tensor_stream 0.8.1 → 0.8.5
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/.gitignore +1 -0
- data/CHANGELOG.md +8 -0
- data/README.md +12 -6
- data/lib/tensor_stream.rb +1 -0
- data/lib/tensor_stream/evaluator/base_evaluator.rb +1 -1
- data/lib/tensor_stream/evaluator/ruby/array_ops.rb +282 -0
- data/lib/tensor_stream/evaluator/ruby/images_ops.rb +61 -0
- data/lib/tensor_stream/evaluator/ruby/math_ops.rb +111 -0
- data/lib/tensor_stream/evaluator/ruby/nn_ops.rb +48 -9
- data/lib/tensor_stream/evaluator/ruby/random_ops.rb +51 -0
- data/lib/tensor_stream/evaluator/ruby_evaluator.rb +20 -433
- data/lib/tensor_stream/images.rb +16 -0
- data/lib/tensor_stream/ops.rb +5 -1
- data/lib/tensor_stream/session.rb +15 -15
- data/lib/tensor_stream/tensor.rb +1 -1
- data/lib/tensor_stream/train/adadelta_optimizer.rb +52 -0
- data/lib/tensor_stream/train/adam_optimizer.rb +17 -2
- data/lib/tensor_stream/train/gradient_descent_optimizer.rb +7 -1
- data/lib/tensor_stream/trainer.rb +1 -0
- data/lib/tensor_stream/types.rb +4 -0
- data/lib/tensor_stream/utils.rb +4 -0
- data/lib/tensor_stream/variable_scope.rb +1 -0
- data/lib/tensor_stream/version.rb +1 -1
- data/samples/linear_regression.rb +4 -1
- data/samples/mnist_data.rb +64 -0
- data/samples/nearest_neighbor.rb +1 -2
- data/samples/raw_neural_net_sample.rb +1 -1
- data/tensor_stream.gemspec +1 -0
- metadata +23 -57
- data/lib/tensor_stream/evaluator/opencl/kernels/_bool_operand.cl +0 -45
- data/lib/tensor_stream/evaluator/opencl/kernels/_operand.cl +0 -45
- data/lib/tensor_stream/evaluator/opencl/kernels/abs.cl +0 -20
- data/lib/tensor_stream/evaluator/opencl/kernels/acos.cl +0 -8
- data/lib/tensor_stream/evaluator/opencl/kernels/add.cl +0 -3
- data/lib/tensor_stream/evaluator/opencl/kernels/apply_adam.cl +0 -23
- data/lib/tensor_stream/evaluator/opencl/kernels/apply_gradient.cl +0 -9
- data/lib/tensor_stream/evaluator/opencl/kernels/apply_momentum.cl +0 -16
- data/lib/tensor_stream/evaluator/opencl/kernels/argmax.cl +0 -8
- data/lib/tensor_stream/evaluator/opencl/kernels/argmin.cl +0 -8
- data/lib/tensor_stream/evaluator/opencl/kernels/asin.cl +0 -9
- data/lib/tensor_stream/evaluator/opencl/kernels/cast.cl +0 -10
- data/lib/tensor_stream/evaluator/opencl/kernels/ceil.cl +0 -8
- data/lib/tensor_stream/evaluator/opencl/kernels/cond.cl.erb +0 -6
- data/lib/tensor_stream/evaluator/opencl/kernels/cos.cl +0 -8
- data/lib/tensor_stream/evaluator/opencl/kernels/div.cl.erb +0 -3
- data/lib/tensor_stream/evaluator/opencl/kernels/exp.cl +0 -8
- data/lib/tensor_stream/evaluator/opencl/kernels/floor.cl +0 -8
- data/lib/tensor_stream/evaluator/opencl/kernels/floor_div.cl +0 -48
- data/lib/tensor_stream/evaluator/opencl/kernels/floor_mod.cl +0 -3
- data/lib/tensor_stream/evaluator/opencl/kernels/gemm.cl +0 -32
- data/lib/tensor_stream/evaluator/opencl/kernels/log.cl +0 -8
- data/lib/tensor_stream/evaluator/opencl/kernels/log1p.cl +0 -8
- data/lib/tensor_stream/evaluator/opencl/kernels/log_softmax.cl +0 -26
- data/lib/tensor_stream/evaluator/opencl/kernels/max.cl +0 -46
- data/lib/tensor_stream/evaluator/opencl/kernels/min.cl +0 -46
- data/lib/tensor_stream/evaluator/opencl/kernels/mod.cl +0 -3
- data/lib/tensor_stream/evaluator/opencl/kernels/mul.cl +0 -3
- data/lib/tensor_stream/evaluator/opencl/kernels/negate.cl +0 -8
- data/lib/tensor_stream/evaluator/opencl/kernels/pack.cl +0 -24
- data/lib/tensor_stream/evaluator/opencl/kernels/pow.cl +0 -46
- data/lib/tensor_stream/evaluator/opencl/kernels/real_div.cl +0 -3
- data/lib/tensor_stream/evaluator/opencl/kernels/reciprocal.cl +0 -8
- data/lib/tensor_stream/evaluator/opencl/kernels/round.cl +0 -8
- data/lib/tensor_stream/evaluator/opencl/kernels/sigmoid.cl +0 -9
- data/lib/tensor_stream/evaluator/opencl/kernels/sigmoid_grad.cl +0 -55
- data/lib/tensor_stream/evaluator/opencl/kernels/sign.cl +0 -21
- data/lib/tensor_stream/evaluator/opencl/kernels/sin.cl +0 -9
- data/lib/tensor_stream/evaluator/opencl/kernels/softmax.cl +0 -26
- data/lib/tensor_stream/evaluator/opencl/kernels/softmax_cross.cl +0 -32
- data/lib/tensor_stream/evaluator/opencl/kernels/softmax_cross_grad.cl +0 -28
- data/lib/tensor_stream/evaluator/opencl/kernels/softmax_grad.cl +0 -46
- data/lib/tensor_stream/evaluator/opencl/kernels/sqrt.cl +0 -9
- data/lib/tensor_stream/evaluator/opencl/kernels/square.cl +0 -9
- data/lib/tensor_stream/evaluator/opencl/kernels/squared_difference.cl +0 -53
- data/lib/tensor_stream/evaluator/opencl/kernels/sub.cl +0 -3
- data/lib/tensor_stream/evaluator/opencl/kernels/tan.cl +0 -8
- data/lib/tensor_stream/evaluator/opencl/kernels/tanh.cl +0 -8
- data/lib/tensor_stream/evaluator/opencl/kernels/tanh_grad.cl +0 -7
- data/lib/tensor_stream/evaluator/opencl/kernels/where.cl +0 -8
- data/lib/tensor_stream/evaluator/opencl/opencl_buffer.rb +0 -35
- data/lib/tensor_stream/evaluator/opencl/opencl_device.rb +0 -5
- data/lib/tensor_stream/evaluator/opencl/opencl_evaluator.rb +0 -1230
- data/lib/tensor_stream/evaluator/opencl/opencl_template_helper.rb +0 -95
@@ -1,8 +0,0 @@
|
|
1
|
-
% c_dtype = dtype_to_c_type(dtype)
|
2
|
-
__kernel void tan_<%= dtype %>(const int M, const int N, __global const <%= c_dtype %> *A, __global <%= c_dtype %> *C) {
|
3
|
-
// Get the index of the current element to be processed
|
4
|
-
const int globalRow = get_global_id(0); // Row ID of C (0..M)
|
5
|
-
const int globalCol = get_global_id(1); // Col ID of C (0..N)
|
6
|
-
|
7
|
-
C[globalRow * N + globalCol] = tan(A[globalRow * N + globalCol]);
|
8
|
-
}
|
@@ -1,8 +0,0 @@
|
|
1
|
-
% c_dtype = dtype_to_c_type(dtype)
|
2
|
-
__kernel void tanh_<%= dtype %>(const int M, const int N, __global const <%= c_dtype %> *A, __global <%= c_dtype %> *C) {
|
3
|
-
// Get the index of the current element to be processed
|
4
|
-
const int globalRow = get_global_id(0); // Row ID of C (0..M)
|
5
|
-
const int globalCol = get_global_id(1); // Col ID of C (0..N)
|
6
|
-
|
7
|
-
C[globalRow * N + globalCol] = tanh(A[globalRow * N + globalCol]);
|
8
|
-
}
|
@@ -1,7 +0,0 @@
|
|
1
|
-
% c_dtype = dtype_to_c_type(dtype)
|
2
|
-
__kernel void tanh_grad_<%= dtype %>(const int M, const int N, __global const <%= c_dtype %> *A, __global <%= c_dtype %> *C) {
|
3
|
-
// Get the index of the current element to be processed
|
4
|
-
const int globalRow = get_global_id(0); // Row ID of C (0..M)
|
5
|
-
const int globalCol = get_global_id(1); // Col ID of C (0..N)
|
6
|
-
C[globalRow * N + globalCol] = 1 - tanh(A[globalRow * N + globalCol]) * tanh(A[globalRow * N + globalCol]);
|
7
|
-
}
|
@@ -1,8 +0,0 @@
|
|
1
|
-
% c_dtype = dtype_to_c_type(dtype)
|
2
|
-
__kernel void where_<%= dtype %>(const int M, const int N, __global const short *PRED, __global const <%= c_dtype %> *A, __global const <%= c_dtype %> *B, __global <%= c_dtype %> *C) {
|
3
|
-
// Get the index of the current element to be processed
|
4
|
-
const int globalRow = get_global_id(0); // Row ID of C (0..M)
|
5
|
-
const int globalCol = get_global_id(1); // Col ID of C (0..N)
|
6
|
-
|
7
|
-
C[globalRow * N + globalCol] = PRED[globalRow * N + globalCol] ? A[globalRow * N + globalCol] : B[globalRow * N + globalCol];
|
8
|
-
}
|
@@ -1,35 +0,0 @@
|
|
1
|
-
module TensorStream
|
2
|
-
# Buffer used by the OpenCL evaluator
|
3
|
-
class OpenCLBuffer < Buffer
|
4
|
-
include ArrayOpsHelper
|
5
|
-
|
6
|
-
attr_accessor :shape, :buffer, :cl_buffer, :op
|
7
|
-
|
8
|
-
def initialize(data_type:, shape:, buffer:, cl_buffer:, op: nil, name: nil)
|
9
|
-
@data_type = data_type
|
10
|
-
@shape = shape
|
11
|
-
@buffer = buffer
|
12
|
-
@cl_buffer = cl_buffer
|
13
|
-
@name = name
|
14
|
-
@op = op
|
15
|
-
end
|
16
|
-
|
17
|
-
def to_ruby
|
18
|
-
return [] if buffer.empty?
