tomoto 0.4.0-aarch64-linux

Sign up to get free protection for your applications and to get access to all the features.
Files changed (98) hide show
  1. checksums.yaml +7 -0
  2. data/CHANGELOG.md +65 -0
  3. data/LICENSE.txt +22 -0
  4. data/README.md +154 -0
  5. data/ext/tomoto/ct.cpp +58 -0
  6. data/ext/tomoto/dmr.cpp +69 -0
  7. data/ext/tomoto/dt.cpp +91 -0
  8. data/ext/tomoto/extconf.rb +42 -0
  9. data/ext/tomoto/gdmr.cpp +42 -0
  10. data/ext/tomoto/hdp.cpp +47 -0
  11. data/ext/tomoto/hlda.cpp +71 -0
  12. data/ext/tomoto/hpa.cpp +32 -0
  13. data/ext/tomoto/lda.cpp +281 -0
  14. data/ext/tomoto/llda.cpp +46 -0
  15. data/ext/tomoto/mglda.cpp +81 -0
  16. data/ext/tomoto/pa.cpp +32 -0
  17. data/ext/tomoto/plda.cpp +33 -0
  18. data/ext/tomoto/slda.cpp +48 -0
  19. data/ext/tomoto/tomoto.cpp +48 -0
  20. data/ext/tomoto/utils.h +30 -0
  21. data/lib/tomoto/3.0/tomoto.so +0 -0
  22. data/lib/tomoto/3.1/tomoto.so +0 -0
  23. data/lib/tomoto/3.2/tomoto.so +0 -0
  24. data/lib/tomoto/3.3/tomoto.so +0 -0
  25. data/lib/tomoto/ct.rb +24 -0
  26. data/lib/tomoto/dmr.rb +27 -0
  27. data/lib/tomoto/dt.rb +15 -0
  28. data/lib/tomoto/gdmr.rb +15 -0
  29. data/lib/tomoto/hdp.rb +11 -0
  30. data/lib/tomoto/hlda.rb +56 -0
  31. data/lib/tomoto/hpa.rb +11 -0
  32. data/lib/tomoto/lda.rb +186 -0
  33. data/lib/tomoto/llda.rb +15 -0
  34. data/lib/tomoto/mglda.rb +15 -0
  35. data/lib/tomoto/pa.rb +11 -0
  36. data/lib/tomoto/plda.rb +15 -0
  37. data/lib/tomoto/slda.rb +37 -0
  38. data/lib/tomoto/version.rb +3 -0
  39. data/lib/tomoto.rb +27 -0
  40. data/vendor/EigenRand/EigenRand/EigenRand +24 -0
  41. data/vendor/EigenRand/LICENSE +21 -0
  42. data/vendor/EigenRand/README.md +430 -0
  43. data/vendor/eigen/COPYING.APACHE +203 -0
  44. data/vendor/eigen/COPYING.BSD +26 -0
  45. data/vendor/eigen/COPYING.GPL +674 -0
  46. data/vendor/eigen/COPYING.LGPL +502 -0
  47. data/vendor/eigen/COPYING.MINPACK +51 -0
  48. data/vendor/eigen/COPYING.MPL2 +373 -0
  49. data/vendor/eigen/COPYING.README +18 -0
  50. data/vendor/eigen/Eigen/Cholesky +45 -0
  51. data/vendor/eigen/Eigen/CholmodSupport +48 -0
  52. data/vendor/eigen/Eigen/Core +384 -0
  53. data/vendor/eigen/Eigen/Dense +7 -0
  54. data/vendor/eigen/Eigen/Eigen +2 -0
  55. data/vendor/eigen/Eigen/Eigenvalues +60 -0
  56. data/vendor/eigen/Eigen/Geometry +59 -0
  57. data/vendor/eigen/Eigen/Householder +29 -0
  58. data/vendor/eigen/Eigen/IterativeLinearSolvers +48 -0
  59. data/vendor/eigen/Eigen/Jacobi +32 -0
  60. data/vendor/eigen/Eigen/KLUSupport +41 -0
  61. data/vendor/eigen/Eigen/LU +47 -0
  62. data/vendor/eigen/Eigen/MetisSupport +35 -0
  63. data/vendor/eigen/Eigen/OrderingMethods +70 -0
  64. data/vendor/eigen/Eigen/PaStiXSupport +49 -0
  65. data/vendor/eigen/Eigen/PardisoSupport +35 -0
  66. data/vendor/eigen/Eigen/QR +50 -0
  67. data/vendor/eigen/Eigen/QtAlignedMalloc +39 -0
  68. data/vendor/eigen/Eigen/SPQRSupport +34 -0
  69. data/vendor/eigen/Eigen/SVD +50 -0
  70. data/vendor/eigen/Eigen/Sparse +34 -0
  71. data/vendor/eigen/Eigen/SparseCholesky +37 -0
  72. data/vendor/eigen/Eigen/SparseCore +69 -0
  73. data/vendor/eigen/Eigen/SparseLU +50 -0
  74. data/vendor/eigen/Eigen/SparseQR +36 -0
  75. data/vendor/eigen/Eigen/StdDeque +27 -0
  76. data/vendor/eigen/Eigen/StdList +26 -0
  77. data/vendor/eigen/Eigen/StdVector +27 -0
  78. data/vendor/eigen/Eigen/SuperLUSupport +64 -0
  79. data/vendor/eigen/Eigen/UmfPackSupport +40 -0
  80. data/vendor/eigen/README.md +5 -0
  81. data/vendor/eigen/bench/README.txt +55 -0
  82. data/vendor/eigen/bench/btl/COPYING +340 -0
  83. data/vendor/eigen/bench/btl/README +154 -0
  84. data/vendor/eigen/bench/tensors/README +20 -0
  85. data/vendor/eigen/blas/README.txt +6 -0
  86. data/vendor/eigen/ci/README.md +56 -0
  87. data/vendor/eigen/demos/mandelbrot/README +10 -0
  88. data/vendor/eigen/demos/mix_eigen_and_c/README +9 -0
  89. data/vendor/eigen/demos/opengl/README +13 -0
  90. data/vendor/eigen/unsupported/Eigen/CXX11/src/Tensor/README.md +1815 -0
  91. data/vendor/eigen/unsupported/README.txt +50 -0
  92. data/vendor/tomotopy/LICENSE +21 -0
  93. data/vendor/tomotopy/README.kr.rst +536 -0
  94. data/vendor/tomotopy/README.rst +555 -0
  95. data/vendor/variant/LICENSE +25 -0
  96. data/vendor/variant/LICENSE_1_0.txt +23 -0
  97. data/vendor/variant/README.md +102 -0
  98. metadata +141 -0
@@ -0,0 +1,1815 @@
1
+ # Eigen Tensors {#eigen_tensors}
2
+
3
+ Tensors are multidimensional arrays of elements. Elements are typically scalars,
4
+ but more complex types such as strings are also supported.
5
+
6
+ ## Tensor Classes
7
+
8
+ You can manipulate a tensor with one of the following classes. They all are in
9
+ the namespace `::Eigen.`
10
+
11
+
12
+ ### Class Tensor<data_type, rank>
13
+
14
+ This is the class to use to create a tensor and allocate memory for it. The
15
+ class is templatized with the tensor datatype, such as float or int, and the
16
+ tensor rank. The rank is the number of dimensions, for example rank 2 is a
17
+ matrix.
18
+
19
+ Tensors of this class are resizable. For example, if you assign a tensor of a
20
+ different size to a Tensor, that tensor is resized to match its new value.
21
+
22
+ #### Constructor Tensor<data_type, rank>(size0, size1, ...)
23
+
24
+ Constructor for a Tensor. The constructor must be passed `rank` integers
25
+ indicating the sizes of the instance along each of the the `rank`
26
+ dimensions.
27
+
28
+ // Create a tensor of rank 3 of sizes 2, 3, 4. This tensor owns
29
+ // memory to hold 24 floating point values (24 = 2 x 3 x 4).
30
+ Tensor<float, 3> t_3d(2, 3, 4);
31
+
32
+ // Resize t_3d by assigning a tensor of different sizes, but same rank.
33
+ t_3d = Tensor<float, 3>(3, 4, 3);
34
+
35
+ #### Constructor Tensor<data_type, rank>(size_array)
36
+
37
+ Constructor where the sizes for the constructor are specified as an array of
38
+ values instead of an explicitly list of parameters. The array type to use is
39
+ `Eigen::array<Eigen::Index>`. The array can be constructed automatically
40
+ from an initializer list.
41
+
42
+ // Create a tensor of strings of rank 2 with sizes 5, 7.
43
+ Tensor<string, 2> t_2d({5, 7});
44
+
45
+
46
+ ### Class TensorFixedSize<data_type, Sizes<size0, size1, ...>>
47
+
48
+ Class to use for tensors of fixed size, where the size is known at compile
49
+ time. Fixed sized tensors can provide very fast computations because all their
50
+ dimensions are known by the compiler. FixedSize tensors are not resizable.
51
+
52
+ If the total number of elements in a fixed size tensor is small enough the
53
+ tensor data is held onto the stack and does not cause heap allocation and free.
54
+
55
+ // Create a 4 x 3 tensor of floats.
56
+ TensorFixedSize<float, Sizes<4, 3>> t_4x3;
57
+
58
+ ### Class TensorMap<Tensor<data_type, rank>>
59
+
60
+ This is the class to use to create a tensor on top of memory allocated and
61
+ owned by another part of your code. It allows to view any piece of allocated
62
+ memory as a Tensor. Instances of this class do not own the memory where the
63
+ data are stored.
64
+
65
+ A TensorMap is not resizable because it does not own the memory where its data
66
+ are stored.
67
+
68
+ #### Constructor TensorMap<Tensor<data_type, rank>>(data, size0, size1, ...)
69
+
70
+ Constructor for a Tensor. The constructor must be passed a pointer to the
71
+ storage for the data, and "rank" size attributes. The storage has to be
72
+ large enough to hold all the data.
73
+
74
+ // Map a tensor of ints on top of stack-allocated storage.
75
+ int storage[128]; // 2 x 4 x 2 x 8 = 128
76
+ TensorMap<Tensor<int, 4>> t_4d(storage, 2, 4, 2, 8);
77
+
78
+ // The same storage can be viewed as a different tensor.
79
+ // You can also pass the sizes as an array.
80
+ TensorMap<Tensor<int, 2>> t_2d(storage, 16, 8);
81
+
82
+ // You can also map fixed-size tensors. Here we get a 1d view of
83
+ // the 2d fixed-size tensor.
84
+ TensorFixedSize<float, Sizes<4, 3>> t_4x3;
85
+ TensorMap<Tensor<float, 1>> t_12(t_4x3.data(), 12);
86
+
87
+
88
+ #### Class TensorRef
89
+
90
+ See Assigning to a TensorRef below.
