torch-rb 0.1.5 → 0.1.6
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/CHANGELOG.md +6 -0
- data/README.md +1 -1
- data/ext/torch/ext.cpp +0 -170
- data/ext/torch/nn_functions.cpp +44 -24
- data/ext/torch/templates.cpp +55 -0
- data/ext/torch/templates.hpp +48 -0
- data/ext/torch/tensor_functions.cpp +76 -16
- data/ext/torch/torch_functions.cpp +165 -65
- data/lib/torch.rb +51 -42
- data/lib/torch/ext.bundle +0 -0
- data/lib/torch/native/dispatcher.rb +1 -1
- data/lib/torch/native/function.rb +36 -5
- data/lib/torch/native/generator.rb +26 -7
- data/lib/torch/native/parser.rb +51 -14
- data/lib/torch/nn/avg_pool1d.rb +18 -0
- data/lib/torch/nn/avg_pool2d.rb +7 -2
- data/lib/torch/nn/avg_pool3d.rb +19 -0
- data/lib/torch/nn/avg_poolnd.rb +1 -1
- data/lib/torch/nn/batch_norm.rb +75 -0
- data/lib/torch/nn/batch_norm1d.rb +11 -0
- data/lib/torch/nn/batch_norm2d.rb +11 -0
- data/lib/torch/nn/batch_norm3d.rb +11 -0
- data/lib/torch/nn/constant_pad1d.rb +10 -0
- data/lib/torch/nn/constant_pad2d.rb +10 -0
- data/lib/torch/nn/constant_pad3d.rb +10 -0
- data/lib/torch/nn/constant_padnd.rb +18 -0
- data/lib/torch/nn/conv1d.rb +22 -0
- data/lib/torch/nn/conv2d.rb +9 -17
- data/lib/torch/nn/conv3d.rb +22 -0
- data/lib/torch/nn/fold.rb +20 -0
- data/lib/torch/nn/functional.rb +320 -100
- data/lib/torch/nn/group_norm.rb +36 -0
- data/lib/torch/nn/gru.rb +49 -0
- data/lib/torch/nn/hardshrink.rb +18 -0
- data/lib/torch/nn/instance_norm.rb +20 -0
- data/lib/torch/nn/instance_norm1d.rb +18 -0
- data/lib/torch/nn/instance_norm2d.rb +11 -0
- data/lib/torch/nn/instance_norm3d.rb +11 -0
- data/lib/torch/nn/layer_norm.rb +35 -0
- data/lib/torch/nn/local_response_norm.rb +21 -0
- data/lib/torch/nn/log_sigmoid.rb +9 -0
- data/lib/torch/nn/lp_pool1d.rb +9 -0
- data/lib/torch/nn/lp_pool2d.rb +9 -0
- data/lib/torch/nn/lp_poolnd.rb +22 -0
- data/lib/torch/nn/lstm.rb +66 -0
- data/lib/torch/nn/max_pool1d.rb +9 -0
- data/lib/torch/nn/max_pool2d.rb +1 -1
- data/lib/torch/nn/max_pool3d.rb +9 -0
- data/lib/torch/nn/max_poolnd.rb +6 -6
- data/lib/torch/nn/max_unpool1d.rb +16 -0
- data/lib/torch/nn/max_unpool2d.rb +16 -0
- data/lib/torch/nn/max_unpool3d.rb +16 -0
- data/lib/torch/nn/max_unpoolnd.rb +9 -0
- data/lib/torch/nn/module.rb +7 -0
- data/lib/torch/nn/reflection_pad1d.rb +10 -0
- data/lib/torch/nn/reflection_pad2d.rb +10 -0
- data/lib/torch/nn/reflection_padnd.rb +13 -0
- data/lib/torch/nn/replication_pad1d.rb +10 -0
- data/lib/torch/nn/replication_pad2d.rb +10 -0
- data/lib/torch/nn/replication_pad3d.rb +10 -0
- data/lib/torch/nn/replication_padnd.rb +13 -0
- data/lib/torch/nn/rnn_base.rb +48 -4
- data/lib/torch/nn/softshrink.rb +18 -0
- data/lib/torch/nn/softsign.rb +9 -0
- data/lib/torch/nn/tanh.rb +9 -0
- data/lib/torch/nn/tanhshrink.rb +9 -0
- data/lib/torch/nn/unfold.rb +19 -0
- data/lib/torch/nn/utils.rb +25 -0
- data/lib/torch/nn/zero_pad2d.rb +9 -0
- data/lib/torch/tensor.rb +14 -25
- data/lib/torch/version.rb +1 -1
- metadata +50 -2
data/ext/torch/templates.hpp
CHANGED
@@ -248,3 +248,51 @@ OptionalTensor from_ruby<OptionalTensor>(Object x)
|
|
248
248
|
{
|
249
249
|
return OptionalTensor(x);
|
250
250
|
}
|
251
|
+
|
252
|
+
class ScalarType {
|
253
|
+
Object value;
|
254
|
+
public:
|
255
|
+
ScalarType(Object o) {
|
256
|
+
value = o;
|
257
|
+
}
|
258
|
+
operator at::ScalarType() {
|
259
|
+
throw std::runtime_error("ScalarType arguments not implemented yet");
|
260
|
+
}
|
261
|
+
};
|
262
|
+
|
263
|
+
template<>
|
264
|
+
inline
|
265
|
+
ScalarType from_ruby<ScalarType>(Object x)
|
266
|
+
{
|
267
|
+
return ScalarType(x);
|
268
|
+
}
|
269
|
+
|
270
|
+
class OptionalScalarType {
|
271
|
+
Object value;
|
272
|
+
public:
|
273
|
+
OptionalScalarType(Object o) {
|
274
|
+
value = o;
|
275
|
+
}
|
276
|
+
operator c10::optional<at::ScalarType>() {
|
277
|
+
if (value.is_nil()) {
|
278
|
+
return c10::nullopt;
|
279
|
+
}
|
280
|
+
return ScalarType(value);
|
281
|
+
}
|
282
|
+
};
|
283
|
+
|
284
|
+
template<>
|
285
|
+
inline
|
286
|
+
OptionalScalarType from_ruby<OptionalScalarType>(Object x)
|
287
|
+
{
|
288
|
+
return OptionalScalarType(x);
|
289
|
+
}
|
290
|
+
|
291
|
+
typedef torch::Device Device;
|
292
|
+
|
293
|
+
Object wrap(std::tuple<torch::Tensor, torch::Tensor> x);
|
294
|
+
Object wrap(std::tuple<torch::Tensor, torch::Tensor, torch::Tensor> x);
|
295
|
+
Object wrap(std::tuple<torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor> x);
|
296
|
+
Object wrap(std::tuple<torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor> x);
|
297
|
+
Object wrap(std::tuple<torch::Tensor, torch::Tensor, torch::Tensor, int64_t> x);
|
298
|
+
Object wrap(std::tuple<torch::Tensor, torch::Tensor, double, int64_t> x);
|
@@ -362,6 +362,16 @@ void add_tensor_functions(Module m) {
|
|
362
362
|
*[](Tensor &self) {
|
363
363
|
return self.cosh_();
|
364
364
|
})
|
365
|
+
.define_method(
|
366
|
+
"_cumprod",
|
367
|
+
*[](const Tensor &self, int64_t dim, OptionalScalarType dtype) {
|
368
|
+
return self.cumprod(dim, dtype);
|
369
|
+
})
|
370
|
+
.define_method(
|
371
|
+
"_cumsum",
|
372
|
+
*[](const Tensor &self, int64_t dim, OptionalScalarType dtype) {
|
373
|
+
return self.cumsum(dim, dtype);
|
374
|
+
})
|
365
375
|
.define_method(
|
366
376
|
"_data",
|
367
377
|
*[](const Tensor &self) {
|
@@ -455,7 +465,7 @@ void add_tensor_functions(Module m) {
|
|
455
465
|
.define_method(
|
456
466
|
"_eig",
|
457
467
|
*[](const Tensor &self, bool eigenvectors) {
|
458
|
-
return self.eig(eigenvectors);
|
468
|
+
return wrap(self.eig(eigenvectors));
|
459
469
|
})
|
460
470
|
.define_method(
|
461
471
|
"_eq__scalar",
|
@@ -650,7 +660,7 @@ void add_tensor_functions(Module m) {
|
|
650
660
|
.define_method(
|
651
661
|
"_geqrf",
|
652
662
|
*[](const Tensor &self) {
|
653
|
-
return self.geqrf();
|
663
|
+
return wrap(self.geqrf());
|
654
664
|
})
|
655
665
|
.define_method(
|
656
666
|
"_ger",
|
@@ -820,7 +830,7 @@ void add_tensor_functions(Module m) {
|
|
820
830
|
.define_method(
|
821
831
|
"_kthvalue",
|
822
832
|
*[](const Tensor &self, int64_t k, int64_t dim, bool keepdim) {
|
823
|
-
return self.kthvalue(k, dim, keepdim);
|
833
