torch-rb 0.1.3
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/CHANGELOG.md +28 -0
- data/LICENSE.txt +46 -0
- data/README.md +426 -0
- data/ext/torch/ext.cpp +839 -0
- data/ext/torch/extconf.rb +25 -0
- data/lib/torch-rb.rb +1 -0
- data/lib/torch.rb +422 -0
- data/lib/torch/ext.bundle +0 -0
- data/lib/torch/inspector.rb +85 -0
- data/lib/torch/nn/alpha_dropout.rb +9 -0
- data/lib/torch/nn/conv2d.rb +37 -0
- data/lib/torch/nn/convnd.rb +41 -0
- data/lib/torch/nn/dropout.rb +9 -0
- data/lib/torch/nn/dropout2d.rb +9 -0
- data/lib/torch/nn/dropout3d.rb +9 -0
- data/lib/torch/nn/dropoutnd.rb +15 -0
- data/lib/torch/nn/embedding.rb +52 -0
- data/lib/torch/nn/feature_alpha_dropout.rb +9 -0
- data/lib/torch/nn/functional.rb +100 -0
- data/lib/torch/nn/init.rb +30 -0
- data/lib/torch/nn/linear.rb +36 -0
- data/lib/torch/nn/module.rb +85 -0
- data/lib/torch/nn/mse_loss.rb +13 -0
- data/lib/torch/nn/parameter.rb +14 -0
- data/lib/torch/nn/relu.rb +13 -0
- data/lib/torch/nn/sequential.rb +29 -0
- data/lib/torch/optim/adadelta.rb +57 -0
- data/lib/torch/optim/adagrad.rb +71 -0
- data/lib/torch/optim/adam.rb +81 -0
- data/lib/torch/optim/adamax.rb +68 -0
- data/lib/torch/optim/adamw.rb +82 -0
- data/lib/torch/optim/asgd.rb +65 -0
- data/lib/torch/optim/lr_scheduler/lr_scheduler.rb +33 -0
- data/lib/torch/optim/lr_scheduler/step_lr.rb +17 -0
- data/lib/torch/optim/optimizer.rb +62 -0
- data/lib/torch/optim/rmsprop.rb +76 -0
- data/lib/torch/optim/rprop.rb +68 -0
- data/lib/torch/optim/sgd.rb +60 -0
- data/lib/torch/tensor.rb +196 -0
- data/lib/torch/utils/data/data_loader.rb +27 -0
- data/lib/torch/utils/data/tensor_dataset.rb +22 -0
- data/lib/torch/version.rb +3 -0
- metadata +169 -0
data/ext/torch/ext.cpp
ADDED
@@ -0,0 +1,839 @@
|
|
1
|
+
#include <sstream>
|
2
|
+
|
3
|
+
#include <torch/torch.h>
|
4
|
+
|
5
|
+
#include <rice/Array.hpp>
|
6
|
+
#include <rice/Class.hpp>
|
7
|
+
#include <rice/Constructor.hpp>
|
8
|
+
|
9
|
+
using namespace Rice;
|
10
|
+
|
11
|
+
template<>
|
12
|
+
inline
|
13
|
+
long long from_ruby<long long>(Object x)
|
14
|
+
{
|
15
|
+
return NUM2LL(x);
|
16
|
+
}
|
17
|
+
|
18
|
+
template<>
|
19
|
+
inline
|
20
|
+
Object to_ruby<long long>(long long const & x)
|
21
|
+
{
|
22
|
+
return LL2NUM(x);
|
23
|
+
}
|
24
|
+
|
25
|
+
template<>
|
26
|
+
inline
|
27
|
+
unsigned long long from_ruby<unsigned long long>(Object x)
|
28
|
+
{
|
29
|
+
return NUM2ULL(x);
|
30
|
+
}
|
31
|
+
|
32
|
+
template<>
|
33
|
+
inline
|
34
|
+
Object to_ruby<unsigned long long>(unsigned long long const & x)
|
35
|
+
{
|
36
|
+
return ULL2NUM(x);
|
37
|
+
}
|
38
|
+
|
39
|
+
template<>
|
40
|
+
inline
|
41
|
+
short from_ruby<short>(Object x)
|
42
|
+
{
|
43
|
+
return NUM2SHORT(x);
|
44
|
+
}
|
45
|
+
|
46
|
+
template<>
|
47
|
+
inline
|
48
|
+
Object to_ruby<short>(short const & x)
|
49
|
+
{
|
50
|
+
return INT2NUM(x);
|
51
|
+
}
|
52
|
+
|
53
|
+
template<>
|
54
|
+
inline
|
55
|
+
unsigned short from_ruby<unsigned short>(Object x)
|
56
|
+
{
|
57
|
+
return NUM2USHORT(x);
|
58
|
+
}
|
59
|
+
|
60
|
+
template<>
|
61
|
+
inline
|
62
|
+
Object to_ruby<unsigned short>(unsigned short const & x)
|
63
|
+
{
|
64
|
+
return UINT2NUM(x);
|
65
|
+
}
|
66
|
+
|
67
|
+
// need to wrap torch::IntArrayRef() since
|
68
|
+
// it doesn't own underlying data
|
69
|
+
class IntArrayRef {
|
70
|
+
std::vector<int64_t> vec;
|
71
|
+
public:
|
72
|
+
IntArrayRef(Object o) {
|
73
|
+
Array a = Array(o);
|
74
|
+
for (size_t i = 0; i < a.size(); i++) {
|
75
|
+
vec.push_back(from_ruby<int64_t>(a[i]));
|
76
|
+
}
|
77
|
+
}
|
78
|
+
operator torch::IntArrayRef() {
|
79
|
+
return torch::IntArrayRef(vec);
|
80
|
+
}
|
81
|
+
};
|
82
|
+
|
83
|
+
template<>
|
84
|
+
inline
|
85
|
+
IntArrayRef from_ruby<IntArrayRef>(Object x)
|
86
|
+
{
|
87
|
+
