tensor_stream 1.0.0 → 1.0.1
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/.gitignore +1 -0
- data/.rubocop.yml +1 -0
- data/Gemfile +1 -1
- data/LICENSE.txt +1 -1
- data/README.md +34 -34
- data/Rakefile +3 -3
- data/USAGE_GUIDE.md +235 -0
- data/bin/stubgen +20 -0
- data/exe/model_utils +2 -2
- data/lib/tensor_stream.rb +45 -44
- data/lib/tensor_stream/constant.rb +2 -2
- data/lib/tensor_stream/control_flow.rb +1 -1
- data/lib/tensor_stream/debugging/debugging.rb +2 -2
- data/lib/tensor_stream/dynamic_stitch.rb +2 -2
- data/lib/tensor_stream/evaluator/base_evaluator.rb +18 -18
- data/lib/tensor_stream/evaluator/buffer.rb +1 -1
- data/lib/tensor_stream/evaluator/evaluator.rb +2 -2
- data/lib/tensor_stream/evaluator/operation_helpers/array_ops_helper.rb +41 -41
- data/lib/tensor_stream/evaluator/operation_helpers/math_helper.rb +1 -1
- data/lib/tensor_stream/evaluator/ruby/array_ops.rb +39 -39
- data/lib/tensor_stream/evaluator/ruby/check_ops.rb +2 -2
- data/lib/tensor_stream/evaluator/ruby/images_ops.rb +18 -18
- data/lib/tensor_stream/evaluator/ruby/math_ops.rb +13 -14
- data/lib/tensor_stream/evaluator/ruby/nn_ops.rb +33 -36
- data/lib/tensor_stream/evaluator/ruby/random_ops.rb +20 -21
- data/lib/tensor_stream/evaluator/ruby_evaluator.rb +36 -49
- data/lib/tensor_stream/exceptions.rb +1 -1
- data/lib/tensor_stream/generated_stub/ops.rb +691 -0
- data/lib/tensor_stream/generated_stub/stub_file.erb +24 -0
- data/lib/tensor_stream/graph.rb +18 -18
- data/lib/tensor_stream/graph_builder.rb +17 -17
- data/lib/tensor_stream/graph_deserializers/protobuf.rb +97 -97
- data/lib/tensor_stream/graph_deserializers/yaml_loader.rb +1 -1
- data/lib/tensor_stream/graph_keys.rb +3 -3
- data/lib/tensor_stream/graph_serializers/graphml.rb +33 -33
- data/lib/tensor_stream/graph_serializers/packer.rb +23 -23
- data/lib/tensor_stream/graph_serializers/pbtext.rb +38 -42
- data/lib/tensor_stream/graph_serializers/serializer.rb +3 -2
- data/lib/tensor_stream/graph_serializers/yaml.rb +5 -5
- data/lib/tensor_stream/helpers/infer_shape.rb +56 -56
- data/lib/tensor_stream/helpers/op_helper.rb +8 -9
- data/lib/tensor_stream/helpers/string_helper.rb +15 -15
- data/lib/tensor_stream/helpers/tensor_mixins.rb +17 -17
- data/lib/tensor_stream/images.rb +1 -1
- data/lib/tensor_stream/initializer.rb +1 -1
- data/lib/tensor_stream/math_gradients.rb +28 -187
- data/lib/tensor_stream/monkey_patches/array.rb +1 -1
- data/lib/tensor_stream/monkey_patches/float.rb +1 -1
- data/lib/tensor_stream/monkey_patches/integer.rb +1 -1
- data/lib/tensor_stream/monkey_patches/op_patch.rb +5 -5
- data/lib/tensor_stream/monkey_patches/patch.rb +1 -1
- data/lib/tensor_stream/nn/nn_ops.rb +17 -15
- data/lib/tensor_stream/op_maker.rb +180 -0
- data/lib/tensor_stream/operation.rb +17 -17
- data/lib/tensor_stream/ops.rb +95 -384
- data/lib/tensor_stream/ops/add.rb +23 -0
- data/lib/tensor_stream/ops/argmax.rb +14 -0
- data/lib/tensor_stream/ops/argmin.rb +14 -0
- data/lib/tensor_stream/ops/case.rb +17 -0
- data/lib/tensor_stream/ops/cast.rb +15 -0
- data/lib/tensor_stream/ops/ceil.rb +15 -0
- data/lib/tensor_stream/ops/const.rb +0 -0