|
19
|
-
|
20
|
-
if dirty
|
21
|
-
op.command_queue.enqueue_read_buffer(cl_buffer, buffer, event_wait_list: [op].compact)
|
22
|
-
op.command_queue.finish
|
23
|
-
self.dirty = false
|
24
|
-
end
|
25
|
-
|
26
|
-
if shape.empty?
|
27
|
-
return buffer[0] != 0 if data_type == :boolean
|
28
|
-
return buffer[0]
|
29
|
-
end
|
30
|
-
|
31
|
-
result = buffer.reshape(*shape.map(&:to_i).reverse).to_a
|
32
|
-
data_type == :boolean ? process_function_op(result, ->(a, _b) { a != 0 }) : result
|
33
|
-
end
|
34
|
-
end
|
35
|
-
end
|
@@ -1,1230 +0,0 @@
|
|
1
|
-
require 'tensor_stream/evaluator/operation_helpers/random_gaussian'
|
2
|
-
require 'tensor_stream/evaluator/operation_helpers/array_ops_helper'
|
3
|
-
require 'tensor_stream/evaluator/operation_helpers/math_helper'
|
4
|
-
require 'tensor_stream/evaluator/opencl/opencl_buffer'
|
5
|
-
require 'tensor_stream/evaluator/opencl/opencl_template_helper'
|
6
|
-
require 'tensor_stream/evaluator/opencl/opencl_device'
|
7
|
-
require 'opencl_ruby_ffi'
|
8
|
-
require 'narray_ffi'
|
9
|
-
require 'tensor_stream/evaluator/base_evaluator'
|
10
|
-
|
11
|
-
module TensorStream
|
12
|
-
module Evaluator
|
13
|
-
class FullEvalNotPossible < RuntimeError
|
14
|
-
end
|
15
|
-
|
16
|
-
# Errors during graph evaluation
|
17
|
-
class EvaluatorExcecutionException < RuntimeError
|
18
|
-
attr_reader :tensor
|
19
|
-
|
20
|
-
def initialize(exception, tensor)
|
21
|
-
@exception = exception
|
22
|
-
@tensor = tensor
|
23
|
-
end
|
24
|
-
|
25
|
-
def wrapped_exception
|
26
|
-
@exception
|
27
|
-
end
|
28
|
-
end
|
29
|
-
|
30
|
-
## PURE ruby evaluator used for testing and development
|
31
|
-
class OpenclEvaluator < BaseEvaluator
|
32
|
-
attr_accessor :retain
|
33
|
-
attr_reader :opencl_device
|
34
|
-
|
35
|
-
include TensorStream::OpHelper
|
36
|
-
include TensorStream::ArrayOpsHelper
|
37
|
-
include TensorStream::MathHelper
|
38
|
-
|
39
|
-
def initialize(session, device, thread_pool: nil, log_intermediates: false)
|
40
|
-
super
|
41
|
-
_create_opencl_context(device.native_device)
|
42
|
-
@opencl_device = device.native_device
|
43
|
-
create_command_queue
|
44
|
-
end
|
45
|
-
|
46
|
-
def self.query_supported_devices
|
47
|
-
devices = query_devices_with_score
|
48
|
-
devices.sort { |a| a[1] }.reverse.map do |d|
|
49
|
-
opencl_to_device(d)
|
50
|
-
end
|
51
|
-
end
|
52
|
-
|
53
|
-
def self.fetch_device(query = [])
|
54
|
-
devices = query_devices_with_score
|
55
|
-
platform_devices = devices.select { |d| d[0].platform.to_s.tr(' ', '_').downcase =~ /#{query[0].downcase}/ }
|
56
|
-
opencl_to_device(platform_devices[[query[1].to_i, platform_devices.size - 1].min])
|
57
|
-
end
|
58
|
-
|
59
|
-
def self.opencl_to_device(d)
|
60
|
-
device = d[0]
|
61
|
-
index = d[3]
|
62
|
-
platform_name = device.platform.name.tr(' ', '_').downcase
|
63
|
-
uri = [platform_name, index].join(':')
|
64
|
-
|
65
|
-
device_type = device.type.to_s == 'GPU' ? :gpu : :cpu
|
66
|
-
|
67
|
-
OpenclDevice.new(uri, device_type, self).tap do |devide|
|
68
|
-
devide.native_device = device
|
69
|
-
end
|
70
|
-
end
|
71
|
-
|
72
|
-
##
|
73
|
-
# Select the best device available in the system for this evaluator
|
74
|
-
def self.default_device
|
75
|
-
devices = OpenclEvaluator.query_devices_with_score
|
76
|
-
device = devices.sort { |a| a[1] }.reverse.first
|
77
|
-
opencl_to_device(device)
|
78
|
-
end
|
79
|
-
|
80
|
-
# opencl evaluator main entrypoint
|
81
|
-
def run(tensor, execution_context)
|
82
|
-
read_final_result(complete_eval(tensor, execution_context))
|
83
|
-
end
|
84
|
-
|
85
|
-
def run_with_buffer(tensor, context, execution_context)
|
86
|
-
@context = context
|
87
|
-
@context[:_cache][:_cl_buffers] ||= {} if context[:_cache]
|
88
|
-
|
89
|
-
if tensor.is_a?(Array)
|
90
|
-
tensor.collect do |t|
|
91
|
-
value = run(t, execution_context)
|
92
|
-
Buffer.new(data_type: t.data_type, buffer: value)
|
93
|
-
end
|
94
|
-
else
|
95
|
-
value = run(tensor, execution_context)
|
96
|
-
Buffer.new(data_type: tensor.data_type, buffer: value)
|
97
|
-
end
|
98
|
-
end
|
99
|
-
|
100
|
-
# buffer comes from non-opencl evaluator
|
101
|
-
def convert_from_buffer(tensor, result)
|
102
|
-
if result.buffer.is_a?(TensorStream::Evaluator::OutputGroup)
|
103
|
-
converted_outputs = result.buffer.outputs.zip(result.buffer.data_types).map { |output, data_type| convert_to_opencl([output].flatten, shape_eval(output), data_type: data_type, name: tensor.name) }
|
104
|
-
TensorStream::Evaluator::OutputGroup.new(converted_outputs, result.buffer.data_types)
|
105
|
-
else
|
106
|
-
convert_to_opencl([result.buffer].flatten, shape_eval(result.buffer), data_type: result.data_type, name: tensor.name)
|
107
|
-
end
|
108
|
-
end
|
109
|
-
|
110
|
-
def enqueue_buffer_read(tensor, context)
|
111
|
-
buffer = _run(tensor, context)
|
112
|
-
if buffer.is_a?(Array)
|
113
|
-
buffer = buffer.collect do |b|
|
114
|
-
next b if b.buffer.size.zero?
|
115
|
-
_opencl_queue.enqueue_read_buffer(b.cl_buffer, b.buffer, event_wait_list: build_event_wait_list([b]))
|
116
|
-
b
|
117
|
-
end
|
118
|
-
else
|
119
|
-
return buffer.outputs[0] if buffer.is_a?(OutputGroup)
|
120
|
-
return buffer if buffer.nil?
|
121
|
-
return [] if buffer.buffer.nil?
|
122
|
-
return buffer if buffer.buffer.size.zero?
|
123
|
-
_opencl_queue.enqueue_read_buffer(buffer.cl_buffer, buffer.buffer, event_wait_list: build_event_wait_list([buffer]))
|
124
|
-
buffer
|
125
|
-
end
|
126
|
-
end
|
127
|
-
|
128
|
-
def complete_eval(tensor, context)
|
129
|
-
buffer = enqueue_buffer_read(tensor, context)
|
130
|
-
_opencl_queue.finish
|
131
|
-
buffer
|
132
|
-
end
|
133
|
-
|
134
|
-
def self.query_devices_with_score
|
135
|
-
OpenCL.platforms.flat_map do |p|
|
136
|
-
p.devices.select { |d| d.available > 0 }.each_with_index.collect do |d, index|
|
137
|
-
score = 0
|
138
|
-
if d.type.to_s == 'CPU'
|
139
|
-
score += 1
|
140
|
-
elsif d.type.to_s == 'GPU'
|
141
|
-
score += 4
|
142
|
-
end
|
143
|
-
|
144
|
-
score += 1000 if d.platform.name == 'NVIDIA CUDA'
|
145
|
-
|
146
|
-
score += d.max_compute_units
|
147
|
-
score += d.max_clock_frequency
|
148
|
-
|
149
|
-
[d, score, p.name, index]
|
150
|
-
end
|
151
|
-
end
|
152
|
-
end
|
153
|
-
|
154
|
-
protected
|
155
|
-
|
156
|
-
def prepare_input(tensor, context, options = {})
|
157
|
-
return nil unless tensor
|
158
|
-
tensor = resolve_placeholder(tensor)
|
159
|
-
if options[:noop]
|
160
|
-
tensor
|
161
|
-
elsif options[:buffer]
|
162
|
-
complete_eval(tensor, context)
|
163
|
-
elsif options[:complete]
|
164
|
-
read_final_result(complete_eval(tensor, context))
|
165
|
-
else
|
166
|
-
_run(tensor, context)
|
167
|
-
end
|
168
|
-
end
|
169
|
-
|
170
|
-
# read result from opencl and convert to ruby
|
171
|
-
def read_final_result(buffer)
|
172
|
-
return buffer.map { |b| read_final_result(b) } if buffer.is_a?(Array)
|
173
|
-
return nil if buffer.nil?
