torch-rb 0.1.3 → 0.1.8
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +30 -0
- data/README.md +5 -2
- data/ext/torch/ext.cpp +130 -555
- data/ext/torch/extconf.rb +9 -0
- data/ext/torch/templates.cpp +55 -0
- data/ext/torch/templates.hpp +244 -0
- data/lib/torch.rb +209 -171
- data/lib/torch/inspector.rb +23 -19
- data/lib/torch/native/dispatcher.rb +48 -0
- data/lib/torch/native/function.rb +110 -0
- data/lib/torch/native/generator.rb +168 -0
- data/lib/torch/native/native_functions.yaml +6491 -0
- data/lib/torch/native/parser.rb +134 -0
- data/lib/torch/nn/avg_pool1d.rb +18 -0
- data/lib/torch/nn/avg_pool2d.rb +19 -0
- data/lib/torch/nn/avg_pool3d.rb +19 -0
- data/lib/torch/nn/avg_poolnd.rb +9 -0
- data/lib/torch/nn/batch_norm.rb +75 -0
- data/lib/torch/nn/batch_norm1d.rb +11 -0
- data/lib/torch/nn/batch_norm2d.rb +11 -0
- data/lib/torch/nn/batch_norm3d.rb +11 -0
- data/lib/torch/nn/bce_loss.rb +13 -0
- data/lib/torch/nn/bce_with_logits_loss.rb +15 -0
- data/lib/torch/nn/bilinear.rb +38 -0
- data/lib/torch/nn/constant_pad1d.rb +10 -0
- data/lib/torch/nn/constant_pad2d.rb +10 -0
- data/lib/torch/nn/constant_pad3d.rb +10 -0
- data/lib/torch/nn/constant_padnd.rb +18 -0
- data/lib/torch/nn/conv1d.rb +22 -0
- data/lib/torch/nn/conv2d.rb +10 -20
- data/lib/torch/nn/conv3d.rb +22 -0
- data/lib/torch/nn/convnd.rb +3 -3
- data/lib/torch/nn/cosine_embedding_loss.rb +14 -0
- data/lib/torch/nn/cosine_similarity.rb +15 -0
- data/lib/torch/nn/cross_entropy_loss.rb +14 -0
- data/lib/torch/nn/ctc_loss.rb +15 -0
- data/lib/torch/nn/dropoutnd.rb +2 -2
- data/lib/torch/nn/embedding_bag.rb +34 -0
- data/lib/torch/nn/fold.rb +20 -0
- data/lib/torch/nn/functional.rb +379 -32
- data/lib/torch/nn/group_norm.rb +36 -0
- data/lib/torch/nn/gru.rb +49 -0
- data/lib/torch/nn/hardshrink.rb +18 -0
- data/lib/torch/nn/hinge_embedding_loss.rb +14 -0
- data/lib/torch/nn/identity.rb +14 -0
- data/lib/torch/nn/init.rb +58 -1
- data/lib/torch/nn/instance_norm.rb +20 -0
- data/lib/torch/nn/instance_norm1d.rb +18 -0
- data/lib/torch/nn/instance_norm2d.rb +11 -0
- data/lib/torch/nn/instance_norm3d.rb +11 -0
- data/lib/torch/nn/kl_div_loss.rb +13 -0
- data/lib/torch/nn/l1_loss.rb +13 -0
- data/lib/torch/nn/layer_norm.rb +35 -0
- data/lib/torch/nn/leaky_relu.rb +20 -0
- data/lib/torch/nn/linear.rb +12 -11
- data/lib/torch/nn/local_response_norm.rb +21 -0
- data/lib/torch/nn/log_sigmoid.rb +9 -0
- data/lib/torch/nn/log_softmax.rb +14 -0
- data/lib/torch/nn/loss.rb +10 -0
- data/lib/torch/nn/lp_pool1d.rb +9 -0
- data/lib/torch/nn/lp_pool2d.rb +9 -0
- data/lib/torch/nn/lp_poolnd.rb +22 -0
- data/lib/torch/nn/lstm.rb +66 -0
- data/lib/torch/nn/margin_ranking_loss.rb +14 -0
- data/lib/torch/nn/max_pool1d.rb +9 -0
- data/lib/torch/nn/max_pool2d.rb +9 -0
- data/lib/torch/nn/max_pool3d.rb +9 -0
- data/lib/torch/nn/max_poolnd.rb +19 -0
- data/lib/torch/nn/max_unpool1d.rb +16 -0
- data/lib/torch/nn/max_unpool2d.rb +16 -0
- data/lib/torch/nn/max_unpool3d.rb +16 -0
- data/lib/torch/nn/max_unpoolnd.rb +9 -0
- data/lib/torch/nn/module.rb +186 -35
- data/lib/torch/nn/mse_loss.rb +2 -2
- data/lib/torch/nn/multi_label_margin_loss.rb +13 -0
- data/lib/torch/nn/multi_label_soft_margin_loss.rb +13 -0
- data/lib/torch/nn/multi_margin_loss.rb +17 -0
- data/lib/torch/nn/nll_loss.rb +14 -0
- data/lib/torch/nn/pairwise_distance.rb +16 -0
- data/lib/torch/nn/parameter.rb +2 -2
- data/lib/torch/nn/poisson_nll_loss.rb +16 -0
- data/lib/torch/nn/prelu.rb +19 -0
- data/lib/torch/nn/reflection_pad1d.rb +10 -0
- data/lib/torch/nn/reflection_pad2d.rb +10 -0
- data/lib/torch/nn/reflection_padnd.rb +13 -0
- data/lib/torch/nn/relu.rb +8 -3
- data/lib/torch/nn/replication_pad1d.rb +10 -0
- data/lib/torch/nn/replication_pad2d.rb +10 -0
- data/lib/torch/nn/replication_pad3d.rb +10 -0
