trac_lang 0.1.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +7 -0
- data/.gitignore +12 -0
- data/.rspec +2 -0
- data/.travis.yml +5 -0
- data/CODE_OF_CONDUCT.md +74 -0
- data/Gemfile +4 -0
- data/LICENSE.txt +21 -0
- data/README.md +58 -0
- data/Rakefile +12 -0
- data/bin/console +14 -0
- data/bin/setup +8 -0
- data/examples/README.trl +633 -0
- data/examples/golf.trl +113 -0
- data/examples/list.trl +125 -0
- data/examples/math.trl +351 -0
- data/examples/meta.trl +254 -0
- data/examples/ratio.trl +107 -0
- data/examples/struct.trl +176 -0
- data/examples/term.trl +129 -0
- data/examples/util.trl +366 -0
- data/exe/trac_lang +74 -0
- data/lib/trac_lang.rb +16 -0
- data/lib/trac_lang/bindings.rb +53 -0
- data/lib/trac_lang/block.rb +46 -0
- data/lib/trac_lang/decimal.rb +79 -0
- data/lib/trac_lang/dispatch.rb +421 -0
- data/lib/trac_lang/executor.rb +97 -0
- data/lib/trac_lang/expression.rb +58 -0
- data/lib/trac_lang/form.rb +253 -0
- data/lib/trac_lang/immediate_read.rb +52 -0
- data/lib/trac_lang/octal.rb +88 -0
- data/lib/trac_lang/parser.rb +114 -0
- data/lib/trac_lang/version.rb +4 -0
- data/trac_lang.gemspec +42 -0
- metadata +177 -0
data/examples/golf.trl
ADDED
@@ -0,0 +1,113 @@
|
|
1
|
+
|
2
|
+
Code Golf
|
3
|
+
|
4
|
+
#(PS,Loading examples/golf.trl...)'
|
5
|
+
|
6
|
+
TRAC is never going to win a Code Golf competition. It's lack of primitives
|
7
|
+
makes it difficult to do anything under a hundred characters. However, trying
|
8
|
+
to figure out how to write certain things in TRAC does help you learn the ins
|
9
|
+
and outs of the language. Below are a few of my attempts at some of the Code
|
10
|
+
Golf challenges.
|
11
|
+
|
12
|
+
-------------------------------------------------------------------------------
|
13
|
+
The Curious Case of Steve Ballmer - 158 characters
|
14
|
+
|
15
|
+
#(DS,x,Steve Ballmer still does not know;what he did;wrong;with mobile)#(SS,x,;)#(DS,,(#(PS,(a.
|
16
|
+
))#(EQ,b,.,,(#(,a b,#(CS,x,.))))))#(SS,,a,b)#(,#(CS,x),#(CS,x))'
|
17
|
+
|
18
|
+
Ungolfed Version:
|
19
|
+
|
20
|
+
(
|
21
|
+
#(DS,sentence,Steve Ballmer still does not know;what he did;wrong;with mobile)
|
22
|
+
#(SS,sentence,;)
|
23
|
+
#(DS,print-phrase,
|
24
|
+
(#(PS,(<phrase>.
