torch-rb 0.2.0 → 0.2.5
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +31 -0
- data/README.md +36 -6
- data/ext/torch/ext.cpp +197 -24
- data/ext/torch/extconf.rb +34 -21
- data/lib/torch.rb +102 -6
- data/lib/torch/hub.rb +52 -0
- data/lib/torch/inspector.rb +3 -3
- data/lib/torch/nn/batch_norm.rb +5 -0
- data/lib/torch/nn/conv2d.rb +8 -1
- data/lib/torch/nn/convnd.rb +1 -1
- data/lib/torch/nn/max_poolnd.rb +2 -1
- data/lib/torch/nn/module.rb +45 -8
- data/lib/torch/tensor.rb +48 -26
- data/lib/torch/utils/data/data_loader.rb +32 -4
- data/lib/torch/utils/data/dataset.rb +8 -0
- data/lib/torch/utils/data/tensor_dataset.rb +1 -1
- data/lib/torch/version.rb +1 -1
- metadata +6 -13
- data/ext/torch/nn_functions.cpp +0 -560
- data/ext/torch/nn_functions.hpp +0 -6
- data/ext/torch/tensor_functions.cpp +0 -2085
- data/ext/torch/tensor_functions.hpp +0 -6
- data/ext/torch/torch_functions.cpp +0 -3175
- data/ext/torch/torch_functions.hpp +0 -6
- data/lib/torch/ext.bundle +0 -0
- data/lib/torch/random.rb +0 -10
@@ -6,21 +6,49 @@ module Torch
|
|
6
6
|
|
7
7
|
attr_reader :dataset
|
8
8
|
|
9
|
-
def initialize(dataset, batch_size: 1)
|
9
|
+
def initialize(dataset, batch_size: 1, shuffle: false)
|
10
10
|
@dataset = dataset
|
11
11
|
@batch_size = batch_size
|
12
|
+
@shuffle = shuffle
|
12
13
|
end
|
13
14
|
|
14
15
|
def each
|
15
|
-
|
16
|
-
|
17
|
-
|
16
|
+
# try to keep the random number generator in sync with Python
|
17
|
+
# this makes it easy to compare results
|
18
|
+
base_seed = Torch.empty([], dtype: :int64).random!.item
|
19
|
+
|
20
|
+
indexes =
|
21
|
+
if @shuffle
|
22
|
+
Torch.randperm(@dataset.size).to_a
|
23
|
+
else
|
24
|
+
@dataset.size.times
|
25
|
+
end
|
26
|
+
|
27
|
+
indexes.each_slice(@batch_size) do |idx|
|
28
|
+
batch = idx.map { |i| @dataset[i] }
|
29
|
+
yield collate(batch)
|
18
30
|
end
|
19
31
|
end
|
20
32
|
|
21
33
|
def size
|
22
34
|
(@dataset.size / @batch_size.to_f).ceil
|
23
35
|
end
|
36
|
+
|
37
|
+
private
|
38
|
+
|
39
|
+
def collate(batch)
|
40
|
+
elem = batch[0]
|
41
|
+
case elem
|
42
|
+
when Tensor
|
43
|
+
Torch.stack(batch, 0)
|
44
|
+
when Integer
|
45
|
+
Torch.tensor(batch)
|
46
|
+
when Array
|
47
|
+
batch.transpose.map { |v| collate(v) }
|
48
|
+
else
|
49
|
+
raise NotImpelmentYet
|
50
|
+
end
|
51
|
+
end
|
24
52
|
end
|
25
53
|
end
|
26
54
|
end
|
data/lib/torch/version.rb
CHANGED
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: torch-rb
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 0.2.
|
4
|
+
version: 0.2.5
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- Andrew Kane
|
8
8
|
autorequire:
|
9
9
|
bindir: bin
|
10
10
|
cert_chain: []
|
11
|
-
date: 2020-
|
11
|
+
date: 2020-06-07 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: rice
|
@@ -95,19 +95,19 @@ dependencies:
|
|
95
95
|
- !ruby/object:Gem::Version
|
96
96
|
version: '0'
|
97
97
|
- !ruby/object:Gem::Dependency
|
98
|
-
name:
|
98
|
+
name: torchvision
|
99
99
|
requirement: !ruby/object:Gem::Requirement
|
100
100
|
requirements:
|
101
101
|
- - ">="
|
102
102
|
- !ruby/object:Gem::Version
|
103
|
-
version:
|
103
|
+
version: 0.1.1
|
104
104
|
type: :development
|
105
105
|
prerelease: false
|
106
106
|
version_requirements: !ruby/object:Gem::Requirement
|
107
107
|
requirements:
|
108
108
|
- - ">="
|
109
109
|
- !ruby/object:Gem::Version
|
110
|
-
version:
|
110
|
+
version: 0.1.1
|
111
111
|
description:
|
112
112
|
email: andrew@chartkick.com
|
113
113
|
executables: []
|
@@ -120,17 +120,10 @@ files:
|
|
120
120
|
- README.md
|
121
121
|
- ext/torch/ext.cpp
|
122
122
|
- ext/torch/extconf.rb
|
123
|
-
- ext/torch/nn_functions.cpp
|
124
|
-
- ext/torch/nn_functions.hpp
|
125
123
|
- ext/torch/templates.cpp
|
126
124
|
- ext/torch/templates.hpp
|
127
|
-
- ext/torch/tensor_functions.cpp
|
128
|
-
- ext/torch/tensor_functions.hpp
|
129
|
-
- ext/torch/torch_functions.cpp
|
130
|
-
- ext/torch/torch_functions.hpp
|
131
125
|
- lib/torch-rb.rb
|
132
126
|
- lib/torch.rb
|
133
|
-
- lib/torch/ext.bundle
|
134
127
|
- lib/torch/hub.rb
|
135
128
|
- lib/torch/inspector.rb
|
136
129
|
- lib/torch/native/dispatcher.rb
|
@@ -265,9 +258,9 @@ files:
|
|
265
258
|
- lib/torch/optim/rmsprop.rb
|
266
259
|
- lib/torch/optim/rprop.rb
|
267
260
|
- lib/torch/optim/sgd.rb
|
268
|
-