91
+
92
+ ## Accessing Tensor Elements
93
+
94
+ #### <data_type> tensor(index0, index1...)
95
+
96
+ Return the element at position `(index0, index1...)` in tensor
97
+ `tensor`. You must pass as many parameters as the rank of `tensor`.
98
+ The expression can be used as an l-value to set the value of the element at the
99
+ specified position. The value returned is of the datatype of the tensor.
100
+
101
+ // Set the value of the element at position (0, 1, 0);
102
+ Tensor<float, 3> t_3d(2, 3, 4);
103
+ t_3d(0, 1, 0) = 12.0f;
104
+
105
+ // Initialize all elements to random values.
106
+ for (int i = 0; i < 2; ++i) {
107
+ for (int j = 0; j < 3; ++j) {
108
+ for (int k = 0; k < 4; ++k) {
109
+ t_3d(i, j, k) = ...some random value...;
110
+ }
111
+ }
112
+ }
113
+
114
+ // Print elements of a tensor.
115
+ for (int i = 0; i < 2; ++i) {
116
+ LOG(INFO) << t_3d(i, 0, 0);
117
+ }
118
+
119
+
120
+ ## TensorLayout
121
+
122
+ The tensor library supports 2 layouts: `ColMajor` (the default) and
123
+ `RowMajor`. Only the default column major layout is currently fully
124
+ supported, and it is therefore not recommended to attempt to use the row major
125
+ layout at the moment.
126
+
127
+ The layout of a tensor is optionally specified as part of its type. If not
128
+ specified explicitly column major is assumed.
129
+
130
+ Tensor<float, 3, ColMajor> col_major; // equivalent to Tensor<float, 3>
131
+ TensorMap<Tensor<float, 3, RowMajor> > row_major(data, ...);
132
+
133
+ All the arguments to an expression must use the same layout. Attempting to mix
134
+ different layouts will result in a compilation error.
135
+
136
+ It is possible to change the layout of a tensor or an expression using the
137
+ `swap_layout()` method. Note that this will also reverse the order of the
138
+ dimensions.
139
+
140
+ Tensor<float, 2, ColMajor> col_major(2, 4);
141
+ Tensor<float, 2, RowMajor> row_major(2, 4);
142
+
143
+ Tensor<float, 2> col_major_result = col_major; // ok, layouts match
144
+ Tensor<float, 2> col_major_result = row_major; // will not compile
145
+
146
+ // Simple layout swap
147
+ col_major_result = row_major.swap_layout();
148
+ eigen_assert(col_major_result.dimension(0) == 4);
149
+ eigen_assert(col_major_result.dimension(1) == 2);
150
+
151
+ // Swap the layout and preserve the order of the dimensions
152
+ array<int, 2> shuffle(1, 0);
153
+ col_major_result = row_major.swap_layout().shuffle(shuffle);
154
+ eigen_assert(col_major_result.dimension(0) == 2);
155
+ eigen_assert(col_major_result.dimension(1) == 4);
156
+
157
+
158
+ ## Tensor Operations
159
+
160
+ The Eigen Tensor library provides a vast library of operations on Tensors:
161
+ numerical operations such as addition and multiplication, geometry operations
162
+ such as slicing and shuffling, etc. These operations are available as methods
163
+ of the Tensor classes, and in some cases as operator overloads. For example
164
+ the following code computes the elementwise addition of two tensors:
165
+
166
+ Tensor<float, 3> t1(2, 3, 4);
167
+ ...set some values in t1...
168
+ Tensor<float, 3> t2(2, 3, 4);
169
+ ...set some values in t2...
170
+ // Set t3 to the element wise sum of t1 and t2
171
+ Tensor<float, 3> t3 = t1 + t2;
172
+
173
+ While the code above looks easy enough, it is important to understand that the
174
+ expression `t1 + t2` is not actually adding the values of the tensors. The
175
+ expression instead constructs a "tensor operator" object of the class
176
+ TensorCwiseBinaryOp<scalar_sum>, which has references to the tensors
177
+ `t1` and `t2`. This is a small C++ object that knows how to add
178
+ `t1` and `t2`. It is only when the value of the expression is assigned
179
+ to the tensor `t3` that the addition is actually performed. Technically,
180
+ this happens through the overloading of `operator=()` in the Tensor class.
181
+
182
+ This mechanism for computing tensor expressions allows for lazy evaluation and
183
+ optimizations which are what make the tensor library very fast.
184
+
185
+ Of course, the tensor operators do nest, and the expression `t1 + t2 * 0.3f`
186
+ is actually represented with the (approximate) tree of operators:
187
+
188
+ TensorCwiseBinaryOp<scalar_sum>(t1, TensorCwiseUnaryOp<scalar_mul>(t2, 0.3f))
189
+
190
+
191
+ ### Tensor Operations and C++ "auto"
192
+
193
+ Because Tensor operations create tensor operators, the C++ `auto` keyword
194
+ does not have its intuitive meaning. Consider these 2 lines of code:
195
+
196
+ Tensor<float, 3> t3 = t1 + t2;
197
+ auto t4 = t1 + t2;
198
+
199
+ In the first line we allocate the tensor `t3` and it will contain the
200
+ result of the addition of `t1` and `t2`. In the second line, `t4`
201
+ is actually the tree of tensor operators that will compute the addition of
202
+ `t1` and `t2`. In fact, `t4` is *not* a tensor and you cannot get
203
+ the values of its elements:
204
+
205
+ Tensor<float, 3> t3 = t1 + t2;
206
+ cout << t3(0, 0, 0); // OK prints the value of t1(0, 0, 0) + t2(0, 0, 0)
207
+
208
+ auto t4 = t1 + t2;
209
+ cout << t4(0, 0, 0); // Compilation error!
210
+
211
+ When you use `auto` you do not get a Tensor as a result but instead a
212
+ non-evaluated expression. So only use `auto` to delay evaluation.
213
+
214
+ Unfortunately, there is no single underlying concrete type for holding
215
+ non-evaluated expressions, hence you have to use auto in the case when you do
216
+ want to hold non-evaluated expressions.
217
+
218
+ When you need the results of set of tensor computations you have to assign the
219
+ result to a Tensor that will be capable of holding onto them. This can be
220
+ either a normal Tensor, a fixed size Tensor, or a TensorMap on an existing
221
+ piece of memory. All the following will work:
222
+
223
+ auto t4 = t1 + t2;
224
+
225
+ Tensor<float, 3> result = t4; // Could also be: result(t4);
226
+ cout << result(0, 0, 0);
227
+
228
+ TensorMap<float, 4> result(<a float* with enough space>, <size0>, ...) = t4;
229
+ cout << result(0, 0, 0);
230
+
231
+ TensorFixedSize<float, Sizes<size0, ...>> result = t4;
232
+ cout << result(0, 0, 0);
233
+
234
+ Until you need the results, you can keep the operation around, and even reuse
235
+ it for additional operations. As long as you keep the expression as an
236
+ operation, no computation is performed.
237
+
238
+ // One way to compute exp((t1 + t2) * 0.2f);
239
+ auto t3 = t1 + t2;
240
+ auto t4 = t3 * 0.2f;
241
+ auto t5 = t4.exp();
242
+ Tensor<float, 3> result = t5;
243
+
244
+ // Another way, exactly as efficient as the previous one:
245
+ Tensor<float, 3> result = ((t1 + t2) * 0.2f).exp();
246
+
247
+ ### Controlling When Expression are Evaluated
248
+
249
+ There are several ways to control when expressions are evaluated:
250
+
251
+ * Assignment to a Tensor, TensorFixedSize, or TensorMap.
252
+ * Use of the eval() method.
253
+ * Assignment to a TensorRef.
254
+
255
+ #### Assigning to a Tensor, TensorFixedSize, or TensorMap.
256
+
257
+ The most common way to evaluate an expression is to assign it to a Tensor. In
258
+ the example below, the `auto` declarations make the intermediate values
259
+ "Operations", not Tensors, and do not cause the expressions to be evaluated.
260
+ The assignment to the Tensor `result` causes the evaluation of all the
261
+ operations.
262
+
263
+ auto t3 = t1 + t2; // t3 is an Operation.
264
+ auto t4 = t3 * 0.2f; // t4 is an Operation.
265
+ auto t5 = t4.exp(); // t5 is an Operation.
266
+ Tensor<float, 3> result = t5; // The operations are evaluated.
267
+
268
+ If you know the ranks and sizes of the Operation value you can assign the
269
+ Operation to a TensorFixedSize instead of a Tensor, which is a bit more
270
+ efficient.
271
+
272
+ // We know that the result is a 4x4x2 tensor!
273
+ TensorFixedSize<float, Sizes<4, 4, 2>> result = t5;
274
+
275
+ Simiarly, assigning an expression to a TensorMap causes its evaluation. Like
276
+ tensors of type TensorFixedSize, TensorMaps cannot be resized so they have to
277
+ have the rank and sizes of the expression that are assigned to them.
278
+
279
+ #### Calling eval().
280
+
281
+ When you compute large composite expressions, you sometimes want to tell Eigen
282
+ that an intermediate value in the expression tree is worth evaluating ahead of
283
+ time. This is done by inserting a call to the `eval()` method of the
284
+ expression Operation.
285
+
286
+ // The previous example could have been written:
287
+ Tensor<float, 3> result = ((t1 + t2) * 0.2f).exp();
288
+
289
+ // If you want to compute (t1 + t2) once ahead of time you can write:
290
+ Tensor<float, 3> result = ((t1 + t2).eval() * 0.2f).exp();
291
+
292
+ Semantically, calling `eval()` is equivalent to materializing the value of
293
+ the expression in a temporary Tensor of the right size. The code above in
294
+ effect does:
295
+
296
+ // .eval() knows the size!
297
+ TensorFixedSize<float, Sizes<4, 4, 2>> tmp = t1 + t2;
298
+ Tensor<float, 3> result = (tmp * 0.2f).exp();
299
+
300
+ Note that the return value of `eval()` is itself an Operation, so the
301
+ following code does not do what you may think:
302
+
303
+ // Here t3 is an evaluation Operation. t3 has not been evaluated yet.
304
+ auto t3 = (t1 + t2).eval();
305
+
306
+ // You can use t3 in another expression. Still no evaluation.
