torch-rb 0.1.3 → 0.1.8
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +30 -0
- data/README.md +5 -2
- data/ext/torch/ext.cpp +130 -555
- data/ext/torch/extconf.rb +9 -0
- data/ext/torch/templates.cpp +55 -0
- data/ext/torch/templates.hpp +244 -0
- data/lib/torch.rb +209 -171
- data/lib/torch/inspector.rb +23 -19
- data/lib/torch/native/dispatcher.rb +48 -0
- data/lib/torch/native/function.rb +110 -0
- data/lib/torch/native/generator.rb +168 -0
- data/lib/torch/native/native_functions.yaml +6491 -0
- data/lib/torch/native/parser.rb +134 -0
- data/lib/torch/nn/avg_pool1d.rb +18 -0
- data/lib/torch/nn/avg_pool2d.rb +19 -0
- data/lib/torch/nn/avg_pool3d.rb +19 -0
- data/lib/torch/nn/avg_poolnd.rb +9 -0
- data/lib/torch/nn/batch_norm.rb +75 -0
- data/lib/torch/nn/batch_norm1d.rb +11 -0
- data/lib/torch/nn/batch_norm2d.rb +11 -0
- data/lib/torch/nn/batch_norm3d.rb +11 -0
- data/lib/torch/nn/bce_loss.rb +13 -0
- data/lib/torch/nn/bce_with_logits_loss.rb +15 -0
- data/lib/torch/nn/bilinear.rb +38 -0
- data/lib/torch/nn/constant_pad1d.rb +10 -0
- data/lib/torch/nn/constant_pad2d.rb +10 -0
- data/lib/torch/nn/constant_pad3d.rb +10 -0
- data/lib/torch/nn/constant_padnd.rb +18 -0
- data/lib/torch/nn/conv1d.rb +22 -0
- data/lib/torch/nn/conv2d.rb +10 -20
- data/lib/torch/nn/conv3d.rb +22 -0
- data/lib/torch/nn/convnd.rb +3 -3
- data/lib/torch/nn/cosine_embedding_loss.rb +14 -0
- data/lib/torch/nn/cosine_similarity.rb +15 -0
- data/lib/torch/nn/cross_entropy_loss.rb +14 -0
- data/lib/torch/nn/ctc_loss.rb +15 -0
- data/lib/torch/nn/dropoutnd.rb +2 -2
- data/lib/torch/nn/embedding_bag.rb +34 -0
- data/lib/torch/nn/fold.rb +20 -0
- data/lib/torch/nn/functional.rb +379 -32
- data/lib/torch/nn/group_norm.rb +36 -0
- data/lib/torch/nn/gru.rb +49 -0
- data/lib/torch/nn/hardshrink.rb +18 -0
- data/lib/torch/nn/hinge_embedding_loss.rb +14 -0
- data/lib/torch/nn/identity.rb +14 -0
- data/lib/torch/nn/init.rb +58 -1
- data/lib/torch/nn/instance_norm.rb +20 -0
- data/lib/torch/nn/instance_norm1d.rb +18 -0
- data/lib/torch/nn/instance_norm2d.rb +11 -0
- data/lib/torch/nn/instance_norm3d.rb +11 -0
- data/lib/torch/nn/kl_div_loss.rb +13 -0
- data/lib/torch/nn/l1_loss.rb +13 -0
- data/lib/torch/nn/layer_norm.rb +35 -0
- data/lib/torch/nn/leaky_relu.rb +20 -0
- data/lib/torch/nn/linear.rb +12 -11
- data/lib/torch/nn/local_response_norm.rb +21 -0
- data/lib/torch/nn/log_sigmoid.rb +9 -0
- data/lib/torch/nn/log_softmax.rb +14 -0
- data/lib/torch/nn/loss.rb +10 -0
- data/lib/torch/nn/lp_pool1d.rb +9 -0
- data/lib/torch/nn/lp_pool2d.rb +9 -0
- data/lib/torch/nn/lp_poolnd.rb +22 -0
- data/lib/torch/nn/lstm.rb +66 -0
- data/lib/torch/nn/margin_ranking_loss.rb +14 -0
- data/lib/torch/nn/max_pool1d.rb +9 -0
- data/lib/torch/nn/max_pool2d.rb +9 -0
- data/lib/torch/nn/max_pool3d.rb +9 -0
- data/lib/torch/nn/max_poolnd.rb +19 -0
- data/lib/torch/nn/max_unpool1d.rb +16 -0
- data/lib/torch/nn/max_unpool2d.rb +16 -0
- data/lib/torch/nn/max_unpool3d.rb +16 -0
- data/lib/torch/nn/max_unpoolnd.rb +9 -0
- data/lib/torch/nn/module.rb +186 -35
- data/lib/torch/nn/mse_loss.rb +2 -2
- data/lib/torch/nn/multi_label_margin_loss.rb +13 -0
- data/lib/torch/nn/multi_label_soft_margin_loss.rb +13 -0
- data/lib/torch/nn/multi_margin_loss.rb +17 -0
- data/lib/torch/nn/nll_loss.rb +14 -0
- data/lib/torch/nn/pairwise_distance.rb +16 -0
- data/lib/torch/nn/parameter.rb +2 -2
- data/lib/torch/nn/poisson_nll_loss.rb +16 -0
- data/lib/torch/nn/prelu.rb +19 -0
- data/lib/torch/nn/reflection_pad1d.rb +10 -0
