transformers-rb 0.1.0

Sign up to get free protection for your applications and to get access to all the features.
Files changed (65) hide show
  1. checksums.yaml +7 -0
  2. data/CHANGELOG.md +3 -0
  3. data/LICENSE.txt +203 -0
  4. data/README.md +163 -0
  5. data/lib/transformers/activations.rb +57 -0
  6. data/lib/transformers/configuration_utils.rb +285 -0
  7. data/lib/transformers/convert_slow_tokenizer.rb +90 -0
  8. data/lib/transformers/data/processors/squad.rb +115 -0
  9. data/lib/transformers/dynamic_module_utils.rb +25 -0
  10. data/lib/transformers/feature_extraction_utils.rb +110 -0
  11. data/lib/transformers/hf_hub/constants.rb +71 -0
  12. data/lib/transformers/hf_hub/errors.rb +11 -0
  13. data/lib/transformers/hf_hub/file_download.rb +764 -0
  14. data/lib/transformers/hf_hub/utils/_errors.rb +94 -0
  15. data/lib/transformers/hf_hub/utils/_headers.rb +109 -0
  16. data/lib/transformers/image_processing_base.rb +169 -0
  17. data/lib/transformers/image_processing_utils.rb +63 -0
  18. data/lib/transformers/image_transforms.rb +208 -0
  19. data/lib/transformers/image_utils.rb +165 -0
  20. data/lib/transformers/modeling_outputs.rb +81 -0
  21. data/lib/transformers/modeling_utils.rb +888 -0
  22. data/lib/transformers/models/auto/auto_factory.rb +138 -0
  23. data/lib/transformers/models/auto/configuration_auto.rb +61 -0
  24. data/lib/transformers/models/auto/feature_extraction_auto.rb +20 -0
  25. data/lib/transformers/models/auto/image_processing_auto.rb +104 -0
  26. data/lib/transformers/models/auto/modeling_auto.rb +80 -0
  27. data/lib/transformers/models/auto/tokenization_auto.rb +160 -0
  28. data/lib/transformers/models/bert/configuration_bert.rb +65 -0
  29. data/lib/transformers/models/bert/modeling_bert.rb +836 -0
  30. data/lib/transformers/models/bert/tokenization_bert.rb +115 -0
  31. data/lib/transformers/models/bert/tokenization_bert_fast.rb +52 -0
  32. data/lib/transformers/models/distilbert/configuration_distilbert.rb +63 -0
  33. data/lib/transformers/models/distilbert/modeling_distilbert.rb +616 -0
  34. data/lib/transformers/models/distilbert/tokenization_distilbert.rb +114 -0
  35. data/lib/transformers/models/distilbert/tokenization_distilbert_fast.rb +71 -0
  36. data/lib/transformers/models/vit/configuration_vit.rb +60 -0
  37. data/lib/transformers/models/vit/image_processing_vit.rb +170 -0
  38. data/lib/transformers/models/vit/modeling_vit.rb +506 -0
  39. data/lib/transformers/pipelines/_init.rb +348 -0
  40. data/lib/transformers/pipelines/base.rb +301 -0
  41. data/lib/transformers/pipelines/feature_extraction.rb +47 -0
  42. data/lib/transformers/pipelines/image_classification.rb +110 -0
  43. data/lib/transformers/pipelines/image_feature_extraction.rb +56 -0
  44. data/lib/transformers/pipelines/pt_utils.rb +53 -0
  45. data/lib/transformers/pipelines/question_answering.rb +508 -0
  46. data/lib/transformers/pipelines/text_classification.rb +123 -0
  47. data/lib/transformers/pipelines/token_classification.rb +282 -0
  48. data/lib/transformers/ruby_utils.rb +33 -0
  49. data/lib/transformers/sentence_transformer.rb +37 -0
  50. data/lib/transformers/tokenization_utils.rb +152 -0
  51. data/lib/transformers/tokenization_utils_base.rb +937 -0
  52. data/lib/transformers/tokenization_utils_fast.rb +386 -0
  53. data/lib/transformers/torch_utils.rb +25 -0
  54. data/lib/transformers/utils/_init.rb +31 -0
  55. data/lib/transformers/utils/generic.rb +107 -0
  56. data/lib/transformers/utils/hub.rb +209 -0
  57. data/lib/transformers/utils/import_utils.rb +45 -0
  58. data/lib/transformers/utils/logging.rb +52 -0
  59. data/lib/transformers/version.rb +3 -0
  60. data/lib/transformers-rb.rb +1 -0
  61. data/lib/transformers.rb +100 -0
  62. data/licenses/LICENSE-huggingface-hub.txt +201 -0
  63. data/licenses/LICENSE-sentence-transformers.txt +201 -0
  64. data/licenses/NOTICE-sentence-transformers.txt +5 -0
  65. metadata +161 -0
@@ -0,0 +1,888 @@
1
+ # Copyright 2018 The Google AI Language Team Authors, Facebook AI Research authors and The HuggingFace Inc. team.
