tomoto 0.4.0-aarch64-linux

Sign up to get free protection for your applications and to get access to all the features.
Files changed (98) hide show
  1. checksums.yaml +7 -0
  2. data/CHANGELOG.md +65 -0
  3. data/LICENSE.txt +22 -0
  4. data/README.md +154 -0
  5. data/ext/tomoto/ct.cpp +58 -0
  6. data/ext/tomoto/dmr.cpp +69 -0
  7. data/ext/tomoto/dt.cpp +91 -0
  8. data/ext/tomoto/extconf.rb +42 -0
  9. data/ext/tomoto/gdmr.cpp +42 -0
  10. data/ext/tomoto/hdp.cpp +47 -0
  11. data/ext/tomoto/hlda.cpp +71 -0
  12. data/ext/tomoto/hpa.cpp +32 -0
  13. data/ext/tomoto/lda.cpp +281 -0
  14. data/ext/tomoto/llda.cpp +46 -0
  15. data/ext/tomoto/mglda.cpp +81 -0
  16. data/ext/tomoto/pa.cpp +32 -0
  17. data/ext/tomoto/plda.cpp +33 -0
  18. data/ext/tomoto/slda.cpp +48 -0
  19. data/ext/tomoto/tomoto.cpp +48 -0
  20. data/ext/tomoto/utils.h +30 -0
  21. data/lib/tomoto/3.0/tomoto.so +0 -0
  22. data/lib/tomoto/3.1/tomoto.so +0 -0
  23. data/lib/tomoto/3.2/tomoto.so +0 -0
  24. data/lib/tomoto/3.3/tomoto.so +0 -0
  25. data/lib/tomoto/ct.rb +24 -0
  26. data/lib/tomoto/dmr.rb +27 -0
  27. data/lib/tomoto/dt.rb +15 -0
  28. data/lib/tomoto/gdmr.rb +15 -0
  29. data/lib/tomoto/hdp.rb +11 -0
  30. data/lib/tomoto/hlda.rb +56 -0
  31. data/lib/tomoto/hpa.rb +11 -0
  32. data/lib/tomoto/lda.rb +186 -0
  33. data/lib/tomoto/llda.rb +15 -0
  34. data/lib/tomoto/mglda.rb +15 -0
  35. data/lib/tomoto/pa.rb +11 -0
  36. data/lib/tomoto/plda.rb +15 -0
  37. data/lib/tomoto/slda.rb +37 -0
  38. data/lib/tomoto/version.rb +3 -0
  39. data/lib/tomoto.rb +27 -0
  40. data/vendor/EigenRand/EigenRand/EigenRand +24 -0
  41. data/vendor/EigenRand/LICENSE +21 -0
  42. data/vendor/EigenRand/README.md +430 -0
  43. data/vendor/eigen/COPYING.APACHE +203 -0
  44. data/vendor/eigen/COPYING.BSD +26 -0
  45. data/vendor/eigen/COPYING.GPL +674 -0
  46. data/vendor/eigen/COPYING.LGPL +502 -0
  47. data/vendor/eigen/COPYING.MINPACK +51 -0
  48. data/vendor/eigen/COPYING.MPL2 +373 -0
  49. data/vendor/eigen/COPYING.README +18 -0
  50. data/vendor/eigen/Eigen/Cholesky +45 -0
  51. data/vendor/eigen/Eigen/CholmodSupport +48 -0
  52. data/vendor/eigen/Eigen/Core +384 -0
  53. data/vendor/eigen/Eigen/Dense +7 -0
  54. data/vendor/eigen/Eigen/Eigen +2 -0
  55. data/vendor/eigen/Eigen/Eigenvalues +60 -0
  56. data/vendor/eigen/Eigen/Geometry +59 -0
  57. data/vendor/eigen/Eigen/Householder +29 -0
  58. data/vendor/eigen/Eigen/IterativeLinearSolvers +48 -0
  59. data/vendor/eigen/Eigen/Jacobi +32 -0
  60. data/vendor/eigen/Eigen/KLUSupport +41 -0
  61. data/vendor/eigen/Eigen/LU +47 -0
  62. data/vendor/eigen/Eigen/MetisSupport +35 -0
  63. data/vendor/eigen/Eigen/OrderingMethods +70 -0
  64. data/vendor/eigen/Eigen/PaStiXSupport +49 -0
  65. data/vendor/eigen/Eigen/PardisoSupport +35 -0
  66. data/vendor/eigen/Eigen/QR +50 -0
  67. data/vendor/eigen/Eigen/QtAlignedMalloc +39 -0
  68. data/vendor/eigen/Eigen/SPQRSupport +34 -0
  69. data/vendor/eigen/Eigen/SVD +50 -0
  70. data/vendor/eigen/Eigen/Sparse +34 -0
  71. data/vendor/eigen/Eigen/SparseCholesky +37 -0
  72. data/vendor/eigen/Eigen/SparseCore +69 -0
  73. data/vendor/eigen/Eigen/SparseLU +50 -0
  74. data/vendor/eigen/Eigen/SparseQR +36 -0
  75. data/vendor/eigen/Eigen/StdDeque +27 -0
  76. data/vendor/eigen/Eigen/StdList +26 -0
  77. data/vendor/eigen/Eigen/StdVector +27 -0
  78. data/vendor/eigen/Eigen/SuperLUSupport +64 -0
  79. data/vendor/eigen/Eigen/UmfPackSupport +40 -0
  80. data/vendor/eigen/README.md +5 -0
  81. data/vendor/eigen/bench/README.txt +55 -0
  82. data/vendor/eigen/bench/btl/COPYING +340 -0
  83. data/vendor/eigen/bench/btl/README +154 -0
  84. data/vendor/eigen/bench/tensors/README +20 -0
  85. data/vendor/eigen/blas/README.txt +6 -0
  86. data/vendor/eigen/ci/README.md +56 -0
  87. data/vendor/eigen/demos/mandelbrot/README +10 -0
  88. data/vendor/eigen/demos/mix_eigen_and_c/README +9 -0
  89. data/vendor/eigen/demos/opengl/README +13 -0
  90. data/vendor/eigen/unsupported/Eigen/CXX11/src/Tensor/README.md +1815 -0
  91. data/vendor/eigen/unsupported/README.txt +50 -0
  92. data/vendor/tomotopy/LICENSE +21 -0
  93. data/vendor/tomotopy/README.kr.rst +536 -0
  94. data/vendor/tomotopy/README.rst +555 -0
  95. data/vendor/variant/LICENSE +25 -0
  96. data/vendor/variant/LICENSE_1_0.txt +23 -0
  97. data/vendor/variant/README.md +102 -0
  98. metadata +141 -0
@@ -0,0 +1,430 @@
1
+ # EigenRand : The Fastest C++11-compatible random distribution generator for Eigen
2
+
3
+ EigenRand is a header-only library for [Eigen](http://eigen.tuxfamily.org/index.php?title=Main_Page), providing vectorized random number engines and vectorized random distribution generators.
4
+ Since the classic Random functions of Eigen relies on an old C function `rand()`,
5
+ there is no way to control random numbers and no guarantee for quality of generated numbers.