- data/lib/torch/nn/reflection_pad2d.rb +10 -0
- data/lib/torch/nn/reflection_padnd.rb +13 -0
- data/lib/torch/nn/relu.rb +8 -3
- data/lib/torch/nn/replication_pad1d.rb +10 -0
- data/lib/torch/nn/replication_pad2d.rb +10 -0
- data/lib/torch/nn/replication_pad3d.rb +10 -0
- data/lib/torch/nn/replication_padnd.rb +13 -0
- data/lib/torch/nn/rnn.rb +22 -0
- data/lib/torch/nn/rnn_base.rb +198 -0
- data/lib/torch/nn/sequential.rb +1 -10
- data/lib/torch/nn/sigmoid.rb +9 -0
- data/lib/torch/nn/smooth_l1_loss.rb +13 -0
- data/lib/torch/nn/soft_margin_loss.rb +13 -0
- data/lib/torch/nn/softmax.rb +18 -0
- data/lib/torch/nn/softmax2d.rb +10 -0
- data/lib/torch/nn/softmin.rb +14 -0
- data/lib/torch/nn/softplus.rb +19 -0
- data/lib/torch/nn/softshrink.rb +18 -0
- data/lib/torch/nn/softsign.rb +9 -0
- data/lib/torch/nn/tanh.rb +9 -0
- data/lib/torch/nn/tanhshrink.rb +9 -0
- data/lib/torch/nn/triplet_margin_loss.rb +18 -0
- data/lib/torch/nn/unfold.rb +19 -0
- data/lib/torch/nn/utils.rb +25 -0
- data/lib/torch/nn/weighted_loss.rb +10 -0
- data/lib/torch/nn/zero_pad2d.rb +9 -0
- data/lib/torch/random.rb +10 -0
- data/lib/torch/tensor.rb +51 -44
- data/lib/torch/version.rb +1 -1
- metadata +98 -6
- data/lib/torch/ext.bundle +0 -0
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: fca87cb9b6d255287e9fafadf786c113798abbe76b36c82b8271b79cfbf3c2b9
|
4
|
+
data.tar.gz: 4813c71f5ad6d078e78da03cf59f8036e9e76258ffb67f538899bba146dcba2a
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 22c7150e6a7d9132c40c67819beecc6b8c69b268bd227a8e4aa324ef5e2707004691d5b65dcd4ba1ac537bfaf783947da7e5a323417cffcbf7d348768c40b7c6
|
7
|
+
data.tar.gz: 8a86c6b68efe6ad85a261d7033b87f040c22b2c670a0238accd6246274caed17b86d7b424441bba80c5ea67ec1bf53b05444dfb0c45ea5b8a52806d0ce19ec1e
|
data/CHANGELOG.md
CHANGED
@@ -1,3 +1,33 @@
|
|
1
|
+
## 0.1.8 (2020-01-17)
|
2
|
+
|
3
|
+
- Added support for libtorch 1.4.0
|
4
|
+
- Dropped support for libtorch 1.3.1
|
5
|
+
|
6
|
+
## 0.1.7 (2020-01-10)
|
7
|
+
|
8
|
+
- Fixed installation error with Ruby 2.7
|
9
|
+
|
10
|
+
## 0.1.6 (2019-12-09)
|
11
|
+
|
12
|
+
- Added recurrent layers
|
13
|
+
- Added more pooling layers
|
14
|
+
- Added normalization layers
|
15
|
+
|
16
|
+
## 0.1.5 (2019-12-06)
|
17
|
+
|
18
|
+
- Added many more functions
|
19
|
+
- Added tensor classes - `FloatTensor`, `LongTensor`, etc
|
20
|
+
- Improved modules
|
21
|
+
|
22
|
+
## 0.1.4 (2019-12-01)
|
23
|
+
|
24
|
+
- Added distance functions
|
25
|
+
- Added more activations
|
26
|
+
- Added more linear layers
|
27
|
+
- Added more loss functions
|
28
|
+
- Added more init methods
|
29
|
+
- Added support for tensor assignment
|
30
|
+
|
1
31
|
## 0.1.3 (2019-11-30)
|
2
32
|
|
3
33
|
- Changed to BSD 3-Clause license to match PyTorch
|
data/README.md
CHANGED
@@ -20,6 +20,8 @@ Add this line to your application’s Gemfile:
|
|
20
20
|
gem 'torch-rb'
|
21
21
|
```
|
22
22
|
|
23
|
+
It can take a few minutes to compile the extension.
|
24
|
+
|
23
25
|
## Getting Started
|
24
26
|
|
25
27
|
This library follows the [PyTorch API](https://pytorch.org/docs/stable/torch.html). There are a few changes to make it more Ruby-like:
|
@@ -28,7 +30,7 @@ This library follows the [PyTorch API](https://pytorch.org/docs/stable/torch.htm
|
|
28
30
|
- Methods that return booleans use `?` instead of `is_` (`tensor?` instead of `is_tensor`)
|
29
31
|
- Numo is used instead of NumPy (`x.numo` instead of `x.numpy()`)
|
30
32
|
|
31
|
-
|
33
|
+
Some methods and options are missing at the moment. PRs welcome!
