tensor_stream 0.8.1 → 0.8.5
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/.gitignore +1 -0
- data/CHANGELOG.md +8 -0
- data/README.md +12 -6
- data/lib/tensor_stream.rb +1 -0
- data/lib/tensor_stream/evaluator/base_evaluator.rb +1 -1
- data/lib/tensor_stream/evaluator/ruby/array_ops.rb +282 -0
- data/lib/tensor_stream/evaluator/ruby/images_ops.rb +61 -0
- data/lib/tensor_stream/evaluator/ruby/math_ops.rb +111 -0
- data/lib/tensor_stream/evaluator/ruby/nn_ops.rb +48 -9
- data/lib/tensor_stream/evaluator/ruby/random_ops.rb +51 -0
- data/lib/tensor_stream/evaluator/ruby_evaluator.rb +20 -433
- data/lib/tensor_stream/images.rb +16 -0
- data/lib/tensor_stream/ops.rb +5 -1
- data/lib/tensor_stream/session.rb +15 -15
- data/lib/tensor_stream/tensor.rb +1 -1
- data/lib/tensor_stream/train/adadelta_optimizer.rb +52 -0
- data/lib/tensor_stream/train/adam_optimizer.rb +17 -2
- data/lib/tensor_stream/train/gradient_descent_optimizer.rb +7 -1
- data/lib/tensor_stream/trainer.rb +1 -0
- data/lib/tensor_stream/types.rb +4 -0
- data/lib/tensor_stream/utils.rb +4 -0
- data/lib/tensor_stream/variable_scope.rb +1 -0
- data/lib/tensor_stream/version.rb +1 -1
- data/samples/linear_regression.rb +4 -1
- data/samples/mnist_data.rb +64 -0
- data/samples/nearest_neighbor.rb +1 -2
- data/samples/raw_neural_net_sample.rb +1 -1
- data/tensor_stream.gemspec +1 -0
- metadata +23 -57
- data/lib/tensor_stream/evaluator/opencl/kernels/_bool_operand.cl +0 -45
- data/lib/tensor_stream/evaluator/opencl/kernels/_operand.cl +0 -45
- data/lib/tensor_stream/evaluator/opencl/kernels/abs.cl +0 -20
- data/lib/tensor_stream/evaluator/opencl/kernels/acos.cl +0 -8
- data/lib/tensor_stream/evaluator/opencl/kernels/add.cl +0 -3
- data/lib/tensor_stream/evaluator/opencl/kernels/apply_adam.cl +0 -23
- data/lib/tensor_stream/evaluator/opencl/kernels/apply_gradient.cl +0 -9
- data/lib/tensor_stream/evaluator/opencl/kernels/apply_momentum.cl +0 -16
- data/lib/tensor_stream/evaluator/opencl/kernels/argmax.cl +0 -8
- data/lib/tensor_stream/evaluator/opencl/kernels/argmin.cl +0 -8
- data/lib/tensor_stream/evaluator/opencl/kernels/asin.cl +0 -9
- data/lib/tensor_stream/evaluator/opencl/kernels/cast.cl +0 -10
- data/lib/tensor_stream/evaluator/opencl/kernels/ceil.cl +0 -8
- data/lib/tensor_stream/evaluator/opencl/kernels/cond.cl.erb +0 -6
- data/lib/tensor_stream/evaluator/opencl/kernels/cos.cl +0 -8
- data/lib/tensor_stream/evaluator/opencl/kernels/div.cl.erb +0 -3
- data/lib/tensor_stream/evaluator/opencl/kernels/exp.cl +0 -8
- data/lib/tensor_stream/evaluator/opencl/kernels/floor.cl +0 -8
- data/lib/tensor_stream/evaluator/opencl/kernels/floor_div.cl +0 -48
- data/lib/tensor_stream/evaluator/opencl/kernels/floor_mod.cl +0 -3
- data/lib/tensor_stream/evaluator/opencl/kernels/gemm.cl +0 -32
- data/lib/tensor_stream/evaluator/opencl/kernels/log.cl +0 -8
- data/lib/tensor_stream/evaluator/opencl/kernels/log1p.cl +0 -8
- data/lib/tensor_stream/evaluator/opencl/kernels/log_softmax.cl +0 -26
- data/lib/tensor_stream/evaluator/opencl/kernels/max.cl +0 -46
- data/lib/tensor_stream/evaluator/opencl/kernels/min.cl +0 -46
- data/lib/tensor_stream/evaluator/opencl/kernels/mod.cl +0 -3
- data/lib/tensor_stream/evaluator/opencl/kernels/mul.cl +0 -3
- data/lib/tensor_stream/evaluator/opencl/kernels/negate.cl +0 -8
- data/lib/tensor_stream/evaluator/opencl/kernels/pack.cl +0 -24
- data/lib/tensor_stream/evaluator/opencl/kernels/pow.cl +0 -46
- data/lib/tensor_stream/evaluator/opencl/kernels/real_div.cl +0 -3
- data/lib/tensor_stream/evaluator/opencl/kernels/reciprocal.cl +0 -8
- data/lib/tensor_stream/evaluator/opencl/kernels/round.cl +0 -8
- data/lib/tensor_stream/evaluator/opencl/kernels/sigmoid.cl +0 -9
- data/lib/tensor_stream/evaluator/opencl/kernels/sigmoid_grad.cl +0 -55
- data/lib/tensor_stream/evaluator/opencl/kernels/sign.cl +0 -21
- data/lib/tensor_stream/evaluator/opencl/kernels/sin.cl +0 -9
- data/lib/tensor_stream/evaluator/opencl/kernels/softmax.cl +0 -26