|
174
|
-
|
175
|
-
buffer.to_ruby
|
176
|
-
end
|
177
|
-
|
178
|
-
def _create_opencl_context(opencl_device)
|
179
|
-
@opencl_context = OpenCL.create_context(opencl_device)
|
180
|
-
end
|
181
|
-
|
182
|
-
def create_command_queue
|
183
|
-
supported_proprties = opencl_device.queue_properties.names
|
184
|
-
|
185
|
-
properties = []
|
186
|
-
properties << OpenCL::CommandQueue::PROFILING_ENABLE if supported_proprties.include?('PROFILING_ENABLE')
|
187
|
-
properties << OpenCL::CommandQueue::OUT_OF_ORDER_EXEC_MODE_ENABLE if supported_proprties.include?('OUT_OF_ORDER_EXEC_MODE_ENABLE')
|
188
|
-
@command_queue = _opencl_context.create_command_queue(opencl_device, properties: properties)
|
189
|
-
end
|
190
|
-
|
191
|
-
def _opencl_context
|
192
|
-
@opencl_context
|
193
|
-
end
|
194
|
-
|
195
|
-
def _opencl_queue
|
196
|
-
@command_queue
|
197
|
-
end
|
198
|
-
|
199
|
-
def cl_template_path(kernel, extension)
|
200
|
-
File.join(File.dirname(__FILE__), 'kernels', "#{kernel}.#{extension}")
|
201
|
-
end
|
202
|
-
|
203
|
-
def _cl_program(kernel, args = {})
|
204
|
-
suffix = args.collect { |k, v| "#{k}.#{escape_arg_content(v)}" }.join('.')
|
205
|
-
@context[:_cache]["_opencl_kernel_#{kernel}.#{suffix}:#{object_id}"] ||= begin
|
206
|
-
filename = %w[cl.erb cl].map { |ext| cl_template_path(kernel, ext) }.find { |n| File.exist?(n) }
|
207
|
-
raise "opencl kernel template for #{kernel} has not yet been defined" if filename.nil?
|
208
|
-
source = File.read(filename)
|
209
|
-
source = OpenclTemplateHelper.new(source).generate(args)
|
210
|
-
# File.write("/tmp/#{kernel}.#{suffix}.cl", source)
|
211
|
-
program = _opencl_context.create_program_with_source(source)
|
212
|
-
program.build
|
213
|
-
rescue OpenCL::Error::BUILD_PROGRAM_FAILURE => e
|
214
|
-
puts "OpenCL Compile error: #{program.build_log}"
|
215
|
-
raise e
|
216
|
-
end
|
217
|
-
end
|
218
|
-
|
219
|
-
def escape_arg_content(value)
|
220
|
-
return value.tr(' ','_') if value.is_a?(String)
|
221
|
-
return value.join('-') if value.is_a?(Array)
|
222
|
-
|
223
|
-
value
|
224
|
-
end
|
225
|
-
|
226
|
-
def _run(tensor, execution_context)
|
227
|
-
return tensor if tensor.is_a?(OpenCLBuffer)
|
228
|
-
return tensor.map { |t| _run(t, execution_context) } if tensor.is_a?(Array) && !tensor.size.empty? && tensor[0].is_a?(Tensor)
|
229
|
-
|
230
|
-
tensor = tensor.call if tensor.is_a?(Proc)
|
231
|
-
|
232
|
-
child_context = execution_context.dup
|
233
|
-
res = if tensor.is_a?(Operation)
|
234
|
-
if !self.class.ops.include?(tensor.operation.to_sym)
|
235
|
-
result = @session.delegate_to_evaluator(tensor, @context, execution_context)
|
236
|
-
convert_from_buffer(tensor, result)
|
237
|
-
else
|
238
|
-
eval_operation(tensor, child_context)
|
239
|
-
end
|
240
|
-
elsif tensor.is_a?(Variable)
|
241
|
-
eval_variable(tensor, child_context)
|
242
|
-
elsif tensor.is_a?(Placeholder)
|
243
|
-
resolve_placeholder(tensor, child_context)
|
244
|
-
else
|
245
|
-
eval_tensor(tensor, child_context)
|
246
|
-
end
|
247
|
-
execution_context.deep_merge!(returns: child_context[:returns])
|
248
|
-
res
|
249
|
-
end
|
250
|
-
|
251
|
-
def eval_variable(tensor, _child_context)
|
252
|
-
raise "variable #{tensor.name} not initalized" if tensor.value.nil? && (tensor.buffer.nil? || !tensor.buffer.dirty)
|
253
|
-
tensor.buffer = wrap_opencl(tensor, name: tensor.name) if tensor.buffer.nil?
|
254
|
-
tensor.buffer
|
255
|
-
end
|
256
|
-
|
257
|
-
register_op :no_op do |_context, _tensor, _inputs|
|
258
|
-
end
|
259
|
-
|
260
|
-
register_op :log do |context, tensor, inputs|
|
261
|
-
execute_func('log', tensor, inputs[0], context)
|
262
|
-
end
|
263
|
-
|
264
|
-
register_op :cond, noop: true do |context, tensor, inputs|
|
265
|
-
pred = complete_eval(tensor.options[:pred], context)
|
266
|
-
|
267
|
-
if all_true?(pred.buffer)
|
268
|
-
complete_eval(inputs[0], context)
|
269
|
-
else
|
270
|
-
complete_eval(inputs[1], context)
|
271
|
-
end
|
272
|
-
end
|
273
|
-
|
274
|
-
register_op :identity do |context, tensor, inputs|
|
275
|
-
if tensor.inputs.size > 1
|
276
|
-
tensor.inputs[1..inputs.size].each { |input| complete_eval(input, context) }
|
277
|
-
end
|
278
|
-
inputs[0]
|
279
|
-
end
|
280
|
-
|
281
|
-
register_op :assign, noop: true do |context, tensor, inputs|
|
282
|
-
assign_var(tensor, inputs[1], context)
|
283
|
-
end
|
284
|
-
|
285
|
-
register_op :assign_add do |context, tensor, inputs|
|
286
|
-
value = execute_2_operand_func('add', tensor, inputs[0], inputs[1], context)
|
287
|
-
assign_var(tensor, value, context)
|
288
|
-
end
|
289
|
-
|
290
|
-
register_op :assign_sub do |context, tensor, inputs|
|
291
|
-
value = execute_2_operand_func('sub', tensor, inputs[0], inputs[1], context)
|
292
|
-
assign_var(tensor, value, context)
|
293
|
-
end
|
294
|
-
|
295
|
-
register_op :variable, noop: true do |context, tensor, inputs|
|
296
|
-
variable = tensor.inputs[0]
|
297
|
-
raise "variable #{tensor.name} not initalized" if variable.value.nil? && (variable.buffer.nil? || !variable.buffer.dirty)
|
298
|
-
variable.buffer = wrap_opencl(variable, name: variable.name) if variable.buffer.nil?
|
299
|
-
variable.buffer
|
300
|
-
end
|
301
|
-
|
302
|
-
# Fast in place multiply subtract assign
|
303
|
-
register_op :apply_gradient_descent do |_context, tensor, inputs|
|
304
|
-
_target_var, learning_rate, delta = inputs
|
305
|
-
|
306
|
-
assign = tensor.inputs[0] || tensor
|
307
|
-
|
308
|
-
assign.buffer.dirty = true # force buffer copy when variable is read externally
|
309
|
-
output_buffer = assign.buffer
|
310
|
-
|
311
|
-
m, n = output_buffer.shape
|
312
|
-
work_group = [m || 1, n || 1]
|
313
|
-
cl_m = OpenCL::Int1.new(m || 1)
|
314
|
-
cl_n = OpenCL::Int1.new(n || 1)
|
315
|
-
|
316
|
-
event_wait_list = build_event_wait_list([assign.buffer, learning_rate, delta])
|
317
|
-
method_call = :"apply_gradient_#{output_buffer.data_type}"
|
318
|
-
event = _cl_program("apply_gradient", dtype: output_buffer.data_type).send(method_call, _opencl_queue, work_group, cl_m, cl_n, delta.cl_buffer, learning_rate.cl_buffer, output_buffer.cl_buffer, event_wait_list: event_wait_list)
|
319
|
-
output_buffer.op = event
|
320
|
-
output_buffer
|
321
|
-
end
|
322
|
-
|
323
|
-
# Fast in place multiply subtract assign
|
324
|
-
register_op :apply_momentum do |_context, tensor, inputs|
|
325
|
-
target_var, momentum_var, learning_rate, grad, momentum = inputs
|
326
|
-
|
327
|
-
assign = tensor.inputs[0] || tensor
|
328
|
-
assign_acc = tensor.inputs[1]
|
329
|
-
assign.buffer.dirty = true # force buffer copy when variable is read externally
|
330
|
-
assign_acc.buffer.dirty = true # force buffer copy when variable is read externally
|
331
|
-
|
332
|
-
output_buffer = assign.buffer
|
333
|
-
|
334
|
-
m, n = output_buffer.shape
|
335
|
-
work_group = [m || 1, n || 1]
|
336
|
-
cl_m = OpenCL::Int1.new(m || 1)
|
337
|
-
cl_n = OpenCL::Int1.new(n || 1)
|
338
|
-
|
339
|
-
event_wait_list = build_event_wait_list([assign.buffer, assign_acc.buffer, learning_rate, grad, momentum])
|
340
|
-
method_call = :"apply_momentum_#{output_buffer.data_type}"
|
341
|
-
event = _cl_program("apply_momentum", nesterov: tensor.options[:use_nesterov], dtype: output_buffer.data_type).
