torch-rb 0.1.3
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/CHANGELOG.md +28 -0
- data/LICENSE.txt +46 -0
- data/README.md +426 -0
- data/ext/torch/ext.cpp +839 -0
- data/ext/torch/extconf.rb +25 -0
- data/lib/torch-rb.rb +1 -0
- data/lib/torch.rb +422 -0
- data/lib/torch/ext.bundle +0 -0
- data/lib/torch/inspector.rb +85 -0
- data/lib/torch/nn/alpha_dropout.rb +9 -0
- data/lib/torch/nn/conv2d.rb +37 -0
- data/lib/torch/nn/convnd.rb +41 -0
- data/lib/torch/nn/dropout.rb +9 -0
- data/lib/torch/nn/dropout2d.rb +9 -0
- data/lib/torch/nn/dropout3d.rb +9 -0
- data/lib/torch/nn/dropoutnd.rb +15 -0
- data/lib/torch/nn/embedding.rb +52 -0
- data/lib/torch/nn/feature_alpha_dropout.rb +9 -0
- data/lib/torch/nn/functional.rb +100 -0
- data/lib/torch/nn/init.rb +30 -0
- data/lib/torch/nn/linear.rb +36 -0
- data/lib/torch/nn/module.rb +85 -0
- data/lib/torch/nn/mse_loss.rb +13 -0
- data/lib/torch/nn/parameter.rb +14 -0
- data/lib/torch/nn/relu.rb +13 -0
- data/lib/torch/nn/sequential.rb +29 -0
- data/lib/torch/optim/adadelta.rb +57 -0
- data/lib/torch/optim/adagrad.rb +71 -0
- data/lib/torch/optim/adam.rb +81 -0
- data/lib/torch/optim/adamax.rb +68 -0
- data/lib/torch/optim/adamw.rb +82 -0
- data/lib/torch/optim/asgd.rb +65 -0
- data/lib/torch/optim/lr_scheduler/lr_scheduler.rb +33 -0
- data/lib/torch/optim/lr_scheduler/step_lr.rb +17 -0
- data/lib/torch/optim/optimizer.rb +62 -0
- data/lib/torch/optim/rmsprop.rb +76 -0
- data/lib/torch/optim/rprop.rb +68 -0
- data/lib/torch/optim/sgd.rb +60 -0
- data/lib/torch/tensor.rb +196 -0
- data/lib/torch/utils/data/data_loader.rb +27 -0
- data/lib/torch/utils/data/tensor_dataset.rb +22 -0
- data/lib/torch/version.rb +3 -0
- metadata +169 -0
@@ -0,0 +1,25 @@
|
|
1
|
+
require "mkmf-rice"
|
2
|
+
|
3
|
+
abort "Missing stdc++" unless have_library("stdc++")
|
4
|
+
|
5
|
+
$CXXFLAGS << " -std=c++11"
|
6
|
+
|
7
|
+
# needed for Linux pre-cxx11 ABI version
|
8
|
+
# $CXXFLAGS << " -D_GLIBCXX_USE_CXX11_ABI=0"
|
9
|
+
|
10
|
+
# silence ruby/intern.h warning
|
11
|
+
$CXXFLAGS << " -Wno-deprecated-register"
|
12
|
+
|
13
|
+
inc, lib = dir_config("torch")
|
14
|
+
|
15
|
+
inc ||= "/usr/local/include"
|
16
|
+
lib ||= "/usr/local/lib"
|
17
|
+
|
18
|
+
$INCFLAGS << " -I#{inc}"
|
19
|
+
$INCFLAGS << " -I#{inc}/torch/csrc/api/include"
|
20
|
+
|
21
|
+
$LDFLAGS << " -Wl,-rpath,#{lib}"
|
22
|
+
$LDFLAGS << " -L#{lib}"
|
23
|
+
$LDFLAGS << " -ltorch -lc10"
|
24
|
+
|
25
|
+
create_makefile("torch/ext")
|
data/lib/torch-rb.rb
ADDED
@@ -0,0 +1 @@
|
|
1
|
+
require "torch"
|
data/lib/torch.rb
ADDED
@@ -0,0 +1,422 @@
|
|
1
|
+
# ext
|
2
|
+
require "torch/ext"
|
3
|
+
|
4
|
+
# modules
|
5
|
+
require "torch/inspector"
|
6
|
+
require "torch/tensor"
|
7
|
+
require "torch/version"
|
8
|
+
|
9
|
+
# optim
|
10
|
+
require "torch/optim/optimizer"
|
11
|
+
require "torch/optim/adadelta"
|
12
|
+
require "torch/optim/adagrad"
|
13
|
+
require "torch/optim/adam"
