torch-rb 0.1.5 → 0.1.6

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (73) hide show
  1. checksums.yaml +4 -4
  2. data/CHANGELOG.md +6 -0
  3. data/README.md +1 -1
  4. data/ext/torch/ext.cpp +0 -170
  5. data/ext/torch/nn_functions.cpp +44 -24
  6. data/ext/torch/templates.cpp +55 -0
  7. data/ext/torch/templates.hpp +48 -0
  8. data/ext/torch/tensor_functions.cpp +76 -16
  9. data/ext/torch/torch_functions.cpp +165 -65
  10. data/lib/torch.rb +51 -42
  11. data/lib/torch/ext.bundle +0 -0
  12. data/lib/torch/native/dispatcher.rb +1 -1
  13. data/lib/torch/native/function.rb +36 -5
  14. data/lib/torch/native/generator.rb +26 -7
  15. data/lib/torch/native/parser.rb +51 -14
  16. data/lib/torch/nn/avg_pool1d.rb +18 -0
  17. data/lib/torch/nn/avg_pool2d.rb +7 -2
  18. data/lib/torch/nn/avg_pool3d.rb +19 -0
  19. data/lib/torch/nn/avg_poolnd.rb +1 -1
  20. data/lib/torch/nn/batch_norm.rb +75 -0
  21. data/lib/torch/nn/batch_norm1d.rb +11 -0
  22. data/lib/torch/nn/batch_norm2d.rb +11 -0
  23. data/lib/torch/nn/batch_norm3d.rb +11 -0
  24. data/lib/torch/nn/constant_pad1d.rb +10 -0
  25. data/lib/torch/nn/constant_pad2d.rb +10 -0
  26. data/lib/torch/nn/constant_pad3d.rb +10 -0
  27. data/lib/torch/nn/constant_padnd.rb +18 -0
  28. data/lib/torch/nn/conv1d.rb +22 -0
  29. data/lib/torch/nn/conv2d.rb +9 -17
  30. data/lib/torch/nn/conv3d.rb +22 -0
  31. data/lib/torch/nn/fold.rb +20 -0
  32. data/lib/torch/nn/functional.rb +320 -100
  33. data/lib/torch/nn/group_norm.rb +36 -0
  34. data/lib/torch/nn/gru.rb +49 -0
  35. data/lib/torch/nn/hardshrink.rb +18 -0
  36. data/lib/torch/nn/instance_norm.rb +20 -0
  37. data/lib/torch/nn/instance_norm1d.rb +18 -0
  38. data/lib/torch/nn/instance_norm2d.rb +11 -0
  39. data/lib/torch/nn/instance_norm3d.rb +11 -0
  40. data/lib/torch/nn/layer_norm.rb +35 -0
  41. data/lib/torch/nn/local_response_norm.rb +21 -0
  42. data/lib/torch/nn/log_sigmoid.rb +9 -0
  43. data/lib/torch/nn/lp_pool1d.rb +9 -0
  44. data/lib/torch/nn/lp_pool2d.rb +9 -0
  45. data/lib/torch/nn/lp_poolnd.rb +22 -0
  46. data/lib/torch/nn/lstm.rb +66 -0
  47. data/lib/torch/nn/max_pool1d.rb +9 -0
  48. data/lib/torch/nn/max_pool2d.rb +1 -1
  49. data/lib/torch/nn/max_pool3d.rb +9 -0
  50. data/lib/torch/nn/max_poolnd.rb +6 -6
  51. data/lib/torch/nn/max_unpool1d.rb +16 -0
  52. data/lib/torch/nn/max_unpool2d.rb +16 -0
  53. data/lib/torch/nn/max_unpool3d.rb +16 -0
  54. data/lib/torch/nn/max_unpoolnd.rb +9 -0
  55. data/lib/torch/nn/module.rb +7 -0
  56. data/lib/torch/nn/reflection_pad1d.rb +10 -0
  57. data/lib/torch/nn/reflection_pad2d.rb +10 -0
  58. data/lib/torch/nn/reflection_padnd.rb +13 -0
  59. data/lib/torch/nn/replication_pad1d.rb +10 -0
  60. data/lib/torch/nn/replication_pad2d.rb +10 -0
  61. data/lib/torch/nn/replication_pad3d.rb +10 -0
  62. data/lib/torch/nn/replication_padnd.rb +13 -0
  63. data/lib/torch/nn/rnn_base.rb +48 -4
  64. data/lib/torch/nn/softshrink.rb +18 -0
  65. data/lib/torch/nn/softsign.rb +9 -0
  66. data/lib/torch/nn/tanh.rb +9 -0
  67. data/lib/torch/nn/tanhshrink.rb +9 -0
  68. data/lib/torch/nn/unfold.rb +19 -0
  69. data/lib/torch/nn/utils.rb +25 -0
  70. data/lib/torch/nn/zero_pad2d.rb +9 -0
