trac_lang 0.1.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +7 -0
- data/.gitignore +12 -0
- data/.rspec +2 -0
- data/.travis.yml +5 -0
- data/CODE_OF_CONDUCT.md +74 -0
- data/Gemfile +4 -0
- data/LICENSE.txt +21 -0
- data/README.md +58 -0
- data/Rakefile +12 -0
- data/bin/console +14 -0
- data/bin/setup +8 -0
- data/examples/README.trl +633 -0
- data/examples/golf.trl +113 -0
- data/examples/list.trl +125 -0
- data/examples/math.trl +351 -0
- data/examples/meta.trl +254 -0
- data/examples/ratio.trl +107 -0
- data/examples/struct.trl +176 -0
- data/examples/term.trl +129 -0
- data/examples/util.trl +366 -0
- data/exe/trac_lang +74 -0
- data/lib/trac_lang.rb +16 -0
- data/lib/trac_lang/bindings.rb +53 -0
- data/lib/trac_lang/block.rb +46 -0
- data/lib/trac_lang/decimal.rb +79 -0
- data/lib/trac_lang/dispatch.rb +421 -0
- data/lib/trac_lang/executor.rb +97 -0
- data/lib/trac_lang/expression.rb +58 -0
- data/lib/trac_lang/form.rb +253 -0
- data/lib/trac_lang/immediate_read.rb +52 -0
- data/lib/trac_lang/octal.rb +88 -0
- data/lib/trac_lang/parser.rb +114 -0
- data/lib/trac_lang/version.rb +4 -0
- data/trac_lang.gemspec +42 -0
- metadata +177 -0
data/examples/meta.trl
ADDED
@@ -0,0 +1,254 @@
|
|
1
|
+
|
2
|
+
Meta Programming
|
3
|
+
|
4
|
+
#(PS,Loading examples/meta.trl...)'
|
5
|
+
|
6
|
+
Anonymous forms
|
7
|
+
---------------
|
8
|
+
|
9
|
+
We want to be able different classes of anonymous forms. The following does
|
10
|
+
that, creating a class of anonymous forms with the given name. We first save a
|
11
|
+
special prefix for the name of all the forms in the class. Next we create the
|
12
|
+
creating form, that will create members of the class. It creates the member
|
13
|
+
and then returns its name. We can use the name like a function pointer to call
|
14
|
+
the form wherever we want. We next create a test form, that checks if the
|
15
|
+
given name is a name of a form in our class. We both test if the name is the
|
16
|
+
name of a form and if the name starts with the form prefix. The last form we
|
17
|
+
create is for cleaning up. When called it will delete all the forms of the
|
18
|
+
given class.
|
19
|
+
|
20
|
+
#(DS,anonymous,(
|
21
|
+
#(DS,name-prefix,name..)
|
22
|
+
#(DS,name,(
|
23
|
+
#(DS,name-seq,#(AD,1,#(name-seq)))
|
24
|
+
#(DS,#(name-prefix)#(name-seq),(value))
|
25
|
+
#(SS,#(name-prefix)#(name-seq),args)
|
26
|
+
#(name-prefix)#(name-seq)
|
27
|
+
))
|
28
|
+
#(SS,name,args,value)
|
29
|
+
#(DS,name-current,(#(name-prefix)#(name-seq)))
|
30
|
+
#(DS,name?,(
|
31
|
+
#(and,(exists?,(obj)),(starts-with,(obj),#(name-prefix)),(T),(F))
|
32
|
+
))
|
33
|
+
#(SS,name?,obj,T,F)
|
34
|
+
#(DS,name-gc,(
|
35
|
+
#(DD,#(list-prefix,#(name-prefix),(,)))
|
36
|
+
))
|
37
|
+
))
|
38
|
+
#(sss,anonymous,name)'
|
39
|
+
|
40
|
+
We'll use lambda to define anonymous functions.