- data/lib/tensor_stream/ops/cos.rb +10 -0
- data/lib/tensor_stream/ops/div.rb +21 -0
- data/lib/tensor_stream/ops/equal.rb +15 -0
- data/lib/tensor_stream/ops/expand_dims.rb +17 -0
- data/lib/tensor_stream/ops/fill.rb +19 -0
- data/lib/tensor_stream/ops/floor.rb +15 -0
- data/lib/tensor_stream/ops/floor_div.rb +15 -0
- data/lib/tensor_stream/ops/greater.rb +11 -0
- data/lib/tensor_stream/ops/greater_equal.rb +11 -0
- data/lib/tensor_stream/ops/less_equal.rb +15 -0
- data/lib/tensor_stream/ops/log.rb +14 -0
- data/lib/tensor_stream/ops/mat_mul.rb +60 -0
- data/lib/tensor_stream/ops/max.rb +15 -0
- data/lib/tensor_stream/ops/min.rb +15 -0
- data/lib/tensor_stream/ops/mod.rb +23 -0
- data/lib/tensor_stream/ops/mul.rb +21 -0
- data/lib/tensor_stream/ops/negate.rb +14 -0
- data/lib/tensor_stream/ops/ones_like.rb +19 -0
- data/lib/tensor_stream/ops/pow.rb +25 -0
- data/lib/tensor_stream/ops/prod.rb +60 -0
- data/lib/tensor_stream/ops/random_uniform.rb +18 -0
- data/lib/tensor_stream/ops/range.rb +20 -0
- data/lib/tensor_stream/ops/rank.rb +13 -0
- data/lib/tensor_stream/ops/reshape.rb +24 -0
- data/lib/tensor_stream/ops/round.rb +15 -0
- data/lib/tensor_stream/ops/shape.rb +14 -0
- data/lib/tensor_stream/ops/sigmoid.rb +10 -0
- data/lib/tensor_stream/ops/sign.rb +12 -0
- data/lib/tensor_stream/ops/sin.rb +10 -0
- data/lib/tensor_stream/ops/size.rb +16 -0
- data/lib/tensor_stream/ops/sub.rb +24 -0
- data/lib/tensor_stream/ops/sum.rb +27 -0
- data/lib/tensor_stream/ops/tan.rb +12 -0
- data/lib/tensor_stream/ops/tanh.rb +10 -0
- data/lib/tensor_stream/ops/tile.rb +19 -0
- data/lib/tensor_stream/ops/zeros.rb +15 -0
- data/lib/tensor_stream/placeholder.rb +2 -2
- data/lib/tensor_stream/profile/report_tool.rb +3 -3
- data/lib/tensor_stream/session.rb +36 -38
- data/lib/tensor_stream/tensor.rb +2 -2
- data/lib/tensor_stream/tensor_shape.rb +4 -4
- data/lib/tensor_stream/train/adadelta_optimizer.rb +8 -8
- data/lib/tensor_stream/train/adagrad_optimizer.rb +3 -3
- data/lib/tensor_stream/train/adam_optimizer.rb +11 -11
- data/lib/tensor_stream/train/learning_rate_decay.rb +2 -2
- data/lib/tensor_stream/train/momentum_optimizer.rb +7 -7
- data/lib/tensor_stream/train/optimizer.rb +9 -9
- data/lib/tensor_stream/train/rmsprop_optimizer.rb +16 -16
- data/lib/tensor_stream/train/saver.rb +14 -14
- data/lib/tensor_stream/train/slot_creator.rb +6 -6
- data/lib/tensor_stream/train/utils.rb +12 -12
- data/lib/tensor_stream/trainer.rb +10 -10
- data/lib/tensor_stream/types.rb +1 -1
- data/lib/tensor_stream/utils.rb +33 -32
- data/lib/tensor_stream/utils/freezer.rb +5 -5
- data/lib/tensor_stream/variable.rb +5 -5
- data/lib/tensor_stream/variable_scope.rb +1 -1
- data/lib/tensor_stream/version.rb +1 -1
- data/samples/{iris.data → datasets/iris.data} +0 -0
- data/samples/jupyter_notebooks/linear_regression.ipynb +463 -0
- data/samples/{iris.rb → neural_networks/iris.rb} +21 -23
- data/samples/{mnist_data.rb → neural_networks/mnist_data.rb} +8 -8
- data/samples/neural_networks/raw_neural_net_sample.rb +112 -0
- data/samples/{rnn.rb → neural_networks/rnn.rb} +28 -31
- data/samples/{nearest_neighbor.rb → others/nearest_neighbor.rb} +12 -12