|
32
34
|
|
33
35
|
## Tutorial
|
34
36
|
|
@@ -365,8 +367,9 @@ Here’s a list of functions to create tensors (descriptions from the [C++ docs]
|
|
365
367
|
|
366
368
|
Here are a few full examples:
|
367
369
|
|
368
|
-
- [Image classification with MNIST](examples/mnist)
|
370
|
+
- [Image classification with MNIST](examples/mnist) ([日本語版](https://qiita.com/kojix2/items/c19c36dc1bf73ea93409))
|
369
371
|
- [Collaborative filtering with MovieLens](examples/movielens)
|
372
|
+
- [Sequence models and word embeddings](examples/nlp)
|
370
373
|
|
371
374
|
## LibTorch Installation
|
372
375
|
|
data/ext/torch/ext.cpp
CHANGED
@@ -6,137 +6,35 @@
|
|
6
6
|
#include <rice/Class.hpp>
|
7
7
|
#include <rice/Constructor.hpp>
|
8
8
|
|
9
|
-
|
10
|
-
|
11
|
-
template<>
|
12
|
-
inline
|
13
|
-
long long from_ruby<long long>(Object x)
|
14
|
-
{
|
15
|
-
return NUM2LL(x);
|
16
|
-
}
|
17
|
-
|
18
|
-
template<>
|
19
|
-
inline
|
20
|
-
Object to_ruby<long long>(long long const & x)
|
21
|
-
{
|
22
|
-
return LL2NUM(x);
|
23
|
-
}
|
24
|
-
|
25
|
-
template<>
|
26
|
-
inline
|
27
|
-
unsigned long long from_ruby<unsigned long long>(Object x)
|
28
|
-
{
|
29
|
-
return NUM2ULL(x);
|
30
|
-
}
|
31
|
-
|
32
|
-
template<>
|
33
|
-
inline
|
34
|
-
Object to_ruby<unsigned long long>(unsigned long long const & x)
|
35
|
-
{
|
36
|
-
return ULL2NUM(x);
|
37
|
-
}
|
38
|
-
|
39
|
-
template<>
|
40
|
-
inline
|
41
|
-
short from_ruby<short>(Object x)
|
42
|
-
{
|
43
|
-
return NUM2SHORT(x);
|
44
|
-
}
|
45
|
-
|
46
|
-
template<>
|
47
|
-
inline
|
48
|
-
Object to_ruby<short>(short const & x)
|
49
|
-
{
|
50
|
-
return INT2NUM(x);
|
51
|
-
}
|
52
|
-
|
53
|
-
template<>
|
54
|
-
inline
|
55
|
-
unsigned short from_ruby<unsigned short>(Object x)
|
56
|
-
{
|
57
|
-
return NUM2USHORT(x);
|
58
|
-
}
|
9
|
+
#include "templates.hpp"
|
59
10
|
|
60
|
-
|
61
|
-
|
62
|
-
|
63
|
-
|
64
|
-
|
65
|
-
}
|
11
|
+
// generated with:
|
12
|
+
// rake generate:functions
|
13
|
+
#include "torch_functions.hpp"
|
14
|
+
#include "tensor_functions.hpp"
|
15
|
+
#include "nn_functions.hpp"
|
66
16
|
|
67
|
-
|
68
|
-
// it doesn't own underlying data
|
69
|
-
class IntArrayRef {
|
70
|
-
std::vector<int64_t> vec;
|
71
|
-
public:
|
72
|
-
IntArrayRef(Object o) {
|
73
|
-
Array a = Array(o);
|
74
|
-
for (size_t i = 0; i < a.size(); i++) {
|
75
|
-
vec.push_back(from_ruby<int64_t>(a[i]));
|
76
|
-
}
|
77
|
-
}
|
78
|
-
operator torch::IntArrayRef() {
|
79
|
-
return torch::IntArrayRef(vec);
|
80
|
-
}
|
81
|
-
};
|
82
|
-
|
83
|
-
template<>
|
84
|
-
inline
|
85
|
-
IntArrayRef from_ruby<IntArrayRef>(Object x)
|
86
|
-
{
|
87
|
-
return IntArrayRef(x);
|
88
|
-
}
|
17
|
+
using namespace Rice;
|
89
18
|
|
90
|
-
//
|
91
|
-
class
|
92
|
-
torch::Scalar value;
|
19
|
+
// need to make a distinction between parameters and tensors
|
20
|
+
class Parameter: public torch::autograd::Variable {
|
93
21
|
public:
|
94
|
-
|
95
|
-
// TODO cast based on Ruby type
|
96
|
-
if (o.rb_type() == T_FIXNUM) {
|
97
|
-
value = torch::Scalar(from_ruby<int64_t>(o));
|
98
|
-
} else {
|
99
|
-
value = torch::Scalar(from_ruby<float>(o));
|
100
|
-
}
|
101
|
-
}
|
102
|
-
operator torch::Scalar() {
|
103
|
-
return value;
|
104
|
-
}
|
22
|
+
Parameter(Tensor&& t) : torch::autograd::Variable(t) { }
|
105
23
|
};
|
106
24
|
|
107
|
-
|
108
|
-
|
109
|
-
Scalar from_ruby<Scalar>(Object x)
|
25
|
+
extern "C"
|
26
|
+
void Init_ext()
|
110
27
|
{
|
111
|
-
|
112
|
-
|
28
|
+
Module rb_mTorch = define_module("Torch");
|
29
|
+
add_torch_functions(rb_mTorch);
|
113
30
|
|
114
|
-
|
115
|
-
|
116
|
-
public:
|
117
|
-
TensorList(Object o) {
|
118
|
-
Array a = Array(o);
|
119
|
-
for (size_t i = 0; i < a.size(); i++) {
|
120
|
-
vec.push_back(from_ruby<torch::Tensor>(a[i]));
|
121
|
-
}
|
122
|
-
}
|
123
|
-
operator torch::TensorList() {
|
124
|
-
return torch::TensorList(vec);
|
125
|
-
}
|
126
|
-
};
|
31
|
+
Class rb_cTensor = define_class_under<torch::Tensor>(rb_mTorch, "Tensor");
|
32
|
+
add_tensor_functions(rb_cTensor);
|
127
33
|
|
128
|
-
|
129
|
-
|
130
|
-
TensorList from_ruby<TensorList>(Object x)
|
131
|
-
{
|
132
|
-
return TensorList(x);
|
133
|
-
}
|
34
|
+
Module rb_mNN = define_module_under(rb_mTorch, "NN");
|
35
|
+
add_nn_functions(rb_mNN);
|
134
36
|
|
135
|
-
|
136
|
-
void Init_ext()
|
137
|
-
{
|
138
|
-
Module rb_mTorch = define_module("Torch")
|
139
|
-
.define_singleton_method(
|
37
|
+
rb_mTorch.define_singleton_method(
|
140
38
|
"grad_enabled?",
|
141
39
|
*[]() {
|
142
40
|
return torch::GradMode::is_enabled();