return IntArrayRef(x);
|
88
|
+
}
|
89
|
+
|
90
|
+
// for now
|
91
|
+
class Scalar {
|
92
|
+
torch::Scalar value;
|
93
|
+
public:
|
94
|
+
Scalar(Object o) {
|
95
|
+
// TODO cast based on Ruby type
|
96
|
+
if (o.rb_type() == T_FIXNUM) {
|
97
|
+
value = torch::Scalar(from_ruby<int64_t>(o));
|
98
|
+
} else {
|
99
|
+
value = torch::Scalar(from_ruby<float>(o));
|
100
|
+
}
|
101
|
+
}
|
102
|
+
operator torch::Scalar() {
|
103
|
+
return value;
|
104
|
+
}
|
105
|
+
};
|
106
|
+
|
107
|
+
template<>
|
108
|
+
inline
|
109
|
+
Scalar from_ruby<Scalar>(Object x)
|
110
|
+
{
|
111
|
+
return Scalar(x);
|
112
|
+
}
|
113
|
+
|
114
|
+
class TensorList {
|
115
|
+
std::vector<torch::Tensor> vec;
|
116
|
+
public:
|
117
|
+
TensorList(Object o) {
|
118
|
+
Array a = Array(o);
|
119
|
+
for (size_t i = 0; i < a.size(); i++) {
|
120
|
+
vec.push_back(from_ruby<torch::Tensor>(a[i]));
|
121
|
+
}
|
122
|
+
}
|
123
|
+
operator torch::TensorList() {
|
124
|
+
return torch::TensorList(vec);
|
125
|
+
}
|
126
|
+
};
|
127
|
+
|
128
|
+
template<>
|
129
|
+
inline
|
130
|
+
TensorList from_ruby<TensorList>(Object x)
|
131
|
+
{
|
132
|
+
return TensorList(x);
|
133
|
+
}
|
134
|
+
|
135
|
+
extern "C"
|
136
|
+
void Init_ext()
|
137
|
+
{
|
138
|
+
Module rb_mTorch = define_module("Torch")
|
139
|
+
.define_singleton_method(
|
140
|
+
"grad_enabled?",
|
141
|
+
*[]() {
|
142
|
+
return torch::GradMode::is_enabled();
|
143
|
+
})
|
144
|
+
.define_singleton_method(
|
145
|
+
"_set_grad_enabled",
|
146
|
+
*[](bool enabled) {
|
147
|
+
torch::GradMode::set_enabled(enabled);
|
148
|
+
})
|
149
|
+
.define_singleton_method(
|
150
|
+
"floating_point?",
|
151
|
+
*[](torch::Tensor& input) {
|
152
|
+
return torch::is_floating_point(input);
|
153
|
+
})
|
154
|
+
.define_singleton_method(
|
155
|
+
"manual_seed",
|
156
|
+
*[](uint64_t seed) {
|
157
|
+
return torch::manual_seed(seed);
|
158
|
+
})
|
159
|
+
// begin tensor creation
|
160
|
+
.define_singleton_method(
|
161
|
+
"_arange",
|
162
|
+
*[](Scalar start, Scalar end, Scalar step, const torch::TensorOptions &options) {
|
163
|
+
return torch::arange(start, end, step, options);
|
164
|
+
})
|
165
|
+
.define_singleton_method(
|
166
|
+
"_empty",
|
167
|
+
*[](IntArrayRef size, const torch::TensorOptions &options) {
|
168
|
+
return torch::empty(size, options);
|
169
|
+
})
|
170
|
+
.define_singleton_method(
|
171
|
+
"_eye",
|
172
|
+
*[](int64_t m, int64_t n, const torch::TensorOptions &options) {
|
173
|
+
return torch::eye(m, n, options);
|
174
|
+
})
|
175
|
+
.define_singleton_method(
|
176
|
+
"_full",
|
177
|
+
*[](IntArrayRef size, Scalar fill_value, const torch::TensorOptions& options) {
|
178
|
+
return torch::full(size, fill_value, options);
|
179
|
+
})
|
180
|
+
.define_singleton_method(
|
181
|
+
"_linspace",
|
182
|
+
*[](Scalar start, Scalar end, int64_t steps, const torch::TensorOptions& options) {
|
183
|
+
return torch::linspace(start, end, steps, options);
|
184
|
+
})
|
185
|
+
.define_singleton_method(
|
186
|
+
"_logspace",
|
187
|
+
*[](Scalar start, Scalar end, int64_t steps, double base, const torch::TensorOptions& options) {
|
188
|
+
return torch::logspace(start, end, steps, base, options);
|
189
|
+
})
|
190
|
+
.define_singleton_method(
|
191
|
+
"_ones",
|
192
|
+
*[](IntArrayRef size, const torch::TensorOptions &options) {
|
193
|
+
return torch::ones(size, options);
|
194
|
+
})
|
195
|
+
.define_singleton_method(
|
196
|
+
"_rand",
|
197
|
+
*[](IntArrayRef size, const torch::TensorOptions &options) {
|
198
|
+
return torch::rand(size, options);
|
199
|
+
})
|
200
|
+
.define_singleton_method(
|
201
|
+
"_randint",
|
202
|
+
*[](int64_t low, int64_t high, IntArrayRef size, const torch::TensorOptions &options) {
|
203
|
+
return torch::randint(low, high, size, options);
