tensor_stream 1.0.0 → 1.0.1
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/.gitignore +1 -0
- data/.rubocop.yml +1 -0
- data/Gemfile +1 -1
- data/LICENSE.txt +1 -1
- data/README.md +34 -34
- data/Rakefile +3 -3
- data/USAGE_GUIDE.md +235 -0
- data/bin/stubgen +20 -0
- data/exe/model_utils +2 -2
- data/lib/tensor_stream.rb +45 -44
- data/lib/tensor_stream/constant.rb +2 -2
- data/lib/tensor_stream/control_flow.rb +1 -1
- data/lib/tensor_stream/debugging/debugging.rb +2 -2
- data/lib/tensor_stream/dynamic_stitch.rb +2 -2
- data/lib/tensor_stream/evaluator/base_evaluator.rb +18 -18
- data/lib/tensor_stream/evaluator/buffer.rb +1 -1
- data/lib/tensor_stream/evaluator/evaluator.rb +2 -2
- data/lib/tensor_stream/evaluator/operation_helpers/array_ops_helper.rb +41 -41
- data/lib/tensor_stream/evaluator/operation_helpers/math_helper.rb +1 -1
- data/lib/tensor_stream/evaluator/ruby/array_ops.rb +39 -39
- data/lib/tensor_stream/evaluator/ruby/check_ops.rb +2 -2
- data/lib/tensor_stream/evaluator/ruby/images_ops.rb +18 -18
- data/lib/tensor_stream/evaluator/ruby/math_ops.rb +13 -14
- data/lib/tensor_stream/evaluator/ruby/nn_ops.rb +33 -36
- data/lib/tensor_stream/evaluator/ruby/random_ops.rb +20 -21
- data/lib/tensor_stream/evaluator/ruby_evaluator.rb +36 -49
- data/lib/tensor_stream/exceptions.rb +1 -1
- data/lib/tensor_stream/generated_stub/ops.rb +691 -0
- data/lib/tensor_stream/generated_stub/stub_file.erb +24 -0
- data/lib/tensor_stream/graph.rb +18 -18
- data/lib/tensor_stream/graph_builder.rb +17 -17
- data/lib/tensor_stream/graph_deserializers/protobuf.rb +97 -97
- data/lib/tensor_stream/graph_deserializers/yaml_loader.rb +1 -1
- data/lib/tensor_stream/graph_keys.rb +3 -3
- data/lib/tensor_stream/graph_serializers/graphml.rb +33 -33
- data/lib/tensor_stream/graph_serializers/packer.rb +23 -23
- data/lib/tensor_stream/graph_serializers/pbtext.rb +38 -42
- data/lib/tensor_stream/graph_serializers/serializer.rb +3 -2
- data/lib/tensor_stream/graph_serializers/yaml.rb +5 -5
- data/lib/tensor_stream/helpers/infer_shape.rb +56 -56
- data/lib/tensor_stream/helpers/op_helper.rb +8 -9
- data/lib/tensor_stream/helpers/string_helper.rb +15 -15
- data/lib/tensor_stream/helpers/tensor_mixins.rb +17 -17
- data/lib/tensor_stream/images.rb +1 -1
- data/lib/tensor_stream/initializer.rb +1 -1
- data/lib/tensor_stream/math_gradients.rb +28 -187
- data/lib/tensor_stream/monkey_patches/array.rb +1 -1
- data/lib/tensor_stream/monkey_patches/float.rb +1 -1
- data/lib/tensor_stream/monkey_patches/integer.rb +1 -1
- data/lib/tensor_stream/monkey_patches/op_patch.rb +5 -5
- data/lib/tensor_stream/monkey_patches/patch.rb +1 -1
- data/lib/tensor_stream/nn/nn_ops.rb +17 -15
- data/lib/tensor_stream/op_maker.rb +180 -0
- data/lib/tensor_stream/operation.rb +17 -17
- data/lib/tensor_stream/ops.rb +95 -384
- data/lib/tensor_stream/ops/add.rb +23 -0
- data/lib/tensor_stream/ops/argmax.rb +14 -0
- data/lib/tensor_stream/ops/argmin.rb +14 -0
- data/lib/tensor_stream/ops/case.rb +17 -0
- data/lib/tensor_stream/ops/cast.rb +15 -0
- data/lib/tensor_stream/ops/ceil.rb +15 -0
- data/lib/tensor_stream/ops/const.rb +0 -0
- data/lib/tensor_stream/ops/cos.rb +10 -0
- data/lib/tensor_stream/ops/div.rb +21 -0
- data/lib/tensor_stream/ops/equal.rb +15 -0
- data/lib/tensor_stream/ops/expand_dims.rb +17 -0
- data/lib/tensor_stream/ops/fill.rb +19 -0
- data/lib/tensor_stream/ops/floor.rb +15 -0
- data/lib/tensor_stream/ops/floor_div.rb +15 -0
- data/lib/tensor_stream/ops/greater.rb +11 -0
- data/lib/tensor_stream/ops/greater_equal.rb +11 -0