6
+ In addition, Eigen's Random is slow because `rand()` is hard to vectorize.
7
+
8
+ EigenRand provides a variety of random distribution functions similar to C++11 standard's random functions,
9
+ which can be vectorized and easily integrated into Eigen's expressions of Matrix and Array.
10
+
11
+ You can get 5~10 times speed by just replacing old Eigen's Random or unvectorizable c++11 random number generators with EigenRand.
12
+
13
+ ## Features
14
+
15
+ * C++11-compatible Random Number Generator
16
+ * 5~10 times faster than non-vectorized functions
17
+ * Header-only (like Eigen)
18
+ * Can be easily integrated with Eigen's expressions
19
+ * Currently supports only x86, x86-64(up to AVX2), and ARM64 NEON (experimental) architecture.
20
+
21
+ ## Requirement
22
+
23
+ * Eigen 3.3.4 ~ 3.4.0
24
+ * C++11-compatible compilers
25
+
26
+ ## Build for Test & Benchmark
27
+ You can build a test binary to verify if EigenRand is working well.
28
+ First, make sure you have Eigen 3.3.4~3.4.0 installed in your compiler include folder. Also make sure you have cmake 3.9 or higher installed.
29
+ After then, you can build it following:
30
+ ```console
31
+ $ git clone https://github.com/bab2min/EigenRand
32
+ $ cd EigenRand
33
+ $ git clone https://github.com/google/googletest
34
+ $ pushd googletest && git checkout v1.8.x && popd
35
+ $ mkdir build && cd build
36
+ $ cmake -DCMAKE_BUILD_TYPE=Release ..
37
+ $ make
38
+ $ ./test/EigenRand-test # Binary for unit test
39
+ $ ./EigenRand-accuracy # Binary for accuracy test of univariate random distributions
40
+ $ ./EigenRand-benchmark # Binary for performance test of univariate random distributions
41
+ $ ./EigenRand-benchmark-mv # Binary for performance test of multivariate random distributions
42
+ ```
43
+
44
+ You can specify additional compiler arguments including target machine options (e.g. -mavx2, -march) like:
45
+ ```console
46
+ $ cmake -DCMAKE_BUILD_TYPE=Release -DEIGENRAND_CXX_FLAGS="-march=native" ..
47
+ ```
48
+
49
+ ## Documentation
50
+
51
+ https://bab2min.github.io/eigenrand/
52
+
53
+ ## Functions
54
+
55
+ ### Random distributions for real types
56
+
57
+ | Function | Generator | Scalar Type | Description | Equivalent to |
58
+ |:---:|:---:|:---:|:---:|:---:|
59
+ | `Eigen::Rand::balanced` | `Eigen::Rand::BalancedGen` | float, double | generates real values in the [-1, 1] range | `Eigen::DenseBase<Ty>::Random` for floating point types |
60
+ | `Eigen::Rand::beta` | `Eigen::Rand::BetaGen` | float, double | generates real values on a [beta distribution](https://en.wikipedia.org/wiki/Beta_distribution) | |
61
+ | `Eigen::Rand::cauchy` | `Eigen::Rand::CauchyGen` | float, double | generates real values on the [Cauchy distribution](https://en.wikipedia.org/wiki/Cauchy_distribution). | `std::cauchy_distribution` |
62
+ | `Eigen::Rand::chiSquared` | `Eigen::Rand::ChiSquaredGen` | float, double | generates real values on a [chi-squared distribution](https://en.wikipedia.org/wiki/Chi-squared_distribution). | `std::chi_squared_distribution` |
63
+ | `Eigen::Rand::exponential` | `Eigen::Rand::ExponentialGen` | float, double | generates real values on an [exponential distribution](https://en.wikipedia.org/wiki/Exponential_distribution). | `std::exponential_distribution` |
64
+ | `Eigen::Rand::extremeValue` | `Eigen::Rand::ExtremeValueGen` | float, double | generates real values on an [extreme value distribution](https://en.wikipedia.org/wiki/Generalized_extreme_value_distribution). | `std::extreme_value_distribution` |
65
+ | `Eigen::Rand::fisherF` | `Eigen::Rand::FisherFGen` | float, double | generates real values on the [Fisher's F distribution](https://en.wikipedia.org/wiki/F_distribution). | `std::fisher_f_distribution` |
66
+ | `Eigen::Rand::gamma` | `Eigen::Rand::GammaGen` | float, double | generates real values on a [gamma distribution](https://en.wikipedia.org/wiki/Gamma_distribution). | `std::gamma_distribution` |
67
+ | `Eigen::Rand::lognormal` | `Eigen::Rand::LognormalGen` | float, double | generates real values on a [lognormal distribution](https://en.wikipedia.org/wiki/Lognormal_distribution). | `std::lognormal_distribution` |
68
+ | `Eigen::Rand::normal` | `Eigen::Rand::StdNormalGen`, `Eigen::Rand::NormalGen` | float, double | generates real values on a [normal distribution](https://en.wikipedia.org/wiki/Normal_distribution). | `std::normal_distribution` |
69
+ | `Eigen::Rand::studentT` | `Eigen::Rand::StudentTGen` | float, double | generates real values on the [Student's t distribution](https://en.wikipedia.org/wiki/Student%27s_t-distribution). | `std::student_t_distribution` |
70
+ | `Eigen::Rand::uniformReal` | `Eigen::Rand::UniformRealGen` | float, double | generates real values in the `[0, 1)` range. | `std::generate_canonical` |
71
+ | `Eigen::Rand::weibull` | `Eigen::Rand::WeibullGen` | float, double | generates real values on the [Weibull distribution](https://en.wikipedia.org/wiki/Weibull_distribution). | `std::weibull_distribution` |
72
+
73
+ ### Random distributions for integer types
74
+
75
+ | Function | Generator | Scalar Type | Description | Equivalent to |
76
+ |:---:|:---:|:---:|:---:|:---:|
77
+ | `Eigen::Rand::binomial` | `Eigen::Rand::BinomialGen` | int | generates integers on a [binomial distribution](https://en.wikipedia.org/wiki/Binomial_distribution). | `std::binomial_distribution` |
78
+ | `Eigen::Rand::discrete` | `Eigen::Rand::DiscreteGen` | int | generates random integers on a discrete distribution. | `std::discrete_distribution` |
79
+ | `Eigen::Rand::geometric` | `Eigen::Rand::GeometricGen` | int | generates integers on a [geometric distribution](https://en.wikipedia.org/wiki/Geometric_distribution). | `std::geometric_distribution` |
80
+ | `Eigen::Rand::negativeBinomial` | `Eigen::Rand::NegativeBinomialGen` | int | generates integers on a [negative binomial distribution](https://en.wikipedia.org/wiki/Negative_binomial_distribution). | `std::negative_binomial_distribution` |