|
204
|
+
})
|
205
|
+
.define_singleton_method(
|
206
|
+
"_randn",
|
207
|
+
*[](IntArrayRef size, const torch::TensorOptions &options) {
|
208
|
+
return torch::randn(size, options);
|
209
|
+
})
|
210
|
+
.define_singleton_method(
|
211
|
+
"_randperm",
|
212
|
+
*[](int64_t n, const torch::TensorOptions &options) {
|
213
|
+
return torch::randperm(n, options);
|
214
|
+
})
|
215
|
+
.define_singleton_method(
|
216
|
+
"_zeros",
|
217
|
+
*[](IntArrayRef size, const torch::TensorOptions &options) {
|
218
|
+
return torch::zeros(size, options);
|
219
|
+
})
|
220
|
+
// begin operations
|
221
|
+
.define_singleton_method(
|
222
|
+
"_mean",
|
223
|
+
*[](torch::Tensor& input) {
|
224
|
+
return torch::mean(input);
|
225
|
+
})
|
226
|
+
.define_singleton_method(
|
227
|
+
"_mean_dim",
|
228
|
+
*[](torch::Tensor& input, int64_t dim, bool keepdim) {
|
229
|
+
return torch::mean(input, dim, keepdim);
|
230
|
+
})
|
231
|
+
.define_singleton_method(
|
232
|
+
"_sum",
|
233
|
+
*[](torch::Tensor& input) {
|
234
|
+
return torch::sum(input);
|
235
|
+
})
|
236
|
+
.define_singleton_method(
|
237
|
+
"_sum_dim",
|
238
|
+
*[](torch::Tensor& input, int64_t dim, bool keepdim) {
|
239
|
+
return torch::sum(input, dim, keepdim);
|
240
|
+
})
|
241
|
+
.define_singleton_method(
|
242
|
+
"_argmax",
|
243
|
+
*[](torch::Tensor& input) {
|
244
|
+
return torch::argmax(input);
|
245
|
+
})
|
246
|
+
.define_singleton_method(
|
247
|
+
"_argmax_dim",
|
248
|
+
*[](torch::Tensor& input, int64_t dim, bool keepdim) {
|
249
|
+
return torch::argmax(input, dim, keepdim);
|
250
|
+
})
|
251
|
+
.define_singleton_method(
|
252
|
+
"_cat",
|
253
|
+
*[](TensorList tensors, int64_t dim) {
|
254
|
+
return torch::cat(tensors, dim);
|
255
|
+
})
|
256
|
+
.define_singleton_method(
|
257
|
+
"_norm",
|
258
|
+
*[](torch::Tensor& input) {
|
259
|
+
return torch::norm(input);
|
260
|
+
})
|
261
|
+
.define_singleton_method(
|
262
|
+
"_min",
|
263
|
+
*[](torch::Tensor& input) {
|
264
|
+
return torch::min(input);
|
265
|
+
})
|
266
|
+
.define_singleton_method(
|
267
|
+
"_max",
|
268
|
+
*[](torch::Tensor& input) {
|
269
|
+
return torch::max(input);
|
270
|
+
})
|
271
|
+
.define_singleton_method(
|
272
|
+
"_max_out",
|
273
|
+
*[](torch::Tensor &max, torch::Tensor &max_indices, const torch::Tensor &input, int64_t dim, bool keepdim) {
|
274
|
+
// TODO add return value
|
275
|
+
torch::_max_out(max, max_indices, input, dim, keepdim);
|
276
|
+
})
|
277
|
+
.define_singleton_method(
|
278
|
+
"_sqrt",
|
279
|
+
*[](torch::Tensor& input) {
|
280
|
+
return torch::sqrt(input);
|
281
|
+
})
|
282
|
+
.define_singleton_method(
|
283
|
+
"_exp",
|
284
|
+
*[](torch::Tensor& input) {
|
285
|
+
return torch::exp(input);
|
286
|
+
})
|
287
|
+
.define_singleton_method(
|
288
|
+
"_log",
|
289
|
+
*[](torch::Tensor& input) {
|
290
|
+
return torch::log(input);
|
291
|
+
})
|
292
|
+
.define_singleton_method(
|
293
|
+
"_sign",
|
294
|
+
*[](torch::Tensor& input) {
|
295
|
+
return torch::sign(input);
|
296
|
+
})
|
297
|
+
.define_singleton_method(
|
298
|
+
"_unsqueeze",
|
299
|
+
*[](torch::Tensor& input, int64_t dim) {
|
300
|
+
return torch::unsqueeze(input, dim);
|
301
|
+
})
|
302
|
+
.define_singleton_method(
|
303
|
+
"_dot",
|
304
|
+
*[](torch::Tensor& input, torch::Tensor& tensor) {
|
305
|
+
return torch::dot(input, tensor);
|
306
|
+
})
|
307
|
+
.define_singleton_method(
|
308
|
+
"_matmul",
|
309
|
+
*[](torch::Tensor& input, torch::Tensor& other) {
|
310
|
+
return torch::matmul(input, other);
|
311
|
+
})
|
312
|
+
.define_singleton_method(
|
313
|
+
"_eq",
|
314
|
+
*[](torch::Tensor& input, torch::Tensor& other) {
|
315
|
+
return torch::eq(input, other);
|
316
|
+
})
|
317
|
+
.define_singleton_method(
|
318
|
+
"_gt",
|
319
|
+