|
+
return wrap(self.kthvalue(k, dim, keepdim));
|
824
834
|
})
|
825
835
|
.define_method(
|
826
836
|
"_le__scalar",
|
@@ -917,6 +927,11 @@ void add_tensor_functions(Module m) {
|
|
917
927
|
*[](Tensor &self, double mean, double std) {
|
918
928
|
return self.log_normal_(mean, std);
|
919
929
|
})
|
930
|
+
.define_method(
|
931
|
+
"_log_softmax",
|
932
|
+
*[](const Tensor &self, int64_t dim, OptionalScalarType dtype) {
|
933
|
+
return self.log_softmax(dim, dtype);
|
934
|
+
})
|
920
935
|
.define_method(
|
921
936
|
"_logdet",
|
922
937
|
*[](const Tensor &self) {
|
@@ -950,7 +965,7 @@ void add_tensor_functions(Module m) {
|
|
950
965
|
.define_method(
|
951
966
|
"_lstsq",
|
952
967
|
*[](const Tensor &self, const Tensor &A) {
|
953
|
-
return self.lstsq(A);
|
968
|
+
return wrap(self.lstsq(A));
|
954
969
|
})
|
955
970
|
.define_method(
|
956
971
|
"_lt__scalar",
|
@@ -1030,7 +1045,7 @@ void add_tensor_functions(Module m) {
|
|
1030
1045
|
.define_method(
|
1031
1046
|
"_max_dim",
|
1032
1047
|
*[](const Tensor &self, int64_t dim, bool keepdim) {
|
1033
|
-
return self.max(dim, keepdim);
|
1048
|
+
return wrap(self.max(dim, keepdim));
|
1034
1049
|
})
|
1035
1050
|
.define_method(
|
1036
1051
|
"_max_other",
|
@@ -1042,6 +1057,16 @@ void add_tensor_functions(Module m) {
|
|
1042
1057
|
*[](const Tensor &self, IntArrayRef dim, bool keepdim) {
|
1043
1058
|
return self.max_values(dim, keepdim);
|
1044
1059
|
})
|
1060
|
+
.define_method(
|
1061
|
+
"_mean",
|
1062
|
+
*[](const Tensor &self, OptionalScalarType dtype) {
|
1063
|
+
return self.mean(dtype);
|
1064
|
+
})
|
1065
|
+
.define_method(
|
1066
|
+
"_mean_dim",
|
1067
|
+
*[](const Tensor &self, IntArrayRef dim, bool keepdim, OptionalScalarType dtype) {
|
1068
|
+
return self.mean(dim, keepdim, dtype);
|
1069
|
+
})
|
1045
1070
|
.define_method(
|
1046
1071
|
"_median",
|
1047
1072
|
*[](const Tensor &self) {
|
@@ -1050,7 +1075,7 @@ void add_tensor_functions(Module m) {
|
|
1050
1075
|
.define_method(
|
1051
1076
|
"_median_dim",
|
1052
1077
|
*[](const Tensor &self, int64_t dim, bool keepdim) {
|
1053
|
-
return self.median(dim, keepdim);
|
1078
|
+
return wrap(self.median(dim, keepdim));
|
1054
1079
|
})
|
1055
1080
|
.define_method(
|
1056
1081
|
"_min",
|
@@ -1060,7 +1085,7 @@ void add_tensor_functions(Module m) {
|
|
1060
1085
|
.define_method(
|
1061
1086
|
"_min_dim",
|
1062
1087
|
*[](const Tensor &self, int64_t dim, bool keepdim) {
|
1063
|
-
return self.min(dim, keepdim);
|
1088
|
+
return wrap(self.min(dim, keepdim));
|
1064
1089
|
})
|
1065
1090
|
.define_method(
|
1066
1091
|
"_min_other",
|
@@ -1080,7 +1105,7 @@ void add_tensor_functions(Module m) {
|
|
1080
1105
|
.define_method(
|
1081
1106
|
"_mode",
|
1082
1107
|
*[](const Tensor &self, int64_t dim, bool keepdim) {
|
1083
|
-
return self.mode(dim, keepdim);
|
1108
|
+
return wrap(self.mode(dim, keepdim));
|
1084
1109
|
})
|
1085
1110
|
.define_method(
|
1086
1111
|
"_mul__scalar",
|
@@ -1257,6 +1282,16 @@ void add_tensor_functions(Module m) {
|
|
1257
1282
|
*[](const Tensor &self, const Tensor &weight) {
|
1258
1283
|
return self.prelu(weight);
|
1259
1284
|
})
|
1285
|
+
.define_method(
|
1286
|
+
"_prod",
|
1287
|
+
*[](const Tensor &self, OptionalScalarType dtype) {
|
1288
|
+
return self.prod(dtype);
|
1289
|
+
})
|
1290
|
+
.define_method(
|
1291
|
+
"_prod_dim_int",
|
1292
|
+
*[](const Tensor &self, int64_t dim, bool keepdim, OptionalScalarType dtype) {
|
1293
|
+
return self.prod(dim, keepdim, dtype);
|
1294
|
+
})
|
1260
1295
|
.define_method(
|
1261
1296
|
"_put_",
|
1262
1297
|
*[](Tensor &self, const Tensor &index, const Tensor &source, bool accumulate) {
|
@@ -1290,7 +1325,7 @@ void add_tensor_functions(Module m) {
|
|
1290
1325
|
.define_method(
|
1291
1326
|
"_qr",
|
1292
1327
|
*[](const Tensor &self, bool some) {
|
1293
|
-
return self.qr(some);
|
1328
|
+
return wrap(self.qr(some));
|
1294
1329
|
})
|
1295
1330
|
.define_method(
|
1296
1331
|
"_qscheme",
|
@@ -1545,22 +1580,27 @@ void add_tensor_functions(Module m) {
|
|
1545
1580
|
.define_method(
|
1546
1581
|
"_slogdet",
|
1547
1582
|
*[](const Tensor &self) {
|
1548
|
-
return self.slogdet();
|
1583
|
+
return wrap(self.slogdet());
|
1549
1584
|
})
|
1550
1585
|
.define_method(
|
1551
1586
|
"_smm",
|
1552
1587
|
*[](const Tensor &self, const Tensor &mat2) {
|
1553
1588
|
return self.smm(mat2);
|
1554
1589
|
})
|
1590
|
+
.define_method(
|
1591
|
+
"_softmax",
|
1592
|
+
*[](const Tensor &self, int64_t dim, OptionalScalarType dtype) {
|
1593
|
+
return self.softmax(dim, dtype);
|
1594
|
+
})
|
1555
1595
|
.define_method(
|
1556
1596
|
"_solve",
|
1557
1597
|
*[](const Tensor &self, const Tensor &A) {
|
1558
|
-
return self.solve(A);
|
1598
|
+
return wrap(self.solve(A));
|
1559
1599
|
})
|
1560
1600
|
.define_method(
|
1561
1601
|
"_sort",
|
1562
1602
|
*[](const Tensor &self, int64_t dim, bool descending) {
|
1563
|
-
return self.sort(dim, descending);
|
1603
|
+
return wrap(self.sort(dim, descending));
|
1564
1604
|
})
|
1565
1605
|
.define_method(
|
1566
1606
|
"_sparse_dim",
|
@@ -1662,6 +1702,16 @@ void add_tensor_functions(Module m) {
|
|
1662
1702
|
*[](const Tensor &self, const Tensor &other, Scalar alpha) {
|
1663
1703
|
return self.sub(other, alpha);
|
1664
1704
|
})
|
1705
|
+
.define_method(
|
1706
|
+
"_sum",
|
1707
|
+
*[](const Tensor &self, OptionalScalarType dtype) {
|
1708
|
+
return self.sum(dtype);
|
1709
|
+
})
|
1710
|
+
.define_method(
|
1711
|
+
"_sum_dim_intlist",
|
1712
|
+
*[](const Tensor &self, IntArrayRef dim, bool keepdim, OptionalScalarType dtype) {
|
1713
|
+
return self.sum(dim, keepdim, dtype);
|
1714
|
+
})
|
1665
1715
|
.define_method(
|
1666
1716
|
"_sum_to_size",
|
1667
1717
|
*[](const Tensor &self, IntArrayRef size) {
|
@@ -1670,12 +1720,12 @@ void add_tensor_functions(Module m) {
|
|
1670
1720
|
.define_method(
|
1671
1721
|
"_svd",
|
1672
1722
|
*[](const Tensor &self, bool some, bool compute_uv) {
|
1673
|
-
return self.svd(some, compute_uv);
|
1723
|
+
return wrap(self.svd(some, compute_uv));
|
1674
1724
|
})
|
1675
1725
|
.define_method(
|
1676
1726
|
"_symeig",
|
1677
1727
|