- data/lib/torch/nn/replication_padnd.rb +13 -0
- data/lib/torch/nn/rnn.rb +22 -0
- data/lib/torch/nn/rnn_base.rb +198 -0
- data/lib/torch/nn/sequential.rb +1 -10
- data/lib/torch/nn/sigmoid.rb +9 -0
- data/lib/torch/nn/smooth_l1_loss.rb +13 -0
- data/lib/torch/nn/soft_margin_loss.rb +13 -0
- data/lib/torch/nn/softmax.rb +18 -0
- data/lib/torch/nn/softmax2d.rb +10 -0
- data/lib/torch/nn/softmin.rb +14 -0
- data/lib/torch/nn/softplus.rb +19 -0
- data/lib/torch/nn/softshrink.rb +18 -0
- data/lib/torch/nn/softsign.rb +9 -0
- data/lib/torch/nn/tanh.rb +9 -0
- data/lib/torch/nn/tanhshrink.rb +9 -0
- data/lib/torch/nn/triplet_margin_loss.rb +18 -0
- data/lib/torch/nn/unfold.rb +19 -0
- data/lib/torch/nn/utils.rb +25 -0
- data/lib/torch/nn/weighted_loss.rb +10 -0
- data/lib/torch/nn/zero_pad2d.rb +9 -0
- data/lib/torch/random.rb +10 -0
- data/lib/torch/tensor.rb +51 -44
- data/lib/torch/version.rb +1 -1
- metadata +98 -6
- data/lib/torch/ext.bundle +0 -0
data/ext/torch/extconf.rb
CHANGED
@@ -10,6 +10,9 @@ $CXXFLAGS << " -std=c++11"
|
|
10
10
|
# silence ruby/intern.h warning
|
11
11
|
$CXXFLAGS << " -Wno-deprecated-register"
|
12
12
|
|
13
|
+
# silence torch warnings
|
14
|
+
$CXXFLAGS << " -Wno-shorten-64-to-32 -Wno-missing-noreturn"
|
15
|
+
|
13
16
|
inc, lib = dir_config("torch")
|
14
17
|
|
15
18
|
inc ||= "/usr/local/include"
|
@@ -22,4 +25,10 @@ $LDFLAGS << " -Wl,-rpath,#{lib}"
|
|
22
25
|
$LDFLAGS << " -L#{lib}"
|
23
26
|
$LDFLAGS << " -ltorch -lc10"
|
24
27
|
|
28
|
+
# generate C++ functions
|
29
|
+
puts "Generating C++ functions..."
|
30
|
+
require_relative "../../lib/torch/native/generator"
|
31
|
+
Torch::Native::Generator.generate_cpp_functions
|
32
|
+
|
33
|
+
# create makefile
|
25
34
|
create_makefile("torch/ext")
|
@@ -0,0 +1,55 @@
|
|
1
|
+
#include <torch/torch.h>
|
2
|
+
#include <rice/Object.hpp>
|
3
|
+
#include "templates.hpp"
|
4
|
+
|
5
|
+
Object wrap(std::tuple<torch::Tensor, torch::Tensor> x) {
|
6
|
+
Array a;
|
7
|
+
a.push(to_ruby<torch::Tensor>(std::get<0>(x)));
|
8
|
+
a.push(to_ruby<torch::Tensor>(std::get<1>(x)));
|
9
|
+
return Object(a);
|
10
|
+
}
|
11
|
+
|
12
|
+
Object wrap(std::tuple<torch::Tensor, torch::Tensor, torch::Tensor> x) {
|
13
|
+
Array a;
|
14
|
+
a.push(to_ruby<torch::Tensor>(std::get<0>(x)));
|
15
|
+
a.push(to_ruby<torch::Tensor>(std::get<1>(x)));
|
16
|
+
a.push(to_ruby<torch::Tensor>(std::get<2>(x)));
|
17
|
+
return Object(a);
|
18
|
+
}
|
19
|
+
|
20
|
+
Object wrap(std::tuple<torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor> x) {
|
21
|
+
Array a;
|
22
|
+
a.push(to_ruby<torch::Tensor>(std::get<0>(x)));
|
23
|
+
a.push(to_ruby<torch::Tensor>(std::get<1>(x)));
|
24
|
+
a.push(to_ruby<torch::Tensor>(std::get<2>(x)));
|
25
|
+
a.push(to_ruby<torch::Tensor>(std::get<3>(x)));
|
26
|
+
return Object(a);
|
27
|
+
}
|
28
|
+
|
29
|
+
Object wrap(std::tuple<torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor> x) {
|
30
|
+
Array a;
|
31
|
+
a.push(to_ruby<torch::Tensor>(std::get<0>(x)));
|
32
|
+
a.push(to_ruby<torch::Tensor>(std::get<1>(x)));
|
33
|
+
a.push(to_ruby<torch::Tensor>(std::get<2>(x)));
|
34
|
+
a.push(to_ruby<torch::Tensor>(std::get<3>(x)));
|
35
|
+
a.push(to_ruby<torch::Tensor>(std::get<4>(x)));
|
36
|
+
return Object(a);
|
37
|
+
}
|
38
|
+
|
39
|
+
Object wrap(std::tuple<torch::Tensor, torch::Tensor, torch::Tensor, int64_t> x) {
|
40
|
+
Array a;
|
41
|
+
a.push(to_ruby<torch::Tensor>(std::get<0>(x)));
|
42
|
+
a.push(to_ruby<torch::Tensor>(std::get<1>(x)));
|
43
|
+
a.push(to_ruby<torch::Tensor>(std::get<2>(x)));
|
44
|
+
a.push(to_ruby<int64_t>(std::get<3>(x)));
|
45
|
+
return Object(a);
|
46
|
+
}
|
47
|
+
|
48
|
+
Object wrap(std::tuple<torch::Tensor, torch::Tensor, double, int64_t> x) {
|
49
|
+
Array a;
|
50
|
+