|
41
|
+
|
42
|
+
#(anonymous,lambda)'
|
43
|
+
|
44
|
+
It can be used as follows:
|
45
|
+
(
|
46
|
+
#(lambda,n,(#(AD,1,n))) => successor function
|
47
|
+
|
48
|
+
#(lambda?,x,if-so,if-not) => test if something is a lambda
|
49
|
+
|
50
|
+
#(lambda-gc) => deletes all lambdas
|
51
|
+
)
|
52
|
+
|
53
|
+
We'll use data to define anonymous pieces of data.
|
54
|
+
|
55
|
+
#(anonymous,data)'
|
56
|
+
|
57
|
+
We use it similarly to lambda:
|
58
|
+
(
|
59
|
+
#(data,(,),(1,2,3,4)) => array of numbers
|
60
|
+
|
61
|
+
#(data?,formname,if-so,if-not) => test if something is a data form
|
62
|
+
|
63
|
+
#(data-gc) => delete all data forms
|
64
|
+
)
|
65
|
+
|
66
|
+
Curry
|
67
|
+
-----
|
68
|
+
|
69
|
+
Currying is to take a script that takes multiple arguments, fill in some of its
|
70
|
+
arguments and return a script that will take the rest of the necessary
|
71
|
+
arguments and can be called at a later time.
|
72
|
+
|
73
|
+
#(DS,curry,(#(lambda,(<y>),##(CL,<f>,<x>,<y>))))
|
74
|
+
#(SS,curry,<f>,<x>)'
|
75
|
+
|
76
|
+
Usage:
|
77
|
+
(
|
78
|
+
#(DS,func,#(curry,multi-arg-func,(a,b,c)))
|
79
|
+
...
|
80
|
+
#(#(func),(some,more,args))
|
81
|
+
|
82
|
+
Or another more concrete example:
|
83
|
+
|
84
|
+
We need to redefine primitives to curry them:
|
85
|
+
#(DS,mult,(#(ML,a,b)))
|
86
|
+
#(SS,mult,a,b)
|
87
|
+
|
88
|
+
Now we define something that prints an action for each number 1 through 10.
|
89
|
+
|
90
|
+
#(DS,1-10,(
|
91
|
+
#(EQ,count,10,,(
|
92
|
+
#(PS, #(action,#(AD,1,count)))
|
93
|
+
#(1-10,#(AD,1,count))
|
94
|
+
))
|
95
|
+
))
|
96
|
+
#(sss,1-10,(action,count))
|
97
|
+
|
98
|
+
Print ten even numbers
|
99
|
+
#(1-10,#(curry,mult,2))
|
100
|
+
|
101
|
+
Print ten multiples of five
|
102
|
+
#(1-10,#(curry,mult,5))
|
103
|
+
)
|
104
|
+
|
105
|
+
Currying doesn't have to be that formal with TRAC. Since TRAC is a string
|
106
|
+
language, you can define pieces of functions and then assemble them when
|
107
|
+
necessary. In the following, we define a sum function that takes two
|
108
|
+
lambdas, a test and a func.
|
109
|
+
|
110
|
+
#(DS,sum,(
|
111
|
+
#(#(test,start),total,(
|
112
|
+
#(sum,#(AD,1,start),test,func,#(AD,total,#(func,start)))
|
113
|
+
))
|
114
|
+
))
|
115
|
+
#(sss,sum,(start,test,func,total))'
|
116
|
+
|
117
|
+
You see here how we would sum up all the squares from one to five. Notice that
|
118
|
+
the first lambda is simply the first three arguments of the GR primitive. When
|
119
|
+
it is replaced in the definition of sum above, if GR is true, the running total
|
120
|
+
if returned, otherwise sum is called again. The GR primitive has been
|
121
|
+
effectively curried, changed into a test that takes a single argument.
|
122
|
+
(
|
123
|
+
#(sum,1,#(lambda,n,(GR,n,5)),#(lambda,n,(#(ML,n,n))))
|
124
|
+
)
|
125
|
+
|
126
|
+
|
127
|
+
Combinators
|
128
|
+
-----------
|
129
|
+
|
130
|
+
TRAC can't support real combinators, since it doesn't have truly anonymous
|
131
|
+
functions. But with a little creativity, you can create something that looks
|
132
|
+
an awful lot like the Y combinator, and does the same kind of work.
