torch-rb 0.2.0 → 0.2.5
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +31 -0
- data/README.md +36 -6
- data/ext/torch/ext.cpp +197 -24
- data/ext/torch/extconf.rb +34 -21
- data/lib/torch.rb +102 -6
- data/lib/torch/hub.rb +52 -0
- data/lib/torch/inspector.rb +3 -3
- data/lib/torch/nn/batch_norm.rb +5 -0
- data/lib/torch/nn/conv2d.rb +8 -1
- data/lib/torch/nn/convnd.rb +1 -1
- data/lib/torch/nn/max_poolnd.rb +2 -1
- data/lib/torch/nn/module.rb +45 -8
- data/lib/torch/tensor.rb +48 -26
- data/lib/torch/utils/data/data_loader.rb +32 -4
- data/lib/torch/utils/data/dataset.rb +8 -0
- data/lib/torch/utils/data/tensor_dataset.rb +1 -1
- data/lib/torch/version.rb +1 -1
- metadata +6 -13
- data/ext/torch/nn_functions.cpp +0 -560
- data/ext/torch/nn_functions.hpp +0 -6
- data/ext/torch/tensor_functions.cpp +0 -2085
- data/ext/torch/tensor_functions.hpp +0 -6
- data/ext/torch/torch_functions.cpp +0 -3175
- data/ext/torch/torch_functions.hpp +0 -6
- data/lib/torch/ext.bundle +0 -0
- data/lib/torch/random.rb +0 -10
data/ext/torch/extconf.rb
CHANGED
@@ -2,28 +2,33 @@ require "mkmf-rice"
|
|
2
2
|
|
3
3
|
abort "Missing stdc++" unless have_library("stdc++")
|
4
4
|
|
5
|
-
$CXXFLAGS
|
5
|
+
$CXXFLAGS += " -std=c++14"
|
6
6
|
|
7
7
|
# change to 0 for Linux pre-cxx11 ABI version
|
8
|
-
$CXXFLAGS
|
8
|
+
$CXXFLAGS += " -D_GLIBCXX_USE_CXX11_ABI=1"
|
9
9
|
|
10
10
|
# TODO check compiler name
|
11
11
|
clang = RbConfig::CONFIG["host_os"] =~ /darwin/i
|
12
12
|
|
13
|
+
# check omp first
|
13
14
|
if have_library("omp") || have_library("gomp")
|
14
|
-
$CXXFLAGS
|
15
|
-
$CXXFLAGS
|
16
|
-
$CXXFLAGS
|
15
|
+
$CXXFLAGS += " -DAT_PARALLEL_OPENMP=1"
|
16
|
+
$CXXFLAGS += " -Xclang" if clang
|
17
|
+
$CXXFLAGS += " -fopenmp"
|
17
18
|
end
|
18
19
|
|
19
|
-
# silence ruby/intern.h warning
|
20
|
-
$CXXFLAGS << " -Wno-deprecated-register"
|
21
|
-
|
22
|
-
# silence torch warnings
|
23
20
|
if clang
|
24
|
-
|
21
|
+
# silence ruby/intern.h warning
|
22
|
+
$CXXFLAGS += " -Wno-deprecated-register"
|
23
|
+
|
24
|
+
# silence torch warnings
|
25
|
+
$CXXFLAGS += " -Wno-shorten-64-to-32 -Wno-missing-noreturn"
|
25
26
|
else
|
26
|
-
|
27
|
+
# silence rice warnings
|
28
|
+
$CXXFLAGS += " -Wno-noexcept-type"
|
29
|
+
|
30
|
+
# silence torch warnings
|
31
|
+
$CXXFLAGS += " -Wno-duplicated-cond -Wno-suggest-attribute=noreturn"
|
27
32
|
end
|
28
33
|
|
29
34
|
inc, lib = dir_config("torch")
|
@@ -34,22 +39,30 @@ cuda_inc, cuda_lib = dir_config("cuda")
|
|
34
39
|
cuda_inc ||= "/usr/local/cuda/include"
|
35
40
|
cuda_lib ||= "/usr/local/cuda/lib64"
|
36
41
|
|
37
|
-
|
42
|
+
$LDFLAGS += " -L#{lib}" if Dir.exist?(lib)
|
43
|
+
abort "LibTorch not found" unless have_library("torch")
|
44
|
+
|
45
|
+
have_library("mkldnn")
|
46
|
+
have_library("nnpack")
|
47
|
+
|
48
|
+
with_cuda = false
|
49
|
+
if Dir["#{lib}/*torch_cuda*"].any?