a.push(to_ruby<torch::Tensor>(std::get<0>(x)));
|
51
|
+
a.push(to_ruby<torch::Tensor>(std::get<1>(x)));
|
52
|
+
a.push(to_ruby<double>(std::get<2>(x)));
|
53
|
+
a.push(to_ruby<int64_t>(std::get<3>(x)));
|
54
|
+
return Object(a);
|
55
|
+
}
|
@@ -0,0 +1,244 @@
|
|
1
|
+
#pragma once
|
2
|
+
|
3
|
+
#ifdef isfinite
|
4
|
+
#undef isfinite
|
5
|
+
#endif
|
6
|
+
|
7
|
+
#include <rice/Array.hpp>
|
8
|
+
#include <rice/Object.hpp>
|
9
|
+
|
10
|
+
using namespace Rice;
|
11
|
+
|
12
|
+
// need to wrap torch::IntArrayRef() since
|
13
|
+
// it doesn't own underlying data
|
14
|
+
class IntArrayRef {
|
15
|
+
std::vector<int64_t> vec;
|
16
|
+
public:
|
17
|
+
IntArrayRef(Object o) {
|
18
|
+
Array a = Array(o);
|
19
|
+
for (size_t i = 0; i < a.size(); i++) {
|
20
|
+
vec.push_back(from_ruby<int64_t>(a[i]));
|
21
|
+
}
|
22
|
+
}
|
23
|
+
operator torch::IntArrayRef() {
|
24
|
+
return torch::IntArrayRef(vec);
|
25
|
+
}
|
26
|
+
};
|
27
|
+
|
28
|
+
template<>
|
29
|
+
inline
|
30
|
+
IntArrayRef from_ruby<IntArrayRef>(Object x)
|
31
|
+
{
|
32
|
+
return IntArrayRef(x);
|
33
|
+
}
|
34
|
+
|
35
|
+
// for now
|
36
|
+
class Scalar {
|
37
|
+
torch::Scalar value;
|
38
|
+
public:
|
39
|
+
Scalar(Object o) {
|
40
|
+
// TODO cast based on Ruby type
|
41
|
+
if (o.rb_type() == T_FIXNUM) {
|
42
|
+
value = torch::Scalar(from_ruby<int64_t>(o));
|
43
|
+
} else {
|
44
|
+
value = torch::Scalar(from_ruby<float>(o));
|
45
|
+
}
|
46
|
+
}
|
47
|
+
operator torch::Scalar() {
|
48
|
+
return value;
|
49
|
+
}
|
50
|
+
};
|
51
|
+
|
52
|
+
template<>
|
53
|
+
inline
|
54
|
+
Scalar from_ruby<Scalar>(Object x)
|
55
|
+
{
|
56
|
+
return Scalar(x);
|
57
|
+
}
|
58
|
+
|
59
|
+
class TensorList {
|
60
|
+
std::vector<torch::Tensor> vec;
|
61
|
+
public:
|
62
|
+
TensorList(Object o) {
|
63
|
+
Array a = Array(o);
|
64
|
+
for (size_t i = 0; i < a.size(); i++) {
|
65
|
+
vec.push_back(from_ruby<torch::Tensor>(a[i]));
|
66
|
+
}
|
67
|
+
}
|
68
|
+
operator torch::TensorList() {
|
69
|
+
return torch::TensorList(vec);
|
70
|
+
}
|
71
|
+
};
|
72
|
+
|
73
|
+
template<>
|
74
|
+
inline
|
75
|
+
TensorList from_ruby<TensorList>(Object x)
|
76
|
+
{
|
77
|
+
return TensorList(x);
|
78
|
+
}
|
79
|
+
|
80
|
+
class FanModeType {
|
81
|
+
std::string s;
|
82
|
+
public:
|
83
|
+
FanModeType(Object o) {
|
84
|
+
s = String(o).str();
|
85
|
+
}
|
86
|
+
operator torch::nn::init::FanModeType() {
|
87
|
+
if (s == "fan_in") {
|
88
|
+
return torch::kFanIn;
|
89
|
+
} else if (s == "fan_out") {
|
90
|
+
return torch::kFanOut;
|
91
|
+
} else {
|
92
|
+
throw std::runtime_error("Unsupported nonlinearity type: " + s);
|
93
|
+
}
|
94
|
+
}
|
95
|
+
};
|
96
|
+
|
97
|
+
template<>
|
98
|
+
inline
|
99
|
+
FanModeType from_ruby<FanModeType>(Object x)
|
100
|
+
{
|
101
|
+
return FanModeType(x);
|
102
|
+
}
|
103
|
+
|
104
|
+
class NonlinearityType {
|
105
|
+
std::string s;
|
106
|
+
public:
|
107
|
+
NonlinearityType(Object o) {
|
108
|
+
s = String(o).str();
|
109
|
+
}
|
110
|
+
operator torch::nn::init::NonlinearityType() {
|
111
|
+
if (s == "linear") {
|
112
|
+
return torch::kLinear;
|
113
|
+
} else if (s == "conv1d") {
|
114
|
+
return torch::kConv1D;
|
115
|
+
} else if (s == "conv2d") {
|
116
|
+
return torch::kConv2D;
|
117
|
+
} else if (s == "conv3d") {
|
118
|
+
return torch::kConv3D;
|
119
|
+
} else if (s == "conv_transpose1d") {
|
120
|
+
return torch::kConvTranspose1D;
|
121
|
+
} else if (s == "conv_transpose2d") {
|
122
|
+
return torch::kConvTranspose2D;
|
123
|
+
} else if (s == "conv_transpose3d") {
|
124
|
+
return torch::kConvTranspose3D;
|
125
|
+
} else if (s == "sigmoid") {
|
126
|
+
return torch::kSigmoid;
|
127
|
+
} else if (s == "tanh") {
|
128
|
+
return torch::kTanh;
|
129
|
+
} else if (s == "relu") {
|
130
|
+