- data/lib/tensor_stream/ops/less_equal.rb +15 -0
- data/lib/tensor_stream/ops/log.rb +14 -0
- data/lib/tensor_stream/ops/mat_mul.rb +60 -0
- data/lib/tensor_stream/ops/max.rb +15 -0
- data/lib/tensor_stream/ops/min.rb +15 -0
- data/lib/tensor_stream/ops/mod.rb +23 -0
- data/lib/tensor_stream/ops/mul.rb +21 -0
- data/lib/tensor_stream/ops/negate.rb +14 -0
- data/lib/tensor_stream/ops/ones_like.rb +19 -0
- data/lib/tensor_stream/ops/pow.rb +25 -0
- data/lib/tensor_stream/ops/prod.rb +60 -0
- data/lib/tensor_stream/ops/random_uniform.rb +18 -0
- data/lib/tensor_stream/ops/range.rb +20 -0
- data/lib/tensor_stream/ops/rank.rb +13 -0
- data/lib/tensor_stream/ops/reshape.rb +24 -0
- data/lib/tensor_stream/ops/round.rb +15 -0
- data/lib/tensor_stream/ops/shape.rb +14 -0
- data/lib/tensor_stream/ops/sigmoid.rb +10 -0
- data/lib/tensor_stream/ops/sign.rb +12 -0
- data/lib/tensor_stream/ops/sin.rb +10 -0
- data/lib/tensor_stream/ops/size.rb +16 -0
- data/lib/tensor_stream/ops/sub.rb +24 -0
- data/lib/tensor_stream/ops/sum.rb +27 -0
- data/lib/tensor_stream/ops/tan.rb +12 -0
- data/lib/tensor_stream/ops/tanh.rb +10 -0
- data/lib/tensor_stream/ops/tile.rb +19 -0
- data/lib/tensor_stream/ops/zeros.rb +15 -0
- data/lib/tensor_stream/placeholder.rb +2 -2
- data/lib/tensor_stream/profile/report_tool.rb +3 -3
- data/lib/tensor_stream/session.rb +36 -38
- data/lib/tensor_stream/tensor.rb +2 -2
- data/lib/tensor_stream/tensor_shape.rb +4 -4
- data/lib/tensor_stream/train/adadelta_optimizer.rb +8 -8
- data/lib/tensor_stream/train/adagrad_optimizer.rb +3 -3
- data/lib/tensor_stream/train/adam_optimizer.rb +11 -11
- data/lib/tensor_stream/train/learning_rate_decay.rb +2 -2
- data/lib/tensor_stream/train/momentum_optimizer.rb +7 -7
- data/lib/tensor_stream/train/optimizer.rb +9 -9
- data/lib/tensor_stream/train/rmsprop_optimizer.rb +16 -16
- data/lib/tensor_stream/train/saver.rb +14 -14
- data/lib/tensor_stream/train/slot_creator.rb +6 -6
- data/lib/tensor_stream/train/utils.rb +12 -12
- data/lib/tensor_stream/trainer.rb +10 -10
- data/lib/tensor_stream/types.rb +1 -1
- data/lib/tensor_stream/utils.rb +33 -32
- data/lib/tensor_stream/utils/freezer.rb +5 -5
- data/lib/tensor_stream/variable.rb +5 -5
- data/lib/tensor_stream/variable_scope.rb +1 -1
- data/lib/tensor_stream/version.rb +1 -1
- data/samples/{iris.data → datasets/iris.data} +0 -0
- data/samples/jupyter_notebooks/linear_regression.ipynb +463 -0
- data/samples/{iris.rb → neural_networks/iris.rb} +21 -23
- data/samples/{mnist_data.rb → neural_networks/mnist_data.rb} +8 -8
- data/samples/neural_networks/raw_neural_net_sample.rb +112 -0
- data/samples/{rnn.rb → neural_networks/rnn.rb} +28 -31
- data/samples/{nearest_neighbor.rb → others/nearest_neighbor.rb} +12 -12
- data/samples/regression/linear_regression.rb +63 -0
- data/samples/{logistic_regression.rb → regression/logistic_regression.rb} +14 -16
- data/tensor_stream.gemspec +9 -8
- metadata +89 -19
- data/data_1.json +0 -4764
- data/data_2.json +0 -4764
- data/data_actual.json +0 -28
- data/data_expected.json +0 -28
- data/data_input.json +0 -28
- data/samples/error.graphml +0 -2755
- data/samples/gradient_sample.graphml +0 -1255
- data/samples/linear_regression.rb +0 -69
- data/samples/multigpu.rb +0 -73
- data/samples/raw_neural_net_sample.rb +0 -112
@@ -1,4 +1,3 @@
|
|
1
|
-
|
2
1
|
module TensorStream
|
3
2
|
# module that contains helper functions useful for ops
|
4
3
|
module OpHelper
|
@@ -7,7 +6,7 @@ module TensorStream
|
|
7
6
|
|
8
7
|
op = default_graph.add_op!(code.to_sym, *args)
|
9
8
|
if !default_graph.get_dependency_scope.nil?