|
50
|
+
$LDFLAGS += " -L#{cuda_lib}" if Dir.exist?(cuda_lib)
|
51
|
+
with_cuda = have_library("cuda") && have_library("cudnn")
|
52
|
+
end
|
38
53
|
|
39
|
-
$INCFLAGS
|
40
|
-
$INCFLAGS
|
54
|
+
$INCFLAGS += " -I#{inc}"
|
55
|
+
$INCFLAGS += " -I#{inc}/torch/csrc/api/include"
|
41
56
|
|
42
|
-
$LDFLAGS
|
43
|
-
$LDFLAGS
|
44
|
-
$LDFLAGS << " -L#{lib}"
|
45
|
-
$LDFLAGS << " -L#{cuda_lib}" if with_cuda
|
57
|
+
$LDFLAGS += " -Wl,-rpath,#{lib}"
|
58
|
+
$LDFLAGS += ":#{cuda_lib}/stubs:#{cuda_lib}" if with_cuda
|
46
59
|
|
47
60
|
# https://github.com/pytorch/pytorch/blob/v1.5.0/torch/utils/cpp_extension.py#L1232-L1238
|
48
|
-
$LDFLAGS
|
61
|
+
$LDFLAGS += " -lc10 -ltorch_cpu -ltorch"
|
49
62
|
if with_cuda
|
50
|
-
$LDFLAGS
|
63
|
+
$LDFLAGS += " -lcuda -lnvrtc -lnvToolsExt -lcudart -lc10_cuda -ltorch_cuda -lcufft -lcurand -lcublas -lcudnn"
|
51
64
|
# TODO figure out why this is needed
|
52
|
-
$LDFLAGS
|
65
|
+
$LDFLAGS += " -Wl,--no-as-needed,#{lib}/libtorch.so"
|
53
66
|
end
|
54
67
|
|
55
68
|
# generate C++ functions
|
data/lib/torch.rb
CHANGED
@@ -1,6 +1,11 @@
|
|
1
1
|
# ext
|
2
2
|
require "torch/ext"
|
3
3
|
|
4
|
+
# stdlib
|
5
|
+
require "fileutils"
|
6
|
+
require "net/http"
|
7
|
+
require "tmpdir"
|
8
|
+
|
4
9
|
# native functions
|
5
10
|
require "torch/native/generator"
|
6
11
|
require "torch/native/parser"
|
@@ -174,11 +179,9 @@ require "torch/nn/init"
|
|
174
179
|
|
175
180
|
# utils
|
176
181
|
require "torch/utils/data/data_loader"
|
182
|
+
require "torch/utils/data/dataset"
|
177
183
|
require "torch/utils/data/tensor_dataset"
|
178
184
|
|
179
|
-
# random
|
180
|
-
require "torch/random"
|
181
|
-
|
182
185
|
# hub
|
183
186
|
require "torch/hub"
|
184
187
|
|
@@ -317,12 +320,11 @@ module Torch
|
|
317
320
|
end
|
318
321
|
|
319
322
|
def save(obj, f)
|
320
|
-
|
321
|
-
File.binwrite(f, _save(obj))
|
323
|
+
File.binwrite(f, _save(to_ivalue(obj)))
|
322
324
|
end
|
323
325
|
|
324
326
|
def load(f)
|
325
|
-
|
327
|
+
to_ruby(_load(File.binread(f)))
|
326
328
|
end
|
327
329
|
|
328
330
|
# --- begin tensor creation: https://pytorch.org/cppdocs/notes/tensor_creation.html ---
|
@@ -447,6 +449,100 @@ module Torch
|
|
447
449
|
|
448
450
|
private
|
449
451
|
|
452
|
+
def to_ivalue(obj)
|
453
|
+
case obj
|
454
|
+
when String
|
455
|
+
IValue.from_string(obj)
|
456
|
+
when Integer
|
457
|
+
IValue.from_int(obj)
|
458
|
+
when Tensor
|
459
|
+
IValue.from_tensor(obj)
|
460
|
+
when Float
|
461
|
+
IValue.from_double(obj)
|
462
|
+
when Hash
|
463
|
+
dict = {}
|
464
|
+
obj.each do |k, v|
|
465
|
+
dict[to_ivalue(k)] = to_ivalue(v)
|
466
|
+
end
|
467
|
+
IValue.from_dict(dict)
|
468
|
+
when true, false
|
469
|
+
IValue.from_bool(obj)
|
470
|
+
when nil
|
471
|
+
IValue.new
|
472
|
+
when Array
|
473
|
+
if obj.all? { |v| v.is_a?(Tensor) }
|
474
|
+
IValue.from_list(obj.map { |v| IValue.from_tensor(v) })
|
475
|
+
else
|
476
|
+
raise Error, "Unknown list type"
|
477
|
+
end
|
478
|
+
else
|
479
|
+
raise Error, "Unknown type: #{obj.class.name}"
|
480
|
+
end
|
481
|
+
end
|
482
|
+
|
483
|
+
def to_ruby(ivalue)
|
484
|
+
if ivalue.bool?
