trac_lang 0.1.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
data/examples/golf.trl ADDED
@@ -0,0 +1,113 @@
1
+
2
+ Code Golf
3
+
4
+ #(PS,Loading examples/golf.trl...)'
5
+
6
+ TRAC is never going to win a Code Golf competition. It's lack of primitives
7
+ makes it difficult to do anything under a hundred characters. However, trying
8
+ to figure out how to write certain things in TRAC does help you learn the ins
9
+ and outs of the language. Below are a few of my attempts at some of the Code
10
+ Golf challenges.
11
+
12
+ -------------------------------------------------------------------------------
13
+ The Curious Case of Steve Ballmer - 158 characters
14
+
15
+ #(DS,x,Steve Ballmer still does not know;what he did;wrong;with mobile)#(SS,x,;)#(DS,,(#(PS,(a.
16
+ ))#(EQ,b,.,,(#(,a b,#(CS,x,.))))))#(SS,,a,b)#(,#(CS,x),#(CS,x))'
17
+
18
+ Ungolfed Version:
19
+
20
+ (
21
+ #(DS,sentence,Steve Ballmer still does not know;what he did;wrong;with mobile)
22
+ #(SS,sentence,;)
23
+ #(DS,print-phrase,
24
+ (#(PS,(<phrase>.
25
+ ))#(EQ,<next-phrase>,*END*,,(
26
+ #(print-phrase,<phrase> <next-phrase>,#(CS,sentence,*END*)))
27
+ )))
28
+ #(SS,print-phrase,<phrase>,<next-phrase>)
29
+ #(print-phrase,#(CS,sentence),#(CS,sentence))
30
+ )
31
+
32
+ -------------------------------------------------------------------------------
33
+ Am I A Secondary Taxi? - 219 characters
34
+
35
+ #(DS,3,(#(ML,n,#(ML,n,n))))#(SS,3,n)#(DS,,(#(EQ,#(AD,#(3,i),#(3,j)),n,(#(DS,+,#(AD,1,#(+)))))))#(SS,,n,i,j)#(DS,x,(#(,n,i,j)#(EQ,j,n,(#(GR,#(+),1,T,F)),(#(EQ,i,n,(#(,n,1,#(AD,1,j))),(#(,n,#(AD,1,i),j)))))))#(SS,x,n,i,j)'
36
+
37
+ Ungolfed version:
38
+
39
+ (
40
+ #(DS,cube,
41
+ (#(ML,<n>,#(ML,<n>,<n>))))
42
+ #(SS,cube,<n>)
43
+
44
+ #(DS,test,
45
+ (#(EQ,<n>,#(AD,#(cube,<i>),#(cube,<j>)),
46
+ (#(DS,total,#(AD,1,#(total)))))))
47
+ #(SS,test,n,i,j)
48
+
49
+ #(DS,taxi,
50
+ (#(test,<n>,<i>,<j>)
51
+ #(EQ,<j>,<n>,
52
+ (#(GR,#(total),1,T,F)),
53
+ (#(EQ,<i>,<n>,
54
+ (#(test,<n>,1,#(AD,1,<j>))),
55
+ (#(test,<n>,#(AD,1,<i>),<j>)))))))
56
+ #(SS,taxi,<n>,<i>,<j>)
57
+ )
58
+
59
+ -------------------------------------------------------------------------------
60
+ Unique Is Cheap - 99 characters
61
+
62
+ Assume string to test is contained in form s:
63
+
64
+ #(DS,$,(#(EQ,c,**,+,(#(DS,c,#(AD,1,#(c)))#($,#(CC,s,**),#(AD,+,#(c)))))))#(SS,$,c,+)#($,#(CC,s,**))'
65
+
66
+ Ungolfed version:
67
+
68
+ Assume string to test is contained in form "string":
69
+
70
+ (
71
+ #(DS,cost,
72
+ (#(EQ,<c>,**,<total>,
73
+ (#(DS,<c>,#(AD,1,#(<c>)))
74
+ #(cost,#(CC,string,**),#(AD,<total>,#(<c>)))
75
+ )
76
+ )))
77
+ #(SS,cost,<c>,<total>)
78
+ #(cost,#(CC,string,**))
79
+ )
80
+
81
+ -------------------------------------------------------------------------------
82
+ Fewest (distinct) characters for Turing Completeness - 6 characters
83
+
84
+ hash, open-paren, close-paren, comma, D and S
85
+
86
+ With these six characters, you have the commands DS, SS, and DD.