|
14
|
+
require "torch/optim/adamax"
|
15
|
+
require "torch/optim/adamw"
|
16
|
+
require "torch/optim/asgd"
|
17
|
+
require "torch/optim/rmsprop"
|
18
|
+
require "torch/optim/rprop"
|
19
|
+
require "torch/optim/sgd"
|
20
|
+
|
21
|
+
# optim lr_scheduler
|
22
|
+
require "torch/optim/lr_scheduler/lr_scheduler"
|
23
|
+
require "torch/optim/lr_scheduler/step_lr"
|
24
|
+
|
25
|
+
# nn base classes
|
26
|
+
require "torch/nn/module"
|
27
|
+
require "torch/nn/convnd"
|
28
|
+
require "torch/nn/dropoutnd"
|
29
|
+
|
30
|
+
# nn
|
31
|
+
require "torch/nn/alpha_dropout"
|
32
|
+
require "torch/nn/conv2d"
|
33
|
+
require "torch/nn/dropout"
|
34
|
+
require "torch/nn/dropout2d"
|
35
|
+
require "torch/nn/dropout3d"
|
36
|
+
require "torch/nn/embedding"
|
37
|
+
require "torch/nn/feature_alpha_dropout"
|
38
|
+
require "torch/nn/functional"
|
39
|
+
require "torch/nn/init"
|
40
|
+
require "torch/nn/linear"
|
41
|
+
require "torch/nn/mse_loss"
|
42
|
+
require "torch/nn/parameter"
|
43
|
+
require "torch/nn/relu"
|
44
|
+
require "torch/nn/sequential"
|
45
|
+
|
46
|
+
# utils
|
47
|
+
require "torch/utils/data/data_loader"
|
48
|
+
require "torch/utils/data/tensor_dataset"
|
49
|
+
|
50
|
+
module Torch
|
51
|
+
class Error < StandardError; end
|
52
|
+
class NotImplementedYet < StandardError
|
53
|
+
def message
|
54
|
+
"This feature has not been implemented yet. Consider submitting a PR."
|
55
|
+
end
|
56
|
+
end
|
57
|
+
|
58
|
+
# keys: https://pytorch.org/docs/stable/tensor_attributes.html#torch.torch.dtype
|
59
|
+
# values: https://github.com/pytorch/pytorch/blob/master/c10/core/ScalarType.h
|
60
|
+
# complex and quantized types not supported by PyTorch yet
|
61
|
+
DTYPE_TO_ENUM = {
|
62
|
+
uint8: 0,
|
63
|
+
int8: 1,
|
64
|
+
short: 2,
|
65
|
+
int16: 2,
|
66
|
+
int: 3,
|
67
|
+
int32: 3,
|
68
|
+
long: 4,
|
69
|
+
int64: 4,
|
70
|
+
half: 5,
|
71
|
+
float16: 5,
|
72
|
+
float: 6,
|
73
|
+
float32: 6,
|
74
|
+
double: 7,
|
75
|
+
float64: 7,
|
76
|
+
# complex_half: 8,
|
77
|
+
# complex_float: 9,
|
78
|
+
# complex_double: 10,
|
79
|
+
bool: 11,
|
80
|
+
# qint8: 12,
|
81
|
+
# quint8: 13,
|
82
|
+
# qint32: 14,
|
83
|
+
# bfloat16: 15
|
84
|
+
}
|
85
|
+
ENUM_TO_DTYPE = DTYPE_TO_ENUM.map(&:reverse).to_h
|
86
|
+
|
87
|
+
class << self
|
88
|
+
# Torch.float, Torch.long, etc
|
89
|
+
DTYPE_TO_ENUM.each_key do |dtype|
|
90
|
+
define_method(dtype) do
|
91
|
+
dtype
|
92
|
+
end
|
93
|
+
|
94
|
+
Tensor.define_method(dtype) do
|
95
|
+
type(dtype)
|
96
|
+
end
|
97
|
+
end
|
98
|
+
|
99
|
+
# https://pytorch.org/docs/stable/torch.html
|
100
|
+
|
101
|
+
def tensor?(obj)
|
102
|
+
obj.is_a?(Tensor)
|
103
|
+
end
|
104
|
+
|
105
|
+
def from_numo(ndarray)
|
106
|
+
dtype = _dtype_to_numo.find { |k, v| ndarray.is_a?(v) }
|
107
|
+
raise Error, "Cannot convert #{ndarray.class.name} to tensor" unless dtype
|
108
|
+
options = tensor_options(device: "cpu", dtype: dtype[0])