// TODO support tensors
|
320
|
+
*[](torch::Tensor& input, Scalar other) {
|
321
|
+
return torch::gt(input, other);
|
322
|
+
})
|
323
|
+
.define_singleton_method(
|
324
|
+
"_lt",
|
325
|
+
// TODO support tensors
|
326
|
+
*[](torch::Tensor& input, Scalar other) {
|
327
|
+
return torch::lt(input, other);
|
328
|
+
})
|
329
|
+
.define_singleton_method(
|
330
|
+
"_add",
|
331
|
+
*[](torch::Tensor& input, torch::Tensor& other) {
|
332
|
+
return torch::add(input, other);
|
333
|
+
})
|
334
|
+
.define_singleton_method(
|
335
|
+
"_add_scalar",
|
336
|
+
*[](torch::Tensor& input, Scalar other) {
|
337
|
+
return torch::add(input, other);
|
338
|
+
})
|
339
|
+
.define_singleton_method(
|
340
|
+
"_add_out",
|
341
|
+
*[](torch::Tensor& out, torch::Tensor& input, torch::Tensor& other) {
|
342
|
+
return torch::add_out(out, input, other);
|
343
|
+
})
|
344
|
+
.define_singleton_method(
|
345
|
+
"_sub",
|
346
|
+
*[](torch::Tensor& input, torch::Tensor& other) {
|
347
|
+
return torch::sub(input, other);
|
348
|
+
})
|
349
|
+
.define_singleton_method(
|
350
|
+
"_sub_scalar",
|
351
|
+
*[](torch::Tensor& input, Scalar other) {
|
352
|
+
return torch::sub(input, other);
|
353
|
+
})
|
354
|
+
.define_singleton_method(
|
355
|
+
"_mul",
|
356
|
+
*[](torch::Tensor& input, torch::Tensor& other) {
|
357
|
+
return torch::mul(input, other);
|
358
|
+
})
|
359
|
+
.define_singleton_method(
|
360
|
+
"_mul_scalar",
|
361
|
+
*[](torch::Tensor& input, Scalar other) {
|
362
|
+
return torch::mul(input, other);
|
363
|
+
})
|
364
|
+
.define_singleton_method(
|
365
|
+
"_div",
|
366
|
+
*[](torch::Tensor& input, torch::Tensor& other) {
|
367
|
+
return torch::div(input, other);
|
368
|
+
})
|
369
|
+
.define_singleton_method(
|
370
|
+
"_div_scalar",
|
371
|
+
*[](torch::Tensor& input, Scalar other) {
|
372
|
+
return torch::div(input, other);
|
373
|
+
})
|
374
|
+
.define_singleton_method(
|
375
|
+
"_remainder",
|
376
|
+
*[](torch::Tensor& input, torch::Tensor& other) {
|
377
|
+
return torch::remainder(input, other);
|
378
|
+
})
|
379
|
+
.define_singleton_method(
|
380
|
+
"_remainder_scalar",
|
381
|
+
*[](torch::Tensor& input, Scalar other) {
|
382
|
+
return torch::remainder(input, other);
|
383
|
+
})
|
384
|
+
.define_singleton_method(
|
385
|
+
"_pow",
|
386
|
+
*[](torch::Tensor& input, Scalar exponent) {
|
387
|
+
return torch::pow(input, exponent);
|
388
|
+
})
|
389
|
+
.define_singleton_method(
|
390
|
+
"_abs",
|
391
|
+
*[](torch::Tensor& input) {
|
392
|
+
return torch::abs(input);
|
393
|
+
})
|
394
|
+
.define_singleton_method(
|
395
|
+
"_neg",
|
396
|
+
*[](torch::Tensor& input) {
|
397
|
+
return torch::neg(input);
|
398
|
+
})
|
399
|
+
.define_singleton_method(
|
400
|
+
"_reshape",
|
401
|
+
*[](torch::Tensor& input, IntArrayRef shape) {
|
402
|
+
return torch::reshape(input, shape);
|
403
|
+
})
|
404
|
+
.define_singleton_method(
|
405
|
+
"_flatten",
|
406
|
+
*[](torch::Tensor& input, int64_t start_dim, int64_t end_dim) {
|
407
|
+
return torch::flatten(input, start_dim, end_dim);
|
408
|
+
})
|
409
|
+
.define_singleton_method(
|
410
|
+
"relu",
|
411
|
+
*[](torch::Tensor& input) {
|
412
|
+
return torch::relu(input);
|
413
|
+
})
|
414
|
+
.define_singleton_method(
|
415
|
+
"conv2d",
|
416
|
+
*[](torch::Tensor& input, torch::Tensor& weight, torch::Tensor& bias, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, int64_t groups) {
|
417
|
+
return torch::conv2d(input, weight, bias, stride, padding, dilation, groups);
|
418
|
+
})
|
419
|
+
.define_singleton_method(
|
420
|
+
"linear",
|
421
|
+
*[](torch::Tensor& input, torch::Tensor& weight, torch::Tensor& bias) {
|
422
|
+
return torch::linear(input, weight, bias);
|
423
|
+
})
|
424
|
+
.define_singleton_method(
|
425
|
+
"max_pool2d",
|
426
|
+