307
+ auto t4 = (t3 * 0.2f).exp();
308
+
309
+ // The value is evaluated when you assign the Operation to a Tensor, using
310
+ // an intermediate tensor to represent t3.x
311
+ Tensor<float, 3> result = t4;
312
+
313
+ While in the examples above calling `eval()` does not make a difference in
314
+ performance, in other cases it can make a huge difference. In the expression
315
+ below the `broadcast()` expression causes the `X.maximum()` expression
316
+ to be evaluated many times:
317
+
318
+ Tensor<...> X ...;
319
+ Tensor<...> Y = ((X - X.maximum(depth_dim).reshape(dims2d).broadcast(bcast))
320
+ * beta).exp();
321
+
322
+ Inserting a call to `eval()` between the `maximum()` and
323
+ `reshape()` calls guarantees that maximum() is only computed once and
324
+ greatly speeds-up execution:
325
+
326
+ Tensor<...> Y =
327
+ ((X - X.maximum(depth_dim).eval().reshape(dims2d).broadcast(bcast))
328
+ * beta).exp();
329
+
330
+ In the other example below, the tensor `Y` is both used in the expression
331
+ and its assignment. This is an aliasing problem and if the evaluation is not
332
+ done in the right order Y will be updated incrementally during the evaluation
333
+ resulting in bogus results:
334
+
335
+ Tensor<...> Y ...;
336
+ Y = Y / (Y.sum(depth_dim).reshape(dims2d).broadcast(bcast));
337
+
338
+ Inserting a call to `eval()` between the `sum()` and `reshape()`
339
+ expressions ensures that the sum is computed before any updates to `Y` are
340
+ done.
341
+
342
+ Y = Y / (Y.sum(depth_dim).eval().reshape(dims2d).broadcast(bcast));
343
+
344
+ Note that an eval around the full right hand side expression is not needed
345
+ because the generated has to compute the i-th value of the right hand side
346
+ before assigning it to the left hand side.
347
+
348
+ However, if you were assigning the expression value to a shuffle of `Y`
349
+ then you would need to force an eval for correctness by adding an `eval()`
350
+ call for the right hand side:
351
+
352
+ Y.shuffle(...) =
353
+ (Y / (Y.sum(depth_dim).eval().reshape(dims2d).broadcast(bcast))).eval();
354
+
355
+
356
+ #### Assigning to a TensorRef.
357
+
358
+ If you need to access only a few elements from the value of an expression you
359
+ can avoid materializing the value in a full tensor by using a TensorRef.
360
+
361
+ A TensorRef is a small wrapper class for any Eigen Operation. It provides
362
+ overloads for the `()` operator that let you access individual values in
363
+ the expression. TensorRef is convenient, because the Operation themselves do
364
+ not provide a way to access individual elements.
365
+
366
+ // Create a TensorRef for the expression. The expression is not
367
+ // evaluated yet.
368
+ TensorRef<Tensor<float, 3> > ref = ((t1 + t2) * 0.2f).exp();
369
+
370
+ // Use "ref" to access individual elements. The expression is evaluated
371
+ // on the fly.
372
+ float at_0 = ref(0, 0, 0);
373
+ cout << ref(0, 1, 0);
374
+
375
+ Only use TensorRef when you need a subset of the values of the expression.
376
+ TensorRef only computes the values you access. However note that if you are
377
+ going to access all the values it will be much faster to materialize the
378
+ results in a Tensor first.
379
+
380
+ In some cases, if the full Tensor result would be very large, you may save
381
+ memory by accessing it as a TensorRef. But not always. So don't count on it.
382
+
383
+
384
+ ### Controlling How Expressions Are Evaluated
385
+
386
+ The tensor library provides several implementations of the various operations
387
+ such as contractions and convolutions. The implementations are optimized for
388
+ different environments: single threaded on CPU, multi threaded on CPU, or on a
389
+ GPU using cuda. Additional implementations may be added later.
390
+
391
+ You can choose which implementation to use with the `device()` call. If
392
+ you do not choose an implementation explicitly the default implementation that
393
+ uses a single thread on the CPU is used.
394
+
395
+ The default implementation has been optimized for recent Intel CPUs, taking
396
+ advantage of SSE, AVX, and FMA instructions. Work is ongoing to tune the
397
+ library on ARM CPUs. Note that you need to pass compiler-dependent flags
398
+ to enable the use of SSE, AVX, and other instructions.
399
+
400
+ For example, the following code adds two tensors using the default
401
+ single-threaded CPU implementation:
402
+
403
+ Tensor<float, 2> a(30, 40);
404
+ Tensor<float, 2> b(30, 40);
405
+ Tensor<float, 2> c = a + b;
406
+
407
+ To choose a different implementation you have to insert a `device()` call
408
+ before the assignment of the result. For technical C++ reasons this requires
409
+ that the Tensor for the result be declared on its own. This means that you
410
+ have to know the size of the result.
411
+
412
+ Eigen::Tensor<float, 2> c(30, 40);
413
+ c.device(...) = a + b;
414
+
415
+ The call to `device()` must be the last call on the left of the operator=.
416
+
417
+ You must pass to the `device()` call an Eigen device object. There are
418
+ presently three devices you can use: DefaultDevice, ThreadPoolDevice and
419
+ GpuDevice.
420
+
421
+
422
+ #### Evaluating With the DefaultDevice
423
+
424
+ This is exactly the same as not inserting a `device()` call.
425
+
426
+ DefaultDevice my_device;
427
+ c.device(my_device) = a + b;
428
+
429
+ #### Evaluating with a Thread Pool
430
+
431
+ // Create the Eigen ThreadPool
432
+ Eigen::ThreadPool pool(8 /* number of threads in pool */)
433
+
434
+ // Create the Eigen ThreadPoolDevice.
435
+ Eigen::ThreadPoolDevice my_device(&pool, 4 /* number of threads to use */);
436
+
437
+ // Now just use the device when evaluating expressions.
438
+ Eigen::Tensor<float, 2> c(30, 50);
439
+ c.device(my_device) = a.contract(b, dot_product_dims);
440
+
441
+
442
+ #### Evaluating On GPU
443
+
444
+ This is presently a bit more complicated than just using a thread pool device.
445
+ You need to create a GPU device but you also need to explicitly allocate the
446
+ memory for tensors with cuda.
447
+
448
+
449
+ ## API Reference
450
+
451
+ ### Datatypes
452
+
453
+ In the documentation of the tensor methods and Operation we mention datatypes
454
+ that are tensor-type specific:
455
+
456
+ #### <Tensor-Type>::Dimensions
457
+
458
+ Acts like an array of ints. Has an `int size` attribute, and can be
459
+ indexed like an array to access individual values. Used to represent the
460
+ dimensions of a tensor. See `dimensions()`.
461
+
462
+ #### <Tensor-Type>::Index
463
+
464
+ Acts like an `int`. Used for indexing tensors along their dimensions. See
465
+ `operator()`, `dimension()`, and `size()`.
466
+
467
+ #### <Tensor-Type>::Scalar
468
+
469
+ Represents the datatype of individual tensor elements. For example, for a
470
+ `Tensor<float>`, `Scalar` is the type `float`. See
471
+ `setConstant()`.
472
+
473
+ #### <Operation>
474
+
475
+ We use this pseudo type to indicate that a tensor Operation is returned by a
476
+ method. We indicate in the text the type and dimensions of the tensor that the
477
+ Operation returns after evaluation.
478
+
479
+ The Operation will have to be evaluated, for example by assigning it to a
480
+ tensor, before you can access the values of the resulting tensor. You can also
481
+ access the values through a TensorRef.
482
+
483
+
484
+ ## Built-in Tensor Methods
485
+
486
+ These are usual C++ methods that act on tensors immediately. They are not
487
+ Operations which provide delayed evaluation of their results. Unless specified
488
+ otherwise, all the methods listed below are available on all tensor classes:
489
+ Tensor, TensorFixedSize, and TensorMap.
490
+
491
+ ## Metadata
492
+
493
+ ### int NumDimensions
494
+
495
+ Constant value indicating the number of dimensions of a Tensor. This is also
496
+ known as the tensor "rank".
497
+
498
+ Eigen::Tensor<float, 2> a(3, 4);
499
+ cout << "Dims " << a.NumDimensions;
500
+ => Dims 2
501
+
502
+ ### Dimensions dimensions()
503
+
504
+ Returns an array-like object representing the dimensions of the tensor.
505
+ The actual type of the `dimensions()` result is `<Tensor-Type>::``Dimensions`.
506
+
507
+ Eigen::Tensor<float, 2> a(3, 4);
508
+ const Eigen::Tensor<float, 2>::Dimensions& d = a.dimensions();
509
+ cout << "Dim size: " << d.size << ", dim 0: " << d[0]
510
+ << ", dim 1: " << d[1];
511
+ => Dim size: 2, dim 0: 3, dim 1: 4
512
+
513
+ If you use a C++11 compiler, you can use `auto` to simplify the code:
514
+
515
+ const auto& d = a.dimensions();
516
+ cout << "Dim size: " << d.size << ", dim 0: " << d[0]
517
+ << ", dim 1: " << d[1];
518
+ => Dim size: 2, dim 0: 3, dim 1: 4
519
+
520
+ ### Index dimension(Index n)
521
+
522
+ Returns the n-th dimension of the tensor. The actual type of the
523
+ `dimension()` result is `<Tensor-Type>::``Index`, but you can
524
+ always use it like an int.
525
+
526
+ Eigen::Tensor<float, 2> a(3, 4);
527
+ int dim1 = a.dimension(1);
528
+ cout << "Dim 1: " << dim1;
529
+ => Dim 1: 4
530
+
531
+ ### Index size()
532
+
533
+ Returns the total number of elements in the tensor. This is the product of all
534
+ the tensor dimensions. The actual type of the `size()` result is
535
+ `<Tensor-Type>::``Index`, but you can always use it like an int.
536
+
537
+ Eigen::Tensor<float, 2> a(3, 4);
538
+ cout << "Size: " << a.size();
539
+ => Size: 12
540
+
541
+
542
+ ### Getting Dimensions From An Operation
543
+
544
+ A few operations provide `dimensions()` directly,
545
+ e.g. `TensorReslicingOp`. Most operations defer calculating dimensions
546
+ until the operation is being evaluated. If you need access to the dimensions
547
+ of a deferred operation, you can wrap it in a TensorRef (see Assigning to a
548
+ TensorRef above), which provides `dimensions()` and `dimension()` as
549
+ above.
550
+
551
+ TensorRef can also wrap the plain Tensor types, so this is a useful idiom in
552
+ templated contexts where the underlying object could be either a raw Tensor
553
+ or some deferred operation (e.g. a slice of a Tensor). In this case, the
554
+ template code can wrap the object in a TensorRef and reason about its
555
+ dimensionality while remaining agnostic to the underlying type.
556
+
557
+
558
+ ## Constructors
559
+
560
+ ### Tensor
561
+
562
+ Creates a tensor of the specified size. The number of arguments must be equal
563
+ to the rank of the tensor. The content of the tensor is not initialized.
564
+
565
+ Eigen::Tensor<float, 2> a(3, 4);
566
+ cout << "NumRows: " << a.dimension(0) << " NumCols: " << a.dimension(1) << endl;
567
+ => NumRows: 3 NumCols: 4
568
+
569
+ ### TensorFixedSize
570
+
571
+ Creates a tensor of the specified size. The number of arguments in the Sizes<>
572
+ template parameter determines the rank of the tensor. The content of the tensor
573
+ is not initialized.