|
25
|
+
))#(EQ,<next-phrase>,*END*,,(
|
26
|
+
#(print-phrase,<phrase> <next-phrase>,#(CS,sentence,*END*)))
|
27
|
+
)))
|
28
|
+
#(SS,print-phrase,<phrase>,<next-phrase>)
|
29
|
+
#(print-phrase,#(CS,sentence),#(CS,sentence))
|
30
|
+
)
|
31
|
+
|
32
|
+
-------------------------------------------------------------------------------
|
33
|
+
Am I A Secondary Taxi? - 219 characters
|
34
|
+
|
35
|
+
#(DS,3,(#(ML,n,#(ML,n,n))))#(SS,3,n)#(DS,,(#(EQ,#(AD,#(3,i),#(3,j)),n,(#(DS,+,#(AD,1,#(+)))))))#(SS,,n,i,j)#(DS,x,(#(,n,i,j)#(EQ,j,n,(#(GR,#(+),1,T,F)),(#(EQ,i,n,(#(,n,1,#(AD,1,j))),(#(,n,#(AD,1,i),j)))))))#(SS,x,n,i,j)'
|
36
|
+
|
37
|
+
Ungolfed version:
|
38
|
+
|
39
|
+
(
|
40
|
+
#(DS,cube,
|
41
|
+
(#(ML,<n>,#(ML,<n>,<n>))))
|
42
|
+
#(SS,cube,<n>)
|
43
|
+
|
44
|
+
#(DS,test,
|
45
|
+
(#(EQ,<n>,#(AD,#(cube,<i>),#(cube,<j>)),
|
46
|
+
(#(DS,total,#(AD,1,#(total)))))))
|
47
|
+
#(SS,test,n,i,j)
|
48
|
+
|
49
|
+
#(DS,taxi,
|
50
|
+
(#(test,<n>,<i>,<j>)
|
51
|
+
#(EQ,<j>,<n>,
|
52
|
+
(#(GR,#(total),1,T,F)),
|
53
|
+
(#(EQ,<i>,<n>,
|
54
|
+
(#(test,<n>,1,#(AD,1,<j>))),
|
55
|
+
(#(test,<n>,#(AD,1,<i>),<j>)))))))
|
56
|
+
#(SS,taxi,<n>,<i>,<j>)
|
57
|
+
)
|
58
|
+
|
59
|
+
-------------------------------------------------------------------------------
|
60
|
+
Unique Is Cheap - 99 characters
|
61
|
+
|
62
|
+
Assume string to test is contained in form s:
|
63
|
+
|
64
|
+
#(DS,$,(#(EQ,c,**,+,(#(DS,c,#(AD,1,#(c)))#($,#(CC,s,**),#(AD,+,#(c)))))))#(SS,$,c,+)#($,#(CC,s,**))'
|
65
|
+
|
66
|
+
Ungolfed version:
|
67
|
+
|
68
|
+
Assume string to test is contained in form "string":
|
69
|
+
|
70
|
+
(
|
71
|
+
#(DS,cost,
|
72
|
+
(#(EQ,<c>,**,<total>,
|
73
|
+
(#(DS,<c>,#(AD,1,#(<c>)))
|
74
|
+
#(cost,#(CC,string,**),#(AD,<total>,#(<c>)))
|
75
|
+
)
|
76
|
+
)))
|
77
|
+
#(SS,cost,<c>,<total>)
|
78
|
+
#(cost,#(CC,string,**))
|
79
|
+
)
|
80
|
+
|
81
|
+
-------------------------------------------------------------------------------
|
82
|
+
Fewest (distinct) characters for Turing Completeness - 6 characters
|
83
|
+
|
84
|
+
hash, open-paren, close-paren, comma, D and S
|
85
|
+
|
86
|
+
With these six characters, you have the commands DS, SS, and DD.
|
87
|
+
|
88
|
+
How do you define branching? We can use the fact that when you define a form
|
89
|
+
with the same name as an existing form, the existing form is replaced. This
|
90
|
+
technique comes from page 19 of Chapter 9 of the Beginner's Manual for TRAC
|
91
|
+
Language:
|
92
|
+
|
93
|
+
https://web.archive.org/web/20050214150205/http://tracfoundation.org:80/trac64/T64manual.htm
|
94
|
+
(
|
95
|
+
#(DS,DDD,(#(DS,(DDS),(SDD))#(DS,(DSD),(DSS))#((DDS))))
|
96
|
+
#(SS,DDD,DDS,DSD,DSS,SDD)
|
97
|
+
)
|
98
|
+
Ungolfed version:
|
99
|
+
(
|
100
|
+
#(DS,"eq",
|
101
|
+
(#(DS,(a),(F))
|
102
|
+
#(DS,(b),(T))
|
103
|
+
#((a))
|
104
|
+
))
|
105
|
+
#(SS,"eq",a,b,T,F)
|
106
|
+
)
|
107
|
+
|
108
|
+
If a equals b, then the definition of b will overwrite the definition of a, and
|
109
|
+
T will be returned. Otherwise, F will be returned.
|
110
|
+
|
111
|
+
|
112
|
+
#(PS,(success!
|
113
|
+
))'
|
data/examples/list.trl
ADDED
@@ -0,0 +1,125 @@
|
|
1
|
+
|
2
|
+
List Processing
|
3
|
+
|
4
|
+
#(PS,Loading examples/list.trl...)'
|
5
|
+
|
6
|
+
Basics
|
7
|
+
------
|
8
|
+
|
9
|
+
We need another anonymous form class for creating the links that make up lists.