  71. data/lib/torch/tensor.rb +14 -25
  72. data/lib/torch/version.rb +1 -1
  73. metadata +50 -2
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: 6b47306ed525e1a20d25cb8324d4658f750c18afa5704c9b7bafc215d8f568c1
4
- data.tar.gz: dad6ddf955b111989b061e5af146006a32c83dc1ea1ca5005a6b6e34bc9a4892
3
+ metadata.gz: 9667f9d3256f5e2d39937f17ae8eb00449dd14f79bb01cd647800bd7ed972fc6
4
+ data.tar.gz: 54c23612c79355e09c97da5fcf6b97c183da8316d1c2a53d6f8f0463e98342a2
5
5
  SHA512:
6
- metadata.gz: 5d26e3642bf7cd921b9b570052df353d4c32b1bd955a6fbbf5f30249631fa4c0d4624f4fa91a1c06f61b3b0d6461cd117ab4df185cf013e915d2f63e52dbcf7c
7
- data.tar.gz: 1728ce9b579f41f7a567e63d7256c82bb352840b67f16d88aac930a99e5abbf5a5f4061c5f9da16fb47d1664567e7956d276a8b2b44f13d2263032486afb53e8
6
+ metadata.gz: bb2c8e5aae436367aeb871a2d19958e59ed9e9c7601b1b8b4473e33094cadf6d657947582b0ec93a29cb08723f8f7c81178a2d50beb23a125d5a356769d92177
7
+ data.tar.gz: 62feef39da31a19415e2e6c453aed4972e34db7367161a088944c06a977637a8b25cecc8eb2ad052b3b9deee0707f364e616cc33e7674cf0314899421f18fbee
data/CHANGELOG.md CHANGED
@@ -1,3 +1,9 @@
1
+ ## 0.1.6 (2019-12-09)
2
+
3
+ - Added recurrent layers
4
+ - Added more pooling layers
5
+ - Added normalization layers
6
+
1
7
  ## 0.1.5 (2019-12-06)
2
8
 
3
9
  - Added many more functions
data/README.md CHANGED
@@ -369,7 +369,7 @@ Here are a few full examples:
369
369
 
370
370
  - [Image classification with MNIST](examples/mnist) ([日本語版](https://qiita.com/kojix2/items/c19c36dc1bf73ea93409))
371
371
  - [Collaborative filtering with MovieLens](examples/movielens)
372
- - [Word embeddings](examples/nlp)
372
+ - [Sequence models and word embeddings](examples/nlp)
373
373
 
374
374
  ## LibTorch Installation
375
375
 
data/ext/torch/ext.cpp CHANGED
@@ -16,13 +16,6 @@
16
16
 
17
17
  using namespace Rice;
18
18
 
19
- Object tensor_array(std::tuple<torch::Tensor, torch::Tensor> x) {
20
- Array a;
21
- a.push(to_ruby<torch::Tensor>(std::get<0>(x)));
22
- a.push(to_ruby<torch::Tensor>(std::get<1>(x)));
23
- return Object(a);
24
- }
25
-
26
19
  extern "C"
27
20
  void Init_ext()
28
21
  {
@@ -112,94 +105,11 @@ void Init_ext()
112
105
  return torch::zeros(size, options);
113
106
  })
114
107
  // begin operations
115
- .define_singleton_method(
116
- "_mean",
117
- *[](Tensor& input) {
118
- return torch::mean(input);
119
- })
120
- .define_singleton_method(
121
- "_mean_dim",
122
- *[](Tensor& input, int64_t dim, bool keepdim) {
123
- return torch::mean(input, dim, keepdim);
124
- })
125
- .define_singleton_method(
126
- "_sum",
127
- *[](Tensor& input) {
128
- return torch::sum(input);
129
- })
130
- .define_singleton_method(
131
- "_sum_dim",
132
- *[](Tensor& input, int64_t dim, bool keepdim) {
133
- return torch::sum(input, dim, keepdim);
134
- })
135
- .define_singleton_method(
136
- "_max_out",
137
- *[](Tensor &max, Tensor &max_indices, const Tensor &input, int64_t dim, bool keepdim) {
138
- return tensor_array(torch::_max_out(max, max_indices, input, dim, keepdim));
139
- })
140
- .define_singleton_method(
141
- "_topk",
142
- *[](Tensor& input, int64_t k) {
143
- return tensor_array(torch::topk(input, k));
144
- })
145
- .define_singleton_method(
146
- "_softmax",