- data/lib/tensor_stream/evaluator/opencl/kernels/softmax_cross.cl +0 -32
- data/lib/tensor_stream/evaluator/opencl/kernels/softmax_cross_grad.cl +0 -28
- data/lib/tensor_stream/evaluator/opencl/kernels/softmax_grad.cl +0 -46
- data/lib/tensor_stream/evaluator/opencl/kernels/sqrt.cl +0 -9
- data/lib/tensor_stream/evaluator/opencl/kernels/square.cl +0 -9
- data/lib/tensor_stream/evaluator/opencl/kernels/squared_difference.cl +0 -53
- data/lib/tensor_stream/evaluator/opencl/kernels/sub.cl +0 -3
- data/lib/tensor_stream/evaluator/opencl/kernels/tan.cl +0 -8
- data/lib/tensor_stream/evaluator/opencl/kernels/tanh.cl +0 -8
- data/lib/tensor_stream/evaluator/opencl/kernels/tanh_grad.cl +0 -7
- data/lib/tensor_stream/evaluator/opencl/kernels/where.cl +0 -8
- data/lib/tensor_stream/evaluator/opencl/opencl_buffer.rb +0 -35
- data/lib/tensor_stream/evaluator/opencl/opencl_device.rb +0 -5
- data/lib/tensor_stream/evaluator/opencl/opencl_evaluator.rb +0 -1230
- data/lib/tensor_stream/evaluator/opencl/opencl_template_helper.rb +0 -95
@@ -15,16 +15,28 @@ module TensorStream
|
|
15
15
|
target_var, momentum_var, learning_rate, grad, momentum = inputs
|
16
16
|
assign = tensor.inputs[0] || tensor
|
17
17
|
assign_acc = tensor.inputs[1]
|
18
|
-
assign_acc.value =
|
18
|
+
assign_acc.value = multi_array_op(->(t, u) { t * momentum + u }, momentum_var, grad )
|
19
19
|
if tensor.options[:use_nesterov]
|
20
|
-
|
21
|
-
assign.value = process_vector_math_op(tensor,target_var, delta, context, ->(t, u) { t - u })
|
20
|
+
assign.value = multi_array_op(->(v, g, acc) { v - (g * learning_rate + acc * momentum * learning_rate) } , target_var, grad, momentum_var)
|
22
21
|
else
|
23
|
-
assign.value =
|
22
|
+
assign.value = multi_array_op(->(v, acc) { v - acc * learning_rate }, target_var, momentum_var)
|
24
23
|
end
|
25
24
|
assign.value
|
26
25
|
end
|
27
26
|
|
27
|
+
register_op :apply_adadelta do |context, tensor, inputs|
|
28
|
+
target_var, accum, accum_update, lr, rho, epsilon, grad = inputs
|
29
|
+
assign = tensor.inputs[0] || tensor
|
30
|
+
assign_acc = tensor.inputs[1]
|
31
|
+
assign_acc_update = tensor.inputs[2]
|
32
|
+
assign_acc.value = multi_array_op(->(acc_t, grad_t) { acc_t * rho + (grad_t * grad_t) * (1.0 - rho ) }, accum, grad)
|
33
|
+
update = multi_array_op(->(acc_update_t, acc_t, grad_t) { Math.sqrt(acc_update_t + epsilon) * (1.0 / Math.sqrt(acc_t + epsilon)) * grad_t }, accum_update, assign_acc.value, grad)
|
34
|
+
assign.value = multi_array_op(->(v, u) { v - (u * lr) }, target_var, update)
|
35
|
+
assign_acc_update.value = multi_array_op(->(acc_update_t, u) { acc_update_t * rho + (u * u) * (1.0 - rho) }, accum_update, update)
|
36
|
+
|
37
|
+
assign.value
|
38
|
+
end
|
39
|
+
|
28
40
|
register_op :apply_adam do |context, tensor, inputs|
|
29
41
|
target_var, m, v, beta1_power, beta2_power, lr_t, beta1_t, beta2_t, epsilon_t, grad = inputs
|
30
42
|
alpha = lr_t * Math.sqrt( 1.0 - beta2_power) / (1.0 - beta1_power)
|
@@ -32,11 +44,9 @@ module TensorStream
|
|
32
44
|
assign_m = tensor.inputs[1]
|
33
45
|
assign_v = tensor.inputs[2]
|
34
46
|
|
35
|
-
|
36
|
-
|
37
|
-
|
38
|
-
v_delta = process_vector_math_op(tensor, assign_m.value, assign_v.value, context, ->(m_d , v_d) { (m_d * alpha) / (Math.sqrt(v_d) + epsilon_t) })
|
39
|
-
assign.value = process_vector_math_op(tensor, target_var, v_delta, context, ->(var_d , delta_d) { var_d - delta_d })
|
47
|
+
assign_m.value = multi_array_op(->(u_d , g) { u_d + (g - u_d) * (1.0 - beta1_t) }, m, grad)
|
48
|
+
assign_v.value = multi_array_op(->(u_d , v_d) { u_d + (v_d ** 2 - u_d) * (1.0 - beta2_t)}, v, grad)
|
49
|
+
assign.value = multi_array_op( ->(t, m_d , v_d) { t - ((m_d * alpha) / (Math.sqrt(v_d) + epsilon_t)) }, target_var, assign_m.value, assign_v.value)
|
40
50
|
assign.value
|
41
51
|
end
|
42
52
|
|
@@ -93,6 +103,35 @@ module TensorStream
|
|
93
103
|
TensorShape.reshape(arr.flatten, input_shape)