|
10
|
+
|
11
|
+
#(anonymous,link)'
|
12
|
+
|
13
|
+
We define nil as an empty list, containing nothing.
|
14
|
+
|
15
|
+
#(DS,nil)'
|
16
|
+
|
17
|
+
Now we can define the list primitives. These are basically the same as used in
|
18
|
+
Lisp. Notice that I use the dot special character for delimiting, so that
|
19
|
+
lists can contain any data.
|
20
|
+
|
21
|
+
The cons form has some error checking because it's very easy to forget to put
|
22
|
+
in the final nil when you're constructing a list.
|
23
|
+
|
24
|
+
#(DS,cons,(
|
25
|
+
#(EQ,(list),,(
|
26
|
+
#(link,#(.),(value)#(.)nil)
|
27
|
+
),(
|
28
|
+
#(link,#(.),(value)#(.)(list))
|
29
|
+
))
|
30
|
+
))
|
31
|
+
#(sss,cons,(value,list))'
|
32
|
+
#(DS,car,(#(CS,list)#(CR,list)))
|
33
|
+
#(SS,car,list)'
|
34
|
+
#(DS,cdr,(#(CS,list,,#(CS,list))#(CR,list)))
|
35
|
+
#(SS,cdr,list)'
|
36
|
+
|
37
|
+
#(DS,null?,(#(EQ,list,nil,(T),(F))))
|
38
|
+
#(SS,null?,list,T,F)'
|
39
|
+
|
40
|
+
Pair? is just a synonym for link?, the test that checks if the given value is a
|
41
|
+
defined link. Atom? is an antonym for link?.
|
42
|
+
|
43
|
+
#(DS,pair?,(#(link?,item,(T),(F))))
|
44
|
+
#(SS,pair?,item,T,F)'
|
45
|
+
|
46
|
+
#(DS,atom?,(#(link?,item,(F),(T))))
|
47
|
+
#(SS,atom?,item,T,F)'
|
48
|
+
|
49
|
+
List is our synatic sugar for repeated cons'ing.
|
50
|
+
|
51
|
+
#(DS,list,(
|
52
|
+
#(DS,args,(objs))
|
53
|
+
#(SS,args,(,))
|
54
|
+
#(DS,[list],(
|
55
|
+
#(EQ,(value),#(.),nil,(
|
56
|
+
#(cons,(value),#([list],##(CS,args,#(.))))
|
57
|
+
))
|
58
|
+
))
|
59
|
+
#(SS,[list],value)
|
60
|
+
#([list],#(CS,args,#(.)))#(DD,args,[list])
|
61
|
+
))
|
62
|
+
#(sss,list,objs)'
|
63
|
+
|
64
|
+
You use it like this:
|
65
|
+
(
|
66
|
+
#(list,(1/2,1/3,1/4))
|
67
|
+
)
|
68
|
+
And it would be nice to be able to display the contents of our lists:
|
69
|
+
|
70
|
+
#(DS,print-list,(
|
71
|
+
#(null?,<list>,nil,(
|
72
|
+
#(car,<list>)(,)#(print-list,#(cdr,<list>))
|
73
|
+
))
|
74
|
+
))
|
75
|
+
#(sss,print-list,<list>)'
|
76
|
+
|
77
|
+
|
78
|
+
List Functions
|
79
|
+
--------------
|
80
|
+
|
81
|
+
Now with the basics of list handling defined, we can define some functions on
|
82
|
+
lists. These definitions are practically the same that you would see in any
|
83
|
+
version of Lisp. I got these definitions from section 2.2 of Structure and
|
84
|
+
Interpretation of Programs.