- data/samples/regression/linear_regression.rb +63 -0
- data/samples/{logistic_regression.rb → regression/logistic_regression.rb} +14 -16
- data/tensor_stream.gemspec +9 -8
- metadata +89 -19
- data/data_1.json +0 -4764
- data/data_2.json +0 -4764
- data/data_actual.json +0 -28
- data/data_expected.json +0 -28
- data/data_input.json +0 -28
- data/samples/error.graphml +0 -2755
- data/samples/gradient_sample.graphml +0 -1255
- data/samples/linear_regression.rb +0 -69
- data/samples/multigpu.rb +0 -73
- data/samples/raw_neural_net_sample.rb +0 -112
data/lib/tensor_stream/tensor.rb
CHANGED
@@ -1,4 +1,4 @@
|
|
1
|
-
require
|
1
|
+
require "ostruct"
|
2
2
|
|
3
3
|
module TensorStream
|
4
4
|
# Base class that defines a tensor like interface
|
@@ -8,7 +8,7 @@ module TensorStream
|
|
8
8
|
|
9
9
|
attr_reader :graph, :value
|
10
10
|
attr_accessor :name, :data_type, :shape, :rank, :native_buffer, :is_const,
|
11
|
-
|
11
|
+
:internal, :source, :given_name, :outputs, :op
|
12
12
|
|
13
13
|
def inspect
|
14
14
|
end
|
@@ -11,9 +11,9 @@ module TensorStream
|
|
11
11
|
def to_s
|
12
12
|
return "?" if @shape.nil?
|
13
13
|
|
14
|
-
dimensions = @shape.collect
|
14
|
+
dimensions = @shape.collect { |r|
|
15
15
|
"Dimension(#{r})"
|
16
|
-
|
16
|
+
}.join(",")
|
17
17
|
"TensorShape([#{dimensions}])"
|
18
18
|
end
|
19
19
|
|
@@ -53,14 +53,14 @@ module TensorStream
|
|
53
53
|
reversed_a = shape_a.reverse
|
54
54
|
reversed_b = shape_b.reverse
|
55
55
|
|
56
|
-
reversed_a.each_with_index.collect
|
56
|
+
reversed_a.each_with_index.collect { |s, index|
|
57
57
|
next s if index >= reversed_b.size
|
58
58
|
next nil if s.nil? || reversed_b[index].nil?
|
59
59
|
next nil if s.is_a?(Tensor) || reversed_b[index].is_a?(Tensor)
|
60
60
|
next reversed_b[index] if reversed_b[index] > s
|
61
61
|
|
62
62
|
s
|
63
|
-
|
63
|
+
}.reverse
|
64
64
|
end
|
65
65
|
|
66
66
|
def self.reshape(arr, new_shape)
|
@@ -38,14 +38,14 @@ module TensorStream
|
|
38
38
|
accum = get_slot(var, "accum")
|
39
39
|
accum_update = get_slot(var, "accum_update")
|
40
40
|
_op(:apply_adadelta,
|
41
|
-
|
42
|
-
|
43
|
-
|
44
|
-
|
45
|
-
|
46
|
-
|
47
|
-
|
48
|
-
|
41
|
+
var,
|
42
|
+
accum,
|
43
|
+
accum_update,
|
44
|
+
TensorStream.cast(@learning_rate_tensor, var.data_type),
|
45
|
+
TensorStream.cast(@rho_t, var.data_type),
|
46
|
+
TensorStream.cast(@epsilon_t, var.data_type),
|
47
|
+
grad,
|
48
|
+
use_locking: @use_locking)
|
49
49
|
end
|
50
50
|
end
|
51
51
|
end
|
@@ -7,7 +7,7 @@ module TensorStream
|
|
7
7
|
attr_accessor :learning_rate
|
8
8
|
|
9
9
|
def initialize(learning_rate, initial_accumulator_value = 0.1,
|
10
|
-
|
10
|
+
use_locking: false, name: "Adagrad")
|
11
11
|
@learning_rate = learning_rate
|
12
12
|
@initial_accumulator_value = initial_accumulator_value
|
13
13
|
@learning_rate_tensor = nil
|
@@ -38,8 +38,8 @@ module TensorStream
|
|
38
38
|
def apply_dense(grad, var)
|
39
39
|
acc = get_slot(var, "accumulator")
|
40
40
|
_op(:apply_adagrad,
|
41
|
-
|
42
|
-
|
41
|
+
var, acc, TensorStream.cast(@learning_rate_tensor, var.data_type),
|
42
|
+
grad, use_locking: @use_locking)