|
@@ -146,11 +44,6 @@ void Init_ext()
|
|
146
44
|
*[](bool enabled) {
|
147
45
|
torch::GradMode::set_enabled(enabled);
|
148
46
|
})
|
149
|
-
.define_singleton_method(
|
150
|
-
"floating_point?",
|
151
|
-
*[](torch::Tensor& input) {
|
152
|
-
return torch::is_floating_point(input);
|
153
|
-
})
|
154
47
|
.define_singleton_method(
|
155
48
|
"manual_seed",
|
156
49
|
*[](uint64_t seed) {
|
@@ -219,277 +112,17 @@ void Init_ext()
|
|
219
112
|
})
|
220
113
|
// begin operations
|
221
114
|
.define_singleton_method(
|
222
|
-
"
|
223
|
-
*[](
|
224
|
-
|
225
|
-
|
226
|
-
|
227
|
-
"_mean_dim",
|
228
|
-
*[](torch::Tensor& input, int64_t dim, bool keepdim) {
|
229
|
-
return torch::mean(input, dim, keepdim);
|
230
|
-
})
|
231
|
-
.define_singleton_method(
|
232
|
-
"_sum",
|
233
|
-
*[](torch::Tensor& input) {
|
234
|
-
return torch::sum(input);
|
235
|
-
})
|
236
|
-
.define_singleton_method(
|
237
|
-
"_sum_dim",
|
238
|
-
*[](torch::Tensor& input, int64_t dim, bool keepdim) {
|
239
|
-
return torch::sum(input, dim, keepdim);
|
240
|
-
})
|
241
|
-
.define_singleton_method(
|
242
|
-
"_argmax",
|
243
|
-
*[](torch::Tensor& input) {
|
244
|
-
return torch::argmax(input);
|
245
|
-
})
|
246
|
-
.define_singleton_method(
|
247
|
-
"_argmax_dim",
|
248
|
-
*[](torch::Tensor& input, int64_t dim, bool keepdim) {
|
249
|
-
return torch::argmax(input, dim, keepdim);
|
250
|
-
})
|
251
|
-
.define_singleton_method(
|
252
|
-
"_cat",
|
253
|
-
*[](TensorList tensors, int64_t dim) {
|
254
|
-
return torch::cat(tensors, dim);
|
255
|
-
})
|
256
|
-
.define_singleton_method(
|
257
|
-
"_norm",
|
258
|
-
*[](torch::Tensor& input) {
|
259
|
-
return torch::norm(input);
|
260
|
-
})
|
261
|
-
.define_singleton_method(
|
262
|
-
"_min",
|
263
|
-
*[](torch::Tensor& input) {
|
264
|
-
return torch::min(input);
|
265
|
-
})
|
266
|
-
.define_singleton_method(
|
267
|
-
"_max",
|
268
|
-
*[](torch::Tensor& input) {
|
269
|
-
return torch::max(input);
|
270
|
-
})
|
271
|
-
.define_singleton_method(
|
272
|
-
"_max_out",
|
273
|
-
*[](torch::Tensor &max, torch::Tensor &max_indices, const torch::Tensor &input, int64_t dim, bool keepdim) {
|
274
|
-
// TODO add return value
|
275
|
-
torch::_max_out(max, max_indices, input, dim, keepdim);
|
276
|
-
})
|
277
|
-
.define_singleton_method(
|
278
|
-
"_sqrt",
|
279
|
-
*[](torch::Tensor& input) {
|
280
|
-
return torch::sqrt(input);
|
281
|
-
})
|
282
|
-
.define_singleton_method(
|
283
|
-
"_exp",
|
284
|
-
*[](torch::Tensor& input) {
|
285
|
-
return torch::exp(input);
|
286
|
-
})
|
287
|
-
.define_singleton_method(
|
288
|
-
"_log",
|
289
|
-
*[](torch::Tensor& input) {
|
290
|
-
return torch::log(input);
|
291
|
-
})
|
292
|
-
.define_singleton_method(
|
293
|
-
"_sign",
|
294
|
-
*[](torch::Tensor& input) {
|
295
|
-
return torch::sign(input);
|
296
|
-
})
|
297
|
-
.define_singleton_method(
|
298
|
-
"_unsqueeze",
|
299
|
-
*[](torch::Tensor& input, int64_t dim) {
|
300
|
-
return torch::unsqueeze(input, dim);
|
301
|
-
})
|
302
|
-
.define_singleton_method(
|
303
|
-
"_dot",
|
304
|
-
*[](torch::Tensor& input, torch::Tensor& tensor) {
|
305
|
-
return torch::dot(input, tensor);
|
306
|
-
})
|
307
|
-
.define_singleton_method(
|
308
|
-
"_matmul",
|
309
|
-
*[](torch::Tensor& input, torch::Tensor& other) {
|
310
|
-
return torch::matmul(input, other);
|
311
|
-
})
|
312
|
-
.define_singleton_method(
|
313
|
-
"_eq",
|
314
|
-
*[](torch::Tensor& input, torch::Tensor& other) {
|
315
|
-
return torch::eq(input, other);
|
316
|
-
})
|
317
|
-
.define_singleton_method(
|
318
|
-
"_gt",
|
319
|
-
// TODO support tensors
|
320
|
-
*[](torch::Tensor& input, Scalar other) {
|
321
|
-
return torch::gt(input, other);
|
322
|
-
})
|
323
|
-
.define_singleton_method(
|
324
|
-
"_lt",
|
325
|
-
// TODO support tensors
|
326
|
-
*[](torch::Tensor& input, Scalar other) {
|
327
|
-
return torch::lt(input, other);
|
328
|
-
})
|
329
|
-
.define_singleton_method(
|
330
|
-
"_add",
|
331
|
-
*[](torch::Tensor& input, torch::Tensor& other) {
|
332
|
-
return torch::add(input, other);
|
333
|
-
})
|
334
|
-
.define_singleton_method(
|
335
|
-
"_add_scalar",
|
336
|
-
*[](torch::Tensor& input, Scalar other) {
|
337
|
-
return torch::add(input, other);
|
338
|
-
})
|
339
|
-
.define_singleton_method(
|
340
|
-
"_add_out",
|
341
|
-
*[](torch::Tensor& out, torch::Tensor& input, torch::Tensor& other) {
|
342
|
-
return torch::add_out(out, input, other);
|
343
|
-
})
|
344
|
-
.define_singleton_method(
|
345
|
-
"_sub",
|
346
|
-