|
133
|
+
|
134
|
+
Of course these combinators aren't necessary for TRAC. TRAC already supports
|
135
|
+
recursion, so there's no need to create a script that can make scripts
|
136
|
+
recursive. However, this does show the power of TRAC and it also helps clear
|
137
|
+
up some of the mystique of these combinators.
|
138
|
+
|
139
|
+
U Combinator
|
140
|
+
------------
|
141
|
+
The U combinator takes as an argument the name of a script whose only argument
|
142
|
+
is a script name.
|
143
|
+
|
144
|
+
#(DS,U,(#(<f>,<f>)))
|
145
|
+
#(SS,U,<f>)'
|
146
|
+
|
147
|
+
Using the U combinator we can create a recursive function from a special sort
|
148
|
+
of function. Here's an example for calculating the factorial.
|
149
|
+
|
150
|
+
(
|
151
|
+
#(DS,fact,(
|
152
|
+
#(lambda,<n>,(
|
153
|
+
#(EQ,<n>,0,1,(
|
154
|
+
#(ML,<n>,#(#(U,<f>),#(SU,<n>,1)))
|
155
|
+
))
|
156
|
+
))
|
157
|
+
))
|
158
|
+
#(sss,fact,<f>)
|
159
|
+
#(DS,!,(#(#(U,fact),<n>)))
|
160
|
+
#(SS,!,<n>)
|
161
|
+
)
|
162
|
+
|
163
|
+
How does the U combinator work? If you turn trace on and trace through the
|
164
|
+
operation of ! you get a good idea of what's happening. The "fact" script
|
165
|
+
creates an anonymous function which does the work of testing the end condition
|
166
|
+
and setting up the multiplication necessary. The U combinator passes a script
|
167
|
+
to itself, allowing it to call itself without direct recursion. The doubling
|
168
|
+
in the U combinator is what makes the recursion work. It passes a copy of the
|
169
|
+
script to be called to itself.
|
170
|
+
|
171
|
+
The U combinator must be called inside the script that's being made recursive,
|
172
|
+
which isn't as neat as we would like. If we factor the U combinator out of
|
173
|
+
our script, we get the famous Y combinator.
|
174
|
+
|
175
|
+
|
176
|
+
Y Combinator
|
177
|
+
------------
|
178
|
+
|
179
|
+
This version of the Y combinator uses the U combinator in its definition. Pass
|
180
|
+
in a script that takes a single argument and returns the name of a script.
|
181
|
+
Looking at it this way and comparing it to the factorial definition above helps
|
182
|
+
make it understandable. The outer U corresponds to the U in the definition of
|
183
|
+
!, while the inner U corresponds to the U in the definition of fact. The
|
184
|
+
definition of an anonymous function is necessary because that's the only real
|
185
|
+
way TRAC has of passing a function around as an object. As a result this
|
186
|
+
creates a lot of identical anonymous functions.
|
187
|
+
|
188
|
+
#(DS,Y,(
|
189
|
+
#(U,(
|
190
|
+
#(lambda,<x>,(
|
191
|
+
#(<f>,(#(U,<x>)))
|
192
|
+
))
|
193
|
+
))
|
194
|
+
))
|
195
|
+
#(sss,Y,<f>)'
|
196
|
+
|
197
|
+
|
198
|
+
Y Combinator w/o U
|
199
|
+
------------------
|
200
|
+
|
201
|
+
Here's the closest TRAC is going to get to having a real Y combinator. We take
|
202
|
+
the version of Y above and expand the definition of the U combinator. If
|
203
|
+
you've seen the Y combinator in other forms, you will see the resemblance here.
|
204
|
+
|
205
|
+
#(DS,Y,(
|
206
|
+
#(#(lambda,<x>,(
|
207
|
+
#(<f>,(#(<x>,<x>)))
|
208
|
+
)),#(lambda,<x>,(
|
209
|
+
#(<f>,(#(<x>,<x>)))
|
210
|
+
))
|
211
|
+
)
|
212
|
+
))
|
213
|
+
#(sss,Y,<f>)'
|
214
|
+
|
215
|
+
What's interesting is how the Y combinator is thought of as an airy abstraction
|
216
|
+
in computing, but here it's being defined in a language which is nothing but
|
217
|
+
strings, which is about as concrete as you can get.
