trac_lang 0.1.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
data/examples/meta.trl ADDED
@@ -0,0 +1,254 @@
1
+
2
+ Meta Programming
3
+
4
+ #(PS,Loading examples/meta.trl...)'
5
+
6
+ Anonymous forms
7
+ ---------------
8
+
9
+ We want to be able different classes of anonymous forms. The following does
10
+ that, creating a class of anonymous forms with the given name. We first save a
11
+ special prefix for the name of all the forms in the class. Next we create the
12
+ creating form, that will create members of the class. It creates the member
13
+ and then returns its name. We can use the name like a function pointer to call
14
+ the form wherever we want. We next create a test form, that checks if the
15
+ given name is a name of a form in our class. We both test if the name is the
16
+ name of a form and if the name starts with the form prefix. The last form we
17
+ create is for cleaning up. When called it will delete all the forms of the
18
+ given class.
19
+
20
+ #(DS,anonymous,(
21
+ #(DS,name-prefix,name..)
22
+ #(DS,name,(
23
+ #(DS,name-seq,#(AD,1,#(name-seq)))
24
+ #(DS,#(name-prefix)#(name-seq),(value))
25
+ #(SS,#(name-prefix)#(name-seq),args)
26
+ #(name-prefix)#(name-seq)
27
+ ))
28
+ #(SS,name,args,value)
29
+ #(DS,name-current,(#(name-prefix)#(name-seq)))
30
+ #(DS,name?,(
31
+ #(and,(exists?,(obj)),(starts-with,(obj),#(name-prefix)),(T),(F))
32
+ ))
33
+ #(SS,name?,obj,T,F)
34
+ #(DS,name-gc,(
35
+ #(DD,#(list-prefix,#(name-prefix),(,)))
36
+ ))
37
+ ))
38
+ #(sss,anonymous,name)'
39
+
40
+ We'll use lambda to define anonymous functions.
41
+
42
+ #(anonymous,lambda)'
43
+
44
+ It can be used as follows:
45
+ (
46
+ #(lambda,n,(#(AD,1,n))) => successor function
47
+
48
+ #(lambda?,x,if-so,if-not) => test if something is a lambda
49
+
50
+ #(lambda-gc) => deletes all lambdas
51
+ )
52
+
53
+ We'll use data to define anonymous pieces of data.
54
+
55
+ #(anonymous,data)'
56
+
57
+ We use it similarly to lambda:
58
+ (
59
+ #(data,(,),(1,2,3,4)) => array of numbers
60
+
61
+ #(data?,formname,if-so,if-not) => test if something is a data form
62
+
63
+ #(data-gc) => delete all data forms
64
+ )
65
+
66
+ Curry
67
+ -----
68
+
69
+ Currying is to take a script that takes multiple arguments, fill in some of its
70
+ arguments and return a script that will take the rest of the necessary
71
+ arguments and can be called at a later time.
72
+
73
+ #(DS,curry,(#(lambda,(<y>),##(CL,<f>,<x>,<y>))))
74
+ #(SS,curry,<f>,<x>)'
75
+
76
+ Usage:
77
+ (
78
+ #(DS,func,#(curry,multi-arg-func,(a,b,c)))
79
+ ...
80
+ #(#(func),(some,more,args))
81
+
82
+ Or another more concrete example:
83
+
84
+ We need to redefine primitives to curry them:
85
+ #(DS,mult,(#(ML,a,b)))
86
+ #(SS,mult,a,b)
87
+
88
+ Now we define something that prints an action for each number 1 through 10.
89
+
90
+ #(DS,1-10,(
91
+ #(EQ,count,10,,(
92
+ #(PS, #(action,#(AD,1,count)))
93
+ #(1-10,#(AD,1,count))
94
+ ))
95
+ ))
96
+ #(sss,1-10,(action,count))
97
+
98
+ Print ten even numbers
99
+ #(1-10,#(curry,mult,2))
100
+
101
+ Print ten multiples of five
102
+ #(1-10,#(curry,mult,5))
103
+ )
104
+
105
+ Currying doesn't have to be that formal with TRAC. Since TRAC is a string
106
+ language, you can define pieces of functions and then assemble them when
107
+ necessary. In the following, we define a sum function that takes two
108
+ lambdas, a test and a func.