2
+ # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ module Transformers
17
+ module ModuleUtilsMixin
18
+ def get_extended_attention_mask(
19
+ attention_mask,
20
+ input_shape,
21
+ device: nil,
22
+ dtype: nil
23
+ )
24
+ if dtype.nil?
25
+ dtype = @dtype
26
+ end
27
+
28
+ if !(attention_mask.dim == 2 && @config.is_decoder)
29
+ # show warning only if it won't be shown in `create_extended_attention_mask_for_decoder`
30
+ if !device.nil?
31
+ raise Todo
32
+ end
33
+ end
34
+ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
35
+ # ourselves in which case we just need to make it broadcastable to all heads.
36
+ if attention_mask.dim == 3
37
+ raise Todo
38
+ elsif attention_mask.dim == 2
39
+ # Provided a padding mask of dimensions [batch_size, seq_length]
40
+ # - if the model is a decoder, apply a causal mask in addition to the padding mask
41
+ # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
42
+ if @config.is_decoder
43
+ raise Todo
44
+ else
45
+ extended_attention_mask = attention_mask[0.., nil, nil, 0..]
46
+ end
47
+ else
48
+ raise Todo
49
+ end
50
+
51
+ # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
52
+ # masked positions, this operation will create a tensor which is 0.0 for
53
+ # positions we want to attend and the dtype's smallest value for masked positions.
54
+ # Since we are adding it to the raw scores before the softmax, this is
55
+ # effectively the same as removing these entirely.
56
+ extended_attention_mask = extended_attention_mask.to(dtype: dtype) # fp16 compatibility
57
+ # TODO use Torch.finfo
58
+ extended_attention_mask = (1.0 - extended_attention_mask) * -3.40282e+38
59
+ extended_attention_mask
60
+ end
61
+
62
+ def get_head_mask(head_mask, num_hidden_layers, is_attention_chunked: false)
63
+ if !head_mask.nil?
64
+ head_mask = _convert_head_mask_to_5d(head_mask, num_hidden_layers)
65
+ if is_attention_chunked == true
66
+ head_mask = head_mask.unsqueeze(-1)
67
+ end
68
+ else
69
+ head_mask = [nil] * num_hidden_layers
70
+ end
71
+
72
+ head_mask
73
+ end
74
+ end
75
+
76
+ class PreTrainedModel < Torch::NN::Module
77
+ extend ClassAttribute
78
+ include ModuleUtilsMixin
79
+
80
+ class_attribute :config_class
81
+ class_attribute :base_model_prefix, ""
82
+ class_attribute :main_input_name, "input_ids"
83
+ class_attribute :model_tags
84
+
85
+ class_attribute :_tied_weights_keys
86
+
87
+ attr_reader :config
88
+
89
+ def dummy_inputs
90
+ raise Todo
91
+ end
92
+
93
+ def framework
94
+ "pt"
95
+ end
96
+
97
+ def initialize(config, *inputs, **kwargs)
98
+ super()
99
+ @config = config
100
+ end
101
+
102
+ def post_init
103
+ init_weights
104
+ _backward_compatibility_gradient_checkpointing
105
+ end
106
+
107
+ def dequantize
108
+ raise Todo
109
+ end
110
+
111
+ def _backward_compatibility_gradient_checkpointing
112
+ # TODO
113
+ end
114
+
115
+ def base_model
116
+ instance_variable_get("@#{self.class.base_model_prefix}") || self
117
+ end
118
+
119
+ def can_generate
120
+ # TODO improve
121
+ false
122
+ end
123
+
124
+ def get_input_embeddings
125
+ raise Todo
126
+ end
127
+
128
+ def set_input_embeddings(value)
129
+ raise Todo
130
+ end
131
+
132
+ def get_output_embeddings
133
+ nil # Overwrite for models with output embeddings
134
+ end
135
+
136
+ def _init_weights(mod)
137
+ # pass
138
+ end
139
+
140
+ def _initialize_weights(mod)
141
+ _init_weights(mod)
142
+ end
143
+
144
+ def tie_weights
145
+ if @config.tie_word_embeddings != false
146
+ output_embeddings = get_output_embeddings
147
+ if !output_embeddings.nil?
148
+ raise Todo
149
+ end
150
+ end
151
+
152
+ if @config.is_encoder_decoder && @config.tie_encoder_decoder
153
+ raise Todo
154
+ end
155
+
156
+ modules.each do |mod|
157
+ if mod.respond_to?(:_tie_weights)
158
+ mod._tie_weights
159
+ end
160
+ end
161
+ end
162
+
163
+ def init_weights
164
+ # Prune heads if needed
165
+ if @config.pruned_heads
166
+ prune_heads(@config.pruned_heads)
167
+ end
168
+
169
+ if true
170
+ # Initialize weights
171
+ apply(method(:_initialize_weights))
172
+
173
+ # Tie weights should be skipped when not initializing all weights
174
+ # since from_pretrained(...) calls tie weights anyways
175
+ tie_weights
176
+ end
177
+ end
178
+
179
+ def prune_heads(heads_to_prune)
180
+ # save new sets of pruned heads as union of previously stored pruned heads and newly pruned heads
181
+ heads_to_prune.each do |layer, heads|
182
+ union_heads = Set.new(@config.pruned_heads.fetch(layer, [])) | Set.new(heads)
183
+ @config.pruned_heads[layer] = union_heads.to_a # Unfortunately we have to store it as list for JSON
184
+ end
185
+
186
+ base_model._prune_heads(heads_to_prune)
187
+ end
188
+
189
+ def warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
190
+ if !attention_mask.nil? || @config.pad_token_id.nil?