*[](const Tensor &self, bool eigenvectors, bool upper) {
|
1678
|
-
return self.symeig(eigenvectors, upper);
|
1728
|
+
return wrap(self.symeig(eigenvectors, upper));
|
1679
1729
|
})
|
1680
1730
|
.define_method(
|
1681
1731
|
"_t",
|
@@ -1717,6 +1767,16 @@ void add_tensor_functions(Module m) {
|
|
1717
1767
|
*[](const Tensor &self) {
|
1718
1768
|
return self.to_dense();
|
1719
1769
|
})
|
1770
|
+
.define_method(
|
1771
|
+
"_to_device",
|
1772
|
+
*[](const Tensor &self, Device device, ScalarType dtype, bool non_blocking, bool copy) {
|
1773
|
+
return self.to(device, dtype, non_blocking, copy);
|
1774
|
+
})
|
1775
|
+
.define_method(
|
1776
|
+
"_to_dtype",
|
1777
|
+
*[](const Tensor &self, ScalarType dtype, bool non_blocking, bool copy) {
|
1778
|
+
return self.to(dtype, non_blocking, copy);
|
1779
|
+
})
|
1720
1780
|
.define_method(
|
1721
1781
|
"_to_mkldnn",
|
1722
1782
|
*[](const Tensor &self) {
|
@@ -1740,7 +1800,7 @@ void add_tensor_functions(Module m) {
|
|
1740
1800
|
.define_method(
|
1741
1801
|
"_topk",
|
1742
1802
|
*[](const Tensor &self, int64_t k, int64_t dim, bool largest, bool sorted) {
|
1743
|
-
return self.topk(k, dim, largest, sorted);
|
1803
|
+
return wrap(self.topk(k, dim, largest, sorted));
|
1744
1804
|
})
|
1745
1805
|
.define_method(
|
1746
1806
|
"_trace",
|
@@ -1760,7 +1820,7 @@ void add_tensor_functions(Module m) {
|
|
1760
1820
|
.define_method(
|
1761
1821
|
"_triangular_solve",
|
1762
1822
|
*[](const Tensor &self, const Tensor &A, bool upper, bool transpose, bool unitriangular) {
|
1763
|
-
return self.triangular_solve(A, upper, transpose, unitriangular);
|
1823
|
+
return wrap(self.triangular_solve(A, upper, transpose, unitriangular));
|
1764
1824
|
})
|
1765
1825
|
.define_method(
|
1766
1826
|
"_tril",
|
@@ -45,7 +45,7 @@ void add_torch_functions(Module m) {
|
|
45
45
|
.define_singleton_method(
|
46
46
|
"_adaptive_max_pool1d",
|
47
47
|
*[](const Tensor &self, IntArrayRef output_size) {
|
48
|
-
return torch::adaptive_max_pool1d(self, output_size);
|
48
|
+
return wrap(torch::adaptive_max_pool1d(self, output_size));
|
49
49
|
})
|
50
50
|
.define_singleton_method(
|
51
51
|
"_add_out",
|
@@ -310,7 +310,7 @@ void add_torch_functions(Module m) {
|
|
310
310
|
.define_singleton_method(
|
311
311
|
"_batch_norm_backward_reduce",
|
312
312
|
*[](const Tensor &grad_out, const Tensor &input, const Tensor &mean, const Tensor &invstd, OptionalTensor weight, bool input_g, bool weight_g, bool bias_g) {
|
313
|
-
return torch::batch_norm_backward_reduce(grad_out, input, mean, invstd, weight, input_g, weight_g, bias_g);
|
313
|
+
return wrap(torch::batch_norm_backward_reduce(grad_out, input, mean, invstd, weight, input_g, weight_g, bias_g));
|
314
314
|
})
|
315
315
|
.define_singleton_method(
|
316
316
|
"_batch_norm_elemt",
|
@@ -320,22 +320,22 @@ void add_torch_functions(Module m) {
|
|
320
320
|
.define_singleton_method(
|
321
321
|
"_batch_norm_gather_stats",
|
322
322
|
*[](const Tensor &input, const Tensor &mean, const Tensor &invstd, OptionalTensor running_mean, OptionalTensor running_var, double momentum, double eps, int64_t count) {
|
323
|
-
return torch::batch_norm_gather_stats(input, mean, invstd, running_mean, running_var, momentum, eps, count);
|
323
|
+
return wrap(torch::batch_norm_gather_stats(input, mean, invstd, running_mean, running_var, momentum, eps, count));
|
324
324
|
})
|
325
325
|
.define_singleton_method(
|
326
326
|
"_batch_norm_gather_stats_with_counts",
|
327
327
|
*[](const Tensor &input, const Tensor &mean, const Tensor &invstd, OptionalTensor running_mean, OptionalTensor running_var, double momentum, double eps, IntArrayRef counts) {
|
328
|
-
return torch::batch_norm_gather_stats_with_counts(input, mean, invstd, running_mean, running_var, momentum, eps, counts);
|
328
|
+
return wrap(torch::batch_norm_gather_stats_with_counts(input, mean, invstd, running_mean, running_var, momentum, eps, counts));
|
329
329
|
})
|
330
330
|
.define_singleton_method(
|
331
331
|
"_batch_norm_stats",
|
332
332
|
*[](const Tensor &input, double eps) {
|
333
|
-
return torch::batch_norm_stats(input, eps);
|
333
|
+
return wrap(torch::batch_norm_stats(input, eps));
|
334
334
|
})
|
335
335
|
.define_singleton_method(
|
336
336
|
"_batch_norm_update_stats",
|
337
337
|
*[](const Tensor &input, OptionalTensor running_mean, OptionalTensor running_var, double momentum) {
|
338
|
-
return torch::batch_norm_update_stats(input, running_mean, running_var, momentum);
|
338
|
+
return wrap(torch::batch_norm_update_stats(input, running_mean, running_var, momentum));
|
339
339
|
})
|
340
340
|
.define_singleton_method(
|
341
341
|
"_bernoulli",
|
@@ -392,6 +392,11 @@ void add_torch_functions(Module m) {
|
|
392
392
|
*[](TensorList tensors) {
|
393
393
|
return torch::broadcast_tensors(tensors);
|
394
394
|
})
|
395
|
+
.define_singleton_method(
|
396
|
+
"_can_cast",
|
397
|
+
*[](ScalarType from, ScalarType to) {
|
398
|
+
return torch::can_cast(from, to);
|
399
|
+
})
|
395
400
|
.define_singleton_method(
|
396
401
|
"_cartesian_prod",
|
397
402
|
*[](TensorList tensors) {
|
@@ -630,7 +635,7 @@ void add_torch_functions(Module m) {
|
|
630
635
|
.define_singleton_method(
|
631
636
|
"_cudnn_batch_norm",
|
632
637
|
*[](const Tensor &input, const Tensor &weight, OptionalTensor bias, OptionalTensor running_mean, OptionalTensor running_var, bool training, double exponential_average_factor, double epsilon) {
|
633
|
-
return torch::cudnn_batch_norm(input, weight, bias, running_mean, running_var, training, exponential_average_factor, epsilon);
|
638
|
+
return wrap(torch::cudnn_batch_norm(input, weight, bias, running_mean, running_var, training, exponential_average_factor, epsilon));
|
634
639
|
})
|
635
640
|
.define_singleton_method(
|
636
641
|
"_cudnn_convolution",
|
@@ -682,6 +687,26 @@ void add_torch_functions(Module m) {
|
|
682
687
|
*[](const Tensor &self) {
|
683
688
|
return torch::cudnn_is_acceptable(self);
|
684
689
|
})
|
690
|
+
.define_singleton_method(
|
691
|
+
"_cumprod",
|
692
|
+
*[](const Tensor &self, int64_t dim, OptionalScalarType dtype) {
|
693
|
+
return torch::cumprod(self, dim, dtype);