147
- *[](const Tensor &input, int64_t dim) {
148
- return torch::softmax(input, dim);
149
- })
150
- .define_singleton_method(
151
- "_log_softmax",
152
- *[](Tensor& input, int64_t dim) {
153
- return torch::log_softmax(input, dim);
154
- })
155
- .define_singleton_method(
156
- "relu",
157
- *[](Tensor& input) {
158
- return torch::relu(input);
159
- })
160
- .define_singleton_method(
161
- "prelu",
162
- *[](torch::Tensor& input, torch::Tensor& weight) {
163
- return torch::prelu(input, weight);
164
- })
165
- .define_singleton_method(
166
- "leaky_relu",
167
- *[](torch::Tensor& input, Scalar negative_slope) {
168
- return torch::leaky_relu(input, negative_slope);
169
- })
170
- .define_singleton_method(
171
- "conv2d",
172
- *[](Tensor& input, Tensor& weight, Tensor& bias, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, int64_t groups) {
173
- return torch::conv2d(input, weight, bias, stride, padding, dilation, groups);
174
- })
175
- // linear layers
176
- .define_singleton_method(
177
- "bilinear",
178
- *[](const Tensor &input1, const Tensor &input2, const Tensor &weight, const Tensor &bias) {
179
- return torch::bilinear(input1, input2, weight, bias);
180
- })
181
- .define_singleton_method(
182
- "linear",
183
- *[](Tensor& input, Tensor& weight, Tensor& bias) {
184
- return torch::linear(input, weight, bias);
185
- })
186
- // pooling layers
187
- .define_singleton_method(
188
- "max_pool2d",
189
- *[](Tensor& input, IntArrayRef kernel_size) {
190
- return torch::max_pool2d(input, kernel_size);
191
- })
192
- .define_singleton_method(
193
- "avg_pool2d",
194
- *[](Tensor& input, IntArrayRef kernel_size) {
195
- return torch::avg_pool2d(input, kernel_size);
196
- })
197
108
  .define_singleton_method(
198
109
  "_binary_cross_entropy_with_logits",
199
110
  *[](const Tensor &input, const Tensor &target, OptionalTensor weight, OptionalTensor pos_weight, MyReduction reduction) {
200
111
  return torch::binary_cross_entropy_with_logits(input, target, weight, pos_weight, reduction);
201
112
  })
202
- .define_singleton_method("numel", &torch::numel)
203
113
  .define_singleton_method(
204
114
  "_from_blob",
205
115
  *[](String s, IntArrayRef size, const torch::TensorOptions &options) {
@@ -226,16 +136,11 @@ void Init_ext()
226
136
 
227
137
  rb_cTensor
228
138
  .define_method("cuda?", &torch::Tensor::is_cuda)
229
- .define_method("distributed?", &torch::Tensor::is_distributed)
230
- .define_method("complex?", &torch::Tensor::is_complex)
231
- .define_method("floating_point?", &torch::Tensor::is_floating_point)
232
- .define_method("signed?", &torch::Tensor::is_signed)
233
139
  .define_method("sparse?", &torch::Tensor::is_sparse)
234
140
  .define_method("quantized?", &torch::Tensor::is_quantized)
235
141
  .define_method("dim", &torch::Tensor::dim)
236
142
  .define_method("element_size", &torch::Tensor::element_size)
237
143
  .define_method("requires_grad", &torch::Tensor::requires_grad)
238
- .define_method("view_as", &torch::Tensor::view_as)
239
144
  .define_method(
240
145
  "addcmul!",
241
146
  *[](Tensor& self, Scalar value, const Tensor & tensor1, const Tensor & tensor2) {
@@ -246,21 +151,6 @@ void Init_ext()
246
151