*[](torch::Tensor& input, IntArrayRef kernel_size) {
|
427
|
+
return torch::max_pool2d(input, kernel_size);
|
428
|
+
})
|
429
|
+
.define_singleton_method(
|
430
|
+
"avg_pool2d",
|
431
|
+
*[](torch::Tensor& input, IntArrayRef kernel_size) {
|
432
|
+
return torch::avg_pool2d(input, kernel_size);
|
433
|
+
})
|
434
|
+
.define_singleton_method(
|
435
|
+
"_dropout",
|
436
|
+
*[](torch::Tensor& input, float p, bool train) {
|
437
|
+
return torch::dropout(input, p, train);
|
438
|
+
})
|
439
|
+
.define_singleton_method(
|
440
|
+
"_dropout!",
|
441
|
+
*[](torch::Tensor& input, float p, bool train) {
|
442
|
+
return torch::dropout_(input, p, train);
|
443
|
+
})
|
444
|
+
.define_singleton_method(
|
445
|
+
"_feature_dropout",
|
446
|
+
*[](torch::Tensor& input, float p, bool train) {
|
447
|
+
return torch::feature_dropout(input, p, train);
|
448
|
+
})
|
449
|
+
.define_singleton_method(
|
450
|
+
"_feature_dropout!",
|
451
|
+
*[](torch::Tensor& input, float p, bool train) {
|
452
|
+
return torch::feature_dropout_(input, p, train);
|
453
|
+
})
|
454
|
+
.define_singleton_method(
|
455
|
+
"_alpha_dropout",
|
456
|
+
*[](torch::Tensor& input, float p, bool train) {
|
457
|
+
return torch::alpha_dropout(input, p, train);
|
458
|
+
})
|
459
|
+
.define_singleton_method(
|
460
|
+
"_alpha_dropout!",
|
461
|
+
*[](torch::Tensor& input, float p, bool train) {
|
462
|
+
return torch::alpha_dropout_(input, p, train);
|
463
|
+
})
|
464
|
+
.define_singleton_method(
|
465
|
+
"_feature_alpha_dropout",
|
466
|
+
*[](torch::Tensor& input, float p, bool train) {
|
467
|
+
return torch::feature_alpha_dropout(input, p, train);
|
468
|
+
})
|
469
|
+
.define_singleton_method(
|
470
|
+
"_feature_alpha_dropout!",
|
471
|
+
*[](torch::Tensor& input, float p, bool train) {
|
472
|
+
return torch::feature_alpha_dropout_(input, p, train);
|
473
|
+
})
|
474
|
+
.define_singleton_method(
|
475
|
+
"_embedding",
|
476
|
+
// weight and indices are swapped from Python interface
|
477
|
+
*[](const torch::Tensor &indices, const torch::Tensor &weight, int64_t padding_idx, bool scale_grad_by_freq, bool sparse) {
|
478
|
+
return torch::embedding(weight, indices, padding_idx, scale_grad_by_freq, sparse);
|
479
|
+
})
|
480
|
+
.define_singleton_method(
|
481
|
+
"mse_loss",
|
482
|
+
*[](torch::Tensor& input, torch::Tensor& target, std::string reduction) {
|
483
|
+
auto red = reduction == "mean" ? Reduction::Mean : Reduction::Sum;
|
484
|
+
return torch::mse_loss(input, target, red);
|
485
|
+
})
|
486
|
+
.define_singleton_method(
|
487
|
+
"nll_loss",
|
488
|
+
*[](torch::Tensor& input, torch::Tensor& target, std::string reduction) {
|
489
|
+
auto red = reduction == "mean" ? Reduction::Mean : Reduction::Sum;
|
490
|
+
return torch::nll_loss(input, target, {}, red);
|
491
|
+
})
|
492
|
+
.define_singleton_method("numel", &torch::numel)
|
493
|
+
.define_singleton_method(
|
494
|
+
"_from_blob",
|
495
|
+
*[](String s, IntArrayRef size, const torch::TensorOptions &options) {
|
496
|
+
void *data = const_cast<char *>(s.c_str());
|
497
|
+
return torch::from_blob(data, size, options);
|
498
|
+
})
|
499
|
+
.define_singleton_method(
|
500
|
+
"_tensor",
|
501
|
+
*[](Object o, IntArrayRef size, const torch::TensorOptions &options) {
|
502
|
+
Array a = Array(o);
|
503
|
+
std::vector<float> vec;
|
504
|
+
for (size_t i = 0; i < a.size(); i++) {
|
505
|
+
vec.push_back(from_ruby<float>(a[i]));
|
506
|
+
}
|
507
|
+
return torch::tensor(vec, options).reshape(size);
|
508
|
+
});
|
509
|
+
|
510
|
+
Class rb_cTensor = define_class_under<torch::Tensor>(rb_mTorch, "Tensor")
|
511
|
+
.define_method("cuda?", &torch::Tensor::is_cuda)
|
512
|
+
.define_method("distributed?", &torch::Tensor::is_distributed)
|
513
|
+
.define_method("complex?", &torch::Tensor::is_complex)