81
+ | `Eigen::Rand::poisson` | `Eigen::Rand::PoissonGen` | int | generates integers on the [Poisson distribution](https://en.wikipedia.org/wiki/Poisson_distribution). | `std::poisson_distribution` |
82
+ | `Eigen::Rand::randBits` | `Eigen::Rand::RandbitsGen` | int | generates integers with random bits. | `Eigen::DenseBase<Ty>::Random` for integer types |
83
+ | `Eigen::Rand::uniformInt` | `Eigen::Rand::UniformIntGen` | int | generates integers in the `[min, max]` range. | `std::uniform_int_distribution` |
84
+
85
+ ### Multivariate distributions for real vectors and matrices
86
+
87
+ | Generator | Description | Equivalent to |
88
+ |:---:|:---:|:---:|
89
+ | `Eigen::Rand::MultinomialGen` | generates integer vectors on a [multinomial distribution](https://en.wikipedia.org/wiki/Multinomial_distribution) | [scipy.stats.multinomial in Python](https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.multinomial.html#scipy.stats.multinomial) |
90
+ | `Eigen::Rand::DirichletGen` | generates real vectors on a [Dirichlet distribution](https://en.wikipedia.org/wiki/Dirichlet_distribution) | [scipy.stats.dirichlet in Python](https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.dirichlet.html#scipy.stats.dirichlet) |
91
+ | `Eigen::Rand::MvNormalGen` | generates real vectors on a [multivariate normal distribution](https://en.wikipedia.org/wiki/Multivariate_normal_distribution) | [scipy.stats.multivariate_normal in Python](https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.multivariate_normal.html#scipy.stats.multivariate_normal) |
92
+ | `Eigen::Rand::WishartGen` | generates real matrices on a [Wishart distribution](https://en.wikipedia.org/wiki/Wishart_distribution) | [scipy.stats.wishart in Python](https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.wishart.html#scipy.stats.wishart) |
93
+ | `Eigen::Rand::InvWishartGen` | generates real matrices on a [inverse Wishart distribution](https://en.wikipedia.org/wiki/Inverse-Wishart_distribution) | [scipy.stats.invwishart in Python](https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.invwishart.html#scipy.stats.invwishart) |
94
+
95
+
96
+ ### Random number engines
97
+
98
+ | | Description | Equivalent to |
99
+ |:---:|:---:|:---:|
100
+ | `Eigen::Rand::Vmt19937_64` | a vectorized version of Mersenne Twister algorithm. It generates two 64bit random integers simultaneously with SSE2 & NEON and four integers with AVX2. | `std::mt19937_64` |
101
+ | `Eigen::Rand::P8_mt19937_64` | a vectorized version of Mersenne Twister algorithm. Since it generates eight 64bit random integers simultaneously, the random values are the same regardless of architecture. | |
102
+
103
+ ## Performance
104
+ The following charts show the relative speed-up of EigenRand compared to references(equivalent functions of C++ std or Eigen).
105
+
106
+ ![Perf_no_vect](/doxygen/images/perf_no_vect.png)
107
+ ![Perf_no_vect](/doxygen/images/perf_sse2.png)
108
+ ![Perf_no_vect](/doxygen/images/perf_avx.png)
109
+ ![Perf_no_vect](/doxygen/images/perf_avx2.png)
110
+
111
+ The following charts are about multivariate distributions.
112
+ ![Perf_no_vect](/doxygen/images/perf_mv_part1.png)
113
+ ![Perf_no_vect](/doxygen/images/perf_mv_part2.png)
114
+
115
+
116
+ The following result is a measure of the time in seconds it takes to generate 1M random numbers.
117
+ It shows the average of 20 times.
118
+
119
+ ### Intel(R) Xeon(R) Platinum 8171M CPU @ 2.60GHz (Ubuntu 16.04, gcc5.4)
120
+
121
+ | | C++ std (or Eigen) | EigenRand (No Vect.) | EigenRand (SSE2) | EigenRand (SSSE3) | EigenRand (AVX) | EigenRand (AVX2) |
122
+ |---|---:|---:|---:|---:|---:|---:|
123
+ | `balanced`* | 9.0 | 5.9 | 1.5 | 1.4 | 1.3 | 0.9 |
124
+ | `balanced`(double)* | 8.7 | 6.4 | 3.3 | 2.9 | 1.7 | 1.7 |
125
+ | `binomial(20, 0.5)` | 400.8 | 118.5 | 32.7 | 36.6 | 30.0 | 22.7 |
126
+ | `binomial(50, 0.01)` | 71.7 | 22.5 | 7.7 | 8.3 | 7.9 | 6.6 |
127
+ | `binomial(100, 0.75)` | 340.5 | 454.5 | 91.7 | 111.5 | 106.3 | 86.4 |
128
+ | `cauchy` | 36.1 | 54.4 | 6.1 | 7.1 | 4.7 | 3.9 |
129
+ | `chiSquared` | 80.5 | 249.5 | 64.6 | 58.0 | 29.4 | 28.8 |
130
+ | `discrete`(int32) | - | 14.0 | 2.9 | 2.6 | 2.4 | 1.7 |
131
+ | `discrete`(fp32) | - | 21.9 | 4.3 | 4.0 | 3.6 | 3.0 |
132
+ | `discrete`(fp64) | 72.4 | 21.4 | 6.9 | 6.5 | 4.9 | 3.7 |
133
+ | `exponential` | 31.0 | 25.3 | 5.5 | 5.3 | 3.3 | 2.9 |
134
+ | `extremeValue` | 66.0 | 60.1 | 11.9 | 10.7 | 6.5 | 5.8 |
135
+ | `fisherF(1, 1)` | 178.1 | 35.1 | 33.2 | 39.3 | 22.9 | 18.7 |
136
+ | `fisherF(5, 5)` | 141.8 | 415.2 | 136.47 | 172.4 | 92.4 | 74.9 |
137
+ | `gamma(0.2, 1)` | 207.8 | 211.4 | 54.6 | 51.2 | 26.9 | 27.0 |
138
+ | `gamma(5, 3)` | 80.9 | 60.0 | 14.3 | 13.3 | 11.4 | 8.0 |
139
+ | `gamma(10.5, 1)` | 81.1 | 248.6 | 63.3 | 58.5 | 29.2 | 28.4 |
140
+ | `geometric` | 43.0 | 22.4 | 6.7 | 7.4 | 5.8 | |
141
+ | `lognormal` | 66.3 | 55.4 | 12.8 | 11.8 | 6.2 | 6.2 |
142
+ | `negativeBinomial(10, 0.5)` | 312.0 | 301.4 | 82.9 | 100.6 | 95.3 | 77.9 |
143
+ | `negativeBinomial(20, 0.25)` | 483.4 | 575.9 | 125.0 | 158.2 | 148.4 | 119.5 |
144
+ | `normal(0, 1)` | 38.1 | 28.5 | 6.8 | 6.2 | 3.8 | 3.7 |
145
+ | `normal(2, 3)` | 37.6 | 29.0 | 7.3 | 6.6 | 4.0 | 3.9 |
146
+ | `poisson(1)` | 31.8 | 25.2 | 9.8 | 10.8 | 9.7 | 8.2 |
147
+ | `poisson(16)` | 231.8 | 274.1 | 66.2 | 80.7 | 74.4 | 64.2 |
148
+ | `randBits` | 5.2 | 5.4 | 1.4 | 1.3 | 1.1 | 1.0 |
149
+ | `studentT(1)` | 122.7 | 120.1 | 15.3 | 19.2 | 12.6 | 9.4 |
150
+ | `studentT(20)` | 102.2 | 111.1 | 15.4 | 19.2 | 12.2 | 9.4 |
151
+ | `uniformInt(0~63)` | 22.4 | 4.7 | 1.7 | 1.6 | 1.4 | 1.1 |
152
+ | `uniformInt(0~100k)` | 21.8 | 10.1 | 6.2 | 6.7 | 6.6 | 5.4 |
153
+ | `uniformReal` | 12.9 | 5.7 | 1.4 | 1.2 | 1.4 | 0.7 |
154
+ | `weibull` | 41.0 | 35.8 | 17.7 | 15.5 | 8.5 | 8.5 |
155
+
156
+ * Since there is no equivalent class to `balanced` in C++11 std, we used Eigen::DenseBase::Random instead.