|
109
|
+
# TODO pass pointer to array instead of creating string
|
110
|
+
str = ndarray.to_string
|
111
|
+
tensor = _from_blob(str, ndarray.shape, options)
|
112
|
+
# from_blob does not own the data, so we need to keep
|
113
|
+
# a reference to it for duration of tensor
|
114
|
+
# can remove when passing pointer directly
|
115
|
+
tensor.instance_variable_set("@_numo_str", str)
|
116
|
+
tensor
|
117
|
+
end
|
118
|
+
|
119
|
+
# private
|
120
|
+
# use method for cases when Numo not available
|
121
|
+
# or available after Torch loaded
|
122
|
+
def _dtype_to_numo
|
123
|
+
{
|
124
|
+
uint8: Numo::UInt8,
|
125
|
+
int8: Numo::Int8,
|
126
|
+
int16: Numo::Int16,
|
127
|
+
int32: Numo::Int32,
|
128
|
+
int64: Numo::Int64,
|
129
|
+
float32: Numo::SFloat,
|
130
|
+
float64: Numo::DFloat
|
131
|
+
}
|
132
|
+
end
|
133
|
+
|
134
|
+
# --- begin tensor creation: https://pytorch.org/cppdocs/notes/tensor_creation.html ---
|
135
|
+
|
136
|
+
def arange(start, finish = nil, step = 1, **options)
|
137
|
+
# ruby doesn't support start = 0, finish, step = 1, ...
|
138
|
+
if finish.nil?
|
139
|
+
finish = start
|
140
|
+
start = 0
|
141
|
+
end
|
142
|
+
_arange(start, finish, step, tensor_options(**options))
|
143
|
+
end
|
144
|
+
|
145
|
+
def empty(*size, **options)
|
146
|
+
_empty(tensor_size(size), tensor_options(**options))
|
147
|
+
end
|
148
|
+
|
149
|
+
def eye(n, m = nil, **options)
|
150
|
+
_eye(n, m || n, tensor_options(**options))
|
151
|
+
end
|
152
|
+
|
153
|
+
def full(size, fill_value, **options)
|
154
|
+
_full(size, fill_value, tensor_options(**options))
|
155
|
+
end
|
156
|
+
|
157
|
+
def linspace(start, finish, steps = 100, **options)
|
158
|
+
_linspace(start, finish, steps, tensor_options(**options))
|
159
|
+
end
|
160
|
+
|
161
|
+
def logspace(start, finish, steps = 100, base = 10.0, **options)
|
162
|
+
_logspace(start, finish, steps, base, tensor_options(**options))
|
163
|
+
end
|
164
|
+
|
165
|
+
def ones(*size, **options)
|
166
|
+
_ones(tensor_size(size), tensor_options(**options))
|
167
|
+
end
|
168
|
+
|
169
|
+
def rand(*size, **options)
|
170
|
+
_rand(tensor_size(size), tensor_options(**options))
|
171
|
+
end
|
172
|
+
|
173
|
+
def randint(low = 0, high, size, **options)
|
174
|
+
_randint(low, high, size, tensor_options(**options))
|
175
|
+
end
|
176
|
+
|
177
|
+
def randn(*size, **options)
|
178
|
+
_randn(tensor_size(size), tensor_options(**options))
|
179
|
+
end
|
180
|
+
|
181
|
+
def randperm(n, **options)
|
182
|
+
_randperm(n, tensor_options(**options))
|
183
|
+
end
|
184
|
+
|
185
|
+
def zeros(*size, **options)
|
186
|
+
_zeros(tensor_size(size), tensor_options(**options))
|
187
|
+
end
|
188
|
+
|
189
|
+
def tensor(data, **options)
|
190
|
+
size = []
|
191
|
+
if data.respond_to?(:to_a)
|
192
|
+
data = data.to_a
|
193
|
+
d = data
|
194
|
+
while d.is_a?(Array)
|
195
|
+
size << d.size
|
196