191
+ return
192
+ end
193
+
194
+ # Check only the first and last input IDs to reduce overhead.
195
+ if input_ids[0.., [-1, 0]].include?(@config.pad_token_id)
196
+ raise Todo
197
+ end
198
+ end
199
+
200
+ class << self
201
+ def from_pretrained(
202
+ pretrained_model_name_or_path,
203
+ *model_args,
204
+ config: nil,
205
+ cache_dir: nil,
206
+ ignore_mismatched_sizes: false,
207
+ force_download: false,
208
+ local_files_only: false,
209
+ token: nil,
210
+ revision: "main",
211
+ use_safetensors: nil,
212
+ **kwargs
213
+ )
214
+ state_dict = kwargs.delete(:state_dict)
215
+ from_tf = kwargs.delete(:from_tf) { false }
216
+ from_flax = kwargs.delete(:from_flax) { false }
217
+ resume_download = kwargs.delete(:resume_download) { false }
218
+ proxies = kwargs.delete(:proxies)
219
+ output_loading_info = kwargs.delete(:output_loading_info) { false }
220
+ _use_auth_token = kwargs.delete(:use_auth_token)
221
+ trust_remote_code = kwargs.delete(:trust_remote_code)
222
+ _ = kwargs.delete(:mirror)
223
+ from_pipeline = kwargs.delete(:_from_pipeline)
224
+ from_auto_class = kwargs.delete(:_from_auto) { false }
225
+ _fast_init = kwargs.delete(:_fast_init) { true }
226
+ torch_dtype = kwargs.delete(:torch_dtype)
227
+ low_cpu_mem_usage = kwargs.delete(:low_cpu_mem_usage)
228
+ device_map = kwargs.delete(:device_map)
229
+ _max_memory = kwargs.delete(:max_memory)
230
+ offload_folder = kwargs.delete(:offload_folder)
231
+ offload_state_dict = kwargs.delete(:offload_state_dict) { false }
232
+ load_in_8bit = kwargs.delete(:load_in_8bit) { false }
233
+ load_in_4bit = kwargs.delete(:load_in_4bit) { false }
234
+ quantization_config = kwargs.delete(:quantization_config)
235
+ subfolder = kwargs.delete(:subfolder) { "" }
236
+ commit_hash = kwargs.delete(:_commit_hash)
237
+ variant = kwargs.delete(:variant)
238
+ _adapter_kwargs = kwargs.delete(:adapter_kwargs) { {} }
239
+ _adapter_name = kwargs.delete(:adapter_name) { "default" }
240
+ _use_flash_attention_2 = kwargs.delete(:use_flash_attention_2) { false }
241
+
242
+ if use_safetensors.nil? && !is_safetensors_available
243
+ use_safetensors = false
244
+ end
245
+ if trust_remote_code
246
+ Transformers.logger.warn(
247
+ "The argument `trust_remote_code` is to be used with Auto classes. It has no effect here and is" +
248
+ " ignored."
249
+ )
250
+ end
251
+
252
+ if commit_hash.nil?
253
+ if !config.is_a?(PretrainedConfig)
254
+ # We make a call to the config file first (which may be absent) to get the commit hash as soon as possible
255
+ resolved_config_file =
256
+ Utils::Hub.cached_file(
257
+ pretrained_model_name_or_path,
258
+ CONFIG_NAME,
259
+ cache_dir: cache_dir,
260
+ force_download: force_download,
261
+ resume_download: resume_download,
262
+ proxies: proxies,
263
+ local_files_only: local_files_only,
264
+ token: token,
265
+ revision: revision,
266
+ subfolder: subfolder,
267
+ _raise_exceptions_for_gated_repo: false,
268
+ _raise_exceptions_for_missing_entries: false,
269
+ _raise_exceptions_for_connection_errors: false,
270
+ )
271
+ commit_hash = Utils::Hub.extract_commit_hash(resolved_config_file, commit_hash)
272
+ else
273
+ commit_hash = config._commit_hash
274
+ end
275
+ end
276
+
277
+ if !device_map.nil?
278
+ raise Todo
279
+ end
280
+
281
+ # handling bnb config from kwargs, remove after `load_in_{4/8}bit` deprecation.
282
+ if load_in_4bit || load_in_8bit
283
+ raise Todo
284
+ end
285
+
286
+ from_pt = !(from_tf || from_flax)
287
+
288
+ user_agent = {file_type: "model", framework: "pytorch", from_auto_class: from_auto_class}
289
+ if !from_pipeline.nil?