|
485
|
+
ivalue.to_bool
|
486
|
+
elsif ivalue.double?
|
487
|
+
ivalue.to_double
|
488
|
+
elsif ivalue.int?
|
489
|
+
ivalue.to_int
|
490
|
+
elsif ivalue.none?
|
491
|
+
nil
|
492
|
+
elsif ivalue.string?
|
493
|
+
ivalue.to_string_ref
|
494
|
+
elsif ivalue.tensor?
|
495
|
+
ivalue.to_tensor
|
496
|
+
elsif ivalue.generic_dict?
|
497
|
+
dict = {}
|
498
|
+
ivalue.to_generic_dict.each do |k, v|
|
499
|
+
dict[to_ruby(k)] = to_ruby(v)
|
500
|
+
end
|
501
|
+
dict
|
502
|
+
elsif ivalue.list?
|
503
|
+
ivalue.to_list.map { |v| to_ruby(v) }
|
504
|
+
else
|
505
|
+
type =
|
506
|
+
if ivalue.capsule?
|
507
|
+
"Capsule"
|
508
|
+
elsif ivalue.custom_class?
|
509
|
+
"CustomClass"
|
510
|
+
elsif ivalue.tuple?
|
511
|
+
"Tuple"
|
512
|
+
elsif ivalue.future?
|
513
|
+
"Future"
|
514
|
+
elsif ivalue.r_ref?
|
515
|
+
"RRef"
|
516
|
+
elsif ivalue.int_list?
|
517
|
+
"IntList"
|
518
|
+
elsif ivalue.double_list?
|
519
|
+
"DoubleList"
|
520
|
+
elsif ivalue.bool_list?
|
521
|
+
"BoolList"
|
522
|
+
elsif ivalue.tensor_list?
|
523
|
+
"TensorList"
|
524
|
+
elsif ivalue.object?
|
525
|
+
"Object"
|
526
|
+
elsif ivalue.module?
|
527
|
+
"Module"
|
528
|
+
elsif ivalue.py_object?
|
529
|
+
"PyObject"
|
530
|
+
elsif ivalue.scalar?
|
531
|
+
"Scalar"
|
532
|
+
elsif ivalue.device?
|
533
|
+
"Device"
|
534
|
+
# elsif ivalue.generator?
|
535
|
+
# "Generator"
|
536
|
+
elsif ivalue.ptr_type?
|
537
|
+
"PtrType"
|
538
|
+
else
|
539
|
+
"Unknown"
|
540
|
+
end
|
541
|
+
|
542
|
+
raise Error, "Unsupported type: #{type}"
|
543
|
+
end
|
544
|
+
end
|
545
|
+
|
450
546
|
def tensor_size(size)
|
451
547
|
size.flatten
|
452
548
|
end
|
data/lib/torch/hub.rb
CHANGED
@@ -4,6 +4,58 @@ module Torch
|
|
4
4
|
def list(github, force_reload: false)
|
5
5
|
raise NotImplementedYet
|
6
6
|
end
|
7
|
+
|
8
|
+
def download_url_to_file(url, dst)
|
9
|
+
uri = URI(url)
|
10
|
+
tmp = "#{Dir.tmpdir}/#{Time.now.to_f}" # TODO better name
|
11
|
+
location = nil
|
12
|
+
|
13
|
+
Net::HTTP.start(uri.host, uri.port, use_ssl: uri.scheme == "https") do |http|
|
14
|
+
request = Net::HTTP::Get.new(uri)
|
15
|
+
|
16
|
+
puts "Downloading #{url}..."
