trac_lang 0.1.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/.gitignore +12 -0
- data/.rspec +2 -0
- data/.travis.yml +5 -0
- data/CODE_OF_CONDUCT.md +74 -0
- data/Gemfile +4 -0
- data/LICENSE.txt +21 -0
- data/README.md +58 -0
- data/Rakefile +12 -0
- data/bin/console +14 -0
- data/bin/setup +8 -0
- data/examples/README.trl +633 -0
- data/examples/golf.trl +113 -0
- data/examples/list.trl +125 -0
- data/examples/math.trl +351 -0
- data/examples/meta.trl +254 -0
- data/examples/ratio.trl +107 -0
- data/examples/struct.trl +176 -0
- data/examples/term.trl +129 -0
- data/examples/util.trl +366 -0
- data/exe/trac_lang +74 -0
- data/lib/trac_lang.rb +16 -0
- data/lib/trac_lang/bindings.rb +53 -0
- data/lib/trac_lang/block.rb +46 -0
- data/lib/trac_lang/decimal.rb +79 -0
- data/lib/trac_lang/dispatch.rb +421 -0
- data/lib/trac_lang/executor.rb +97 -0
- data/lib/trac_lang/expression.rb +58 -0
- data/lib/trac_lang/form.rb +253 -0
- data/lib/trac_lang/immediate_read.rb +52 -0
- data/lib/trac_lang/octal.rb +88 -0
- data/lib/trac_lang/parser.rb +114 -0
- data/lib/trac_lang/version.rb +4 -0
- data/trac_lang.gemspec +42 -0
- metadata +177 -0
data/examples/golf.trl
ADDED
@@ -0,0 +1,113 @@
|
|
1
|
+
|
2
|
+
Code Golf
|
3
|
+
|
4
|
+
#(PS,Loading examples/golf.trl...)'
|
5
|
+
|
6
|
+
TRAC is never going to win a Code Golf competition. It's lack of primitives
|
7
|
+
makes it difficult to do anything under a hundred characters. However, trying
|
8
|
+
to figure out how to write certain things in TRAC does help you learn the ins
|
9
|
+
and outs of the language. Below are a few of my attempts at some of the Code
|
10
|
+
Golf challenges.
|
11
|
+
|
12
|
+
-------------------------------------------------------------------------------
|
13
|
+
The Curious Case of Steve Ballmer - 158 characters
|
14
|
+
|
15
|
+
#(DS,x,Steve Ballmer still does not know;what he did;wrong;with mobile)#(SS,x,;)#(DS,,(#(PS,(a.
|
16
|
+
))#(EQ,b,.,,(#(,a b,#(CS,x,.))))))#(SS,,a,b)#(,#(CS,x),#(CS,x))'
|
17
|
+
|
18
|
+
Ungolfed Version:
|
19
|
+
|
20
|
+
(
|
21
|
+
#(DS,sentence,Steve Ballmer still does not know;what he did;wrong;with mobile)
|
22
|
+
#(SS,sentence,;)
|
23
|
+
#(DS,print-phrase,
|
24
|
+
(#(PS,(<phrase>.