290
+ user_agent[:using_pipeline] = from_pipeline
291
+ end
292
+
293
+ if Utils::Hub.is_offline_mode && !local_files_only
294
+ Transformers.logger.info "Offline mode: forcing local_files_only: true"
295
+ local_files_only = true
296
+ end
297
+
298
+ # Load config if we don't provide a configuration
299
+ if !config.is_a?(PretrainedConfig)
300
+ config_path = !config.nil? ? config : pretrained_model_name_or_path
301
+ config, model_kwargs =
302
+ config_class.from_pretrained(
303
+ config_path,
304
+ cache_dir: cache_dir,
305
+ return_unused_kwargs: true,
306
+ force_download: force_download,
307
+ resume_download: resume_download,
308
+ proxies: proxies,
309
+ local_files_only: local_files_only,
310
+ token: token,
311
+ revision: revision,
312
+ subfolder: subfolder,
313
+ _from_auto: from_auto_class,
314
+ _from_pipeline: from_pipeline,
315
+ **kwargs
316
+ )
317
+ else
318
+ # In case one passes a config to `from_pretrained` + "attn_implementation"
319
+ # override the `_attn_implementation` attribute to `attn_implementation` of the kwargs
320
+ # Please see: https://github.com/huggingface/transformers/issues/28038
321
+
322
+ # Overwrite `config._attn_implementation` by the one from the kwargs --> in auto-factory
323
+ # we pop attn_implementation from the kwargs but this handles the case where users
324
+ # passes manually the config to `from_pretrained`.
325
+ config = Copy.deepcopy(config)
326
+
327
+ kwarg_attn_imp = kwargs.delete(:attn_implementation)
328
+ if !kwarg_attn_imp.nil? && config._attn_implementation != kwarg_attn_imp
329
+ config._attn_implementation = kwarg_attn_imp
330
+ end
331
+ model_kwargs = kwargs
332
+ end
333
+
334
+ pre_quantized = false # !config.quantization_config.nil?
335
+ if pre_quantized || !quantization_config.nil?
336
+ raise Todo
337
+ else
338
+ hf_quantizer = nil
339
+ end
340
+
341
+ if !hf_quantizer.nil?
342
+ raise Todo
343
+ end
344
+
345
+ # This variable will flag if we're loading a sharded checkpoint. In this case the archive file is just the
346
+ # index of the files.
347
+ is_sharded = false
348
+ sharded_metadata = nil
349
+ # Load model
350
+ _loading_info = nil
351
+
352
+ # Keep in fp32 modules
353
+ keep_in_fp32_modules = nil
354
+ _use_keep_in_fp32_modules = false
355
+
356
+ resolved_archive_file = nil
357
+ if !pretrained_model_name_or_path.nil?
358
+ pretrained_model_name_or_path = pretrained_model_name_or_path.to_s
359
+ is_local = Dir.exist?(pretrained_model_name_or_path)
360
+ if is_local
361
+ raise Todo
362
+ elsif File.exist?(File.join(subfolder, pretrained_model_name_or_path))
363
+ _archive_file = pretrained_model_name_or_path
364
+ is_local = true
365
+ else
366
+ # set correct filename
367
+ if use_safetensors != false
368
+ filename = _add_variant(SAFE_WEIGHTS_NAME, variant)
369
+ else
370
+ filename = _add_variant(WEIGHTS_NAME, variant)
371
+ end
372
+
373
+ # Load from URL or cache if already cached
374
+ cached_file_kwargs = {
375
+ cache_dir: cache_dir,
376
+ force_download: force_download,
377
+ proxies: proxies,
378
+ resume_download: resume_download,
379
+ local_files_only: local_files_only,
380
+ token: token,
381
+ user_agent: user_agent,
382
+ revision: revision,
383
+ subfolder: subfolder,
384
+ _raise_exceptions_for_gated_repo: false,
385
+ _raise_exceptions_for_missing_entries: false,
386
+ _commit_hash: commit_hash
387
+ }
388
+ resolved_archive_file = Utils::Hub.cached_file(pretrained_model_name_or_path, filename, **cached_file_kwargs)
389
+
390
+ # Since we set _raise_exceptions_for_missing_entries=False, we don't get an exception but a None
391
+ # result when internet is up, the repo and revision exist, but the file does not.
392
+ if resolved_archive_file.nil? && filename == _add_variant(SAFE_WEIGHTS_NAME, variant)
393
+ # Maybe the checkpoint is sharded, we try to grab the index name in this case.
394
+ resolved_archive_file = Utils::Hub.cached_file(
395
+ pretrained_model_name_or_path,
396
+ _add_variant(SAFE_WEIGHTS_INDEX_NAME, variant),
397
+ **cached_file_kwargs,
398
+ )
399
+ if !resolved_archive_file.nil?
400
+ is_sharded = true
401
+ elsif use_safetensors
402
+ raise Todo
403
+ else
404
+ # This repo has no safetensors file of any kind, we switch to PyTorch.