  *[](Tensor& self, Scalar value, const Tensor & tensor1, const Tensor & tensor2) {
247
152
  return self.addcdiv_(tensor1, tensor2, value);
248
153
  })
249
- .define_method(
250
- "zero!",
251
- *[](Tensor& self) {
252
- return self.zero_();
253
- })
254
- .define_method(
255
- "detach",
256
- *[](Tensor& self) {
257
- return self.detach();
258
- })
259
- .define_method(
260
- "detach!",
261
- *[](Tensor& self) {
262
- return self.detach_();
263
- })
264
154
  .define_method(
265
155
  "_requires_grad!",
266
156
  *[](Tensor& self, bool requires_grad) {
@@ -300,66 +190,6 @@ void Init_ext()
300
190
  s << self.device();
301
191
  return s.str();
302
192
  })
303
- .define_method(
304
- "resize_as!",
305
- *[](Tensor& self, Tensor& other) {
306
- return self.resize_as_(other);
307
- })
308
- .define_method(
309
- "fill!",
310
- *[](Tensor& self, Scalar value) {
311
- return self.fill_(value);
312
- })
313
- .define_method(
314
- "relu!",
315
- *[](Tensor& self) {
316
- return self.relu_();
317
- })
318
- .define_method(
319
- "normal!",
320
- *[](Tensor& self, double mean, double std) {
321
- return self.normal_(mean, std);
322
- })
323
- .define_method(
324
- "random!",
325
- *[](Tensor& self, int64_t to) {
326
- return self.random_(to);
327
- })
328
- .define_method(
329
- "sub!",
330
- *[](Tensor& self, Tensor& other) {
331
- return self.sub_(other);
332
- })
333
- .define_method(
334
- "div!",
335
- *[](Tensor& self, Tensor& other) {
336
- return self.div_(other);
337
- })
338
- .define_method(
339
- "sqrt!",
340
- *[](Tensor& self) {
341
- return self.sqrt_();
342
- })
343
- .define_method(
344
- "unsqueeze!",
345
- *[](Tensor& self, int64_t dim) {
346
- return self.unsqueeze_(dim);
347
- })
348
- .define_method(
349
- "copy!",
350
- *[](Tensor& self, Tensor& src) {
351
- return self.copy_(src);
352
- })
353
- .define_method(
354
- "clone",
355
- *[](Tensor& self) {
356
- return self.clone();
357
- })
358
- .define_method(
359
- "data",
360
- *[](Tensor& self) {
361
- return self.data();
362
- })
363
193
  .define_method(
364
194
  "_flat_data",
365
195
  *[](Tensor& self) {
@@ -30,22 +30,42 @@ void add_nn_functions(Module m) {
30
30
  .define_singleton_method(
31
31
  "_adaptive_max_pool2d",
32
32
  *[](const Tensor &self, IntArrayRef output_size) {
33
- return torch::adaptive_max_pool2d(self, output_size);
33
+ return wrap(torch::adaptive_max_pool2d(self, output_size));
34
34
  })
35
35
  .define_singleton_method(
36
36
  "_adaptive_max_pool2d_out",
37
37
  *[](const Tensor &self, IntArrayRef output_size, Tensor &out, Tensor &indices) {
38
- return torch::adaptive_max_pool2d_out(out, indices, self, output_size);
38
+ return wrap(torch::adaptive_max_pool2d_out(out, indices, self, output_size));
39
39
  })
40
40
  .define_singleton_method(
41
41
  "_adaptive_max_pool3d",
42
42
  *[](const Tensor &self, IntArrayRef output_size) {
43
- return torch::adaptive_max_pool3d(self, output_size);
43
+ return wrap(torch::adaptive_max_pool3d(self, output_size));
44
44
  })
45
45
  .define_singleton_method(
46
46
  "_adaptive_max_pool3d_out",
47
47
  *[](const Tensor &self, IntArrayRef output_size, Tensor &out, Tensor &indices) {
48