return torch::kReLU;
|
131
|
+
} else if (s == "leaky_relu") {
|
132
|
+
return torch::kLeakyReLU;
|
133
|
+
} else {
|
134
|
+
throw std::runtime_error("Unsupported nonlinearity type: " + s);
|
135
|
+
}
|
136
|
+
}
|
137
|
+
};
|
138
|
+
|
139
|
+
template<>
|
140
|
+
inline
|
141
|
+
NonlinearityType from_ruby<NonlinearityType>(Object x)
|
142
|
+
{
|
143
|
+
return NonlinearityType(x);
|
144
|
+
}
|
145
|
+
|
146
|
+
class MyReduction {
|
147
|
+
Object value;
|
148
|
+
public:
|
149
|
+
MyReduction(Object o) {
|
150
|
+
value = o;
|
151
|
+
}
|
152
|
+
operator int64_t() {
|
153
|
+
if (value.is_nil()) {
|
154
|
+
return torch::Reduction::None;
|
155
|
+
}
|
156
|
+
|
157
|
+
std::string s = String(value).str();
|
158
|
+
if (s == "mean") {
|
159
|
+
return torch::Reduction::Mean;
|
160
|
+
} else if (s == "sum") {
|
161
|
+
return torch::Reduction::Sum;
|
162
|
+
} else {
|
163
|
+
throw std::runtime_error("Unsupported reduction: " + s);
|
164
|
+
}
|
165
|
+
}
|
166
|
+
};
|
167
|
+
|
168
|
+
template<>
|
169
|
+
inline
|
170
|
+
MyReduction from_ruby<MyReduction>(Object x)
|
171
|
+
{
|
172
|
+
return MyReduction(x);
|
173
|
+
}
|
174
|
+
|
175
|
+
typedef torch::Tensor Tensor;
|
176
|
+
|
177
|
+
class OptionalTensor {
|
178
|
+
Object value;
|
179
|
+
public:
|
180
|
+
OptionalTensor(Object o) {
|
181
|
+
value = o;
|
182
|
+
}
|
183
|
+
operator torch::Tensor() {
|
184
|
+
if (value.is_nil()) {
|
185
|
+
return {};
|
186
|
+
}
|
187
|
+
return from_ruby<torch::Tensor>(value);
|
188
|
+
}
|
189
|
+
};
|
190
|
+
|
191
|
+
template<>
|
192
|
+
inline
|
193
|
+
OptionalTensor from_ruby<OptionalTensor>(Object x)
|
194
|
+
{
|
195
|
+
return OptionalTensor(x);
|
196
|
+
}
|
197
|
+
|
198
|
+
class ScalarType {
|
199
|
+
Object value;
|
200
|
+
public:
|
201
|
+
ScalarType(Object o) {
|
202
|
+
value = o;
|
203
|
+
}
|
204
|
+
operator at::ScalarType() {
|
205
|
+
throw std::runtime_error("ScalarType arguments not implemented yet");
|
206
|
+
}
|
207
|
+
};
|
208
|
+
|
209
|
+
template<>
|
210
|
+
inline
|
211
|
+
ScalarType from_ruby<ScalarType>(Object x)
|
212
|
+
{
|
213
|
+
return ScalarType(x);
|
214
|
+
}
|
215
|
+
|
216
|
+
class OptionalScalarType {
|
217
|
+
Object value;
|
218
|
+
public:
|
219
|
+
OptionalScalarType(Object o) {
|
220
|
+
value = o;
|
221
|
+
}
|
222
|
+
operator c10::optional<at::ScalarType>() {
|
223
|
+
if (value.is_nil()) {
|
224
|
+
return c10::nullopt;
|
225
|
+
}
|
226
|
+
return ScalarType(value);
|
227
|
+
}
|
228
|
+
};
|
229
|
+
|
230
|
+
template<>
|
231
|
+
inline
|
232
|
+
OptionalScalarType from_ruby<OptionalScalarType>(Object x)
|
233
|
+
{
|
234
|
+
return OptionalScalarType(x);
|
235
|
+
}
|
236
|
+
|
237
|
+
typedef torch::Device Device;
|
238
|
+
|
239
|
+
Object wrap(std::tuple<torch::Tensor, torch::Tensor> x);
|
240
|
+
Object wrap(std::tuple<torch::Tensor, torch::Tensor, torch::Tensor> x);
|
241
|
+
Object wrap(std::tuple<torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor> x);
|
242
|
+
Object wrap(std::tuple<torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor> x);
|
243
|
+
Object wrap(std::tuple<torch::Tensor, torch::Tensor, torch::Tensor, int64_t> x);
|
244
|
+
Object wrap(std::tuple<torch::Tensor, torch::Tensor, double, int64_t> x);
|
data/lib/torch.rb
CHANGED
@@ -1,6 +1,11 @@
|
|
1
1
|
# ext
|
2
2
|
require "torch/ext"
|
3
3
|
|
4
|
+
# native functions
|
5
|
+
require "torch/native/generator"
|
6
|
+
require "torch/native/parser"
|
7
|
+
require "torch/native/dispatcher"
|
8
|
+
|
4
9
|
# modules
|
5
10
|
require "torch/inspector"
|
6
11
|
require "torch/tensor"
|
@@ -22,31 +27,145 @@ require "torch/optim/sgd"
|
|
22
27
|
require "torch/optim/lr_scheduler/lr_scheduler"
|
23
28
|
require "torch/optim/lr_scheduler/step_lr"
|
24
29
|
|
25
|
-