|
10
|
-
i_op(:identity, op, default_graph.get_dependency_scope, name: [op.name,
|
9
|
+
i_op(:identity, op, default_graph.get_dependency_scope, name: [op.name, "tuple", "control_dependency"].join("/"))
|
11
10
|
else
|
12
11
|
op
|
13
12
|
end
|
@@ -16,10 +15,10 @@ module TensorStream
|
|
16
15
|
# same as op but with a marker that it was internal generated
|
17
16
|
def i_op(code, *args)
|
18
17
|
options = if args.last.is_a?(Hash)
|
19
|
-
|
20
|
-
|
21
|
-
|
22
|
-
|
18
|
+
args.pop
|
19
|
+
else
|
20
|
+
{}
|
21
|
+
end
|
23
22
|
|
24
23
|
args << options.merge(internal: true)
|
25
24
|
Graph.get_default_graph.add_op!(code.to_sym, *args)
|
@@ -65,8 +64,8 @@ module TensorStream
|
|
65
64
|
end
|
66
65
|
|
67
66
|
def format_source(trace)
|
68
|
-
grad_source = trace.detect { |c| c.to_s.include?(File.join(
|
69
|
-
source = trace.reject { |c| c.to_s.include?(File.join(
|
67
|
+
grad_source = trace.detect { |c| c.to_s.include?(File.join("lib", "tensor_stream", "math_gradients")) }
|
68
|
+
source = trace.reject { |c| c.to_s.include?(File.join("lib", "tensor_stream")) }.first
|
70
69
|
[grad_source, trace].compact.join("\n")
|
71
70
|
end
|
72
71
|
|
@@ -94,7 +93,7 @@ module TensorStream
|
|
94
93
|
axes_shape = i_op(:shape, axes)
|
95
94
|
|
96
95
|
TensorStream.dynamic_stitch([TensorStream.range(0, input_rank), axes],
|
97
|
-
|
96
|
+
[input_shape, i_op(:fill, axes_shape, 1)])
|
98
97
|
end
|
99
98
|
end
|
100
99
|
end
|
@@ -4,28 +4,28 @@ module TensorStream
|
|
4
4
|
module StringHelper
|
5
5
|
def camelize(string, uppercase_first_letter = true)
|
6
6
|
string = if uppercase_first_letter
|
7
|
-
|
8
|
-
|
9
|
-
|
10
|
-
|
11
|
-
string.gsub(/(?:_|(\/))([a-z\d]*)/) { "#{$1}#{$2.capitalize}" }.gsub(
|
7
|
+
string.sub(/^[a-z\d]*/) { $&.capitalize }
|
8
|
+
else
|
9
|
+
string.sub(/^(?:(?=\b|[A-Z_])|\w)/) { $&.downcase }
|
10
|
+
end
|
11
|
+
string.gsub(/(?:_|(\/))([a-z\d]*)/) { "#{$1}#{$2.capitalize}" }.gsub("/", "::")
|
12
12
|
end
|
13
13
|
|
14
14
|
def underscore(string)
|
15
|
-
string.gsub(/::/,
|
16
|
-
|
17
|
-
|
18
|
-
|
15
|
+
string.gsub(/::/, "/").
|
16
|
+
gsub(/([A-Z]+)([A-Z][a-z])/, '\1_\2').
|
17
|
+
gsub(/([a-z\d])([A-Z])/, '\1_\2').
|
18
|
+
tr("-", "_").downcase
|
19
19
|
end
|
20
20
|
|
21
21
|
def symbolize_keys(hash)
|
22
|
-
hash.map
|
22
|
+
hash.map { |k, v|
|
23
23
|
[k.to_sym, v]
|
24
|
-
|
24
|
+
}.to_h
|
25
25
|
end
|
26
26
|
|
27
27
|
def constantize(camel_cased_word)
|
28
|
-
names = camel_cased_word.split(
|
28
|
+
names = camel_cased_word.split("::")
|
29
29
|
|
30
30
|
# Trigger a built-in NameError exception including the ill-formed constant in the message.
|
31
31
|
Object.const_get(camel_cased_word) if names.empty?