*[](torch::Tensor& input, torch::Tensor& other) {
|
347
|
-
return torch::sub(input, other);
|
348
|
-
})
|
349
|
-
.define_singleton_method(
|
350
|
-
"_sub_scalar",
|
351
|
-
*[](torch::Tensor& input, Scalar other) {
|
352
|
-
return torch::sub(input, other);
|
353
|
-
})
|
354
|
-
.define_singleton_method(
|
355
|
-
"_mul",
|
356
|
-
*[](torch::Tensor& input, torch::Tensor& other) {
|
357
|
-
return torch::mul(input, other);
|
358
|
-
})
|
359
|
-
.define_singleton_method(
|
360
|
-
"_mul_scalar",
|
361
|
-
*[](torch::Tensor& input, Scalar other) {
|
362
|
-
return torch::mul(input, other);
|
363
|
-
})
|
364
|
-
.define_singleton_method(
|
365
|
-
"_div",
|
366
|
-
*[](torch::Tensor& input, torch::Tensor& other) {
|
367
|
-
return torch::div(input, other);
|
368
|
-
})
|
369
|
-
.define_singleton_method(
|
370
|
-
"_div_scalar",
|
371
|
-
*[](torch::Tensor& input, Scalar other) {
|
372
|
-
return torch::div(input, other);
|
373
|
-
})
|
374
|
-
.define_singleton_method(
|
375
|
-
"_remainder",
|
376
|
-
*[](torch::Tensor& input, torch::Tensor& other) {
|
377
|
-
return torch::remainder(input, other);
|
378
|
-
})
|
379
|
-
.define_singleton_method(
|
380
|
-
"_remainder_scalar",
|
381
|
-
*[](torch::Tensor& input, Scalar other) {
|
382
|
-
return torch::remainder(input, other);
|
383
|
-
})
|
384
|
-
.define_singleton_method(
|
385
|
-
"_pow",
|
386
|
-
*[](torch::Tensor& input, Scalar exponent) {
|
387
|
-
return torch::pow(input, exponent);
|
388
|
-
})
|
389
|
-
.define_singleton_method(
|
390
|
-
"_abs",
|
391
|
-
*[](torch::Tensor& input) {
|
392
|
-
return torch::abs(input);
|
393
|
-
})
|
394
|
-
.define_singleton_method(
|
395
|
-
"_neg",
|
396
|
-
*[](torch::Tensor& input) {
|
397
|
-
return torch::neg(input);
|
115
|
+
"_save",
|
116
|
+
*[](const Tensor &value) {
|
117
|
+
auto v = torch::pickle_save(value);
|
118
|
+
std::string str(v.begin(), v.end());
|
119
|
+
return str;
|
398
120
|
})
|
399
121
|
.define_singleton_method(
|
400
|
-
"
|
401
|
-
*[](
|
402
|
-
return torch::
|
122
|
+
"_binary_cross_entropy_with_logits",
|
123
|
+
*[](const Tensor &input, const Tensor &target, OptionalTensor weight, OptionalTensor pos_weight, MyReduction reduction) {
|
124
|
+
return torch::binary_cross_entropy_with_logits(input, target, weight, pos_weight, reduction);
|
403
125
|
})
|
404
|
-
.define_singleton_method(
|
405
|
-
"_flatten",
|
406
|
-
*[](torch::Tensor& input, int64_t start_dim, int64_t end_dim) {
|
407
|
-
return torch::flatten(input, start_dim, end_dim);
|
408
|
-
})
|
409
|
-
.define_singleton_method(
|
410
|
-
"relu",
|
411
|
-
*[](torch::Tensor& input) {
|
412
|
-
return torch::relu(input);
|
413
|
-
})
|
414
|
-
.define_singleton_method(
|
415
|
-
"conv2d",
|
416
|
-
*[](torch::Tensor& input, torch::Tensor& weight, torch::Tensor& bias, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, int64_t groups) {
|
417
|
-
return torch::conv2d(input, weight, bias, stride, padding, dilation, groups);
|
418
|
-
})
|
419
|
-
.define_singleton_method(
|
420
|
-
"linear",
|
421
|
-
*[](torch::Tensor& input, torch::Tensor& weight, torch::Tensor& bias) {
|
422
|
-
return torch::linear(input, weight, bias);
|
423
|
-
})
|
424
|
-
.define_singleton_method(
|
425
|
-
"max_pool2d",
|
426
|
-
*[](torch::Tensor& input, IntArrayRef kernel_size) {
|
427
|
-
return torch::max_pool2d(input, kernel_size);
|
428
|
-
})
|
429
|
-
.define_singleton_method(
|
430
|
-
"avg_pool2d",
|
431
|
-
*[](torch::Tensor& input, IntArrayRef kernel_size) {
|
432
|
-
return torch::avg_pool2d(input, kernel_size);
|
433
|
-
})
|
434
|
-
.define_singleton_method(
|
435
|
-
"_dropout",
|
436
|
-
*[](torch::Tensor& input, float p, bool train) {
|
437
|
-
return torch::dropout(input, p, train);
|
438
|
-
})
|
439
|
-
.define_singleton_method(
|
440
|
-
"_dropout!",
|
441
|
-
*[](torch::Tensor& input, float p, bool train) {
|
442
|
-
return torch::dropout_(input, p, train);
|
443
|
-
})
|
444
|
-
.define_singleton_method(
|
445
|
-
"_feature_dropout",
|
446
|
-
*[](torch::Tensor& input, float p, bool train) {
|
447
|
-
return torch::feature_dropout(input, p, train);
|
448
|
-
})
|
449
|
-
.define_singleton_method(
|
450
|
-
"_feature_dropout!",
|
451
|
-
*[](torch::Tensor& input, float p, bool train) {
|
452
|
-
return torch::feature_dropout_(input, p, train);
|
453
|
-
})
|
454
|
-
.define_singleton_method(
|
455
|
-
"_alpha_dropout",
|
456
|
-
*[](torch::Tensor& input, float p, bool train) {
|
457
|
-
return torch::alpha_dropout(input, p, train);
|
458
|
-
})
|
459
|
-
.define_singleton_method(