157
+
158
+ | | C++ std | EigenRand (No Vect.) | EigenRand (SSE2) | EigenRand (SSSE3) | EigenRand (AVX) | EigenRand (AVX2) |
159
+ |---|---:|---:|---:|---:|---:|---:|
160
+ | Mersenne Twister(int32) | 4.7 | 5.6 | 4.0 | 3.7 | 3.5 | 3.6 |
161
+ | Mersenne Twister(int64) | 5.4 | 5.3 | 4.0 | 3.9 | 3.4 | 2.6 |
162
+
163
+ | | Python 3.6 + scipy 1.5.2 + numpy 1.19.2 | EigenRand (No Vect.) | EigenRand (SSE2) | EigenRand (SSSE3) | EigenRand (AVX) | EigenRand (AVX2) |
164
+ |---|---:|---:|---:|---:|---:|---:|
165
+ | `Dirichlet(4)` | 6.47 | 6.60 | 2.39 | 2.49 | 1.34 | 1.67 |
166
+ | `Dirichlet(100)` | 75.95 | 189.97 | 66.60 | 72.11 | 38.86 | 34.98 |
167
+ | `InvWishart(4)` | 140.18 | 7.62 | 4.21 | 4.54 | 3.58 | 3.39 |
168
+ | `InvWishart(50)` | 1510.47 | 1737.4 | 697.39 | 733.69 | 604.59 | 554.006 |
169
+ | `Multinomial(4, t=20)` | 3.32 | 4.12 | 0.95 | 1.06 | 1.00 | 1.03 |
170
+ | `Multinomial(4, t=1000)` | 3.51 | 192.51 | 35.99 | 39.58 | 27.84 | 35.45 |
171
+ | `Multinomial(100, t=20)` | 69.19 | 4.80 | 2.00 | 2.20 | 2.28 | 2.09 |
172
+ | `Multinomial(100, t=1000)` | 139.74 | 179.43 | 49.48 | 56.19 | 40.78 | 43.18 |
173
+ | `MvNormal(4)` | 2.32 | 0.96 | 0.36 | 0.37 | 0.25 | 0.30 |
174
+ | `MvNormal(100)` | 49.09 | 57.18 | 17.17 | 18.51 | 10.82 | 11.03 |
175
+ | `Wishart(4)` | 71.19 | 5.28 | 2.70 | 2.93 | 2.04 | 1.94 |
176
+ | `Wishart(50)` | 1185.26 | 1360.49 | 492.91 | 517.44 | 359.03 | 324.60 |
177
+
178
+
179
+ ### Intel(R) Xeon(R) CPU E5-1650 v2 @ 3.50GHz (macOS 10.15, clang-1103)
180
+
181
+ | | C++ std (or Eigen) | EigenRand (No Vect.) | EigenRand (SSE2) | EigenRand (SSSE3) | EigenRand (AVX) |
182
+ |---|---:|---:|---:|---:|---:|
183
+ | `balanced`* | 6.5 | 7.3 | 1.1 | 1.4 | 1.1 |
184
+ | `balanced`(double)* | 6.6 | 7.5 | 2.6 | 3.3 | 2.4 |
185
+ | `binomial(20, 0.5)` | 38.8 | 164.9 | 27.7 | 29.3 | 24.9 |
186
+ | `binomial(50, 0.01)` | 21.9 | 27.6 | 6.6 | 7.0 | 6.3 |
187
+ | `binomial(100, 0.75)` | 52.2 | 421.9 | 93.6 | 94.8 | 89.1 |
188
+ | `cauchy` | 36.0 | 30.4 | 5.6 | 5.8 | 4.0 |
189
+ | `chiSquared` | 84.4 | 152.2 | 44.1 | 48.7 | 26.2 |
190
+ | `discrete`(int32) | - | 12.4 | 2.1 | 2.6 | 2.2 |
191
+ | `discrete`(fp32) | - | 23.2 | 3.4 | 3.7 | 3.4 |
192
+ | `discrete`(fp64) | 48.6 | 22.9 | 4.2 | 5.0 | 4.6 |
193
+ | `exponential` | 22.0 | 18.0 | 4.1 | 4.9 | 3.2 |
194
+ | `extremeValue` | 36.2 | 32.0 | 8.7 | 9.5 | 5.1 |
195
+ | `fisherF(1, 1)` | 158.2 | 73.1 | 32.3 | 32.1 | 18.1 |
196
+ | `fisherF(5, 5)` | 177.3 | 310.1 | 127.0 | 121.8 | 74.3 |
197
+ | `gamma(0.2, 1)` | 69.8 | 80.4 | 28.5 | 33.8 | 19.2 |
198
+ | `gamma(5, 3)` | 83.9 | 53.3 | 10.6 | 12.4 | 8.6 |
199
+ | `gamma(10.5, 1)` | 83.2 | 150.4 | 43.3 | 48.4 | 26.2 |
200
+ | `geometric` | 39.6 | 19.0 | 4.3 | 4.4 | 4.1 |
201
+ | `lognormal` | 43.8 | 40.7 | 9.0 | 10.8 | 5.7 |
202
+ | `negativeBinomial(10, 0.5)` | 217.4 | 274.8 | 71.6 | 73.7 | 68.2 |
203
+ | `negativeBinomial(20, 0.25)` | 192.9 | 464.9 | 112.0 | 111.5 | 105.7 |
204
+ | `normal(0, 1)` | 32.6 | 28.6 | 5.5 | 6.5 | 3.8 |
205
+ | `normal(2, 3)` | 32.9 | 30.5 | 5.7 | 6.7 | 3.9 |
206
+ | `poisson(1)` | 37.9 | 31.0 | 7.5 | 7.8 | 7.1 |
207
+ | `poisson(16)` | 92.4 | 243.3 | 55.6 | 57.7 | 53.7 |
208
+ | `randBits` | 6.5 | 6.5 | 1.1 | 1.3 | 1.1 |
209
+ | `studentT(1)` | 115.0 | 54.1 | 15.5 | 15.7 | 8.3 |
210
+ | `studentT(20)` | 121.2 | 53.8 | 15.8 | 16.0 | 8.2 |
211
+ | `uniformInt(0~63)` | 20.2 | 9.8 | 1.8 | 1.8 | 1.6 |
212
+ | `uniformInt(0~100k)` | 25.7 | 16.1 | 8.1 | 8.5 | 7.2 |
213
+ | `uniformReal` | 12.7 | 7.0 | 1.0 | 1.2 | 1.1 |
214
+ | `weibull` | 23.1 | 19.2 | 11.6 | 13.6 | 7.6 |
215
+
216
+ * Since there is no equivalent class to `balanced` in C++11 std, we used Eigen::DenseBase::Random instead.