|
+
d = d.first
|
197
|
+
end
|
198
|
+
data = data.flatten
|
199
|
+
else
|
200
|
+
data = [data].compact
|
201
|
+
end
|
202
|
+
|
203
|
+
if options[:dtype].nil? && data.all? { |v| v.is_a?(Integer) }
|
204
|
+
options[:dtype] = :int64
|
205
|
+
end
|
206
|
+
|
207
|
+
_tensor(data, size, tensor_options(**options))
|
208
|
+
end
|
209
|
+
|
210
|
+
# --- begin like ---
|
211
|
+
|
212
|
+
def ones_like(input, **options)
|
213
|
+
ones(input.size, like_options(input, options))
|
214
|
+
end
|
215
|
+
|
216
|
+
def empty_like(input, **options)
|
217
|
+
empty(input.size, like_options(input, options))
|
218
|
+
end
|
219
|
+
|
220
|
+
def full_like(input, fill_value, **options)
|
221
|
+
full(input.size, fill_value, like_options(input, options))
|
222
|
+
end
|
223
|
+
|
224
|
+
def rand_like(input, **options)
|
225
|
+
rand(input.size, like_options(input, options))
|
226
|
+
end
|
227
|
+
|
228
|
+
def randint_like(input, low, high = nil, **options)
|
229
|
+
# ruby doesn't support input, low = 0, high, ...
|
230
|
+
if high.nil?
|
231
|
+
high = low
|
232
|
+
low = 0
|
233
|
+
end
|
234
|
+
randint(low, high, input.size, like_options(input, options))
|
235
|
+
end
|
236
|
+
|
237
|
+
def randn_like(input, **options)
|
238
|
+
randn(input.size, like_options(input, options))
|
239
|
+
end
|
240
|
+
|
241
|
+
def zeros_like(input, **options)
|
242
|
+
zeros(input.size, like_options(input, options))
|
243
|
+
end
|
244
|
+
|
245
|
+
# --- begin operations ---
|
246
|
+
|
247
|
+
%w(add sub mul div remainder).each do |op|
|
248
|
+
define_method(op) do |input, other, **options|
|
249
|
+
execute_op(op, input, other, **options)
|
250
|
+
end
|
251
|
+
end
|
252
|
+
|
253
|
+
def neg(input)
|
254
|
+
_neg(input)
|
255
|
+
end
|
256
|
+
|
257
|
+
def no_grad
|
258
|
+
previous_value = grad_enabled?
|
259
|
+
begin
|
260
|
+
_set_grad_enabled(false)
|
261
|
+
yield
|
262
|
+
ensure
|
263
|
+
_set_grad_enabled(previous_value)
|
264
|
+
end
|
265
|
+
end
|
266
|
+
|
267
|
+
# TODO support out
|
268
|
+
def mean(input, dim = nil, keepdim: false)
|
269
|
+
if dim
|
270
|
+
_mean_dim(input, dim, keepdim)
|
271
|
+
else
|
272
|
+
_mean(input)
|
273
|
+
end
|
274
|
+
end
|
275
|
+
|
276
|
+
# TODO support dtype
|
277
|
+
def sum(input, dim = nil, keepdim: false)
|
278
|
+
if dim
|
279
|
+
_sum_dim(input, dim, keepdim)
|
280
|
+
else
|
281
|
+
_sum(input)
|
282
|
+
end
|
283
|
+
end
|
284
|
+
|
285
|
+
def argmax(input, dim = nil, keepdim: false)
|
286
|
+
if dim
|
287
|
+
_argmax_dim(input, dim, keepdim)
|
288
|
+
else
|
289
|
+
_argmax(input)
|
290
|
+
end
|
291
|
+
end
|
292
|
+
|
293
|
+
def eq(input, other)
|
294
|
+
_eq(input, other)
|
295
|
+
end
|
296
|
+
|
297
|
+
def norm(input)
|
298
|
+
_norm(input)
|
299
|
+
end
|
300
|
+
|
301
|
+
def pow(input, exponent)
|
302
|
+
_pow(input, exponent)
|
303
|
+
end
|
304
|
+
|
305
|
+
def min(input)
|
306
|
+
_min(input)
|
307
|
+
end
|
308