|
25
|
+
))#(EQ,<next-phrase>,*END*,,(
|
26
|
+
#(print-phrase,<phrase> <next-phrase>,#(CS,sentence,*END*)))
|
27
|
+
)))
|
28
|
+
#(SS,print-phrase,<phrase>,<next-phrase>)
|
29
|
+
#(print-phrase,#(CS,sentence),#(CS,sentence))
|
30
|
+
)
|
31
|
+
|
32
|
+
-------------------------------------------------------------------------------
|
33
|
+
Am I A Secondary Taxi? - 219 characters
|
34
|
+
|
35
|
+
#(DS,3,(#(ML,n,#(ML,n,n))))#(SS,3,n)#(DS,,(#(EQ,#(AD,#(3,i),#(3,j)),n,(#(DS,+,#(AD,1,#(+)))))))#(SS,,n,i,j)#(DS,x,(#(,n,i,j)#(EQ,j,n,(#(GR,#(+),1,T,F)),(#(EQ,i,n,(#(,n,1,#(AD,1,j))),(#(,n,#(AD,1,i),j)))))))#(SS,x,n,i,j)'
|
36
|
+
|
37
|
+
Ungolfed version:
|
38
|
+
|
39
|
+
(
|
40
|
+
#(DS,cube,
|
41
|
+
(#(ML,<n>,#(ML,<n>,<n>))))
|
42
|
+
#(SS,cube,<n>)
|
43
|
+
|
44
|
+
#(DS,test,
|
45
|
+
(#(EQ,<n>,#(AD,#(cube,<i>),#(cube,<j>)),
|
46
|
+
(#(DS,total,#(AD,1,#(total)))))))
|
47
|
+
#(SS,test,n,i,j)
|
48
|
+
|
49
|
+
#(DS,taxi,
|
50
|
+
(#(test,<n>,<i>,<j>)
|
51
|
+
#(EQ,<j>,<n>,
|
52
|
+
(#(GR,#(total),1,T,F)),
|
53
|
+
(#(EQ,<i>,<n>,
|
54
|
+
(#(test,<n>,1,#(AD,1,<j>))),
|
55
|
+
(#(test,<n>,#(AD,1,<i>),<j>)))))))
|
56
|
+
#(SS,taxi,<n>,<i>,<j>)
|
57
|
+
)
|
58
|
+
|
59
|
+
-------------------------------------------------------------------------------
|
60
|
+
Unique Is Cheap - 99 characters
|
61
|
+
|
62
|
+
Assume string to test is contained in form s:
|
63
|
+
|
64
|
+
#(DS,$,(#(EQ,c,**,+,(#(DS,c,#(AD,1,#(c)))#($,#(CC,s,**),#(AD,+,#(c)))))))#(SS,$,c,+)#($,#(CC,s,**))'
|
65
|
+
|
66
|
+
Ungolfed version:
|
67
|
+
|
68
|
+
Assume string to test is contained in form "string":
|
69
|
+
|
70
|
+
(
|
71
|
+
#(DS,cost,
|
72
|
+
(#(EQ,<c>,**,<total>,
|
73
|
+
(#(DS,<c>,#(AD,1,#(<c>)))
|
74
|
+
#(cost,#(CC,string,**),#(AD,<total>,#(<c>)))
|
75
|
+
)
|
76
|
+
)))
|
77
|
+
#(SS,cost,<c>,<total>)
|
78
|
+
#(cost,#(CC,string,**))
|
79
|
+
)
|
80
|
+
|
81
|
+
-------------------------------------------------------------------------------
|
82
|
+
Fewest (distinct) characters for Turing Completeness - 6 characters
|
83
|
+
|
84
|
+
hash, open-paren, close-paren, comma, D and S
|
85
|
+
|
86
|
+
With these six characters, you have the commands DS, SS, and DD.
|
87
|
+
|
88
|
+
How do you define branching? We can use the fact that when you define a form
|
89
|
+
with the same name as an existing form, the existing form is replaced. This
|
90
|
+
technique comes from page 19 of Chapter 9 of the Beginner's Manual for TRAC
|
91
|
+
Language:
|
92
|
+
|
93
|
+
https://web.archive.org/web/20050214150205/http://tracfoundation.org:80/trac64/T64manual.htm
|
94
|
+
(
|
95
|
+
#(DS,DDD,(#(DS,(DDS),(SDD))#(DS,(DSD),(DSS))#((DDS))))
|
96
|
+
#(SS,DDD,DDS,DSD,DSS,SDD)
|
97
|
+
)
|
98
|
+
Ungolfed version:
|
99
|
+
(
|
100
|
+
#(DS,"eq",
|
101
|
+
(#(DS,(a),(F))
|
102
|
+
#(DS,(b),(T))
|
103
|
+
#((a))
|
104
|
+
))
|
105
|
+
#(SS,"eq",a,b,T,F)
|
106
|
+
)
|
107
|
+
|
108
|
+
If a equals b, then the definition of b will overwrite the definition of a, and
|
109
|
+
T will be returned. Otherwise, F will be returned.
|
110
|
+
|
111
|
+
|
112
|
+
#(PS,(success!
|
113
|
+
))'
|
data/examples/list.trl
ADDED
@@ -0,0 +1,125 @@
|
|
1
|
+
|
2
|
+
List Processing
|
3
|
+
|
4
|
+
#(PS,Loading examples/list.trl...)'
|
5
|
+
|
6
|
+
Basics
|
7
|
+
------
|
8
|
+
|
9
|
+
We need another anonymous form class for creating the links that make up lists.