217
+
218
+ | | C++ std | EigenRand (No Vect.) | EigenRand (SSE2) | EigenRand (SSSE3) | EigenRand (AVX) |
219
+ |---|---:|---:|---:|---:|---:|
220
+ | Mersenne Twister(int32) | 6.2 | 6.4 | 1.7 | 2.0 | 1.8 |
221
+ | Mersenne Twister(int64) | 6.4 | 6.3 | 2.5 | 3.1 | 2.4 |
222
+
223
+
224
+ | | Python 3.6 + scipy 1.5.2 + numpy 1.19.2 | EigenRand (No Vect.) | EigenRand (SSE2) | EigenRand (SSSE3) | EigenRand (AVX) |
225
+ |---|---:|---:|---:|---:|---:|
226
+ | `Dirichlet(4)` | 3.54 | 3.29 | 1.25 | 1.25 | 0.83 |
227
+ | `Dirichlet(100)` | 57.63 | 145.32 | 49.71 | 49.50 | 29.13 |
228
+ | `InvWishart(4)` | 210.92 | 7.53 | 3.72 | 3.66 | 3.10 |
229
+ | `InvWishart(50)` | 1980.73 | 1446.40 | 560.40 | 559.73 | 457.07 |
230
+ | `Multinomial(4, t=20)` | 2.60 | 5.22 | 1.48 | 1.50 | 1.42 |
231
+ | `Multinomial(4, t=1000)` | 3.90 | 208.75 | 29.19 | 29.50 | 27.70 |
232
+ | `Multinomial(100, t=20)` | 47.71 | 7.09 | 3.71 | 3.63 | 3.60 |
233
+ | `Multinomial(100, t=1000)` | 128.69 | 215.19 | 44.48 | 44.63 | 43.76 |
234
+ | `MvNormal(4)` | 2.04 | 1.05 | 0.35 | 0.34 | 0.19 |
235
+ | `MvNormal(100)` | 48.69 | 47.10 | 16.25 | 16.12 | 11.41 |
236
+ | `Wishart(4)` | 81.11 | 13.24 | 9.87 | 9.81 | 5.90 |
237
+ | `Wishart(50)` | 1419.02 | 1087.40 | 448.06 | 442.97 | 328.20 |
238
+
239
+
240
+ ### Intel(R) Xeon(R) Platinum 8171M CPU @ 2.60GHz (Windows Server 2019, MSVC2019)
241
+
242
+ | | C++ std (or Eigen) | EigenRand (No Vect.) | EigenRand (SSE2) | EigenRand (AVX) | EigenRand (AVX2) |
243
+ |---|---:|---:|---:|---:|---:|
244
+ | `balanced`* | 20.7 | 7.2 | 3.3 | 4.0 | 2.2 |
245
+ | `balanced`(double)* | 21.9 | 8.8 | 6.7 | 4.3 | 4.3 |
246
+ | `binomial(20, 0.5)` | 718.3 | 141.0 | 38.1 | 30.2 | 32.7 |
247
+ | `binomial(50, 0.01)` | 61.5 | 21.4 | 7.5 | 6.5 | 8.0 |
248
+ | `binomial(100, 0.75)` | 495.9 | 1042.5 | 100.6 | 95.2 | 93.0 |
249
+ | `cauchy` | 71.6 | 30.0 | 6.8 | 6.4 | 3.0 |
250
+ | `chiSquared` | 243.0 | 147.3 | 63.5 | 34.1 | 24.0 |
251
+ | `discrete`(int32) | - | 12.4 | 3.5 | 2.7 | 2.2 |
252
+ | `discrete`(fp32) | - | 19.2 | 5.1 | 3.6 | 3.7 |
253
+ | `discrete`(fp64) | 83.9 | 19.0 | 6.7 | 7.4 | 4.6 |
254
+ | `exponential` | 58.7 | 16.0 | 6.8 | 6.4 | 3.0 |
255
+ | `extremeValue` | 64.6 | 27.7 | 13.5 | 9.8 | 5.5 |
256
+ | `fisherF(1, 1)` | 178.7 | 75.2 | 35.3 | 28.4 | 17.5 |
257
+ | `fisherF(5, 5)` | 491.0 | 298.4 | 125.8 | 87.4 | 60.5 |
258
+ | `gamma(0.2, 1)` | 211.7 | 69.3 | 43.7 | 24.7 | 18.7 |
259
+ | `gamma(5, 3)` | 272.5 | 42.3 | 17.6 | 17.2 | 8.5 |
260
+ | `gamma(10.5, 1)` | 237.8 | 146.2 | 63.7 | 33.8 | 23.5 |
261
+ | `geometric` | 49.3 | 17.0 | 7.0 | 5.8 | 5.4 |
262
+ | `lognormal` | 169.8 | 37.6 | 12.7 | 7.2 | 5.0 |
263
+ | `negativeBinomial(10, 0.5)` | 752.7 | 462.3 | 87.0 | 83.0 | 81.6 |
264
+ | `negativeBinomial(20, 0.25)` | 611.4 | 855.3 | 123.7 | 125.3 | 116.6 |
265
+ | `normal(0, 1)` | 78.4 | 21.1 | 6.9 | 4.6 | 2.9 |
266
+ | `normal(2, 3)` | 77.2 | 22.3 | 6.8 | 4.8 | 3.1 |
267
+ | `poisson(1)` | 77.4 | 28.9 | 10.0 | 8.1 | 10.1 |
268
+ | `poisson(16)` | 312.9 | 485.5 | 63.6 | 61.5 | 60.5 |
269
+ | `randBits` | 6.0 | 6.2 | 3.1 | 2.7 | 2.7 |
270
+ | `studentT(1)` | 175.8 | 53.9 | 17.3 | 12.5 | 7.7 |
271
+ | `studentT(20)` | 173.2 | 55.5 | 17.9 | 12.7 | 7.6 |
272
+ | `uniformInt(0~63)` | 39.1 | 5.2 | 2.0 | 1.4 | 1.6 |
273
+ | `uniformInt(0~100k)` | 38.5 | 12.3 | 7.6 | 6.0 | 7.7 |
274
+ | `uniformReal` | 53.4 | 5.7 | 1.9 | 2.3 | 1.0 |
275
+ | `weibull` | 75.1 | 44.3 | 18.5 | 14.3 | 7.9 |
276
+
277
+ * Since there is no equivalent class to `balanced` in C++11 std, we used Eigen::DenseBase::Random instead.