|
94
104
|
end
|
95
105
|
end
|
106
|
+
|
107
|
+
register_op :softmax_grad do |_context, _tensor, inputs|
|
108
|
+
input, grad = inputs
|
109
|
+
softmax_input = softmax(input)
|
110
|
+
input_shape = shape_eval(input)
|
111
|
+
|
112
|
+
last_dimen_list = last_axis(softmax_input)
|
113
|
+
last_grad_list = last_axis(grad)
|
114
|
+
|
115
|
+
func = lambda { |list, last_grad|
|
116
|
+
f_grad = softmax_grad(list)
|
117
|
+
f_grad.transpose.each.collect do |row|
|
118
|
+
sum = 0.0
|
119
|
+
row.each_with_index do |r, g_index|
|
120
|
+
sum += r * last_grad[g_index]
|
121
|
+
end
|
122
|
+
sum
|
123
|
+
end
|
124
|
+
}
|
125
|
+
|
126
|
+
if input_shape.size == 1
|
127
|
+
func.call(last_dimen_list, last_grad_list)
|
128
|
+
else
|
129
|
+
arr = last_dimen_list.zip(last_grad_list).collect do |list, last_grad|
|
130
|
+
func.call(list, last_grad)
|
131
|
+
end
|
132
|
+
TensorShape.reshape(arr.flatten, input_shape)
|
133
|
+
end
|
134
|
+
end
|
96
135
|
end
|
97
136
|
end
|
98
137
|
end
|
@@ -0,0 +1,51 @@
|
|
1
|
+
module TensorStream
|
2
|
+
## Collection of machine learning related ops
|
3
|
+
module RandomOps
|
4
|
+
def RandomOps.included(klass)
|
5
|
+
klass.class_eval do
|
6
|
+
register_op :glorot_uniform, no_eval: true do |_context, tensor, _inputs|
|
7
|
+
seed = tensor.options[:seed]
|
8
|
+
random = _get_randomizer(tensor, seed)
|
9
|
+
|
10
|
+
shape = tensor.options[:shape] || tensor.shape.shape
|
11
|
+
fan_in, fan_out = if shape.size.zero?
|
12
|
+
[1, 1]
|
13
|
+
elsif shape.size == 1
|
14
|
+
[1, shape[0]]
|
15
|
+
else
|
16
|
+
[shape[0], shape.last]
|
17
|
+
end
|
18
|
+
|
19
|
+
limit = Math.sqrt(6.0 / (fan_in + fan_out))
|
20
|
+
|
21
|
+
minval = -limit
|
22
|
+
maxval = limit
|
23
|
+
|
24
|
+
generator = -> { random.rand * (maxval - minval) + minval }
|
25
|
+
generate_vector(shape, generator: generator)
|
26
|
+
end
|
27
|
+
|
28
|
+
register_op :random_uniform, no_eval: true do |_context, tensor, _inputs|
|
29
|
+
maxval = tensor.options.fetch(:maxval, 1)
|
30
|
+
minval = tensor.options.fetch(:minval, 0)
|
31
|
+
seed = tensor.options[:seed]
|
32
|
+
|
33
|
+
random = _get_randomizer(tensor, seed)
|
34
|
+
generator = -> { random.rand * (maxval - minval) + minval }
|
35
|
+
shape = tensor.options[:shape] || tensor.shape.shape
|
36
|
+
generate_vector(shape, generator: generator)
|
37
|
+
end
|
38
|
+
|
39
|
+
register_op :random_standard_normal, no_eval: true do |_context, tensor, _inputs|
|
40
|
+
seed = tensor.options[:seed]
|
41
|
+
random = _get_randomizer(tensor, seed)
|
42
|
+
r = RandomGaussian.new(tensor.options.fetch(:mean), tensor.options.fetch(:stddev), -> { random.rand })
|
43
|
+
random = _get_randomizer(tensor, seed)
|
44
|
+
generator = -> { r.rand }
|
45
|
+
shape = tensor.options[:shape] || tensor.shape.shape
|
46
|
+
generate_vector(shape, generator: generator)
|
47
|
+
end
|
48
|
+
end
|
49
|
+
end
|
50
|
+
end
|
51
|
+
end
|
@@ -4,6 +4,9 @@ require 'tensor_stream/evaluator/operation_helpers/math_helper'
|
|
4
4
|
require 'tensor_stream/evaluator/base_evaluator'
|
5
5
|
require 'tensor_stream/evaluator/ruby/math_ops'
|
6
6
|
require 'tensor_stream/evaluator/ruby/nn_ops'
|
7
|
+
require 'tensor_stream/evaluator/ruby/array_ops'
|
8
|
+
require 'tensor_stream/evaluator/ruby/random_ops'
|
9
|
+
require 'tensor_stream/evaluator/ruby/images_ops'
|
7
10
|
|
8
11
|
module TensorStream
|
9
12
|
module Evaluator
|
@@ -33,6 +36,9 @@ module TensorStream
|
|
33
36
|
include TensorStream::MathHelper
|
34
37
|
include TensorStream::MathOps
|
35
38
|
include TensorStream::NNOps
|
39
|
+
include TensorStream::ArrayOps
|
40
|
+
include TensorStream::RandomOps
|
41
|
+
include TensorStream::ImagesOps
|
36
42
|
|
37
43
|
def run(tensor, execution_context)
|
38
44
|
return tensor.map { |t| run(t, execution_context) } if tensor.is_a?(Array) && !tensor.empty? && tensor[0].is_a?(Tensor)
|
@@ -109,20 +115,6 @@ module TensorStream
|
|
109
115
|
inputs[0]
|