109
+
110
+ #(DS,sum,(
111
+ #(#(test,start),total,(
112
+ #(sum,#(AD,1,start),test,func,#(AD,total,#(func,start)))
113
+ ))
114
+ ))
115
+ #(sss,sum,(start,test,func,total))'
116
+
117
+ You see here how we would sum up all the squares from one to five. Notice that
118
+ the first lambda is simply the first three arguments of the GR primitive. When
119
+ it is replaced in the definition of sum above, if GR is true, the running total
120
+ if returned, otherwise sum is called again. The GR primitive has been
121
+ effectively curried, changed into a test that takes a single argument.
122
+ (
123
+ #(sum,1,#(lambda,n,(GR,n,5)),#(lambda,n,(#(ML,n,n))))
124
+ )
125
+
126
+
127
+ Combinators
128
+ -----------
129
+
130
+ TRAC can't support real combinators, since it doesn't have truly anonymous
131
+ functions. But with a little creativity, you can create something that looks
132
+ an awful lot like the Y combinator, and does the same kind of work.
133
+
134
+ Of course these combinators aren't necessary for TRAC. TRAC already supports
135
+ recursion, so there's no need to create a script that can make scripts
136
+ recursive. However, this does show the power of TRAC and it also helps clear
137
+ up some of the mystique of these combinators.
138
+
139
+ U Combinator
140
+ ------------
141
+ The U combinator takes as an argument the name of a script whose only argument
142
+ is a script name.
143
+
144
+ #(DS,U,(#(<f>,<f>)))
145
+ #(SS,U,<f>)'
146
+
147
+ Using the U combinator we can create a recursive function from a special sort
148
+ of function. Here's an example for calculating the factorial.
149
+
150
+ (
151
+ #(DS,fact,(
152
+ #(lambda,<n>,(
153
+ #(EQ,<n>,0,1,(
154
+ #(ML,<n>,#(#(U,<f>),#(SU,<n>,1)))
155
+ ))
156
+ ))
157
+ ))
158
+ #(sss,fact,<f>)
159
+ #(DS,!,(#(#(U,fact),<n>)))
160
+ #(SS,!,<n>)
161
+ )
162
+
163
+ How does the U combinator work? If you turn trace on and trace through the
164
+ operation of ! you get a good idea of what's happening. The "fact" script
165
+ creates an anonymous function which does the work of testing the end condition
166
+ and setting up the multiplication necessary. The U combinator passes a script
167
+ to itself, allowing it to call itself without direct recursion. The doubling
168
+ in the U combinator is what makes the recursion work. It passes a copy of the
169
+ script to be called to itself.
170
+
171
+ The U combinator must be called inside the script that's being made recursive,
172
+ which isn't as neat as we would like. If we factor the U combinator out of
173
+ our script, we get the famous Y combinator.
174
+
175
+
176
+ Y Combinator
177
+ ------------
178
+
179
+ This version of the Y combinator uses the U combinator in its definition. Pass
180
+ in a script that takes a single argument and returns the name of a script.
181
+ Looking at it this way and comparing it to the factorial definition above helps
182
+ make it understandable. The outer U corresponds to the U in the definition of
183
+ !, while the inner U corresponds to the U in the definition of fact. The
184
+ definition of an anonymous function is necessary because that's the only real
185
+ way TRAC has of passing a function around as an object. As a result this
186
+ creates a lot of identical anonymous functions.
187
+
188
+ #(DS,Y,(
189
+ #(U,(
190
+ #(lambda,<x>,(
191
+ #(<f>,(#(U,<x>)))
192
+ ))
193
+ ))
194
+ ))
195
+ #(sss,Y,<f>)'
196
+
197
+
198
+ Y Combinator w/o U
199
+ ------------------
200
+
201
+ Here's the closest TRAC is going to get to having a real Y combinator. We take
202
+ the version of Y above and expand the definition of the U combinator. If
203
+ you've seen the Y combinator in other forms, you will see the resemblance here.
204
+
205
+ #(DS,Y,(
206
+ #(#(lambda,<x>,(
207
+ #(<f>,(#(<x>,<x>)))
208
+ )),#(lambda,<x>,(
209
+ #(<f>,(#(<x>,<x>)))
210
+ ))
211
+ )
212
+ ))
213
+ #(sss,Y,<f>)'
214
+
215
+ What's interesting is how the Y combinator is thought of as an airy abstraction
216
+ in computing, but here it's being defined in a language which is nothing but
217
+ strings, which is about as concrete as you can get.