574
+
575
+ Eigen::TensorFixedSize<float, Sizes<3, 4>> a;
576
+ cout << "Rank: " << a.rank() << endl;
577
+ => Rank: 2
578
+ cout << "NumRows: " << a.dimension(0) << " NumCols: " << a.dimension(1) << endl;
579
+ => NumRows: 3 NumCols: 4
580
+
581
+ ### TensorMap
582
+
583
+ Creates a tensor mapping an existing array of data. The data must not be freed
584
+ until the TensorMap is discarded, and the size of the data must be large enough
585
+ to accommodate the coefficients of the tensor.
586
+
587
+ float data[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11};
588
+ Eigen::TensorMap<Tensor<float, 2>> a(data, 3, 4);
589
+ cout << "NumRows: " << a.dimension(0) << " NumCols: " << a.dimension(1) << endl;
590
+ => NumRows: 3 NumCols: 4
591
+ cout << "a(1, 2): " << a(1, 2) << endl;
592
+ => a(1, 2): 7
593
+
594
+
595
+ ## Contents Initialization
596
+
597
+ When a new Tensor or a new TensorFixedSize are created, memory is allocated to
598
+ hold all the tensor elements, but the memory is not initialized. Similarly,
599
+ when a new TensorMap is created on top of non-initialized memory the memory its
600
+ contents are not initialized.
601
+
602
+ You can use one of the methods below to initialize the tensor memory. These
603
+ have an immediate effect on the tensor and return the tensor itself as a
604
+ result. These are not tensor Operations which delay evaluation.
605
+
606
+ ### <Tensor-Type> setConstant(const Scalar& val)
607
+
608
+ Sets all elements of the tensor to the constant value `val`. `Scalar`
609
+ is the type of data stored in the tensor. You can pass any value that is
610
+ convertible to that type.
611
+
612
+ Returns the tensor itself in case you want to chain another call.
613
+
614
+ a.setConstant(12.3f);
615
+ cout << "Constant: " << endl << a << endl << endl;
616
+ =>
617
+ Constant:
618
+ 12.3 12.3 12.3 12.3
619
+ 12.3 12.3 12.3 12.3
620
+ 12.3 12.3 12.3 12.3
621
+
622
+ Note that `setConstant()` can be used on any tensor where the element type
623
+ has a copy constructor and an `operator=()`:
624
+
625
+ Eigen::Tensor<string, 2> a(2, 3);
626
+ a.setConstant("yolo");
627
+ cout << "String tensor: " << endl << a << endl << endl;
628
+ =>
629
+ String tensor:
630
+ yolo yolo yolo
631
+ yolo yolo yolo
632
+
633
+
634
+ ### <Tensor-Type> setZero()
635
+
636
+ Fills the tensor with zeros. Equivalent to `setConstant(Scalar(0))`.
637
+ Returns the tensor itself in case you want to chain another call.
638
+
639
+ a.setZero();
640
+ cout << "Zeros: " << endl << a << endl << endl;
641
+ =>
642
+ Zeros:
643
+ 0 0 0 0
644
+ 0 0 0 0
645
+ 0 0 0 0
646
+
647
+
648
+ ### <Tensor-Type> setValues({..initializer_list})
649
+
650
+ Fills the tensor with explicit values specified in a std::initializer_list.
651
+ The type of the initializer list depends on the type and rank of the tensor.
652
+
653
+ If the tensor has rank N, the initializer list must be nested N times. The
654
+ most deeply nested lists must contains P scalars of the Tensor type where P is
655
+ the size of the last dimension of the Tensor.
656
+
657
+ For example, for a `TensorFixedSize<float, 2, 3>` the initializer list must
658
+ contains 2 lists of 3 floats each.
659
+
660
+ `setValues()` returns the tensor itself in case you want to chain another
661
+ call.
662
+
663
+ Eigen::Tensor<float, 2> a(2, 3);
664
+ a.setValues({{0.0f, 1.0f, 2.0f}, {3.0f, 4.0f, 5.0f}});
665
+ cout << "a" << endl << a << endl << endl;
666
+ =>
667
+ a
668
+ 0 1 2
669
+ 3 4 5
670
+
671
+ If a list is too short, the corresponding elements of the tensor will not be
672
+ changed. This is valid at each level of nesting. For example the following
673
+ code only sets the values of the first row of the tensor.
674
+
675
+ Eigen::Tensor<int, 2> a(2, 3);
676
+ a.setConstant(1000);
677
+ a.setValues({{10, 20, 30}});
678
+ cout << "a" << endl << a << endl << endl;
679
+ =>
680
+ a
681
+ 10 20 30
682
+ 1000 1000 1000
683
+
684
+ ### <Tensor-Type> setRandom()
685
+
686
+ Fills the tensor with random values. Returns the tensor itself in case you
687
+ want to chain another call.
688
+
689
+ a.setRandom();
690
+ cout << "Random: " << endl << a << endl << endl;
691
+ =>
692
+ Random:
693
+ 0.680375 0.59688 -0.329554 0.10794
694
+ -0.211234 0.823295 0.536459 -0.0452059
695
+ 0.566198 -0.604897 -0.444451 0.257742
696
+
697
+ You can customize `setRandom()` by providing your own random number
698
+ generator as a template argument:
699
+
700
+ a.setRandom<MyRandomGenerator>();
701
+
702
+ Here, `MyRandomGenerator` must be a struct with the following member
703
+ functions, where Scalar and Index are the same as `<Tensor-Type>::``Scalar`
704
+ and `<Tensor-Type>::``Index`.
705
+
706
+ See `struct UniformRandomGenerator` in TensorFunctors.h for an example.
707
+
708
+ // Custom number generator for use with setRandom().
709
+ struct MyRandomGenerator {
710
+ // Default and copy constructors. Both are needed
711
+ MyRandomGenerator() { }
712
+ MyRandomGenerator(const MyRandomGenerator& ) { }
713
+
714
+ // Return a random value to be used. "element_location" is the
715
+ // location of the entry to set in the tensor, it can typically
716
+ // be ignored.
717
+ Scalar operator()(Eigen::DenseIndex element_location,
718
+ Eigen::DenseIndex /*unused*/ = 0) const {
719
+ return <randomly generated value of type T>;
720
+ }
721
+
722
+ // Same as above but generates several numbers at a time.
723
+ typename internal::packet_traits<Scalar>::type packetOp(
724
+ Eigen::DenseIndex packet_location, Eigen::DenseIndex /*unused*/ = 0) const {
725
+ return <a packet of randomly generated values>;
726
+ }
727
+ };
728
+
729
+ You can also use one of the 2 random number generators that are part of the
730
+ tensor library:
731
+ * UniformRandomGenerator
732
+ * NormalRandomGenerator
733
+
734
+
735
+ ## Data Access
736
+
737
+ The Tensor, TensorFixedSize, and TensorRef classes provide the following
738
+ accessors to access the tensor coefficients:
739
+
740
+ const Scalar& operator()(const array<Index, NumIndices>& indices)
741
+ const Scalar& operator()(Index firstIndex, IndexTypes... otherIndices)
742
+ Scalar& operator()(const array<Index, NumIndices>& indices)
743
+ Scalar& operator()(Index firstIndex, IndexTypes... otherIndices)
744
+
745
+ The number of indices must be equal to the rank of the tensor. Moreover, these
746
+ accessors are not available on tensor expressions. In order to access the
747
+ values of a tensor expression, the expression must either be evaluated or
748
+ wrapped in a TensorRef.
749
+
750
+
751
+ ### Scalar* data() and const Scalar* data() const
752
+
753
+ Returns a pointer to the storage for the tensor. The pointer is const if the
754
+ tensor was const. This allows direct access to the data. The layout of the
755
+ data depends on the tensor layout: RowMajor or ColMajor.
756
+
757
+ This access is usually only needed for special cases, for example when mixing
758
+ Eigen Tensor code with other libraries.
759
+
760
+ Scalar is the type of data stored in the tensor.
761
+
762
+ Eigen::Tensor<float, 2> a(3, 4);
763
+ float* a_data = a.data();
764
+ a_data[0] = 123.45f;
765
+ cout << "a(0, 0): " << a(0, 0);
766
+ => a(0, 0): 123.45
767
+
768
+
769
+ ## Tensor Operations
770
+
771
+ All the methods documented below return non evaluated tensor `Operations`.
772
+ These can be chained: you can apply another Tensor Operation to the value
773
+ returned by the method.
774
+
775
+ The chain of Operation is evaluated lazily, typically when it is assigned to a
776
+ tensor. See "Controlling when Expression are Evaluated" for more details about
777
+ their evaluation.
778
+
779
+ ### <Operation> constant(const Scalar& val)
780
+
781
+ Returns a tensor of the same type and dimensions as the original tensor but
782
+ where all elements have the value `val`.
783
+
784
+ This is useful, for example, when you want to add or subtract a constant from a
785
+ tensor, or multiply every element of a tensor by a scalar.
786
+
787
+ Eigen::Tensor<float, 2> a(2, 3);
788
+ a.setConstant(1.0f);
789
+ Eigen::Tensor<float, 2> b = a + a.constant(2.0f);
790
+ Eigen::Tensor<float, 2> c = b * b.constant(0.2f);
791
+ cout << "a" << endl << a << endl << endl;
792
+ cout << "b" << endl << b << endl << endl;
793
+ cout << "c" << endl << c << endl << endl;
794
+ =>
795
+ a
796
+ 1 1 1
797
+ 1 1 1
798
+
799
+ b
800
+ 3 3 3
801
+ 3 3 3
802
+
803
+ c
804
+ 0.6 0.6 0.6
805
+ 0.6 0.6 0.6
806
+
807
+ ### <Operation> random()
808
+
809
+ Returns a tensor of the same type and dimensions as the current tensor
810
+ but where all elements have random values.
811
+
812
+ This is for example useful to add random values to an existing tensor.
813
+ The generation of random values can be customized in the same manner
814
+ as for `setRandom()`.
815
+
816
+ Eigen::Tensor<float, 2> a(2, 3);
817
+ a.setConstant(1.0f);
818
+ Eigen::Tensor<float, 2> b = a + a.random();
819
+ cout << "a" << endl << a << endl << endl;
820
+ cout << "b" << endl << b << endl << endl;
821
+ =>
822
+ a
823
+ 1 1 1
824
+ 1 1 1
825
+
826
+ b
827
+ 1.68038 1.5662 1.82329
828
+ 0.788766 1.59688 0.395103
829
+
830
+
831
+ ## Unary Element Wise Operations
832
+
833
+ All these operations take a single input tensor as argument and return a tensor
834
+ of the same type and dimensions as the tensor to which they are applied. The
835
+ requested operations are applied to each element independently.
836
+
837
+ ### <Operation> operator-()
838
+
839
+ Returns a tensor of the same type and dimensions as the original tensor
840
+ containing the opposite values of the original tensor.