|
+
|
309
|
+
def max(input, dim = nil, keepdim: false, out: nil)
|
310
|
+
if dim
|
311
|
+
raise NotImplementedYet unless out
|
312
|
+
_max_out(out[0], out[1], input, dim, keepdim)
|
313
|
+
else
|
314
|
+
_max(input)
|
315
|
+
end
|
316
|
+
end
|
317
|
+
|
318
|
+
def exp(input)
|
319
|
+
_exp(input)
|
320
|
+
end
|
321
|
+
|
322
|
+
def log(input)
|
323
|
+
_log(input)
|
324
|
+
end
|
325
|
+
|
326
|
+
def sign(input)
|
327
|
+
_sign(input)
|
328
|
+
end
|
329
|
+
|
330
|
+
def gt(input, other)
|
331
|
+
_gt(input, other)
|
332
|
+
end
|
333
|
+
|
334
|
+
def lt(input, other)
|
335
|
+
_lt(input, other)
|
336
|
+
end
|
337
|
+
|
338
|
+
def unsqueeze(input, dim)
|
339
|
+
_unsqueeze(input, dim)
|
340
|
+
end
|
341
|
+
|
342
|
+
def dot(input, tensor)
|
343
|
+
_dot(input, tensor)
|
344
|
+
end
|
345
|
+
|
346
|
+
def cat(tensors, dim = 0)
|
347
|
+
_cat(tensors, dim)
|
348
|
+
end
|
349
|
+
|
350
|
+
def matmul(input, other)
|
351
|
+
_matmul(input, other)
|
352
|
+
end
|
353
|
+
|
354
|
+
def reshape(input, shape)
|
355
|
+
_reshape(input, shape)
|
356
|
+
end
|
357
|
+
|
358
|
+
def flatten(input, start_dim: 0, end_dim: -1)
|
359
|
+
_flatten(input, start_dim, end_dim)
|
360
|
+
end
|
361
|
+
|
362
|
+
def sqrt(input)
|
363
|
+
_sqrt(input)
|
364
|
+
end
|
365
|
+
|
366
|
+
def abs(input)
|
367
|
+
_abs(input)
|
368
|
+
end
|
369
|
+
|
370
|
+
def device(str)
|
371
|
+
Device.new(str)
|
372
|
+
end
|
373
|
+
|
374
|
+
private
|
375
|
+
|
376
|
+
def execute_op(op, input, other, out: nil)
|
377
|
+
scalar = other.is_a?(Numeric)
|
378
|
+
if out
|
379
|
+
# TODO make work with scalars
|
380
|
+
raise Error, "out not supported with scalar yet" if scalar
|
381
|
+
send("_#{op}_out", out, input, other)
|
382
|
+
else
|
383
|
+
if scalar
|
384
|
+
send("_#{op}_scalar", input, other)
|
385
|
+
else
|
386
|
+
send("_#{op}", input, other)
|
387
|
+
end
|
388
|
+
end
|
389
|
+
end
|
390
|
+
|
391
|
+
def tensor_size(size)
|
392
|
+
size.flatten
|
393
|
+
end
|
394
|
+
|
395
|
+
def tensor_options(dtype: nil, layout: nil, device: nil, requires_grad: nil)
|
396
|
+
options = TensorOptions.new
|
397
|
+
unless dtype.nil?
|
398
|
+
type = DTYPE_TO_ENUM[dtype]
|
399
|
+
raise Error, "Unknown dtype: #{dtype.inspect}" unless type
|
400
|
+
options = options.dtype(type)
|
401
|
+
end
|
402
|
+
unless device.nil?
|
403
|
+
options = options.device(device.to_s)
|
404
|
+
end
|
405
|
+
unless layout.nil?
|
406
|
+
options = options.layout(layout.to_s)
|
407
|
+
end
|
408
|
+
unless requires_grad.nil?
|
409
|
+
options = options.requires_grad(requires_grad)
|
410
|
+
end
|
411
|
+
options
|
412
|
+
end
|
413
|
+
|
414
|
+
def like_options(input, options)
|
415
|
+
options = options.dup
|
416
|
+
options[:dtype] ||= input.dtype
|
417
|
+
options[:layout] ||= input.layout
|
418
|
+
options[:device] ||= input.device
|
419
|
+
options
|
420
|
+
end
|
421
|
+
end
|
422
|
+
end
|
Binary file
|