405
+ filename = _add_variant(WEIGHTS_NAME, variant)
406
+ resolved_archive_file = Utils::Hub.cached_file(
407
+ pretrained_model_name_or_path, filename, **cached_file_kwargs
408
+ )
409
+ end
410
+ end
411
+ if resolved_archive_file.nil? && filename == _add_variant(WEIGHTS_NAME, variant)
412
+ # Maybe the checkpoint is sharded, we try to grab the index name in this case.
413
+ resolved_archive_file = Utils::Hub.cached_file(
414
+ pretrained_model_name_or_path,
415
+ _add_variant(WEIGHTS_INDEX_NAME, variant),
416
+ **cached_file_kwargs
417
+ )
418
+ if !resolved_archive_file.nil?
419
+ is_sharded = true
420
+ end
421
+ end
422
+ if !local_files_only && !Utils::Hub.is_offline_mode
423
+ if !resolved_archive_file.nil?
424
+ if [WEIGHTS_NAME, WEIGHTS_INDEX_NAME].include?(filename)
425
+ # If the PyTorch file was found, check if there is a safetensors file on the repository
426
+ # If there is no safetensors file on the repositories, start an auto conversion
427
+ _safe_weights_name = is_sharded ? SAFE_WEIGHTS_INDEX_NAME : SAFE_WEIGHTS_NAME
428
+ has_file_kwargs = {
429
+ revision: revision,
430
+ proxies: proxies,
431
+ token: token,
432
+ cache_dir: cache_dir,
433
+ local_files_only: local_files_only
434
+ }
435
+ cached_file_kwargs = {
436
+ cache_dir: cache_dir,
437
+ force_download: force_download,
438
+ resume_download: resume_download,
439
+ local_files_only: local_files_only,
440
+ user_agent: user_agent,
441
+ subfolder: subfolder,
442
+ _raise_exceptions_for_gated_repo: false,
443
+ _raise_exceptions_for_missing_entries: false,
444
+ _commit_hash: commit_hash,
445
+ **has_file_kwargs
446
+ }
447
+ # skip auto conversion
448
+ # if !Utils::Hub.has_file(pretrained_model_name_or_path, safe_weights_name, **has_file_kwargs)
449
+ # end
450
+ end
451
+ else
452
+ raise Todo
453
+ end
454
+ end
455
+
456
+ if is_local
457
+ Transformers.logger.info("loading weights file #{archive_file}")
458
+ resolved_archive_file = archive_file
459
+ else
460
+ Transformers.logger.info("loading weights file #{filename} from cache at #{resolved_archive_file}")
461
+ end
462
+ end
463
+ else
464
+ resolved_archive_file = nil
465
+ end
466
+
467
+ # We'll need to download and cache each checkpoint shard if the checkpoint is sharded.
468
+ if is_sharded
469
+ raise Todo
470
+ end
471
+
472
+ metadata = nil
473
+ if is_safetensors_available && resolved_archive_file.is_a?(String) && resolved_archive_file.end_with?(".safetensors")
474
+ Safetensors.safe_open(resolved_archive_file, framework: "pt") do |f|
475
+ metadata = f.metadata
476
+ end
477
+
478
+ if metadata["format"] == "pt"
479
+ # do nothing
480
+ else
481
+ raise ArgumentError,
482
+ "Incompatible safetensors file. File metadata is not ['pt'] but #{metadata["format"]}"
483
+ end
484
+ end
485
+
486
+ from_pt = !(from_tf || from_flax)
487
+
488
+ # load pt weights early so that we know which dtype to init the model under
489
+ if from_pt
490
+ if !is_sharded && state_dict.nil?
491
+ # Time to load the checkpoint
492
+ state_dict = load_state_dict(resolved_archive_file)
493
+ end
494
+
495
+ # set dtype to instantiate the model under:
496
+ # 1. If torch_dtype is not None, we use that dtype
497
+ # 2. If torch_dtype is "auto", we auto-detect dtype from the loaded state_dict, by checking its first
498
+ # weights entry that is of a floating type - we assume all floating dtype weights are of the same dtype
499
+ # we also may have config.torch_dtype available, but we won't rely on it till v5
500
+ dtype_orig = nil
501
+
502
+ if !torch_dtype.nil?
503
+ raise Todo
504
+ end
505
+
506
+ if is_sharded
507
+ loaded_state_dict_keys = sharded_metadata["all_checkpoint_keys"]
508
+ else
509
+ loaded_state_dict_keys = state_dict.keys
510
+ end
511
+ end
512
+
513
+ config.name_or_path = pretrained_model_name_or_path
514
+
515
+ model_kwargs = {}
516
+ model = new(config, *model_args, **model_kwargs)
517
+
518
+ # make sure we use the model's config since the __init__ call might have copied it
519
+ config = model.config
520
+
521
+ if device_map.is_a?(String)
522
+ raise Todo
523
+ elsif !device_map.nil?