|
694
|
+
})
|
695
|
+
.define_singleton_method(
|
696
|
+
"_cumprod_out",
|
697
|
+
*[](const Tensor &self, int64_t dim, OptionalScalarType dtype, Tensor &out) {
|
698
|
+
return torch::cumprod_out(out, self, dim, dtype);
|
699
|
+
})
|
700
|
+
.define_singleton_method(
|
701
|
+
"_cumsum",
|
702
|
+
*[](const Tensor &self, int64_t dim, OptionalScalarType dtype) {
|
703
|
+
return torch::cumsum(self, dim, dtype);
|
704
|
+
})
|
705
|
+
.define_singleton_method(
|
706
|
+
"_cumsum_out",
|
707
|
+
*[](const Tensor &self, int64_t dim, OptionalScalarType dtype, Tensor &out) {
|
708
|
+
return torch::cumsum_out(out, self, dim, dtype);
|
709
|
+
})
|
685
710
|
.define_singleton_method(
|
686
711
|
"_dequantize",
|
687
712
|
*[](const Tensor &self) {
|
@@ -780,12 +805,12 @@ void add_torch_functions(Module m) {
|
|
780
805
|
.define_singleton_method(
|
781
806
|
"_eig",
|
782
807
|
*[](const Tensor &self, bool eigenvectors) {
|
783
|
-
return torch::eig(self, eigenvectors);
|
808
|
+
return wrap(torch::eig(self, eigenvectors));
|
784
809
|
})
|
785
810
|
.define_singleton_method(
|
786
811
|
"_eig_e",
|
787
812
|
*[](const Tensor &self, bool eigenvectors, Tensor &e, Tensor &v) {
|
788
|
-
return torch::eig_out(e, v, self, eigenvectors);
|
813
|
+
return wrap(torch::eig_out(e, v, self, eigenvectors));
|
789
814
|
})
|
790
815
|
.define_singleton_method(
|
791
816
|
"_embedding",
|
@@ -795,7 +820,7 @@ void add_torch_functions(Module m) {
|
|
795
820
|
.define_singleton_method(
|
796
821
|
"_embedding_bag",
|
797
822
|
*[](const Tensor &weight, const Tensor &indices, const Tensor &offsets, bool scale_grad_by_freq, int64_t mode, bool sparse, OptionalTensor per_sample_weights) {
|
798
|
-
return torch::embedding_bag(weight, indices, offsets, scale_grad_by_freq, mode, sparse, per_sample_weights);
|
823
|
+
return wrap(torch::embedding_bag(weight, indices, offsets, scale_grad_by_freq, mode, sparse, per_sample_weights));
|
799
824
|
})
|
800
825
|
.define_singleton_method(
|
801
826
|
"_embedding_renorm_",
|
@@ -945,7 +970,7 @@ void add_torch_functions(Module m) {
|
|
945
970
|
.define_singleton_method(
|
946
971
|
"_fbgemm_linear_quantize_weight",
|
947
972
|
*[](const Tensor &input) {
|
948
|
-
return torch::fbgemm_linear_quantize_weight(input);
|
973
|
+
return wrap(torch::fbgemm_linear_quantize_weight(input));
|
949
974
|
})
|
950
975
|
.define_singleton_method(
|
951
976
|
"_fbgemm_pack_gemm_matrix_fp16",
|
@@ -1115,12 +1140,12 @@ void add_torch_functions(Module m) {
|
|
1115
1140
|
.define_singleton_method(
|
1116
1141
|
"_geqrf",
|
1117
1142
|
*[](const Tensor &self) {
|
1118
|
-
return torch::geqrf(self);
|
1143
|
+
return wrap(torch::geqrf(self));
|
1119
1144
|
})
|
1120
1145
|
.define_singleton_method(
|
1121
1146
|
"_geqrf_a",
|
1122
1147
|
*[](const Tensor &self, Tensor &a, Tensor &tau) {
|
1123
|
-
return torch::geqrf_out(a, tau, self);
|
1148
|
+
return wrap(torch::geqrf_out(a, tau, self));
|
1124
1149
|
})
|
1125
1150
|
.define_singleton_method(
|
1126
1151
|
"_ger",
|
@@ -1160,12 +1185,12 @@ void add_torch_functions(Module m) {
|
|
1160
1185
|
.define_singleton_method(
|
1161
1186
|
"_gru_data",
|
1162
1187
|
*[](const Tensor &data, const Tensor &batch_sizes, const Tensor &hx, TensorList params, bool has_biases, int64_t num_layers, double dropout, bool train, bool bidirectional) {
|
1163
|
-
return torch::gru(data, batch_sizes, hx, params, has_biases, num_layers, dropout, train, bidirectional);
|
1188
|
+
return wrap(torch::gru(data, batch_sizes, hx, params, has_biases, num_layers, dropout, train, bidirectional));
|
1164
1189
|
})
|
1165
1190
|
.define_singleton_method(
|
1166
1191
|
"_gru_input",
|
1167
1192
|
*[](const Tensor &input, const Tensor &hx, TensorList params, bool has_biases, int64_t num_layers, double dropout, bool train, bool bidirectional, bool batch_first) {
|
1168
|
-
return torch::gru(input, hx, params, has_biases, num_layers, dropout, train, bidirectional, batch_first);
|
1193
|
+
return wrap(torch::gru(input, hx, params, has_biases, num_layers, dropout, train, bidirectional, batch_first));
|
1169
1194
|
})
|
1170
1195
|
.define_singleton_method(
|
1171
1196
|
"_gt_scalar",
|
@@ -1325,12 +1350,12 @@ void add_torch_functions(Module m) {
|
|
1325
1350
|
.define_singleton_method(
|
1326
1351
|
"_kthvalue",
|
1327
1352
|
*[](const Tensor &self, int64_t k, int64_t dim, bool keepdim) {
|
1328
|
-
return torch::kthvalue(self, k, dim, keepdim);
|
1353
|
+
return wrap(torch::kthvalue(self, k, dim, keepdim));
|
1329
1354
|
})
|
1330
1355
|
.define_singleton_method(
|
1331
1356
|
"_kthvalue_values",
|
1332
1357
|
*[](const Tensor &self, int64_t k, int64_t dim, bool keepdim, Tensor &values, Tensor &indices) {
|
1333
|
-
return torch::kthvalue_out(values, indices, self, k, dim, keepdim);
|
1358
|
+
return wrap(torch::kthvalue_out(values, indices, self, k, dim, keepdim));
|
1334
1359
|
})
|
1335
1360
|
.define_singleton_method(
|
1336
1361
|
"_layer_norm",
|
@@ -1452,6 +1477,11 @@ void add_torch_functions(Module m) {
|
|
1452
1477
|
*[](const Tensor &self, Tensor &out) {
|
1453
1478
|
return torch::log_out(out, self);
|
1454
1479
|
})
|
1480
|
+
.define_singleton_method(
|
1481
|
+
"_log_softmax",
|
1482
|
+
*[](const Tensor &self, int64_t dim, OptionalScalarType dtype) {
|
1483
|
+
return torch::log_softmax(self, dim, dtype);
|
1484
|
+
})
|
1455
1485
|
.define_singleton_method(
|
1456
1486
|
"_logdet",
|
1457
1487
|
*[](const Tensor &self) {
|
@@ -1495,27 +1525,27 @@ void add_torch_functions(Module m) {
|
|
1495
1525
|
.define_singleton_method(
|
1496
1526
|
"_lstm_cell",
|
1497
1527
|
*[](const Tensor &input, TensorList hx, const Tensor &w_ih, const Tensor &w_hh, OptionalTensor b_ih, OptionalTensor b_hh) {
|
1498
|
-
return torch::lstm_cell(input, hx, w_ih, w_hh, b_ih, b_hh);
|
1528
|
+
return wrap(torch::lstm_cell(input, hx, w_ih, w_hh, b_ih, b_hh));
|
1499
1529
|
})
|
1500
1530
|
.define_singleton_method(
|
1501
1531
|
"_lstm_data",
|
1502
1532
|
*[](const Tensor &data, const Tensor &batch_sizes, TensorList hx, TensorList params, bool has_biases, int64_t num_layers, double dropout, bool train, bool bidirectional) {