|
@@ -43,11 +43,11 @@ module TensorStream
|
|
43
43
|
|
44
44
|
# Go down the ancestors to check if it is owned directly. The check
|
45
45
|
# stops when we reach Object or the end of ancestors tree.
|
46
|
-
constant = constant.ancestors.inject
|
46
|
+
constant = constant.ancestors.inject { |const, ancestor|
|
47
47
|
break const if ancestor == Object
|
48
48
|
break ancestor if ancestor.const_defined?(name, false)
|
49
49
|
const
|
50
|
-
|
50
|
+
}
|
51
51
|
|
52
52
|
# owner is in Object, so raise
|
53
53
|
constant.const_get(name, false)
|
@@ -55,4 +55,4 @@ module TensorStream
|
|
55
55
|
end
|
56
56
|
end
|
57
57
|
end
|
58
|
-
end
|
58
|
+
end
|
@@ -1,7 +1,7 @@
|
|
1
1
|
module TensorStream
|
2
2
|
module TensorMixins
|
3
3
|
def +(other)
|
4
|
-
|
4
|
+
TensorStream.check_data_types(self, other)
|
5
5
|
_op(:add, self, other)
|
6
6
|
end
|
7
7
|
|
@@ -10,22 +10,22 @@ module TensorStream
|
|
10
10
|
end
|
11
11
|
|
12
12
|
def *(other)
|
13
|
-
|
13
|
+
TensorStream.check_data_types(self, other)
|
14
14
|
_op(:mul, self, TensorStream.convert_to_tensor(other, dtype: data_type))
|
15
15
|
end
|
16
16
|
|
17
17
|
def **(other)
|
18
|
-
|
18
|
+
TensorStream.check_data_types(self, other)
|
19
19
|
_op(:pow, self, TensorStream.convert_to_tensor(other, dtype: data_type))
|
20
20
|
end
|
21
21
|
|
22
22
|
def /(other)
|
23
|
-
|
23
|
+
TensorStream.check_data_types(self, other)
|
24
24
|
_op(:div, self, TensorStream.convert_to_tensor(other, dtype: data_type))
|
25
25
|
end
|
26
26
|
|
27
27
|
def -(other)
|
28
|
-
|
28
|
+
TensorStream.check_data_types(self, other)
|
29
29
|
_op(:sub, self, TensorStream.convert_to_tensor(other, dtype: data_type))
|
30
30
|
end
|
31
31
|
|
@@ -58,51 +58,51 @@ module TensorStream
|
|
58
58
|
end
|
59
59
|
|
60
60
|
def zero?
|
61
|
-
_op(:equal, self, TensorStream.constant(0, dtype: data_type, name:
|
61
|
+
_op(:equal, self, TensorStream.constant(0, dtype: data_type, name: "equal/is_zero?"))
|
62
62
|
end
|
63
63
|
|
64
64
|
def ==(other)
|
65
|
-
|
65
|
+
TensorStream.check_data_types(self, other)
|
66
66
|
_op(:equal, self, other)
|
67
67
|
end
|
68
68
|
|
69
69
|
def <(other)
|
70
|
-
|
70
|
+
TensorStream.check_data_types(self, other)
|
71
71
|
_op(:less, self, other)
|
72
72
|
end
|
73
73
|
|
74
74
|
def !=(other)
|
75
|
-
|
75
|
+
TensorStream.check_data_types(self, other)
|
76
76
|
_op(:not_equal, self, other)
|
77
77
|
end
|
78
78
|
|
79
79
|
def >(other)
|
80
|
-
|
80
|
+
TensorStream.check_data_types(self, other)
|
81
81
|
_op(:greater, self, other)
|
82
82
|
end
|
83
83
|
|
84
84
|
def >=(other)
|
85
|
-
|
85
|
+
TensorStream.check_data_types(self, other)
|
86
86
|
_op(:greater_equal, self, other)
|
87
87
|
end
|
88
88
|
|
89
89
|
def <=(other)
|
90
|
-
|
90
|
+
TensorStream.check_data_types(self, other)
|
91
91
|
_op(:less_equal, self, other)
|
92
92
|
end
|
93
93
|
|
94
94
|
def and(other)
|
95
|
-
|
95
|
+
TensorStream.check_data_types(self, other)
|
96
96
|
_op(:logical_and, self, other)
|
97
97
|
end
|
98
98
|
|
99
99
|
def matmul(other)
|
100
|
-
|
100
|
+
TensorStream.check_data_types(self, other)
|
101
101
|
_op(:mat_mul, self, other)
|
102
102
|
end
|
103
103
|
|
104
104
|
def dot(other)
|
105
|
-
|
105
|
+
TensorStream.check_data_types(self, other)
|
106
106
|
_op(:mat_mul, self, other)
|
107
107
|
end
|
108
108
|
|
@@ -126,10 +126,10 @@ module TensorStream
|
|
126
126
|
:mean
|
127
127
|
else
|
128
128
|
raise "unsupported reduce op type #{op_type} valid values are :+, :*, :prod, :mean"
|
129
|
-
|
129
|
+
end
|
130
130
|
raise "blocks are not supported for tensors" if block_given?