|
10
|
+
|
11
|
+
#(anonymous,link)'
|
12
|
+
|
13
|
+
We define nil as an empty list, containing nothing.
|
14
|
+
|
15
|
+
#(DS,nil)'
|
16
|
+
|
17
|
+
Now we can define the list primitives. These are basically the same as used in
|
18
|
+
Lisp. Notice that I use the dot special character for delimiting, so that
|
19
|
+
lists can contain any data.
|
20
|
+
|
21
|
+
The cons form has some error checking because it's very easy to forget to put
|
22
|
+
in the final nil when you're constructing a list.
|
23
|
+
|
24
|
+
#(DS,cons,(
|
25
|
+
#(EQ,(list),,(
|
26
|
+
#(link,#(.),(value)#(.)nil)
|
27
|
+
),(
|
28
|
+
#(link,#(.),(value)#(.)(list))
|
29
|
+
))
|
30
|
+
))
|
31
|
+
#(sss,cons,(value,list))'
|
32
|
+
#(DS,car,(#(CS,list)#(CR,list)))
|
33
|
+
#(SS,car,list)'
|
34
|
+
#(DS,cdr,(#(CS,list,,#(CS,list))#(CR,list)))
|
35
|
+
#(SS,cdr,list)'
|
36
|
+
|
37
|
+
#(DS,null?,(#(EQ,list,nil,(T),(F))))
|
38
|
+
#(SS,null?,list,T,F)'
|
39
|
+
|
40
|
+
Pair? is just a synonym for link?, the test that checks if the given value is a
|
41
|
+
defined link. Atom? is an antonym for link?.
|
42
|
+
|
43
|
+
#(DS,pair?,(#(link?,item,(T),(F))))
|
44
|
+
#(SS,pair?,item,T,F)'
|
45
|
+
|
46
|
+
#(DS,atom?,(#(link?,item,(F),(T))))
|
47
|
+
#(SS,atom?,item,T,F)'
|
48
|
+
|
49
|
+
List is our synatic sugar for repeated cons'ing.
|
50
|
+
|
51
|
+
#(DS,list,(
|
52
|
+
#(DS,args,(objs))
|
53
|
+
#(SS,args,(,))
|
54
|
+
#(DS,[list],(
|
55
|
+
#(EQ,(value),#(.),nil,(
|
56
|
+
#(cons,(value),#([list],##(CS,args,#(.))))
|
57
|
+
))
|
58
|
+
))
|
59
|
+
#(SS,[list],value)
|
60
|
+
#([list],#(CS,args,#(.)))#(DD,args,[list])
|
61
|
+
))
|
62
|
+
#(sss,list,objs)'
|
63
|
+
|
64
|
+
You use it like this:
|
65
|
+
(
|
66
|
+
#(list,(1/2,1/3,1/4))
|
67
|
+
)
|
68
|
+
And it would be nice to be able to display the contents of our lists:
|
69
|
+
|
70
|
+
#(DS,print-list,(
|
71
|
+
#(null?,<list>,nil,(
|
72
|
+
#(car,<list>)(,)#(print-list,#(cdr,<list>))
|
73
|
+
))
|
74
|
+
))
|
75
|
+
#(sss,print-list,<list>)'
|
76
|
+
|
77
|
+
|
78
|
+
List Functions
|
79
|
+
--------------
|
80
|
+
|
81
|
+
Now with the basics of list handling defined, we can define some functions on
|
82
|
+
lists. These definitions are practically the same that you would see in any
|
83
|
+
version of Lisp. I got these definitions from section 2.2 of Structure and
|
84
|
+
Interpretation of Programs.