|
43
43
|
end
|
44
44
|
end
|
45
45
|
end
|
@@ -22,7 +22,7 @@ module TensorStream
|
|
22
22
|
# name: Optional name for the operations created when applying gradients.
|
23
23
|
# Defaults to "Adam".
|
24
24
|
def initialize(learning_rate = 0.001, beta1 = 0.9, beta2 = 0.999, epsilon = 1e-8,
|
25
|
-
|
25
|
+
use_locking: false, name: "Adam")
|
26
26
|
@learning_rate = learning_rate
|
27
27
|
@beta1 = beta1
|
28
28
|
@beta2 = beta2
|
@@ -44,7 +44,7 @@ module TensorStream
|
|
44
44
|
def get_beta_accumulators
|
45
45
|
graph = TensorStream.get_default_graph
|
46
46
|
[get_non_slot_variable("beta1_power", graph: graph),
|
47
|
-
get_non_slot_variable("beta2_power", graph: graph)]
|
47
|
+
get_non_slot_variable("beta2_power", graph: graph),]
|
48
48
|
end
|
49
49
|
|
50
50
|
def prepare
|
@@ -76,14 +76,14 @@ module TensorStream
|
|
76
76
|
v = get_slot(var, "v")
|
77
77
|
beta1_power, beta2_power = get_beta_accumulators
|
78
78
|
_op(:apply_adam,
|
79
|
-
|
80
|
-
|
81
|
-
|
82
|
-
|
83
|
-
|
84
|
-
|
85
|
-
|
86
|
-
|
79
|
+
var, m, v,
|
80
|
+
TensorStream.cast(beta1_power, var.data_type),
|
81
|
+
TensorStream.cast(beta2_power, var.data_type),
|
82
|
+
TensorStream.cast(@lr_t, var.data_type),
|
83
|
+
TensorStream.cast(@beta1_t, var.data_type),
|
84
|
+
TensorStream.cast(@beta2_t, var.data_type),
|
85
|
+
TensorStream.cast(@epsilon_t, var.data_type),
|
86
|
+
grad, use_locking: @use_locking)
|
87
87
|
end
|
88
88
|
|
89
89
|
def finish(update_ops, name_scope)
|
@@ -99,4 +99,4 @@ module TensorStream
|
|
99
99
|
end
|
100
100
|
end
|
101
101
|
end
|
102
|
-
end
|
102
|
+
end
|
@@ -12,7 +12,7 @@ module TensorStream
|
|
12
12
|
def exponential_decay(learning_rate, global_step, decay_steps, decay_rate, staircase: false, name: nil)
|
13
13
|
raise TensorStream::ValueError, "global_step is required for exponential_decay." if global_step.nil?
|
14
14
|
|
15
|
-
name_scope(name, default:
|
15
|
+
name_scope(name, default: "ExponentialDecay", values: [learning_rate, global_step, decay_steps, decay_rate]) do
|
16
16
|
learning_rate = convert_to_tensor(learning_rate, name: "learning_rate")
|
17
17
|
data_type = learning_rate.data_type
|
18
18
|
decay_steps = cast(decay_steps, data_type)
|
@@ -26,4 +26,4 @@ module TensorStream
|
|
26
26
|
end
|
27
27
|
end
|
28
28
|
end
|
29
|
-
end
|
29
|
+
end
|
@@ -13,7 +13,7 @@ module TensorStream
|
|
13
13
|
# name: Optional name prefix
|
14
14
|
# use_nesterov: boolean - Flag that indicates if nesterov momentum is to be used. http://jmlr.org/proceedings/papers/v28/sutskever13.pdf
|
15
15
|
# use_locking: boolean - filler argument for compatibility, not used at the moment
|
16
|
-
def initialize(learning_rate, momentum, name:
|
16
|
+
def initialize(learning_rate, momentum, name: "momentum", use_nesterov: false, use_locking: false)
|
17
17
|
@learning_rate = learning_rate
|
18
18
|
@momentum = momentum
|
19
19
|
@use_nesterov = use_nesterov
|
@@ -37,12 +37,12 @@ module TensorStream
|
|
37
37
|
mom = get_slot(var, "momentum")
|
38
38
|
|
39
39
|
_op(:apply_momentum, var, mom,
|
40
|
-
|
41
|
-
|
42
|
-
|
43
|
-
|
44
|
-
|
40
|
+
TensorStream.cast(@learning_rate_tensor, var.data_type),
|
41
|
+
grad,
|
42
|
+
TensorStream.cast(@momentum_tensor, var.data_type),
|
43
|
+
use_locking: @use_locking,
|
44
|
+
use_nesterov: @use_nesterov)
|
45
45
|
end
|
46
46
|
end
|
47
47
|
end
|
48
|
-
end
|
48
|
+
end
|
@@ -29,11 +29,11 @@ module TensorStream
|
|
29
29
|
create_slots(varlist)
|
30
30
|
TensorStream.name_scope(name, default: @name) do
|
31
31
|
prepare
|
32
|
-
apply_ops = grads_and_vars.map
|
32
|
+
apply_ops = grads_and_vars.map { |grad, var|
|
33
33
|
TensorStream.name_scope("update_" + var.op.name) do
|
34
34
|
apply_dense(grad, var)
|
35
35
|
end
|
36
|
-
|
36
|
+
}
|
37
37
|
|
38
38
|
if global_step.nil?