841
+
842
+ Eigen::Tensor<float, 2> a(2, 3);
843
+ a.setConstant(1.0f);
844
+ Eigen::Tensor<float, 2> b = -a;
845
+ cout << "a" << endl << a << endl << endl;
846
+ cout << "b" << endl << b << endl << endl;
847
+ =>
848
+ a
849
+ 1 1 1
850
+ 1 1 1
851
+
852
+ b
853
+ -1 -1 -1
854
+ -1 -1 -1
855
+
856
+ ### <Operation> sqrt()
857
+
858
+ Returns a tensor of the same type and dimensions as the original tensor
859
+ containing the square roots of the original tensor.
860
+
861
+ ### <Operation> rsqrt()
862
+
863
+ Returns a tensor of the same type and dimensions as the original tensor
864
+ containing the inverse square roots of the original tensor.
865
+
866
+ ### <Operation> square()
867
+
868
+ Returns a tensor of the same type and dimensions as the original tensor
869
+ containing the squares of the original tensor values.
870
+
871
+ ### <Operation> inverse()
872
+
873
+ Returns a tensor of the same type and dimensions as the original tensor
874
+ containing the inverse of the original tensor values.
875
+
876
+ ### <Operation> exp()
877
+
878
+ Returns a tensor of the same type and dimensions as the original tensor
879
+ containing the exponential of the original tensor.
880
+
881
+ ### <Operation> log()
882
+
883
+ Returns a tensor of the same type and dimensions as the original tensor
884
+ containing the natural logarithms of the original tensor.
885
+
886
+ ### <Operation> abs()
887
+
888
+ Returns a tensor of the same type and dimensions as the original tensor
889
+ containing the absolute values of the original tensor.
890
+
891
+ ### <Operation> pow(Scalar exponent)
892
+
893
+ Returns a tensor of the same type and dimensions as the original tensor
894
+ containing the coefficients of the original tensor to the power of the
895
+ exponent.
896
+
897
+ The type of the exponent, Scalar, is always the same as the type of the
898
+ tensor coefficients. For example, only integer exponents can be used in
899
+ conjuntion with tensors of integer values.
900
+
901
+ You can use cast() to lift this restriction. For example this computes
902
+ cubic roots of an int Tensor:
903
+
904
+ Eigen::Tensor<int, 2> a(2, 3);
905
+ a.setValues({{0, 1, 8}, {27, 64, 125}});
906
+ Eigen::Tensor<double, 2> b = a.cast<double>().pow(1.0 / 3.0);
907
+ cout << "a" << endl << a << endl << endl;
908
+ cout << "b" << endl << b << endl << endl;
909
+ =>
910
+ a
911
+ 0 1 8
912
+ 27 64 125
913
+
914
+ b
915
+ 0 1 2
916
+ 3 4 5
917
+
918
+ ### <Operation> operator * (Scalar scale)
919
+
920
+ Multiplies all the coefficients of the input tensor by the provided scale.
921
+
922
+ ### <Operation> cwiseMax(Scalar threshold)
923
+ TODO
924
+
925
+ ### <Operation> cwiseMin(Scalar threshold)
926
+ TODO
927
+
928
+ ### <Operation> unaryExpr(const CustomUnaryOp& func)
929
+ TODO
930
+
931
+
932
+ ## Binary Element Wise Operations
933
+
934
+ These operations take two input tensors as arguments. The 2 input tensors should
935
+ be of the same type and dimensions. The result is a tensor of the same
936
+ dimensions as the tensors to which they are applied, and unless otherwise
937
+ specified it is also of the same type. The requested operations are applied to
938
+ each pair of elements independently.
939
+
940
+ ### <Operation> operator+(const OtherDerived& other)
941
+
942
+ Returns a tensor of the same type and dimensions as the input tensors
943
+ containing the coefficient wise sums of the inputs.
944
+
945
+ ### <Operation> operator-(const OtherDerived& other)
946
+
947
+ Returns a tensor of the same type and dimensions as the input tensors
948
+ containing the coefficient wise differences of the inputs.
949
+
950
+ ### <Operation> operator*(const OtherDerived& other)
951
+
952
+ Returns a tensor of the same type and dimensions as the input tensors
953
+ containing the coefficient wise products of the inputs.
954
+
955
+ ### <Operation> operator/(const OtherDerived& other)
956
+
957
+ Returns a tensor of the same type and dimensions as the input tensors
958
+ containing the coefficient wise quotients of the inputs.
959
+
960
+ This operator is not supported for integer types.
961
+
962
+ ### <Operation> cwiseMax(const OtherDerived& other)
963
+
964
+ Returns a tensor of the same type and dimensions as the input tensors
965
+ containing the coefficient wise maximums of the inputs.
966
+
967
+ ### <Operation> cwiseMin(const OtherDerived& other)
968
+
969
+ Returns a tensor of the same type and dimensions as the input tensors
970
+ containing the coefficient wise mimimums of the inputs.
971
+
972
+ ### <Operation> Logical operators
973
+
974
+ The following logical operators are supported as well:
975
+
976
+ * operator&&(const OtherDerived& other)
977
+ * operator||(const OtherDerived& other)
978
+ * operator<(const OtherDerived& other)
979
+ * operator<=(const OtherDerived& other)
980
+ * operator>(const OtherDerived& other)
981
+ * operator>=(const OtherDerived& other)
982
+ * operator==(const OtherDerived& other)
983
+ * operator!=(const OtherDerived& other)
984
+
985
+ They all return a tensor of boolean values.
986
+
987
+
988
+ ## Selection (select(const ThenDerived& thenTensor, const ElseDerived& elseTensor)
989
+
990
+ Selection is a coefficient-wise ternary operator that is the tensor equivalent
991
+ to the if-then-else operation.
992
+
993
+ Tensor<bool, 3> if = ...;
994
+ Tensor<float, 3> then = ...;
995
+ Tensor<float, 3> else = ...;
996
+ Tensor<float, 3> result = if.select(then, else);
997
+
998
+ The 3 arguments must be of the same dimensions, which will also be the dimension
999
+ of the result. The 'if' tensor must be of type boolean, the 'then' and the
1000
+ 'else' tensor must be of the same type, which will also be the type of the
1001
+ result.
1002
+
1003
+ Each coefficient in the result is equal to the corresponding coefficient in the
1004
+ 'then' tensor if the corresponding value in the 'if' tensor is true. If not, the
1005
+ resulting coefficient will come from the 'else' tensor.
1006
+
1007
+
1008
+ ## Contraction
1009
+
1010
+ Tensor *contractions* are a generalization of the matrix product to the
1011
+ multidimensional case.
1012
+
1013
+ // Create 2 matrices using tensors of rank 2
1014
+ Eigen::Tensor<int, 2> a(2, 3);
1015
+ a.setValues({{1, 2, 3}, {6, 5, 4}});
1016
+ Eigen::Tensor<int, 2> b(3, 2);
1017
+ b.setValues({{1, 2}, {4, 5}, {5, 6}});
1018
+
1019
+ // Compute the traditional matrix product
1020
+ Eigen::array<Eigen::IndexPair<int>, 1> product_dims = { Eigen::IndexPair<int>(1, 0) };
1021
+ Eigen::Tensor<int, 2> AB = a.contract(b, product_dims);
1022
+
1023
+ // Compute the product of the transpose of the matrices
1024
+ Eigen::array<Eigen::IndexPair<int>, 1> transposed_product_dims = { Eigen::IndexPair<int>(0, 1) };
1025
+ Eigen::Tensor<int, 2> AtBt = a.contract(b, transposed_product_dims);
1026
+
1027
+ // Contraction to scalar value using a double contraction.
1028
+ // First coordinate of both tensors are contracted as well as both second coordinates, i.e., this computes the sum of the squares of the elements.
1029
+ Eigen::array<Eigen::IndexPair<int>, 2> double_contraction_product_dims = { Eigen::IndexPair<int>(0, 0), Eigen::IndexPair<int>(1, 1) };
1030
+ Eigen::Tensor<int, 0> AdoubleContractedA = a.contract(a, double_contraction_product_dims);
1031
+
1032
+ // Extracting the scalar value of the tensor contraction for further usage
1033
+ int value = AdoubleContractedA(0);
1034
+
1035
+ ## Reduction Operations
1036
+
1037
+ A *Reduction* operation returns a tensor with fewer dimensions than the
1038
+ original tensor. The values in the returned tensor are computed by applying a
1039
+ *reduction operator* to slices of values from the original tensor. You specify
1040
+ the dimensions along which the slices are made.
1041
+
1042
+ The Eigen Tensor library provides a set of predefined reduction operators such
1043
+ as `maximum()` and `sum()` and lets you define additional operators by
1044
+ implementing a few methods from a reductor template.
1045
+
1046
+ ### Reduction Dimensions
1047
+
1048
+ All reduction operations take a single parameter of type
1049
+ `<TensorType>::``Dimensions` which can always be specified as an array of
1050
+ ints. These are called the "reduction dimensions." The values are the indices
1051
+ of the dimensions of the input tensor over which the reduction is done. The
1052
+ parameter can have at most as many element as the rank of the input tensor;
1053
+ each element must be less than the tensor rank, as it indicates one of the
1054
+ dimensions to reduce.
1055
+
1056
+ Each dimension of the input tensor should occur at most once in the reduction
1057
+ dimensions as the implementation does not remove duplicates.
1058
+
1059
+ The order of the values in the reduction dimensions does not affect the
1060
+ results, but the code may execute faster if you list the dimensions in
1061
+ increasing order.
1062
+
1063
+ Example: Reduction along one dimension.
1064
+
1065
+ // Create a tensor of 2 dimensions
1066
+ Eigen::Tensor<int, 2> a(2, 3);
1067
+ a.setValues({{1, 2, 3}, {6, 5, 4}});
1068
+ // Reduce it along the second dimension (1)...
1069
+ Eigen::array<int, 1> dims({1 /* dimension to reduce */});
1070
+ // ...using the "maximum" operator.
1071
+ // The result is a tensor with one dimension. The size of
1072
+ // that dimension is the same as the first (non-reduced) dimension of a.
1073
+ Eigen::Tensor<int, 1> b = a.maximum(dims);
1074
+ cout << "a" << endl << a << endl << endl;
1075
+ cout << "b" << endl << b << endl << endl;
1076
+ =>
1077
+ a
1078
+ 1 2 3
1079
+ 6 5 4
1080
+
1081
+ b
1082
+ 3
1083
+ 6
1084
+
1085
+ Example: Reduction along two dimensions.