|
342
|
-
send(method_call, _opencl_queue, work_group, cl_m, cl_n, grad.cl_buffer,
|
343
|
-
learning_rate.cl_buffer, momentum.cl_buffer, output_buffer.cl_buffer,
|
344
|
-
assign_acc.buffer.cl_buffer, event_wait_list: event_wait_list)
|
345
|
-
output_buffer.op = event
|
346
|
-
assign_acc.buffer.op = event
|
347
|
-
output_buffer
|
348
|
-
end
|
349
|
-
|
350
|
-
# Adam optimization algorithm
|
351
|
-
register_op :apply_adam do |_context, tensor, inputs|
|
352
|
-
_target_var, _m, _v, beta1_power, beta2_power, lr_t, beta1_t, beta2_t, epsilon_t, grad = inputs
|
353
|
-
|
354
|
-
assign = tensor.inputs[0] || tensor
|
355
|
-
assign_m = tensor.inputs[1]
|
356
|
-
assign_v = tensor.inputs[2]
|
357
|
-
|
358
|
-
# mark variable buffers as dirty
|
359
|
-
assign.buffer.dirty = true # force buffer copy when variable is read externally
|
360
|
-
assign_m.buffer.dirty = true # force buffer copy when variable is read externally
|
361
|
-
assign_v.buffer.dirty = true # force buffer copy when variable is read externally
|
362
|
-
|
363
|
-
output_buffer = assign.buffer
|
364
|
-
|
365
|
-
m, n = output_buffer.shape
|
366
|
-
work_group = [m || 1, n || 1]
|
367
|
-
cl_m = OpenCL::Int1.new(m || 1)
|
368
|
-
cl_n = OpenCL::Int1.new(n || 1)
|
369
|
-
|
370
|
-
event_wait_list = build_event_wait_list(inputs)
|
371
|
-
method_call = :"apply_adam_#{output_buffer.data_type}"
|
372
|
-
event = _cl_program("apply_adam", dtype: output_buffer.data_type)
|
373
|
-
.send(method_call, _opencl_queue, work_group, cl_m, cl_n,
|
374
|
-
grad.cl_buffer,
|
375
|
-
lr_t.cl_buffer,
|
376
|
-
beta1_power.cl_buffer,
|
377
|
-
beta2_power.cl_buffer,
|
378
|
-
beta1_t.cl_buffer,
|
379
|
-
beta2_t.cl_buffer,
|
380
|
-
epsilon_t.cl_buffer,
|
381
|
-
assign_m.buffer.cl_buffer,
|
382
|
-
assign.buffer.cl_buffer,
|
383
|
-
assign_v.buffer.cl_buffer,
|
384
|
-
event_wait_list: event_wait_list)
|
385
|
-
output_buffer.op = event
|
386
|
-
assign_m.buffer.op = event
|
387
|
-
assign_v.buffer.op = event
|
388
|
-
output_buffer
|
389
|
-
end
|
390
|
-
|
391
|
-
%i[less less_equal greater greater_equal equal not_equal logical_and].each do |op|
|
392
|
-
register_op op, noop: true do |context, tensor, inputs|
|
393
|
-
execute_2_operand_func(op.to_s, tensor, inputs[0], inputs[1], context, 'cond')
|
394
|
-
end
|
395
|
-
end
|
396
|
-
|
397
|
-
%i[max min add real_div div sub floor_mod mod mul pow sigmoid_grad squared_difference].each do |op|
|
398
|
-
register_op op, noop: true do |context, tensor, inputs|
|
399
|
-
execute_2_operand_func(op.to_s, tensor, inputs[0], inputs[1], context)
|
400
|
-
end
|
401
|
-
end
|
402
|
-
|
403
|
-
register_op :add_n do |_context, tensor, inputs|
|
404
|
-
if inputs.size == 1
|
405
|
-
inputs[0]
|
406
|
-
else
|
407
|
-
m, n = inputs[0].shape
|
408
|
-
work_group = [m || 1, n || 1]
|
409
|
-
cl_m = OpenCL::Int1.new(m || 1)
|
410
|
-
cl_n = OpenCL::Int1.new(n || 1)
|
411
|
-
cl_switch = OpenCL::Int1.new(0)
|
412
|
-
dtype = tensor.data_type
|
413
|
-
|
414
|
-
output_buffer = _create_result_buffer(tensor.data_type, inputs[0].shape, "out_#{tensor.name}")
|
415
|
-
inputs_queue = inputs.dup
|
416
|
-
a = inputs_queue.pop
|
417
|
-
until inputs_queue.empty?
|
418
|
-
b = inputs_queue.pop
|
419
|
-
event_wait_list = build_event_wait_list([a, b])
|
420
|
-
method_call = :"add_#{a.data_type}_#{b.data_type}"
|
421
|
-
event = _cl_program('add', a: a.data_type, b: b.data_type, dtype: dtype).send(method_call, _opencl_queue, work_group, cl_m, cl_n, cl_switch, a.cl_buffer, b.cl_buffer, output_buffer.cl_buffer, event_wait_list: event_wait_list)
|
422
|
-
a = output_buffer
|
423
|
-
a.op = event
|
424
|
-
end
|
425
|
-
|
426
|
-
output_buffer.op = a.op
|
427
|
-
output_buffer
|
428
|
-
end
|
429
|
-
end
|
430
|
-
|
431
|
-
register_op :expand_dims, buffer: true do |_context, tensor, inputs|
|
432
|
-
axis = inputs[1].buffer[0]
|
433
|
-
shape = inputs[0].shape.dup
|
434
|
-
axis = -axis if axis == shape.size
|
435
|
-
new_shape = shape.insert(axis, 1).compact
|
436
|
-
new_buf = inputs[0].buffer.reshape(*new_shape.reverse)
|
437
|
-
convert_to_opencl(new_buf, new_shape, data_type: inputs[0].data_type, name: tensor.name)
|
438
|
-
end
|
439
|
-
|
440
|
-
register_op :fill, buffer: true do |_context, tensor, inputs|
|
441
|
-
shape = inputs[0]
|
442
|
-
value = inputs[1]
|
443
|
-
|
444
|
-
narray_size = shape.buffer.to_a.reduce(:*) || 1
|
445
|
-
cl_buffer = get_cached_buffer(tensor.name, shape.buffer.to_a)
|
446
|
-
|
447
|
-
buffer = if cl_buffer
|
448
|
-
cl_buffer.buffer
|
449
|
-
else
|
450
|
-
allocate_narray_for_type(tensor.data_type, narray_size)
|
451
|
-
end
|
452
|
-
|
453
|
-
buffer.fill!(value.buffer[0])
|
454
|
-
convert_to_opencl(buffer, shape.buffer.to_a, data_type: tensor.data_type, name: tensor.name)
|
455
|
-
end
|
456
|
-
|
457
|
-
register_op :floor_div, noop: true do |context, tensor, inputs|
|
458
|
-
if fp_type?(tensor.data_type)
|
459
|
-
execute_2_operand_func('floor_div', tensor, inputs[0], inputs[1], context)
|
460
|
-
else
|
461
|
-
execute_2_operand_func('div', tensor, inputs[0], inputs[1], context)
|
462
|
-
end
|
463
|
-
end
|
464
|
-
|
465
|
-
register_op :where, noop: true do |context, tensor, inputs|
|
466
|
-
pred = tensor.options[:pred]
|
467
|
-
execute_cond_func('where', tensor, pred, inputs[0], inputs[1], context)
|
468
|
-
end
|
469
|
-
|
470
|
-
register_op :mat_mul do |_context, tensor, inputs|
|
471
|
-
a, b = inputs
|
472
|
-
|
473
|
-
m = a.shape[0]
|
474
|
-
n = b.shape[1]
|
475
|
-
v = b.shape[0]
|
476
|
-
k = a.shape[1]
|
477
|
-
|
478
|
-
if tensor.options[:transpose_a]
|
479
|
-
m = a.shape[1]
|
480
|
-
k = a.shape[0]
|
481
|
-
end
|
482
|
-
|
483
|
-
if tensor.options[:transpose_b]
|
484
|
-
n = b.shape[0]
|
485
|
-
v = b.shape[1]
|
486
|
-
end
|
487
|
-
|
488
|
-
result_shape = [m, n]
|
489
|
-
|
490
|
-
raise "#{tensor.inputs[0].name} rank must be greater than 1" if a.shape.size < 2
|
491
|
-
raise "#{tensor.inputs[1].name} rank must be greater than 1" if b.shape.size < 2
|
492
|
-
raise "incompatible shape sizes for matrix multiplication (#{a.shape[1]} != #{b.shape[0]}) #{a.shape} vs #{b.shape}" if k != v
|
493
|
-
|
494
|
-
dtype = tensor.data_type
|
495
|
-
a, b = auto_type_cast(a, b, name: "#{tensor.name}/cast_#{a.name}_#{b.data_type}")
|
496
|
-
output_buffer = _create_result_buffer(a.data_type, result_shape, tensor.name)
|
497
|
-
|
498
|
-
cl_m = OpenCL::Int1.new(m)
|
499
|
-
cl_n = OpenCL::Int1.new(n)
|
500
|
-
cl_k = OpenCL::Int1.new(k)
|
501
|
-
|
502
|
-
transpose_a = OpenCL::Int1.new(tensor.options[:transpose_a] ? 1 : 0)
|
503
|
-
transpose_b = OpenCL::Int1.new(tensor.options[:transpose_b] ? 1 : 0)
|
504
|
-
event_wait_list = build_event_wait_list(inputs)
|
505
|
-
output_buffer.op = _cl_program('gemm', dtype: dtype).send(:"gemm_#{dtype}", _opencl_queue, result_shape, cl_m, cl_n, cl_k, transpose_a, transpose_b, a.cl_buffer, b.cl_buffer, output_buffer.cl_buffer, event_wait_list: event_wait_list)
|
506
|
-
output_buffer
|
507
|
-
end
|
508
|
-
|
509
|
-
register_op :cast do |_context, tensor, inputs|
|
510
|
-
a = inputs[0]
|
511
|
-
if a.data_type != tensor.data_type
|
512
|
-
buffer = _create_result_buffer(tensor.data_type, a.shape, tensor.name)
|
513
|
-
m, n = a.shape
|
514
|
-
cl_m = OpenCL::Int1.new(m || 1)
|
515
|
-
cl_n = OpenCL::Int1.new(n || 1)
|
516
|
-
work_group = [m || 1, n || 1]
|
517
|
-
event_wait_list = build_event_wait_list(inputs)
|
518
|
-
buffer.op = _cl_program("cast", source_dt: a.data_type, target_dt: tensor.data_type).cast(_opencl_queue, work_group, cl_m, cl_n, a.cl_buffer, buffer.cl_buffer, event_wait_list: event_wait_list)
|
519
|
-
buffer
|
520
|
-
else
|
521
|
-
a
|
522
|
-
end
|
523
|
-
end
|
524
|
-
|
525
|
-
register_op :stack do |_context, tensor, inputs|
|
526
|
-
axis = tensor.options[:axis] || 0
|
527
|
-
shape = inputs[0].shape
|
528
|
-
rank = shape.size + 1
|
529
|
-
elem_size = shape.empty? ? 1 : shape.reduce(:*)
|
530
|
-
|
531
|
-
new_shape = [inputs.size]
|
532
|
-
shape.inject(new_shape) { |ns, s| ns << s }
|
533
|
-
|
534
|
-
divisors = new_shape.dup.drop(1).reverse.inject([1]) do |a, s|
|
535
|
-
a << s * a.last
|
536
|
-
end.reverse
|
537
|
-
|
538
|
-
axis = rank + axis if axis < 0
|
539
|
-
rotated_shape = Array.new(axis + 1) { new_shape.shift }
|
540
|
-
new_shape = rotated_shape.rotate! + new_shape
|
541
|
-
|
542
|
-
output_buffer = _create_result_buffer(tensor.data_type, new_shape, tensor.name)
|
543
|
-
multipliers = new_shape.dup.drop(1).reverse.inject([1]) do |a, s|
|
544
|
-
a << s * a.last
|
545
|
-
end.reverse
|
546
|
-
|
547
|
-
cl_n = OpenCL::Int1.new(elem_size)
|
548
|
-
work_group = [elem_size]
|
549
|
-
event_wait_list = build_event_wait_list(inputs)
|
550
|
-
ops = inputs.each_with_index.map do |input, index|
|
551
|
-
cl_index = OpenCL::Int1.new(index)
|
552
|
-
_cl_program("pack", data_type: tensor.data_type, divisors: divisors, multipliers: multipliers, axis: axis).pack(_opencl_queue, work_group, cl_n, cl_index, input.cl_buffer, output_buffer.cl_buffer, event_wait_list: event_wait_list)
|
553
|
-
end
|
554
|
-
output_buffer.op = ops
|
555
|
-
output_buffer
|
556
|
-
end
|
557
|
-
|
558
|
-
%i[sign exp tan acos asin sin cos abs sqrt negate square reciprocal tanh tanh_grad sigmoid log1p round floor ceil].each do |op|
|
559
|
-
register_op op, noop: true do |context, tensor, inputs|
|
560
|
-
execute_func(op.to_s, tensor, inputs[0], context)
|
561
|
-
end
|
562
|
-
end
|
563
|
-
|
564
|
-
register_op :softmax do |_context, tensor, inputs|
|
565
|
-
a = inputs[0]
|
566
|
-
event_wait_list = build_event_wait_list(inputs)
|
567
|
-
dtype = tensor.data_type
|
568
|
-
output_buffer = _create_result_buffer(tensor.data_type, a.shape, tensor.name)
|
569
|
-
|
570
|
-
m, n = a.shape
|
571
|
-
work_group = [m]
|
572
|
-
n = m if n.nil?