|
131
131
|
|
132
132
|
TensorStream.reduce(reduce_op, self, axis, keepdims: keepdims, name: name)
|
133
133
|
end
|
134
134
|
end
|
135
|
-
end
|
135
|
+
end
|
data/lib/tensor_stream/images.rb
CHANGED
@@ -12,10 +12,10 @@ module TensorStream
|
|
12
12
|
return i_op(:ones_like, tensor) if tensor.equal?(wrt_dx)
|
13
13
|
return i_op(:zeros_like, wrt_dx) unless wrt_dx.consumers.include?(tensor.name)
|
14
14
|
|
15
|
-
nodes_to_compute = wrt_dx.consumers.select
|
15
|
+
nodes_to_compute = wrt_dx.consumers.select { |t|
|
16
16
|
node = tensor.graph.nodes[t]
|
17
17
|
node.consumers.include?(tensor.name) || node.equal?(tensor)
|
18
|
-
|
18
|
+
}.compact + [wrt_dx.name]
|
19
19
|
|
20
20
|
grad = i_op(:fill, ts.shape(tensor), ts.constant(1, dtype: wrt_dx.data_type))
|
21
21
|
|
@@ -30,12 +30,12 @@ module TensorStream
|
|
30
30
|
computed_op = _compute_derivative(tensor, grad)
|
31
31
|
|
32
32
|
if computed_op.is_a?(Array)
|
33
|
-
grads = computed_op.each_with_index.collect
|
33
|
+
grads = computed_op.each_with_index.collect { |op_grad, index|
|
34
34
|
next if op_grad.nil?
|
35
35
|
next unless nodes_to_compute.include?(tensor.inputs[index].name)
|
36
36
|
|
37
37
|
_propagate(op_grad, tensor.inputs[index], stop_tensor, nodes_to_compute, stop_gradients)
|
38
|
-
|
38
|
+
}.compact
|
39
39
|
|
40
40
|
return nil if grads.empty?
|
41
41
|
grads.size > 1 ? ts.add_n(grads) : grads[0]
|
@@ -48,7 +48,7 @@ module TensorStream
|
|
48
48
|
end
|
49
49
|
end
|
50
50
|
|
51
|
-
#TODO: refactor and implement registerGradient
|
51
|
+
# TODO: refactor and implement registerGradient
|
52
52
|
def self._compute_derivative(node, grad)
|
53
53
|
node.graph.name_scope("#{node.name}_grad") do
|
54
54
|
x = node.inputs[0] if node.inputs[0]
|
@@ -58,14 +58,6 @@ module TensorStream
|
|
58
58
|
case node.operation
|
59
59
|
when :add_n
|
60
60
|
return [grad] * node.inputs.size
|
61
|
-
when :add
|
62
|
-
return [grad, grad] if shapes_fully_specified_and_equal(x, y)
|
63
|
-
sx = ts.shape(x, name: 'add/shape_x')
|
64
|
-
sy = ts.shape(y, name: 'add/shape_y')
|
65
|
-
rx, ry = _broadcast_gradient_args(sx, sy)
|
66
|
-
|
67
|
-
[ts.reshape(ts.reduce_sum(grad, rx, name: 'add/reduce_sum_x'), sx),
|
68
|
-
ts.reshape(ts.reduce_sum(grad, ry, name: 'add/reduce_sum_y'), sy)]
|
69
61
|
when :asin
|
70
62
|
ts.control_dependencies([grad]) do
|
71
63
|
x2 = ts.square(x)
|
@@ -89,75 +81,6 @@ module TensorStream
|
|
89
81
|
inv = ts.reciprocal(ts.add(one, x2))
|
90
82
|
grad * inv
|
91
83
|
end
|
92
|
-
when :fill
|
93
|
-
[nil, ts.reduce_sum(grad)]
|
94
|
-
when :sub
|
95
|
-
return [grad, -grad] if shapes_fully_specified_and_equal(x, y)
|
96
|
-
|
97
|
-
sx = ts.shape(x, name: 'sub/shape_x')
|
98
|
-
sy = ts.shape(y, name: 'sub/shape_y')
|
99
|
-
rx, ry = _broadcast_gradient_args(sx, sy)
|
100
|
-
|
101
|
-
[ts.reshape(ts.reduce_sum(grad, rx, name: 'add/reduce_sub_x'), sx),
|
102
|
-
-ts.reshape(ts.reduce_sum(grad, ry, name: 'add/reduce_sub_y'), sy)]
|
103
|
-
when :mul
|
104
|
-
sx = ts.shape(x)
|
105
|
-
sy = ts.shape(y)
|
106
|
-
rx, ry = _broadcast_gradient_args(sx, sy)
|
107
|
-
|
108
|
-
[ts.reshape(ts.reduce_sum(ts.mul(grad, y), rx), sx),
|
109
|
-
ts.reshape(ts.reduce_sum(ts.mul(x, grad), ry), sy)]
|
110
|
-
when :div
|
111
|
-
sx = i_op(:shape, x)
|
112
|
-
sy = i_op(:shape, y)
|
113
|
-
rx, ry = _broadcast_gradient_args(sx, sy)
|
114
|
-
|
115
|
-
[ts.reshape(ts.reduce_sum(ts.div(grad, y), rx), sx),
|
116
|
-
ts.reshape(ts.reduce_sum(grad * ts.div(ts.div(-x, y), y), ry), sy)]
|
117
|
-
when :mod
|
118
|
-
sx = ts.shape(x)
|
119
|
-
sy = ts.shape(y)
|
120
|
-
rx, ry = _broadcast_gradient_args(sx, sy)
|
121
|
-
floor_xy = ts.floor_div(x, y)
|
122
|
-
gx = ts.reshape(ts.reduce_sum(grad, rx), sx)
|
123
|
-
gy = ts.reshape(ts.reduce_sum(grad * ts.negative(floor_xy), ry), sy)
|
124
|
-
|
125
|
-
[gx, gy]
|
126
|
-
when :prod
|
127
|
-
input_shape = ts.shape(x)
|
128
|
-
y = ts.range(0, ts.rank(x)) if y.nil?