|
85
|
+
|
86
|
+
#(DS,length,(#(null?,list,count,(#(length,#(cdr,list),#(AD,1,count))))))
|
87
|
+
#(SS,length,list,count)'
|
88
|
+
|
89
|
+
#(DS,append,(
|
90
|
+
#(null?,list1,list2,(
|
91
|
+
#(cons,#(car,list1),#(append,#(cdr,list1),list2))
|
92
|
+
))
|
93
|
+
))
|
94
|
+
#(sss,append,(list1,list2))'
|
95
|
+
|
96
|
+
#(DS,map,(
|
97
|
+
#(null?,items,nil,(
|
98
|
+
#(cons,#(proc,#(car,items)),#(map,proc,#(cdr,items)))
|
99
|
+
))
|
100
|
+
))
|
101
|
+
#(sss,map,(proc,items))'
|
102
|
+
|
103
|
+
#(DS,accumulate,(
|
104
|
+
#(null?,seq,init,(
|
105
|
+
#(op,#(car,seq),#(accumulate,op,init,#(cdr,seq)))
|
106
|
+
))
|
107
|
+
))
|
108
|
+
#(sss,accumulate,(op,init,seq))'
|
109
|
+
|
110
|
+
#(DS,interval,(
|
111
|
+
#(GR,low,high,nil,(
|
112
|
+
#(cons,low,#(interval,#(AD,1,low),high))
|
113
|
+
))
|
114
|
+
))
|
115
|
+
#(sss,interval,(low,high))'
|
116
|
+
|
117
|
+
Here's an example use. Give the decimal expansion of the sum of the first five
|
118
|
+
terms of the harmonic series: 1/1, 1/2, 1/3, etc.
|
119
|
+
(
|
120
|
+
#(DVD,#(argr,#(accumulate,addr,0,#(map,rcpr,#(interval,1,5))))) => 2.283333333
|
121
|
+
)
|
122
|
+
|
123
|
+
|
124
|
+
#(PS,(success!
|
125
|
+
))'
|
data/examples/math.trl
ADDED
@@ -0,0 +1,351 @@
|
|
1
|
+
|
2
|
+
Mathematics
|
3
|
+
|
4
|
+
#(PS,Loading examples/math.trl...)'
|
5
|
+
|
6
|
+
|
7
|
+
One of the things you have to be careful with TRAC numbers is the fact that any
|
8
|
+
string is a number. If the string doesn't have any numeric characters at the
|
9
|
+
end of it, it's considered zero. That means that abc, --0 and the empty string
|
10
|
+
are all equal to zero. Because of this property, you can't normally use EQ to
|
11
|
+
test numbers.
|
12
|
+
|
13
|
+
|
14
|
+
Negate
|
15
|
+
------
|
16
|
+
|
17
|
+
Notice I negate a negative number by multiplying by negative one. The order in
|
18
|
+
the #(ML) command is important to preserve any prefix the number might have.
|
19
|
+
|
20
|
+
#(DS,-,(#(ML,n,-1)))
|
21
|
+
#(SS,-,n)'
|
22
|
+
|
23
|
+
|
24
|
+
Absolute Value
|
25
|
+
--------------
|
26
|
+
|
27
|
+
Negate if you're less than zero.
|
28
|
+
|
29
|
+
#(DS,abs,(#(GR,0,n,#(-,n),n)))
|
30
|
+
#(SS,abs,n)'
|
31
|
+
|
32
|
+
|
33
|
+
Sign
|
34
|
+
----
|
35
|
+
|
36
|
+
Determine the sign of the given number. Returns one, zero or negative one
|
37
|
+
depending. Because these numbers don't have text prefixes, they can be
|
38
|
+
compared with EQ.
|
39
|
+
|
40
|
+
#(DS,sgn,(
|
41
|
+
#(GR,0,n,-1,(
|
42
|
+
#(GR,n,0,1,0)
|
43
|
+
))
|
44
|
+
))
|
45
|
+
#(sss,sgn,n)'
|
46
|
+
|
47
|
+
|
48
|
+
Sign Case
|
49
|
+
---------
|
50
|
+
|
51
|
+
This creates a control statement which executes different code depending on
|
52
|
+
what sign the given number is. This simplifies some of our later code.
|
53
|
+
|
54
|
+
#(DS,sgn?,(
|
55
|
+
#(GR,<a>,0,(P),(
|
56
|
+
#(GR,0,<a>,(N),(Z))
|
57
|
+
))
|
58
|
+
))
|
59
|
+
#(sss,sgn?,(<a>,P,Z,N))
|
60
|
+
|
61
|
+
We use this as follows:
|
62
|
+
(
|
63
|
+
#(sgn?,#(a),positive!,zero.,negative)
|
64
|
+
)
|
65
|
+
|
66
|
+
|
67
|
+
Numeric Equal
|
68
|
+
-------------
|
69
|
+
|
70
|
+
The EQ command in TRAC compares strings, not numbers. To compare numbers you
|
71
|
+
need to use the GR command. If neither of two numbers is greater then they
|
72
|
+
must be equal. It looks really weird to test if a > b and b > a, but because
|
73
|
+
of the short-circuit propery of and, it works.