110
116
|
end
|
111
117
|
|
112
|
-
register_op(%i[argmax arg_max]) do |_context, tensor, inputs|
|
113
|
-
axis = tensor.options[:axis] || 0
|
114
|
-
rank = get_rank(inputs[0])
|
115
|
-
raise TensorStream::InvalidArgumentError, "Expected dimension in the range [#{-rank},#{rank}) but got #{axis}" if axis < -rank || axis >= rank
|
116
|
-
get_op_with_axis(inputs[0], axis, 0, tensor.data_type)
|
117
|
-
end
|
118
|
-
|
119
|
-
register_op(%i[argmin arg_min]) do |_context, tensor, inputs|
|
120
|
-
axis = tensor.options[:axis] || 0
|
121
|
-
rank = get_rank(inputs[0])
|
122
|
-
raise TensorStream::InvalidArgumentError, "Expected dimension in the range [#{-rank},#{rank}) but got #{axis}" if axis < -rank || axis >= rank
|
123
|
-
get_op_with_axis(inputs[0], axis, 0, tensor.data_type, ->(a, b) { a < b })
|
124
|
-
end
|
125
|
-
|
126
118
|
register_op(:cast) do |context, tensor, inputs|
|
127
119
|
call_op(:cast, inputs[0], context, ->(t, _b) { Tensor.cast_dtype(t, tensor.data_type) })
|
128
120
|
end
|
@@ -155,24 +147,6 @@ module TensorStream
|
|
155
147
|
call_vector_op(tensor, :not_equal, inputs[0], inputs[1], context, ->(t, u) { t != u })
|
156
148
|
end
|
157
149
|
|
158
|
-
register_op :index, no_eval: true do |_context, _tensor, inputs|
|
159
|
-
f = inputs[0]
|
160
|
-
index = inputs[1]
|
161
|
-
if f.is_a?(OutputGroup)
|
162
|
-
f.outputs[index]
|
163
|
-
else
|
164
|
-
f[index]
|
165
|
-
end
|
166
|
-
end
|
167
|
-
|
168
|
-
register_op :slice do |context, tensor, inputs|
|
169
|
-
input = inputs[0]
|
170
|
-
start = inputs[1]
|
171
|
-
size = complete_eval(tensor.options[:size], context)
|
172
|
-
raise "start index and size not of the same shape #{start.size} != #{size.size}" if start.size != size.size
|
173
|
-
slice_tensor(input, start, size)
|
174
|
-
end
|
175
|
-
|
176
150
|
def merge_dynamic_stitch(merged, indexes, data)
|
177
151
|
indexes.each_with_index do |ind, m|
|
178
152
|
if ind.is_a?(Array)
|
@@ -183,126 +157,10 @@ module TensorStream
|
|
183
157
|
end
|
184
158
|
end
|
185
159
|
|
186
|
-
register_op %i[flow_dynamic_stitch dynamic_stitch] do |_context, _tensor, inputs|
|
187
|
-
indexes, data = inputs
|
188
|
-
merged = []
|
189
|
-
merge_dynamic_stitch(merged, indexes, data)
|
190
|
-
merged
|
191
|
-
end
|
192
|
-
|
193
|
-
register_op :gather do |_context, _tensor, inputs|
|
194
|
-
params, indexes = inputs
|
195
|
-
gather(params, indexes)
|
196
|
-
end
|
197
|
-
|
198
|
-
register_op :setdiff1d do |_context, tensor, inputs|
|
199
|
-
input, remove = inputs
|
200
|
-
idx = []
|
201
|
-
out = []
|
202
|
-
input.each_with_index do |x, index|
|
203
|
-
next if remove.include?(x)
|
204
|
-
out << x
|
205
|
-
idx << index
|
206
|
-
end
|
207
|
-
idx = idx.map { |i| Tensor.cast_dtype(i, tensor.options[:index_dtype]) } unless tensor.options[:index_dtype] == :int32
|
208
|
-
OutputGroup.new([out, idx], tensor.inputs.map(&:data_type))
|
209
|
-
end
|
210
|
-
|
211
|
-
register_op :cumprod do |context, tensor, inputs|
|
212
|
-
x = inputs[0]
|
213
|
-
c = fp_type?(tensor.data_type) ? 1.0 : 1
|
214
|
-
reverse_option = tensor.options[:reverse]
|
215
|
-
exclusive = tensor.options[:exclusive]
|
216
|
-
|
217
|
-
func = lambda do |arr|
|
218
|
-
return c if arr.nil?
|
219
|
-
count = arr.size
|
220
|
-
|
221
|
-
|
222
|
-
arr = arr.reverse if reverse_option
|
223
|
-
arr = [1] + arr if exclusive
|
224
|
-
|
225
|
-
start_prod = arr[0]
|
226
|
-
mapped = arr[1...count].map do |v|
|
227
|
-
start_prod = vector_op(start_prod, v, ->(a, b) { a * b })
|
228
|
-
end
|
229
|
-
|
230
|
-
arr = [arr[0]] + mapped
|
231
|
-
reverse_option ? arr.reverse : arr
|
232
|
-
end
|
233
|
-
reduction(context, tensor, func)
|
234
|
-
end
|
235
|
-
|
236
|
-
register_op :invert_permutation do |_context, _tensor, inputs|
|
237
|
-
input = inputs[0]
|
238
|
-
output = input.dup
|
239
|
-
input.size.times.each do |index|
|
240
|
-
output[input[index]] = index
|
241
|
-
end unless input.nil?