|
1503
|
-
return torch::lstm(data, batch_sizes, hx, params, has_biases, num_layers, dropout, train, bidirectional);
|
1533
|
+
return wrap(torch::lstm(data, batch_sizes, hx, params, has_biases, num_layers, dropout, train, bidirectional));
|
1504
1534
|
})
|
1505
1535
|
.define_singleton_method(
|
1506
1536
|
"_lstm_input",
|
1507
1537
|
*[](const Tensor &input, TensorList hx, TensorList params, bool has_biases, int64_t num_layers, double dropout, bool train, bool bidirectional, bool batch_first) {
|
1508
|
-
return torch::lstm(input, hx, params, has_biases, num_layers, dropout, train, bidirectional, batch_first);
|
1538
|
+
return wrap(torch::lstm(input, hx, params, has_biases, num_layers, dropout, train, bidirectional, batch_first));
|
1509
1539
|
})
|
1510
1540
|
.define_singleton_method(
|
1511
1541
|
"_lstsq",
|
1512
1542
|
*[](const Tensor &self, const Tensor &A) {
|
1513
|
-
return torch::lstsq(self, A);
|
1543
|
+
return wrap(torch::lstsq(self, A));
|
1514
1544
|
})
|
1515
1545
|
.define_singleton_method(
|
1516
1546
|
"_lstsq_x",
|
1517
1547
|
*[](const Tensor &self, const Tensor &A, Tensor &X, Tensor &qr) {
|
1518
|
-
return torch::lstsq_out(X, qr, self, A);
|
1548
|
+
return wrap(torch::lstsq_out(X, qr, self, A));
|
1519
1549
|
})
|
1520
1550
|
.define_singleton_method(
|
1521
1551
|
"_lt_scalar",
|
@@ -1610,12 +1640,12 @@ void add_torch_functions(Module m) {
|
|
1610
1640
|
.define_singleton_method(
|
1611
1641
|
"_max_dim",
|
1612
1642
|
*[](const Tensor &self, int64_t dim, bool keepdim) {
|
1613
|
-
return torch::max(self, dim, keepdim);
|
1643
|
+
return wrap(torch::max(self, dim, keepdim));
|
1614
1644
|
})
|
1615
1645
|
.define_singleton_method(
|
1616
1646
|
"_max_dim_max",
|
1617
1647
|
*[](const Tensor &self, int64_t dim, bool keepdim, Tensor &max, Tensor &max_values) {
|
1618
|
-
return torch::max_out(max, max_values, self, dim, keepdim);
|
1648
|
+
return wrap(torch::max_out(max, max_values, self, dim, keepdim));
|
1619
1649
|
})
|
1620
1650
|
.define_singleton_method(
|
1621
1651
|
"_max_other",
|
@@ -1635,7 +1665,7 @@ void add_torch_functions(Module m) {
|
|
1635
1665
|
.define_singleton_method(
|
1636
1666
|
"_max_pool1d_with_indices",
|
1637
1667
|
*[](const Tensor &self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, bool ceil_mode) {
|
1638
|
-
return torch::max_pool1d_with_indices(self, kernel_size, stride, padding, dilation, ceil_mode);
|
1668
|
+
return wrap(torch::max_pool1d_with_indices(self, kernel_size, stride, padding, dilation, ceil_mode));
|
1639
1669
|
})
|
1640
1670
|
.define_singleton_method(
|
1641
1671
|
"_max_pool2d",
|
@@ -1652,6 +1682,21 @@ void add_torch_functions(Module m) {
|
|
1652
1682
|
*[](const Tensor &self, IntArrayRef dim, bool keepdim) {
|
1653
1683
|
return torch::max_values(self, dim, keepdim);
|
1654
1684
|
})
|
1685
|
+
.define_singleton_method(
|
1686
|
+
"_mean",
|
1687
|
+
*[](const Tensor &self, OptionalScalarType dtype) {
|
1688
|
+
return torch::mean(self, dtype);
|
1689
|
+
})
|
1690
|
+
.define_singleton_method(
|
1691
|
+
"_mean_dim",
|
1692
|
+
*[](const Tensor &self, IntArrayRef dim, bool keepdim, OptionalScalarType dtype) {
|
1693
|
+
return torch::mean(self, dim, keepdim, dtype);
|
1694
|
+
})
|
1695
|
+
.define_singleton_method(
|
1696
|
+
"_mean_out",
|
1697
|
+
*[](const Tensor &self, IntArrayRef dim, bool keepdim, OptionalScalarType dtype, Tensor &out) {
|
1698
|
+
return torch::mean_out(out, self, dim, keepdim, dtype);
|
1699
|
+
})
|
1655
1700
|
.define_singleton_method(
|
1656
1701
|
"_median",
|
1657
1702
|
*[](const Tensor &self) {
|
@@ -1660,12 +1705,12 @@ void add_torch_functions(Module m) {
|
|
1660
1705
|
.define_singleton_method(
|
1661
1706
|
"_median_dim",
|
1662
1707
|
*[](const Tensor &self, int64_t dim, bool keepdim) {
|
1663
|
-
return torch::median(self, dim, keepdim);
|
1708
|
+
return wrap(torch::median(self, dim, keepdim));
|
1664
1709
|
})
|
1665
1710
|
.define_singleton_method(
|
1666
1711
|
"_median_dim_values",
|
1667
1712
|
*[](const Tensor &self, int64_t dim, bool keepdim, Tensor &values, Tensor &indices) {
|
1668
|
-
return torch::median_out(values, indices, self, dim, keepdim);
|
1713
|
+
return wrap(torch::median_out(values, indices, self, dim, keepdim));
|
1669
1714
|
})
|
1670
1715
|
.define_singleton_method(
|
1671
1716
|
"_meshgrid",
|
@@ -1680,12 +1725,12 @@ void add_torch_functions(Module m) {
|
|
1680
1725
|
.define_singleton_method(
|
1681
1726
|
"_min_dim",
|
1682
1727
|
*[](const Tensor &self, int64_t dim, bool keepdim) {
|
1683
|
-
return torch::min(self, dim, keepdim);
|
1728
|
+
return wrap(torch::min(self, dim, keepdim));
|
1684
1729
|
})
|
1685
1730
|
.define_singleton_method(
|
1686
1731
|
"_min_dim_min",
|
1687
1732
|
*[](const Tensor &self, int64_t dim, bool keepdim, Tensor &min, Tensor &min_indices) {
|
1688
|
-
return torch::min_out(min, min_indices, self, dim, keepdim);
|
1733
|
+
return wrap(torch::min_out(min, min_indices, self, dim, keepdim));
|
1689
1734
|
})
|
1690
1735
|
.define_singleton_method(
|
1691
1736
|
"_min_other",
|
@@ -1705,7 +1750,7 @@ void add_torch_functions(Module m) {
|
|
1705
1750
|
.define_singleton_method(
|
1706
1751
|
"_miopen_batch_norm",
|
1707
1752
|
*[](const Tensor &input, const Tensor &weight, OptionalTensor bias, OptionalTensor running_mean, OptionalTensor running_var, bool training, double exponential_average_factor, double epsilon) {
|
1708
|
-
return torch::miopen_batch_norm(input, weight, bias, running_mean, running_var, training, exponential_average_factor, epsilon);
|
1753
|
+
return wrap(torch::miopen_batch_norm(input, weight, bias, running_mean, running_var, training, exponential_average_factor, epsilon));
|
1709
1754
|
})
|
1710
1755
|
.define_singleton_method(
|
1711
1756
|
"_miopen_convolution",
|
@@ -1760,7 +1805,7 @@ void add_torch_functions(Module m) {
|
|
1760
1805
|
.define_singleton_method(
|
1761
1806
|
"_miopen_rnn",
|
1762
1807
|
*[](const Tensor &input, TensorList weight, int64_t weight_stride0, const Tensor &hx, OptionalTensor cx, int64_t mode, int64_t hidden_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, IntArrayRef batch_sizes, OptionalTensor dropout_state) {