|
39
39
|
finish(apply_ops, name)
|
@@ -51,14 +51,14 @@ module TensorStream
|
|
51
51
|
# This is the first part of minimize(). It returns a list of (gradient, variable) pairs where "gradient" is the gradient for "variable".
|
52
52
|
def compute_gradients(loss, var_list: nil, grad_loss: nil)
|
53
53
|
trainable_vars = if var_list
|
54
|
-
|
54
|
+
raise "var_list must be an array" unless var_list.is_a?(Array)
|
55
55
|
|
56
|
-
|
56
|
+
var_list.each_with_index { |var, index| raise "var #{index} not a Variable" unless var.is_a?(Variable) }
|
57
57
|
|
58
|
-
|
59
|
-
|
60
|
-
|
61
|
-
|
58
|
+
var_list
|
59
|
+
else
|
60
|
+
loss.graph.get_collection(TensorStream::GraphKeys::TRAINABLE_VARIABLES)
|
61
|
+
end
|
62
62
|
all_grads = grad_loss || TensorStream.gradients(loss, trainable_vars)
|
63
63
|
trainable_vars.each_with_index.collect do |var, index|
|
64
64
|
[all_grads[index], var]
|
@@ -162,4 +162,4 @@ module TensorStream
|
|
162
162
|
end
|
163
163
|
end
|
164
164
|
end
|
165
|
-
end
|
165
|
+
end
|
@@ -12,7 +12,7 @@ module TensorStream
|
|
12
12
|
#
|
13
13
|
# [paper](http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf).
|
14
14
|
def initialize(learning_rate, decay = 0.9, momentum = 0.0, epsilon = 1e-10, centered: false,
|
15
|
-
|
15
|
+
use_locking: false, name: "RMSProp")
|
16
16
|
@learning_rate = learning_rate
|
17
17
|
@decay = decay
|
18
18
|
@momentum = momentum
|
@@ -46,10 +46,10 @@ module TensorStream
|
|
46
46
|
# Create slots for the first and second moments.
|
47
47
|
var_list.each do |v|
|
48
48
|
init_rms = if v.shape.known?
|
49
|
-
|
50
|
-
|
51
|
-
|
52
|
-
|
49
|
+
TensorStream.ones_initializer(dtype: v.data_type)
|
50
|
+
else
|
51
|
+
TensorStream.ones_like(v)
|
52
|
+
end
|
53
53
|
|
54
54
|
get_or_make_slot_with_initializer(v, init_rms, v.shape, v.data_type, "rms", @name)
|
55
55
|
|
@@ -65,20 +65,20 @@ module TensorStream
|
|
65
65
|
if @centered
|
66
66
|
mg = get_slot(var, "mg")
|
67
67
|
_op(:apply_centered_rms_prop, var, mg, rms, mom,
|
68
|
-
|
69
|
-
|
70
|
-
|
71
|
-
|
72
|
-
|
68
|
+
TensorStream.cast(@learning_rate_tensor, var.data_type),
|
69
|
+
TensorStream.cast(@decay_tensor, var.data_type),
|
70
|
+
TensorStream.cast(@momentum_tensor, var.data_type),
|
71
|
+
TensorStream.cast(@epsilon_tensor, var.data_type),
|
72
|
+
grad, use_locking: @use_locking)
|
73
73
|
else
|
74
74
|
_op(:apply_rms_prop, var, rms, mom,
|
75
|
-
|
76
|
-
|
77
|
-
|
78
|
-
|
79
|
-
|
75
|
+
TensorStream.cast(@learning_rate_tensor, var.data_type),
|
76
|
+
TensorStream.cast(@decay_tensor, var.data_type),
|
77
|
+
TensorStream.cast(@momentum_tensor, var.data_type),
|
78
|
+
TensorStream.cast(@epsilon_tensor, var.data_type),
|
79
|
+
grad, use_locking: @use_locking)
|
80
80
|
end
|
81
81
|
end
|
82
82
|
end
|
83
83
|
end
|
84
|
-
end
|
84
|
+
end
|
@@ -1,4 +1,4 @@
|
|
1
|
-
require
|
1
|
+
require "json"
|
2
2
|
require "zlib"
|
3
3
|
|
4
4
|
module TensorStream
|
@@ -11,18 +11,18 @@ module TensorStream
|
|
11
11
|
graph = TensorStream::Graph.get_default_graph
|
12
12
|
vars = graph.get_collection(GraphKeys::GLOBAL_VARIABLES)