524
+ raise Todo
525
+ end
526
+
527
+ if from_pt
528
+ # restore default dtype
529
+ if !dtype_orig.nil?
530
+ Torch.set_default_dtype(dtype_orig)
531
+ end
532
+
533
+ model, _missing_keys, _unexpected_keys, _mismatched_keys, _offload_index, _error_msgs =
534
+ _load_pretrained_model(
535
+ model,
536
+ state_dict,
537
+ loaded_state_dict_keys, # XXX: rename?
538
+ resolved_archive_file,
539
+ pretrained_model_name_or_path,
540
+ ignore_mismatched_sizes: ignore_mismatched_sizes,
541
+ sharded_metadata: sharded_metadata,
542
+ _fast_init: _fast_init,
543
+ low_cpu_mem_usage: low_cpu_mem_usage,
544
+ device_map: device_map,
545
+ offload_folder: offload_folder,
546
+ offload_state_dict: offload_state_dict,
547
+ dtype: torch_dtype,
548
+ hf_quantizer: hf_quantizer,
549
+ keep_in_fp32_modules: keep_in_fp32_modules
550
+ )
551
+ end
552
+
553
+ # make sure token embedding weights are still tied if needed
554
+ model.tie_weights
555
+
556
+ # Set model in evaluation mode to deactivate DropOut modules by default
557
+ model.eval
558
+
559
+ # If it is a model with generation capabilities, attempt to load the generation config
560
+ if model.can_generate && !pretrained_model_name_or_path.nil?
561
+ raise Todo
562
+ end
563
+
564
+ # Dispatch model with hooks on all devices if necessary
565
+ if !device_map.nil?
566
+ raise Todo
567
+ end
568
+
569
+ if !hf_quantizer.nil?
570
+ raise Todo
571
+ end
572
+
573
+ if output_loading_info
574
+ raise Todo
575
+ end
576
+
577
+ model
578
+ end
579
+
580
+ private
581
+
582
+ def _load_pretrained_model(
583
+ model,
584
+ state_dict,
585
+ loaded_keys,
586
+ resolved_archive_file,
587
+ pretrained_model_name_or_path,
588
+ ignore_mismatched_sizes: false,
589
+ sharded_metadata: nil,
590
+ _fast_init: true,
591
+ low_cpu_mem_usage: false,
592
+ device_map: nil,
593
+ offload_folder: nil,
594
+ offload_state_dict: nil,
595
+ dtype: nil,
596
+ hf_quantizer: nil,
597
+ keep_in_fp32_modules: nil
598
+ )
599
+ is_safetensors = false
600
+
601
+ _is_sharded_safetensors = is_safetensors && !sharded_metadata.nil?
602
+
603
+ # tie the model weights before retrieving the state_dict
604
+ model.tie_weights
605
+
606
+ # Retrieve missing & unexpected_keys
607
+ model_state_dict = model.state_dict
608
+ expected_keys = model_state_dict.keys
609
+ prefix = model.class.base_model_prefix
610
+
611
+ _fix_key = lambda do |key|
612
+ if key.include?("beta")
613
+ key.gsub("beta", "bias")
614
+ end
615
+ if key.include?("gamma")
616
+ key.gsub("gamma", "weight")
617
+ else
618
+ key
619
+ end
620
+ end
621
+
622
+ original_loaded_keys = loaded_keys
623
+ loaded_keys = loaded_keys.map { |key| _fix_key.(key) }
624
+
625
+ if prefix.length > 0
626
+ has_prefix_module = loaded_keys.any? { |s| s.start_with?(prefix) }
627
+ expects_prefix_module = expected_keys.any? { |s| s.start_with?(prefix) }
628
+ else
629
+ has_prefix_module = false
630
+ expects_prefix_module = false
631
+ end
632
+
633
+ # key re-naming operations are never done on the keys
634
+ # that are loaded, but always on the keys of the newly initialized model
635
+ remove_prefix_from_model = !has_prefix_module && expects_prefix_module
636
+ add_prefix_to_model = has_prefix_module && !expects_prefix_module
637
+
638
+ if remove_prefix_from_model
639
+ _prefix = "#{prefix}."
640
+ expected_keys_not_prefixed = expected_keys.select { |s| !s.start_with?(_prefix) }
641
+ expected_keys = expected_keys.map { |s| s.start_with?(_prefix) ? s[_prefix.length..] : s }
642
+ elsif add_prefix_to_model
643
+ expected_keys = expected_keys.map { |s| [prefix, s].join(".") }
644
+ end
645
+
646
+ missing_keys = (Set.new(expected_keys) - Set.new(loaded_keys)).sort
647
+ unexpected_keys = Set.new(loaded_keys) - Set.new(expected_keys)
648
+ # Remove nonpersistent buffers from unexpected keys: they are not in the state dict but will be in the model
649
+ # buffers
650
+ model_buffers = model.named_buffers(recurse: true).keys
651
+ if remove_prefix_from_model
652
+ raise Todo
653
+ elsif add_prefix_to_model
654
+ model_buffers = model_buffers.map { |key| [prefix, key].join(".") }
655
+ end
656
+ unexpected_keys = (unexpected_keys - model_buffers).sort
657
+
658
+ model.tie_weights
659
+ if device_map.nil?