- return torch::adaptive_max_pool3d_out(out, indices, self, output_size);
48
+ return wrap(torch::adaptive_max_pool3d_out(out, indices, self, output_size));
49
+ })
50
+ .define_singleton_method(
51
+ "_avg_pool2d",
52
+ *[](const Tensor &self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, bool ceil_mode, bool count_include_pad) {
53
+ return torch::avg_pool2d(self, kernel_size, stride, padding, ceil_mode, count_include_pad);
54
+ })
55
+ .define_singleton_method(
56
+ "_avg_pool2d_divisor_override",
57
+ *[](const Tensor &self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, bool ceil_mode, bool count_include_pad, int64_t divisor_override) {
58
+ return torch::avg_pool2d(self, kernel_size, stride, padding, ceil_mode, count_include_pad, divisor_override);
59
+ })
60
+ .define_singleton_method(
61
+ "_avg_pool3d",
62
+ *[](const Tensor &self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, bool ceil_mode, bool count_include_pad) {
63
+ return torch::avg_pool3d(self, kernel_size, stride, padding, ceil_mode, count_include_pad);
64
+ })
65
+ .define_singleton_method(
66
+ "_avg_pool3d_divisor_override",
67
+ *[](const Tensor &self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, bool ceil_mode, bool count_include_pad, int64_t divisor_override) {
68
+ return torch::avg_pool3d(self, kernel_size, stride, padding, ceil_mode, count_include_pad, divisor_override);
49
69
  })
50
70
  .define_singleton_method(
51
71
  "_binary_cross_entropy",
@@ -85,22 +105,22 @@ void add_nn_functions(Module m) {
85
105
  .define_singleton_method(
86
106
  "_fractional_max_pool2d",
87
107
  *[](const Tensor &self, IntArrayRef kernel_size, IntArrayRef output_size, const Tensor &random_samples) {
88
- return torch::fractional_max_pool2d(self, kernel_size, output_size, random_samples);
108
+ return wrap(torch::fractional_max_pool2d(self, kernel_size, output_size, random_samples));
89
109
  })
90
110
  .define_singleton_method(
91
111
  "_fractional_max_pool2d_output",
92
112
  *[](const Tensor &self, IntArrayRef kernel_size, IntArrayRef output_size, const Tensor &random_samples, Tensor &output, Tensor &indices) {
93
- return torch::fractional_max_pool2d_out(output, indices, self, kernel_size, output_size, random_samples);
113
+ return wrap(torch::fractional_max_pool2d_out(output, indices, self, kernel_size, output_size, random_samples));
94
114
  })
95
115
  .define_singleton_method(
96
116
  "_fractional_max_pool3d",
97
117
  *[](const Tensor &self, IntArrayRef kernel_size, IntArrayRef output_size, const Tensor &random_samples) {
98
- return torch::fractional_max_pool3d(self, kernel_size, output_size, random_samples);
118
+ return wrap(torch::fractional_max_pool3d(self, kernel_size, output_size, random_samples));
99
119
  })
100
120
  .define_singleton_method(
101
121
  "_fractional_max_pool3d_output",
102
122
  *[](const Tensor &self, IntArrayRef kernel_size, IntArrayRef output_size, const Tensor &random_samples, Tensor &output, Tensor &indices) {
103
- return torch::fractional_max_pool3d_out(output, indices, self, kernel_size, output_size, random_samples);
123
+ return wrap(torch::fractional_max_pool3d_out(output, indices, self, kernel_size, output_size, random_samples));
104
124