|
218
|
+
|
219
|
+
Here's how you would create the factorial function using the Y combinator. We
|
220
|
+
create a script that takes an anonymous function as an argument and returns a
|
221
|
+
new anonymous function. The anonymous function returned takes a single integer
|
222
|
+
argument and returns one if the input was zero, otherwise multiplies the input
|
223
|
+
by the output of the script passed in.
|
224
|
+
|
225
|
+
(
|
226
|
+
#(DS,fact,(
|
227
|
+
#(lambda,<n>,(
|
228
|
+
#(EQ,<n>,0,1,(
|
229
|
+
#(ML,<n>,#(<f>,#(SU,<n>,1)))
|
230
|
+
))
|
231
|
+
))
|
232
|
+
))
|
233
|
+
#(sss,fact,<f>)
|
234
|
+
#(DS,!,(#(#(Y,fact),<n>)))
|
235
|
+
#(SS,!,<n>)
|
236
|
+
)
|
237
|
+
|
238
|
+
Here's how you would count characters in a form using the Y combinator.
|
239
|
+
|
240
|
+
(
|
241
|
+
#(DS,count,(
|
242
|
+
#(lambda,<s>,(
|
243
|
+
#(EQ,#(CC,<s>,**),**,0,(
|
244
|
+
#(AD,1,#(<f>,<s>))
|
245
|
+
))
|
246
|
+
))
|
247
|
+
))
|
248
|
+
#(sss,count,<f>)
|
249
|
+
#(DS,*,(#(#(Y,count),<s>)))
|
250
|
+
#(SS,*,<s>)
|
251
|
+
)
|
252
|
+
|
253
|
+
#(PS,(success!
|
254
|
+
))'
|
data/examples/ratio.trl
ADDED
@@ -0,0 +1,107 @@
|
|
1
|
+
|
2
|
+
Definition of rational numbers
|
3
|
+
|
4
|
+
#(PS,Loading examples/ratio.trl...)'
|
5
|
+
|
6
|
+
Basics
|
7
|
+
-------------------------------------------------------------------------------
|
8
|
+
|
9
|
+
The format of our rational numbers will be:
|
10
|
+
|
11
|
+
numerator/denominator
|
12
|
+
|
13
|
+
To work with them we will need a way of extracting the numerator and
|
14
|
+
denominator from them. So we need our anonymous data form. We use the default
|
15
|
+
values for the segment form to make 0/1 the default rational. The default
|
16
|
+
denominator of one also means that whole numbers will be interpreted correctly,
|
17
|
+
and so can be mixed in with rationals without a problem.
|
18
|
+
|
19
|
+
#(DS,numr,(#(segment,1,#(data,/,x),0)))
|
20
|
+
#(SS,numr,x)'
|
21
|
+
|
22
|
+
#(DS,dnmr,(#(segment,2,#(data,/,x),1)))
|
23
|
+
#(SS,dnmr,x)'
|
24
|
+
|
25
|
+
Often we are going to need to pass a rational into a form as a separate
|
26
|
+
numerator and denominator. So it will be useful to have a function that
|
27
|
+
changes a rational into a set of two parameters. The following will replace
|
28
|
+
the slash in a rational with a comma. I could use CL to call the data and
|
29
|
+
put the comma in the space between segments, but that wouldn't give me my
|
30
|
+
default denominator of one which makes it possible to mix rationals and
|
31
|
+
integers. Also notice that I use the data-current call here, so that I don't
|
32
|
+
have to duplicate the creation of the temporary data form.
|
33
|
+
|
34
|
+
#(DS,argr,(#(segment,1,#(data,/,x),0),#(segment,2,#(data-current),1)))
|
35
|
+
#(SS,argr,x)'
|
36
|
+
|
37
|
+
Next we need a way of reducing fractions to standard form.
|
38
|
+
|
39
|
+
First we have something to reduce the faction by a given value.