# nn
|
30
|
+
# nn parameters
|
31
|
+
require "torch/nn/parameter"
|
32
|
+
require "torch/nn/utils"
|
33
|
+
|
34
|
+
# nn containers
|
26
35
|
require "torch/nn/module"
|
36
|
+
require "torch/nn/sequential"
|
37
|
+
|
38
|
+
# nn convolution layers
|
27
39
|
require "torch/nn/convnd"
|
28
|
-
require "torch/nn/
|
40
|
+
require "torch/nn/conv1d"
|
41
|
+
require "torch/nn/conv2d"
|
42
|
+
require "torch/nn/conv3d"
|
43
|
+
require "torch/nn/unfold"
|
44
|
+
require "torch/nn/fold"
|
45
|
+
|
46
|
+
# nn pooling layers
|
47
|
+
require "torch/nn/max_poolnd"
|
48
|
+
require "torch/nn/max_pool1d"
|
49
|
+
require "torch/nn/max_pool2d"
|
50
|
+
require "torch/nn/max_pool3d"
|
51
|
+
require "torch/nn/max_unpoolnd"
|
52
|
+
require "torch/nn/max_unpool1d"
|
53
|
+
require "torch/nn/max_unpool2d"
|
54
|
+
require "torch/nn/max_unpool3d"
|
55
|
+
require "torch/nn/avg_poolnd"
|
56
|
+
require "torch/nn/avg_pool1d"
|
57
|
+
require "torch/nn/avg_pool2d"
|
58
|
+
require "torch/nn/avg_pool3d"
|
59
|
+
require "torch/nn/lp_poolnd"
|
60
|
+
require "torch/nn/lp_pool1d"
|
61
|
+
require "torch/nn/lp_pool2d"
|
62
|
+
|
63
|
+
# nn padding layers
|
64
|
+
require "torch/nn/reflection_padnd"
|
65
|
+
require "torch/nn/reflection_pad1d"
|
66
|
+
require "torch/nn/reflection_pad2d"
|
67
|
+
require "torch/nn/replication_padnd"
|
68
|
+
require "torch/nn/replication_pad1d"
|
69
|
+
require "torch/nn/replication_pad2d"
|
70
|
+
require "torch/nn/replication_pad3d"
|
71
|
+
require "torch/nn/constant_padnd"
|
72
|
+
require "torch/nn/constant_pad1d"
|
73
|
+
require "torch/nn/constant_pad2d"
|
74
|
+
require "torch/nn/constant_pad3d"
|
75
|
+
require "torch/nn/zero_pad2d"
|
76
|
+
|
77
|
+
# nn normalization layers
|
78
|
+
require "torch/nn/batch_norm"
|
79
|
+
require "torch/nn/batch_norm1d"
|
80
|
+
require "torch/nn/batch_norm2d"
|
81
|
+
require "torch/nn/batch_norm3d"
|
82
|
+
require "torch/nn/group_norm"
|
83
|
+
require "torch/nn/instance_norm"
|
84
|
+
require "torch/nn/instance_norm1d"
|
85
|
+
require "torch/nn/instance_norm2d"
|
86
|
+
require "torch/nn/instance_norm3d"
|
87
|
+
require "torch/nn/layer_norm"
|
88
|
+
require "torch/nn/local_response_norm"
|
89
|
+
|
90
|
+
# nn recurrent layers
|
91
|
+
require "torch/nn/rnn_base"
|
92
|
+
require "torch/nn/rnn"
|
93
|
+
require "torch/nn/lstm"
|
94
|
+
require "torch/nn/gru"
|
95
|
+
|
96
|
+
# nn linear layers
|
97
|
+
require "torch/nn/bilinear"
|
98
|
+
require "torch/nn/identity"
|
99
|
+
require "torch/nn/linear"
|
29
100
|
|
30
|
-
# nn
|
101
|
+
# nn dropout layers
|
102
|
+
require "torch/nn/dropoutnd"
|
31
103
|
require "torch/nn/alpha_dropout"
|
32
|
-
require "torch/nn/conv2d"
|
33
104
|
require "torch/nn/dropout"
|
34
105
|
require "torch/nn/dropout2d"
|
35
106
|
require "torch/nn/dropout3d"
|
36
|
-
require "torch/nn/embedding"
|
37
107
|
require "torch/nn/feature_alpha_dropout"
|
108
|
+
|
109
|
+
# nn activations
|
110
|
+
require "torch/nn/hardshrink"
|
111
|
+
require "torch/nn/leaky_relu"
|
112
|
+
require "torch/nn/log_sigmoid"
|
113
|
+
require "torch/nn/prelu"
|
114
|
+
require "torch/nn/relu"
|
115
|
+
require "torch/nn/sigmoid"
|
116
|
+
require "torch/nn/softplus"
|
117
|
+
require "torch/nn/softshrink"
|
118
|
+
require "torch/nn/softsign"
|
119
|
+
require "torch/nn/tanh"
|
120
|
+
require "torch/nn/tanhshrink"
|
121
|
+
|
122
|
+
# nn activations other
|
123
|
+
require "torch/nn/log_softmax"
|
124
|
+
require "torch/nn/softmax"
|
125
|
+
require "torch/nn/softmax2d"
|
126
|
+
require "torch/nn/softmin"
|
127
|
+
|
128
|
+
# nn sparse layers
|
129
|
+
require "torch/nn/embedding"
|
130
|
+
require "torch/nn/embedding_bag"
|
131
|
+
|
132
|
+
# nn distance functions
|
133
|
+
require "torch/nn/cosine_similarity"
|
134
|
+
require "torch/nn/pairwise_distance"