  })
105
125
  .define_singleton_method(
106
126
  "_gelu",
@@ -180,12 +200,12 @@ void add_nn_functions(Module m) {
180
200
  .define_singleton_method(
181
201
  "_log_sigmoid_forward",
182
202
  *[](const Tensor &self) {
183
- return torch::log_sigmoid_forward(self);
203
+ return wrap(torch::log_sigmoid_forward(self));
184
204
  })
185
205
  .define_singleton_method(
186
206
  "_log_sigmoid_forward_output",
187
207
  *[](const Tensor &self, Tensor &output, Tensor &buffer) {
188
- return torch::log_sigmoid_forward_out(output, buffer, self);
208
+ return wrap(torch::log_sigmoid_forward_out(output, buffer, self));
189
209
  })
190
210
  .define_singleton_method(
191
211
  "_log_sigmoid_out",
@@ -195,22 +215,22 @@ void add_nn_functions(Module m) {
195
215
  .define_singleton_method(
196
216
  "_max_pool2d_with_indices",
197
217
  *[](const Tensor &self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, bool ceil_mode) {
198
- return torch::max_pool2d_with_indices(self, kernel_size, stride, padding, dilation, ceil_mode);
218
+ return wrap(torch::max_pool2d_with_indices(self, kernel_size, stride, padding, dilation, ceil_mode));
199
219
  })
200
220
  .define_singleton_method(
201
221
  "_max_pool2d_with_indices_out",
202
222
  *[](const Tensor &self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, bool ceil_mode, Tensor &out, Tensor &indices) {
203
- return torch::max_pool2d_with_indices_out(out, indices, self, kernel_size, stride, padding, dilation, ceil_mode);
223
+ return wrap(torch::max_pool2d_with_indices_out(out, indices, self, kernel_size, stride, padding, dilation, ceil_mode));
204
224
  })
205
225
  .define_singleton_method(
206
226
  "_max_pool3d_with_indices",
207
227
  *[](const Tensor &self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, bool ceil_mode) {
208
- return torch::max_pool3d_with_indices(self, kernel_size, stride, padding, dilation, ceil_mode);
228
+ return wrap(torch::max_pool3d_with_indices(self, kernel_size, stride, padding, dilation, ceil_mode));
209
229
  })
210
230
  .define_singleton_method(
211
231
  "_max_pool3d_with_indices_out",
212
232
  *[](const Tensor &self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, bool ceil_mode, Tensor &out, Tensor &indices) {
213
- return torch::max_pool3d_with_indices_out(out, indices, self, kernel_size, stride, padding, dilation, ceil_mode);
233
+ return wrap(torch::max_pool3d_with_indices_out(out, indices, self, kernel_size, stride, padding, dilation, ceil_mode));
214
234
  })
215
235
  .define_singleton_method(
216
236
  "_max_unpool2d",
@@ -270,12 +290,12 @@ void add_nn_functions(Module m) {
270
290
  .define_singleton_method(
271
291
  "_multilabel_margin_loss_forward",
272
292
  *[](const Tensor &self, const Tensor &target, MyReduction reduction) {
273
- return torch::multilabel_margin_loss_forward(self, target, reduction);
293
+ return wrap(torch::multilabel_margin_loss_forward(self, target, reduction));
274
294
  })
275
295
  .define_singleton_method(
276
296
  "_multilabel_margin_loss_forward_output",
277
297
  *[](const Tensor &self, const Tensor &target, MyReduction reduction, Tensor &output, Tensor &is_target) {
278