|
13
13
|
|
14
|
-
@filename = graph[
|
14
|
+
@filename = graph["ts_filename"] || TensorStream.placeholder(:string, name: "ts_filename", shape: [])
|
15
15
|
|
16
16
|
@save_op = _op(:save_ts, @filename, *vars)
|
17
17
|
@restore_op = _op(:restore_ts, @filename, *vars.map(&:name))
|
18
18
|
end
|
19
19
|
|
20
20
|
def save(session, outputdir, global_step: nil,
|
21
|
-
|
22
|
-
|
23
|
-
|
24
|
-
|
25
|
-
|
21
|
+
latest_filename: nil,
|
22
|
+
meta_graph_suffix: "meta",
|
23
|
+
write_meta_graph: true,
|
24
|
+
write_state: true,
|
25
|
+
strip_default_attrs: false)
|
26
26
|
graph = TensorStream::Graph.get_default_graph
|
27
27
|
vars = graph.get_collection(GraphKeys::GLOBAL_VARIABLES)
|
28
28
|
|
@@ -31,10 +31,10 @@ module TensorStream
|
|
31
31
|
gs = eval_global_step(session, global_step)
|
32
32
|
|
33
33
|
FileUtils.mkdir_p(outputdir)
|
34
|
-
basename =
|
35
|
-
File.write(File.join(outputdir, "#{basename}.meta"), {
|
36
|
-
new_filename = File.join(outputdir, [basename, gs,
|
37
|
-
session.run(@save_op, feed_dict: {
|
34
|
+
basename = "model"
|
35
|
+
File.write(File.join(outputdir, "#{basename}.meta"), {"gs" => gs}.to_json)
|
36
|
+
new_filename = File.join(outputdir, [basename, gs, ".ckpt"].compact.join("-"))
|
37
|
+
session.run(@save_op, feed_dict: {@filename => new_filename})
|
38
38
|
|
39
39
|
if write_meta_graph
|
40
40
|
graph_filename = "#{basename}.yaml"
|
@@ -48,10 +48,10 @@ module TensorStream
|
|
48
48
|
return unless File.exist?(meta_file)
|
49
49
|
|
50
50
|
meta_data = JSON.parse(File.read(meta_file))
|
51
|
-
gs = meta_data[
|
52
|
-
filename = File.join(modelpath, [
|
51
|
+
gs = meta_data["gs"]
|
52
|
+
filename = File.join(modelpath, ["model", gs, ".ckpt"].compact.join("-"))
|
53
53
|
|
54
|
-
session.run(@restore_op, feed_dict: {
|
54
|
+
session.run(@restore_op, feed_dict: {@filename => filename})
|
55
55
|
end
|
56
56
|
|
57
57
|
private
|
@@ -54,14 +54,14 @@ module TensorStream
|
|
54
54
|
dtype = primary.data_type if dtype.nil?
|
55
55
|
slot_shape = primary.shape
|
56
56
|
slot_shape = if slot_shape.fully_defined?
|
57
|
-
|
58
|
-
|
59
|
-
|
60
|
-
|
57
|
+
slot_shape.shape
|
58
|
+
else
|
59
|
+
TensorStream.shape(primary.initialized_value)
|
60
|
+
end
|
61
61
|
val = TensorStream.zeros(slot_shape, dtype: dtype)
|
62
62
|
create_slot(primary, val, name,
|
63
|
-
|
63
|
+
colocate_with_primary: colocate_with_primary)
|
64
64
|
end
|
65
65
|
end
|
66
66
|
end
|
67
|
-
end
|
67
|
+
end
|
@@ -11,24 +11,24 @@ module TensorStream
|
|
11
11
|
initializer: TensorStream.zeros_initializer,
|
12
12
|
trainable: false,
|
13
13
|
collections: [TensorStream::GraphKeys::GLOBAL_VARIABLES,
|
14
|
-
TensorStream::GraphKeys::GLOBAL_STEP])
|
14
|
+
TensorStream::GraphKeys::GLOBAL_STEP,])
|
15
15
|
end
|
16
16
|
|
17
17
|
def get_global_step(graph = nil)
|
18
18
|
target_graph = graph || TensorStream.get_default_graph
|
19
19
|
global_step_tensors = target_graph.get_collection(TensorStream::GraphKeys::GLOBAL_STEP)
|
20
20
|
global_step_tensor = if global_step_tensors.nil? || global_step_tensors.empty?