|
1763
|
-
return torch::miopen_rnn(input, weight, weight_stride0, hx, cx, mode, hidden_size, num_layers, batch_first, dropout, train, bidirectional, batch_sizes, dropout_state);
|
1808
|
+
return wrap(torch::miopen_rnn(input, weight, weight_stride0, hx, cx, mode, hidden_size, num_layers, batch_first, dropout, train, bidirectional, batch_sizes, dropout_state));
|
1764
1809
|
})
|
1765
1810
|
.define_singleton_method(
|
1766
1811
|
"_mkldnn_adaptive_avg_pool2d",
|
@@ -1780,7 +1825,7 @@ void add_torch_functions(Module m) {
|
|
1780
1825
|
.define_singleton_method(
|
1781
1826
|
"_mkldnn_convolution_backward_weights",
|
1782
1827
|
*[](IntArrayRef weight_size, const Tensor &grad_output, const Tensor &self, IntArrayRef padding, IntArrayRef stride, IntArrayRef dilation, int64_t groups, bool bias_defined) {
|
1783
|
-
return torch::mkldnn_convolution_backward_weights(weight_size, grad_output, self, padding, stride, dilation, groups, bias_defined);
|
1828
|
+
return wrap(torch::mkldnn_convolution_backward_weights(weight_size, grad_output, self, padding, stride, dilation, groups, bias_defined));
|
1784
1829
|
})
|
1785
1830
|
.define_singleton_method(
|
1786
1831
|
"_mkldnn_max_pool2d",
|
@@ -1800,12 +1845,12 @@ void add_torch_functions(Module m) {
|
|
1800
1845
|
.define_singleton_method(
|
1801
1846
|
"_mode",
|
1802
1847
|
*[](const Tensor &self, int64_t dim, bool keepdim) {
|
1803
|
-
return torch::mode(self, dim, keepdim);
|
1848
|
+
return wrap(torch::mode(self, dim, keepdim));
|
1804
1849
|
})
|
1805
1850
|
.define_singleton_method(
|
1806
1851
|
"_mode_values",
|
1807
1852
|
*[](const Tensor &self, int64_t dim, bool keepdim, Tensor &values, Tensor &indices) {
|
1808
|
-
return torch::mode_out(values, indices, self, dim, keepdim);
|
1853
|
+
return wrap(torch::mode_out(values, indices, self, dim, keepdim));
|
1809
1854
|
})
|
1810
1855
|
.define_singleton_method(
|
1811
1856
|
"_mul_out",
|
@@ -1855,12 +1900,12 @@ void add_torch_functions(Module m) {
|
|
1855
1900
|
.define_singleton_method(
|
1856
1901
|
"_native_batch_norm",
|
1857
1902
|
*[](const Tensor &input, OptionalTensor weight, OptionalTensor bias, OptionalTensor running_mean, OptionalTensor running_var, bool training, double momentum, double eps) {
|
1858
|
-
return torch::native_batch_norm(input, weight, bias, running_mean, running_var, training, momentum, eps);
|
1903
|
+
return wrap(torch::native_batch_norm(input, weight, bias, running_mean, running_var, training, momentum, eps));
|
1859
1904
|
})
|
1860
1905
|
.define_singleton_method(
|
1861
1906
|
"_native_layer_norm",
|
1862
1907
|
*[](const Tensor &input, OptionalTensor weight, OptionalTensor bias, int64_t M, int64_t N, double eps) {
|
1863
|
-
return torch::native_layer_norm(input, weight, bias, M, N, eps);
|
1908
|
+
return wrap(torch::native_layer_norm(input, weight, bias, M, N, eps));
|
1864
1909
|
})
|
1865
1910
|
.define_singleton_method(
|
1866
1911
|
"_native_norm",
|
@@ -2057,6 +2102,26 @@ void add_torch_functions(Module m) {
|
|
2057
2102
|
*[](const Tensor &self, const Tensor &weight) {
|
2058
2103
|
return torch::prelu(self, weight);
|
2059
2104
|
})
|
2105
|
+
.define_singleton_method(
|
2106
|
+
"_prod",
|
2107
|
+
*[](const Tensor &self, OptionalScalarType dtype) {
|
2108
|
+
return torch::prod(self, dtype);
|
2109
|
+
})
|
2110
|
+
.define_singleton_method(
|
2111
|
+
"_prod_dim_int",
|
2112
|
+
*[](const Tensor &self, int64_t dim, bool keepdim, OptionalScalarType dtype) {
|
2113
|
+
return torch::prod(self, dim, keepdim, dtype);
|
2114
|
+
})
|
2115
|
+
.define_singleton_method(
|
2116
|
+
"_prod_int_out",
|
2117
|
+
*[](const Tensor &self, int64_t dim, bool keepdim, OptionalScalarType dtype, Tensor &out) {
|
2118
|
+
return torch::prod_out(out, self, dim, keepdim, dtype);
|
2119
|
+
})
|
2120
|
+
.define_singleton_method(
|
2121
|
+
"_promote_types",
|
2122
|
+
*[](ScalarType type1, ScalarType type2) {
|
2123
|
+
return torch::promote_types(type1, type2);
|
2124
|
+
})
|
2060
2125
|
.define_singleton_method(
|
2061
2126
|
"_q_per_channel_axis",
|
2062
2127
|
*[](const Tensor &self) {
|
@@ -2085,12 +2150,22 @@ void add_torch_functions(Module m) {
|
|
2085
2150
|
.define_singleton_method(
|
2086
2151
|
"_qr",
|
2087
2152
|
*[](const Tensor &self, bool some) {
|
2088
|
-
return torch::qr(self, some);
|
2153
|
+
return wrap(torch::qr(self, some));
|
2089
2154
|
})
|
2090
2155
|
.define_singleton_method(
|
2091
2156
|
"_qr_q",
|
2092
2157
|
*[](const Tensor &self, bool some, Tensor &Q, Tensor &R) {
|
2093
|
-
return torch::qr_out(Q, R, self, some);
|
2158
|
+
return wrap(torch::qr_out(Q, R, self, some));
|
2159
|
+
})
|
2160
|
+
.define_singleton_method(
|
2161
|
+
"_quantize_per_channel",
|
2162
|
+
*[](const Tensor &self, const Tensor &scales, const Tensor &zero_points, int64_t axis, ScalarType dtype) {
|
2163
|
+
return torch::quantize_per_channel(self, scales, zero_points, axis, dtype);
|
2164
|
+
})
|
2165
|
+
.define_singleton_method(
|
2166
|
+
"_quantize_per_tensor",
|
2167
|
+
*[](const Tensor &self, double scale, int64_t zero_point, ScalarType dtype) {
|
2168
|
+
return torch::quantize_per_tensor(self, scale, zero_point, dtype);
|
2094
2169
|
})
|
2095
2170
|
.define_singleton_method(
|
2096
2171
|
"_quantized_gru_cell",
|
@@ -2100,17 +2175,22 @@ void add_torch_functions(Module m) {
|
|
2100
2175
|
.define_singleton_method(
|
2101
2176
|
"_quantized_gru_data",
|
2102
2177
|
*[](const Tensor &data, const Tensor &batch_sizes, const Tensor &hx, TensorList params, bool has_biases, int64_t num_layers, double dropout, bool train, bool bidirectional) {
|
2103
|
-
return torch::quantized_gru(data, batch_sizes, hx, params, has_biases, num_layers, dropout, train, bidirectional);
|
2178
|
+
return wrap(torch::quantized_gru(data, batch_sizes, hx, params, has_biases, num_layers, dropout, train, bidirectional));
|
2104
2179
|
})
|
2105
2180
|
.define_singleton_method(
|
2106
2181
|
"_quantized_gru_input",
|
2107
2182
|
*[](const Tensor &input, const Tensor &hx, TensorList params, bool has_biases, int64_t num_layers, double dropout, bool train, bool bidirectional, bool batch_first) {