|
573
|
-
cl_n = OpenCL::Int1.new(n || 1)
|
574
|
-
|
575
|
-
event = _cl_program("softmax", dtype: dtype).send(:"softmax_#{dtype}", _opencl_queue, work_group, cl_n, a.cl_buffer, output_buffer.cl_buffer, event_wait_list: event_wait_list)
|
576
|
-
output_buffer.op = event
|
577
|
-
output_buffer
|
578
|
-
end
|
579
|
-
|
580
|
-
register_op :log_softmax do |_context, tensor, inputs|
|
581
|
-
a = inputs[0] # logits
|
582
|
-
event_wait_list = build_event_wait_list(inputs)
|
583
|
-
dtype = tensor.data_type
|
584
|
-
output_buffer = _create_result_buffer(tensor.data_type, a.shape, tensor.name)
|
585
|
-
|
586
|
-
m, n = a.shape
|
587
|
-
work_group = [m]
|
588
|
-
n = m if n.nil?
|
589
|
-
cl_n = OpenCL::Int1.new(n || 1)
|
590
|
-
|
591
|
-
event = _cl_program("log_softmax", dtype: dtype).send(:"log_softmax_#{dtype}", _opencl_queue, work_group, cl_n, a.cl_buffer, output_buffer.cl_buffer, event_wait_list: event_wait_list)
|
592
|
-
output_buffer.op = event
|
593
|
-
output_buffer
|
594
|
-
end
|
595
|
-
|
596
|
-
register_op :softmax_cross_entropy_with_logits_v2 do |context, tensor, inputs|
|
597
|
-
a = inputs[0] # logits
|
598
|
-
b = inputs[1] # labels
|
599
|
-
event_wait_list = build_event_wait_list(inputs)
|
600
|
-
dtype = tensor.data_type
|
601
|
-
output_buffer = _create_result_buffer(tensor.data_type, a.shape, tensor.name)
|
602
|
-
output_buffer_backprop = _create_result_buffer(tensor.data_type, a.shape, "#{tensor.name}_2")
|
603
|
-
rank = a.shape.size - 1
|
604
|
-
m, n = a.shape
|
605
|
-
work_group = [m]
|
606
|
-
n = m if n.nil?
|
607
|
-
cl_n = OpenCL::Int1.new(n || 1)
|
608
|
-
|
609
|
-
event = _cl_program("softmax_cross", dtype: dtype).send(:"softmax_cross_#{dtype}", _opencl_queue, work_group, cl_n, a.cl_buffer, b.cl_buffer,
|
610
|
-
output_buffer.cl_buffer, output_buffer_backprop.cl_buffer, event_wait_list: event_wait_list)
|
611
|
-
output_buffer.op = event
|
612
|
-
output_buffer_backprop.op = event
|
613
|
-
|
614
|
-
loss = reduction(context, tensor, output_buffer, rank, :sum)
|
615
|
-
OutputGroup.new([loss, output_buffer_backprop], [tensor.inputs[0].data_type, tensor.inputs[0].data_type])
|
616
|
-
end
|
617
|
-
|
618
|
-
register_op :softmax_cross_entropy_with_logits_v2_grad do |_context, tensor, inputs|
|
619
|
-
a = inputs[0] # logits
|
620
|
-
b = inputs[1] # labels
|
621
|
-
c = inputs[2] # grads
|
622
|
-
event_wait_list = build_event_wait_list(inputs)
|
623
|
-
dtype = tensor.data_type
|
624
|
-
output_buffer = _create_result_buffer(tensor.data_type, a.shape, tensor.name)
|
625
|
-
|
626
|
-
m, n = a.shape
|
627
|
-
work_group = [m]
|
628
|
-
n = m if n.nil?
|
629
|
-
cl_n = OpenCL::Int1.new(n || 1)
|
630
|
-
|
631
|
-
event = _cl_program("softmax_cross_grad", dtype: dtype).send(:"softmax_cross_grad_#{dtype}", _opencl_queue, work_group, cl_n, a.cl_buffer, b.cl_buffer, c.cl_buffer, output_buffer.cl_buffer, event_wait_list: event_wait_list)
|
632
|
-
output_buffer.op = event
|
633
|
-
output_buffer
|
634
|
-
end
|
635
|
-
|
636
|
-
register_op :softmax_grad do |_context, tensor, inputs|
|
637
|
-
a, grad = inputs
|
638
|
-
|
639
|
-
event_wait_list = build_event_wait_list(inputs)
|
640
|
-
dtype = tensor.data_type
|
641
|
-
output_buffer = _create_result_buffer(tensor.data_type, a.shape, tensor.name)
|
642
|
-
|
643
|
-
m, n = a.shape
|
644
|
-
work_group = [m]
|
645
|
-
n = m if n.nil?
|
646
|
-
cl_n = OpenCL::Int1.new(n || 1)
|
647
|
-
event = _cl_program('softmax_grad', dtype: dtype, size: n).send(:"softmax_grad_#{dtype}", _opencl_queue, work_group, cl_n, a.cl_buffer, grad.cl_buffer, output_buffer.cl_buffer, event_wait_list: event_wait_list)
|
648
|
-
output_buffer.op = event
|
649
|
-
output_buffer
|
650
|
-
end
|
651
|
-
|
652
|
-
register_op :check_numerics, noop: true do |context, tensor, inputs|
|
653
|
-
a = complete_eval(inputs[0], context)
|
654
|
-
name = tensor.options[:name]
|
655
|
-
|
656
|
-
a.buffer.each do |input|
|
657
|
-
raise TensorStream::InvalidArgumentError, "#{name} Invalid Argument" if input.nan? || input.infinite?
|
658
|
-
end
|
659
|
-
a
|
660
|
-
end
|
661
|
-
|
662
|
-
register_op :broadcast_transform do |context, tensor, inputs|
|
663
|
-
a, b = inputs
|
664
|
-
|
665
|
-
if a.shape == b.shape
|
666
|
-
[a, b]
|
667
|
-
else
|
668
|
-
input_a = read_final_result(complete_eval(a, context))
|
669
|
-
input_b = read_final_result(complete_eval(b, context))
|
670
|
-
b_a, b_b = broadcast(input_a, input_b)
|
671
|
-
[wrap_opencl(b_a, data_type: a.data_type, name: "#{tensor.name}_a"),
|
672
|
-
wrap_opencl(b_b, data_type: a.data_type, name: "#{tensor.name}_b")]
|
673
|
-
end
|
674
|
-
end
|
675
|
-
|
676
|
-
register_op :print do |context, tensor, inputs|
|
677
|
-
a, b = inputs
|
678
|
-
input_b = complete_eval(b, context)
|
679
|
-
input_b = read_final_result(input_b)
|
680
|
-
puts "#{tensor.options.fetch(:message, '')} #{input_b}"
|
681
|
-
a
|
682
|
-
end
|
683
|
-
|
684
|
-
register_op :rank do |_context, tensor, inputs|
|
685
|
-
wrap_opencl(inputs[0].shape.size, data_type: tensor.data_type, name: tensor.name)
|
686
|
-
end
|
687
|
-
|
688
|
-
register_op :stop_gradient do |_context, _tensor, inputs|
|
689
|
-
inputs[0]
|
690
|
-
end
|
691
|
-
|
692
|
-
register_op :slice, noop: true do |context, tensor, inputs|
|
693
|
-
input_a = complete_eval(inputs[0], context)
|
694
|
-
input_b = read_final_result(complete_eval(inputs[1], context))
|
695
|
-
size = tensor.options[:size]
|
696
|
-
|
697
|
-
slice_param = input_b.zip(size).collect { |x, y| x..x + y - 1 }.reverse
|
698
|
-
|
699
|
-
new_buf = input_a.buffer.reshape(*input_a.shape.reverse)
|
700
|
-
sliced = new_buf.slice[*slice_param]
|
701
|
-
convert_to_opencl(sliced.flatten, sliced.shape.reverse, data_type: inputs[0].data_type, name: tensor.name)
|
702
|
-
end
|
703
|
-
|
704
|
-
register_op :transpose, buffer: true do |_context, tensor, inputs|
|
705
|
-
t_param = Array.new(inputs[0].shape.size) { |index| index }.reverse
|
706
|
-
|
707
|
-
if inputs[0].shape.size == 2 && inputs[1].nil?