660
+ ptrs = Hash.new { |hash, key| hash[key] = [] }
661
+
662
+ model.state_dict.each do |name, tensor|
663
+ # TODO fix
664
+ id_tensor = tensor.object_id # id_tensor_storage(tensor)
665
+ ptrs[id_tensor] << name
666
+ end
667
+
668
+ # These are all the pointers of shared tensors.
669
+ tied_params = ptrs.select { |_, names| names.length > 1 }.values
670
+ else
671
+ raise Todo
672
+ end
673
+
674
+ tied_params.each do |group|
675
+ if remove_prefix_from_model
676
+ group = group.map { |key| key.delete_prefix(_prefix) }
677
+ elsif add_prefix_to_model
678
+ group = group.map { |key| [prefix, key].join(".") }
679
+ end
680
+ missing_in_group = missing_keys.select { |k| group.include?(k) }
681
+ if missing_in_group.length > 0 && missing_in_group.length < group.length
682
+ missing_keys = missing_keys.select { |k| !missing_in_group.include?(k) }
683
+ end
684
+ end
685
+
686
+ # Make sure we are able to load base models as well as derived models (with heads)
687
+ start_prefix = ""
688
+ model_to_load = model
689
+ if base_model_prefix.length > 0 && !model.instance_variable_defined?("@#{base_model_prefix}") && has_prefix_module
690
+ start_prefix = base_model_prefix + "."
691
+ end
692
+ if base_model_prefix.length > 0 && model.instance_variable_defined?("@#{base_model_prefix}") && !has_prefix_module
693
+ model_to_load = model.instance_variable_get("@#{base_model_prefix}")
694
+ base_model_expected_keys = model_to_load.state_dict.keys
695
+ if loaded_keys.any? { |key| expected_keys_not_prefixed.include?(key) && !base_model_expected_keys.include?(key) }
696
+ raise ArgumentError, "The state dictionary of the model you are trying to load is corrupted. Are you sure it was properly saved?"
697
+ end
698
+ if !device_map.nil?
699
+ raise Todo
700
+ end
701
+ end
702
+
703
+ _find_mismatched_keys = lambda do |state_dict, model_state_dict, loaded_keys, add_prefix_to_model, remove_prefix_from_model, ignore_mismatched_sizes|
704
+ mismatched_keys = []
705
+ if ignore_mismatched_sizes
706
+ loaded_keys.each do |checkpoint_key|
707
+ # If the checkpoint is sharded, we may not have the key here.
708
+ if !state_dict.include?(checkpoint_key)
709
+ next
710
+ end
711
+ model_key = checkpoint_key
712
+ if remove_prefix_from_model
713
+ # The model key starts with `prefix` but `checkpoint_key` doesn't so we add it.
714
+ model_key = "#{prefix}.#{checkpoint_key}"
715
+ elsif add_prefix_to_model
716
+ # The model key doesn't start with `prefix` but `checkpoint_key` does so we remove it.
717
+ model_key = checkpoint_key.split(".")[1..].join(".")
718
+ end
719
+
720
+ if model_state_dict.include?(model_key) && state_dict[checkpoint_key].shape != model_state_dict[model_key].shape
721
+ raise Todo
722
+ end
723
+ end
724
+ end
725
+ mismatched_keys
726
+ end
727
+
728
+ if !resolved_archive_file.nil?
729
+ _folder = File.dirname(resolved_archive_file)
730
+ else
731
+ _folder = nil
732
+ end
733
+
734
+ if !device_map.nil? && is_safetensors
735
+ raise Todo
736
+ end
737
+
738
+ if !state_dict.nil?
739
+ # Whole checkpoint
740
+ mismatched_keys =
741
+ _find_mismatched_keys.(
742
+ state_dict,
743
+ model_state_dict,
744
+ original_loaded_keys,
745
+ add_prefix_to_model,
746
+ remove_prefix_from_model,
747
+ ignore_mismatched_sizes
748
+ )
749
+ error_msgs = _load_state_dict_into_model(model_to_load, state_dict, start_prefix)
750
+ offload_index = nil
751
+ else
752
+ raise Todo
753
+ end
754
+
755
+ if error_msgs.length > 0
756
+ raise Todo
757
+ end
758
+
759
+ if unexpected_keys.length > 0
760
+ archs = model.config.architectures.nil? ? [] : model.config.architectures
761
+ warner = archs.include?(model.class.name) ? Transformers.logger.method(:warn) : Transformers.logger.method(:info)
762
+ warner.(
763
+ "Some weights of the model checkpoint at #{pretrained_model_name_or_path} were not used when" +
764
+ " initializing #{model.class.name}: #{unexpected_keys}\n- This IS expected if you are" +
765
+ " initializing #{model.class.name} from the checkpoint of a model trained on another task or" +
766
+ " with another architecture (e.g. initializing a BertForSequenceClassification model from a" +
767
+ " BertForPreTraining model).\n- This IS NOT expected if you are initializing" +
768
+ " #{model.class.name} from the checkpoint of a model that you expect to be exactly identical" +
769
+ " (initializing a BertForSequenceClassification model from a BertForSequenceClassification model)."