87
+
88
+ How do you define branching? We can use the fact that when you define a form
89
+ with the same name as an existing form, the existing form is replaced. This
90
+ technique comes from page 19 of Chapter 9 of the Beginner's Manual for TRAC
91
+ Language:
92
+
93
+ https://web.archive.org/web/20050214150205/http://tracfoundation.org:80/trac64/T64manual.htm
94
+ (
95
+ #(DS,DDD,(#(DS,(DDS),(SDD))#(DS,(DSD),(DSS))#((DDS))))
96
+ #(SS,DDD,DDS,DSD,DSS,SDD)
97
+ )
98
+ Ungolfed version:
99
+ (
100
+ #(DS,"eq",
101
+ (#(DS,(a),(F))
102
+ #(DS,(b),(T))
103
+ #((a))
104
+ ))
105
+ #(SS,"eq",a,b,T,F)
106
+ )
107
+
108
+ If a equals b, then the definition of b will overwrite the definition of a, and
109
+ T will be returned. Otherwise, F will be returned.
110
+
111
+
112
+ #(PS,(success!
113
+ ))'
data/examples/list.trl ADDED
@@ -0,0 +1,125 @@
1
+
2
+ List Processing
3
+
4
+ #(PS,Loading examples/list.trl...)'
5
+
6
+ Basics
7
+ ------
8
+
9
+ We need another anonymous form class for creating the links that make up lists.
10
+
11
+ #(anonymous,link)'
12
+
13
+ We define nil as an empty list, containing nothing.
14
+
15
+ #(DS,nil)'
16
+
17
+ Now we can define the list primitives. These are basically the same as used in
18
+ Lisp. Notice that I use the dot special character for delimiting, so that
19
+ lists can contain any data.
20
+
21
+ The cons form has some error checking because it's very easy to forget to put
22
+ in the final nil when you're constructing a list.
23
+
24
+ #(DS,cons,(
25
+ #(EQ,(list),,(
26
+ #(link,#(.),(value)#(.)nil)
27
+ ),(
28
+ #(link,#(.),(value)#(.)(list))
29
+ ))
30
+ ))
31
+ #(sss,cons,(value,list))'
32
+ #(DS,car,(#(CS,list)#(CR,list)))
33
+ #(SS,car,list)'
34
+ #(DS,cdr,(#(CS,list,,#(CS,list))#(CR,list)))
35
+ #(SS,cdr,list)'
36
+
37
+ #(DS,null?,(#(EQ,list,nil,(T),(F))))
38
+ #(SS,null?,list,T,F)'
39
+
40
+ Pair? is just a synonym for link?, the test that checks if the given value is a
41
+ defined link. Atom? is an antonym for link?.
42
+
43
+ #(DS,pair?,(#(link?,item,(T),(F))))
44
+ #(SS,pair?,item,T,F)'
45
+
46
+ #(DS,atom?,(#(link?,item,(F),(T))))
47
+ #(SS,atom?,item,T,F)'
48
+
49
+ List is our synatic sugar for repeated cons'ing.
50
+
51
+ #(DS,list,(
52
+ #(DS,args,(objs))
53
+ #(SS,args,(,))
54
+ #(DS,[list],(
55
+ #(EQ,(value),#(.),nil,(
56
+ #(cons,(value),#([list],##(CS,args,#(.))))
57
+ ))
58
+ ))
59
+ #(SS,[list],value)
60
+ #([list],#(CS,args,#(.)))#(DD,args,[list])
61
+ ))
62
+ #(sss,list,objs)'
63
+
64
+ You use it like this:
65
+ (
66
+ #(list,(1/2,1/3,1/4))
67
+ )
68
+ And it would be nice to be able to display the contents of our lists:
69
+
70
+ #(DS,print-list,(
71
+ #(null?,<list>,nil,(
72
+ #(car,<list>)(,)#(print-list,#(cdr,<list>))
73
+ ))
74
+ ))
75
+ #(sss,print-list,<list>)'
76
+
77
+
78
+ List Functions
79
+ --------------
80
+
81
+ Now with the basics of list handling defined, we can define some functions on
82
+ lists. These definitions are practically the same that you would see in any
83
+ version of Lisp. I got these definitions from section 2.2 of Structure and
84
+ Interpretation of Programs.