1086
+
1087
+ Eigen::Tensor<float, 3, Eigen::ColMajor> a(2, 3, 4);
1088
+ a.setValues({{{0.0f, 1.0f, 2.0f, 3.0f},
1089
+ {7.0f, 6.0f, 5.0f, 4.0f},
1090
+ {8.0f, 9.0f, 10.0f, 11.0f}},
1091
+ {{12.0f, 13.0f, 14.0f, 15.0f},
1092
+ {19.0f, 18.0f, 17.0f, 16.0f},
1093
+ {20.0f, 21.0f, 22.0f, 23.0f}}});
1094
+ // The tensor a has 3 dimensions. We reduce along the
1095
+ // first 2, resulting in a tensor with a single dimension
1096
+ // of size 4 (the last dimension of a.)
1097
+ // Note that we pass the array of reduction dimensions
1098
+ // directly to the maximum() call.
1099
+ Eigen::Tensor<float, 1, Eigen::ColMajor> b =
1100
+ a.maximum(Eigen::array<int, 2>({0, 1}));
1101
+ cout << "b" << endl << b << endl << endl;
1102
+ =>
1103
+ b
1104
+ 20
1105
+ 21
1106
+ 22
1107
+ 23
1108
+
1109
+ #### Reduction along all dimensions
1110
+
1111
+ As a special case, if you pass no parameter to a reduction operation the
1112
+ original tensor is reduced along *all* its dimensions. The result is a
1113
+ scalar, represented as a zero-dimension tensor.
1114
+
1115
+ Eigen::Tensor<float, 3> a(2, 3, 4);
1116
+ a.setValues({{{0.0f, 1.0f, 2.0f, 3.0f},
1117
+ {7.0f, 6.0f, 5.0f, 4.0f},
1118
+ {8.0f, 9.0f, 10.0f, 11.0f}},
1119
+ {{12.0f, 13.0f, 14.0f, 15.0f},
1120
+ {19.0f, 18.0f, 17.0f, 16.0f},
1121
+ {20.0f, 21.0f, 22.0f, 23.0f}}});
1122
+ // Reduce along all dimensions using the sum() operator.
1123
+ Eigen::Tensor<float, 0> b = a.sum();
1124
+ cout << "b" << endl << b << endl << endl;
1125
+ =>
1126
+ b
1127
+ 276
1128
+
1129
+
1130
+ ### <Operation> sum(const Dimensions& new_dims)
1131
+ ### <Operation> sum()
1132
+
1133
+ Reduce a tensor using the sum() operator. The resulting values
1134
+ are the sum of the reduced values.
1135
+
1136
+ ### <Operation> mean(const Dimensions& new_dims)
1137
+ ### <Operation> mean()
1138
+
1139
+ Reduce a tensor using the mean() operator. The resulting values
1140
+ are the mean of the reduced values.
1141
+
1142
+ ### <Operation> maximum(const Dimensions& new_dims)
1143
+ ### <Operation> maximum()
1144
+
1145
+ Reduce a tensor using the maximum() operator. The resulting values are the
1146
+ largest of the reduced values.
1147
+
1148
+ ### <Operation> minimum(const Dimensions& new_dims)
1149
+ ### <Operation> minimum()
1150
+
1151
+ Reduce a tensor using the minimum() operator. The resulting values
1152
+ are the smallest of the reduced values.
1153
+
1154
+ ### <Operation> prod(const Dimensions& new_dims)
1155
+ ### <Operation> prod()
1156
+
1157
+ Reduce a tensor using the prod() operator. The resulting values
1158
+ are the product of the reduced values.
1159
+
1160
+ ### <Operation> all(const Dimensions& new_dims)
1161
+ ### <Operation> all()
1162
+ Reduce a tensor using the all() operator. Casts tensor to bool and then checks
1163
+ whether all elements are true. Runs through all elements rather than
1164
+ short-circuiting, so may be significantly inefficient.
1165
+
1166
+ ### <Operation> any(const Dimensions& new_dims)
1167
+ ### <Operation> any()
1168
+ Reduce a tensor using the any() operator. Casts tensor to bool and then checks
1169
+ whether any element is true. Runs through all elements rather than
1170
+ short-circuiting, so may be significantly inefficient.
1171
+
1172
+
1173
+ ### <Operation> reduce(const Dimensions& new_dims, const Reducer& reducer)
1174
+
1175
+ Reduce a tensor using a user-defined reduction operator. See `SumReducer`
1176
+ in TensorFunctors.h for information on how to implement a reduction operator.
1177
+
1178
+
1179
+ ## Trace
1180
+
1181
+ A *Trace* operation returns a tensor with fewer dimensions than the original
1182
+ tensor. It returns a tensor whose elements are the sum of the elements of the
1183
+ original tensor along the main diagonal for a list of specified dimensions, the
1184
+ "trace dimensions". Similar to the `Reduction Dimensions`, the trace dimensions
1185
+ are passed as an input parameter to the operation, are of type `<TensorType>::``Dimensions`
1186
+ , and have the same requirements when passed as an input parameter. In addition,
1187
+ the trace dimensions must have the same size.
1188
+
1189
+ Example: Trace along 2 dimensions.
1190
+
1191
+ // Create a tensor of 3 dimensions
1192
+ Eigen::Tensor<int, 3> a(2, 2, 3);
1193
+ a.setValues({{{1, 2, 3}, {4, 5, 6}}, {{7, 8, 9}, {10, 11, 12}}});
1194
+ // Specify the dimensions along which the trace will be computed.
1195
+ // In this example, the trace can only be computed along the dimensions
1196
+ // with indices 0 and 1
1197
+ Eigen::array<int, 2> dims({0, 1});
1198
+ // The output tensor contains all but the trace dimensions.
1199
+ Tensor<int, 1> a_trace = a.trace(dims);
1200
+ cout << "a_trace:" << endl;
1201
+ cout << a_trace << endl;
1202
+ =>
1203
+ a_trace:
1204
+ 11
1205
+ 13
1206
+ 15
1207
+
1208
+
1209
+ ### <Operation> trace(const Dimensions& new_dims)
1210
+ ### <Operation> trace()
1211
+
1212
+ As a special case, if no parameter is passed to the operation, trace is computed
1213
+ along *all* dimensions of the input tensor.
1214
+
1215
+ Example: Trace along all dimensions.
1216
+
1217
+ // Create a tensor of 3 dimensions, with all dimensions having the same size.
1218
+ Eigen::Tensor<int, 3> a(3, 3, 3);
1219
+ a.setValues({{{1, 2, 3}, {4, 5, 6}, {7, 8, 9}},
1220
+ {{10, 11, 12}, {13, 14, 15}, {16, 17, 18}},
1221
+ {{19, 20, 21}, {22, 23, 24}, {25, 26, 27}}});
1222
+ // Result is a zero dimension tensor
1223
+ Tensor<int, 0> a_trace = a.trace();
1224
+ cout<<"a_trace:"<<endl;
1225
+ cout<<a_trace<<endl;
1226
+ =>
1227
+ a_trace:
1228
+ 42
1229
+
1230
+
1231
+ ## Scan Operations
1232
+
1233
+ A *Scan* operation returns a tensor with the same dimensions as the original
1234
+ tensor. The operation performs an inclusive scan along the specified
1235
+ axis, which means it computes a running total along the axis for a given
1236
+ reduction operation.
1237
+ If the reduction operation corresponds to summation, then this computes the
1238
+ prefix sum of the tensor along the given axis.
1239
+
1240
+ Example:
1241
+ dd a comment to this line
1242
+
1243
+ // Create a tensor of 2 dimensions
1244
+ Eigen::Tensor<int, 2> a(2, 3);
1245
+ a.setValues({{1, 2, 3}, {4, 5, 6}});
1246
+ // Scan it along the second dimension (1) using summation
1247
+ Eigen::Tensor<int, 2> b = a.cumsum(1);
1248
+ // The result is a tensor with the same size as the input
1249
+ cout << "a" << endl << a << endl << endl;
1250
+ cout << "b" << endl << b << endl << endl;
1251
+ =>
1252
+ a
1253
+ 1 2 3
1254
+ 4 5 6
1255
+
1256
+ b
1257
+ 1 3 6
1258
+ 4 9 15
1259
+
1260
+ ### <Operation> cumsum(const Index& axis)
1261
+
1262
+ Perform a scan by summing consecutive entries.
1263
+
1264
+ ### <Operation> cumprod(const Index& axis)
1265
+
1266
+ Perform a scan by multiplying consecutive entries.
1267
+
1268
+
1269
+ ## Convolutions
1270
+
1271
+ ### <Operation> convolve(const Kernel& kernel, const Dimensions& dims)
1272
+
1273
+ Returns a tensor that is the output of the convolution of the input tensor with the kernel,
1274
+ along the specified dimensions of the input tensor. The dimension size for dimensions of the output tensor
1275
+ which were part of the convolution will be reduced by the formula:
1276
+ output_dim_size = input_dim_size - kernel_dim_size + 1 (requires: input_dim_size >= kernel_dim_size).
1277
+ The dimension sizes for dimensions that were not part of the convolution will remain the same.
1278
+ Performance of the convolution can depend on the length of the stride(s) of the input tensor dimension(s) along which the
1279
+ convolution is computed (the first dimension has the shortest stride for ColMajor, whereas RowMajor's shortest stride is
1280
+ for the last dimension).
1281
+
1282
+ // Compute convolution along the second and third dimension.
1283
+ Tensor<float, 4, DataLayout> input(3, 3, 7, 11);
1284
+ Tensor<float, 2, DataLayout> kernel(2, 2);
1285
+ Tensor<float, 4, DataLayout> output(3, 2, 6, 11);
1286
+ input.setRandom();
1287
+ kernel.setRandom();
1288
+
1289
+ Eigen::array<ptrdiff_t, 2> dims({1, 2}); // Specify second and third dimension for convolution.
1290
+ output = input.convolve(kernel, dims);
1291
+
1292
+ for (int i = 0; i < 3; ++i) {
1293
+ for (int j = 0; j < 2; ++j) {
1294
+ for (int k = 0; k < 6; ++k) {
1295
+ for (int l = 0; l < 11; ++l) {
1296
+ const float result = output(i,j,k,l);
1297
+ const float expected = input(i,j+0,k+0,l) * kernel(0,0) +
1298
+ input(i,j+1,k+0,l) * kernel(1,0) +
1299
+ input(i,j+0,k+1,l) * kernel(0,1) +
1300
+ input(i,j+1,k+1,l) * kernel(1,1);
1301
+ VERIFY_IS_APPROX(result, expected);
1302
+ }
1303
+ }
1304
+ }
1305
+ }
1306
+
1307
+
1308
+ ## Geometrical Operations
1309
+
1310
+ These operations return a Tensor with different dimensions than the original
1311
+ Tensor. They can be used to access slices of tensors, see them with different
1312
+ dimensions, or pad tensors with additional data.
1313
+
1314
+ ### <Operation> reshape(const Dimensions& new_dims)
1315
+
1316
+ Returns a view of the input tensor that has been reshaped to the specified
1317
+ new dimensions. The argument new_dims is an array of Index values. The
1318
+ rank of the resulting tensor is equal to the number of elements in new_dims.