|
708
|
-
transposed = inputs[0].buffer.reshape(*inputs[0].shape.reverse).transpose(*t_param)
|
709
|
-
res = convert_to_opencl(transposed.flatten, transposed.shape.reverse, data_type: inputs[0].data_type, name: tensor.name)
|
710
|
-
res
|
711
|
-
else
|
712
|
-
rank = inputs[0].shape.size
|
713
|
-
perm = inputs[1].nil? ? (0...rank).to_a.reverse : inputs[1].buffer
|
714
|
-
new_shape = perm.map { |p| inputs[0].shape[p] }.to_a
|
715
|
-
output_buffer = _create_result_buffer(tensor.data_type, new_shape, tensor.name)
|
716
|
-
transpose_with_perm(inputs[0].buffer, output_buffer.buffer, inputs[0].shape, new_shape, perm)
|
717
|
-
|
718
|
-
write_op = _opencl_queue.enqueue_write_buffer(output_buffer.cl_buffer, output_buffer.buffer)
|
719
|
-
output_buffer.op = write_op
|
720
|
-
output_buffer
|
721
|
-
end
|
722
|
-
end
|
723
|
-
|
724
|
-
register_op :index, noop: true do |context, tensor, inputs|
|
725
|
-
a = _run(inputs[0], context)
|
726
|
-
index = read_final_result(_run(inputs[1], context))
|
727
|
-
|
728
|
-
if a.is_a?(OutputGroup)
|
729
|
-
a.outputs[index]
|
730
|
-
elsif a.is_a?(Array)
|
731
|
-
a[index]
|
732
|
-
else
|
733
|
-
new_shape = a.shape.dup
|
734
|
-
new_shape.shift
|
735
|
-
input_a = read_final_result(a)
|
736
|
-
convert_to_opencl(input_a[index], new_shape, data_type: a.data_type, name: tensor.name)
|
737
|
-
end
|
738
|
-
end
|
739
|
-
|
740
|
-
register_op :broadcast_gradient_args, buffer: true do |_context, tensor, inputs|
|
741
|
-
rx, ry = get_broadcast_gradient_args(inputs[0].buffer.to_a, inputs[1].buffer.to_a)
|
742
|
-
OutputGroup.new([wrap_opencl(rx, data_type: :int32, name: tensor.name), wrap_opencl(ry, data_type: :int32, name: "#{tensor.name}:1")], tensor.inputs.map(&:data_type))
|
743
|
-
end
|
744
|
-
|
745
|
-
register_op :shape do |_context, tensor, inputs|
|
746
|
-
wrap_opencl(inputs[0].shape, name: tensor.name, data_type: tensor.data_type)
|
747
|
-
end
|
748
|
-
|
749
|
-
register_op :reshape, buffer: true do |_context, tensor, inputs|
|
750
|
-
arr = inputs[0]
|
751
|
-
new_shape = read_final_result(inputs[1])
|
752
|
-
|
753
|
-
shape = if new_shape.size.zero? && arr.buffer.size == 1
|
754
|
-
new_shape
|
755
|
-
else
|
756
|
-
TensorShape.fix_inferred_elements(new_shape, arr.buffer.size)
|
757
|
-
end
|
758
|
-
|
759
|
-
convert_to_opencl(arr.buffer, shape, data_type: arr.data_type, name: tensor.name)
|
760
|
-
end
|
761
|
-
|
762
|
-
register_op :flow_group do |context, _tensor, inputs|
|
763
|
-
_opencl_queue.finish
|
764
|
-
nil
|
765
|
-
end
|
766
|
-
|
767
|
-
register_op :size do |_context, tensor, inputs|
|
768
|
-
wrap_opencl(inputs[0].buffer.size, name: tensor.name, data_type: tensor.options[:out_type] || :int32)
|
769
|
-
end
|
770
|
-
|
771
|
-
%i[sum mean].each do |op|
|
772
|
-
register_op op, noop: true do |context, tensor, inputs|
|
773
|
-
reduction(context, tensor, inputs[0], inputs[1], op.to_sym)
|
774
|
-
end
|
775
|
-
end
|
776
|
-
|
777
|
-
register_op :prod, noop: true do |context, tensor, inputs|
|
778
|
-
input_a = complete_eval(inputs[0], context)
|
779
|
-
|
780
|
-
if input_a.buffer.empty?
|
781
|
-
convert_to_opencl([1.0], [], data_type: inputs[0].data_type, name: tensor.name)
|
782
|
-
else
|
783
|
-
reduction(context, tensor, inputs[0], inputs[1], :prod)
|
784
|
-
end
|
785
|
-
end
|
786
|
-
|
787
|
-
register_op :argmin, buffer: true do |_context, tensor, inputs|
|
788
|
-
axis = tensor.options[:axis] || 0
|
789
|
-
rank = inputs[0].shape.size
|
790
|
-
raise TensorStream::InvalidArgumentError, "Expected dimension in the range [#{-rank},#{rank}) but got #{axis}" if axis < -rank || axis >= rank
|
791
|
-
|
792
|
-
arr = inputs[0].buffer.reshape(*inputs[0].shape.reverse).to_a
|
793
|
-
op = get_op_with_axis(arr, axis, 0, inputs[0].data_type, ->(a, b) { a < b })
|
794
|
-
convert_to_opencl(op, shape_eval(op), data_type: tensor.data_type, name: tensor.name)
|
795
|
-
end
|
796
|
-
|
797
|
-
register_op :argmax, buffer: true do |_context, tensor, inputs|
|
798
|
-
axis = tensor.options[:axis] || 0
|
799
|
-
rank = inputs[0].shape.size
|
800
|
-
raise TensorStream::InvalidArgumentError, "Expected dimension in the range [#{-rank},#{rank}) but got #{axis}" if axis < -rank || axis >= rank
|
801
|
-
|
802
|
-
arr = inputs[0].buffer.reshape(*inputs[0].shape.reverse).to_a
|
803
|
-
op = get_op_with_axis(arr, axis, 0, inputs[0].data_type, ->(a, b) { a > b })
|
804
|
-
convert_to_opencl(op, shape_eval(op), data_type: tensor.data_type, name: tensor.name)
|
805
|
-
end
|
806
|
-
|
807
|
-
def eval_operation(tensor, child_context)
|
808
|
-
cache_key = "#{tensor.graph.object_id}_opencl_#{tensor.name}:#{object_id}"
|
809
|
-
return @context[:_cache][cache_key] if @context[:_cache].key?(cache_key)
|
810
|
-
return @context[cache_key] if @context.key?(cache_key)
|
811
|
-
# puts "opencl: #{tensor.name}"
|
812
|
-
invoke(tensor, child_context).tap do |result|
|
813
|
-
if tensor.breakpoint
|
814
|
-
a = resolve_placeholder(tensor.inputs[0], child_context) if tensor.inputs && tensor.inputs[0]
|
815
|
-
b = resolve_placeholder(tensor.inputs[1], child_context) if tensor.inputs && tensor.inputs[1]
|
816
|
-
a = read_final_result(complete_eval(a, child_context))
|
817
|
-
b = read_final_result(complete_eval(b, child_context))
|
818
|
-
result = read_final_result(complete_eval(result, child_context))
|
819
|
-
|
820
|
-
tensor.breakpoint.call(tensor, a, b, result)
|
821
|
-
end
|
822
|
-
if @log_intermediates
|
823
|
-
@context[:compute_history] << {
|
824
|
-
name: tensor.name,
|
825
|
-
type: tensor.data_type,
|
826
|
-
shape: shape_eval(result),
|
827
|
-
source: tensor.source,
|
828
|
-
description: tensor.to_math(true, 1),
|
829
|
-
value: result
|
830
|
-
}
|
831
|
-
end
|
832
|
-
@context[cache_key] = result
|
833
|
-
@context[:_cache][cache_key] = result if tensor.is_const
|
834
|
-
end
|
835
|
-
rescue EvaluatorExcecutionException => e
|
836
|
-
_opencl_queue.finish # dump queue
|
837
|
-
raise e, "error #{e.message} while evaluating #{tensor.name} : #{tensor.to_math(true, 1)} defined at #{tensor.source}"
|
838
|
-
rescue TensorStreamError => e
|
839
|
-
_opencl_queue.finish # dump queue
|
840
|
-
raise e, "error #{e.message} while evaluating #{tensor.name} : #{tensor.to_math(true, 1)} defined at #{tensor.source}"
|
841
|
-
rescue StandardError => e
|
842
|
-
_opencl_queue.finish # dump queue
|
843
|
-
puts e.message
|
844
|
-
puts e.backtrace.join("\n")
|
845
|
-
|
846
|
-
# shape_a = a.shape.shape if a
|
847
|
-
# shape_b = b.shape.shape if b
|
848
|
-
# dtype_a = a.data_type if a
|
849
|
-
# dtype_b = b.data_type if b
|
850
|
-
# a = complete_eval(a, child_context)
|
851
|
-
# b = complete_eval(b, child_context)
|
852
|
-
# puts "name: #{tensor.given_name}"
|
853
|
-
# # puts "op: #{tensor.to_math(true, 1)}"
|
854
|
-
# puts "A #{shape_a} #{dtype_a}: #{a}" if a
|
855
|
-
# puts "B #{shape_b} #{dtype_b}: #{b}" if b
|
856
|
-
# dump_intermediates if @log_intermediates
|
857
|
-
# File.write('/home/jedld/workspace/tensor_stream/samples/error.graphml', TensorStream::Graphml.new.get_string(tensor, @session))
|
858
|
-
|
859
|
-
# File.write('/Users/josephemmanueldayo/workspace/gradients.graphml', TensorStream::Graphml.new.get_string(tensor, @session))
|
860
|
-
raise EvaluatorExcecutionException.new(e, tensor), "error #{e.message} while evaluating #{tensor.name} : #{tensor.to_math(true, 1)} defined at #{tensor.source}"
|
861
|
-
end
|
862
|
-
|
863
|
-
def eval_tensor(tensor, child_context)
|
864
|
-
return tensor unless tensor.is_a?(Tensor)
|
865
|
-
|
866
|
-
cache_key = "#{tensor.graph.object_id}_opencl_#{tensor.name}:#{object_id}"
|
867
|
-