85
+
86
+ #(DS,length,(#(null?,list,count,(#(length,#(cdr,list),#(AD,1,count))))))
87
+ #(SS,length,list,count)'
88
+
89
+ #(DS,append,(
90
+ #(null?,list1,list2,(
91
+ #(cons,#(car,list1),#(append,#(cdr,list1),list2))
92
+ ))
93
+ ))
94
+ #(sss,append,(list1,list2))'
95
+
96
+ #(DS,map,(
97
+ #(null?,items,nil,(
98
+ #(cons,#(proc,#(car,items)),#(map,proc,#(cdr,items)))
99
+ ))
100
+ ))
101
+ #(sss,map,(proc,items))'
102
+
103
+ #(DS,accumulate,(
104
+ #(null?,seq,init,(
105
+ #(op,#(car,seq),#(accumulate,op,init,#(cdr,seq)))
106
+ ))
107
+ ))
108
+ #(sss,accumulate,(op,init,seq))'
109
+
110
+ #(DS,interval,(
111
+ #(GR,low,high,nil,(
112
+ #(cons,low,#(interval,#(AD,1,low),high))
113
+ ))
114
+ ))
115
+ #(sss,interval,(low,high))'
116
+
117
+ Here's an example use. Give the decimal expansion of the sum of the first five
118
+ terms of the harmonic series: 1/1, 1/2, 1/3, etc.
119
+ (
120
+ #(DVD,#(argr,#(accumulate,addr,0,#(map,rcpr,#(interval,1,5))))) => 2.283333333
121
+ )
122
+
123
+
124
+ #(PS,(success!
125
+ ))'
data/examples/math.trl ADDED
@@ -0,0 +1,351 @@
1
+
2
+ Mathematics
3
+
4
+ #(PS,Loading examples/math.trl...)'
5
+
6
+
7
+ One of the things you have to be careful with TRAC numbers is the fact that any
8
+ string is a number. If the string doesn't have any numeric characters at the
9
+ end of it, it's considered zero. That means that abc, --0 and the empty string
10
+ are all equal to zero. Because of this property, you can't normally use EQ to
11
+ test numbers.
12
+
13
+
14
+ Negate
15
+ ------
16
+
17
+ Notice I negate a negative number by multiplying by negative one. The order in
18
+ the #(ML) command is important to preserve any prefix the number might have.
19
+
20
+ #(DS,-,(#(ML,n,-1)))
21
+ #(SS,-,n)'
22
+
23
+
24
+ Absolute Value
25
+ --------------
26
+
27
+ Negate if you're less than zero.
28
+
29
+ #(DS,abs,(#(GR,0,n,#(-,n),n)))
30
+ #(SS,abs,n)'
31
+
32
+
33
+ Sign
34
+ ----
35
+
36
+ Determine the sign of the given number. Returns one, zero or negative one
37
+ depending. Because these numbers don't have text prefixes, they can be
38
+ compared with EQ.
39
+
40
+ #(DS,sgn,(
41
+ #(GR,0,n,-1,(
42
+ #(GR,n,0,1,0)
43
+ ))
44
+ ))
45
+ #(sss,sgn,n)'
46
+
47
+
48
+ Sign Case
49
+ ---------
50
+
51
+ This creates a control statement which executes different code depending on
52
+ what sign the given number is. This simplifies some of our later code.
53
+
54
+ #(DS,sgn?,(
55
+ #(GR,<a>,0,(P),(
56
+ #(GR,0,<a>,(N),(Z))
57
+ ))
58
+ ))
59
+ #(sss,sgn?,(<a>,P,Z,N))
60
+
61
+ We use this as follows:
62
+ (
63
+ #(sgn?,#(a),positive!,zero.,negative)
64
+ )
65
+
66
+
67
+ Numeric Equal
68
+ -------------
69
+
70
+ The EQ command in TRAC compares strings, not numbers. To compare numbers you
71
+ need to use the GR command. If neither of two numbers is greater then they
72
+ must be equal. It looks really weird to test if a > b and b > a, but because
73
+ of the short-circuit propery of and, it works.
74
+
75
+ #(DS,eqn,(
76
+ #(and,(GR,a,b),(GR,b,a),(F),(T))
77
+ ))
78
+ #(sss,eqn,(a,b,T,F))'
79
+
80
+
81
+ Modulo
82
+ ------
83
+
84
+ Division in TRAC is floored division, so the modulo always has the same sign
85
+ as the divisor. The "mod+" script calculates the modulo for positive numbers,
86
+ while the "mod" script calculates it for all numbers. If there was a way to
87
+ change the sign of TRAC numbers without using multiplication, then all
88
+ multiplication could be eliminated here.
89
+
90
+ The "Z" parameter is returned when "b" is zero. The "mod+" script does not
91
+ check for a "b" of zero, so will go into an infinite loop if you give it such
92
+ a "b".