- lib/torch/random.rb
|
269
261
|
- lib/torch/tensor.rb
|
270
262
|
- lib/torch/utils/data/data_loader.rb
|
263
|
+
- lib/torch/utils/data/dataset.rb
|
271
264
|
- lib/torch/utils/data/tensor_dataset.rb
|
272
265
|
- lib/torch/version.rb
|
273
266
|
homepage: https://github.com/ankane/torch.rb
|
data/ext/torch/nn_functions.cpp
DELETED
@@ -1,560 +0,0 @@
|
|
1
|
-
// generated by rake generate:functions
|
2
|
-
// do not edit by hand
|
3
|
-
|
4
|
-
#include <torch/torch.h>
|
5
|
-
#include <rice/Module.hpp>
|
6
|
-
#include "templates.hpp"
|
7
|
-
|
8
|
-
void add_nn_functions(Module m) {
|
9
|
-
m
|
10
|
-
.define_singleton_method(
|
11
|
-
"_adaptive_avg_pool2d",
|
12
|
-
*[](const Tensor &self, IntArrayRef output_size) {
|
13
|
-
return torch::adaptive_avg_pool2d(self, output_size);
|
14
|
-
})
|
15
|
-
.define_singleton_method(
|
16
|
-
"_adaptive_avg_pool2d_out",
|
17
|
-
*[](const Tensor &self, IntArrayRef output_size, Tensor &out) {
|
18
|
-
return torch::adaptive_avg_pool2d_out(out, self, output_size);
|
19
|
-
})
|
20
|
-
.define_singleton_method(
|
21
|
-
"_adaptive_avg_pool3d",
|
22
|
-
*[](const Tensor &self, IntArrayRef output_size) {
|
23
|
-
return torch::adaptive_avg_pool3d(self, output_size);
|
24
|
-
})
|
25
|
-
.define_singleton_method(
|
26
|
-
"_adaptive_avg_pool3d_out",
|
27
|
-
*[](const Tensor &self, IntArrayRef output_size, Tensor &out) {
|
28
|
-
return torch::adaptive_avg_pool3d_out(out, self, output_size);
|
29
|
-
})
|
30
|
-
.define_singleton_method(
|
31
|
-
"_adaptive_max_pool2d",
|
32
|
-
*[](const Tensor &self, IntArrayRef output_size) {
|
33
|
-
return wrap(torch::adaptive_max_pool2d(self, output_size));
|
34
|
-
})
|
35
|
-
.define_singleton_method(
|
36
|
-
"_adaptive_max_pool2d_out",
|
37
|
-
*[](const Tensor &self, IntArrayRef output_size, Tensor &out, Tensor &indices) {
|
38
|
-
return wrap(torch::adaptive_max_pool2d_out(out, indices, self, output_size));
|
39
|
-
})
|
40
|
-
.define_singleton_method(
|
41
|
-
"_adaptive_max_pool3d",
|
42
|
-
*[](const Tensor &self, IntArrayRef output_size) {
|
43
|
-
return wrap(torch::adaptive_max_pool3d(self, output_size));
|
44
|
-
})
|
45
|
-
.define_singleton_method(
|
46
|
-
"_adaptive_max_pool3d_out",
|
47
|
-
*[](const Tensor &self, IntArrayRef output_size, Tensor &out, Tensor &indices) {
|
48
|
-
return wrap(torch::adaptive_max_pool3d_out(out, indices, self, output_size));
|
49
|
-
})
|
50
|
-
.define_singleton_method(
|
51
|
-
"_avg_pool2d",
|
52
|
-
*[](const Tensor &self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, bool ceil_mode, bool count_include_pad) {
|
53
|
-
return torch::avg_pool2d(self, kernel_size, stride, padding, ceil_mode, count_include_pad);
|
54
|
-
})
|
55
|
-
.define_singleton_method(
|
56
|
-
"_avg_pool2d_divisor_override",
|
57
|
-
*[](const Tensor &self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, bool ceil_mode, bool count_include_pad, int64_t divisor_override) {
|
58
|
-
return torch::avg_pool2d(self, kernel_size, stride, padding, ceil_mode, count_include_pad, divisor_override);
|
59
|
-
})
|
60
|
-
.define_singleton_method(
|
61
|
-
"_avg_pool3d",
|
62
|
-
*[](const Tensor &self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, bool ceil_mode, bool count_include_pad) {
|
63
|
-
return torch::avg_pool3d(self, kernel_size, stride, padding, ceil_mode, count_include_pad);
|
64
|
-
})
|
65
|
-
.define_singleton_method(
|
66
|
-
"_avg_pool3d_divisor_override",
|
67
|
-
*[](const Tensor &self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, bool ceil_mode, bool count_include_pad, int64_t divisor_override) {
|
68
|
-
return torch::avg_pool3d(self, kernel_size, stride, padding, ceil_mode, count_include_pad, divisor_override);
|
69
|
-
})
|
70
|
-
.define_singleton_method(
|
71
|
-
"_binary_cross_entropy",
|
72
|
-
*[](const Tensor &self, const Tensor &target, OptionalTensor weight, MyReduction reduction) {
|
73
|
-
return torch::binary_cross_entropy(self, target, weight, reduction);
|
74
|
-
})
|
75
|
-
.define_singleton_method(
|
76
|
-
"_binary_cross_entropy_out",
|
77
|
-
*[](const Tensor &self, const Tensor &target, OptionalTensor weight, MyReduction reduction, Tensor &out) {
|
78
|
-
return torch::binary_cross_entropy_out(out, self, target, weight, reduction);
|
79
|
-
})
|
80
|
-