|
460
|
-
"_alpha_dropout!",
|
461
|
-
*[](torch::Tensor& input, float p, bool train) {
|
462
|
-
return torch::alpha_dropout_(input, p, train);
|
463
|
-
})
|
464
|
-
.define_singleton_method(
|
465
|
-
"_feature_alpha_dropout",
|
466
|
-
*[](torch::Tensor& input, float p, bool train) {
|
467
|
-
return torch::feature_alpha_dropout(input, p, train);
|
468
|
-
})
|
469
|
-
.define_singleton_method(
|
470
|
-
"_feature_alpha_dropout!",
|
471
|
-
*[](torch::Tensor& input, float p, bool train) {
|
472
|
-
return torch::feature_alpha_dropout_(input, p, train);
|
473
|
-
})
|
474
|
-
.define_singleton_method(
|
475
|
-
"_embedding",
|
476
|
-
// weight and indices are swapped from Python interface
|
477
|
-
*[](const torch::Tensor &indices, const torch::Tensor &weight, int64_t padding_idx, bool scale_grad_by_freq, bool sparse) {
|
478
|
-
return torch::embedding(weight, indices, padding_idx, scale_grad_by_freq, sparse);
|
479
|
-
})
|
480
|
-
.define_singleton_method(
|
481
|
-
"mse_loss",
|
482
|
-
*[](torch::Tensor& input, torch::Tensor& target, std::string reduction) {
|
483
|
-
auto red = reduction == "mean" ? Reduction::Mean : Reduction::Sum;
|
484
|
-
return torch::mse_loss(input, target, red);
|
485
|
-
})
|
486
|
-
.define_singleton_method(
|
487
|
-
"nll_loss",
|
488
|
-
*[](torch::Tensor& input, torch::Tensor& target, std::string reduction) {
|
489
|
-
auto red = reduction == "mean" ? Reduction::Mean : Reduction::Sum;
|
490
|
-
return torch::nll_loss(input, target, {}, red);
|
491
|
-
})
|
492
|
-
.define_singleton_method("numel", &torch::numel)
|
493
126
|
.define_singleton_method(
|
494
127
|
"_from_blob",
|
495
128
|
*[](String s, IntArrayRef size, const torch::TensorOptions &options) {
|
@@ -500,187 +133,86 @@ void Init_ext()
|
|
500
133
|
"_tensor",
|
501
134
|
*[](Object o, IntArrayRef size, const torch::TensorOptions &options) {
|
502
135
|
Array a = Array(o);
|
503
|
-
|
504
|
-
|
505
|
-
|
136
|
+
auto dtype = options.dtype();
|
137
|
+
torch::Tensor t;
|
138
|
+
if (dtype == torch::kBool) {
|
139
|
+
throw std::runtime_error("Cannot create bool from tensor method yet");
|
140
|
+
} else {
|
141
|
+
std::vector<float> vec;
|
142
|
+
for (size_t i = 0; i < a.size(); i++) {
|
143
|
+
vec.push_back(from_ruby<float>(a[i]));
|
144
|
+
}
|
145
|
+
// hack for requires_grad error
|
146
|
+
if (options.requires_grad()) {
|
147
|
+
t = torch::tensor(vec, options.requires_grad(c10::nullopt));
|
148
|
+
t.set_requires_grad(true);
|
149
|
+
} else {
|
150
|
+
t = torch::tensor(vec, options);
|
151
|
+
}
|
506
152
|
}
|
507
|
-
return
|
153
|
+
return t.reshape(size);
|
508
154
|
});
|
509
155
|
|
510
|
-
|
156
|
+
rb_cTensor
|
511
157
|
.define_method("cuda?", &torch::Tensor::is_cuda)
|
512
|
-
.define_method("distributed?", &torch::Tensor::is_distributed)
|
513
|
-
.define_method("complex?", &torch::Tensor::is_complex)
|
514
|
-
.define_method("floating_point?", &torch::Tensor::is_floating_point)
|
515
|
-
.define_method("signed?", &torch::Tensor::is_signed)
|
516
158
|
.define_method("sparse?", &torch::Tensor::is_sparse)
|
517
159
|
.define_method("quantized?", &torch::Tensor::is_quantized)
|
518
160
|
.define_method("dim", &torch::Tensor::dim)
|
161
|
+
.define_method("numel", &torch::Tensor::numel)
|
519
162
|
.define_method("element_size", &torch::Tensor::element_size)
|
520
163
|
.define_method("requires_grad", &torch::Tensor::requires_grad)
|
521
|
-
.define_method("view_as", &torch::Tensor::view_as)
|
522
164
|
.define_method(
|
523
165
|
"addcmul!",
|
524
|
-
*[](
|
166
|
+
*[](Tensor& self, Scalar value, const Tensor & tensor1, const Tensor & tensor2) {
|
525
167
|
return self.addcmul_(tensor1, tensor2, value);
|
526
168
|
})
|
527
169
|
.define_method(
|
528
170
|
"addcdiv!",
|
529
|
-
*[](
|
171
|
+
*[](Tensor& self, Scalar value, const Tensor & tensor1, const Tensor & tensor2) {
|
530
172
|
return self.addcdiv_(tensor1, tensor2, value);
|
531
173
|
})
|
532
|
-
.define_method(
|
533
|
-
"zero!",
|
534
|
-
*[](torch::Tensor& self) {
|
535
|
-
return self.zero_();
|
536
|
-
})
|
537
|
-
.define_method(
|
538
|
-
"detach!",
|
539
|
-
*[](torch::Tensor& self) {
|
540
|
-
return self.detach_();
|
541
|
-
})
|
542
|
-
.define_method(
|
543
|
-
"_select",
|
544
|
-
*[](torch::Tensor& self, int64_t dim, int64_t index) {
|
545
|
-
return self.select(dim, index);
|
546
|
-
})
|
547
|
-
.define_method(
|
548
|
-
"_slice",
|
549
|
-
*[](torch::Tensor& self, int64_t dim, int64_t start, int64_t end, int64_t step) {
|
550
|
-
return self.slice(dim, start, end, step);