218
+
219
+ Here's how you would create the factorial function using the Y combinator. We
220
+ create a script that takes an anonymous function as an argument and returns a
221
+ new anonymous function. The anonymous function returned takes a single integer
222
+ argument and returns one if the input was zero, otherwise multiplies the input
223
+ by the output of the script passed in.
224
+
225
+ (
226
+ #(DS,fact,(
227
+ #(lambda,<n>,(
228
+ #(EQ,<n>,0,1,(
229
+ #(ML,<n>,#(<f>,#(SU,<n>,1)))
230
+ ))
231
+ ))
232
+ ))
233
+ #(sss,fact,<f>)
234
+ #(DS,!,(#(#(Y,fact),<n>)))
235
+ #(SS,!,<n>)
236
+ )
237
+
238
+ Here's how you would count characters in a form using the Y combinator.
239
+
240
+ (
241
+ #(DS,count,(
242
+ #(lambda,<s>,(
243
+ #(EQ,#(CC,<s>,**),**,0,(
244
+ #(AD,1,#(<f>,<s>))
245
+ ))
246
+ ))
247
+ ))
248
+ #(sss,count,<f>)
249
+ #(DS,*,(#(#(Y,count),<s>)))
250
+ #(SS,*,<s>)
251
+ )
252
+
253
+ #(PS,(success!
254
+ ))'
@@ -0,0 +1,107 @@
1
+
2
+ Definition of rational numbers
3
+
4
+ #(PS,Loading examples/ratio.trl...)'
5
+
6
+ Basics
7
+ -------------------------------------------------------------------------------
8
+
9
+ The format of our rational numbers will be:
10
+
11
+ numerator/denominator
12
+
13
+ To work with them we will need a way of extracting the numerator and
14
+ denominator from them. So we need our anonymous data form. We use the default
15
+ values for the segment form to make 0/1 the default rational. The default
16
+ denominator of one also means that whole numbers will be interpreted correctly,
17
+ and so can be mixed in with rationals without a problem.
18
+
19
+ #(DS,numr,(#(segment,1,#(data,/,x),0)))
20
+ #(SS,numr,x)'
21
+
22
+ #(DS,dnmr,(#(segment,2,#(data,/,x),1)))
23
+ #(SS,dnmr,x)'
24
+
25
+ Often we are going to need to pass a rational into a form as a separate
26
+ numerator and denominator. So it will be useful to have a function that
27
+ changes a rational into a set of two parameters. The following will replace
28
+ the slash in a rational with a comma. I could use CL to call the data and
29
+ put the comma in the space between segments, but that wouldn't give me my
30
+ default denominator of one which makes it possible to mix rationals and
31
+ integers. Also notice that I use the data-current call here, so that I don't
32
+ have to duplicate the creation of the temporary data form.
33
+
34
+ #(DS,argr,(#(segment,1,#(data,/,x),0),#(segment,2,#(data-current),1)))
35
+ #(SS,argr,x)'
36
+
37
+ Next we need a way of reducing fractions to standard form.
38
+
39
+ First we have something to reduce the faction by a given value.
40
+
41
+ #(DS,reduceby,(#(DV,#(numr,x),by)/#(DV,#(dnmr,x),by)))
42
+ #(SS,reduceby,x,by)'
43
+
44
+ Next we have a function to normalize the sign of a fraction. Notice that if
45
+ the denominator is zero, we change the fraction to 0/0, our form for NaN.
46
+
47
+ #(DS,reducesign,(#(sgn?,denom,numer/denom,0/0,(#(-,numer)/#(-,denom)))))
48
+ #(SS,reducesign,numer,denom)'
49
+
50
+ We need a GCD that's works the same with negative and positive numbers.
51
+
52
+ #(DS,gcd+,(#(gcd,#(abs,x),#(abs,y))))
53
+ #(SS,gcd+,x,y)'
54
+
55
+ Finally we combine all these functions into one that will put all our rationals
56
+ in normal form.