278
+
279
+ | | C++ std | EigenRand (No Vect.) | EigenRand (SSE2) | EigenRand (AVX) | EigenRand (AVX2) |
280
+ |---|---:|---:|---:|---:|---:|
281
+ | Mersenne Twister(int32) | 6.5 | 6.4 | 5.6 | 5.1 | 4.5 |
282
+ | Mersenne Twister(int64) | 6.6 | 6.5 | 6.9 | 5.9 | 5.1 |
283
+
284
+
285
+ | | Python 3.6 + scipy 1.5.2 + numpy 1.19.2 | EigenRand (No Vect.) | EigenRand (SSE2) | EigenRand (AVX) | EigenRand (AVX2) |
286
+ |---|---:|---:|---:|---:|---:|
287
+ | `Dirichlet(4)` | 4.27 | 3.20 | 2.31 | 1.43 | 1.25 |
288
+ | `Dirichlet(100)` | 69.61 | 150.33 | 67.01 | 47.34 | 32.47 |
289
+ | `InvWishart(4)` | 482.87 | 14.52 | 8.88 | 13.17 | 11.28 |
290
+ | `InvWishart(50)` | 2222.72 | 2211.66 | 902.34 | 775.36 | 610.60 |
291
+ | `Multinomial(4, t=20)` | 2.99 | 5.41 | 1.99 | 1.92 | 1.78 |
292
+ | `Multinomial(4, t=1000)` | 4.23 | 235.84 | 49.73 | 42.41 | 40.76 |
293
+ | `Multinomial(100, t=20)` | 58.20 | 9.12 | 5.84 | 6.02 | 5.98 |
294
+ | `Multinomial(100, t=1000)` | 130.54 | 234.40 | 72.99 | 66.36 | 55.28 |
295
+ | `MvNormal(4)` | 2.25 | 1.89 | 0.35 | 0.32 | 0.25 |
296
+ | `MvNormal(100)` | 57.71 | 68.80 | 24.40 | 18.28 | 13.05 |
297
+ | `Wishart(4)` | 70.18 | 16.25 | 4.49 | 3.97 | 3.07 |
298
+ | `Wishart(50)` | 1471.29 | 1641.73 | 628.58 | 485.68 | 349.81 |
299
+
300
+
301
+ ### AMD Ryzen 7 3700x CPU @ 3.60GHz (Windows 10, MSVC2017)
302
+
303
+ | | C++ std (or Eigen) | EigenRand (SSE2) | EigenRand (AVX) | EigenRand (AVX2) |
304
+ |---|---:|---:|---:|---:|
305
+ | `balanced`* | 20.8 | 1.9 | 2.0 | 1.4 |
306
+ | `balanced`(double)* | 21.7 | 4.1 | 2.7 | 3.0 |
307
+ | `binomial(20, 0.5)` | 416.0 | 27.7 | 28.9 | 29.1 |
308
+ | `binomial(50, 0.01)` | 37.8 | 6.3 | 6.0 | 6.6 |
309
+ | `binomial(100, 0.75)` | 309.1 | 72.4 | 66.0 | 67.0 |
310
+ | `cauchy` | 42.2 | 4.8 | 5.1 | 2.7 |
311
+ | `chiSquared` | 153.8 | 33.5 | 21.2 | 17.0 |
312
+ | `discrete`(int32) | - | 2.4 | 2.3 | 2.5 |
313
+ | `discrete`(fp32) | - | 2.6 | 2.3 | 3.5 |
314
+ | `discrete`(fp64) | 55.8 | 5.1 | 4.7 | 4.3 |
315
+ | `exponential` | 33.4 | 6.4 | 2.8 | 2.2 |
316
+ | `extremeValue` | 39.4 | 7.8 | 4.6 | 4.0 |
317
+ | `fisherF(1, 1)` | 103.9 | 25.3 | 14.9 | 11.7 |
318
+ | `fisherF(5, 5)` | 295.7 | 85.5 | 58.3 | 44.8 |
319
+ | `gamma(0.2, 1)` | 128.8 | 31.9 | 18.3 | 15.8 |
320
+ | `gamma(5, 3)` | 156.1 | 9.7 | 8.0 | 5.0 |
321
+ | `gamma(10.5, 1)` | 148.5 | 33.1 | 21.1 | 17.2 |
322
+ | `geometric` | 27.1 | 6.6 | 4.3 | 4.1 |
323
+ | `lognormal` | 104.0 | 6.6 | 4.7 | 3.5 |
324
+ | `negativeBinomial(10, 0.5)` | 462.1 | 60.0 | 56.4 | 58.6 |
325
+ | `negativeBinomial(20, 0.25)` | 357.6 | 84.5 | 80.6 | 78.4 |
326
+ | `normal(0, 1)` | 48.8 | 4.2 | 3.7 | 2.3 |
327
+ | `normal(2, 3)` | 48.8 | 4.5 | 3.8 | 2.4 |
328
+ | `poisson(1)` | 46.4 | 7.9 | 7.4 | 8.2 |
329
+ | `poisson(16)` | 192.4 | 43.2 | 40.4 | 40.9 |
330
+ | `randBits` | 4.2 | 1.7 | 1.5 | 1.8 |
331
+ | `studentT(1)` | 107.0 | 12.3 | 6.8 | 5.7 |
332
+ | `studentT(20)` | 107.1 | 12.3 | 6.8 | 5.8 |
333
+ | `uniformInt(0~63)` | 31.2 | 1.1 | 1.0 | 1.2 |
334
+ | `uniformInt(0~100k)` | 27.7 | 5.6 | 5.6 | 5.4 |
335
+ | `uniformReal` | 30.7 | 1.1 | 1.0 | 0.6 |
336
+ | `weibull` | 46.5 | 10.6 | 6.4 | 5.2 |
337
+
338
+ * Since there is no equivalent class to `balanced` in C++11 std, we used Eigen::DenseBase::Random instead.
339
+
340
+ | | C++ std | EigenRand (SSE2) | EigenRand (AVX) | EigenRand (AVX2) |
341
+ |---|---:|---:|---:|---:|
342
+ | Mersenne Twister(int32) | 5.0 | 3.4 | 3.4 | 3.3 |
343
+ | Mersenne Twister(int64) | 5.1 | 3.9 | 3.9 | 3.3 |
344
+
345
+ ### ARM64 NEON (Cortex-A73)
346
+ Currently, Support for ARM64 NEON is experimental and the result may be sub-optimal.
347
+ Also keep in mind that NEON does not support vectorization of double type.
348
+ So if you use double type generators, they would fallback into scalar computations.
349
+
350
+ ![Perf_no_vect](/doxygen/images/perf_neon_v0.3.90.png)
351
+
352
+ The following charts are about multivariate distributions.
353
+ ![Perf_no_vect](/doxygen/images/perf_mv_part1_neon_v0.3.90.png)
354
+ ![Perf_no_vect](/doxygen/images/perf_mv_part2_neon_v0.3.90.png)
355
+
356
+ Cases filled with orange are generators that are slower than reference functions.
357
+
358
+ ## Accuracy
359
+ Since vectorized mathematical functions may have a loss of precision, I measured how well the generated random number fits its actual distribution.
360
+ 32768 samples were generated and Earth Mover's Distance between samples and its actual distribution was calculated for each distribution.
361
+ Following table shows the average distance (and stdev.) of results performed 50 times for different seeds.