|
21
|
-
|
22
|
-
|
23
|
-
|
24
|
-
|
25
|
-
|
26
|
-
|
27
|
-
|
28
|
-
|
29
|
-
|
30
|
-
|
31
|
-
|
21
|
+
begin
|
22
|
+
target_graph.get_tensor_by_name("global_step:0")
|
23
|
+
rescue TensorStream::KeyError
|
24
|
+
nil
|
25
|
+
end
|
26
|
+
elsif global_step_tensors.size == 1
|
27
|
+
global_step_tensors[0]
|
28
|
+
else
|
29
|
+
TensorStream.logger.error("Multiple tensors in global_step collection.")
|
30
|
+
nil
|
31
|
+
end
|
32
32
|
global_step_tensor
|
33
33
|
end
|
34
34
|
end
|
@@ -1,13 +1,13 @@
|
|
1
|
-
require
|
2
|
-
require
|
3
|
-
require
|
4
|
-
require
|
5
|
-
require
|
6
|
-
require
|
7
|
-
require
|
8
|
-
require
|
9
|
-
require
|
10
|
-
require
|
1
|
+
require "tensor_stream/train/slot_creator"
|
2
|
+
require "tensor_stream/train/optimizer"
|
3
|
+
require "tensor_stream/train/gradient_descent_optimizer"
|
4
|
+
require "tensor_stream/train/momentum_optimizer"
|
5
|
+
require "tensor_stream/train/adam_optimizer"
|
6
|
+
require "tensor_stream/train/adadelta_optimizer"
|
7
|
+
require "tensor_stream/train/adagrad_optimizer"
|
8
|
+
require "tensor_stream/train/rmsprop_optimizer"
|
9
|
+
require "tensor_stream/train/saver"
|
10
|
+
require "tensor_stream/train/learning_rate_decay"
|
11
11
|
|
12
12
|
module TensorStream
|
13
13
|
module Trainer
|
data/lib/tensor_stream/types.rb
CHANGED
data/lib/tensor_stream/utils.rb
CHANGED
@@ -33,12 +33,12 @@ module TensorStream
|
|
33
33
|
# Returns:
|
34
34
|
# - An array containing the names of those devices
|
35
35
|
def list_local_devices
|
36
|
-
local_name =
|
37
|
-
TensorStream::Evaluator.evaluators.collect
|
36
|
+
local_name = "job:localhost"
|
37
|
+
TensorStream::Evaluator.evaluators.collect { |k, v|
|
38
38
|
v[:class].query_supported_devices.collect do |device_str|
|
39
|
-
[local_name, "ts:#{k}:#{device_str.name}"].join(
|
39
|
+
[local_name, "ts:#{k}:#{device_str.name}"].join("/")
|
40
40
|
end
|
41
|
-
|
41
|
+
}.flatten
|
42
42
|
end
|
43
43
|
|
44
44
|
##
|
@@ -51,17 +51,17 @@ module TensorStream
|
|
51
51
|
name: name,
|
52
52
|
graph: graph,
|
53
53
|
dtype: dtype,
|
54
|
-
trainable: trainable
|
54
|
+
trainable: trainable,
|
55
55
|
}
|
56
56
|
tensor = if value.is_a?(String)
|
57
|
-
|
58
|
-
|
59
|
-
|
60
|
-
|
61
|
-
|
62
|
-
|
63
|
-
|
64
|
-
|
57
|
+
i_var(dtype || :string, 0, [], get_variable_scope, common_options)
|
58
|
+
elsif value.is_a?(Integer)
|
59
|
+
i_var(dtype || :int32, 0, [], get_variable_scope, common_options)
|
60
|
+
elsif value.is_a?(Float)
|
61
|
+
i_var(dtype || :float32, 0, [], get_variable_scope, common_options)
|
62
|
+
else
|
63
|
+
i_var(dtype || :float32, 0, nil, get_variable_scope, common_options)
|
64
|
+
end
|
65
65
|
op.set_input(0, tensor.op)
|
66
66
|
Graph.get_default_graph.add_node(op)
|
67
67
|
tensor
|
@@ -70,7 +70,7 @@ module TensorStream
|
|
70
70
|
##
|
71
71
|
# Defines a variable context manager
|
72
72
|
def variable_scope(scope = nil, default_name = nil, reuse: nil, initializer: nil)
|
73
|
-
Thread.current[:tensor_stream_variable_scope] ||= [
|
73
|
+
Thread.current[:tensor_stream_variable_scope] ||= [VariableScope.new]