|
85
|
+
|
86
|
+
#(DS,length,(#(null?,list,count,(#(length,#(cdr,list),#(AD,1,count))))))
|
87
|
+
#(SS,length,list,count)'
|
88
|
+
|
89
|
+
#(DS,append,(
|
90
|
+
#(null?,list1,list2,(
|
91
|
+
#(cons,#(car,list1),#(append,#(cdr,list1),list2))
|
92
|
+
))
|
93
|
+
))
|
94
|
+
#(sss,append,(list1,list2))'
|
95
|
+
|
96
|
+
#(DS,map,(
|
97
|
+
#(null?,items,nil,(
|
98
|
+
#(cons,#(proc,#(car,items)),#(map,proc,#(cdr,items)))
|
99
|
+
))
|
100
|
+
))
|
101
|
+
#(sss,map,(proc,items))'
|
102
|
+
|
103
|
+
#(DS,accumulate,(
|
104
|
+
#(null?,seq,init,(
|
105
|
+
#(op,#(car,seq),#(accumulate,op,init,#(cdr,seq)))
|
106
|
+
))
|
107
|
+
))
|
108
|
+
#(sss,accumulate,(op,init,seq))'
|
109
|
+
|
110
|
+
#(DS,interval,(
|
111
|
+
#(GR,low,high,nil,(
|
112
|
+
#(cons,low,#(interval,#(AD,1,low),high))
|
113
|
+
))
|
114
|
+
))
|
115
|
+
#(sss,interval,(low,high))'
|
116
|
+
|
117
|
+
Here's an example use. Give the decimal expansion of the sum of the first five
|
118
|
+
terms of the harmonic series: 1/1, 1/2, 1/3, etc.
|
119
|
+
(
|
120
|
+
#(DVD,#(argr,#(accumulate,addr,0,#(map,rcpr,#(interval,1,5))))) => 2.283333333
|
121
|
+
)
|
122
|
+
|
123
|
+
|
124
|
+
#(PS,(success!
|
125
|
+
))'
|
data/examples/math.trl
ADDED
@@ -0,0 +1,351 @@
|
|
1
|
+
|
2
|
+
Mathematics
|
3
|
+
|
4
|
+
#(PS,Loading examples/math.trl...)'
|
5
|
+
|
6
|
+
|
7
|
+
One of the things you have to be careful with TRAC numbers is the fact that any
|
8
|
+
string is a number. If the string doesn't have any numeric characters at the
|
9
|
+
end of it, it's considered zero. That means that abc, --0 and the empty string
|
10
|
+
are all equal to zero. Because of this property, you can't normally use EQ to
|
11
|
+
test numbers.
|
12
|
+
|
13
|
+
|
14
|
+
Negate
|
15
|
+
------
|
16
|
+
|
17
|
+
Notice I negate a negative number by multiplying by negative one. The order in
|
18
|
+
the #(ML) command is important to preserve any prefix the number might have.
|
19
|
+
|
20
|
+
#(DS,-,(#(ML,n,-1)))
|
21
|
+
#(SS,-,n)'
|
22
|
+
|
23
|
+
|
24
|
+
Absolute Value
|
25
|
+
--------------
|
26
|
+
|
27
|
+
Negate if you're less than zero.
|
28
|
+
|
29
|
+
#(DS,abs,(#(GR,0,n,#(-,n),n)))
|
30
|
+
#(SS,abs,n)'
|
31
|
+
|
32
|
+
|
33
|
+
Sign
|
34
|
+
----
|
35
|
+
|
36
|
+
Determine the sign of the given number. Returns one, zero or negative one
|
37
|
+
depending. Because these numbers don't have text prefixes, they can be
|
38
|
+
compared with EQ.
|
39
|
+
|
40
|
+
#(DS,sgn,(
|
41
|
+
#(GR,0,n,-1,(
|
42
|
+
#(GR,n,0,1,0)
|
43
|
+
))
|
44
|
+
))
|
45
|
+
#(sss,sgn,n)'
|
46
|
+
|
47
|
+
|
48
|
+
Sign Case
|
49
|
+
---------
|
50
|
+
|
51
|
+
This creates a control statement which executes different code depending on
|
52
|
+
what sign the given number is. This simplifies some of our later code.
|
53
|
+
|
54
|
+
#(DS,sgn?,(
|
55
|
+
#(GR,<a>,0,(P),(
|
56
|
+
#(GR,0,<a>,(N),(Z))
|
57
|
+
))
|
58
|
+
))
|
59
|
+
#(sss,sgn?,(<a>,P,Z,N))
|
60
|
+
|
61
|
+
We use this as follows:
|
62
|
+
(
|
63
|
+
#(sgn?,#(a),positive!,zero.,negative)
|
64
|
+
)
|
65
|
+
|
66
|
+
|
67
|
+
Numeric Equal
|
68
|
+
-------------
|
69
|
+
|
70
|
+
The EQ command in TRAC compares strings, not numbers. To compare numbers you
|
71
|
+
need to use the GR command. If neither of two numbers is greater then they
|
72
|
+
must be equal. It looks really weird to test if a > b and b > a, but because
|
73
|
+
of the short-circuit propery of and, it works.