362
+
363
+ | | C++ std | EigenRand |
364
+ |---|---:|---:|
365
+ | `balanced`* | .0034(.0015) | .0034(.0015) |
366
+ | `chiSquared(7)` | .0260(.0091) | .0242(.0079) |
367
+ | `exponential(1)` | .0065(.0025) | .0072(.0022) |
368
+ | `extremeValue(1, 1)` | .0097(.0029) | .0088(.0025) |
369
+ | `gamma(0.2, 1)` | .0380(.0021) | .0377(.0025) |
370
+ | `gamma(1, 1)` | .0070(.0020) | .0065(.0023) |
371
+ | `gamma(5, 1)` | .0169(.0065) | .0170(.0051) |
372
+ | `lognormal(0, 1)` | .0072(.0029) | .0067(.0022) |
373
+ | `normal(0, 1)` | .0070(.0024) | .0073(.0020) |
374
+ | `uniformReal` | .0018(.0008) | .0017(.0007) |
375
+ | `weibull(2, 1)` | .0032(.0013) | .0031(.0010) |
376
+
377
+ (* Result of `balanced` were from Eigen::Random, not C++ std)
378
+
379
+ The smaller value means that the sample result fits its distribution better.
380
+ The results of EigenRand and C++ std appear to be equivalent within the margin of error.
381
+
382
+
383
+ ## License
384
+ MIT License
385
+
386
+ ## History
387
+
388
+ ### 0.4.1 (2022-08-13)
389
+ * Fixed a bug where double-type generation with std::mt19937 fails compilation.
390
+ * Fixed a bug where `UniformIntGen` in scalar mode generates numbers in the wrong range.
391
+
392
+ ### 0.4.0 alpha (2021-09-28)
393
+ * Now EigenRand supports ARM & ARM64 NEON architecture experimentally. Please report issues about ARM & ARM64 NEON.
394
+ * Now EigenRand has compatibility to `Eigen 3.4.0`.
395
+
396
+ ### 0.3.5 (2021-07-16)
397
+ * Now `UniformRealGen` generates accurate double values.
398
+ * Fixed a bug where non-vectorized double-type `NormalGen` would get stuck in an infinite loop.
399
+ * New overloading functions `balanced` and `balancedLike` which generate values over `[a, b]` were added.
400
+
401
+ ### 0.3.4 (2021-04-25)
402
+ * Now Eigen 3.3.4 - 3.3.6 versions are additionally supported.
403
+
404
+ ### 0.3.3 (2021-03-30)
405
+ * A compilation failure with some RNGs in `double` type was fixed.
406
+ * An internal function name `plgamma` conflict with one of `SpecialFunctionsPacketMath.h` was fixed.
407
+
408
+ ### 0.3.2 (2021-03-26)
409
+ * A default constructor for `DiscreteGen` was added.
410
+
411
+ ### 0.3.1 (2020-11-15)
412
+ * Compiling errors in the environment `EIGEN_COMP_MINGW && __GXX_ABI_VERSION < 1004` was fixed.
413
+
414
+ ### 0.3.0 (2020-10-17)
415
+ * Potential cache conflict in generator was solved.
416
+ * Generator classes were added for efficient reusability.
417
+ * Multivariate distributions including `Multinomial`, `Dirichlet`, `MvNormal`, `Wishart`, `InvWishart` were added.
418
+
419
+ ### 0.2.2 (2020-08-02)
420
+ * Now `ParallelRandomEngineAdaptor` and `MersenneTwister` use aligned array on heap.
421
+
422
+ ### 0.2.1 (2020-07-11)
423
+ * A new template class `ParallelRandomEngineAdaptor` yielding the same random sequence regardless of SIMD ISA was added.
424
+
425
+ ### 0.2.0 (2020-07-04)
426
+ * New distributions including `cauchy`, `studentT`, `fisherF`, `uniformInt`, `binomial`, `negativeBinomial`, `poisson` and `geometric` were added.
427
+ * A new member function `uniform_real` for `PacketRandomEngine` was added.
428
+
429
+ ### 0.1.0 (2020-06-27)
430
+ * The first version of `EigenRand`
@@ -0,0 +1,203 @@
1
+ /*
2
+ Apache License
3
+ Version 2.0, January 2004
4
+ http://www.apache.org/licenses/
5
+
6
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
7
+
8
+ 1. Definitions.
9
+
10
+ "License" shall mean the terms and conditions for use, reproduction,
11
+ and distribution as defined by Sections 1 through 9 of this document.
12
+
13
+ "Licensor" shall mean the copyright owner or entity authorized by
14
+ the copyright owner that is granting the License.
15
+
16
+ "Legal Entity" shall mean the union of the acting entity and all
17
+ other entities that control, are controlled by, or are under common
18
+ control with that entity. For the purposes of this definition,
19
+ "control" means (i) the power, direct or indirect, to cause the
20
+ direction or management of such entity, whether by contract or
21
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
22
+ outstanding shares, or (iii) beneficial ownership of such entity.
23
+
24
+ "You" (or "Your") shall mean an individual or Legal Entity
25
+ exercising permissions granted by this License.
26
+
27
+ "Source" form shall mean the preferred form for making modifications,
28
+ including but not limited to software source code, documentation
29
+ source, and configuration files.
30
+
31
+ "Object" form shall mean any form resulting from mechanical
32
+ transformation or translation of a Source form, including but
33
+ not limited to compiled object code, generated documentation,
34
+ and conversions to other media types.
35
+
36
+ "Work" shall mean the work of authorship, whether in Source or
37
+ Object form, made available under the License, as indicated by a
38
+ copyright notice that is included in or attached to the work
39
+ (an example is provided in the Appendix below).
40
+
41
+ "Derivative Works" shall mean any work, whether in Source or Object
42
+ form, that is based on (or derived from) the Work and for which the
43
+ editorial revisions, annotations, elaborations, or other modifications
44
+ represent, as a whole, an original work of authorship. For the purposes
45
+ of this License, Derivative Works shall not include works that remain
46
+ separable from, or merely link (or bind by name) to the interfaces of,
47
+ the Work and Derivative Works thereof.
48
+
49
+ "Contribution" shall mean any work of authorship, including
50
+ the original version of the Work and any modifications or additions
51
+ to that Work or Derivative Works thereof, that is intentionally
52
+ submitted to Licensor for inclusion in the Work by the copyright owner
53
+ or by an individual or Legal Entity authorized to submit on behalf of
54
+ the copyright owner. For the purposes of this definition, "submitted"
55
+ means any form of electronic, verbal, or written communication sent
56
+ to the Licensor or its representatives, including but not limited to
57
+ communication on electronic mailing lists, source code control systems,
58
+ and issue tracking systems that are managed by, or on behalf of, the
59
+ Licensor for the purpose of discussing and improving the Work, but
60
+ excluding communication that is conspicuously marked or otherwise
61
+ designated in writing by the copyright owner as "Not a Contribution."
62
+
63
+ "Contributor" shall mean Licensor and any individual or Legal Entity
64
+ on behalf of whom a Contribution has been received by Licensor and
65
+ subsequently incorporated within the Work.
66
+
67
+ 2. Grant of Copyright License. Subject to the terms and conditions of
68
+ this License, each Contributor hereby grants to You a perpetual,
69
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
70
+ copyright license to reproduce, prepare Derivative Works of,
71
+ publicly display, publicly perform, sublicense, and distribute the
72
+ Work and such Derivative Works in Source or Object form.