|
74
74
|
|
75
75
|
# uniquenifier
|
76
76
|
if scope.nil? && default_name
|
@@ -117,7 +117,7 @@ module TensorStream
|
|
117
117
|
end
|
118
118
|
|
119
119
|
def get_variable_scope
|
120
|
-
|
120
|
+
unless Thread.current[:tensor_stream_variable_scope]
|
121
121
|
variable_scope = VariableScope.new
|
122
122
|
Thread.current[:tensor_stream_variable_scope] = [variable_scope]
|
123
123
|
return variable_scope
|
@@ -127,7 +127,7 @@ module TensorStream
|
|
127
127
|
end
|
128
128
|
|
129
129
|
def __v_scope_name
|
130
|
-
Thread.current[:tensor_stream_variable_scope].map(&:name).compact.reject(&:empty?).join(
|
130
|
+
Thread.current[:tensor_stream_variable_scope].map(&:name).compact.reject(&:empty?).join("/")
|
131
131
|
end
|
132
132
|
|
133
133
|
##
|
@@ -160,8 +160,8 @@ module TensorStream
|
|
160
160
|
TensorStream::Layers
|
161
161
|
end
|
162
162
|
|
163
|
-
def constant(value, dtype: nil, shape: nil, internal: false, name:
|
164
|
-
shared_options = {
|
163
|
+
def constant(value, dtype: nil, shape: nil, internal: false, name: "Const")
|
164
|
+
shared_options = {const: true, value: value, name: name, internal: internal}
|
165
165
|
|
166
166
|
if value.is_a?(Float)
|
167
167
|
TensorStream::Constant.new(dtype || :float32, 0, shape || [], shared_options)
|
@@ -275,24 +275,25 @@ module TensorStream
|
|
275
275
|
return input unless input.is_a?(Tensor)
|
276
276
|
return input if input.data_type.nil?
|
277
277
|
|
278
|
-
raise "#{input.source}: Parameter data type #{input.data_type} passed not in #{types.join(
|
278
|
+
raise "#{input.source}: Parameter data type #{input.data_type} passed not in #{types.join(",")}" unless types.include?(input.data_type.to_sym)
|
279
279
|
end
|
280
280
|
|
281
|
-
def check_data_types(
|
282
|
-
|
283
|
-
input_a = convert_to_tensor(input_a, dtype: input_b.data_type)
|
284
|
-
elsif !input_b.is_a?(Tensor) && input_a.is_a?(Tensor)
|
285
|
-
input_b = convert_to_tensor(input_b, dtype: input_a.data_type)
|
286
|
-
else
|
287
|
-
input_a = convert_to_tensor(input_a)
|
288
|
-
input_b = convert_to_tensor(input_b)
|
289
|
-
end
|
281
|
+
def check_data_types(*args)
|
282
|
+
unique_types = args.select { |a| a.is_a?(Tensor) }. map { |a| norm_dtype(a.data_type) }.uniq
|
290
283
|
|
291
|
-
if
|
292
|
-
raise TensorStream::ValueError, "Value Error: Tensor conversion requested
|
284
|
+
if unique_types.size > 1
|
285
|
+
raise TensorStream::ValueError, "Value Error: Tensor conversion requested dtypes are different -> #{unique_types}"
|
293
286
|
end
|
294
287
|
|
295
|
-
|
288
|
+
unique_types.first
|
289
|
+
end
|
290
|
+
|
291
|
+
##
|
292
|
+
# Auto cast ruby constant data types to the same
|
293
|
+
# tensor types of other operands
|
294
|
+
def apply_data_type_coercion(*args)
|
295
|
+
coerced_type = check_data_types(*args)
|
296
|
+
args.map { |a| a.is_a?(Tensor) ? a : convert_to_tensor(a, dtype: coerced_type) }
|
296
297
|
end
|
297
298
|
|
298
299
|
def norm_dtype(dtype)
|
@@ -307,4 +308,4 @@ module TensorStream
|
|
307
308
|
end
|
308
309
|
end
|
309
310
|
end
|
310
|
-
end
|
311
|
+
end
|