.define_singleton_method(
|
81
|
-
"_col2im",
|
82
|
-
*[](const Tensor &self, IntArrayRef output_size, IntArrayRef kernel_size, IntArrayRef dilation, IntArrayRef padding, IntArrayRef stride) {
|
83
|
-
return torch::col2im(self, output_size, kernel_size, dilation, padding, stride);
|
84
|
-
})
|
85
|
-
.define_singleton_method(
|
86
|
-
"_col2im_out",
|
87
|
-
*[](const Tensor &self, IntArrayRef output_size, IntArrayRef kernel_size, IntArrayRef dilation, IntArrayRef padding, IntArrayRef stride, Tensor &out) {
|
88
|
-
return torch::col2im_out(out, self, output_size, kernel_size, dilation, padding, stride);
|
89
|
-
})
|
90
|
-
.define_singleton_method(
|
91
|
-
"_elu",
|
92
|
-
*[](const Tensor &self, Scalar alpha, Scalar scale, Scalar input_scale) {
|
93
|
-
return torch::elu(self, alpha, scale, input_scale);
|
94
|
-
})
|
95
|
-
.define_singleton_method(
|
96
|
-
"_elu_",
|
97
|
-
*[](Tensor &self, Scalar alpha, Scalar scale, Scalar input_scale) {
|
98
|
-
return torch::elu_(self, alpha, scale, input_scale);
|
99
|
-
})
|
100
|
-
.define_singleton_method(
|
101
|
-
"_elu_out",
|
102
|
-
*[](const Tensor &self, Scalar alpha, Scalar scale, Scalar input_scale, Tensor &out) {
|
103
|
-
return torch::elu_out(out, self, alpha, scale, input_scale);
|
104
|
-
})
|
105
|
-
.define_singleton_method(
|
106
|
-
"_fractional_max_pool2d",
|
107
|
-
*[](const Tensor &self, IntArrayRef kernel_size, IntArrayRef output_size, const Tensor &random_samples) {
|
108
|
-
return wrap(torch::fractional_max_pool2d(self, kernel_size, output_size, random_samples));
|
109
|
-
})
|
110
|
-
.define_singleton_method(
|
111
|
-
"_fractional_max_pool2d_output",
|
112
|
-
*[](const Tensor &self, IntArrayRef kernel_size, IntArrayRef output_size, const Tensor &random_samples, Tensor &output, Tensor &indices) {
|
113
|
-
return wrap(torch::fractional_max_pool2d_out(output, indices, self, kernel_size, output_size, random_samples));
|
114
|
-
})
|
115
|
-
.define_singleton_method(
|
116
|
-
"_fractional_max_pool3d",
|
117
|
-
*[](const Tensor &self, IntArrayRef kernel_size, IntArrayRef output_size, const Tensor &random_samples) {
|
118
|
-
return wrap(torch::fractional_max_pool3d(self, kernel_size, output_size, random_samples));
|
119
|
-
})
|
120
|
-
.define_singleton_method(
|
121
|
-
"_fractional_max_pool3d_output",
|
122
|
-
*[](const Tensor &self, IntArrayRef kernel_size, IntArrayRef output_size, const Tensor &random_samples, Tensor &output, Tensor &indices) {
|
123
|
-
return wrap(torch::fractional_max_pool3d_out(output, indices, self, kernel_size, output_size, random_samples));
|
124
|
-
})
|
125
|
-
.define_singleton_method(
|
126
|
-
"_gelu",
|
127
|
-
*[](const Tensor &self) {
|
128
|
-
return torch::gelu(self);
|
129
|
-
})
|
130
|
-
.define_singleton_method(
|
131
|
-
"_glu",
|
132
|
-
*[](const Tensor &self, int64_t dim) {
|
133
|
-
return torch::glu(self, dim);
|
134
|
-
})
|
135
|
-
.define_singleton_method(
|
136
|
-
"_glu_out",
|
137
|
-
*[](const Tensor &self, int64_t dim, Tensor &out) {
|
138
|
-
return torch::glu_out(out, self, dim);
|
139
|
-
})
|
140
|
-
.define_singleton_method(
|
141
|
-
"_hardsigmoid",
|
142
|
-
*[](const Tensor &self) {
|
143
|
-
return torch::hardsigmoid(self);
|
144
|
-
})
|
145
|
-
.define_singleton_method(
|
146
|
-
"_hardsigmoid_",
|
147
|
-
*[](Tensor &self) {
|
148
|
-
return torch::hardsigmoid_(self);
|
149
|
-
})
|
150
|
-
.define_singleton_method(
|
151
|
-
"_hardsigmoid_out",
|
152
|
-
*[](const Tensor &self, Tensor &out) {
|
153
|
-
return torch::hardsigmoid_out(out, self);
|
154
|
-
})
|
155
|
-
.define_singleton_method(
|
156
|
-
"_hardtanh",
|
157
|
-
*[](const Tensor &self, Scalar min_val, Scalar max_val) {
|
158
|
-
return torch::hardtanh(self, min_val, max_val);
|
159
|
-
})
|
160
|
-
.define_singleton_method(
|
161
|
-
"_hardtanh_",
|
162
|
-
*[](Tensor &self, Scalar min_val, Scalar max_val) {
|
163
|
-
return torch::hardtanh_(self, min_val, max_val);
|
164
|
-
})
|
165
|
-
.define_singleton_method(
|
166
|
-
"_hardtanh_out",
|
167
|
-
*[](const Tensor &self, Scalar min_val, Scalar max_val, Tensor &out) {
|
168
|
-
return torch::hardtanh_out(out, self, min_val, max_val);
|
169
|
-
})
|
170
|
-
.define_singleton_method(
|
171
|
-
"_im2col",
|
172
|
-
*[](const Tensor &self, IntArrayRef kernel_size, IntArrayRef dilation, IntArrayRef padding, IntArrayRef stride) {