|
17
|
+
File.open(tmp, "wb") do |f|
|
18
|
+
http.request(request) do |response|
|
19
|
+
case response
|
20
|
+
when Net::HTTPRedirection
|
21
|
+
location = response["location"]
|
22
|
+
when Net::HTTPSuccess
|
23
|
+
response.read_body do |chunk|
|
24
|
+
f.write(chunk)
|
25
|
+
end
|
26
|
+
else
|
27
|
+
raise Error, "Bad response"
|
28
|
+
end
|
29
|
+
end
|
30
|
+
end
|
31
|
+
end
|
32
|
+
|
33
|
+
if location
|
34
|
+
download_url_to_file(location, dst)
|
35
|
+
else
|
36
|
+
FileUtils.mv(tmp, dst)
|
37
|
+
nil
|
38
|
+
end
|
39
|
+
end
|
40
|
+
|
41
|
+
def load_state_dict_from_url(url, model_dir: nil)
|
42
|
+
unless model_dir
|
43
|
+
torch_home = ENV["TORCH_HOME"] || "#{ENV["XDG_CACHE_HOME"] || "#{ENV["HOME"]}/.cache"}/torch"
|
44
|
+
model_dir = File.join(torch_home, "checkpoints")
|
45
|
+
end
|
46
|
+
|
47
|
+
FileUtils.mkdir_p(model_dir)
|
48
|
+
|
49
|
+
parts = URI(url)
|
50
|
+
filename = File.basename(parts.path)
|
51
|
+
cached_file = File.join(model_dir, filename)
|
52
|
+
unless File.exist?(cached_file)
|
53
|
+
# TODO support hash_prefix
|
54
|
+
download_url_to_file(url, cached_file)
|
55
|
+
end
|
56
|
+
|
57
|
+
Torch.load(cached_file)
|
58
|
+
end
|
7
59
|
end
|
8
60
|
end
|
9
61
|
end
|
data/lib/torch/inspector.rb
CHANGED
@@ -1,6 +1,6 @@
|
|
1
1
|
module Torch
|
2
2
|
module Inspector
|
3
|
-
# TODO make more
|
3
|
+
# TODO make more performant, especially when summarizing
|
4
4
|
# how? only read data that will be displayed
|
5
5
|
def inspect
|
6
6
|
data =
|
@@ -14,7 +14,7 @@ module Torch
|
|
14
14
|
if dtype == :bool
|
15
15
|
fmt = "%s"
|
16
16
|
else
|
17
|
-
values =
|
17
|
+
values = _flat_data
|
18
18
|
abs = values.select { |v| v != 0 }.map(&:abs)
|
19
19
|
max = abs.max || 1
|
20
20
|
min = abs.min || 1
|
@@ -25,7 +25,7 @@ module Torch
|
|
25
25
|
end
|
26
26
|
|
27
27
|
if floating_point?
|
28
|
-
sci = max
|
28
|
+
sci = max > 1e8 || max < 1e-4
|
29
29
|
|
30
30
|
all_int = values.all? { |v| v.finite? && v == v.to_i }
|
31
31
|
decimal = all_int ? 1 : 4
|
data/lib/torch/nn/batch_norm.rb
CHANGED
@@ -70,6 +70,11 @@ module Torch
|
|
70
70
|
momentum: exponential_average_factor, eps: @eps
|
71
71
|
)
|
72
72
|
end
|
73
|
+
|
74
|
+
def extra_inspect
|
75
|
+
s = "%{num_features}, eps: %{eps}, momentum: %{momentum}, affine: %{affine}, track_running_stats: %{track_running_stats}"
|
76
|
+
format(s, **dict)
|
77
|
+
end
|
73
78
|
end
|
74
79
|
end
|
75
80
|
end
|
data/lib/torch/nn/conv2d.rb
CHANGED
@@ -20,7 +20,14 @@ module Torch
|
|
20
20
|
|
21
21
|
# TODO add more parameters
|
22
22
|
def extra_inspect
|
23
|
-
|
23
|
+
s = String.new("%{in_channels}, %{out_channels}, kernel_size: %{kernel_size}, stride: %{stride}")
|
24
|
+
s += ", padding: %{padding}" if @padding != [0] * @padding.size
|
25
|
+
s += ", dilation: %{dilation}" if @dilation != [1] * @dilation.size
|
26
|
+
s += ", output_padding: %{output_padding}" if @output_padding != [0] * @output_padding.size
|
27
|
+
s += ", groups: %{groups}" if @groups != 1
|
28
|
+
s += ", bias: false" unless @bias