|
40
|
+
|
41
|
+
#(DS,reduceby,(#(DV,#(numr,x),by)/#(DV,#(dnmr,x),by)))
|
42
|
+
#(SS,reduceby,x,by)'
|
43
|
+
|
44
|
+
Next we have a function to normalize the sign of a fraction. Notice that if
|
45
|
+
the denominator is zero, we change the fraction to 0/0, our form for NaN.
|
46
|
+
|
47
|
+
#(DS,reducesign,(#(sgn?,denom,numer/denom,0/0,(#(-,numer)/#(-,denom)))))
|
48
|
+
#(SS,reducesign,numer,denom)'
|
49
|
+
|
50
|
+
We need a GCD that's works the same with negative and positive numbers.
|
51
|
+
|
52
|
+
#(DS,gcd+,(#(gcd,#(abs,x),#(abs,y))))
|
53
|
+
#(SS,gcd+,x,y)'
|
54
|
+
|
55
|
+
Finally we combine all these functions into one that will put all our rationals
|
56
|
+
in normal form.
|
57
|
+
|
58
|
+
#(DS,reduce,(#(reducesign,#(argr,#(reduceby,x,#(gcd+,#(argr,x)))))))
|
59
|
+
#(SS,reduce,x)'
|
60
|
+
|
61
|
+
|
62
|
+
Arithmetic
|
63
|
+
-------------------------------------------------------------------------------
|
64
|
+
|
65
|
+
#(DS,[addr],(#(reduce,#(op,#(ML,<a>,<d>),#(ML,<b>,<c>))/#(ML,<b>,<d>))))
|
66
|
+
#(SS,[addr],op,<a>,<b>,<c>,<d>)'
|
67
|
+
|
68
|
+
#(DS,addr,(#([addr],AD,#(argr,x),#(argr,y))))
|
69
|
+
#(SS,addr,x,y)'
|
70
|
+
|
71
|
+
#(DS,subr,(#([addr],SU,#(argr,x),#(argr,y))))
|
72
|
+
#(SS,subr,x,y)'
|
73
|
+
|
74
|
+
#(DS,mulr,(#(reduce,#(ML,#(numr,x),#(numr,y))/#(ML,#(dnmr,x),#(dnmr,y)))))
|
75
|
+
#(SS,mulr,x,y)'
|
76
|
+
|
77
|
+
#(DS,divr,(#(reduce,#(ML,#(numr,x),#(dnmr,y))/#(ML,#(numr,y),#(dnmr,x)))))
|
78
|
+
#(SS,divr,x,y)'
|
79
|
+
|
80
|
+
#(DS,rcpr,(#(dnmr,x)/#(numr,x)))
|
81
|
+
#(SS,rcpr,x)'
|
82
|
+
|
83
|
+
|
84
|
+
Tests
|
85
|
+
-------------------------------------------------------------------------------
|
86
|
+
|
87
|
+
#(DS,grr,(#(GR,#(ML,#(numr,x),#(dnmr,y)),#(ML,#(numr,y),#(dnmr,x)),(T),(F))))
|
88
|
+
#(SS,grr,x,y,T,F)'
|
89
|
+
|
90
|
+
#(DS,eqnr,(#(and,(eqn,#(numr,x),#(numr,y)),(eqn,#(dnmr,x),#(dnmr,y)),(T),(F))))
|
91
|
+
#(SS,eqnr,x,y,T,F)'
|
92
|
+
|
93
|
+
#(DS,NaN?,(#(eqn,#(dnmr,x),0,(T),(F))))
|
94
|
+
#(SS,NaN?,x,T,F)'
|
95
|
+
|
96
|
+
|
97
|
+
Now we can use rational numbers, and even mix integers in with them.
|
98
|
+
(
|
99
|
+
#(subr,1,1/3) => 2/3
|
100
|
+
#(mulr,5/7,14) => 10/1
|
101
|
+
#(grr,5/7,2/3,true,false) => true
|
102
|
+
#(rcpr,2) => 1/2
|
103
|
+
)
|
104
|
+
|
105
|
+
|
106
|
+
#(PS,(success!