- return torch::multilabel_margin_loss_forward_out(output, is_target, self, target, reduction);
298
+ return wrap(torch::multilabel_margin_loss_forward_out(output, is_target, self, target, reduction));
279
299
  })
280
300
  .define_singleton_method(
281
301
  "_multilabel_margin_loss_out",
@@ -295,12 +315,12 @@ void add_nn_functions(Module m) {
295
315
  .define_singleton_method(
296
316
  "_nll_loss2d_forward",
297
317
  *[](const Tensor &self, const Tensor &target, OptionalTensor weight, MyReduction reduction, int64_t ignore_index) {
298
- return torch::nll_loss2d_forward(self, target, weight, reduction, ignore_index);
318
+ return wrap(torch::nll_loss2d_forward(self, target, weight, reduction, ignore_index));
299
319
  })
300
320
  .define_singleton_method(
301
321
  "_nll_loss2d_forward_output",
302
322
  *[](const Tensor &self, const Tensor &target, OptionalTensor weight, MyReduction reduction, int64_t ignore_index, Tensor &output, Tensor &total_weight) {
303
- return torch::nll_loss2d_forward_out(output, total_weight, self, target, weight, reduction, ignore_index);
323
+ return wrap(torch::nll_loss2d_forward_out(output, total_weight, self, target, weight, reduction, ignore_index));
304
324
  })
305
325
  .define_singleton_method(
306
326
  "_nll_loss2d_out",
@@ -310,12 +330,12 @@ void add_nn_functions(Module m) {
310
330
  .define_singleton_method(
311
331
  "_nll_loss_forward",
312
332
  *[](const Tensor &self, const Tensor &target, OptionalTensor weight, MyReduction reduction, int64_t ignore_index) {
313
- return torch::nll_loss_forward(self, target, weight, reduction, ignore_index);
333
+ return wrap(torch::nll_loss_forward(self, target, weight, reduction, ignore_index));
314
334
  })
315
335
  .define_singleton_method(
316
336
  "_nll_loss_forward_output",
317
337
  *[](const Tensor &self, const Tensor &target, OptionalTensor weight, MyReduction reduction, int64_t ignore_index, Tensor &output, Tensor &total_weight) {
318
- return torch::nll_loss_forward_out(output, total_weight, self, target, weight, reduction, ignore_index);
338
+ return wrap(torch::nll_loss_forward_out(output, total_weight, self, target, weight, reduction, ignore_index));
319
339
  })
320
340
  .define_singleton_method(
321
341
  "_nll_loss_out",
@@ -470,12 +490,12 @@ void add_nn_functions(Module m) {
470
490
  .define_singleton_method(
471
491
  "_thnn_conv2d_forward",
472
492
  *[](const Tensor &self, const Tensor &weight, IntArrayRef kernel_size, OptionalTensor bias, IntArrayRef stride, IntArrayRef padding) {
473
- return torch::thnn_conv2d_forward(self, weight, kernel_size, bias, stride, padding);
493
+ return wrap(torch::thnn_conv2d_forward(self, weight, kernel_size, bias, stride, padding));
474
494
  })
475
495
  .define_singleton_method(
476
496
  "_thnn_conv2d_forward_output",
477
497
  *[](const Tensor &self, const Tensor &weight, IntArrayRef kernel_size, OptionalTensor bias, IntArrayRef stride, IntArrayRef padding, Tensor &output, Tensor &finput, Tensor &fgrad_input) {
478
- return torch::thnn_conv2d_forward_out(output, finput, fgrad_input, self, weight, kernel_size, bias, stride, padding);
498
+ return wrap(torch::thnn_conv2d_forward_out(output, finput, fgrad_input, self, weight, kernel_size, bias, stride, padding));