|
129
|
-
reduction_indices = ts.reshape(y, [-1])
|
130
|
-
|
131
|
-
output_shape_kept_dims = ts.reduced_shape(input_shape, y)
|
132
|
-
tile_scaling = _safe_shape_div(input_shape, output_shape_kept_dims)
|
133
|
-
grad = ts.reshape(grad, output_shape_kept_dims)
|
134
|
-
grad = ts.tile(grad, tile_scaling)
|
135
|
-
|
136
|
-
perm, reduced_num, other_num = ts.device("/cpu:0") do
|
137
|
-
rank = ts.rank(x)
|
138
|
-
reduction_indices = (reduction_indices + rank) % rank
|
139
|
-
reduced = ts.cast(reduction_indices, :int32)
|
140
|
-
idx = ts.range(0, rank)
|
141
|
-
other, = ts.setdiff1d(idx, reduced)
|
142
|
-
[ts.concat([reduced, other], 0),
|
143
|
-
ts.reduce_prod(ts.gather(input_shape, reduced)),
|
144
|
-
ts.reduce_prod(ts.gather(input_shape, other))]
|
145
|
-
end
|
146
|
-
|
147
|
-
permuted = ts.transpose(x, perm)
|
148
|
-
permuted_shape = ts.shape(permuted)
|
149
|
-
|
150
|
-
reshaped = ts.reshape(permuted, [reduced_num, other_num])
|
151
|
-
|
152
|
-
# Calculate product, leaving out the current entry
|
153
|
-
left = ts.cumprod(reshaped, axis: 0, exclusive: true)
|
154
|
-
right = ts.cumprod(reshaped, axis: 0, exclusive: true, reverse: true)
|
155
|
-
y = ts.reshape(left * right, permuted_shape)
|
156
|
-
|
157
|
-
# Invert the transpose and reshape operations.
|
158
|
-
# Make sure to set the statically known shape information through a reshape.
|
159
|
-
out = grad * ts.transpose(y, ts.invert_permutation(perm))
|
160
|
-
[ts.reshape(out, input_shape, name: 'prod'), nil]
|
161
84
|
when :squared_difference
|
162
85
|
sx = i_op(:shape, x)
|
163
86
|
sy = i_op(:shape, y)
|
@@ -166,63 +89,13 @@ module TensorStream
|
|
166
89
|
x_grad = ts.mul(2.0, grad) * (x - y)
|
167
90
|
|
168
91
|
[ts.reshape(ts.reduce_sum(x_grad, rx), sx),
|
169
|
-
ts.reshape(-ts.reduce_sum(x_grad, ry), sy)]
|
170
|
-
when :mat_mul
|
171
|
-
t_a = node.options[:transpose_a]
|
172
|
-
t_b = node.options[:transpose_b]
|
173
|
-
|
174
|
-
if !t_a && !t_b
|
175
|
-
grad_a = ts.matmul(grad, y, transpose_b: true)
|
176
|
-
grad_b = ts.matmul(x, grad, transpose_a: true)
|
177
|
-
elsif !ta && tb
|
178
|
-
grad_a = ts.matmul(grad, y)
|
179
|
-
grad_b = ts.matmul(grad, x, transpose_a: true)
|
180
|
-
elsif t_a && !t_b
|
181
|
-
grad_a = ts.matmul(y, grad, transpose_b: true)
|
182
|
-
grad_b = ts.matmul(x, grad)
|
183
|
-
elsif t_a && t_b
|
184
|
-
grad_a = ts.matmul(y, grad, transpose_a: true, transpose_b: true)
|
185
|
-
grad_b = ts.matmul(grad, x, transpose_a: true, transpose_b: true)
|
186
|
-
end
|
187
|
-
|
188
|
-
[grad_a, grad_b]
|
189
|
-
when :sin
|
190
|
-
grad * ts.cos(x)
|
191
|
-
when :tanh
|
192
|
-
grad * i_op(:tanh_grad, x)
|
193
|
-
when :pow
|
194
|
-
z = node
|
195
|
-
sx = ts.shape(x)
|
196
|
-
sy = ts.shape(y)
|
197
|
-
rx, ry = _broadcast_gradient_args(sx, sy)
|
198
|
-
gx = ts.reduce_sum(grad * y * ts.pow(x, y - 1), rx)
|
199
|
-
|
200