57
+
58
+ #(DS,reduce,(#(reducesign,#(argr,#(reduceby,x,#(gcd+,#(argr,x)))))))
59
+ #(SS,reduce,x)'
60
+
61
+
62
+ Arithmetic
63
+ -------------------------------------------------------------------------------
64
+
65
+ #(DS,[addr],(#(reduce,#(op,#(ML,<a>,<d>),#(ML,<b>,<c>))/#(ML,<b>,<d>))))
66
+ #(SS,[addr],op,<a>,<b>,<c>,<d>)'
67
+
68
+ #(DS,addr,(#([addr],AD,#(argr,x),#(argr,y))))
69
+ #(SS,addr,x,y)'
70
+
71
+ #(DS,subr,(#([addr],SU,#(argr,x),#(argr,y))))
72
+ #(SS,subr,x,y)'
73
+
74
+ #(DS,mulr,(#(reduce,#(ML,#(numr,x),#(numr,y))/#(ML,#(dnmr,x),#(dnmr,y)))))
75
+ #(SS,mulr,x,y)'
76
+
77
+ #(DS,divr,(#(reduce,#(ML,#(numr,x),#(dnmr,y))/#(ML,#(numr,y),#(dnmr,x)))))
78
+ #(SS,divr,x,y)'
79
+
80
+ #(DS,rcpr,(#(dnmr,x)/#(numr,x)))
81
+ #(SS,rcpr,x)'
82
+
83
+
84
+ Tests
85
+ -------------------------------------------------------------------------------
86
+
87
+ #(DS,grr,(#(GR,#(ML,#(numr,x),#(dnmr,y)),#(ML,#(numr,y),#(dnmr,x)),(T),(F))))
88
+ #(SS,grr,x,y,T,F)'
89
+
90
+ #(DS,eqnr,(#(and,(eqn,#(numr,x),#(numr,y)),(eqn,#(dnmr,x),#(dnmr,y)),(T),(F))))
91
+ #(SS,eqnr,x,y,T,F)'
92
+
93
+ #(DS,NaN?,(#(eqn,#(dnmr,x),0,(T),(F))))
94
+ #(SS,NaN?,x,T,F)'
95
+
96
+
97
+ Now we can use rational numbers, and even mix integers in with them.
98
+ (
99
+ #(subr,1,1/3) => 2/3
100
+ #(mulr,5/7,14) => 10/1
101
+ #(grr,5/7,2/3,true,false) => true
102
+ #(rcpr,2) => 1/2
103
+ )
104
+
105
+
106
+ #(PS,(success!
107
+ ))'
@@ -0,0 +1,176 @@
1
+
2
+ Data Structures
3
+
4
+ #(PS,Loading examples/struct.trl...)'
5
+
6
+ Stack
7
+ -----
8
+
9
+ Here's an implementation of a stack in TRAC.
10
+
11
+ Our first definition is push. The complicated expression at the start is
12
+ checking if our stack exists yet or if it is empty. If either is true, set the
13
+ stack to the value given. Otherwise, add the value to the top of the stack.
14
+ Because of the error checking, we don't have to create a stack before using it.
15
+ We can just push something onto it to create it.
16
+
17
+ #(DS,push,(
18
+ #(or,(not,(exists?,name)),(EQ,##(CL,name),),(
19
+ #(DS,name,(value))
20
+ ),(
21
+ #(DS,name,(value)#(.)##(CL,name,#(.)))
22
+ ))
23
+ #(SS,name,#(.))
24
+ ))
25
+ #(sss,push,(name,value))'
26
+
27
+ Now, pop a value off the top of the stack. If the stack is empty, return the
28
+ ifempty parameter. Here we see the form pointer in action. The CS call moves
29
+ the form pointer after the end of the first segment, so the CL call in the next
30
+ line only returns the rest of the stack. This works because DS and SS return
31
+ the empty string, so the return from CS is the return from the pop function.
32
+ If the stack doesn't exist, this will have the side-effect of creating an empty
33
+ stack.
34
+
35
+ #(DS,pop,(
36
+ #(CS,name,ifempty)
37
+ #(DS,name,##(CL,name,#(.)))
38
+ #(SS,name,#(.))
39
+ ))
40
+ #(sss,pop,(name,ifempty))'
41
+
42
+ Finally, peek at the top of the stack without removing the value.
43
+
44
+ #(DS,peek,(
45
+ #(CS,name,ifempty)
46
+ #(CR,name)
47
+ ))
48
+ #(sss,peek,(name,ifempty))'
49
+
50
+
51
+ Queue
52
+ -----
53
+
54
+ A queue is very similar to a stack, we just add things to the end of the string
55
+ instead of the beginning. Dequeue is just a synonym for pop, and peek works on
56
+ both stacks and queues.