|
242
|
-
output
|
243
|
-
end
|
244
|
-
|
245
|
-
register_op :size do |_context, tensor, inputs|
|
246
|
-
input = inputs[0]
|
247
|
-
Tensor.cast_dtype(input.flatten.size, tensor.options[:out_type])
|
248
|
-
end
|
249
|
-
|
250
|
-
register_op %i[concat concat_v2] do |_context, tensor, inputs|
|
251
|
-
concat_array(inputs, tensor.options[:axis])
|
252
|
-
end
|
253
|
-
|
254
160
|
register_op :stop_gradient, no_eval: true do |_context, _tensor, inputs|
|
255
161
|
inputs[0]
|
256
162
|
end
|
257
163
|
|
258
|
-
register_op :sigmoid_grad, no_eval: true do |context, tensor, inputs|
|
259
|
-
a, b = inputs
|
260
|
-
call_vector_op(tensor, :sigmoid_grad, a, b, context, ->(t, u) { u * sigmoid(t) * (1 - sigmoid(t)) })
|
261
|
-
end
|
262
|
-
|
263
|
-
register_op :random_uniform, no_eval: true do |_context, tensor, _inputs|
|
264
|
-
maxval = tensor.options.fetch(:maxval, 1)
|
265
|
-
minval = tensor.options.fetch(:minval, 0)
|
266
|
-
seed = tensor.options[:seed]
|
267
|
-
|
268
|
-
random = _get_randomizer(tensor, seed)
|
269
|
-
generator = -> { random.rand * (maxval - minval) + minval }
|
270
|
-
shape = tensor.options[:shape] || tensor.shape.shape
|
271
|
-
generate_vector(shape, generator: generator)
|
272
|
-
end
|
273
|
-
|
274
|
-
register_op :random_standard_normal, no_eval: true do |_context, tensor, _inputs|
|
275
|
-
seed = tensor.options[:seed]
|
276
|
-
random = _get_randomizer(tensor, seed)
|
277
|
-
r = RandomGaussian.new(tensor.options.fetch(:mean), tensor.options.fetch(:stddev), -> { random.rand })
|
278
|
-
random = _get_randomizer(tensor, seed)
|
279
|
-
generator = -> { r.rand }
|
280
|
-
shape = tensor.options[:shape] || tensor.shape.shape
|
281
|
-
generate_vector(shape, generator: generator)
|
282
|
-
end
|
283
|
-
|
284
|
-
register_op :glorot_uniform, no_eval: true do |_context, tensor, _inputs|
|
285
|
-
seed = tensor.options[:seed]
|
286
|
-
random = _get_randomizer(tensor, seed)
|
287
|
-
|
288
|
-
shape = tensor.options[:shape] || tensor.shape.shape
|
289
|
-
fan_in, fan_out = if shape.size.zero?
|
290
|
-
[1, 1]
|
291
|
-
elsif shape.size == 1
|
292
|
-
[1, shape[0]]
|
293
|
-
else
|
294
|
-
[shape[0], shape.last]
|
295
|
-
end
|
296
|
-
|
297
|
-
limit = Math.sqrt(6.0 / (fan_in + fan_out))
|
298
|
-
|
299
|
-
minval = -limit
|
300
|
-
maxval = limit
|
301
|
-
|
302
|
-
generator = -> { random.rand * (maxval - minval) + minval }
|
303
|
-
generate_vector(shape, generator: generator)
|
304
|
-
end
|
305
|
-
|
306
164
|
register_op :assign, noop: true do |context, tensor, _inputs|
|
307
165
|
assign = tensor.inputs[0] || tensor
|
308
166
|
assign.value = global_eval(tensor, tensor.inputs[1], context)
|
@@ -323,116 +181,7 @@ module TensorStream
|
|
323
181
|
tensor.inputs[0].value
|
324
182
|
end
|
325
183
|
|
326
|
-
register_op :
|
327
|
-
axis = tensor.options[:axis] || 0
|
328
|
-
shape = shape_eval(inputs[0])
|
329
|
-
rank = shape.size + 1
|
330
|
-
elem_size = shape.empty? ? 1 : shape.reduce(:*)
|
331
|
-
output_buffer = Array.new(inputs.size * elem_size) { 0 }
|
332
|
-
new_shape = [inputs.size]
|
333
|
-
shape.inject(new_shape) { |ns, s| ns << s }
|
334
|
-
|
335
|
-
divisors = new_shape.dup.drop(1).reverse.inject([1]) do |a, s|
|
336
|
-
a << s * a.last
|
337
|
-
end.reverse
|
338
|
-
|
339
|
-
axis = rank + axis if axis < 0
|
340
|
-
rotated_shape = Array.new(axis + 1) { new_shape.shift }
|
341
|
-
new_shape = rotated_shape.rotate! + new_shape
|
342
|
-
|
343
|
-
multipliers = new_shape.dup.drop(1).reverse.inject([1]) do |a, s|
|
344
|
-
a << s * a.last
|
345
|
-
end.reverse
|
346
|
-
|
347
|
-
inputs.each_with_index do |input, index|
|
348
|
-
raw_input = input.is_a?(Array) ? input.flatten : [input]
|
349
|
-
start = index * divisors.first
|
350
|
-
|
351
|
-
raw_input.each_with_index do |x, index2|
|
352
|
-
index_map = []
|
353
|
-
ptr = start + index2
|
354
|
-
divisors.each_with_object(index_map) do |div, a|
|
355
|
-
a << (ptr / div.to_f).floor
|
356
|
-
ptr = ptr % div
|
357
|
-
end
|
358
|
-
|
359
|
-
rotated_index = Array.new(axis + 1) { index_map.shift }
|
360
|
-
index_map = rotated_index.rotate! + index_map
|
361
|
-
|
362
|
-
ptr2 = 0
|
363
|
-
multipliers.each_with_index do |m, idx|
|
364
|
-
ptr2 += index_map[idx] * m
|
365
|
-
end
|
366
|
-
|
367
|
-
output_buffer[ptr2] = x
|
368
|
-
end
|
369
|
-
end
|
370
|
-
|
371
|
-
TensorShape.reshape(output_buffer, new_shape)
|
372
|
-
end
|
373
|
-
|
374
|
-
register_op :mean, noop: true do |context, tensor, _inputs|
|
375
|
-
c = fp_type?(tensor.data_type) ? 0.0 : 0
|
376
|
-
func = lambda do |arr|
|
377
|
-
return c if arr.nil?