|
74
|
+
|
75
|
+
#(DS,eqn,(
|
76
|
+
#(and,(GR,a,b),(GR,b,a),(F),(T))
|
77
|
+
))
|
78
|
+
#(sss,eqn,(a,b,T,F))'
|
79
|
+
|
80
|
+
|
81
|
+
Modulo
|
82
|
+
------
|
83
|
+
|
84
|
+
Division in TRAC is floored division, so the modulo always has the same sign
|
85
|
+
as the divisor. The "mod+" script calculates the modulo for positive numbers,
|
86
|
+
while the "mod" script calculates it for all numbers. If there was a way to
|
87
|
+
change the sign of TRAC numbers without using multiplication, then all
|
88
|
+
multiplication could be eliminated here.
|
89
|
+
|
90
|
+
The "Z" parameter is returned when "b" is zero. The "mod+" script does not
|
91
|
+
check for a "b" of zero, so will go into an infinite loop if you give it such
|
92
|
+
a "b".
|
93
|
+
|
94
|
+
#(DS,mod+,(
|
95
|
+
#(GR,<a>,<b>,(
|
96
|
+
#(mod+,#(SU,<a>,<b>),<b>)
|
97
|
+
),(
|
98
|
+
#(GR,<b>,<a>,<a>,0)
|
99
|
+
))
|
100
|
+
))
|
101
|
+
#(sss,mod+,(<a>,<b>))
|
102
|
+
|
103
|
+
Check all the combinations of sign "a" and "b" can have, including an "a" or
|
104
|
+
"b" of zero. If "a" is zero, just return "a", since anything modulo zero is
|
105
|
+
zero. This is consistent with DV so that:
|
106
|
+
(
|
107
|
+
#(AD,#(ML,b,#(DV,a,b)),#(mod,a,b)) == a
|
108
|
+
)
|
109
|
+
|
110
|
+
#(DS,mod,(
|
111
|
+
#(sgn?,<a>,(
|
112
|
+
#(sgn?,<b>,(
|
113
|
+
#(mod+,<a>,<b>)
|
114
|
+
),(
|
115
|
+
Z
|
116
|
+
),(
|
117
|
+
#(AD,<b>,#(mod+,<a>,#(abs,<b>)))
|
118
|
+
))
|
119
|
+
),(
|
120
|
+
<a>
|
121
|
+
),(
|
122
|
+
#(sgn?,<b>,(
|
123
|
+
#(SU,<b>,#(mod+,#(abs,<a>),<b>))
|
124
|
+
),(
|
125
|
+
Z
|
126
|
+
),(
|
127
|
+
#(-,#(mod+,#(abs,<a>),#(abs,<b>),(Z)))
|
128
|
+
))
|
129
|
+
))
|
130
|
+
))
|
131
|
+
#(sss,mod,(<a>,<b>,Z))'
|
132
|
+
|
133
|
+
|
134
|
+
Divides
|
135
|
+
-------
|
136
|
+
|
137
|
+
Test if one number divides another. The "Z" parameter is returned if "a" is
|
138
|
+
zero.
|
139
|
+
|
140
|
+
#(DS,div?,(
|
141
|
+
#(eqn,0,<a>,(Z),(
|
142
|
+
#(eqn,0,(#(mod,<b>,<a>)),(T),(F))
|
143
|
+
))
|
144
|
+
))
|
145
|
+
#(sss,div?,(<a>,<b>,T,F,Z))'
|
146
|
+
|
147
|
+
|
148
|
+
Greatest Common Divisor
|
149
|
+
-----------------------
|
150
|
+
|
151
|
+
Standard definition of greatest common divisor. The [gcd] form tests positive
|
152
|
+
integers, while the gcd form works for all integers.