|
107
|
+
))'
|
data/examples/struct.trl
ADDED
@@ -0,0 +1,176 @@
|
|
1
|
+
|
2
|
+
Data Structures
|
3
|
+
|
4
|
+
#(PS,Loading examples/struct.trl...)'
|
5
|
+
|
6
|
+
Stack
|
7
|
+
-----
|
8
|
+
|
9
|
+
Here's an implementation of a stack in TRAC.
|
10
|
+
|
11
|
+
Our first definition is push. The complicated expression at the start is
|
12
|
+
checking if our stack exists yet or if it is empty. If either is true, set the
|
13
|
+
stack to the value given. Otherwise, add the value to the top of the stack.
|
14
|
+
Because of the error checking, we don't have to create a stack before using it.
|
15
|
+
We can just push something onto it to create it.
|
16
|
+
|
17
|
+
#(DS,push,(
|
18
|
+
#(or,(not,(exists?,name)),(EQ,##(CL,name),),(
|
19
|
+
#(DS,name,(value))
|
20
|
+
),(
|
21
|
+
#(DS,name,(value)#(.)##(CL,name,#(.)))
|
22
|
+
))
|
23
|
+
#(SS,name,#(.))
|
24
|
+
))
|
25
|
+
#(sss,push,(name,value))'
|
26
|
+
|
27
|
+
Now, pop a value off the top of the stack. If the stack is empty, return the
|
28
|
+
ifempty parameter. Here we see the form pointer in action. The CS call moves
|
29
|
+
the form pointer after the end of the first segment, so the CL call in the next
|
30
|
+
line only returns the rest of the stack. This works because DS and SS return
|
31
|
+
the empty string, so the return from CS is the return from the pop function.
|
32
|
+
If the stack doesn't exist, this will have the side-effect of creating an empty
|
33
|
+
stack.
|
34
|
+
|
35
|
+
#(DS,pop,(
|
36
|
+
#(CS,name,ifempty)
|
37
|
+
#(DS,name,##(CL,name,#(.)))
|
38
|
+
#(SS,name,#(.))
|
39
|
+
))
|
40
|
+
#(sss,pop,(name,ifempty))'
|
41
|
+
|
42
|
+
Finally, peek at the top of the stack without removing the value.
|
43
|
+
|
44
|
+
#(DS,peek,(
|
45
|
+
#(CS,name,ifempty)
|
46
|
+
#(CR,name)
|
47
|
+
))
|
48
|
+
#(sss,peek,(name,ifempty))'
|
49
|
+
|
50
|
+
|
51
|
+
Queue
|
52
|
+
-----
|
53
|
+
|
54
|
+
A queue is very similar to a stack, we just add things to the end of the string
|
55
|
+
instead of the beginning. Dequeue is just a synonym for pop, and peek works on
|
56
|
+
both stacks and queues.
|
57
|
+
|
58
|
+
#(DS,enqueue,(
|
59
|
+
#(or,(not,(exists?,name)),(EQ,##(CL,name),),(
|
60
|
+
#(DS,name,(value))
|
61
|
+
),(
|
62
|
+
#(DS,name,##(CL,name,#(.))#(.)(value))
|
63
|
+
))
|
64
|
+
#(SS,name,#(.))
|
65
|
+
))
|
66
|
+
#(sss,enqueue,(name,value))'
|
67
|
+
|
68
|
+
#(DS,dequeue,##(CL,pop,name,ifempty))
|
69
|
+
#(SS,dequeue,name,ifempty)'
|
70
|
+
|
71
|
+
|
72
|
+
Hash
|
73
|
+
----
|
74
|
+
|
75
|
+
A hash piggybacks on the form dictionary. The hash name and key are mashed
|
76
|
+
together to make the name of the form that holds the corresponding value. From
|
77
|
+
this we can easily define all the typical hash methods.