93
+
94
+ #(DS,mod+,(
95
+ #(GR,<a>,<b>,(
96
+ #(mod+,#(SU,<a>,<b>),<b>)
97
+ ),(
98
+ #(GR,<b>,<a>,<a>,0)
99
+ ))
100
+ ))
101
+ #(sss,mod+,(<a>,<b>))
102
+
103
+ Check all the combinations of sign "a" and "b" can have, including an "a" or
104
+ "b" of zero. If "a" is zero, just return "a", since anything modulo zero is
105
+ zero. This is consistent with DV so that:
106
+ (
107
+ #(AD,#(ML,b,#(DV,a,b)),#(mod,a,b)) == a
108
+ )
109
+
110
+ #(DS,mod,(
111
+ #(sgn?,<a>,(
112
+ #(sgn?,<b>,(
113
+ #(mod+,<a>,<b>)
114
+ ),(
115
+ Z
116
+ ),(
117
+ #(AD,<b>,#(mod+,<a>,#(abs,<b>)))
118
+ ))
119
+ ),(
120
+ <a>
121
+ ),(
122
+ #(sgn?,<b>,(
123
+ #(SU,<b>,#(mod+,#(abs,<a>),<b>))
124
+ ),(
125
+ Z
126
+ ),(
127
+ #(-,#(mod+,#(abs,<a>),#(abs,<b>),(Z)))
128
+ ))
129
+ ))
130
+ ))
131
+ #(sss,mod,(<a>,<b>,Z))'
132
+
133
+
134
+ Divides
135
+ -------
136
+
137
+ Test if one number divides another. The "Z" parameter is returned if "a" is
138
+ zero.
139
+
140
+ #(DS,div?,(
141
+ #(eqn,0,<a>,(Z),(
142
+ #(eqn,0,(#(mod,<b>,<a>)),(T),(F))
143
+ ))
144
+ ))
145
+ #(sss,div?,(<a>,<b>,T,F,Z))'
146
+
147
+
148
+ Greatest Common Divisor
149
+ -----------------------
150
+
151
+ Standard definition of greatest common divisor. The [gcd] form tests positive
152
+ integers, while the gcd form works for all integers.
153
+
154
+ #(DS,[gcd],(
155
+ #(eqn,<b>,0,<a>,(
156
+ #(gcd,<b>,#(mod,<a>,<b>))
157
+ ))
158
+ ))
159
+ #(sss,[gcd],(<a>,<b>))'
160
+
161
+ #(DS,gcd,(
162
+ #(sgn?,#(SU,<a>,<b>),(
163
+ #([gcd],<a>,<b>)
164
+ ),(
165
+ <a>
166
+ ),(
167
+ #([gcd],<b>,<a>)
168
+ ))
169
+ ))
170
+ #(sss,gcd,(<a>,<b>))'
171
+
172
+
173
+ Ceiling
174
+ -------
175
+
176
+ TRAC division takes the floor of the division. But sometimes you need the
177
+ ceiling. The "Z" parameter is returned if "b" is zero.
178
+
179
+ #(DS,ceil,(
180
+ #(div?,<b>,<a>,(
181
+ #(DV,<a>,<b>)
182
+ ),(
183
+ #(AD,1,#(DV,<a>,<b>))
184
+ ),(
185
+ Z
186
+ ))
187
+ ))
188
+ #(sss,ceil,(<a>,<b>,Z))'
189
+
190
+
191
+ Euclidean Division
192
+ ------------------
193
+
194
+ This division will truncate toward zero, instead of truncating down like normal
195
+ TRAC division does. The Z parameter is returned if b is zero.
196
+
197
+ #(DS,DV0,(
198
+ #(sgn?,<b>,(
199
+ #(sgn?,<a>,(
200
+ #(DV,<a>,<b>)
201
+ ),(
202
+ <a>
203
+ ),(
204
+ #(-,#(DV,#(-,<a>),<b>))
205
+ ))
206
+ ),(
207
+ Z
208
+ ),(
209
+ #(sgn?,<a>,(
210
+ #(-,#(DV,<a>,#(-,<b>)))
211
+ ),(
212
+ <a>
213
+ ),(
214
+ #(DV,#(-,<a>),#(-,<b>))
215
+ ))
216
+ ))
217
+ ))
218
+ #(sss,DV0,(<a>,<b>,Z))'
219
+
220
+
221
+ Euclidean Modulo
222
+ ----------------
223
+
224
+ Here's a modulo compatible with Euclidean division. The Z parameter is
225
+ returned if b is zero.