|
29
|
+
s += ", padding_mode: %{padding_mode}" if @padding_mode != "zeros"
|
30
|
+
format(s, **dict)
|
24
31
|
end
|
25
32
|
end
|
26
33
|
end
|
data/lib/torch/nn/convnd.rb
CHANGED
data/lib/torch/nn/max_poolnd.rb
CHANGED
data/lib/torch/nn/module.rb
CHANGED
@@ -67,8 +67,9 @@ module Torch
|
|
67
67
|
self
|
68
68
|
end
|
69
69
|
|
70
|
-
|
71
|
-
|
70
|
+
# TODO add device
|
71
|
+
def cuda
|
72
|
+
_apply ->(t) { t.cuda }
|
72
73
|
end
|
73
74
|
|
74
75
|
def cpu
|
@@ -112,8 +113,28 @@ module Torch
|
|
112
113
|
destination
|
113
114
|
end
|
114
115
|
|
116
|
+
# TODO add strict option
|
117
|
+
# TODO match PyTorch behavior
|
115
118
|
def load_state_dict(state_dict)
|
116
|
-
|
119
|
+
state_dict.each do |k, input_param|
|
120
|
+
k1, k2 = k.split(".", 2)
|
121
|
+
mod = named_modules[k1]
|
122
|
+
if mod.is_a?(Module)
|
123
|
+
param = mod.named_parameters[k2]
|
124
|
+
if param.is_a?(Parameter)
|
125
|
+
Torch.no_grad do
|
126
|
+
param.copy!(input_param)
|
127
|
+
end
|
128
|
+
else
|
129
|
+
raise Error, "Unknown parameter: #{k1}"
|
130
|
+
end
|
131
|
+
else
|
132
|
+
raise Error, "Unknown module: #{k1}"
|
133
|
+
end
|
134
|
+
end
|
135
|
+
|
136
|
+
# TODO return missing keys and unexpected keys
|
137
|
+
nil
|
117
138
|
end
|
118
139
|
|
119
140
|
def parameters
|
@@ -165,8 +186,22 @@ module Torch
|
|
165
186
|
named_modules.values
|
166
187
|
end
|
167
188
|
|
168
|
-
|
169
|
-
|
189
|
+
# TODO return enumerator?
|
190
|
+
def named_modules(memo: nil, prefix: "")
|
191
|
+
ret = {}
|
192
|
+
memo ||= Set.new
|
193
|
+
unless memo.include?(self)
|
194
|
+
memo << self
|
195
|
+
ret[prefix] = self
|
196
|
+
named_children.each do |name, mod|
|
197
|
+
next unless mod.is_a?(Module)
|
198
|
+
submodule_prefix = prefix + (!prefix.empty? ? "." : "") + name
|
199
|
+
mod.named_modules(memo: memo, prefix: submodule_prefix).each do |m|
|
200
|
+
ret[m[0]] = m[1]
|
201
|
+
end
|
202
|
+
end
|
203
|
+
end
|
204
|
+
ret
|
170
205
|
end
|
171
206
|
|
172
207
|
def train(mode = true)
|
@@ -203,13 +238,15 @@ module Torch
|
|
203
238
|
|
204
239
|
def inspect
|
205
240
|
name = self.class.name.split("::").last
|
206
|
-
if
|
241
|
+
if named_children.empty?
|
207
242
|
"#{name}(#{extra_inspect})"
|
208
243
|
else
|
209
244
|
str = String.new
|
210
245
|
str << "#{name}(\n"
|
211
|
-
|
212
|
-
|
246
|
+
named_children.each do |name, mod|
|
247
|
+
mod_str = mod.inspect
|
248
|
+
mod_str = mod_str.lines.join(" ")
|
249
|
+
str << " (#{name}): #{mod_str}\n"
|
213
250
|
end
|
214
251
|
str << ")"
|
215
252
|
end
|
data/lib/torch/tensor.rb
CHANGED
@@ -4,6 +4,8 @@ module Torch
|
|
4
4
|
include Inspector
|
5
5
|
|
6
6
|
alias_method :requires_grad?, :requires_grad
|
7
|
+
alias_method :ndim, :dim
|
8
|
+
alias_method :ndimension, :dim
|
7
9
|
|
8
10
|
def self.new(*args)
|
9
11
|
FloatTensor.new(*args)
|
@@ -23,8 +25,17 @@ module Torch
|
|
23
25
|
inspect
|
24
26
|
end
|
25
27
|
|
28
|
+
# TODO make more performant
|
26
29
|
def to_a
|
27
|
-
|
30
|
+
arr = _flat_data
|
31
|
+
if shape.empty?