return @context[cache_key] if @context.key?(cache_key)
|
868
|
-
return @context[:_cache][cache_key] if tensor.is_const && @context[:_cache][cache_key]
|
869
|
-
@context[cache_key] = if tensor.value.is_a?(Tensor)
|
870
|
-
_run(tensor.value, child_context)
|
871
|
-
else
|
872
|
-
wrap_opencl(tensor, name: tensor.name)
|
873
|
-
end
|
874
|
-
@context[:_cache][cache_key] = @context[cache_key] if tensor.is_const
|
875
|
-
@context[cache_key]
|
876
|
-
end
|
877
|
-
|
878
|
-
private
|
879
|
-
|
880
|
-
def assign_var(tensor, b, child_context)
|
881
|
-
assign = tensor.inputs[0] || tensor
|
882
|
-
buffer = complete_eval(b, child_context)
|
883
|
-
|
884
|
-
if assign.buffer
|
885
|
-
# buffer = type_cast(buffer, assign.data_type, name: "#{tensor.name}/cast_#{tensor.name}_#{tensor.data_type}")
|
886
|
-
event_wait_list = build_event_wait_list([buffer, assign.buffer])
|
887
|
-
assign.buffer.op = if assign.buffer.cl_buffer != buffer.cl_buffer
|
888
|
-
_opencl_queue.enqueue_copy_buffer(buffer.cl_buffer, assign.buffer.cl_buffer, event_wait_list: event_wait_list)
|
889
|
-
else
|
890
|
-
buffer.op
|
891
|
-
end
|
892
|
-
else
|
893
|
-
value = read_final_result(buffer)
|
894
|
-
assign.buffer = convert_to_opencl(value, buffer.shape, data_type: tensor.data_type, name: assign.name)
|
895
|
-
assign.value = value
|
896
|
-
end
|
897
|
-
assign.buffer.dirty = true
|
898
|
-
assign.buffer
|
899
|
-
end
|
900
|
-
|
901
|
-
def execute_2_operand_func(op_name, tensor, input_a, input_b, child_context, prog_name = nil)
|
902
|
-
a = _run(input_a, child_context)
|
903
|
-
b = _run(input_b, child_context)
|
904
|
-
a, b = auto_type_cast(a, b, name: "#{tensor.name}/cast_#{a.name}_#{b.data_type}")
|
905
|
-
dtype = tensor.data_type
|
906
|
-
result_shape = TensorShape.infer_shape(a.shape, b.shape)
|
907
|
-
return _create_result_buffer(dtype, [0], "out_#{tensor.name}") if result_shape == [0]
|
908
|
-
output_buffer = _create_result_buffer(tensor.data_type, result_shape, "out_#{tensor.name}")
|
909
|
-
a, b, prog, switch_operands = select_program(a, b, op_name)
|
910
|
-
m, n = result_shape
|
911
|
-
work_group = [m || 1, n || 1]
|
912
|
-
cl_m = OpenCL::Int1.new(m || 1)
|
913
|
-
cl_n = OpenCL::Int1.new(n || 1)
|
914
|
-
cl_switch = OpenCL::Int1.new(switch_operands) # no need to switch for addition
|
915
|
-
|
916
|
-
event_wait_list = build_event_wait_list([a, b]) # add dependency wait list
|
917
|
-
|
918
|
-
method_call = :"#{prog}_#{a.data_type}_#{b.data_type}"
|
919
|
-
prog_name ||= op_name
|
920
|
-
event = if prog == "#{op_name}_b"
|
921
|
-
cl_m_b, cl_n_b = if b.shape.size == 2
|
922
|
-
[OpenCL::Int1.new(b.shape[0]), OpenCL::Int1.new(b.shape[1])]
|
923
|
-
elsif b.shape.size == 1
|
924
|
-
[OpenCL::Int1.new(1), OpenCL::Int1.new(b.shape[0])]
|
925
|
-
else
|
926
|
-
raise "rank > 2 not supported!"
|
927
|
-
end
|
928
|
-
_cl_program(prog_name, a: a.data_type, b: b.data_type, dtype: dtype).
|
929
|
-
send(method_call, _opencl_queue, work_group, cl_m, cl_n, cl_m_b, cl_n_b,
|
930
|
-
cl_switch, a.cl_buffer, b.cl_buffer, output_buffer.cl_buffer, event_wait_list: event_wait_list)
|
931
|
-
else
|
932
|
-
_cl_program(prog_name, a: a.data_type, b: b.data_type, dtype: dtype).
|
933
|
-
send(method_call, _opencl_queue, work_group, cl_m, cl_n, cl_switch,
|
934
|
-
a.cl_buffer, b.cl_buffer, output_buffer.cl_buffer, event_wait_list: event_wait_list)
|
935
|
-
end
|
936
|
-
|
937
|
-
output_buffer.op = event
|
938
|
-
output_buffer
|
939
|
-
end
|
940
|
-
|
941
|
-
def execute_cond_func(op_name, tensor, pred, input_a, input_b, child_context)
|
942
|
-
p = _run(pred, child_context)
|
943
|
-
a = _run(input_a, child_context)
|
944
|
-
b = _run(input_b, child_context)
|
945
|
-
|
946
|
-
a, b = auto_type_cast(a, b, name: "#{tensor.name}/cast_#{a.name}_#{b.data_type}")
|
947
|
-
dtype = tensor.data_type
|
948
|
-
|
949
|
-
output_buffer = _create_result_buffer(tensor.data_type, p.shape, tensor.name)
|
950
|
-
|
951
|
-
m, n = p.shape
|
952
|
-
work_group = [m || 1, n || 1]
|
953
|
-
cl_m = OpenCL::Int1.new(m || 1)
|
954
|
-
cl_n = OpenCL::Int1.new(n || 1)
|
955
|
-
|
956
|
-
event_wait_list = build_event_wait_list([a, b, p]) # add dependency wait list
|
957
|
-
output_buffer.op = _cl_program(op_name.to_s, dtype: dtype).send(:"#{op_name}_#{dtype}", _opencl_queue, work_group, cl_m, cl_n, p.cl_buffer, a.cl_buffer, b.cl_buffer, output_buffer.cl_buffer, event_wait_list: event_wait_list)
|
958
|
-
output_buffer
|
959
|
-
end
|
960
|
-
|
961
|
-
def execute_func(op_name, tensor, a, child_context)
|
962
|
-
a = _run(a, child_context)
|
963
|
-
event_wait_list = build_event_wait_list([a])
|
964
|
-
dtype = tensor.data_type
|
965
|
-
output_buffer = _create_result_buffer(tensor.data_type, a.shape, tensor.name)
|
966
|
-
|
967
|
-
m, n = a.shape
|
968
|
-
work_group = [m || 1, n || 1]
|
969
|
-
cl_m = OpenCL::Int1.new(m || 1)
|
970
|
-
cl_n = OpenCL::Int1.new(n || 1)
|
971
|
-
|
972
|
-
event = _cl_program(op_name.to_s, dtype: dtype).send(:"#{op_name}_#{dtype}", _opencl_queue, work_group, cl_m, cl_n, a.cl_buffer, output_buffer.cl_buffer, event_wait_list: event_wait_list)
|
973
|
-
output_buffer.op = event
|
974
|
-
output_buffer
|
975
|
-
end
|
976
|
-
|
977
|
-
def auto_type_cast(a, b, name: nil)
|
978
|
-
return [a, b] if a.data_type == b.data_type
|
979
|
-
m, n = b.shape
|
980
|
-
work_group = [m || 1, n || 1]
|
981
|
-
event_wait_list = build_event_wait_list([b])
|
982
|
-
buffer = _create_result_buffer(b.data_type, b.shape, name)
|
983
|
-
|
984
|
-
cl_m = OpenCL::Int1.new(m || 1)
|
985
|
-
cl_n = OpenCL::Int1.new(n || 1)
|
986
|
-
|
987
|
-
buffer.op = _cl_program("cast", source_dt: a.data_type, target_dt: b.data_type).cast(_opencl_queue, work_group, cl_m, cl_n, b.cl_buffer, buffer.cl_buffer, event_wait_list: event_wait_list)
|
988
|
-
[a, buffer]
|
989
|
-
end
|
990
|
-
|
991
|
-
def type_cast(source, data_type, name: nil)
|
992
|
-
return source if source.data_type == data_type
|
993
|
-
m, n = source.shape
|
994
|
-
work_group = [m || 1, n || 1]
|
995
|
-
event_wait_list = [source.op].compact
|
996
|
-
buffer = _create_result_buffer(data_type, source.shape, name)
|
997
|
-
|
998
|
-
cl_m = OpenCL::Int1.new(m || 1)
|
999
|
-
cl_n = OpenCL::Int1.new(n || 1)
|
1000
|
-
|
1001
|
-
buffer.op = _cl_program("cast", source_dt: source.data_type, target_dt: data_type).cast(_opencl_queue, work_group, cl_m, cl_n, source.cl_buffer, buffer.cl_buffer, event_wait_list: event_wait_list)
|
1002
|
-
buffer
|
1003
|
-
end
|
1004
|
-
|
1005
|
-
def wrap_opencl(tensor, data_type: nil, name: nil)
|
1006
|
-
value, shape = if tensor.is_a?(Tensor)
|
1007
|
-
[tensor.value, tensor.shape.shape]
|
1008
|
-
else
|
1009
|
-
[tensor, shape_eval(tensor)]
|
1010
|
-
end
|
1011
|
-
|
1012
|
-
convert_to_opencl(value, shape, data_type: data_type || tensor.data_type, name: name)
|
1013
|
-
end
|
1014
|
-
|
1015
|
-
def get_cached_buffer(name, shape)
|
1016
|
-
cache_key = "_cl_object_#{name}:#{shape.join('_')}:#{object_id}"
|
1017
|
-
@context[:_cache][cache_key]
|
1018
|
-
end
|
1019
|
-
|
1020
|
-
def convert_to_opencl(value, shape, data_type: nil, name: nil)
|
1021
|
-
value = [value] if !value.is_a?(Array) && !value.is_a?(NArray)
|
1022
|
-
|
1023
|
-
cache_key = "_cl_object_#{name}:#{shape.join('_')}:#{object_id}"
|
1024
|
-
cl_object = if name && @context[:_cache][cache_key]
|
1025
|
-
@context[:_cache][cache_key]
|
1026
|
-
else
|
1027
|
-
narray_size = shape.reduce(:*) || 1
|
1028
|
-
|
1029
|
-
buffer = if value.is_a?(NArray)
|
1030
|
-
value
|
1031
|
-
else
|
1032
|
-
allocate_narray_for_type(data_type, narray_size)
|
1033
|
-
end
|
1034
|
-
|
1035
|
-
return nil if buffer.nil?