1319
+
1320
+ The product of all the sizes in the new dimension array must be equal to
1321
+ the number of elements in the input tensor.
1322
+
1323
+ // Increase the rank of the input tensor by introducing a new dimension
1324
+ // of size 1.
1325
+ Tensor<float, 2> input(7, 11);
1326
+ array<int, 3> three_dims{{7, 11, 1}};
1327
+ Tensor<float, 3> result = input.reshape(three_dims);
1328
+
1329
+ // Decrease the rank of the input tensor by merging 2 dimensions;
1330
+ array<int, 1> one_dim{{7 * 11}};
1331
+ Tensor<float, 1> result = input.reshape(one_dim);
1332
+
1333
+ This operation does not move any data in the input tensor, so the resulting
1334
+ contents of a reshaped Tensor depend on the data layout of the original Tensor.
1335
+
1336
+ For example this is what happens when you `reshape()` a 2D ColMajor tensor
1337
+ to one dimension:
1338
+
1339
+ Eigen::Tensor<float, 2, Eigen::ColMajor> a(2, 3);
1340
+ a.setValues({{0.0f, 100.0f, 200.0f}, {300.0f, 400.0f, 500.0f}});
1341
+ Eigen::array<Eigen::DenseIndex, 1> one_dim({3 * 2});
1342
+ Eigen::Tensor<float, 1, Eigen::ColMajor> b = a.reshape(one_dim);
1343
+ cout << "b" << endl << b << endl;
1344
+ =>
1345
+ b
1346
+ 0
1347
+ 300
1348
+ 100
1349
+ 400
1350
+ 200
1351
+ 500
1352
+
1353
+ This is what happens when the 2D Tensor is RowMajor:
1354
+
1355
+ Eigen::Tensor<float, 2, Eigen::RowMajor> a(2, 3);
1356
+ a.setValues({{0.0f, 100.0f, 200.0f}, {300.0f, 400.0f, 500.0f}});
1357
+ Eigen::array<Eigen::DenseIndex, 1> one_dim({3 * 2});
1358
+ Eigen::Tensor<float, 1, Eigen::RowMajor> b = a.reshape(one_dim);
1359
+ cout << "b" << endl << b << endl;
1360
+ =>
1361
+ b
1362
+ 0
1363
+ 100
1364
+ 200
1365
+ 300
1366
+ 400
1367
+ 500
1368
+
1369
+ The reshape operation is a lvalue. In other words, it can be used on the left
1370
+ side of the assignment operator.
1371
+
1372
+ The previous example can be rewritten as follow:
1373
+
1374
+ Eigen::Tensor<float, 2, Eigen::ColMajor> a(2, 3);
1375
+ a.setValues({{0.0f, 100.0f, 200.0f}, {300.0f, 400.0f, 500.0f}});
1376
+ Eigen::array<Eigen::DenseIndex, 2> two_dim({2, 3});
1377
+ Eigen::Tensor<float, 1, Eigen::ColMajor> b(6);
1378
+ b.reshape(two_dim) = a;
1379
+ cout << "b" << endl << b << endl;
1380
+ =>
1381
+ b
1382
+ 0
1383
+ 300
1384
+ 100
1385
+ 400
1386
+ 200
1387
+ 500
1388
+
1389
+ Note that "b" itself was not reshaped but that instead the assignment is done to
1390
+ the reshape view of b.
1391
+
1392
+
1393
+ ### <Operation> shuffle(const Shuffle& shuffle)
1394
+
1395
+ Returns a copy of the input tensor whose dimensions have been
1396
+ reordered according to the specified permutation. The argument shuffle
1397
+ is an array of Index values. Its size is the rank of the input
1398
+ tensor. It must contain a permutation of 0, 1, ..., rank - 1. The i-th
1399
+ dimension of the output tensor equals to the size of the shuffle[i]-th
1400
+ dimension of the input tensor. For example:
1401
+
1402
+ // Shuffle all dimensions to the left by 1.
1403
+ Tensor<float, 3> input(20, 30, 50);
1404
+ // ... set some values in input.
1405
+ Tensor<float, 3> output = input.shuffle({1, 2, 0})
1406
+
1407
+ eigen_assert(output.dimension(0) == 30);
1408
+ eigen_assert(output.dimension(1) == 50);
1409
+ eigen_assert(output.dimension(2) == 20);
1410
+
1411
+ Indices into the output tensor are shuffled accordingly to formulate
1412
+ indices into the input tensor. For example, one can assert in the above
1413
+ code snippet that:
1414
+
1415
+ eigen_assert(output(3, 7, 11) == input(11, 3, 7));
1416
+
1417
+ In general, one can assert that
1418
+
1419
+ eigen_assert(output(..., indices[shuffle[i]], ...) ==
1420
+ input(..., indices[i], ...))
1421
+
1422
+ The shuffle operation results in a lvalue, which means that it can be assigned
1423
+ to. In other words, it can be used on the left side of the assignment operator.
1424
+
1425
+ Let's rewrite the previous example to take advantage of this feature:
1426
+
1427
+ // Shuffle all dimensions to the left by 1.
1428
+ Tensor<float, 3> input(20, 30, 50);
1429
+ // ... set some values in input.
1430
+ Tensor<float, 3> output(30, 50, 20);
1431
+ output.shuffle({2, 0, 1}) = input;
1432
+
1433
+
1434
+ ### <Operation> stride(const Strides& strides)
1435
+
1436
+ Returns a view of the input tensor that strides (skips stride-1
1437
+ elements) along each of the dimensions. The argument strides is an
1438
+ array of Index values. The dimensions of the resulting tensor are
1439
+ ceil(input_dimensions[i] / strides[i]).
1440
+
1441
+ For example this is what happens when you `stride()` a 2D tensor:
1442
+
1443
+ Eigen::Tensor<int, 2> a(4, 3);
1444
+ a.setValues({{0, 100, 200}, {300, 400, 500}, {600, 700, 800}, {900, 1000, 1100}});
1445
+ Eigen::array<Eigen::DenseIndex, 2> strides({3, 2});
1446
+ Eigen::Tensor<int, 2> b = a.stride(strides);
1447
+ cout << "b" << endl << b << endl;
1448
+ =>
1449
+ b
1450
+ 0 200
1451
+ 900 1100
1452
+
1453
+ It is possible to assign a tensor to a stride:
1454
+ Tensor<float, 3> input(20, 30, 50);
1455
+ // ... set some values in input.
1456
+ Tensor<float, 3> output(40, 90, 200);
1457
+ output.stride({2, 3, 4}) = input;
1458
+
1459
+
1460
+ ### <Operation> slice(const StartIndices& offsets, const Sizes& extents)
1461
+
1462
+ Returns a sub-tensor of the given tensor. For each dimension i, the slice is
1463
+ made of the coefficients stored between offset[i] and offset[i] + extents[i] in
1464
+ the input tensor.
1465
+
1466
+ Eigen::Tensor<int, 2> a(4, 3);
1467
+ a.setValues({{0, 100, 200}, {300, 400, 500},
1468
+ {600, 700, 800}, {900, 1000, 1100}});
1469
+ Eigen::array<int, 2> offsets = {1, 0};
1470
+ Eigen::array<int, 2> extents = {2, 2};
1471
+ Eigen::Tensor<int, 1> slice = a.slice(offsets, extents);
1472
+ cout << "a" << endl << a << endl;
1473
+ =>
1474
+ a
1475
+ 0 100 200
1476
+ 300 400 500
1477
+ 600 700 800
1478
+ 900 1000 1100
1479
+ cout << "slice" << endl << slice << endl;
1480
+ =>
1481
+ slice
1482
+ 300 400
1483
+ 600 700
1484
+
1485
+
1486
+ ### <Operation> chip(const Index offset, const Index dim)
1487
+
1488
+ A chip is a special kind of slice. It is the subtensor at the given offset in
1489
+ the dimension dim. The returned tensor has one fewer dimension than the input
1490
+ tensor: the dimension dim is removed.
1491
+
1492
+ For example, a matrix chip would be either a row or a column of the input
1493
+ matrix.
1494
+
1495
+ Eigen::Tensor<int, 2> a(4, 3);
1496
+ a.setValues({{0, 100, 200}, {300, 400, 500},
1497
+ {600, 700, 800}, {900, 1000, 1100}});
1498
+ Eigen::Tensor<int, 1> row_3 = a.chip(2, 0);
1499
+ Eigen::Tensor<int, 1> col_2 = a.chip(1, 1);
1500
+ cout << "a" << endl << a << endl;
1501
+ =>
1502
+ a
1503
+ 0 100 200
1504
+ 300 400 500
1505
+ 600 700 800
1506
+ 900 1000 1100
1507
+ cout << "row_3" << endl << row_3 << endl;
1508
+ =>
1509
+ row_3
1510
+ 600 700 800
1511
+ cout << "col_2" << endl << col_2 << endl;
1512
+ =>
1513
+ col_2
1514
+ 100 400 700 1000
1515
+
1516
+ It is possible to assign values to a tensor chip since the chip operation is a
1517
+ lvalue. For example:
1518
+
1519
+ Eigen::Tensor<int, 1> a(3);
1520
+ a.setValues({{100, 200, 300}});
1521
+ Eigen::Tensor<int, 2> b(2, 3);
1522
+ b.setZero();
1523
+ b.chip(0, 0) = a;
1524
+ cout << "a" << endl << a << endl;
1525
+ =>
1526
+ a
1527
+ 100
1528
+ 200
1529
+ 300
1530
+ cout << "b" << endl << b << endl;
1531
+ =>
1532
+ b
1533
+ 100 200 300
1534
+ 0 0 0
1535
+
1536
+
1537
+ ### <Operation> reverse(const ReverseDimensions& reverse)
1538
+
1539
+ Returns a view of the input tensor that reverses the order of the coefficients
1540
+ along a subset of the dimensions. The argument reverse is an array of boolean
1541
+ values that indicates whether or not the order of the coefficients should be
1542
+ reversed along each of the dimensions. This operation preserves the dimensions
1543
+ of the input tensor.
1544
+
1545
+ For example this is what happens when you `reverse()` the first dimension
1546
+ of a 2D tensor:
1547
+
1548
+ Eigen::Tensor<int, 2> a(4, 3);
1549
+ a.setValues({{0, 100, 200}, {300, 400, 500},
1550
+ {600, 700, 800}, {900, 1000, 1100}});
1551
+ Eigen::array<bool, 2> reverse({true, false});
1552
+ Eigen::Tensor<int, 2> b = a.reverse(reverse);
1553
+ cout << "a" << endl << a << endl << "b" << endl << b << endl;
1554
+ =>
1555
+ a
1556
+ 0 100 200
1557
+ 300 400 500
1558
+ 600 700 800
1559
+ 900 1000 1100
1560
+ b
1561
+ 900 1000 1100
1562
+ 600 700 800
1563
+ 300 400 500
1564
+ 0 100 200
1565
+
1566
+
1567
+ ### <Operation> broadcast(const Broadcast& broadcast)
1568
+
1569
+ Returns a view of the input tensor in which the input is replicated one to many
1570
+ times.