|
378
|
-
|
379
|
-
reduced_val = arr[0]
|
380
|
-
arr[1..arr.size].each do |v|
|
381
|
-
reduced_val = vector_op(reduced_val, v, ->(a, b) { a + b })
|
382
|
-
end
|
383
|
-
|
384
|
-
vector_op(reduced_val, nil, ->(a, _b) { a / arr.size })
|
385
|
-
end
|
386
|
-
|
387
|
-
reduction(context, tensor, func)
|
388
|
-
end
|
389
|
-
|
390
|
-
register_op :sum, noop: true do |context, tensor, _inputs|
|
391
|
-
func = lambda do |arr|
|
392
|
-
reduced_val = arr[0]
|
393
|
-
arr[1..arr.size].each do |v|
|
394
|
-
reduced_val = vector_op(reduced_val, v, ->(t, u) { t + u })
|
395
|
-
end
|
396
|
-
reduced_val
|
397
|
-
end
|
398
|
-
|
399
|
-
reduction(context, tensor, func)
|
400
|
-
end
|
401
|
-
|
402
|
-
register_op :prod, noop: true do |context, tensor, _inputs|
|
403
|
-
c = fp_type?(tensor.data_type) ? 1.0 : 1
|
404
|
-
func = lambda do |arr|
|
405
|
-
return c if arr.nil?
|
406
|
-
|
407
|
-
reduced_val = arr[0]
|
408
|
-
arr[1..arr.size].each do |v|
|
409
|
-
reduced_val = vector_op(reduced_val, v, ->(a, b) { a * b })
|
410
|
-
end
|
411
|
-
reduced_val
|
412
|
-
end
|
413
|
-
|
414
|
-
reduction(context, tensor, func)
|
415
|
-
end
|
416
|
-
|
417
|
-
register_op :range do |_context, _tensor, inputs|
|
418
|
-
start, limit, delta = inputs
|
419
|
-
raise " delta !=0 " if delta.zero?
|
420
|
-
raise " Requires start <= limit when delta > 0" if (start > limit) && delta > 0
|
421
|
-
raise " Requires start >= limit when delta < 0" if (start < limit) && delta < 0
|
422
|
-
|
423
|
-
cur_step = start
|
424
|
-
r = []
|
425
|
-
Kernel.loop do
|
426
|
-
break if start == limit
|
427
|
-
break if (start < limit) && (cur_step >= limit)
|
428
|
-
break if (start > limit) && (cur_step <= limit)
|
429
|
-
r << cur_step
|
430
|
-
cur_step += delta
|
431
|
-
end
|
432
|
-
r
|
433
|
-
end
|
434
|
-
|
435
|
-
register_op :transpose do |_context, tensor, inputs|
|
184
|
+
register_op :transpose do |_context, _tensor, inputs|
|
436
185
|
shape = shape_eval(inputs[0])
|
437
186
|
rank = get_rank(inputs[0])
|
438
187
|
perm = inputs[1] || (0...rank).to_a.reverse
|
@@ -448,47 +197,6 @@ module TensorStream
|
|
448
197
|
end
|
449
198
|
end
|
450
199
|
|
451
|
-
register_op :eye do |_context, tensor, inputs|
|
452
|
-
rows, columns = inputs
|
453
|
-
|
454
|
-
Array.new(rows) do |i|
|
455
|
-
Array.new(columns) do |col|
|
456
|
-
if fp_type?(tensor.data_type)
|
457
|
-
i == col ? 1.0 : 0.0
|
458
|
-
else
|
459
|
-
i == col ? 1 : 0
|
460
|
-
end
|
461
|
-
end
|
462
|
-
end
|
463
|
-
end
|
464
|
-
|
465
|
-
register_op :expand_dims do |_context, _tensor, inputs|
|
466
|
-
val, axis = inputs
|
467
|
-
axis = axis.nil? ? 0 : axis
|
468
|
-
|
469
|
-
shape = shape_eval(val)
|
470
|
-
axis = -axis if axis == shape.size
|
471
|
-
|
472
|
-
new_shape = shape.dup.insert(axis, 1).compact
|
473
|
-
|
474
|
-
TensorShape.reshape([val].flatten, new_shape)
|
475
|
-
end
|
476
|
-
|
477
|
-
register_op :cond, noop: true do |context, tensor, inputs|
|
478
|
-
pred = global_eval(tensor, tensor.options[:pred], context)
|
479
|
-
|
480
|
-
if all_true?(pred)
|
481
|
-
global_eval(tensor, inputs[0], context)
|
482
|
-
else
|
483
|
-
global_eval(tensor, inputs[1], context)
|
484
|
-
end
|
485
|
-
end
|
486
|
-
|
487
|
-
register_op %i[select where] do |context, tensor, inputs|
|
488
|
-
pred = complete_eval(tensor.options[:pred], context)
|
489
|
-
call_3way_vector_op(pred, inputs[0], inputs[1], context, ->(t, u, v) { t ? u : v })
|
490
|
-
end
|
491
|
-
|
492
200
|
register_op :less do |context, tensor, inputs|
|
493
201
|
a, b = inputs
|
494
202
|
call_vector_op(tensor, :less, a, b, context, ->(t, u) { t < u })
|
@@ -509,77 +217,14 @@ module TensorStream
|
|
509
217
|
call_vector_op(tensor, :greater_equal, a, b, context, ->(t, u) { t <= u })
|
510
218
|
end
|
511
219
|
|
512
|
-
register_op :fill do |_context, _tensor, inputs|
|
513
|
-
shape = inputs[0]
|
514
|
-
value = inputs[1]
|
515
|
-
|
516
|
-
func = -> { value }
|
517
|
-
|
518
|
-
if shape.is_a?(Array) && shape.size.zero?