479
499
  })
480
500
  .define_singleton_method(
481
501
  "_thnn_conv2d_out",
@@ -490,12 +510,12 @@ void add_nn_functions(Module m) {
490
510
  .define_singleton_method(
491
511
  "_thnn_conv3d_forward",
492
512
  *[](const Tensor &self, const Tensor &weight, IntArrayRef kernel_size, OptionalTensor bias, IntArrayRef stride, IntArrayRef padding) {
493
- return torch::thnn_conv3d_forward(self, weight, kernel_size, bias, stride, padding);
513
+ return wrap(torch::thnn_conv3d_forward(self, weight, kernel_size, bias, stride, padding));
494
514
  })
495
515
  .define_singleton_method(
496
516
  "_thnn_conv3d_forward_output",
497
517
  *[](const Tensor &self, const Tensor &weight, IntArrayRef kernel_size, OptionalTensor bias, IntArrayRef stride, IntArrayRef padding, Tensor &output, Tensor &finput, Tensor &fgrad_input) {
498
- return torch::thnn_conv3d_forward_out(output, finput, fgrad_input, self, weight, kernel_size, bias, stride, padding);
518
+ return wrap(torch::thnn_conv3d_forward_out(output, finput, fgrad_input, self, weight, kernel_size, bias, stride, padding));
499
519
  })
500
520
  .define_singleton_method(
501
521
  "_thnn_conv3d_out",
@@ -0,0 +1,55 @@
1
+ #include <torch/torch.h>
2
+ #include <rice/Object.hpp>
3
+ #include "templates.hpp"
4
+
5
+ Object wrap(std::tuple<torch::Tensor, torch::Tensor> x) {
6
+ Array a;
7
+ a.push(to_ruby<torch::Tensor>(std::get<0>(x)));
8
+ a.push(to_ruby<torch::Tensor>(std::get<1>(x)));
9
+ return Object(a);
10
+ }
11
+
12
+ Object wrap(std::tuple<torch::Tensor, torch::Tensor, torch::Tensor> x) {
13
+ Array a;
14
+ a.push(to_ruby<torch::Tensor>(std::get<0>(x)));
15
+ a.push(to_ruby<torch::Tensor>(std::get<1>(x)));
16
+ a.push(to_ruby<torch::Tensor>(std::get<2>(x)));
17
+ return Object(a);
18
+ }
19
+
20
+ Object wrap(std::tuple<torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor> x) {
21
+ Array a;
22
+ a.push(to_ruby<torch::Tensor>(std::get<0>(x)));
23
+ a.push(to_ruby<torch::Tensor>(std::get<1>(x)));
24
+ a.push(to_ruby<torch::Tensor>(std::get<2>(x)));
25
+ a.push(to_ruby<torch::Tensor>(std::get<3>(x)));
26
+ return Object(a);
27
+ }
28
+
29
+ Object wrap(std::tuple<torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor> x) {
30
+ Array a;
31
+ a.push(to_ruby<torch::Tensor>(std::get<0>(x)));
32
+ a.push(to_ruby<torch::Tensor>(std::get<1>(x)));
33
+ a.push(to_ruby<torch::Tensor>(std::get<2>(x)));
34
+ a.push(to_ruby<torch::Tensor>(std::get<3>(x)));
35
+ a.push(to_ruby<torch::Tensor>(std::get<4>(x)));
36
+ return Object(a);
37
+ }
38
+
39
+ Object wrap(std::tuple<torch::Tensor, torch::Tensor, torch::Tensor, int64_t> x) {
40
+ Array a;
41
+ a.push(to_ruby<torch::Tensor>(std::get<0>(x)));
42
+ a.push(to_ruby<torch::Tensor>(std::get<1>(x)));
43
+ a.push(to_ruby<torch::Tensor>(std::get<2>(x)));
44
+ a.push(to_ruby<int64_t>(std::get<3>(x)));
45
+ return Object(a);
46
+ }
47
+
48
+ Object wrap(std::tuple<torch::Tensor, torch::Tensor, double, int64_t> x) {
49
+ Array a;
50
+ a.push(to_ruby<torch::Tensor>(std::get<0>(x)));
51
+ a.push(to_ruby<torch::Tensor>(std::get<1>(x)));
52
+ a.push(to_ruby<double>(std::get<2>(x)));
53
+ a.push(to_ruby<int64_t>(std::get<3>(x)));
54
+ return Object(a);
55
+ }