|
514
|
+
.define_method("floating_point?", &torch::Tensor::is_floating_point)
|
515
|
+
.define_method("signed?", &torch::Tensor::is_signed)
|
516
|
+
.define_method("sparse?", &torch::Tensor::is_sparse)
|
517
|
+
.define_method("quantized?", &torch::Tensor::is_quantized)
|
518
|
+
.define_method("dim", &torch::Tensor::dim)
|
519
|
+
.define_method("element_size", &torch::Tensor::element_size)
|
520
|
+
.define_method("requires_grad", &torch::Tensor::requires_grad)
|
521
|
+
.define_method("view_as", &torch::Tensor::view_as)
|
522
|
+
.define_method(
|
523
|
+
"addcmul!",
|
524
|
+
*[](torch::Tensor& self, Scalar value, const torch::Tensor & tensor1, const torch::Tensor & tensor2) {
|
525
|
+
return self.addcmul_(tensor1, tensor2, value);
|
526
|
+
})
|
527
|
+
.define_method(
|
528
|
+
"addcdiv!",
|
529
|
+
*[](torch::Tensor& self, Scalar value, const torch::Tensor & tensor1, const torch::Tensor & tensor2) {
|
530
|
+
return self.addcdiv_(tensor1, tensor2, value);
|
531
|
+
})
|
532
|
+
.define_method(
|
533
|
+
"zero!",
|
534
|
+
*[](torch::Tensor& self) {
|
535
|
+
return self.zero_();
|
536
|
+
})
|
537
|
+
.define_method(
|
538
|
+
"detach!",
|
539
|
+
*[](torch::Tensor& self) {
|
540
|
+
return self.detach_();
|
541
|
+
})
|
542
|
+
.define_method(
|
543
|
+
"_select",
|
544
|
+
*[](torch::Tensor& self, int64_t dim, int64_t index) {
|
545
|
+
return self.select(dim, index);
|
546
|
+
})
|
547
|
+
.define_method(
|
548
|
+
"_slice",
|
549
|
+
*[](torch::Tensor& self, int64_t dim, int64_t start, int64_t end, int64_t step) {
|
550
|
+
return self.slice(dim, start, end, step);
|
551
|
+
})
|
552
|
+
.define_method(
|
553
|
+
"_requires_grad!",
|
554
|
+
*[](torch::Tensor& self, bool requires_grad) {
|
555
|
+
return self.set_requires_grad(requires_grad);
|
556
|
+
})
|
557
|
+
.define_method(
|
558
|
+
"_backward",
|
559
|
+
*[](torch::Tensor& self) {
|
560
|
+
return self.backward();
|
561
|
+
})
|
562
|
+
.define_method(
|
563
|
+
"_backward_gradient",
|
564
|
+
*[](torch::Tensor& self, const torch::Tensor& gradient) {
|
565
|
+
return self.backward(gradient);
|
566
|
+
})
|
567
|
+
.define_method(
|
568
|
+
"grad",
|
569
|
+
*[](torch::Tensor& self) {
|
570
|
+
return self.grad();
|
571
|
+
})
|
572
|
+
.define_method(
|
573
|
+
"_dtype",
|
574
|
+
*[](torch::Tensor& self) {
|
575
|
+
return (int) at::typeMetaToScalarType(self.dtype());
|
576
|
+
})
|
577
|
+
.define_method(
|
578
|
+
"_type",
|
579
|
+
*[](torch::Tensor& self, int dtype) {
|
580
|
+
return self.toType((torch::ScalarType) dtype);
|
581
|
+
})
|
582
|
+
.define_method(
|
583
|
+
"_layout",
|
584
|
+
*[](torch::Tensor& self) {
|
585
|
+
std::stringstream s;
|
586
|
+
s << self.layout();
|
587
|
+
return s.str();
|
588
|
+
})
|
589
|
+
.define_method(
|
590
|
+
"device",
|
591
|
+
*[](torch::Tensor& self) {
|
592
|
+
std::stringstream s;
|
593
|
+
s << self.device();
|
594
|
+
return s.str();
|
595
|
+
})
|
596
|
+
.define_method(
|
597
|
+
"_view",
|
598
|
+
*[](torch::Tensor& self, IntArrayRef size) {
|
599
|
+
return self.view(size);
|
600
|
+
})
|
601
|
+
.define_method(
|
602
|
+
"resize_as!",
|
603
|
+
*[](torch::Tensor& self, torch::Tensor& other) {
|
604
|
+
return self.resize_as_(other);
|
605
|
+
})
|
606
|
+
.define_method(
|
607
|
+
"fill!",
|
608
|
+
*[](torch::Tensor& self, Scalar value) {
|
609
|
+
return self.fill_(value);
|
610
|
+
})
|
611
|
+
.define_method(
|
612
|
+
"_add!",
|
613
|
+
*[](torch::Tensor& self, torch::Tensor& other) {
|
614
|
+
return self.add_(other);
|
615
|
+
})
|
616
|
+
.define_method(
|
617
|
+
"_add_alpha!",
|
618
|
+
*[](torch::Tensor& self, torch::Tensor& other, Scalar alpha) {
|
619
|
+
return self.add_(other, alpha);
|
620
|
+
})
|
621
|
+
.define_method(
|
622
|
+
"_add_scalar!",
|
623
|
+