1571
+ The broadcast argument specifies how many copies of the input tensor need to be
1572
+ made in each of the dimensions.
1573
+
1574
+ Eigen::Tensor<int, 2> a(2, 3);
1575
+ a.setValues({{0, 100, 200}, {300, 400, 500}});
1576
+ Eigen::array<int, 2> bcast({3, 2});
1577
+ Eigen::Tensor<int, 2> b = a.broadcast(bcast);
1578
+ cout << "a" << endl << a << endl << "b" << endl << b << endl;
1579
+ =>
1580
+ a
1581
+ 0 100 200
1582
+ 300 400 500
1583
+ b
1584
+ 0 100 200 0 100 200
1585
+ 300 400 500 300 400 500
1586
+ 0 100 200 0 100 200
1587
+ 300 400 500 300 400 500
1588
+ 0 100 200 0 100 200
1589
+ 300 400 500 300 400 500
1590
+
1591
+ ### <Operation> concatenate(const OtherDerived& other, Axis axis)
1592
+
1593
+ TODO
1594
+
1595
+ ### <Operation> pad(const PaddingDimensions& padding)
1596
+
1597
+ Returns a view of the input tensor in which the input is padded with zeros.
1598
+
1599
+ Eigen::Tensor<int, 2> a(2, 3);
1600
+ a.setValues({{0, 100, 200}, {300, 400, 500}});
1601
+ Eigen::array<pair<int, int>, 2> paddings;
1602
+ paddings[0] = make_pair(0, 1);
1603
+ paddings[1] = make_pair(2, 3);
1604
+ Eigen::Tensor<int, 2> b = a.pad(paddings);
1605
+ cout << "a" << endl << a << endl << "b" << endl << b << endl;
1606
+ =>
1607
+ a
1608
+ 0 100 200
1609
+ 300 400 500
1610
+ b
1611
+ 0 0 0 0
1612
+ 0 0 0 0
1613
+ 0 100 200 0
1614
+ 300 400 500 0
1615
+ 0 0 0 0
1616
+ 0 0 0 0
1617
+ 0 0 0 0
1618
+
1619
+
1620
+ ### <Operation> extract_patches(const PatchDims& patch_dims)
1621
+
1622
+ Returns a tensor of coefficient patches extracted from the input tensor, where
1623
+ each patch is of dimension specified by 'patch_dims'. The returned tensor has
1624
+ one greater dimension than the input tensor, which is used to index each patch.
1625
+ The patch index in the output tensor depends on the data layout of the input
1626
+ tensor: the patch index is the last dimension ColMajor layout, and the first
1627
+ dimension in RowMajor layout.
1628
+
1629
+ For example, given the following input tensor:
1630
+
1631
+ Eigen::Tensor<float, 2, DataLayout> tensor(3,4);
1632
+ tensor.setValues({{0.0f, 1.0f, 2.0f, 3.0f},
1633
+ {4.0f, 5.0f, 6.0f, 7.0f},
1634
+ {8.0f, 9.0f, 10.0f, 11.0f}});
1635
+
1636
+ cout << "tensor: " << endl << tensor << endl;
1637
+ =>
1638
+ tensor:
1639
+ 0 1 2 3
1640
+ 4 5 6 7
1641
+ 8 9 10 11
1642
+
1643
+ Six 2x2 patches can be extracted and indexed using the following code:
1644
+
1645
+ Eigen::Tensor<float, 3, DataLayout> patch;
1646
+ Eigen::array<ptrdiff_t, 2> patch_dims;
1647
+ patch_dims[0] = 2;
1648
+ patch_dims[1] = 2;
1649
+ patch = tensor.extract_patches(patch_dims);
1650
+ for (int k = 0; k < 6; ++k) {
1651
+ cout << "patch index: " << k << endl;
1652
+ for (int i = 0; i < 2; ++i) {
1653
+ for (int j = 0; j < 2; ++j) {
1654
+ if (DataLayout == ColMajor) {
1655
+ cout << patch(i, j, k) << " ";
1656
+ } else {
1657
+ cout << patch(k, i, j) << " ";
1658
+ }
1659
+ }
1660
+ cout << endl;
1661
+ }
1662
+ }
1663
+
1664
+ This code results in the following output when the data layout is ColMajor:
1665
+
1666
+ patch index: 0
1667
+ 0 1
1668
+ 4 5
1669
+ patch index: 1
1670
+ 4 5
1671
+ 8 9
1672
+ patch index: 2
1673
+ 1 2
1674
+ 5 6
1675
+ patch index: 3
1676
+ 5 6
1677
+ 9 10
1678
+ patch index: 4
1679
+ 2 3
1680
+ 6 7
1681
+ patch index: 5
1682
+ 6 7
1683
+ 10 11
1684
+
1685
+ This code results in the following output when the data layout is RowMajor:
1686
+ (NOTE: the set of patches is the same as in ColMajor, but are indexed differently).
1687
+
1688
+ patch index: 0
1689
+ 0 1
1690
+ 4 5
1691
+ patch index: 1
1692
+ 1 2
1693
+ 5 6
1694
+ patch index: 2
1695
+ 2 3
1696
+ 6 7
1697
+ patch index: 3
1698
+ 4 5
1699
+ 8 9
1700
+ patch index: 4
1701
+ 5 6
1702
+ 9 10
1703
+ patch index: 5
1704
+ 6 7
1705
+ 10 11
1706
+
1707
+ ### <Operation> extract_image_patches(const Index patch_rows, const Index patch_cols, const Index row_stride, const Index col_stride, const PaddingType padding_type)
1708
+
1709
+ Returns a tensor of coefficient image patches extracted from the input tensor,
1710
+ which is expected to have dimensions ordered as follows (depending on the data
1711
+ layout of the input tensor, and the number of additional dimensions 'N'):
1712
+
1713
+ *) ColMajor
1714
+ 1st dimension: channels (of size d)
1715
+ 2nd dimension: rows (of size r)
1716
+ 3rd dimension: columns (of size c)
1717
+ 4th-Nth dimension: time (for video) or batch (for bulk processing).
1718
+
1719
+ *) RowMajor (reverse order of ColMajor)
1720
+ 1st-Nth dimension: time (for video) or batch (for bulk processing).
1721
+ N+1'th dimension: columns (of size c)
1722
+ N+2'th dimension: rows (of size r)
1723
+ N+3'th dimension: channels (of size d)
1724
+
1725
+ The returned tensor has one greater dimension than the input tensor, which is
1726
+ used to index each patch. The patch index in the output tensor depends on the
1727
+ data layout of the input tensor: the patch index is the 4'th dimension in
1728
+ ColMajor layout, and the 4'th from the last dimension in RowMajor layout.
1729
+
1730
+ For example, given the following input tensor with the following dimension
1731
+ sizes:
1732
+ *) depth: 2
1733
+ *) rows: 3
1734
+ *) columns: 5
1735
+ *) batch: 7
1736
+
1737
+ Tensor<float, 4> tensor(2,3,5,7);
1738
+ Tensor<float, 4, RowMajor> tensor_row_major = tensor.swap_layout();
1739
+
1740
+ 2x2 image patches can be extracted and indexed using the following code:
1741
+
1742
+ *) 2D patch: ColMajor (patch indexed by second-to-last dimension)
1743
+
1744
+ Tensor<float, 5> twod_patch;
1745
+ twod_patch = tensor.extract_image_patches<2, 2>();
1746
+ // twod_patch.dimension(0) == 2
1747
+ // twod_patch.dimension(1) == 2
1748
+ // twod_patch.dimension(2) == 2
1749
+ // twod_patch.dimension(3) == 3*5
1750
+ // twod_patch.dimension(4) == 7
1751
+
1752
+ *) 2D patch: RowMajor (patch indexed by the second dimension)
1753
+
1754
+ Tensor<float, 5, RowMajor> twod_patch_row_major;
1755
+ twod_patch_row_major = tensor_row_major.extract_image_patches<2, 2>();
1756
+ // twod_patch_row_major.dimension(0) == 7
1757
+ // twod_patch_row_major.dimension(1) == 3*5
1758
+ // twod_patch_row_major.dimension(2) == 2
1759
+ // twod_patch_row_major.dimension(3) == 2
1760
+ // twod_patch_row_major.dimension(4) == 2
1761
+
1762
+ ## Special Operations
1763
+
1764
+ ### <Operation> cast<T>()
1765
+
1766
+ Returns a tensor of type T with the same dimensions as the original tensor.
1767
+ The returned tensor contains the values of the original tensor converted to
1768
+ type T.
1769
+
1770
+ Eigen::Tensor<float, 2> a(2, 3);
1771
+ Eigen::Tensor<int, 2> b = a.cast<int>();
1772
+
1773
+ This can be useful for example if you need to do element-wise division of
1774
+ Tensors of integers. This is not currently supported by the Tensor library
1775
+ but you can easily cast the tensors to floats to do the division:
1776
+
1777
+ Eigen::Tensor<int, 2> a(2, 3);
1778
+ a.setValues({{0, 1, 2}, {3, 4, 5}});
1779
+ Eigen::Tensor<int, 2> b =
1780
+ (a.cast<float>() / a.constant(2).cast<float>()).cast<int>();
1781
+ cout << "a" << endl << a << endl << endl;
1782
+ cout << "b" << endl << b << endl << endl;
1783
+ =>
1784
+ a
1785
+ 0 1 2
1786
+ 3 4 5
1787
+
1788
+ b
1789
+ 0 0 1
1790
+ 1 2 2
1791
+
1792
+
1793
+ ### <Operation> eval()
1794
+
1795
+ TODO
1796
+
1797
+
1798
+ ## Representation of scalar values
1799
+
1800
+ Scalar values are often represented by tensors of size 1 and rank 0.For example
1801
+ Tensor<T, N>::maximum() currently returns a Tensor<T, 0>. Similarly, the inner
1802
+ product of 2 1d tensors (through contractions) returns a 0d tensor.
1803
+
1804
+ ## Limitations
1805
+
1806
+ * The number of tensor dimensions is currently limited to 250 when using a
1807
+ compiler that supports cxx11. It is limited to only 5 for older compilers.
1808
+ * The IndexList class requires a cxx11 compliant compiler. You can use an
1809
+ array of indices instead if you don't have access to a modern compiler.
1810
+ * On GPUs only floating point values are properly tested and optimized for.
1811
+ * Complex and integer values are known to be broken on GPUs. If you try to use
1812
+ them you'll most likely end up triggering a static assertion failure such as
1813
+ EIGEN_STATIC_ASSERT(packetSize > 1, YOU_MADE_A_PROGRAMMING_MISTAKE)
1814
+
1815
+