|
74
|
+
|
75
|
+
#(DS,eqn,(
|
76
|
+
#(and,(GR,a,b),(GR,b,a),(F),(T))
|
77
|
+
))
|
78
|
+
#(sss,eqn,(a,b,T,F))'
|
79
|
+
|
80
|
+
|
81
|
+
Modulo
|
82
|
+
------
|
83
|
+
|
84
|
+
Division in TRAC is floored division, so the modulo always has the same sign
|
85
|
+
as the divisor. The "mod+" script calculates the modulo for positive numbers,
|
86
|
+
while the "mod" script calculates it for all numbers. If there was a way to
|
87
|
+
change the sign of TRAC numbers without using multiplication, then all
|
88
|
+
multiplication could be eliminated here.
|
89
|
+
|
90
|
+
The "Z" parameter is returned when "b" is zero. The "mod+" script does not
|
91
|
+
check for a "b" of zero, so will go into an infinite loop if you give it such
|
92
|
+
a "b".
|
93
|
+
|
94
|
+
#(DS,mod+,(
|
95
|
+
#(GR,<a>,<b>,(
|
96
|
+
#(mod+,#(SU,<a>,<b>),<b>)
|
97
|
+
),(
|
98
|
+
#(GR,<b>,<a>,<a>,0)
|
99
|
+
))
|
100
|
+
))
|
101
|
+
#(sss,mod+,(<a>,<b>))
|
102
|
+
|
103
|
+
Check all the combinations of sign "a" and "b" can have, including an "a" or
|
104
|
+
"b" of zero. If "a" is zero, just return "a", since anything modulo zero is
|
105
|
+
zero. This is consistent with DV so that:
|
106
|
+
(
|
107
|
+
#(AD,#(ML,b,#(DV,a,b)),#(mod,a,b)) == a
|
108
|
+
)
|
109
|
+
|
110
|
+
#(DS,mod,(
|
111
|
+
#(sgn?,<a>,(
|
112
|
+
#(sgn?,<b>,(
|
113
|
+
#(mod+,<a>,<b>)
|
114
|
+
),(
|
115
|
+
Z
|
116
|
+
),(
|
117
|
+
#(AD,<b>,#(mod+,<a>,#(abs,<b>)))
|
118
|
+
))
|
119
|
+
),(
|
120
|
+
<a>
|
121
|
+
),(
|
122
|
+
#(sgn?,<b>,(
|
123
|
+
#(SU,<b>,#(mod+,#(abs,<a>),<b>))
|
124
|
+
),(
|
125
|
+
Z
|
126
|
+
),(
|
127
|
+
#(-,#(mod+,#(abs,<a>),#(abs,<b>),(Z)))
|
128
|
+
))
|
129
|
+
))
|
130
|
+
))
|
131
|
+
#(sss,mod,(<a>,<b>,Z))'
|
132
|
+
|
133
|
+
|
134
|
+
Divides
|
135
|
+
-------
|
136
|
+
|
137
|
+
Test if one number divides another. The "Z" parameter is returned if "a" is
|
138
|
+
zero.
|
139
|
+
|
140
|
+
#(DS,div?,(
|
141
|
+
#(eqn,0,<a>,(Z),(
|
142
|
+
#(eqn,0,(#(mod,<b>,<a>)),(T),(F))
|
143
|
+
))
|
144
|
+
))
|
145
|
+
#(sss,div?,(<a>,<b>,T,F,Z))'
|
146
|
+
|
147
|
+
|
148
|
+
Greatest Common Divisor
|
149
|
+
-----------------------
|
150
|
+
|
151
|
+
Standard definition of greatest common divisor. The [gcd] form tests positive
|
152
|
+
integers, while the gcd form works for all integers.