|
173
|
-
return torch::im2col(self, kernel_size, dilation, padding, stride);
|
174
|
-
})
|
175
|
-
.define_singleton_method(
|
176
|
-
"_im2col_out",
|
177
|
-
*[](const Tensor &self, IntArrayRef kernel_size, IntArrayRef dilation, IntArrayRef padding, IntArrayRef stride, Tensor &out) {
|
178
|
-
return torch::im2col_out(out, self, kernel_size, dilation, padding, stride);
|
179
|
-
})
|
180
|
-
.define_singleton_method(
|
181
|
-
"_l1_loss",
|
182
|
-
*[](const Tensor &self, const Tensor &target, MyReduction reduction) {
|
183
|
-
return torch::l1_loss(self, target, reduction);
|
184
|
-
})
|
185
|
-
.define_singleton_method(
|
186
|
-
"_l1_loss_out",
|
187
|
-
*[](const Tensor &self, const Tensor &target, MyReduction reduction, Tensor &out) {
|
188
|
-
return torch::l1_loss_out(out, self, target, reduction);
|
189
|
-
})
|
190
|
-
.define_singleton_method(
|
191
|
-
"_leaky_relu",
|
192
|
-
*[](const Tensor &self, Scalar negative_slope) {
|
193
|
-
return torch::leaky_relu(self, negative_slope);
|
194
|
-
})
|
195
|
-
.define_singleton_method(
|
196
|
-
"_leaky_relu_",
|
197
|
-
*[](Tensor &self, Scalar negative_slope) {
|
198
|
-
return torch::leaky_relu_(self, negative_slope);
|
199
|
-
})
|
200
|
-
.define_singleton_method(
|
201
|
-
"_leaky_relu_out",
|
202
|
-
*[](const Tensor &self, Scalar negative_slope, Tensor &out) {
|
203
|
-
return torch::leaky_relu_out(out, self, negative_slope);
|
204
|
-
})
|
205
|
-
.define_singleton_method(
|
206
|
-
"_linear",
|
207
|
-
*[](const Tensor &input, const Tensor &weight, OptionalTensor bias) {
|
208
|
-
return torch::linear(input, weight, bias);
|
209
|
-
})
|
210
|
-
.define_singleton_method(
|
211
|
-
"_log_sigmoid",
|
212
|
-
*[](const Tensor &self) {
|
213
|
-
return torch::log_sigmoid(self);
|
214
|
-
})
|
215
|
-
.define_singleton_method(
|
216
|
-
"_log_sigmoid_forward",
|
217
|
-
*[](const Tensor &self) {
|
218
|
-
return wrap(torch::log_sigmoid_forward(self));
|
219
|
-
})
|
220
|
-
.define_singleton_method(
|
221
|
-
"_log_sigmoid_forward_output",
|
222
|
-
*[](const Tensor &self, Tensor &output, Tensor &buffer) {
|
223
|
-
return wrap(torch::log_sigmoid_forward_out(output, buffer, self));
|
224
|
-
})
|
225
|
-
.define_singleton_method(
|
226
|
-
"_log_sigmoid_out",
|
227
|
-
*[](const Tensor &self, Tensor &out) {
|
228
|
-
return torch::log_sigmoid_out(out, self);
|
229
|
-
})
|
230
|
-
.define_singleton_method(
|
231
|
-
"_max_pool2d_with_indices",
|
232
|
-
*[](const Tensor &self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, bool ceil_mode) {
|
233
|
-
return wrap(torch::max_pool2d_with_indices(self, kernel_size, stride, padding, dilation, ceil_mode));
|
234
|
-
})
|
235
|
-
.define_singleton_method(
|
236
|
-
"_max_pool2d_with_indices_out",
|
237
|
-
*[](const Tensor &self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, bool ceil_mode, Tensor &out, Tensor &indices) {
|
238
|
-
return wrap(torch::max_pool2d_with_indices_out(out, indices, self, kernel_size, stride, padding, dilation, ceil_mode));
|
239
|
-
})
|
240
|
-
.define_singleton_method(
|
241
|
-
"_max_pool3d_with_indices",
|
242
|
-
*[](const Tensor &self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, bool ceil_mode) {
|
243
|
-
return wrap(torch::max_pool3d_with_indices(self, kernel_size, stride, padding, dilation, ceil_mode));
|
244
|
-
})
|
245
|
-
.define_singleton_method(
|
246
|
-
"_max_pool3d_with_indices_out",
|
247
|
-
*[](const Tensor &self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, bool ceil_mode, Tensor &out, Tensor &indices) {
|
248
|
-
return wrap(torch::max_pool3d_with_indices_out(out, indices, self, kernel_size, stride, padding, dilation, ceil_mode));
|
249
|
-
})
|
250
|
-
.define_singleton_method(
|
251
|
-
"_max_unpool2d",
|
252
|
-
*[](const Tensor &self, const Tensor &indices, IntArrayRef output_size) {
|
253
|
-
return torch::max_unpool2d(self, indices, output_size);
|
254
|
-
})
|
255
|
-
.define_singleton_method(
|
256
|
-
"_max_unpool2d_out",
|
257
|
-
*[](const Tensor &self, const Tensor &indices, IntArrayRef output_size, Tensor &out) {
|
258
|
-
return torch::max_unpool2d_out(out, self, indices, output_size);
|
259
|
-
})
|
260
|
-
.define_singleton_method(
|
261
|
-
"_max_unpool3d",
|
262