|
551
|
-
})
|
552
174
|
.define_method(
|
553
175
|
"_requires_grad!",
|
554
|
-
*[](
|
176
|
+
*[](Tensor& self, bool requires_grad) {
|
555
177
|
return self.set_requires_grad(requires_grad);
|
556
178
|
})
|
557
179
|
.define_method(
|
558
180
|
"_backward",
|
559
|
-
*[](
|
560
|
-
return self.backward();
|
561
|
-
})
|
562
|
-
.define_method(
|
563
|
-
"_backward_gradient",
|
564
|
-
*[](torch::Tensor& self, const torch::Tensor& gradient) {
|
565
|
-
return self.backward(gradient);
|
181
|
+
*[](Tensor& self, Object gradient) {
|
182
|
+
return gradient.is_nil() ? self.backward() : self.backward(from_ruby<torch::Tensor>(gradient));
|
566
183
|
})
|
567
184
|
.define_method(
|
568
185
|
"grad",
|
569
|
-
*[](
|
186
|
+
*[](Tensor& self) {
|
570
187
|
return self.grad();
|
571
188
|
})
|
572
189
|
.define_method(
|
573
190
|
"_dtype",
|
574
|
-
*[](
|
191
|
+
*[](Tensor& self) {
|
575
192
|
return (int) at::typeMetaToScalarType(self.dtype());
|
576
193
|
})
|
577
194
|
.define_method(
|
578
195
|
"_type",
|
579
|
-
*[](
|
196
|
+
*[](Tensor& self, int dtype) {
|
580
197
|
return self.toType((torch::ScalarType) dtype);
|
581
198
|
})
|
582
199
|
.define_method(
|
583
200
|
"_layout",
|
584
|
-
*[](
|
201
|
+
*[](Tensor& self) {
|
585
202
|
std::stringstream s;
|
586
203
|
s << self.layout();
|
587
204
|
return s.str();
|
588
205
|
})
|
589
206
|
.define_method(
|
590
207
|
"device",
|
591
|
-
*[](
|
208
|
+
*[](Tensor& self) {
|
592
209
|
std::stringstream s;
|
593
210
|
s << self.device();
|
594
211
|
return s.str();
|
595
212
|
})
|
596
213
|
.define_method(
|
597
|
-
"
|
598
|
-
*[](
|
599
|
-
return self.view(size);
|
600
|
-
})
|
601
|
-
.define_method(
|
602
|
-
"resize_as!",
|
603
|
-
*[](torch::Tensor& self, torch::Tensor& other) {
|
604
|
-
return self.resize_as_(other);
|
605
|
-
})
|
606
|
-
.define_method(
|
607
|
-
"fill!",
|
608
|
-
*[](torch::Tensor& self, Scalar value) {
|
609
|
-
return self.fill_(value);
|
610
|
-
})
|
611
|
-
.define_method(
|
612
|
-
"_add!",
|
613
|
-
*[](torch::Tensor& self, torch::Tensor& other) {
|
614
|
-
return self.add_(other);
|
615
|
-
})
|
616
|
-
.define_method(
|
617
|
-
"_add_alpha!",
|
618
|
-
*[](torch::Tensor& self, torch::Tensor& other, Scalar alpha) {
|
619
|
-
return self.add_(other, alpha);
|
620
|
-
})
|
621
|
-
.define_method(
|
622
|
-
"_add_scalar!",
|
623
|
-
*[](torch::Tensor& self, Scalar other) {
|
624
|
-
return self.add_(other);
|
625
|
-
})
|
626
|
-
.define_method(
|
627
|
-
"normal!",
|
628
|
-
*[](torch::Tensor& self, double mean, double std) {
|
629
|
-
return self.normal_(mean, std);
|
630
|
-
})
|
631
|
-
.define_method(
|
632
|
-
"sub!",
|
633
|
-
*[](torch::Tensor& self, torch::Tensor& other) {
|
634
|
-
return self.sub_(other);
|
635
|
-
})
|
636
|
-
.define_method(
|
637
|
-
"_mul!",
|
638
|
-
*[](torch::Tensor& self, torch::Tensor& other) {
|
639
|
-
return self.mul_(other);
|
640
|
-
})
|
641
|
-
.define_method(
|
642
|
-
"_mul_scalar!",
|
643
|
-
*[](torch::Tensor& self, Scalar other) {
|
644
|
-
return self.mul_(other);
|
645
|
-
})
|
646
|
-
.define_method(
|
647
|
-
"div!",
|
648
|
-
*[](torch::Tensor& self, torch::Tensor& other) {
|
649
|
-
return self.div_(other);
|
650
|
-
})
|
651
|
-
.define_method(
|
652
|
-
"sqrt!",
|
653
|
-
*[](torch::Tensor& self) {
|
654
|
-
return self.sqrt_();
|
655
|
-
})
|
656
|
-
.define_method(
|
657
|
-
"unsqueeze!",
|
658
|
-
*[](torch::Tensor& self, int64_t dim) {
|
659
|
-
return self.unsqueeze_(dim);
|
660
|
-
})
|
661
|
-
.define_method(
|
662
|
-
"copy!",
|
663
|
-
*[](torch::Tensor& self, torch::Tensor& src) {
|
664
|
-
return self.copy_(src);
|
665
|
-
})
|
666
|
-
.define_method(
|
667
|
-
"clone",
|
668
|
-
*[](torch::Tensor& self) {
|
669
|
-
return self.clone();
|
670
|
-
})
|
671
|
-
.define_method(
|
672
|
-
"log_softmax",
|
673
|
-
*[](torch::Tensor& self, int64_t dim) {
|
674
|
-
return self.log_softmax(dim);
|
675
|
-
})
|
676
|
-
.define_method(
|
677
|
-
"data",
|
678
|
-
*[](torch::Tensor& self) {
|
679
|
-
return self.data();
|
680
|
-
})
|
681
|
-
.define_method(
|
682
|
-
"_data",
|
683
|
-
*[](torch::Tensor& self) {
|
214
|
+
"_flat_data",
|
215
|
+
*[](Tensor& self) {
|
684
216
|
Array a;
|
685
217
|
auto dtype = self.dtype();
|
686
218
|
|
@@ -730,23 +262,18 @@ void Init_ext()
|
|
730
262
|
}
|
731
263
|
return a;
|
732
264
|
})
|
733
|
-
.define_method(
|
734
|
-
"_size",
|
735
|
-
*[](torch::Tensor& self, int i) {
|
736
|
-
return self.size(i);
|
737
|
-
})
|
738
265
|
.define_method(
|
739
266