|
153
|
+
|
154
|
+
#(DS,[gcd],(
|
155
|
+
#(eqn,<b>,0,<a>,(
|
156
|
+
#(gcd,<b>,#(mod,<a>,<b>))
|
157
|
+
))
|
158
|
+
))
|
159
|
+
#(sss,[gcd],(<a>,<b>))'
|
160
|
+
|
161
|
+
#(DS,gcd,(
|
162
|
+
#(sgn?,#(SU,<a>,<b>),(
|
163
|
+
#([gcd],<a>,<b>)
|
164
|
+
),(
|
165
|
+
<a>
|
166
|
+
),(
|
167
|
+
#([gcd],<b>,<a>)
|
168
|
+
))
|
169
|
+
))
|
170
|
+
#(sss,gcd,(<a>,<b>))'
|
171
|
+
|
172
|
+
|
173
|
+
Ceiling
|
174
|
+
-------
|
175
|
+
|
176
|
+
TRAC division takes the floor of the division. But sometimes you need the
|
177
|
+
ceiling. The "Z" parameter is returned if "b" is zero.
|
178
|
+
|
179
|
+
#(DS,ceil,(
|
180
|
+
#(div?,<b>,<a>,(
|
181
|
+
#(DV,<a>,<b>)
|
182
|
+
),(
|
183
|
+
#(AD,1,#(DV,<a>,<b>))
|
184
|
+
),(
|
185
|
+
Z
|
186
|
+
))
|
187
|
+
))
|
188
|
+
#(sss,ceil,(<a>,<b>,Z))'
|
189
|
+
|
190
|
+
|
191
|
+
Euclidean Division
|
192
|
+
------------------
|
193
|
+
|
194
|
+
This division will truncate toward zero, instead of truncating down like normal
|
195
|
+
TRAC division does. The Z parameter is returned if b is zero.
|
196
|
+
|
197
|
+
#(DS,DV0,(
|
198
|
+
#(sgn?,<b>,(
|
199
|
+
#(sgn?,<a>,(
|
200
|
+
#(DV,<a>,<b>)
|
201
|
+
),(
|
202
|
+
<a>
|
203
|
+
),(
|
204
|
+
#(-,#(DV,#(-,<a>),<b>))
|
205
|
+
))
|
206
|
+
),(
|
207
|
+
Z
|
208
|
+
),(
|
209
|
+
#(sgn?,<a>,(
|
210
|
+
#(-,#(DV,<a>,#(-,<b>)))
|
211
|
+
),(
|
212
|
+
<a>
|
213
|
+
),(
|
214
|
+
#(DV,#(-,<a>),#(-,<b>))
|
215
|
+
))
|
216
|
+
))
|
217
|
+
))
|
218
|
+
#(sss,DV0,(<a>,<b>,Z))'
|
219
|
+
|
220
|
+
|
221
|
+
Euclidean Modulo
|
222
|
+
----------------
|
223
|
+
|
224
|
+
Here's a modulo compatible with Euclidean division. The Z parameter is
|
225
|
+
returned if b is zero.
|
226
|
+
|
227
|
+
#(DS,mod0,(
|
228
|
+
#(SU,<a>,#(ML,<b>,#(DV0,<a>,<b>,(Z))))
|
229
|
+
))
|
230
|
+
#(sss,mod0,(<a>,<b>,Z))'
|
231
|
+
|
232
|
+
|
233
|
+
Decimal to Octal
|
234
|
+
----------------
|
235
|
+
Recursively convert a decimal number to octal. This will go into an infinite
|
236
|
+
loop if you try in on negative numbers. That's because TRAC doesn't have a
|
237
|
+
specific word size, so a negative octal number has an infinite number of 7's
|
238
|
+
in front of it.
|
239
|
+
|
240
|
+
#(DS,to_oct,(#(eqn,<dec>,0,,(#(to_oct,#(DV,<dec>,8))#(mod,<dec>,8)))))
|
241
|
+
#(SS,to_oct,<dec>)'
|
242
|
+
|
243
|
+
|
244
|
+
Octal to Decimal
|
245
|
+
----------------
|
246
|
+
This one is more string-based. Since I can't do numeric calculations with
|
247
|
+
octals, I have to read the octal number as a string, character by character,
|
248
|
+
and then interpret each character as a number.