|
32
|
+
arr
|
33
|
+
else
|
34
|
+
shape[1..-1].reverse.each do |dim|
|
35
|
+
arr = arr.each_slice(dim)
|
36
|
+
end
|
37
|
+
arr.to_a
|
38
|
+
end
|
28
39
|
end
|
29
40
|
|
30
41
|
# TODO support dtype
|
@@ -37,6 +48,10 @@ module Torch
|
|
37
48
|
to("cpu")
|
38
49
|
end
|
39
50
|
|
51
|
+
def cuda
|
52
|
+
to("cuda")
|
53
|
+
end
|
54
|
+
|
40
55
|
def size(dim = nil)
|
41
56
|
if dim
|
42
57
|
_size_int(dim)
|
@@ -58,7 +73,15 @@ module Torch
|
|
58
73
|
if numel != 1
|
59
74
|
raise Error, "only one element tensors can be converted to Ruby scalars"
|
60
75
|
end
|
61
|
-
|
76
|
+
to_a.first
|
77
|
+
end
|
78
|
+
|
79
|
+
def to_i
|
80
|
+
item.to_i
|
81
|
+
end
|
82
|
+
|
83
|
+
def to_f
|
84
|
+
item.to_f
|
62
85
|
end
|
63
86
|
|
64
87
|
# unsure if this is correct
|
@@ -74,7 +97,7 @@ module Torch
|
|
74
97
|
def numo
|
75
98
|
cls = Torch._dtype_to_numo[dtype]
|
76
99
|
raise Error, "Cannot convert #{dtype} to Numo" unless cls
|
77
|
-
cls.
|
100
|
+
cls.from_string(_data_str).reshape(*shape)
|
78
101
|
end
|
79
102
|
|
80
103
|
def new_ones(*size, **options)
|
@@ -102,15 +125,6 @@ module Torch
|
|
102
125
|
_view(size)
|
103
126
|
end
|
104
127
|
|
105
|
-
# value and other are swapped for some methods
|
106
|
-
def add!(value = 1, other)
|
107
|
-
if other.is_a?(Numeric)
|
108
|
-
_add__scalar(other, value)
|
109
|
-
else
|
110
|
-
_add__tensor(other, value)
|
111
|
-
end
|
112
|
-
end
|
113
|
-
|
114
128
|
def +(other)
|
115
129
|
add(other)
|
116
130
|
end
|
@@ -139,6 +153,7 @@ module Torch
|
|
139
153
|
neg
|
140
154
|
end
|
141
155
|
|
156
|
+
# TODO better compare?
|
142
157
|
def <=>(other)
|
143
158
|
item <=> other
|
144
159
|
end
|
@@ -186,8 +201,27 @@ module Torch
|
|
186
201
|
end
|
187
202
|
end
|
188
203
|
|
189
|
-
|
190
|
-
|
204
|
+
# native functions that need manually defined
|
205
|
+
|
206
|
+
# value and other are swapped for some methods
|
207
|
+
def add!(value = 1, other)
|
208
|
+
if other.is_a?(Numeric)
|
209
|
+
_add__scalar(other, value)
|
210
|
+
else
|
211
|
+
_add__tensor(other, value)
|
212
|
+
end
|
213
|
+
end
|
214
|
+
|
215
|
+
# native functions overlap, so need to handle manually
|
216
|
+
def random!(*args)
|
217
|
+
case args.size
|
218
|
+
when 1
|
219
|
+
_random__to(*args)
|
220
|
+
when 2
|
221
|
+
_random__from_to(*args)
|
222
|
+
else
|
223
|
+
_random_(*args)
|
224
|
+
end
|
191
225
|
end
|
192
226
|
|
193
227
|
private
|
@@ -195,17 +229,5 @@ module Torch
|
|
195
229
|
def copy_to(dst, src)
|
196
230
|
dst.copy!(src)
|
197
231
|
end
|
198
|
-
|
199
|
-
def reshape_arr(arr, dims)
|
200
|
-
if dims.empty?
|
201
|
-
arr
|
202
|
-
else
|
203
|
-
arr = arr.flatten
|
204
|
-
dims[1..-1].reverse.each do |dim|
|
205
|
-
arr = arr.each_slice(dim)
|
206
|
-
end
|
207
|
-
arr.to_a
|
208
|
-
end
|
209
|
-
end
|
210
232
|
end
|
211
233
|
end
|