|
-
log_x = ts.where(x > 0, ts.log(x), ts.zeros_like(x))
|
201
|
-
gy = ts.reduce_sum(grad * z * log_x, ry)
|
202
|
-
|
203
|
-
[gx, gy]
|
92
|
+
ts.reshape(-ts.reduce_sum(x_grad, ry), sy),]
|
204
93
|
when :abs
|
205
94
|
grad * ts.sign(x)
|
206
|
-
when :log
|
207
|
-
grad * ts.reciprocal(x)
|
208
|
-
when :cos
|
209
|
-
-grad * ts.sin(x)
|
210
|
-
when :max
|
211
|
-
_min_or_max_grad(node.inputs, grad, ->(a, b) { ts.greater_equal(a, b) })
|
212
|
-
when :min
|
213
|
-
_min_or_max_grad(node.inputs, grad, ->(a, b) { ts.less_equal(a, b) })
|
214
|
-
when :tan
|
215
|
-
secx = ts.reciprocal(ts.cos(x))
|
216
|
-
secx2 = ts.square(secx)
|
217
|
-
grad * secx2
|
218
|
-
when :negate
|
219
|
-
-grad
|
220
95
|
when :exp
|
221
96
|
grad * node
|
222
97
|
when :identity, :print
|
223
98
|
grad
|
224
|
-
when :sign
|
225
|
-
ts.zeros(ts.shape(x), dtype: x.data_type)
|
226
99
|
when :tile
|
227
100
|
input_shape = ts.shape(x)
|
228
101
|
split_shape = ts.reshape(ts.transpose(ts.stack([y, input_shape])), [-1])
|
@@ -230,8 +103,6 @@ module TensorStream
|
|
230
103
|
input_grad = ts.reduce_sum(ts.reshape(grad, split_shape), axes)
|
231
104
|
|
232
105
|
[input_grad, nil]
|
233
|
-
when :sum
|
234
|
-
_sum_grad(x, y, grad)
|
235
106
|
when :reciprocal
|
236
107
|
-grad * (ts.constant(1, dtype: x.dtype) / x**2)
|
237
108
|
when :sqrt
|
@@ -245,14 +116,6 @@ module TensorStream
|
|
245
116
|
x_mask = i_op(:where, x, i_op(:ones_like, y), i_op(:zeros_like, z))
|
246
117
|
y_mask = i_op(:where, x, i_op(:zeros_like, y), i_op(:ones_like, z))
|
247
118
|
[nil, x_mask * grad, y_mask * grad]
|
248
|
-
when :case
|
249
|
-
n_preds = node.inputs.size - 2
|
250
|
-
|
251
|
-
case_grads = Array.new(n_preds) do |index|
|
252
|
-
i_op(:case_grad, index, node.inputs[0], node.inputs[2 + index], grad)
|
253
|
-
end
|
254
|
-
|
255
|
-
[nil, i_op(:case_grad, -1, node.inputs[0], node.inputs[1], grad)] + case_grads
|
256
119
|
when :mean
|
257
120
|
sum_grad = _sum_grad(x, y, grad)[0]
|
258
121
|
input_shape = ts.shape(x)
|
@@ -261,8 +124,6 @@ module TensorStream
|
|
261
124
|
[ts.div(sum_grad, ts.cast(factor, sum_grad.data_type)), nil]
|
262
125
|
when :log1p
|
263
126
|
grad * ts.reciprocal(i_cons(1, dtype: grad.data_type) + x)
|
264
|
-
when :sigmoid
|
265
|
-
i_op(:sigmoid_grad, x, grad)
|
266
127
|
when :sigmoid_grad
|
267
128
|
gb = grad * y
|
268
129
|
[gb - 2.0 * gb * x, i_op(:sigmoid_grad, x, grad)]
|
@@ -275,15 +136,9 @@ module TensorStream
|
|
275
136
|
when :sparse_softmax_cross_entropy_with_logits
|
276
137
|
output = node
|
277
138
|
[_broadcast_mul(grad, output[1]), nil]
|
278
|
-
|
279
|
-
# non differentiable
|
280
|
-
nil
|
281
|
-
when :zeros_like
|
139
|
+
when :zeros_like
|
282
140
|
# non differentiable
|
283
141
|
nil
|
284
|
-
when :argmin, :argmax, :floor_div
|
285
|
-
# non differentiable
|
286
|
-
[nil, nil]
|
287
142
|
when :transpose
|
288
