescue => e
|
872
|
+
# TODO improve
|
873
|
+
raise e
|
874
|
+
end
|
875
|
+
end
|
876
|
+
|
877
|
+
def _add_variant(weights_name, variant)
|
878
|
+
if !variant.nil?
|
879
|
+
splits = weights_name.split(".")
|
880
|
+
splits = splits[...-1] + [variant] + splits[-1..]
|
881
|
+
weights_name = splits.join(".")
|
882
|
+
end
|
883
|
+
|
884
|
+
weights_name
|
885
|
+
end
|
886
|
+
end
|
887
|
+
end
|
888
|
+
end
|