*[](torch::Tensor& self, Scalar other) {
|
624
|
+
return self.add_(other);
|
625
|
+
})
|
626
|
+
.define_method(
|
627
|
+
"normal!",
|
628
|
+
*[](torch::Tensor& self, double mean, double std) {
|
629
|
+
return self.normal_(mean, std);
|
630
|
+
})
|
631
|
+
.define_method(
|
632
|
+
"sub!",
|
633
|
+
*[](torch::Tensor& self, torch::Tensor& other) {
|
634
|
+
return self.sub_(other);
|
635
|
+
})
|
636
|
+
.define_method(
|
637
|
+
"_mul!",
|
638
|
+
*[](torch::Tensor& self, torch::Tensor& other) {
|
639
|
+
return self.mul_(other);
|
640
|
+
})
|
641
|
+
.define_method(
|
642
|
+
"_mul_scalar!",
|
643
|
+
*[](torch::Tensor& self, Scalar other) {
|
644
|
+
return self.mul_(other);
|
645
|
+
})
|
646
|
+
.define_method(
|
647
|
+
"div!",
|
648
|
+
*[](torch::Tensor& self, torch::Tensor& other) {
|
649
|
+
return self.div_(other);
|
650
|
+
})
|
651
|
+
.define_method(
|
652
|
+
"sqrt!",
|
653
|
+
*[](torch::Tensor& self) {
|
654
|
+
return self.sqrt_();
|
655
|
+
})
|
656
|
+
.define_method(
|
657
|
+
"unsqueeze!",
|
658
|
+
*[](torch::Tensor& self, int64_t dim) {
|
659
|
+
return self.unsqueeze_(dim);
|
660
|
+
})
|
661
|
+
.define_method(
|
662
|
+
"copy!",
|
663
|
+
*[](torch::Tensor& self, torch::Tensor& src) {
|
664
|
+
return self.copy_(src);
|
665
|
+
})
|
666
|
+
.define_method(
|
667
|
+
"clone",
|
668
|
+
*[](torch::Tensor& self) {
|
669
|
+
return self.clone();
|
670
|
+
})
|
671
|
+
.define_method(
|
672
|
+
"log_softmax",
|
673
|
+
*[](torch::Tensor& self, int64_t dim) {
|
674
|
+
return self.log_softmax(dim);
|
675
|
+
})
|
676
|
+
.define_method(
|
677
|
+
"data",
|
678
|
+
*[](torch::Tensor& self) {
|
679
|
+
return self.data();
|
680
|
+
})
|
681
|
+
.define_method(
|
682
|
+
"_data",
|
683
|
+
*[](torch::Tensor& self) {
|
684
|
+
Array a;
|
685
|
+
auto dtype = self.dtype();
|
686
|
+
|
687
|
+
// TODO DRY if someone knows C++
|
688
|
+
if (dtype == torch::kByte) {
|
689
|
+
uint8_t* data = self.data_ptr<uint8_t>();
|
690
|
+
for (int i = 0; i < self.numel(); i++) {
|
691
|
+
a.push(data[i]);
|
692
|
+
}
|
693
|
+
} else if (dtype == torch::kChar) {
|
694
|
+
int8_t* data = self.data_ptr<int8_t>();
|
695
|
+
for (int i = 0; i < self.numel(); i++) {
|
696
|
+
a.push(to_ruby<int>(data[i]));
|
697
|
+
}
|
698
|
+
} else if (dtype == torch::kShort) {
|
699
|
+
int16_t* data = self.data_ptr<int16_t>();
|
700
|
+
for (int i = 0; i < self.numel(); i++) {
|
701
|
+
a.push(data[i]);
|
702
|
+
}
|
703
|
+
} else if (dtype == torch::kInt) {
|
704
|
+
int32_t* data = self.data_ptr<int32_t>();
|
705
|
+
for (int i = 0; i < self.numel(); i++) {
|
706
|
+
a.push(data[i]);
|
707
|
+
}
|
708
|
+
} else if (dtype == torch::kLong) {
|
709
|
+
int64_t* data = self.data_ptr<int64_t>();
|
710
|
+
for (int i = 0; i < self.numel(); i++) {
|
711
|
+
a.push(data[i]);
|
712
|
+
}
|
713
|
+
} else if (dtype == torch::kFloat) {
|
714
|
+
float* data = self.data_ptr<float>();
|
715
|
+
for (int i = 0; i < self.numel(); i++) {
|
716
|
+
a.push(data[i]);
|
717
|
+
}
|
718
|
+
} else if (dtype == torch::kDouble) {
|
719
|
+
double* data = self.data_ptr<double>();
|
720
|
+
for (int i = 0; i < self.numel(); i++) {
|
721
|
+
a.push(data[i]);
|
722
|
+
}
|
723
|
+
} else if (dtype == torch::kBool) {
|
724
|
+
bool* data = self.data_ptr<bool>();
|
725
|
+
for (int i = 0; i < self.numel(); i++) {
|
726
|
+
a.push(data[i] ? True : False);
|
727
|
+
}
|
728
|
+
} else {
|
729
|
+
throw std::runtime_error("Unsupported type");
|
730
|
+
}
|
731
|
+
return a;
|
732
|
+
})
|
733
|
+
.define_method(
|
734
|
+
"_size",
|
735
|
+
*[](torch::Tensor& self, int i) {
|
736
|
+
return self.size(i);
|
737
|
+
})
|
738
|
+
.define_method(
|
739
|
+
"_to",
|
740
|
+
*[](torch::Tensor& self, torch::Device device, int dtype, bool non_blocking, bool copy) {
|
741
|
+