|
-
*[](const Tensor &self, const Tensor &indices, IntArrayRef output_size, IntArrayRef stride, IntArrayRef padding) {
|
263
|
-
return torch::max_unpool3d(self, indices, output_size, stride, padding);
|
264
|
-
})
|
265
|
-
.define_singleton_method(
|
266
|
-
"_max_unpool3d_out",
|
267
|
-
*[](const Tensor &self, const Tensor &indices, IntArrayRef output_size, IntArrayRef stride, IntArrayRef padding, Tensor &out) {
|
268
|
-
return torch::max_unpool3d_out(out, self, indices, output_size, stride, padding);
|
269
|
-
})
|
270
|
-
.define_singleton_method(
|
271
|
-
"_mkldnn_linear",
|
272
|
-
*[](const Tensor &input, const Tensor &weight, OptionalTensor bias) {
|
273
|
-
return torch::mkldnn_linear(input, weight, bias);
|
274
|
-
})
|
275
|
-
.define_singleton_method(
|
276
|
-
"_mkldnn_reorder_conv2d_weight",
|
277
|
-
*[](const Tensor &self, IntArrayRef padding, IntArrayRef stride, IntArrayRef dilation, int64_t groups) {
|
278
|
-
return torch::mkldnn_reorder_conv2d_weight(self, padding, stride, dilation, groups);
|
279
|
-
})
|
280
|
-
.define_singleton_method(
|
281
|
-
"_mse_loss",
|
282
|
-
*[](const Tensor &self, const Tensor &target, MyReduction reduction) {
|
283
|
-
return torch::mse_loss(self, target, reduction);
|
284
|
-
})
|
285
|
-
.define_singleton_method(
|
286
|
-
"_mse_loss_out",
|
287
|
-
*[](const Tensor &self, const Tensor &target, MyReduction reduction, Tensor &out) {
|
288
|
-
return torch::mse_loss_out(out, self, target, reduction);
|
289
|
-
})
|
290
|
-
.define_singleton_method(
|
291
|
-
"_multi_margin_loss",
|
292
|
-
*[](const Tensor &self, const Tensor &target, Scalar p, Scalar margin, OptionalTensor weight, MyReduction reduction) {
|
293
|
-
return torch::multi_margin_loss(self, target, p, margin, weight, reduction);
|
294
|
-
})
|
295
|
-
.define_singleton_method(
|
296
|
-
"_multi_margin_loss_out",
|
297
|
-
*[](const Tensor &self, const Tensor &target, Scalar p, Scalar margin, OptionalTensor weight, MyReduction reduction, Tensor &out) {
|
298
|
-
return torch::multi_margin_loss_out(out, self, target, p, margin, weight, reduction);
|
299
|
-
})
|
300
|
-
.define_singleton_method(
|
301
|
-
"_multilabel_margin_loss",
|
302
|
-
*[](const Tensor &self, const Tensor &target, MyReduction reduction) {
|
303
|
-
return torch::multilabel_margin_loss(self, target, reduction);
|
304
|
-
})
|
305
|
-
.define_singleton_method(
|
306
|
-
"_multilabel_margin_loss_forward",
|
307
|
-
*[](const Tensor &self, const Tensor &target, MyReduction reduction) {
|
308
|
-
return wrap(torch::multilabel_margin_loss_forward(self, target, reduction));
|
309
|
-
})
|
310
|
-
.define_singleton_method(
|
311
|
-
"_multilabel_margin_loss_forward_output",
|
312
|
-
*[](const Tensor &self, const Tensor &target, MyReduction reduction, Tensor &output, Tensor &is_target) {
|
313
|
-
return wrap(torch::multilabel_margin_loss_forward_out(output, is_target, self, target, reduction));
|
314
|
-
})
|
315
|
-
.define_singleton_method(
|
316
|
-
"_multilabel_margin_loss_out",
|
317
|
-
*[](const Tensor &self, const Tensor &target, MyReduction reduction, Tensor &out) {
|
318
|
-
return torch::multilabel_margin_loss_out(out, self, target, reduction);
|
319
|
-
})
|
320
|
-
.define_singleton_method(
|
321
|
-
"_nll_loss",
|
322
|
-
*[](const Tensor &self, const Tensor &target, OptionalTensor weight, MyReduction reduction, int64_t ignore_index) {
|
323
|
-
return torch::nll_loss(self, target, weight, reduction, ignore_index);
|
324
|
-
})
|
325
|
-
.define_singleton_method(
|
326
|
-
"_nll_loss2d",
|
327
|
-
*[](const Tensor &self, const Tensor &target, OptionalTensor weight, MyReduction reduction, int64_t ignore_index) {
|
328
|
-
return torch::nll_loss2d(self, target, weight, reduction, ignore_index);
|
329
|
-
})
|
330
|
-
.define_singleton_method(
|
331
|
-
"_nll_loss2d_forward",
|
332
|
-
*[](const Tensor &self, const Tensor &target, OptionalTensor weight, MyReduction reduction, int64_t ignore_index) {
|
333
|
-
return wrap(torch::nll_loss2d_forward(self, target, weight, reduction, ignore_index));
|
334
|
-
})
|
335
|
-
.define_singleton_method(
|
336
|
-
"_nll_loss2d_forward_output",
|
337
|
-
*[](const Tensor &self, const Tensor &target, OptionalTensor weight, MyReduction reduction, int64_t ignore_index, Tensor &output, Tensor &total_weight) {