143
|
return [ts.transpose(grad, ts.invert_permutation(y)), nil]
|
289
144
|
when :index
|
@@ -294,19 +149,15 @@ module TensorStream
|
|
294
149
|
multiplier = node.inputs[0].shape.shape[0]
|
295
150
|
filler = ts.zeros_like(grad)
|
296
151
|
|
297
|
-
res = Array.new(multiplier)
|
152
|
+
res = Array.new(multiplier) { |index|
|
298
153
|
index == node.inputs[1].const_value ? grad : filler
|
299
|
-
|
154
|
+
}
|
300
155
|
[res]
|
301
156
|
end
|
302
157
|
when :squeeze
|
303
158
|
_reshape_to_input(node, grad)
|
304
|
-
when :expand_dims
|
305
|
-
[_reshape_to_input(node, grad), nil]
|
306
159
|
when :concat
|
307
160
|
_concat_grad_helper(node, grad, 1, node.inputs.size, 0)
|
308
|
-
when :reshape
|
309
|
-
[ts.reshape(grad, ts.shape(node.inputs[0])), nil]
|
310
161
|
when :stack
|
311
162
|
res = ts.unstack(grad, num: node.inputs.size, axis: node.options[:axis])
|
312
163
|
Array.new(node.inputs.size) { |i| res[i] }
|
@@ -314,18 +165,8 @@ module TensorStream
|
|
314
165
|
ts.stack(grad, axis: node.options[:axis])
|
315
166
|
when :conv2d
|
316
167
|
_Conv2DGrad(node, grad)
|
317
|
-
when :cast
|
318
|
-
t = %i[float16 float32 float64]
|
319
|
-
src_type = node.inputs[0].data_type
|
320
|
-
dst_type = grad.data_type
|
321
|
-
|
322
|
-
if t.key?(src_type) && t.key?(dst_type)
|
323
|
-
ts.cast(grad, src_type)
|
324
|
-
end
|
325
|
-
|
326
|
-
nil
|
327
168
|
else
|
328
|
-
|
169
|
+
TensorStream::OpMaker.gradient_op(self, node, grad)
|
329
170
|
end
|
330
171
|
end
|
331
172
|
end
|
@@ -373,8 +214,8 @@ module TensorStream
|
|
373
214
|
zeros = ts.zeros(gradshape, dtype: gdtype)
|
374
215
|
xmask = selector_op.call(x, y)
|
375
216
|
rx, ry = _broadcast_gradient_args(sx, sy)
|
376
|
-
xgrad = ts.where(xmask, grad, zeros, name:
|
377
|
-
ygrad = ts.where(xmask, zeros, grad, name:
|
217
|
+
xgrad = ts.where(xmask, grad, zeros, name: "x")
|
218
|
+
ygrad = ts.where(xmask, zeros, grad, name: "y")
|
378
219
|
gx = ts.reshape(ts.reduce_sum(xgrad, rx), sx)
|
379
220
|
gy = ts.reshape(ts.reduce_sum(ygrad, ry), sy)
|
380
221
|
[gx, gy]
|
@@ -435,22 +276,22 @@ module TensorStream
|
|
435
276
|
|
436
277
|
shape_0, shape_1 = ts.shape_n([op.inputs[0], op.inputs[1]])
|
437
278
|
[
|
438
|
-
|
439
|
-
|
440
|
-
|
441
|
-
|
442
|
-
|
443
|
-
|
444
|
-
|
445
|
-
|
446
|
-
|
447
|
-
|
448
|
-
|
449
|
-
|
450
|
-
|
451
|
-
|
452
|
-
|
453
|
-
|
279
|
+
_op(:conv2d_backprop_input,
|
280
|
+
shape_0,
|
281
|
+
op.inputs[1],
|
282
|
+
grad,
|
283
|
+
strides: strides,
|
284
|
+
padding: padding,
|
285
|
+
use_cudnn_on_gpu: use_cudnn_on_gpu,
|
286
|
+
data_format: data_format),
|
287
|
+
_op(:conv2d_backprop_filter,
|
288
|
+
op.inputs[0],
|
289
|
+
shape_1,
|
290
|
+
grad,
|
291
|
+
strides: strides,
|
292
|
+
padding: padding,
|
293
|
+
use_cudnn_on_gpu: use_cudnn_on_gpu,
|
294
|
+
data_format: data_format),
|
454
295
|
]
|
455
296
|
end
|
456
297
|
end
|