|
519
|
-
func.call
|
520
|
-
else
|
521
|
-
shape = [shape.to_i] unless shape.is_a?(Array)
|
522
|
-
generate_vector(shape, generator: func)
|
523
|
-
end
|
524
|
-
end
|
525
|
-
|
526
|
-
register_op %i[zeros ones zeros_like ones_like] do |_context, tensor, inputs|
|
527
|
-
shape = if %i[zeros_like ones_like].include?(tensor.operation)
|
528
|
-
shape_eval(inputs[0])
|
529
|
-
else
|
530
|
-
inputs[0] || tensor.shape.shape
|
531
|
-
end
|
532
|
-
|
533
|
-
func = if %i[zeros zeros_like].include?(tensor.operation)
|
534
|
-
-> { int_type?(tensor.data_type) ? 0 : 0.0 }
|
535
|
-
else
|
536
|
-
-> { int_type?(tensor.data_type) ? 1 : 1.0 }
|
537
|
-
end
|
538
|
-
|
539
|
-
if shape.is_a?(Array) && shape.size.zero?
|
540
|
-
func.call
|
541
|
-
else
|
542
|
-
shape = [shape.to_i] unless shape.is_a?(Array)
|
543
|
-
|
544
|
-
cache_key = "#{tensor.operation}_#{shape}"
|
545
|
-
if @context[:_cache].key?(cache_key)
|
546
|
-
@context[:_cache][cache_key]
|
547
|
-
else
|
548
|
-
generate_vector(shape, generator: func).tap do |v|
|
549
|
-
@context[:_cache][cache_key] = v
|
550
|
-
end
|
551
|
-
end
|
552
|
-
end
|
553
|
-
end
|
554
|
-
|
555
220
|
register_op :shape do |_context, tensor, inputs|
|
556
221
|
shape_eval(inputs[0], tensor.options[:out_type])
|
557
222
|
end
|
558
223
|
|
559
|
-
register_op :mat_mul do |_context, tensor, inputs|
|
560
|
-
matrix_a, matrix_b = inputs
|
561
|
-
rank_a = get_rank(matrix_a)
|
562
|
-
rank_b = get_rank(matrix_b)
|
563
|
-
raise "#{tensor.inputs[0].name} rank must be greater than 1" if rank_a < 2
|
564
|
-
raise "#{tensor.inputs[1].name} rank must be greater than 1" if rank_b < 2
|
565
|
-
|
566
|
-
matrix_a = matrix_a.transpose if tensor.options[:transpose_a]
|
567
|
-
matrix_b = matrix_b.transpose if tensor.options[:transpose_b]
|
568
|
-
|
569
|
-
# check matrix dimensions
|
570
|
-
raise "incompatible shape sizes for matrix multiplication (#{matrix_a[0].size} != #{matrix_b.size}) #{shape_eval(matrix_a)} vs #{shape_eval(matrix_b)}" if matrix_a[0].size != matrix_b.size
|
571
|
-
|
572
|
-
(Matrix[*matrix_a] * Matrix[*matrix_b]).to_a
|
573
|
-
end
|
574
|
-
|
575
224
|
register_op :broadcast_transform do |_context, _tensor, inputs|
|
576
225
|
broadcast(inputs[0], inputs[1])
|
577
226
|
end
|
578
227
|
|
579
|
-
register_op :truncate do |_context, _tensor, inputs|
|
580
|
-
truncate(inputs[0], inputs[1])
|
581
|
-
end
|
582
|
-
|
583
228
|
register_op :identity do |_context, _tensor, inputs|
|
584
229
|
inputs[0]
|
585
230
|
end
|
@@ -589,57 +234,15 @@ module TensorStream
|
|
589
234
|
inputs[0]
|
590
235
|
end
|
591
236
|
|
592
|
-
register_op :rank do |_context, _tensor, inputs|
|
593
|
-
get_rank(inputs[0])
|
594
|
-
end
|
595
|
-
|
596
237
|
register_op %i[div real_div], noop: true do |context, tensor, inputs|
|
597
238
|
process_vector_math_op(tensor, inputs[0], inputs[1], context, ->(t, u) { t / u })
|
598
239
|
end
|
599
240
|
|
600
|
-
register_op :reshape do |_context, _tensor, inputs|
|
601
|
-
arr, new_shape = inputs
|
602
|
-
|
603
|
-
arr = [arr] unless arr.is_a?(Array)
|
604
|
-
|
605
|
-
flat_arr = arr.flatten
|
606
|
-
if new_shape.size.zero? && flat_arr.size == 1
|
607
|
-
flat_arr[0]
|
608
|
-
else
|
609
|
-
new_shape = TensorShape.fix_inferred_elements(new_shape, flat_arr.size)
|
610
|
-