|
338
|
-
return wrap(torch::nll_loss2d_forward_out(output, total_weight, self, target, weight, reduction, ignore_index));
|
339
|
-
})
|
340
|
-
.define_singleton_method(
|
341
|
-
"_nll_loss2d_out",
|
342
|
-
*[](const Tensor &self, const Tensor &target, OptionalTensor weight, MyReduction reduction, int64_t ignore_index, Tensor &out) {
|
343
|
-
return torch::nll_loss2d_out(out, self, target, weight, reduction, ignore_index);
|
344
|
-
})
|
345
|
-
.define_singleton_method(
|
346
|
-
"_nll_loss_forward",
|
347
|
-
*[](const Tensor &self, const Tensor &target, OptionalTensor weight, MyReduction reduction, int64_t ignore_index) {
|
348
|
-
return wrap(torch::nll_loss_forward(self, target, weight, reduction, ignore_index));
|
349
|
-
})
|
350
|
-
.define_singleton_method(
|
351
|
-
"_nll_loss_forward_output",
|
352
|
-
*[](const Tensor &self, const Tensor &target, OptionalTensor weight, MyReduction reduction, int64_t ignore_index, Tensor &output, Tensor &total_weight) {
|
353
|
-
return wrap(torch::nll_loss_forward_out(output, total_weight, self, target, weight, reduction, ignore_index));
|
354
|
-
})
|
355
|
-
.define_singleton_method(
|
356
|
-
"_nll_loss_out",
|
357
|
-
*[](const Tensor &self, const Tensor &target, OptionalTensor weight, MyReduction reduction, int64_t ignore_index, Tensor &out) {
|
358
|
-
return torch::nll_loss_out(out, self, target, weight, reduction, ignore_index);
|
359
|
-
})
|
360
|
-
.define_singleton_method(
|
361
|
-
"_one_hot",
|
362
|
-
*[](const Tensor &self, int64_t num_classes) {
|
363
|
-
return torch::one_hot(self, num_classes);
|
364
|
-
})
|
365
|
-
.define_singleton_method(
|
366
|
-
"_reflection_pad1d",
|
367
|
-
*[](const Tensor &self, IntArrayRef padding) {
|
368
|
-
return torch::reflection_pad1d(self, padding);
|
369
|
-
})
|
370
|
-
.define_singleton_method(
|
371
|
-
"_reflection_pad1d_out",
|
372
|
-
*[](const Tensor &self, IntArrayRef padding, Tensor &out) {
|
373
|
-
return torch::reflection_pad1d_out(out, self, padding);
|
374
|
-
})
|
375
|
-
.define_singleton_method(
|
376
|
-
"_reflection_pad2d",
|
377
|
-
*[](const Tensor &self, IntArrayRef padding) {
|
378
|
-
return torch::reflection_pad2d(self, padding);
|
379
|
-
})
|
380
|
-
.define_singleton_method(
|
381
|
-
"_reflection_pad2d_out",
|
382
|
-
*[](const Tensor &self, IntArrayRef padding, Tensor &out) {
|
383
|
-
return torch::reflection_pad2d_out(out, self, padding);
|
384
|
-
})
|
385
|
-
.define_singleton_method(
|
386
|
-
"_replication_pad1d",
|
387
|
-
*[](const Tensor &self, IntArrayRef padding) {
|
388
|
-
return torch::replication_pad1d(self, padding);
|
389
|
-
})
|
390
|
-
.define_singleton_method(
|
391
|
-
"_replication_pad1d_out",
|
392
|
-
*[](const Tensor &self, IntArrayRef padding, Tensor &out) {
|
393
|
-
return torch::replication_pad1d_out(out, self, padding);
|
394
|
-
})
|
395
|
-
.define_singleton_method(
|
396
|
-
"_replication_pad2d",
|
397
|
-
*[](const Tensor &self, IntArrayRef padding) {
|
398
|
-
return torch::replication_pad2d(self, padding);
|
399
|
-
})
|
400
|
-
.define_singleton_method(
|
401
|
-
"_replication_pad2d_out",
|
402
|
-
*[](const Tensor &self, IntArrayRef padding, Tensor &out) {
|
403
|
-
return torch::replication_pad2d_out(out, self, padding);
|
404
|
-
})
|
405
|
-
.define_singleton_method(
|
406
|
-
"_replication_pad3d",
|
407
|
-
*[](const Tensor &self, IntArrayRef padding) {
|
408
|
-
return torch::replication_pad3d(self, padding);
|
409
|
-
})
|
410
|
-
.define_singleton_method(
|
411
|
-
"_replication_pad3d_out",
|
412
|
-
*[](const Tensor &self, IntArrayRef padding, Tensor &out) {
|
413
|
-
return torch::replication_pad3d_out(out, self, padding);
|
414
|
-
})
|
415
|
-
.define_singleton_method(
|
416
|
-
"_rrelu_with_noise",
|
417
|
-
*[](const Tensor &self, const Tensor &noise, Scalar lower, Scalar upper, bool training) {
|
418
|
-
return torch::rrelu_with_noise(self, noise, lower, upper, training);
|
419
|
-
})
|
420
|
-
.define_singleton_method(
|
421
|
-
"_rrelu_with_noise_",
|
422
|
-
*[](Tensor &self, const Tensor &noise, Scalar lower, Scalar upper, bool training) {
|
423
|
-
return torch::rrelu_with_noise_(self, noise, lower, upper, training);
|
424
|
-
})
|
425
|
-
.define_singleton_method(
|
426
|
-
"_rrelu_with_noise_out",
|
427
|
-