|
153
|
+
|
154
|
+
#(DS,[gcd],(
|
155
|
+
#(eqn,<b>,0,<a>,(
|
156
|
+
#(gcd,<b>,#(mod,<a>,<b>))
|
157
|
+
))
|
158
|
+
))
|
159
|
+
#(sss,[gcd],(<a>,<b>))'
|
160
|
+
|
161
|
+
#(DS,gcd,(
|
162
|
+
#(sgn?,#(SU,<a>,<b>),(
|
163
|
+
#([gcd],<a>,<b>)
|
164
|
+
),(
|
165
|
+
<a>
|
166
|
+
),(
|
167
|
+
#([gcd],<b>,<a>)
|
168
|
+
))
|
169
|
+
))
|
170
|
+
#(sss,gcd,(<a>,<b>))'
|
171
|
+
|
172
|
+
|
173
|
+
Ceiling
|
174
|
+
-------
|
175
|
+
|
176
|
+
TRAC division takes the floor of the division. But sometimes you need the
|
177
|
+
ceiling. The "Z" parameter is returned if "b" is zero.
|
178
|
+
|
179
|
+
#(DS,ceil,(
|
180
|
+
#(div?,<b>,<a>,(
|
181
|
+
#(DV,<a>,<b>)
|
182
|
+
),(
|
183
|
+
#(AD,1,#(DV,<a>,<b>))
|
184
|
+
),(
|
185
|
+
Z
|
186
|
+
))
|
187
|
+
))
|
188
|
+
#(sss,ceil,(<a>,<b>,Z))'
|
189
|
+
|
190
|
+
|
191
|
+
Euclidean Division
|
192
|
+
------------------
|
193
|
+
|
194
|
+
This division will truncate toward zero, instead of truncating down like normal
|
195
|
+
TRAC division does. The Z parameter is returned if b is zero.
|
196
|
+
|
197
|
+
#(DS,DV0,(
|
198
|
+
#(sgn?,<b>,(
|
199
|
+
#(sgn?,<a>,(
|
200
|
+
#(DV,<a>,<b>)
|
201
|
+
),(
|
202
|
+
<a>
|
203
|
+
),(
|
204
|
+
#(-,#(DV,#(-,<a>),<b>))
|
205
|
+
))
|
206
|
+
),(
|
207
|
+
Z
|
208
|
+
),(
|
209
|
+
#(sgn?,<a>,(
|
210
|
+
#(-,#(DV,<a>,#(-,<b>)))
|
211
|
+
),(
|
212
|
+
<a>
|
213
|
+
),(
|
214
|
+
#(DV,#(-,<a>),#(-,<b>))
|
215
|
+
))
|
216
|
+
))
|
217
|
+
))
|
218
|
+
#(sss,DV0,(<a>,<b>,Z))'
|
219
|
+
|
220
|
+
|
221
|
+
Euclidean Modulo
|
222
|
+
----------------
|
223
|
+
|
224
|
+
Here's a modulo compatible with Euclidean division. The Z parameter is
|
225
|
+
returned if b is zero.
|
226
|
+
|
227
|
+
#(DS,mod0,(
|
228
|
+
#(SU,<a>,#(ML,<b>,#(DV0,<a>,<b>,(Z))))
|
229
|
+
))
|
230
|
+
#(sss,mod0,(<a>,<b>,Z))'
|
231
|
+
|
232
|
+
|
233
|
+
Decimal to Octal
|
234
|
+
----------------
|
235
|
+
Recursively convert a decimal number to octal. This will go into an infinite
|
236
|
+
loop if you try in on negative numbers. That's because TRAC doesn't have a
|
237
|
+
specific word size, so a negative octal number has an infinite number of 7's
|
238
|
+
in front of it.
|
239
|
+
|
240
|
+
#(DS,to_oct,(#(eqn,<dec>,0,,(#(to_oct,#(DV,<dec>,8))#(mod,<dec>,8)))))
|
241
|
+
#(SS,to_oct,<dec>)'
|
242
|
+
|
243
|
+
|
244
|
+
Octal to Decimal
|
245
|
+
----------------
|
246
|
+
This one is more string-based. Since I can't do numeric calculations with
|
247
|
+
octals, I have to read the octal number as a string, character by character,
|
248
|
+
and then interpret each character as a number.