|
1036
|
-
|
1037
|
-
cl_buffer_size = shape.empty? ? 1 : shape.reduce(:*)
|
1038
|
-
|
1039
|
-
cl_buffer = unless value.flatten.empty?
|
1040
|
-
cl_buffer_size = 1 if cl_buffer_size.zero?
|
1041
|
-
_opencl_context.create_buffer(cl_buffer_size * buffer.element_size)
|
1042
|
-
end
|
1043
|
-
|
1044
|
-
@context[:_cache][cache_key] = OpenCLBuffer.new(name: name, data_type: data_type, shape: shape, buffer: buffer, cl_buffer: cl_buffer)
|
1045
|
-
end
|
1046
|
-
|
1047
|
-
if value.is_a?(Array)
|
1048
|
-
value.flatten.each_with_index do |element, index|
|
1049
|
-
cl_object.buffer[index] = if element.is_a?(Tensor)
|
1050
|
-
read_final_result(complete_eval(element, {}))
|
1051
|
-
elsif data_type == :boolean
|
1052
|
-
element ? 1 : 0
|
1053
|
-
else
|
1054
|
-
Tensor.cast_dtype(element, data_type)
|
1055
|
-
end
|
1056
|
-
end
|
1057
|
-
elsif value.is_a?(NArray)
|
1058
|
-
cl_object.buffer = value
|
1059
|
-
elsif data_type == :boolean
|
1060
|
-
cl_object.buffer[0] = element ? 1 : 0
|
1061
|
-
else
|
1062
|
-
cl_object.buffer[0] = Tensor.cast_dtype(value, data_type)
|
1063
|
-
end
|
1064
|
-
|
1065
|
-
write_op = _opencl_queue.enqueue_write_buffer(cl_object.cl_buffer, cl_object.buffer) if cl_object.cl_buffer && !value.nil? && (!value.is_a?(Array) || !value.empty?)
|
1066
|
-
cl_object.op = write_op
|
1067
|
-
cl_object
|
1068
|
-
end
|
1069
|
-
|
1070
|
-
def allocate_narray_for_type(data_type, narray_size)
|
1071
|
-
case data_type
|
1072
|
-
when :float, :float32
|
1073
|
-
NArray.sfloat(narray_size)
|
1074
|
-
when :float64
|
1075
|
-
NArray.float(narray_size)
|
1076
|
-
when :int, :int32, :int64
|
1077
|
-
NArray.int(narray_size)
|
1078
|
-
when :int16
|
1079
|
-
NArray.sint(narray_size)
|
1080
|
-
when :boolean
|
1081
|
-
NArray.sint(narray_size)
|
1082
|
-
when :unknown
|
1083
|
-
nil
|
1084
|
-
else
|
1085
|
-
raise "unsupported type #{data_type}"
|
1086
|
-
end
|
1087
|
-
end
|
1088
|
-
|
1089
|
-
def _create_result_buffer(data_type, shape, name)
|
1090
|
-
return OpenCLBuffer.new(name: name, data_type: data_type, shape: [0], buffer: nil, cl_buffer: nil) if shape == [0]
|
1091
|
-
@context[:_cache][:_cl_buffers]["_result_#{name}_#{shape.join('_')}:#{object_id}"] ||= begin
|
1092
|
-
size = shape.empty? || shape == [0] ? 1 : shape.reduce(:*)
|
1093
|
-
buffer = allocate_narray_for_type(data_type, size)
|
1094
|
-
cl_buffer = _opencl_context.create_buffer(buffer.size * buffer.element_size)
|
1095
|
-
OpenCLBuffer.new(data_type: data_type, shape: shape, buffer: buffer, cl_buffer: cl_buffer, name: name)
|
1096
|
-
end
|
1097
|
-
end
|
1098
|
-
|
1099
|
-
def get_op_with_axis(a, target_axis, current_axis, output_type, op = ->(t, u) { t > u })
|
1100
|
-
if target_axis == current_axis
|
1101
|
-
if a[0].is_a?(Array)
|
1102
|
-
(0...a[0].size).each.collect do |column_index|
|
1103
|
-
max = nil
|
1104
|
-
max_index = 0
|
1105
|
-
a.each_with_index do |row, row_index|
|
1106
|
-
if max.nil? || op.call(row[column_index], max)
|
1107
|
-
max = row[column_index]
|
1108
|
-
max_index = row_index
|
1109
|
-
end
|
1110
|
-
end
|
1111
|
-
|
1112
|
-
Tensor.cast_dtype(max_index, output_type)
|
1113
|
-
end
|
1114
|
-
else
|
1115
|
-
max = nil
|
1116
|
-
max_index = 0
|
1117
|
-
a.each_with_index do |x, index|
|
1118
|
-
if max.nil? || op.call(x, max)
|
1119
|
-
max = x
|
1120
|
-
max_index = index
|
1121
|
-
end
|
1122
|
-
end
|
1123
|
-
Tensor.cast_dtype(max_index, output_type)
|
1124
|
-
end
|
1125
|
-
else
|
1126
|
-
a.collect do |row|
|
1127
|
-
get_op_with_axis(row, target_axis, current_axis + 1, output_type, op)
|
1128
|
-
end
|
1129
|
-
end
|
1130
|
-
end
|
1131
|
-
|
1132
|
-
def _reduced_shape(input_shape, axes)
|
1133
|
-
return [] if axes.nil? # reduce to scalar
|
1134
|
-
axes = [axes] unless axes.is_a?(Array)
|
1135
|
-
return input_shape if axes.empty?
|
1136
|
-
|
1137
|
-
axes.each do |dimen|
|
1138
|
-
input_shape[dimen] = 1
|
1139
|
-
end
|
1140
|
-
input_shape
|
1141
|
-
end
|
1142
|
-
|
1143
|
-
def reduction(child_context, tensor, a, b, func)
|
1144
|
-
input = complete_eval(a, child_context)
|
1145
|
-
axis = b.is_a?(Tensor) ? read_final_result(complete_eval(b, child_context)) : b
|
1146
|
-
if axis.nil?
|
1147
|
-
red = input.buffer.send(func)
|
1148
|
-
convert_to_opencl(red, [], data_type: tensor.data_type, name: tensor.name)
|
1149
|
-
else
|
1150
|
-
return input if input.shape.empty?
|
1151
|
-
value = input.buffer.reshape(*input.shape.reverse)
|
1152
|
-
rank = input.shape.size - 1
|
1153
|
-
|
1154
|
-
if axis.is_a?(Array)
|
1155
|
-
axis.map { |x| rank - x.abs }.sort.reverse_each do |x|
|
1156
|
-
value = value.send(func, x.to_i)
|
1157
|
-
end
|
1158
|
-
else
|
1159
|
-
value = value.send(func, rank - axis.abs)
|
1160
|
-
end
|
1161
|
-
|
1162
|
-
new_shape = if value.is_a?(NArray)
|
1163
|
-
value.shape.reverse
|
1164
|
-
else
|
1165
|
-
value = [value]
|
1166
|
-
[]
|
1167
|
-
end
|
1168
|
-
|
1169
|
-
new_shape = _reduced_shape(input.shape.dup, axis) if tensor.options[:keepdims]
|
1170
|
-
|
1171
|
-
convert_to_opencl(value.flatten, new_shape, data_type: tensor.data_type, name: tensor.name)
|
1172
|
-
end
|
1173
|
-
end
|
1174
|
-
|
1175
|
-
# selects variants of cl programs depending on input
|
1176
|
-
def select_program(input_a, input_b, op)
|
1177
|
-
return [input_a, input_b, op.to_s, 0] if input_a.shape == input_b.shape
|
1178
|
-
|
1179
|
-
return [input_b, input_a, "#{op}_c", 1] if input_a.shape.empty? || input_a.shape.reduce(:*) == 1 # A is scalar?
|
1180
|
-
return [input_a, input_b, "#{op}_c", 0] if input_b.shape.empty? || input_a.shape.reduce(:*) == 1 # B is scalar?
|
1181
|
-
|
1182
|
-
return [input_b, input_a, "#{op}_b", 1] if input_a.shape.size < input_b.shape.size
|
1183
|
-
|
1184
|
-
if input_a.shape.size == input_b.shape.size
|
1185
|
-
input_a.shape.zip(input_b.shape).each do |s1, s2|
|
1186
|
-
return [input_b, input_a, "#{op}_b", 1] if s1 < s2
|
1187
|
-
end
|
1188
|
-
end
|
1189
|
-
|
1190
|
-
[input_a, input_b, "#{op}_b", 0]
|
1191
|
-
end
|
1192
|
-
|
1193
|
-
def _rank_from_shape(shape)
|
1194
|
-
shape.is_a?(Array) ? shape.size : 0
|
1195
|
-
end
|
1196
|
-
|
1197
|
-
def build_event_wait_list(inputs)
|
1198
|
-
inputs.compact.map(&:op).flatten
|
1199
|
-
end
|
1200
|
-
|
1201
|
-
def resolve_placeholder(placeholder, _execution_context = {})
|
1202
|
-
return nil if placeholder.nil?
|
1203
|
-
|
1204
|
-
var = if placeholder.is_a?(Placeholder)
|
1205
|
-
@context[placeholder.name.to_sym].tap do |c|
|
1206
|
-
raise "missing placeholder #{placeholder.name}" if c.nil?
|
1207
|
-
end
|
1208
|
-
else
|
1209
|
-
placeholder
|
1210
|
-
end
|
1211
|
-
|
1212
|
-
return convert_to_opencl(var, shape_eval(var), data_type: placeholder.data_type, name: placeholder.name) unless var.is_a?(Tensor)
|
1213
|
-
Tensor.cast_dtype(var, placeholder.data_type)
|
1214
|
-
end
|
1215
|
-
|
1216
|
-
def all_true?(arr)
|
1217
|
-
if arr.is_a?(Array) || arr.is_a?(NArray)
|
1218
|
-
arr.each do |a|
|
1219
|
-
return false unless all_true?(a)
|
1220
|
-
end
|
1221
|
-
return true
|
1222
|
-
end
|
1223
|
-
|
1224
|
-
arr != 0
|
1225
|
-
end
|
1226
|
-
end
|
1227
|
-
end
|
1228
|
-
end
|
1229
|
-
|
1230
|
-
TensorStream::Evaluator.register_evaluator(TensorStream::Evaluator::OpenclEvaluator, 'opencl', 1)
|