226
+
227
+ #(DS,mod0,(
228
+ #(SU,<a>,#(ML,<b>,#(DV0,<a>,<b>,(Z))))
229
+ ))
230
+ #(sss,mod0,(<a>,<b>,Z))'
231
+
232
+
233
+ Decimal to Octal
234
+ ----------------
235
+ Recursively convert a decimal number to octal. This will go into an infinite
236
+ loop if you try in on negative numbers. That's because TRAC doesn't have a
237
+ specific word size, so a negative octal number has an infinite number of 7's
238
+ in front of it.
239
+
240
+ #(DS,to_oct,(#(eqn,<dec>,0,,(#(to_oct,#(DV,<dec>,8))#(mod,<dec>,8)))))
241
+ #(SS,to_oct,<dec>)'
242
+
243
+
244
+ Octal to Decimal
245
+ ----------------
246
+ This one is more string-based. Since I can't do numeric calculations with
247
+ octals, I have to read the octal number as a string, character by character,
248
+ and then interpret each character as a number.
249
+
250
+ #(DS,to_dec,(
251
+ #(DS,[octal],<octal>)
252
+ #(DS,[to_dec],(
253
+ #(EQ,<digit>,--,
254
+ (#(DD,[octal],[to_dec])<result>),
255
+ (#([to_dec],##(CC,[octal],--),#(AD,<digit>,#(ML,8,<result>))))
256
+ )
257
+ ))
258
+ #(SS,[to_dec],<digit>,<result>)
259
+ #([to_dec],##(CC,[octal],--))
260
+ ))
261
+ #(sss,to_dec,<octal>)'
262
+
263
+
264
+ Random
265
+ ------
266
+
267
+ Now we can define a random number generator. This is a linear congruential
268
+ generator from Wikipedia, using the Borland C/C++ multiplier.
269
+
270
+ https://en.wikipedia.org/wiki/Linear_congruential_generator
271
+
272
+ Remember to define the seed value to an octal number before you call random the
273
+ first time.
274
+
275
+ #(DS,random,(
276
+ #(DS,seed,
277
+ #(BS,#(to_oct,
278
+ #(AD,1,#(ML,22695477,#(to_dec,#(seed))))
279
+ ),-16)
280
+ )
281
+ #(DS,seed,#(BI,#(seed),177777))
282
+ #(seed)
283
+ ))
284
+ #(scrub,random)'
285
+
286
+ One interesting thing to notice in this definition. The "seed" is a number,
287
+ not a script. So I don't use protecting parentheses around its definition
288
+ because I want the definition calculated immediately. This is different from
289
+ almost every other definition I've written in these files, which is why I
290
+ mention it.
291
+
292
+
293
+ Power
294
+ -----
295
+
296
+ Recursive definition of raising a number to a given power. Negative powers
297
+ will return zero.
298
+
299
+ #(DS,power,(
300
+ #(GR,0,<n>,0,(
301
+ #(GR,<n>,0,(
302
+ #(ML,<base>,#(power,<base>,#(SU,<n>,1)))
303
+ ),1)
304
+ ))
305
+ ))
306
+ #(scrub,power)
307
+ #(SS,power,<base>,<n>)'
308
+
309
+
310
+ Power of Two
311
+ ------------
312
+
313
+ This should be much faster than calling the usual power script.
314
+
315
+ #(DS,power2,(#(to_dec,1#(times,n,0))))
316
+ #(SS,power2,n)'
317
+
318
+
319
+ Power of Ten
320
+ ------------
321
+
322
+ A power of ten is just a one with a bunch of zeros after it.
323
+
324
+ #(DS,power10,(1#(times,n,0)))
325
+ #(SS,power10,n)'
326
+
327
+
328
+ Divide Into Decimal
329
+ -------------------
330
+
331
+ This gives you a decimal expansion of a division. By using the Euclidean
332
+ division defined above, it works with both negative and positive numbers.
333
+
334
+ #(DS,decimal-places,10)'
335
+
336
+ #(DS,[DVD],(
337
+ #(GR,<p>,#(decimal-places),,(
338
+ #(DV,<a>,<b>)
339
+ #([DVD],#(ML,10,#(mod,<a>,<b>)),<b>,#(AD,<p>,1))
340
+ ))
341
+ ))
342
+ #(sss,[DVD],(<a>,<b>,<p>))'
343
+
344
+ #(DS,DVD,(
345
+ #(DV0,<a>,<b>,Z).#([DVD],#(ML,10,#(mod,#(abs,<a>),#(abs,<b>))),#(abs,<b>))
346
+ ))
347
+ #(sss,DVD,(<a>,<b>,Z))'
348
+
349
+
350
+ #(PS,(success!
351
+ ))'