|
249
|
+
|
250
|
+
#(DS,to_dec,(
|
251
|
+
#(DS,[octal],<octal>)
|
252
|
+
#(DS,[to_dec],(
|
253
|
+
#(EQ,<digit>,--,
|
254
|
+
(#(DD,[octal],[to_dec])<result>),
|
255
|
+
(#([to_dec],##(CC,[octal],--),#(AD,<digit>,#(ML,8,<result>))))
|
256
|
+
)
|
257
|
+
))
|
258
|
+
#(SS,[to_dec],<digit>,<result>)
|
259
|
+
#([to_dec],##(CC,[octal],--))
|
260
|
+
))
|
261
|
+
#(sss,to_dec,<octal>)'
|
262
|
+
|
263
|
+
|
264
|
+
Random
|
265
|
+
------
|
266
|
+
|
267
|
+
Now we can define a random number generator. This is a linear congruential
|
268
|
+
generator from Wikipedia, using the Borland C/C++ multiplier.
|
269
|
+
|
270
|
+
https://en.wikipedia.org/wiki/Linear_congruential_generator
|
271
|
+
|
272
|
+
Remember to define the seed value to an octal number before you call random the
|
273
|
+
first time.
|
274
|
+
|
275
|
+
#(DS,random,(
|
276
|
+
#(DS,seed,
|
277
|
+
#(BS,#(to_oct,
|
278
|
+
#(AD,1,#(ML,22695477,#(to_dec,#(seed))))
|
279
|
+
),-16)
|
280
|
+
)
|
281
|
+
#(DS,seed,#(BI,#(seed),177777))
|
282
|
+
#(seed)
|
283
|
+
))
|
284
|
+
#(scrub,random)'
|
285
|
+
|
286
|
+
One interesting thing to notice in this definition. The "seed" is a number,
|
287
|
+
not a script. So I don't use protecting parentheses around its definition
|
288
|
+
because I want the definition calculated immediately. This is different from
|
289
|
+
almost every other definition I've written in these files, which is why I
|
290
|
+
mention it.
|
291
|
+
|
292
|
+
|
293
|
+
Power
|
294
|
+
-----
|
295
|
+
|
296
|
+
Recursive definition of raising a number to a given power. Negative powers
|
297
|
+
will return zero.
|
298
|
+
|
299
|
+
#(DS,power,(
|
300
|
+
#(GR,0,<n>,0,(
|
301
|
+
#(GR,<n>,0,(
|
302
|
+
#(ML,<base>,#(power,<base>,#(SU,<n>,1)))
|
303
|
+
),1)
|
304
|
+
))
|
305
|
+
))
|
306
|
+
#(scrub,power)
|
307
|
+
#(SS,power,<base>,<n>)'
|
308
|
+
|
309
|
+
|
310
|
+
Power of Two
|
311
|
+
------------
|
312
|
+
|
313
|
+
This should be much faster than calling the usual power script.
|
314
|
+
|
315
|
+
#(DS,power2,(#(to_dec,1#(times,n,0))))
|
316
|
+
#(SS,power2,n)'
|
317
|
+
|
318
|
+
|
319
|
+
Power of Ten
|
320
|
+
------------
|
321
|
+
|
322
|
+
A power of ten is just a one with a bunch of zeros after it.
|
323
|
+
|
324
|
+
#(DS,power10,(1#(times,n,0)))
|
325
|
+
#(SS,power10,n)'
|
326
|
+
|
327
|
+
|
328
|
+
Divide Into Decimal
|
329
|
+
-------------------
|
330
|
+
|
331
|
+
This gives you a decimal expansion of a division. By using the Euclidean
|
332
|
+
division defined above, it works with both negative and positive numbers.
|
333
|
+
|
334
|
+
#(DS,decimal-places,10)'
|
335
|
+
|
336
|
+
#(DS,[DVD],(
|
337
|
+
#(GR,<p>,#(decimal-places),,(
|
338
|
+
#(DV,<a>,<b>)
|
339
|
+
#([DVD],#(ML,10,#(mod,<a>,<b>)),<b>,#(AD,<p>,1))
|
340
|
+
))
|
341
|
+
))
|
342
|
+
#(sss,[DVD],(<a>,<b>,<p>))'
|
343
|
+
|
344
|
+
#(DS,DVD,(
|
345
|
+
#(DV0,<a>,<b>,Z).#([DVD],#(ML,10,#(mod,#(abs,<a>),#(abs,<b>))),#(abs,<b>))
|
346
|
+
))
|
347
|
+
#(sss,DVD,(<a>,<b>,Z))'
|
348
|
+
|
349
|
+
|
350
|
+
#(PS,(success!
|
351
|
+
))'
|