770
+ )
771
+ else
772
+ Transformers.logger.info("All model checkpoint weights were used when initializing #{model.class.name}.\n")
773
+ end
774
+ if missing_keys.length > 0
775
+ Transformers.logger.info("Some weights of #{model.class.name} were not initialized from the model checkpoint at #{pretrained_model_name_or_path} and are newly initialized: #{missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.")
776
+ elsif mismatched_keys.length == 0
777
+ Transformers.logger.info(
778
+ "All the weights of #{model.class.name} were initialized from the model checkpoint at" +
779
+ " #{pretrained_model_name_or_path}.\nIf your task is similar to the task the model of the checkpoint" +
780
+ " was trained on, you can already use #{model.class.name} for predictions without further" +
781
+ " training."
782
+ )
783
+ end
784
+ if mismatched_keys.length > 0
785
+ raise Todo
786
+ end
787
+
788
+ [model, missing_keys, unexpected_keys, mismatched_keys, offload_index, error_msgs]
789
+ end
790
+
791
+ def _load_state_dict_into_model(model_to_load, state_dict, start_prefix)
792
+ # Convert old format to new format if needed from a PyTorch state_dict
793
+ old_keys = []
794
+ new_keys = []
795
+ state_dict.each_key do |key|
796
+ new_key = nil
797
+ if key.include?("gamma")
798
+ new_key = key.gsub("gamma", "weight")
799
+ end
800
+ if key.include?("beta")
801
+ new_key = key.gsub("beta", "bias")
802
+ end
803
+ if new_key
804
+ old_keys << key
805
+ new_keys << new_key
806
+ end
807
+ end
808
+ old_keys.zip(new_keys) do |old_key, new_key|
809
+ state_dict[new_key] = state_dict.delete(old_key)
810
+ end
811
+
812
+ # copy state_dict so _load_from_state_dict can modify it
813
+ metadata = nil #getattr(state_dict, "_metadata", None)
814
+ state_dict = state_dict.dup
815
+ if !metadata.nil?
816
+ state_dict._metadata = metadata
817
+ end
818
+
819
+ error_msgs = []
820
+
821
+ # PyTorch's `_load_from_state_dict` does not copy parameters in a module's descendants
822
+ # so we need to apply the function recursively.
823
+ load = lambda do |mod, state_dict, prefix|
824
+ local_metadata = metadata.nil? ? {} : metadata.fetch(prefix[...-1], {})
825
+ args = [state_dict, prefix, local_metadata, true, [], [], error_msgs]
826
+ # Parameters of module and children will start with prefix. We can exit early if there are none in this
827
+ # state_dict
828
+ if state_dict.any? { |key, _| key.start_with?(prefix) }
829
+ mod.send(:load_from_state_dict, *args)
830
+ end
831
+
832
+ mod.named_children.each do |name, child|
833
+ if !child.nil?
834
+ load.(child, state_dict, prefix + name + ".")
835
+ end
836
+ end
837
+ end
838
+
839
+ load.(model_to_load, state_dict, start_prefix)
840
+
841
+ error_msgs
842
+ end
843
+
844
+ def is_safetensors_available
845
+ defined?(Safetensors)
846
+ end
847
+
848
+ def load_state_dict(checkpoint_file)
849
+ if checkpoint_file.end_with?(".safetensors") && is_safetensors_available
850
+ # Check format of the archive
851
+ metadata = nil
852
+ Safetensors.safe_open(checkpoint_file, framework: "pt") do |f|
853
+ metadata = f.metadata
854
+ end
855
+ if !["pt", "tf", "flax"].include?(metadata["format"])
856
+ raise OSError, "The safetensors archive passed at #{checkpoint_file} does not contain the valid metadata. Make sure you save your model with the `save_pretrained` method."
857
+ end
858
+ return Safetensors::Torch.load_file(checkpoint_file)
859
+ end
860
+ begin
861
+ _map_location = "cpu"
862
+ _extra_args = {}
863
+ _weights_only_kwarg = {weights_only: true}
864
+ Torch.load(
865
+ checkpoint_file,
866
+ # Torch.rb does not currently support additional options
867
+ # map_location: map_location,
868
+ # **weights_only_kwarg,
869
+ # **extra_args
870
+ )
871
+ rescue => e
872
+ # TODO improve
873
+ raise e
874
+ end
875
+ end
876
+
877
+ def _add_variant(weights_name, variant)
878
+ if !variant.nil?
879
+ splits = weights_name.split(".")
880
+ splits = splits[...-1] + [variant] + splits[-1..]
881
+ weights_name = splits.join(".")
882
+ end
883
+
884
+ weights_name
885
+ end
886
+ end
887
+ end
888
+ end