*[](const Tensor &self, const Tensor &noise, Scalar lower, Scalar upper, bool training, Tensor &out) {
|
428
|
-
return torch::rrelu_with_noise_out(out, self, noise, lower, upper, training);
|
429
|
-
})
|
430
|
-
.define_singleton_method(
|
431
|
-
"_slow_conv3d",
|
432
|
-
*[](const Tensor &self, const Tensor &weight, IntArrayRef kernel_size, OptionalTensor bias, IntArrayRef stride, IntArrayRef padding) {
|
433
|
-
return torch::slow_conv3d(self, weight, kernel_size, bias, stride, padding);
|
434
|
-
})
|
435
|
-
.define_singleton_method(
|
436
|
-
"_slow_conv3d_forward",
|
437
|
-
*[](const Tensor &self, const Tensor &weight, IntArrayRef kernel_size, OptionalTensor bias, IntArrayRef stride, IntArrayRef padding) {
|
438
|
-
return wrap(torch::slow_conv3d_forward(self, weight, kernel_size, bias, stride, padding));
|
439
|
-
})
|
440
|
-
.define_singleton_method(
|
441
|
-
"_slow_conv3d_forward_output",
|
442
|
-
*[](const Tensor &self, const Tensor &weight, IntArrayRef kernel_size, OptionalTensor bias, IntArrayRef stride, IntArrayRef padding, Tensor &output, Tensor &finput, Tensor &fgrad_input) {
|
443
|
-
return wrap(torch::slow_conv3d_forward_out(output, finput, fgrad_input, self, weight, kernel_size, bias, stride, padding));
|
444
|
-
})
|
445
|
-
.define_singleton_method(
|
446
|
-
"_slow_conv3d_out",
|
447
|
-
*[](const Tensor &self, const Tensor &weight, IntArrayRef kernel_size, OptionalTensor bias, IntArrayRef stride, IntArrayRef padding, Tensor &out) {
|
448
|
-
return torch::slow_conv3d_out(out, self, weight, kernel_size, bias, stride, padding);
|
449
|
-
})
|
450
|
-
.define_singleton_method(
|
451
|
-
"_slow_conv_dilated2d",
|
452
|
-
*[](const Tensor &self, const Tensor &weight, IntArrayRef kernel_size, OptionalTensor bias, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation) {
|
453
|
-
return torch::slow_conv_dilated2d(self, weight, kernel_size, bias, stride, padding, dilation);
|
454
|
-
})
|
455
|
-
.define_singleton_method(
|
456
|
-
"_slow_conv_dilated3d",
|
457
|
-
*[](const Tensor &self, const Tensor &weight, IntArrayRef kernel_size, OptionalTensor bias, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation) {
|
458
|
-
return torch::slow_conv_dilated3d(self, weight, kernel_size, bias, stride, padding, dilation);
|
459
|
-
})
|
460
|
-
.define_singleton_method(
|
461
|
-
"_slow_conv_transpose2d",
|
462
|
-
*[](const Tensor &self, const Tensor &weight, IntArrayRef kernel_size, OptionalTensor bias, IntArrayRef stride, IntArrayRef padding, IntArrayRef output_padding, IntArrayRef dilation) {
|
463
|
-
return torch::slow_conv_transpose2d(self, weight, kernel_size, bias, stride, padding, output_padding, dilation);
|
464
|
-
})
|
465
|
-
.define_singleton_method(
|
466
|
-
"_slow_conv_transpose2d_out",
|
467
|
-
*[](const Tensor &self, const Tensor &weight, IntArrayRef kernel_size, OptionalTensor bias, IntArrayRef stride, IntArrayRef padding, IntArrayRef output_padding, IntArrayRef dilation, Tensor &out) {
|
468
|
-
return torch::slow_conv_transpose2d_out(out, self, weight, kernel_size, bias, stride, padding, output_padding, dilation);
|
469
|
-
})
|
470
|
-
.define_singleton_method(
|
471
|
-
"_slow_conv_transpose3d",
|
472
|
-
*[](const Tensor &self, const Tensor &weight, IntArrayRef kernel_size, OptionalTensor bias, IntArrayRef stride, IntArrayRef padding, IntArrayRef output_padding, IntArrayRef dilation) {
|
473
|
-
return torch::slow_conv_transpose3d(self, weight, kernel_size, bias, stride, padding, output_padding, dilation);
|
474
|
-
})
|
475
|
-
.define_singleton_method(
|
476
|
-
"_slow_conv_transpose3d_out",
|
477
|
-
*[](const Tensor &self, const Tensor &weight, IntArrayRef kernel_size, OptionalTensor bias, IntArrayRef stride, IntArrayRef padding, IntArrayRef output_padding, IntArrayRef dilation, Tensor &out) {
|
478
|
-
return torch::slow_conv_transpose3d_out(out, self, weight, kernel_size, bias, stride, padding, output_padding, dilation);
|
479
|
-
})
|
480
|
-
.define_singleton_method(
|
481
|
-
"_smooth_l1_loss",
|
482
|
-
*[](const Tensor &self, const Tensor &target, MyReduction reduction) {
|
483
|
-
return torch::smooth_l1_loss(self, target, reduction);
|
484
|
-
})
|
485
|
-
.define_singleton_method(
|
486
|
-
"_smooth_l1_loss_out",
|
487
|
-