|
135
|
+
|
136
|
+
# nn loss functions
|
137
|
+
require "torch/nn/loss"
|
138
|
+
require "torch/nn/weighted_loss"
|
139
|
+
require "torch/nn/bce_loss"
|
140
|
+
require "torch/nn/bce_with_logits_loss"
|
141
|
+
require "torch/nn/cosine_embedding_loss"
|
142
|
+
require "torch/nn/cross_entropy_loss"
|
143
|
+
require "torch/nn/ctc_loss"
|
144
|
+
require "torch/nn/hinge_embedding_loss"
|
145
|
+
require "torch/nn/kl_div_loss"
|
146
|
+
require "torch/nn/l1_loss"
|
147
|
+
require "torch/nn/margin_ranking_loss"
|
148
|
+
require "torch/nn/mse_loss"
|
149
|
+
require "torch/nn/multi_label_margin_loss"
|
150
|
+
require "torch/nn/multi_label_soft_margin_loss"
|
151
|
+
require "torch/nn/multi_margin_loss"
|
152
|
+
require "torch/nn/nll_loss"
|
153
|
+
require "torch/nn/poisson_nll_loss"
|
154
|
+
require "torch/nn/smooth_l1_loss"
|
155
|
+
require "torch/nn/soft_margin_loss"
|
156
|
+
require "torch/nn/triplet_margin_loss"
|
157
|
+
|
158
|
+
# nn other
|
38
159
|
require "torch/nn/functional"
|
39
160
|
require "torch/nn/init"
|
40
|
-
require "torch/nn/linear"
|
41
|
-
require "torch/nn/mse_loss"
|
42
|
-
require "torch/nn/parameter"
|
43
|
-
require "torch/nn/relu"
|
44
|
-
require "torch/nn/sequential"
|
45
161
|
|
46
162
|
# utils
|
47
163
|
require "torch/utils/data/data_loader"
|
48
164
|
require "torch/utils/data/tensor_dataset"
|
49
165
|
|
166
|
+
# random
|
167
|
+
require "torch/random"
|
168
|
+
|
50
169
|
module Torch
|
51
170
|
class Error < StandardError; end
|
52
171
|
class NotImplementedYet < StandardError
|
@@ -57,7 +176,6 @@ module Torch
|
|
57
176
|
|
58
177
|
# keys: https://pytorch.org/docs/stable/tensor_attributes.html#torch.torch.dtype
|
59
178
|
# values: https://github.com/pytorch/pytorch/blob/master/c10/core/ScalarType.h
|
60
|
-
# complex and quantized types not supported by PyTorch yet
|
61
179
|
DTYPE_TO_ENUM = {
|
62
180
|
uint8: 0,
|
63
181
|
int8: 1,
|
@@ -73,17 +191,52 @@ module Torch
|
|
73
191
|
float32: 6,
|
74
192
|
double: 7,
|
75
193
|
float64: 7,
|
76
|
-
|
77
|
-
|
78
|
-
|
194
|
+
complex_half: 8,
|
195
|
+
complex_float: 9,
|
196
|
+
complex_double: 10,
|
79
197
|
bool: 11,
|
80
|
-
|
81
|
-
|
82
|
-
|
83
|
-
|
198
|
+
qint8: 12,
|
199
|
+
quint8: 13,
|
200
|
+
qint32: 14,
|
201
|
+
bfloat16: 15
|
84
202
|
}
|
85
203
|
ENUM_TO_DTYPE = DTYPE_TO_ENUM.map(&:reverse).to_h
|
86
204
|
|
205
|
+
def self._make_tensor_class(dtype, cuda = false)
|
206
|
+
cls = Class.new
|
207
|
+
device = cuda ? "cuda" : "cpu"
|
208
|
+
cls.define_singleton_method("new") do |*args|
|
209
|
+
if args.size == 1 && args.first.is_a?(Tensor)
|
210
|
+
args.first.send(dtype).to(device)
|
211
|
+
elsif args.size == 1 && args.first.is_a?(Array)
|
212
|
+
Torch.tensor(args.first, dtype: dtype, device: device)
|
213
|
+
else
|
214
|
+
Torch.empty(*args, dtype: dtype, device: device)
|
215
|
+
end
|
216
|
+
end
|
217
|
+
cls
|
218
|
+
end
|
219
|
+
|
220
|
+
FloatTensor = _make_tensor_class(:float32)
|
221
|
+
DoubleTensor = _make_tensor_class(:float64)
|
222
|
+
HalfTensor = _make_tensor_class(:float16)
|
223
|
+
ByteTensor = _make_tensor_class(:uint8)
|
224
|
+
CharTensor = _make_tensor_class(:int8)
|
225
|
+
ShortTensor = _make_tensor_class(:int16)
|
226
|
+
IntTensor = _make_tensor_class(:int32)
|
227
|
+
LongTensor = _make_tensor_class(:int64)
|
228
|
+
BoolTensor = _make_tensor_class(:bool)
|
229
|
+
|
230
|
+
CUDA::FloatTensor = _make_tensor_class(:float32, true)
|
231
|
+
CUDA::DoubleTensor = _make_tensor_class(:float64, true)
|
232
|
+
CUDA::HalfTensor = _make_tensor_class(:float16, true)
|
233
|
+
CUDA::ByteTensor = _make_tensor_class(:uint8, true)
|
234
|
+
CUDA::CharTensor = _make_tensor_class(:int8, true)
|
235
|
+
CUDA::ShortTensor = _make_tensor_class(:int16, true)
|
236