return self.to(device, (torch::ScalarType) dtype, non_blocking, copy);
|
742
|
+
})
|
743
|
+
.define_singleton_method(
|
744
|
+
"_make_subclass",
|
745
|
+
*[](torch::Tensor& rd, bool requires_grad) {
|
746
|
+
auto data = torch::autograd::as_variable_ref(rd).detach();
|
747
|
+
data.unsafeGetTensorImpl()->set_allow_tensor_metadata_change(true);
|
748
|
+
auto var = data.set_requires_grad(requires_grad);
|
749
|
+
return torch::autograd::Variable(std::move(var));
|
750
|
+
});
|
751
|
+
|
752
|
+
Class rb_cTensorOptions = define_class_under<torch::TensorOptions>(rb_mTorch, "TensorOptions")
|
753
|
+
.define_constructor(Constructor<torch::TensorOptions>())
|
754
|
+
.define_method(
|
755
|
+
"dtype",
|
756
|
+
*[](torch::TensorOptions& self, int dtype) {
|
757
|
+
return self.dtype((torch::ScalarType) dtype);
|
758
|
+
})
|
759
|
+
.define_method(
|
760
|
+
"layout",
|
761
|
+
*[](torch::TensorOptions& self, std::string layout) {
|
762
|
+
torch::Layout l;
|
763
|
+
if (layout == "strided") {
|
764
|
+
l = torch::kStrided;
|
765
|
+
} else if (layout == "sparse") {
|
766
|
+
l = torch::kSparse;
|
767
|
+
throw std::runtime_error("Sparse layout not supported yet");
|
768
|
+
} else {
|
769
|
+
throw std::runtime_error("Unsupported layout: " + layout);
|
770
|
+
}
|
771
|
+
return self.layout(l);
|
772
|
+
})
|
773
|
+
.define_method(
|
774
|
+
"device",
|
775
|
+
*[](torch::TensorOptions& self, std::string device) {
|
776
|
+
torch::DeviceType d;
|
777
|
+
if (device == "cpu") {
|
778
|
+
d = torch::kCPU;
|
779
|
+
} else if (device == "cuda") {
|
780
|
+
d = torch::kCUDA;
|
781
|
+
} else {
|
782
|
+
throw std::runtime_error("Unsupported device: " + device);
|
783
|
+
}
|
784
|
+
return self.device(d);
|
785
|
+
})
|
786
|
+
.define_method(
|
787
|
+
"requires_grad",
|
788
|
+
*[](torch::TensorOptions& self, bool requires_grad) {
|
789
|
+
return self.requires_grad(requires_grad);
|
790
|
+
});
|
791
|
+
|
792
|
+
Module rb_mNN = define_module_under(rb_mTorch, "NN");
|
793
|
+
|
794
|
+
Module rb_mInit = define_module_under(rb_mNN, "Init")
|
795
|
+
.define_singleton_method(
|
796
|
+
"kaiming_uniform!",
|
797
|
+
*[](torch::Tensor& input, double a) {
|
798
|
+
return torch::nn::init::kaiming_uniform_(input, a);
|
799
|
+
})
|
800
|
+
.define_singleton_method(
|
801
|
+
"normal!",
|
802
|
+
*[](torch::Tensor& input) {
|
803
|
+
return torch::nn::init::normal_(input);
|
804
|
+
})
|
805
|
+
.define_singleton_method(
|
806
|
+
"uniform!",
|
807
|
+
*[](torch::Tensor& input, double to, double from) {
|
808
|
+
return torch::nn::init::uniform_(input, to, from);
|
809
|
+
});
|
810
|
+
|
811
|
+
Class rb_cParameter = define_class_under<torch::autograd::Variable, torch::Tensor>(rb_mNN, "Parameter")
|
812
|
+
// TODO return grad or nil to remove need for 2nd function
|
813
|
+
.define_method(
|
814
|
+
"_grad",
|
815
|
+
*[](torch::autograd::Variable& self) {
|
816
|
+
return self.grad();
|
817
|
+
})
|
818
|
+
.define_method(
|
819
|
+
"_grad_defined",
|
820
|
+
*[](torch::autograd::Variable& self) {
|
821
|
+
return self.grad().defined();
|
822
|
+
});
|
823
|
+
|
824
|
+
Class rb_cDevice = define_class_under<torch::Device>(rb_mTorch, "Device")
|
825
|
+
.define_constructor(Constructor<torch::Device, std::string>())
|
826
|
+
.define_method("index", &torch::Device::index)
|
827
|
+
.define_method("index?", &torch::Device::has_index)
|
828
|
+
.define_method(
|
829
|
+
"type",
|
830
|
+
*[](torch::Device& self) {
|
831
|
+
std::stringstream s;
|
832
|
+
s << self.type();
|
833
|
+
return s.str();
|
834
|
+
});
|
835
|
+
|
836
|
+
Module rb_mCUDA = define_module_under(rb_mTorch, "CUDA")
|
837
|
+
.define_singleton_method("available?", &torch::cuda::is_available)
|
838
|
+
.define_singleton_method("device_count", &torch::cuda::device_count);
|
839
|
+
}
|