73
+
74
+ 3. Grant of Patent License. Subject to the terms and conditions of
75
+ this License, each Contributor hereby grants to You a perpetual,
76
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
77
+ (except as stated in this section) patent license to make, have made,
78
+ use, offer to sell, sell, import, and otherwise transfer the Work,
79
+ where such license applies only to those patent claims licensable
80
+ by such Contributor that are necessarily infringed by their
81
+ Contribution(s) alone or by combination of their Contribution(s)
82
+ with the Work to which such Contribution(s) was submitted. If You
83
+ institute patent litigation against any entity (including a
84
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
85
+ or a Contribution incorporated within the Work constitutes direct
86
+ or contributory patent infringement, then any patent licenses
87
+ granted to You under this License for that Work shall terminate
88
+ as of the date such litigation is filed.
89
+
90
+ 4. Redistribution. You may reproduce and distribute copies of the
91
+ Work or Derivative Works thereof in any medium, with or without
92
+ modifications, and in Source or Object form, provided that You
93
+ meet the following conditions:
94
+
95
+ (a) You must give any other recipients of the Work or
96
+ Derivative Works a copy of this License; and
97
+
98
+ (b) You must cause any modified files to carry prominent notices
99
+ stating that You changed the files; and
100
+
101
+ (c) You must retain, in the Source form of any Derivative Works
102
+ that You distribute, all copyright, patent, trademark, and
103
+ attribution notices from the Source form of the Work,
104
+ excluding those notices that do not pertain to any part of
105
+ the Derivative Works; and
106
+
107
+ (d) If the Work includes a "NOTICE" text file as part of its
108
+ distribution, then any Derivative Works that You distribute must
109
+ include a readable copy of the attribution notices contained
110
+ within such NOTICE file, excluding those notices that do not
111
+ pertain to any part of the Derivative Works, in at least one
112
+ of the following places: within a NOTICE text file distributed
113
+ as part of the Derivative Works; within the Source form or
114
+ documentation, if provided along with the Derivative Works; or,
115
+ within a display generated by the Derivative Works, if and
116
+ wherever such third-party notices normally appear. The contents
117
+ of the NOTICE file are for informational purposes only and
118
+ do not modify the License. You may add Your own attribution
119
+ notices within Derivative Works that You distribute, alongside
120
+ or as an addendum to the NOTICE text from the Work, provided
121
+ that such additional attribution notices cannot be construed
122
+ as modifying the License.
123
+
124
+ You may add Your own copyright statement to Your modifications and
125
+ may provide additional or different license terms and conditions
126
+ for use, reproduction, or distribution of Your modifications, or
127
+ for any such Derivative Works as a whole, provided Your use,
128
+ reproduction, and distribution of the Work otherwise complies with
129
+ the conditions stated in this License.
130
+
131
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
132
+ any Contribution intentionally submitted for inclusion in the Work
133
+ by You to the Licensor shall be under the terms and conditions of
134
+ this License, without any additional terms or conditions.
135
+ Notwithstanding the above, nothing herein shall supersede or modify
136
+ the terms of any separate license agreement you may have executed
137
+ with Licensor regarding such Contributions.
138
+
139
+ 6. Trademarks. This License does not grant permission to use the trade
140
+ names, trademarks, service marks, or product names of the Licensor,
141
+ except as required for reasonable and customary use in describing the
142
+ origin of the Work and reproducing the content of the NOTICE file.
143
+
144
+ 7. Disclaimer of Warranty. Unless required by applicable law or
145
+ agreed to in writing, Licensor provides the Work (and each
146
+ Contributor provides its Contributions) on an "AS IS" BASIS,
147
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
148
+ implied, including, without limitation, any warranties or conditions
149
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
150
+ PARTICULAR PURPOSE. You are solely responsible for determining the
151
+ appropriateness of using or redistributing the Work and assume any
152
+ risks associated with Your exercise of permissions under this License.
153
+
154
+ 8. Limitation of Liability. In no event and under no legal theory,
155
+ whether in tort (including negligence), contract, or otherwise,
156
+ unless required by applicable law (such as deliberate and grossly
157
+ negligent acts) or agreed to in writing, shall any Contributor be
158
+ liable to You for damages, including any direct, indirect, special,
159
+ incidental, or consequential damages of any character arising as a
160
+ result of this License or out of the use or inability to use the
161
+ Work (including but not limited to damages for loss of goodwill,
162
+ work stoppage, computer failure or malfunction, or any and all
163
+ other commercial damages or losses), even if such Contributor
164
+ has been advised of the possibility of such damages.
165
+
166
+ 9. Accepting Warranty or Additional Liability. While redistributing
167
+ the Work or Derivative Works thereof, You may choose to offer,
168
+ and charge a fee for, acceptance of support, warranty, indemnity,
169
+ or other liability obligations and/or rights consistent with this
170
+ License. However, in accepting such obligations, You may act only
171
+ on Your own behalf and on Your sole responsibility, not on behalf
172
+ of any other Contributor, and only if You agree to indemnify,
173
+ defend, and hold each Contributor harmless for any liability
174
+ incurred by, or claims asserted against, such Contributor by reason
175
+ of your accepting any such warranty or additional liability.
176
+
177
+ END OF TERMS AND CONDITIONS
178
+
179
+ APPENDIX: How to apply the Apache License to your work.
180
+
181
+ To apply the Apache License to your work, attach the following
182
+ boilerplate notice, with the fields enclosed by brackets "[]"
183
+ replaced with your own identifying information. (Don't include
184
+ the brackets!) The text should be enclosed in the appropriate
185
+ comment syntax for the file format. We also recommend that a
186
+ file or class name and description of purpose be included on the
187
+ same "printed page" as the copyright notice for easier
188
+ identification within third-party archives.
189
+
190
+ Copyright [yyyy] [name of copyright owner]
191
+
192
+ Licensed under the Apache License, Version 2.0 (the "License");
193
+ you may not use this file except in compliance with the License.
194
+ You may obtain a copy of the License at
195
+
196
+ http://www.apache.org/licenses/LICENSE-2.0
197
+
198
+ Unless required by applicable law or agreed to in writing, software
199
+ distributed under the License is distributed on an "AS IS" BASIS,
200
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
201
+ See the License for the specific language governing permissions and
202
+ limitations under the License.
203
+ */
@@ -0,0 +1,26 @@
1
+ /*
2
+ Copyright (c) 2011, Intel Corporation. All rights reserved.
3
+
4
+ Redistribution and use in source and binary forms, with or without modification,
5
+ are permitted provided that the following conditions are met:
6
+
7
+ * Redistributions of source code must retain the above copyright notice, this
8
+ list of conditions and the following disclaimer.
9
+ * Redistributions in binary form must reproduce the above copyright notice,
10
+ this list of conditions and the following disclaimer in the documentation
11
+ and/or other materials provided with the distribution.
12
+ * Neither the name of Intel Corporation nor the names of its contributors may
13
+ be used to endorse or promote products derived from this software without
14
+ specific prior written permission.
15
+
16
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
17
+ ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18
+ WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19
+ DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
20
+ ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21
+ (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22
+ LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
23
+ ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25
+ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
+ */