*[](const Tensor &self, const Tensor &target, MyReduction reduction, Tensor &out) {
|
488
|
-
return torch::smooth_l1_loss_out(out, self, target, reduction);
|
489
|
-
})
|
490
|
-
.define_singleton_method(
|
491
|
-
"_soft_margin_loss",
|
492
|
-
*[](const Tensor &self, const Tensor &target, MyReduction reduction) {
|
493
|
-
return torch::soft_margin_loss(self, target, reduction);
|
494
|
-
})
|
495
|
-
.define_singleton_method(
|
496
|
-
"_soft_margin_loss_out",
|
497
|
-
*[](const Tensor &self, const Tensor &target, MyReduction reduction, Tensor &out) {
|
498
|
-
return torch::soft_margin_loss_out(out, self, target, reduction);
|
499
|
-
})
|
500
|
-
.define_singleton_method(
|
501
|
-
"_softplus",
|
502
|
-
*[](const Tensor &self, Scalar beta, Scalar threshold) {
|
503
|
-
return torch::softplus(self, beta, threshold);
|
504
|
-
})
|
505
|
-
.define_singleton_method(
|
506
|
-
"_softplus_out",
|
507
|
-
*[](const Tensor &self, Scalar beta, Scalar threshold, Tensor &out) {
|
508
|
-
return torch::softplus_out(out, self, beta, threshold);
|
509
|
-
})
|
510
|
-
.define_singleton_method(
|
511
|
-
"_softshrink",
|
512
|
-
*[](const Tensor &self, Scalar lambd) {
|
513
|
-
return torch::softshrink(self, lambd);
|
514
|
-
})
|
515
|
-
.define_singleton_method(
|
516
|
-
"_softshrink_out",
|
517
|
-
*[](const Tensor &self, Scalar lambd, Tensor &out) {
|
518
|
-
return torch::softshrink_out(out, self, lambd);
|
519
|
-
})
|
520
|
-
.define_singleton_method(
|
521
|
-
"_thnn_conv2d",
|
522
|
-
*[](const Tensor &self, const Tensor &weight, IntArrayRef kernel_size, OptionalTensor bias, IntArrayRef stride, IntArrayRef padding) {
|
523
|
-
return torch::thnn_conv2d(self, weight, kernel_size, bias, stride, padding);
|
524
|
-
})
|
525
|
-
.define_singleton_method(
|
526
|
-
"_thnn_conv2d_forward",
|
527
|
-
*[](const Tensor &self, const Tensor &weight, IntArrayRef kernel_size, OptionalTensor bias, IntArrayRef stride, IntArrayRef padding) {
|
528
|
-
return wrap(torch::thnn_conv2d_forward(self, weight, kernel_size, bias, stride, padding));
|
529
|
-
})
|
530
|
-
.define_singleton_method(
|
531
|
-
"_thnn_conv2d_forward_output",
|
532
|
-
*[](const Tensor &self, const Tensor &weight, IntArrayRef kernel_size, OptionalTensor bias, IntArrayRef stride, IntArrayRef padding, Tensor &output, Tensor &finput, Tensor &fgrad_input) {
|
533
|
-
return wrap(torch::thnn_conv2d_forward_out(output, finput, fgrad_input, self, weight, kernel_size, bias, stride, padding));
|
534
|
-
})
|
535
|
-
.define_singleton_method(
|
536
|
-
"_thnn_conv2d_out",
|
537
|
-
*[](const Tensor &self, const Tensor &weight, IntArrayRef kernel_size, OptionalTensor bias, IntArrayRef stride, IntArrayRef padding, Tensor &out) {
|
538
|
-
return torch::thnn_conv2d_out(out, self, weight, kernel_size, bias, stride, padding);
|
539
|
-
})
|
540
|
-
.define_singleton_method(
|
541
|
-
"_thnn_conv_depthwise2d",
|
542
|
-
*[](const Tensor &self, const Tensor &weight, IntArrayRef kernel_size, OptionalTensor bias, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation) {
|
543
|
-
return torch::thnn_conv_depthwise2d(self, weight, kernel_size, bias, stride, padding, dilation);
|
544
|
-
})
|
545
|
-
.define_singleton_method(
|
546
|
-
"_thnn_conv_depthwise2d_forward",
|
547
|
-
*[](const Tensor &self, const Tensor &weight, IntArrayRef kernel_size, OptionalTensor bias, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation) {
|
548
|
-
return torch::thnn_conv_depthwise2d_forward(self, weight, kernel_size, bias, stride, padding, dilation);
|
549
|
-
})
|
550
|
-
.define_singleton_method(
|
551
|
-
"_thnn_conv_depthwise2d_forward_out",
|
552
|
-
*[](const Tensor &self, const Tensor &weight, IntArrayRef kernel_size, OptionalTensor bias, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, Tensor &out) {
|
553
|
-
return torch::thnn_conv_depthwise2d_forward_out(out, self, weight, kernel_size, bias, stride, padding, dilation);
|
554
|
-
})
|
555
|
-
.define_singleton_method(
|
556
|
-
"_thnn_conv_depthwise2d_out",
|
557
|
-
*[](const Tensor &self, const Tensor &weight, IntArrayRef kernel_size, OptionalTensor bias, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, Tensor &out) {
|
558
|
-
return torch::thnn_conv_depthwise2d_out(out, self, weight, kernel_size, bias, stride, padding, dilation);
|
559
|
-
});
|
560
|
-
}
|