|
2108
|
-
return torch::quantized_gru(input, hx, params, has_biases, num_layers, dropout, train, bidirectional, batch_first);
|
2183
|
+
return wrap(torch::quantized_gru(input, hx, params, has_biases, num_layers, dropout, train, bidirectional, batch_first));
|
2184
|
+
})
|
2185
|
+
.define_singleton_method(
|
2186
|
+
"_quantized_lstm",
|
2187
|
+
*[](const Tensor &input, TensorList hx, TensorList params, bool has_biases, int64_t num_layers, double dropout, bool train, bool bidirectional, bool batch_first, OptionalScalarType dtype, bool use_dynamic) {
|
2188
|
+
return wrap(torch::quantized_lstm(input, hx, params, has_biases, num_layers, dropout, train, bidirectional, batch_first, dtype, use_dynamic));
|
2109
2189
|
})
|
2110
2190
|
.define_singleton_method(
|
2111
2191
|
"_quantized_lstm_cell",
|
2112
2192
|
*[](const Tensor &input, TensorList hx, const Tensor &w_ih, const Tensor &w_hh, const Tensor &b_ih, const Tensor &b_hh, const Tensor &packed_ih, const Tensor &packed_hh, const Tensor &col_offsets_ih, const Tensor &col_offsets_hh, Scalar scale_ih, Scalar scale_hh, Scalar zero_point_ih, Scalar zero_point_hh) {
|
2113
|
-
return torch::quantized_lstm_cell(input, hx, w_ih, w_hh, b_ih, b_hh, packed_ih, packed_hh, col_offsets_ih, col_offsets_hh, scale_ih, scale_hh, zero_point_ih, zero_point_hh);
|
2193
|
+
return wrap(torch::quantized_lstm_cell(input, hx, w_ih, w_hh, b_ih, b_hh, packed_ih, packed_hh, col_offsets_ih, col_offsets_hh, scale_ih, scale_hh, zero_point_ih, zero_point_hh));
|
2114
2194
|
})
|
2115
2195
|
.define_singleton_method(
|
2116
2196
|
"_quantized_max_pool2d",
|
@@ -2325,12 +2405,12 @@ void add_torch_functions(Module m) {
|
|
2325
2405
|
.define_singleton_method(
|
2326
2406
|
"_rnn_relu_data",
|
2327
2407
|
*[](const Tensor &data, const Tensor &batch_sizes, const Tensor &hx, TensorList params, bool has_biases, int64_t num_layers, double dropout, bool train, bool bidirectional) {
|
2328
|
-
return torch::rnn_relu(data, batch_sizes, hx, params, has_biases, num_layers, dropout, train, bidirectional);
|
2408
|
+
return wrap(torch::rnn_relu(data, batch_sizes, hx, params, has_biases, num_layers, dropout, train, bidirectional));
|
2329
2409
|
})
|
2330
2410
|
.define_singleton_method(
|
2331
2411
|
"_rnn_relu_input",
|
2332
2412
|
*[](const Tensor &input, const Tensor &hx, TensorList params, bool has_biases, int64_t num_layers, double dropout, bool train, bool bidirectional, bool batch_first) {
|
2333
|
-
return torch::rnn_relu(input, hx, params, has_biases, num_layers, dropout, train, bidirectional, batch_first);
|
2413
|
+
return wrap(torch::rnn_relu(input, hx, params, has_biases, num_layers, dropout, train, bidirectional, batch_first));
|
2334
2414
|
})
|
2335
2415
|
.define_singleton_method(
|
2336
2416
|
"_rnn_tanh_cell",
|
@@ -2340,12 +2420,12 @@ void add_torch_functions(Module m) {
|
|
2340
2420
|
.define_singleton_method(
|
2341
2421
|
"_rnn_tanh_data",
|
2342
2422
|
*[](const Tensor &data, const Tensor &batch_sizes, const Tensor &hx, TensorList params, bool has_biases, int64_t num_layers, double dropout, bool train, bool bidirectional) {
|
2343
|
-
return torch::rnn_tanh(data, batch_sizes, hx, params, has_biases, num_layers, dropout, train, bidirectional);
|
2423
|
+
return wrap(torch::rnn_tanh(data, batch_sizes, hx, params, has_biases, num_layers, dropout, train, bidirectional));
|
2344
2424
|
})
|
2345
2425
|
.define_singleton_method(
|
2346
2426
|
"_rnn_tanh_input",
|
2347
2427
|
*[](const Tensor &input, const Tensor &hx, TensorList params, bool has_biases, int64_t num_layers, double dropout, bool train, bool bidirectional, bool batch_first) {
|
2348
|
-
return torch::rnn_tanh(input, hx, params, has_biases, num_layers, dropout, train, bidirectional, batch_first);
|
2428
|
+
return wrap(torch::rnn_tanh(input, hx, params, has_biases, num_layers, dropout, train, bidirectional, batch_first));
|
2349
2429
|
})
|
2350
2430
|
.define_singleton_method(
|
2351
2431
|
"_roll",
|
@@ -2505,32 +2585,37 @@ void add_torch_functions(Module m) {
|
|
2505
2585
|
.define_singleton_method(
|
2506
2586
|
"_slogdet",
|
2507
2587
|
*[](const Tensor &self) {
|
2508
|
-
return torch::slogdet(self);
|
2588
|
+
return wrap(torch::slogdet(self));
|
2509
2589
|
})
|
2510
2590
|
.define_singleton_method(
|
2511
2591
|
"_smm",
|
2512
2592
|
*[](const Tensor &self, const Tensor &mat2) {
|
2513
2593
|
return torch::smm(self, mat2);
|
2514
2594
|
})
|
2595
|
+
.define_singleton_method(
|
2596
|
+
"_softmax",
|
2597
|
+
*[](const Tensor &self, int64_t dim, OptionalScalarType dtype) {
|
2598
|
+
return torch::softmax(self, dim, dtype);
|
2599
|
+
})
|
2515
2600
|
.define_singleton_method(
|
2516
2601
|
"_solve",
|
2517
2602
|
*[](const Tensor &self, const Tensor &A) {
|
2518
|
-
return torch::solve(self, A);
|
2603
|
+
return wrap(torch::solve(self, A));
|
2519
2604
|
})
|
2520
2605
|
.define_singleton_method(
|
2521
2606
|
"_solve_solution",
|
2522
2607
|
*[](const Tensor &self, const Tensor &A, Tensor &solution, Tensor &lu) {
|
2523
|
-
return torch::solve_out(solution, lu, self, A);
|
2608
|
+
return wrap(torch::solve_out(solution, lu, self, A));
|
2524
2609
|
})
|
2525
2610
|
.define_singleton_method(
|
2526
2611
|
"_sort",
|
2527
2612
|
*[](const Tensor &self, int64_t dim, bool descending) {
|
2528
|
-
return torch::sort(self, dim, descending);
|
2613
|
+
return wrap(torch::sort(self, dim, descending));
|
2529
2614
|
})
|
2530
2615
|
.define_singleton_method(
|
2531
2616
|
"_sort_values",
|
2532
2617
|
*[](const Tensor &self, int64_t dim, bool descending, Tensor &values, Tensor &indices) {
|
2533
|
-
return torch::sort_out(values, indices, self, dim, descending);
|
2618
|
+
return wrap(torch::sort_out(values, indices, self, dim, descending));
|
2534
2619
|
})
|
2535
2620
|
.define_singleton_method(
|
2536
2621
|
"_split_tensor",
|
@@ -2600,12 +2685,12 @@ void add_torch_functions(Module m) {
|
|
2600
2685
|
.define_singleton_method(
|
2601
2686
|
"_std_mean",
|
2602
2687
|
*[](const Tensor &self, bool unbiased) {
|
2603
|
-
return torch::std_mean(self, unbiased);
|
2688
|
+
return wrap(torch::std_mean(self, unbiased));
|
2604