57
+
58
+ #(DS,enqueue,(
59
+ #(or,(not,(exists?,name)),(EQ,##(CL,name),),(
60
+ #(DS,name,(value))
61
+ ),(
62
+ #(DS,name,##(CL,name,#(.))#(.)(value))
63
+ ))
64
+ #(SS,name,#(.))
65
+ ))
66
+ #(sss,enqueue,(name,value))'
67
+
68
+ #(DS,dequeue,##(CL,pop,name,ifempty))
69
+ #(SS,dequeue,name,ifempty)'
70
+
71
+
72
+ Hash
73
+ ----
74
+
75
+ A hash piggybacks on the form dictionary. The hash name and key are mashed
76
+ together to make the name of the form that holds the corresponding value. From
77
+ this we can easily define all the typical hash methods.
78
+
79
+ #(DS,put,(#(DS,name:key,value)))
80
+ #(SS,put,name,key,value)'
81
+
82
+ #(DS,get,(#(name:key)))
83
+ #(SS,get,name,key)'
84
+
85
+ #(DS,contains,(#(exists?,name:key,(T),(F))))
86
+ #(SS,contains,name,key,T,F)'
87
+
88
+ #(DS,keys,(#(list-prefix,name:,delimiter)))
89
+ #(SS,keys,name,delimiter)'
90
+
91
+ #(DS,delete-hash,(#(DD,#(list-prefix,name:,(,)))))
92
+ #(SS,delete-hash,name)'
93
+
94
+ An array is just a special kind of hash that uses numbers for keys, and a set
95
+ is just a hash where you ignore the values set.
96
+
97
+ There's one other trick you can do with hashes. By creating the following two
98
+ functions, you can make a hash into a primitive object, with methods as well as
99
+ data.
100
+
101
+ #(DS,define,(
102
+ #(DS,name:method,(action))
103
+ #(SS,name:method,args)
104
+ ))
105
+ #(sss,define,(name,method,args))'
106
+
107
+ #(DS,call,(#(CL,name:method,args)))
108
+ #(SS,call,name,method,args)'
109
+
110
+ A hash with such methods isn't a true object - it doesn't have a defining class
111
+ and there's no such thing as inheritance. But it's still an example of data
112
+ and functions bound together in one object.
113
+
114
+
115
+ Case
116
+ ----
117
+
118
+ Here's the case statement, so TRAC can be routed to different actions based on
119
+ the value of something. It may seem strange to have a control structure in the
120
+ example file for data structures, but really, control structures *are* data
121
+ structures. The case statement is just a special kind of hash with a default
122
+ value.
123
+
124
+ #(DS,case,(#(DS,case-prefix,name)))
125
+ #(SS,case,name)'
126
+
127
+ #(DS,when,(
128
+ #(DS,#(case-prefix):(value),(action))
129
+ #(scrub,#(case-prefix):(value))
130
+ ))
131
+ #(SS,when,value,action)'
132
+
133
+ #(DS,default,(
134
+ #(DS,#(case-prefix):default,(action))
135
+ #(sss,#(case-prefix):default,value)
136
+ ))
137
+ #(sss,default,action)'
138
+
139
+ #(DS,end-case,(
140
+ #(DS,[end-case],(
141
+ #(DS,prefix,(
142
+ #(exists?,prefix:(value),(
143
+ #(prefix:(value))
144
+ ),(
145
+ #(prefix:default,(value))
146
+ ))
147
+ ))
148
+ #(SS,prefix,value)
149
+ ))
150
+ #(SS,[end-case],prefix)
151
+ #([end-case],#(case-prefix))
152
+ ))
153
+ #(sss,end-case,name)'
154
+
155
+ These are defining words - in other words, they define pieces of code, so they
156
+ should be used at the same level as you use DS and other defining words. The
157
+ example will make things more clear.
158
+
159
+ (
160
+ Defining the code to run:
161
+
162
+ #(case,execute-option)
163
+ #(when,d,(#(delete-file)))
164
+ #(when,g,(#(get-file)))
165
+ #(when,q,(#(HL)))
166
+ #(default,(#(PS,#(help-text))))
167
+ #(end-case)
168
+
169
+ Actually calling the code:
170
+
171
+ #(execute-option,#(RC))
172
+ )
173
+
174
+
175
+ #(PS,(success!
176
+ ))'