|
78
|
+
|
79
|
+
#(DS,put,(#(DS,name:key,value)))
|
80
|
+
#(SS,put,name,key,value)'
|
81
|
+
|
82
|
+
#(DS,get,(#(name:key)))
|
83
|
+
#(SS,get,name,key)'
|
84
|
+
|
85
|
+
#(DS,contains,(#(exists?,name:key,(T),(F))))
|
86
|
+
#(SS,contains,name,key,T,F)'
|
87
|
+
|
88
|
+
#(DS,keys,(#(list-prefix,name:,delimiter)))
|
89
|
+
#(SS,keys,name,delimiter)'
|
90
|
+
|
91
|
+
#(DS,delete-hash,(#(DD,#(list-prefix,name:,(,)))))
|
92
|
+
#(SS,delete-hash,name)'
|
93
|
+
|
94
|
+
An array is just a special kind of hash that uses numbers for keys, and a set
|
95
|
+
is just a hash where you ignore the values set.
|
96
|
+
|
97
|
+
There's one other trick you can do with hashes. By creating the following two
|
98
|
+
functions, you can make a hash into a primitive object, with methods as well as
|
99
|
+
data.
|
100
|
+
|
101
|
+
#(DS,define,(
|
102
|
+
#(DS,name:method,(action))
|
103
|
+
#(SS,name:method,args)
|
104
|
+
))
|
105
|
+
#(sss,define,(name,method,args))'
|
106
|
+
|
107
|
+
#(DS,call,(#(CL,name:method,args)))
|
108
|
+
#(SS,call,name,method,args)'
|
109
|
+
|
110
|
+
A hash with such methods isn't a true object - it doesn't have a defining class
|
111
|
+
and there's no such thing as inheritance. But it's still an example of data
|
112
|
+
and functions bound together in one object.
|
113
|
+
|
114
|
+
|
115
|
+
Case
|
116
|
+
----
|
117
|
+
|
118
|
+
Here's the case statement, so TRAC can be routed to different actions based on
|
119
|
+
the value of something. It may seem strange to have a control structure in the
|
120
|
+
example file for data structures, but really, control structures *are* data
|
121
|
+
structures. The case statement is just a special kind of hash with a default
|
122
|
+
value.
|
123
|
+
|
124
|
+
#(DS,case,(#(DS,case-prefix,name)))
|
125
|
+
#(SS,case,name)'
|
126
|
+
|
127
|
+
#(DS,when,(
|
128
|
+
#(DS,#(case-prefix):(value),(action))
|
129
|
+
#(scrub,#(case-prefix):(value))
|
130
|
+
))
|
131
|
+
#(SS,when,value,action)'
|
132
|
+
|
133
|
+
#(DS,default,(
|
134
|
+
#(DS,#(case-prefix):default,(action))
|
135
|
+
#(sss,#(case-prefix):default,value)
|
136
|
+
))
|
137
|
+
#(sss,default,action)'
|
138
|
+
|
139
|
+
#(DS,end-case,(
|
140
|
+
#(DS,[end-case],(
|
141
|
+
#(DS,prefix,(
|
142
|
+
#(exists?,prefix:(value),(
|
143
|
+
#(prefix:(value))
|
144
|
+
),(
|
145
|
+
#(prefix:default,(value))
|
146
|
+
))
|
147
|
+
))
|
148
|
+
#(SS,prefix,value)
|
149
|
+
))
|
150
|
+
#(SS,[end-case],prefix)
|
151
|
+
#([end-case],#(case-prefix))
|
152
|
+
))
|
153
|
+
#(sss,end-case,name)'
|
154
|
+
|
155
|
+
These are defining words - in other words, they define pieces of code, so they
|
156
|
+
should be used at the same level as you use DS and other defining words. The
|
157
|
+
example will make things more clear.
|
158
|
+
|
159
|
+
(
|
160
|
+
Defining the code to run:
|
161
|
+
|
162
|
+
#(case,execute-option)
|
163
|
+
#(when,d,(#(delete-file)))
|
164
|
+
#(when,g,(#(get-file)))
|
165
|
+
#(when,q,(#(HL)))
|
166
|
+
#(default,(#(PS,#(help-text))))
|
167
|
+
#(end-case)
|
168
|
+
|
169
|
+
Actually calling the code:
|
170
|
+
|
171
|
+
#(execute-option,#(RC))
|
172
|
+
)
|
173
|
+
|
174
|
+
|
175
|
+
#(PS,(success!
|
176
|
+
))'
|