|
"_to",
|
740
|
-
*[](
|
267
|
+
*[](Tensor& self, torch::Device device, int dtype, bool non_blocking, bool copy) {
|
741
268
|
return self.to(device, (torch::ScalarType) dtype, non_blocking, copy);
|
742
269
|
})
|
743
270
|
.define_singleton_method(
|
744
271
|
"_make_subclass",
|
745
|
-
*[](
|
272
|
+
*[](Tensor& rd, bool requires_grad) {
|
746
273
|
auto data = torch::autograd::as_variable_ref(rd).detach();
|
747
274
|
data.unsafeGetTensorImpl()->set_allow_tensor_metadata_change(true);
|
748
275
|
auto var = data.set_requires_grad(requires_grad);
|
749
|
-
return
|
276
|
+
return Parameter(std::move(var));
|
750
277
|
});
|
751
278
|
|
752
279
|
Class rb_cTensorOptions = define_class_under<torch::TensorOptions>(rb_mTorch, "TensorOptions")
|
@@ -789,36 +316,84 @@ void Init_ext()
|
|
789
316
|
return self.requires_grad(requires_grad);
|
790
317
|
});
|
791
318
|
|
792
|
-
Module rb_mNN = define_module_under(rb_mTorch, "NN");
|
793
|
-
|
794
319
|
Module rb_mInit = define_module_under(rb_mNN, "Init")
|
795
320
|
.define_singleton_method(
|
796
|
-
"
|
797
|
-
*[](
|
798
|
-
return torch::nn::init::
|
321
|
+
"_calculate_gain",
|
322
|
+
*[](NonlinearityType nonlinearity, double param) {
|
323
|
+
return torch::nn::init::calculate_gain(nonlinearity, param);
|
324
|
+
})
|
325
|
+
.define_singleton_method(
|
326
|
+
"_uniform!",
|
327
|
+
*[](Tensor tensor, double low, double high) {
|
328
|
+
return torch::nn::init::uniform_(tensor, low, high);
|
329
|
+
})
|
330
|
+
.define_singleton_method(
|
331
|
+
"_normal!",
|
332
|
+
*[](Tensor tensor, double mean, double std) {
|
333
|
+
return torch::nn::init::normal_(tensor, mean, std);
|
334
|
+
})
|
335
|
+
.define_singleton_method(
|
336
|
+
"_constant!",
|
337
|
+
*[](Tensor tensor, Scalar value) {
|
338
|
+
return torch::nn::init::constant_(tensor, value);
|
799
339
|
})
|
800
340
|
.define_singleton_method(
|
801
|
-
"
|
802
|
-
*[](
|
803
|
-
return torch::nn::init::
|
341
|
+
"_ones!",
|
342
|
+
*[](Tensor tensor) {
|
343
|
+
return torch::nn::init::ones_(tensor);
|
804
344
|
})
|
805
345
|
.define_singleton_method(
|
806
|
-
"
|
807
|
-
*[](
|
808
|
-
return torch::nn::init::
|
346
|
+
"_zeros!",
|
347
|
+
*[](Tensor tensor) {
|
348
|
+
return torch::nn::init::zeros_(tensor);
|
349
|
+
})
|
350
|
+
.define_singleton_method(
|
351
|
+
"_eye!",
|
352
|
+
*[](Tensor tensor) {
|
353
|
+
return torch::nn::init::eye_(tensor);
|
354
|
+
})
|
355
|
+
.define_singleton_method(
|
356
|
+
"_dirac!",
|
357
|
+
*[](Tensor tensor) {
|
358
|
+
return torch::nn::init::dirac_(tensor);
|
359
|
+
})
|
360
|
+
.define_singleton_method(
|
361
|
+
"_xavier_uniform!",
|
362
|
+
*[](Tensor tensor, double gain) {
|
363
|
+
return torch::nn::init::xavier_uniform_(tensor, gain);
|
364
|
+
})
|
365
|
+
.define_singleton_method(
|
366
|
+
"_xavier_normal!",
|
367
|
+
*[](Tensor tensor, double gain) {
|
368
|
+
return torch::nn::init::xavier_normal_(tensor, gain);
|
369
|
+
})
|
370
|
+
.define_singleton_method(
|
371
|
+
"_kaiming_uniform!",
|
372
|
+
*[](Tensor tensor, double a, FanModeType mode, NonlinearityType nonlinearity) {
|
373
|
+
return torch::nn::init::kaiming_uniform_(tensor, a, mode, nonlinearity);
|
374
|
+
})
|
375
|
+
.define_singleton_method(
|
376
|
+
"_kaiming_normal!",
|
377
|
+
*[](Tensor tensor, double a, FanModeType mode, NonlinearityType nonlinearity) {
|
378
|
+
return torch::nn::init::kaiming_normal_(tensor, a, mode, nonlinearity);
|
379
|
+
})
|
380
|
+
.define_singleton_method(
|
381
|
+
"_orthogonal!",
|
382
|
+
*[](Tensor tensor, double gain) {
|
383
|
+
return torch::nn::init::orthogonal_(tensor, gain);
|
384
|
+
})
|
385
|
+
.define_singleton_method(
|
386
|
+
"_sparse!",
|
387
|
+
*[](Tensor tensor, double sparsity, double std) {
|
388
|
+
return torch::nn::init::sparse_(tensor, sparsity, std);
|
809
389
|
});
|
810
390
|
|
811
|
-
Class rb_cParameter = define_class_under<
|
812
|
-
// TODO return grad or nil to remove need for 2nd function
|
813
|
-
.define_method(
|
814
|
-
"_grad",
|
815
|
-
*[](torch::autograd::Variable& self) {
|
816
|
-
return self.grad();
|
817
|
-
})
|
391
|
+
Class rb_cParameter = define_class_under<Parameter, torch::Tensor>(rb_mNN, "Parameter")
|
818
392
|
.define_method(
|
819
|
-
"
|
820
|
-
*[](
|
821
|
-
|
393
|
+
"grad",
|
394
|
+
*[](Parameter& self) {
|
395
|
+
auto grad = self.grad();
|
396
|
+
return grad.defined() ? to_ruby<torch::Tensor>(grad) : Nil;
|
822
397
|
});
|
823
398
|
|
824
399
|
Class rb_cDevice = define_class_under<torch::Device>(rb_mTorch, "Device")
|