2689
|
})
|
2605
2690
|
.define_singleton_method(
|
2606
2691
|
"_std_mean_dim",
|
2607
2692
|
*[](const Tensor &self, IntArrayRef dim, bool unbiased, bool keepdim) {
|
2608
|
-
return torch::std_mean(self, dim, unbiased, keepdim);
|
2693
|
+
return wrap(torch::std_mean(self, dim, unbiased, keepdim));
|
2609
2694
|
})
|
2610
2695
|
.define_singleton_method(
|
2611
2696
|
"_std_out",
|
@@ -2632,25 +2717,40 @@ void add_torch_functions(Module m) {
|
|
2632
2717
|
*[](const Tensor &self, const Tensor &other, Scalar alpha) {
|
2633
2718
|
return torch::sub(self, other, alpha);
|
2634
2719
|
})
|
2720
|
+
.define_singleton_method(
|
2721
|
+
"_sum",
|
2722
|
+
*[](const Tensor &self, OptionalScalarType dtype) {
|
2723
|
+
return torch::sum(self, dtype);
|
2724
|
+
})
|
2725
|
+
.define_singleton_method(
|
2726
|
+
"_sum_dim_intlist",
|
2727
|
+
*[](const Tensor &self, IntArrayRef dim, bool keepdim, OptionalScalarType dtype) {
|
2728
|
+
return torch::sum(self, dim, keepdim, dtype);
|
2729
|
+
})
|
2730
|
+
.define_singleton_method(
|
2731
|
+
"_sum_intlist_out",
|
2732
|
+
*[](const Tensor &self, IntArrayRef dim, bool keepdim, OptionalScalarType dtype, Tensor &out) {
|
2733
|
+
return torch::sum_out(out, self, dim, keepdim, dtype);
|
2734
|
+
})
|
2635
2735
|
.define_singleton_method(
|
2636
2736
|
"_svd",
|
2637
2737
|
*[](const Tensor &self, bool some, bool compute_uv) {
|
2638
|
-
return torch::svd(self, some, compute_uv);
|
2738
|
+
return wrap(torch::svd(self, some, compute_uv));
|
2639
2739
|
})
|
2640
2740
|
.define_singleton_method(
|
2641
2741
|
"_svd_u",
|
2642
2742
|
*[](const Tensor &self, bool some, bool compute_uv, Tensor &U, Tensor &S, Tensor &V) {
|
2643
|
-
return torch::svd_out(U, S, V, self, some, compute_uv);
|
2743
|
+
return wrap(torch::svd_out(U, S, V, self, some, compute_uv));
|
2644
2744
|
})
|
2645
2745
|
.define_singleton_method(
|
2646
2746
|
"_symeig",
|
2647
2747
|
*[](const Tensor &self, bool eigenvectors, bool upper) {
|
2648
|
-
return torch::symeig(self, eigenvectors, upper);
|
2748
|
+
return wrap(torch::symeig(self, eigenvectors, upper));
|
2649
2749
|
})
|
2650
2750
|
.define_singleton_method(
|
2651
2751
|
"_symeig_e",
|
2652
2752
|
*[](const Tensor &self, bool eigenvectors, bool upper, Tensor &e, Tensor &V) {
|
2653
|
-
return torch::symeig_out(e, V, self, eigenvectors, upper);
|
2753
|
+
return wrap(torch::symeig_out(e, V, self, eigenvectors, upper));
|
2654
2754
|
})
|
2655
2755
|
.define_singleton_method(
|
2656
2756
|
"_t",
|
@@ -2720,12 +2820,12 @@ void add_torch_functions(Module m) {
|
|
2720
2820
|
.define_singleton_method(
|
2721
2821
|
"_topk",
|
2722
2822
|
*[](const Tensor &self, int64_t k, int64_t dim, bool largest, bool sorted) {
|
2723
|
-
return torch::topk(self, k, dim, largest, sorted);
|
2823
|
+
return wrap(torch::topk(self, k, dim, largest, sorted));
|
2724
2824
|
})
|
2725
2825
|
.define_singleton_method(
|
2726
2826
|
"_topk_values",
|
2727
2827
|
*[](const Tensor &self, int64_t k, int64_t dim, bool largest, bool sorted, Tensor &values, Tensor &indices) {
|
2728
|
-
return torch::topk_out(values, indices, self, k, dim, largest, sorted);
|
2828
|
+
return wrap(torch::topk_out(values, indices, self, k, dim, largest, sorted));
|
2729
2829
|
})
|
2730
2830
|
.define_singleton_method(
|
2731
2831
|
"_trace",
|
@@ -2750,12 +2850,12 @@ void add_torch_functions(Module m) {
|
|
2750
2850
|
.define_singleton_method(
|
2751
2851
|
"_triangular_solve",
|
2752
2852
|
*[](const Tensor &self, const Tensor &A, bool upper, bool transpose, bool unitriangular) {
|
2753
|
-
return torch::triangular_solve(self, A, upper, transpose, unitriangular);
|
2853
|
+
return wrap(torch::triangular_solve(self, A, upper, transpose, unitriangular));
|
2754
2854
|
})
|
2755
2855
|
.define_singleton_method(
|
2756
2856
|
"_triangular_solve_x",
|
2757
2857
|
*[](const Tensor &self, const Tensor &A, bool upper, bool transpose, bool unitriangular, Tensor &X, Tensor &M) {
|
2758
|
-
return torch::triangular_solve_out(X, M, self, A, upper, transpose, unitriangular);
|
2858
|
+
return wrap(torch::triangular_solve_out(X, M, self, A, upper, transpose, unitriangular));
|
2759
2859
|
})
|
2760
2860
|
.define_singleton_method(
|
2761
2861
|
"_tril",
|
@@ -2805,17 +2905,17 @@ void add_torch_functions(Module m) {
|
|
2805
2905
|
.define_singleton_method(
|
2806
2906
|
"_unique_consecutive",
|
2807
2907
|
*[](const Tensor &self, bool return_inverse, bool return_counts) {
|
2808
|
-
return torch::unique_consecutive(self, return_inverse, return_counts);
|
2908
|
+
return wrap(torch::unique_consecutive(self, return_inverse, return_counts));
|
2809
2909
|
})
|
2810
2910
|
.define_singleton_method(
|
2811
2911
|
"_unique_consecutive_dim",
|
2812
2912
|
*[](const Tensor &self, bool return_inverse, bool return_counts, int64_t dim) {
|
2813
|
-
return torch::unique_consecutive(self, return_inverse, return_counts, dim);
|
2913
|
+
return wrap(torch::unique_consecutive(self, return_inverse, return_counts, dim));
|
2814
2914
|
})
|
2815
2915
|
.define_singleton_method(
|
2816
2916
|
"_unique_dim",
|
2817
2917
|
*[](const Tensor &self, int64_t dim, bool sorted, bool return_inverse, bool return_counts) {
|
2818
|
-
return torch::unique_dim(self, dim, sorted, return_inverse, return_counts);
|
2918
|
+
return wrap(torch::unique_dim(self, dim, sorted, return_inverse, return_counts));
|
2819
2919
|
})
|
2820
2920
|
.define_singleton_method(
|
2821
2921
|
"_unsqueeze",
|
@@ -2835,12 +2935,12 @@ void add_torch_functions(Module m) {
|
|
2835
2935
|
.define_singleton_method(
|
2836
2936
|
"_var_mean",
|
2837
2937
|
*[](const Tensor &self, bool unbiased) {
|
2838
|
-
return torch::var_mean(self, unbiased);
|
2938
|
+
return wrap(torch::var_mean(self, unbiased));
|
2839
2939
|
})
|
2840
2940
|
.define_singleton_method(
|
2841
2941
|
"_var_mean_dim",
|
2842
2942
|
*[](const Tensor &self, IntArrayRef dim, bool unbiased, bool keepdim) {
|
2843
|
-
return torch::var_mean(self, dim, unbiased, keepdim);
|
2943
|
+
return wrap(torch::var_mean(self, dim, unbiased, keepdim));
|
2844
2944
|
})
|
2845
2945
|
.define_singleton_method(
|
2846
2946
|
"_var_out",
|