TensorShape.reshape(flat_arr, new_shape)
|
611
|
-
end
|
612
|
-
end
|
613
|
-
|
614
|
-
register_op :pad do |context, tensor, inputs|
|
615
|
-
p = complete_eval(tensor.options[:paddings], context)
|
616
|
-
|
617
|
-
arr_pad(inputs[0], p, tensor.data_type)
|
618
|
-
end
|
619
|
-
|
620
|
-
register_op %i[max maximum], noop: true do |context, tensor, inputs|
|
621
|
-
call_vector_op(tensor, :max, inputs[0], inputs[1], context, ->(t, u) { [t, u].max })
|
622
|
-
end
|
623
|
-
|
624
|
-
register_op %i[min minimum], noop: true do |context, tensor, inputs|
|
625
|
-
call_vector_op(tensor, :min, inputs[0], inputs[1], context, ->(t, u) { [t, u].min })
|
626
|
-
end
|
627
|
-
|
628
241
|
register_op :broadcast_gradient_args do |_context, tensor, inputs|
|
629
242
|
rx, ry = get_broadcast_gradient_args(inputs[0], inputs[1])
|
630
243
|
OutputGroup.new([rx, ry], tensor.inputs.map(&:data_type))
|
631
244
|
end
|
632
245
|
|
633
|
-
register_op :tile do |_context, _tensor, inputs|
|
634
|
-
input, multiples = inputs
|
635
|
-
rank = get_rank(input)
|
636
|
-
raise '1D or higher tensor required' if rank.zero?
|
637
|
-
raise "invalid multiple size passed #{rank} != #{multiples.size}" if rank != multiples.size
|
638
|
-
|
639
|
-
tile = tile_arr(input, 0, multiples)
|
640
|
-
tile.nil? ? [] : tile
|
641
|
-
end
|
642
|
-
|
643
246
|
register_op :flow_group, noop: true do |context, tensor, inputs|
|
644
247
|
inputs.each { |input| global_eval(tensor, input, context) }
|
645
248
|
nil # no output
|
@@ -657,35 +260,6 @@ module TensorStream
|
|
657
260
|
# prefix, tensor_names, shape_and_slices = inputs[0..3]
|
658
261
|
end
|
659
262
|
|
660
|
-
register_op :softmax_grad do |_context, _tensor, inputs|
|
661
|
-
input, grad = inputs
|
662
|
-
softmax_input = softmax(input)
|
663
|
-
input_shape = shape_eval(input)
|
664
|
-
|
665
|
-
last_dimen_list = last_axis(softmax_input)
|
666
|
-
last_grad_list = last_axis(grad)
|
667
|
-
|
668
|
-
func = lambda { |list, last_grad|
|
669
|
-
f_grad = softmax_grad(list)
|
670
|
-
f_grad.transpose.each.collect do |row|
|
671
|
-
sum = 0.0
|
672
|
-
row.each_with_index do |r, g_index|
|
673
|
-
sum += r * last_grad[g_index]
|
674
|
-
end
|
675
|
-
sum
|
676
|
-
end
|
677
|
-
}
|
678
|
-
|
679
|
-
if input_shape.size == 1
|
680
|
-
func.call(last_dimen_list, last_grad_list)
|
681
|
-
else
|
682
|
-
arr = last_dimen_list.zip(last_grad_list).collect do |list, last_grad|
|
683
|
-
func.call(list, last_grad)
|
684
|
-
end
|
685
|
-
TensorShape.reshape(arr.flatten, input_shape)
|
686
|
-
end
|
687
|
-
end
|
688
|
-
|
689
263
|
register_op :check_numerics do |context, tensor, inputs|
|
690
264
|
message = tensor.options[:message]
|
691
265
|
f = lambda { |t, _b|
|
@@ -868,6 +442,19 @@ module TensorStream
|
|
868
442
|
# end
|
869
443
|
end
|
870
444
|
|
445
|
+
# multi array ops on ruby arrays with same sizes
|
446
|
+
def multi_array_op(func, *args)
|
447
|
+
elem = args[0]
|
448
|
+
if (elem.is_a?(Array))
|
449
|
+
elem.each_with_index.collect do |item, index|
|
450
|
+
indexed_args = args.collect { |a| a[index] }
|
451
|
+
multi_array_op(func, *indexed_args)
|
452
|
+
end
|
453
|
+
else
|
454
|
+
func.call(*args)
|
455
|
+
end
|
456
|
+
end
|
457
|
+
|
871
458
|
def _rank_from_shape(shape)
|
872
459
|
shape.is_a?(Array) ? shape.size : 0
|
873
460
|
end
|