|
+
CUDA::IntTensor = _make_tensor_class(:int32, true)
|
237
|
+
CUDA::LongTensor = _make_tensor_class(:int64, true)
|
238
|
+
CUDA::BoolTensor = _make_tensor_class(:bool, true)
|
239
|
+
|
87
240
|
class << self
|
88
241
|
# Torch.float, Torch.long, etc
|
89
242
|
DTYPE_TO_ENUM.each_key do |dtype|
|
@@ -120,6 +273,8 @@ module Torch
|
|
120
273
|
# use method for cases when Numo not available
|
121
274
|
# or available after Torch loaded
|
122
275
|
def _dtype_to_numo
|
276
|
+
raise Error, "Numo not found" unless defined?(Numo::NArray)
|
277
|
+
|
123
278
|
{
|
124
279
|
uint8: Numo::UInt8,
|
125
280
|
int8: Numo::Int8,
|
@@ -131,6 +286,29 @@ module Torch
|
|
131
286
|
}
|
132
287
|
end
|
133
288
|
|
289
|
+
def no_grad
|
290
|
+
previous_value = grad_enabled?
|
291
|
+
begin
|
292
|
+
_set_grad_enabled(false)
|
293
|
+
yield
|
294
|
+
ensure
|
295
|
+
_set_grad_enabled(previous_value)
|
296
|
+
end
|
297
|
+
end
|
298
|
+
|
299
|
+
def device(str)
|
300
|
+
Device.new(str)
|
301
|
+
end
|
302
|
+
|
303
|
+
def save(obj, f)
|
304
|
+
raise NotImplementedYet unless obj.is_a?(Tensor)
|
305
|
+
File.binwrite(f, _save(obj))
|
306
|
+
end
|
307
|
+
|
308
|
+
def load(f)
|
309
|
+
raise NotImplementedYet
|
310
|
+
end
|
311
|
+
|
134
312
|
# --- begin tensor creation: https://pytorch.org/cppdocs/notes/tensor_creation.html ---
|
135
313
|
|
136
314
|
def arange(start, finish = nil, step = 1, **options)
|
@@ -200,8 +378,12 @@ module Torch
|
|
200
378
|
data = [data].compact
|
201
379
|
end
|
202
380
|
|
203
|
-
if options[:dtype].nil?
|
204
|
-
|
381
|
+
if options[:dtype].nil?
|
382
|
+
if data.all? { |v| v.is_a?(Integer) }
|
383
|
+
options[:dtype] = :int64
|
384
|
+
elsif data.all? { |v| v == true || v == false }
|
385
|
+
options[:dtype] = :bool
|
386
|
+
end
|
205
387
|
end
|
206
388
|
|
207
389
|
_tensor(data, size, tensor_options(**options))
|
@@ -210,19 +392,19 @@ module Torch
|
|
210
392
|
# --- begin like ---
|
211
393
|
|
212
394
|
def ones_like(input, **options)
|
213
|
-
ones(input.size, like_options(input, options))
|
395
|
+
ones(input.size, **like_options(input, options))
|
214
396
|
end
|
215
397
|
|
216
398
|
def empty_like(input, **options)
|
217
|
-
empty(input.size, like_options(input, options))
|
399
|
+
empty(input.size, **like_options(input, options))
|
218
400
|
end
|
219
401
|
|
220
402
|
def full_like(input, fill_value, **options)
|
221
|
-
full(input.size, fill_value, like_options(input, options))
|
403
|
+
full(input.size, fill_value, **like_options(input, options))
|
222
404
|
end
|
223
405
|
|
224
406
|
def rand_like(input, **options)
|
225
|
-
rand(input.size, like_options(input, options))
|
407
|
+
rand(input.size, **like_options(input, options))
|
226
408
|
end
|
227
409
|
|
228
410
|
def randint_like(input, low, high = nil, **options)
|
@@ -231,163 +413,19 @@ module Torch
|
|
231
413
|
high = low
|
232
414
|
low = 0
|
233
415
|
end
|
234
|
-
randint(low, high, input.size, like_options(input, options))
|
416
|
+
randint(low, high, input.size, **like_options(input, options))
|
235
417
|
end
|
236
418
|
|
237
419
|
def randn_like(input, **options)
|
238
|
-
randn(input.size, like_options(input, options))
|
420
|
+
randn(input.size, **like_options(input, options))
|
239
421
|
end
|
240
422
|
|
241
423
|
def zeros_like(input, **options)
|
242
|
-
zeros(input.size, like_options(input, options))
|
243
|
-
end
|
244
|
-
|
245
|
-
# --- begin operations ---
|
246
|
-
|
247
|
-
%w(add sub mul div remainder).each do |op|
|
248
|
-
define_method(op) do |input, other, **options|
|
249
|
-
execute_op(op, input, other, **options)
|
250
|
-
end
|
251
|
-
end
|
252
|
-
|
253
|
-
def neg(input)
|
254
|
-
_neg(input)
|
255
|
-
end
|
256
|
-
|
257
|
-
def no_grad
|
258
|
-
previous_value = grad_enabled?