|
249
|
+
|
250
|
+
#(DS,to_dec,(
|
251
|
+
#(DS,[octal],<octal>)
|
252
|
+
#(DS,[to_dec],(
|
253
|
+
#(EQ,<digit>,--,
|
254
|
+
(#(DD,[octal],[to_dec])<result>),
|
255
|
+
(#([to_dec],##(CC,[octal],--),#(AD,<digit>,#(ML,8,<result>))))
|
256
|
+
)
|
257
|
+
))
|
258
|
+
#(SS,[to_dec],<digit>,<result>)
|
259
|
+
#([to_dec],##(CC,[octal],--))
|
260
|
+
))
|
261
|
+
#(sss,to_dec,<octal>)'
|
262
|
+
|
263
|
+
|
264
|
+
Random
|
265
|
+
------
|
266
|
+
|
267
|
+
Now we can define a random number generator. This is a linear congruential
|
268
|
+
generator from Wikipedia, using the Borland C/C++ multiplier.
|
269
|
+
|
270
|
+
https://en.wikipedia.org/wiki/Linear_congruential_generator
|
271
|
+
|
272
|
+
Remember to define the seed value to an octal number before you call random the
|
273
|
+
first time.
|
274
|
+
|
275
|
+
#(DS,random,(
|
276
|
+
#(DS,seed,
|
277
|
+
#(BS,#(to_oct,
|
278
|
+
#(AD,1,#(ML,22695477,#(to_dec,#(seed))))
|
279
|
+
),-16)
|
280
|
+
)
|
281
|
+
#(DS,seed,#(BI,#(seed),177777))
|
282
|
+
#(seed)
|
283
|
+
))
|
284
|
+
#(scrub,random)'
|
285
|
+
|
286
|
+
One interesting thing to notice in this definition. The "seed" is a number,
|
287
|
+
not a script. So I don't use protecting parentheses around its definition
|
288
|
+
because I want the definition calculated immediately. This is different from
|
289
|
+
almost every other definition I've written in these files, which is why I
|
290
|
+
mention it.
|
291
|
+
|
292
|
+
|
293
|
+
Power
|
294
|
+
-----
|
295
|
+
|
296
|
+
Recursive definition of raising a number to a given power. Negative powers
|
297
|
+
will return zero.
|
298
|
+
|
299
|
+
#(DS,power,(
|
300
|
+
#(GR,0,<n>,0,(
|
301
|
+
#(GR,<n>,0,(
|
302
|
+
#(ML,<base>,#(power,<base>,#(SU,<n>,1)))
|
303
|
+
),1)
|
304
|
+
))
|
305
|
+
))
|
306
|
+
#(scrub,power)
|
307
|
+
#(SS,power,<base>,<n>)'
|
308
|
+
|
309
|
+
|
310
|
+
Power of Two
|
311
|
+
------------
|
312
|
+
|
313
|
+
This should be much faster than calling the usual power script.
|
314
|
+
|
315
|
+
#(DS,power2,(#(to_dec,1#(times,n,0))))
|
316
|
+
#(SS,power2,n)'
|
317
|
+
|
318
|
+
|
319
|
+
Power of Ten
|
320
|
+
------------
|
321
|
+
|
322
|
+
A power of ten is just a one with a bunch of zeros after it.
|
323
|
+
|
324
|
+
#(DS,power10,(1#(times,n,0)))
|
325
|
+
#(SS,power10,n)'
|
326
|
+
|
327
|
+
|
328
|
+
Divide Into Decimal
|
329
|
+
-------------------
|
330
|
+
|
331
|
+
This gives you a decimal expansion of a division. By using the Euclidean
|
332
|
+
division defined above, it works with both negative and positive numbers.
|
333
|
+
|
334
|
+
#(DS,decimal-places,10)'
|
335
|
+
|
336
|
+
#(DS,[DVD],(
|
337
|
+
#(GR,<p>,#(decimal-places),,(
|
338
|
+
#(DV,<a>,<b>)
|
339
|
+
#([DVD],#(ML,10,#(mod,<a>,<b>)),<b>,#(AD,<p>,1))
|
340
|
+
))
|
341
|
+
))
|
342
|
+
#(sss,[DVD],(<a>,<b>,<p>))'
|
343
|
+
|
344
|
+
#(DS,DVD,(
|
345
|
+
#(DV0,<a>,<b>,Z).#([DVD],#(ML,10,#(mod,#(abs,<a>),#(abs,<b>))),#(abs,<b>))
|
346
|
+
))
|
347
|
+
#(sss,DVD,(<a>,<b>,Z))'
|
348
|
+
|
349
|
+
|
350
|
+
#(PS,(success!
|
351
|
+
))'
|