|
259
|
-
begin
|
260
|
-
_set_grad_enabled(false)
|
261
|
-
yield
|
262
|
-
ensure
|
263
|
-
_set_grad_enabled(previous_value)
|
264
|
-
end
|
265
|
-
end
|
266
|
-
|
267
|
-
# TODO support out
|
268
|
-
def mean(input, dim = nil, keepdim: false)
|
269
|
-
if dim
|
270
|
-
_mean_dim(input, dim, keepdim)
|
271
|
-
else
|
272
|
-
_mean(input)
|
273
|
-
end
|
274
|
-
end
|
275
|
-
|
276
|
-
# TODO support dtype
|
277
|
-
def sum(input, dim = nil, keepdim: false)
|
278
|
-
if dim
|
279
|
-
_sum_dim(input, dim, keepdim)
|
280
|
-
else
|
281
|
-
_sum(input)
|
282
|
-
end
|
283
|
-
end
|
284
|
-
|
285
|
-
def argmax(input, dim = nil, keepdim: false)
|
286
|
-
if dim
|
287
|
-
_argmax_dim(input, dim, keepdim)
|
288
|
-
else
|
289
|
-
_argmax(input)
|
290
|
-
end
|
291
|
-
end
|
292
|
-
|
293
|
-
def eq(input, other)
|
294
|
-
_eq(input, other)
|
295
|
-
end
|
296
|
-
|
297
|
-
def norm(input)
|
298
|
-
_norm(input)
|
299
|
-
end
|
300
|
-
|
301
|
-
def pow(input, exponent)
|
302
|
-
_pow(input, exponent)
|
303
|
-
end
|
304
|
-
|
305
|
-
def min(input)
|
306
|
-
_min(input)
|
307
|
-
end
|
308
|
-
|
309
|
-
def max(input, dim = nil, keepdim: false, out: nil)
|
310
|
-
if dim
|
311
|
-
raise NotImplementedYet unless out
|
312
|
-
_max_out(out[0], out[1], input, dim, keepdim)
|
313
|
-
else
|
314
|
-
_max(input)
|
315
|
-
end
|
316
|
-
end
|
317
|
-
|
318
|
-
def exp(input)
|
319
|
-
_exp(input)
|
320
|
-
end
|
321
|
-
|
322
|
-
def log(input)
|
323
|
-
_log(input)
|
324
|
-
end
|
325
|
-
|
326
|
-
def sign(input)
|
327
|
-
_sign(input)
|
328
|
-
end
|
329
|
-
|
330
|
-
def gt(input, other)
|
331
|
-
_gt(input, other)
|
332
|
-
end
|
333
|
-
|
334
|
-
def lt(input, other)
|
335
|
-
_lt(input, other)
|
336
|
-
end
|
337
|
-
|
338
|
-
def unsqueeze(input, dim)
|
339
|
-
_unsqueeze(input, dim)
|
340
|
-
end
|
341
|
-
|
342
|
-
def dot(input, tensor)
|
343
|
-
_dot(input, tensor)
|
344
|
-
end
|
345
|
-
|
346
|
-
def cat(tensors, dim = 0)
|
347
|
-
_cat(tensors, dim)
|
348
|
-
end
|
349
|
-
|
350
|
-
def matmul(input, other)
|
351
|
-
_matmul(input, other)
|
352
|
-
end
|
353
|
-
|
354
|
-
def reshape(input, shape)
|
355
|
-
_reshape(input, shape)
|
356
|
-
end
|
357
|
-
|
358
|
-
def flatten(input, start_dim: 0, end_dim: -1)
|
359
|
-
_flatten(input, start_dim, end_dim)
|
360
|
-
end
|
361
|
-
|
362
|
-
def sqrt(input)
|
363
|
-
_sqrt(input)
|
364
|
-
end
|
365
|
-
|
366
|
-
def abs(input)
|
367
|
-
_abs(input)
|
368
|
-
end
|
369
|
-
|
370
|
-
def device(str)
|
371
|
-
Device.new(str)
|
424
|
+
zeros(input.size, **like_options(input, options))
|
372
425
|
end
|
373
426
|
|
374
427
|
private
|
375
428
|
|
376
|
-
def execute_op(op, input, other, out: nil)
|
377
|
-
scalar = other.is_a?(Numeric)
|
378
|
-
if out
|
379
|
-
# TODO make work with scalars
|
380
|
-
raise Error, "out not supported with scalar yet" if scalar
|
381
|
-
send("_#{op}_out", out, input, other)
|
382
|
-
else
|
383
|
-
if scalar
|
384
|
-
send("_#{op}_scalar", input, other)
|
385
|
-
else
|
386
|
-
send("_#{op}", input, other)
|
387
|
-
end
|
388
|
-
end
|
389
|
-
end
|
390
|
-
|
391
429
|
def tensor_size(size)
|
392
430
|
size.flatten
|
393
431
|
end
|